/* * Stack-less Just-In-Time compiler * * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name() { return "x86" SLJIT_CPUINFO; } /* 32b register indexes: 0 - EAX 1 - ECX 2 - EDX 3 - EBX 4 - none 5 - EBP 6 - ESI 7 - EDI */ /* 64b register indexes: 0 - RAX 1 - RCX 2 - RDX 3 - RBX 4 - none 5 - RBP 6 - RSI 7 - RDI 8 - R8 - From now on REX prefix is required 9 - R9 10 - R10 11 - R11 12 - R12 13 - R13 14 - R14 15 - R15 */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) /* Last register + 1. */ #define TMP_REGISTER (SLJIT_NO_REGISTERS + 1) static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 2] = { 0, 0, 2, 1, 0, 0, 3, 6, 7, 0, 0, 4, 5 }; #define CHECK_EXTRA_REGS(p, w, do) \ if (p >= SLJIT_TEMPORARY_EREG1 && p <= SLJIT_TEMPORARY_EREG2) { \ w = compiler->temporaries_start + (p - SLJIT_TEMPORARY_EREG1) * sizeof(sljit_w); \ p = SLJIT_MEM1(SLJIT_LOCALS_REG); \ do; \ } \ else if (p >= SLJIT_SAVED_EREG1 && p <= SLJIT_SAVED_EREG2) { \ w = compiler->saveds_start + (p - SLJIT_SAVED_EREG1) * sizeof(sljit_w); \ p = SLJIT_MEM1(SLJIT_LOCALS_REG); \ do; \ } #else /* SLJIT_CONFIG_X86_32 */ /* Last register + 1. */ #define TMP_REGISTER (SLJIT_NO_REGISTERS + 1) #define TMP_REG2 (SLJIT_NO_REGISTERS + 2) #define TMP_REG3 (SLJIT_NO_REGISTERS + 3) /* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present Note: avoid to use r12 and r13 for memory addessing therefore r12 is better for SAVED_EREG than SAVED_REG. */ #ifndef _WIN64 /* 1st passed in rdi, 2nd argument passed in rsi, 3rd in rdx. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = { 0, 0, 6, 1, 8, 11, 3, 15, 14, 13, 12, 4, 2, 7, 9 }; /* low-map. reg_map & 0x7. */ static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NO_REGISTERS + 4] = { 0, 0, 6, 1, 0, 3, 3, 7, 6, 5, 4, 4, 2, 7, 1 }; #else /* 1st passed in rcx, 2nd argument passed in rdx, 3rd in r8. */ static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = { 0, 0, 2, 1, 11, 13, 3, 6, 7, 14, 15, 4, 10, 8, 9 }; /* low-map. reg_map & 0x7. */ static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NO_REGISTERS + 4] = { 0, 0, 2, 1, 3, 5, 3, 6, 7, 6, 7, 4, 2, 0, 1 }; #endif #define REX_W 0x48 #define REX_R 0x44 #define REX_X 0x42 #define REX_B 0x41 #define REX 0x40 typedef unsigned int sljit_uhw; typedef int sljit_hw; #define IS_HALFWORD(x) ((x) <= 0x7fffffffll && (x) >= -0x80000000ll) #define NOT_HALFWORD(x) ((x) > 0x7fffffffll || (x) < -0x80000000ll) #define CHECK_EXTRA_REGS(p, w, do) #endif /* SLJIT_CONFIG_X86_32 */ #if (defined SLJIT_SSE2 && SLJIT_SSE2) #define TMP_FREG (SLJIT_FLOAT_REG4 + 1) #endif /* Size flags for emit_x86_instruction: */ #define EX86_BIN_INS 0x0010 #define EX86_SHIFT_INS 0x0020 #define EX86_REX 0x0040 #define EX86_NO_REXW 0x0080 #define EX86_BYTE_ARG 0x0100 #define EX86_HALF_ARG 0x0200 #define EX86_PREF_66 0x0400 #if (defined SLJIT_SSE2 && SLJIT_SSE2) #define EX86_PREF_F2 0x0800 #define EX86_SSE2 0x1000 #endif #define INC_SIZE(s) (*buf++ = (s), compiler->size += (s)) #define INC_CSIZE(s) (*code++ = (s), compiler->size += (s)) #define PUSH_REG(r) (*buf++ = (0x50 + (r))) #define POP_REG(r) (*buf++ = (0x58 + (r))) #define RET() (*buf++ = (0xc3)) #define RETN(n) (*buf++ = (0xc2), *buf++ = n, *buf++ = 0) /* r32, r/m32 */ #define MOV_RM(mod, reg, rm) (*buf++ = (0x8b), *buf++ = (mod) << 6 | (reg) << 3 | (rm)) static sljit_ub get_jump_code(int type) { switch (type) { case SLJIT_C_EQUAL: case SLJIT_C_FLOAT_EQUAL: return 0x84; case SLJIT_C_NOT_EQUAL: case SLJIT_C_FLOAT_NOT_EQUAL: return 0x85; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: return 0x82; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: return 0x83; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: return 0x87; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: return 0x86; case SLJIT_C_SIG_LESS: return 0x8c; case SLJIT_C_SIG_GREATER_EQUAL: return 0x8d; case SLJIT_C_SIG_GREATER: return 0x8f; case SLJIT_C_SIG_LESS_EQUAL: return 0x8e; case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: return 0x80; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: return 0x81; case SLJIT_C_FLOAT_NAN: return 0x8a; case SLJIT_C_FLOAT_NOT_NAN: return 0x8b; } return 0; } static sljit_ub* generate_far_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, int type); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) static sljit_ub* generate_fixed_jump(sljit_ub *code_ptr, sljit_w addr, int type); #endif static sljit_ub* generate_near_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, sljit_ub *code, int type) { int short_jump; sljit_uw label_addr; if (jump->flags & JUMP_LABEL) label_addr = (sljit_uw)(code + jump->u.label->size); else label_addr = jump->u.target; short_jump = (sljit_w)(label_addr - (jump->addr + 2)) >= -128 && (sljit_w)(label_addr - (jump->addr + 2)) <= 127; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((sljit_w)(label_addr - (jump->addr + 1)) > 0x7fffffffll || (sljit_w)(label_addr - (jump->addr + 1)) < -0x80000000ll) return generate_far_jump_code(jump, code_ptr, type); #endif if (type == SLJIT_JUMP) { if (short_jump) *code_ptr++ = 0xeb; else *code_ptr++ = 0xe9; jump->addr++; } else if (type >= SLJIT_FAST_CALL) { short_jump = 0; *code_ptr++ = 0xe8; jump->addr++; } else if (short_jump) { *code_ptr++ = get_jump_code(type) - 0x10; jump->addr++; } else { *code_ptr++ = 0x0f; *code_ptr++ = get_jump_code(type); jump->addr += 2; } if (short_jump) { jump->flags |= PATCH_MB; code_ptr += sizeof(sljit_b); } else { jump->flags |= PATCH_MW; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code_ptr += sizeof(sljit_w); #else code_ptr += sizeof(sljit_hw); #endif } return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_ub *code; sljit_ub *code_ptr; sljit_ub *buf_ptr; sljit_ub *buf_end; sljit_ub len; struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; CHECK_ERROR_PTR(); check_sljit_generate_code(compiler); reverse_buf(compiler); /* Second code generation pass. */ code = (sljit_ub*)SLJIT_MALLOC_EXEC(compiler->size); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; code_ptr = code; label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; do { buf_ptr = buf->memory; buf_end = buf_ptr + buf->used_size; do { len = *buf_ptr++; if (len > 0) { /* The code is already generated. */ SLJIT_MEMMOVE(code_ptr, buf_ptr, len); code_ptr += len; buf_ptr += len; } else { if (*buf_ptr >= 4) { jump->addr = (sljit_uw)code_ptr; if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) code_ptr = generate_near_jump_code(jump, code_ptr, code, *buf_ptr - 4); else code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 4); jump = jump->next; } else if (*buf_ptr == 0) { label->addr = (sljit_uw)code_ptr; label->size = code_ptr - code; label = label->next; } else if (*buf_ptr == 1) { const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_w); const_ = const_->next; } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *code_ptr++ = (*buf_ptr == 2) ? 0xe8 /* call */ : 0xe9 /* jmp */; buf_ptr++; *(sljit_w*)code_ptr = *(sljit_w*)buf_ptr - ((sljit_w)code_ptr + sizeof(sljit_w)); code_ptr += sizeof(sljit_w); buf_ptr += sizeof(sljit_w) - 1; #else code_ptr = generate_fixed_jump(code_ptr, *(sljit_w*)(buf_ptr + 1), *buf_ptr); buf_ptr += sizeof(sljit_w); #endif } buf_ptr++; } } while (buf_ptr < buf_end); SLJIT_ASSERT(buf_ptr == buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); jump = compiler->jumps; while (jump) { if (jump->flags & PATCH_MB) { SLJIT_ASSERT((sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))) >= -128 && (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))) <= 127); *(sljit_ub*)jump->addr = (sljit_ub)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))); } else if (jump->flags & PATCH_MW) { if (jump->flags & JUMP_LABEL) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_w*)jump->addr = (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_w))); #else SLJIT_ASSERT((sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))) >= -0x80000000ll && (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))) <= 0x7fffffffll); *(sljit_hw*)jump->addr = (sljit_hw)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))); #endif } else { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_w*)jump->addr = (sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_w))); #else SLJIT_ASSERT((sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_hw))) >= -0x80000000ll && (sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_hw))) <= 0x7fffffffll); *(sljit_hw*)jump->addr = (sljit_hw)(jump->u.target - (jump->addr + sizeof(sljit_hw))); #endif } } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) else if (jump->flags & PATCH_MD) *(sljit_w*)jump->addr = jump->u.label->addr; #endif jump = jump->next; } /* Maybe we waste some space because of short jumps. */ SLJIT_ASSERT(code_ptr <= code + compiler->size); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_size = compiler->size; return (void*)code; } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static int emit_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w); static int emit_non_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w); static int emit_mov(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src, sljit_w srcw); static SLJIT_INLINE int emit_save_flags(struct sljit_compiler *compiler) { sljit_ub *buf; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!buf); INC_SIZE(5); #else buf = (sljit_ub*)ensure_buf(compiler, 1 + 6); FAIL_IF(!buf); INC_SIZE(6); *buf++ = REX_W; #endif *buf++ = 0x8d; /* lea esp/rsp, [esp/rsp + sizeof(sljit_w)] */ *buf++ = 0x64; *buf++ = 0x24; *buf++ = (sljit_ub)sizeof(sljit_w); *buf++ = 0x9c; /* pushfd / pushfq */ compiler->flags_saved = 1; return SLJIT_SUCCESS; } static SLJIT_INLINE int emit_restore_flags(struct sljit_compiler *compiler, int keep_flags) { sljit_ub *buf; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 5); FAIL_IF(!buf); INC_SIZE(5); *buf++ = 0x9d; /* popfd */ #else buf = (sljit_ub*)ensure_buf(compiler, 1 + 6); FAIL_IF(!buf); INC_SIZE(6); *buf++ = 0x9d; /* popfq */ *buf++ = REX_W; #endif *buf++ = 0x8d; /* lea esp/rsp, [esp/rsp - sizeof(sljit_w)] */ *buf++ = 0x64; *buf++ = 0x24; *buf++ = (sljit_ub)-(int)sizeof(sljit_w); compiler->flags_saved = keep_flags; return SLJIT_SUCCESS; } #ifdef _WIN32 #include static void SLJIT_CALL sljit_grow_stack(sljit_w local_size) { /* Workaround for calling the internal _chkstk() function on Windows. This function touches all 4k pages belongs to the requested stack space, which size is passed in local_size. This is necessary on Windows where the stack can only grow in 4k steps. However, this function just burn CPU cycles if the stack is large enough, but you don't know it in advance. I think this is a bad design even if it has some reasons. */ alloca(local_size); } #endif #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #include "sljitNativeX86_32.c" #else #include "sljitNativeX86_64.c" #endif static int emit_mov(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; if (dst == SLJIT_UNUSED) { /* No destination, doesn't need to setup flags. */ if (src & SLJIT_MEM) { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src, srcw); FAIL_IF(!code); *code = 0x8b; } return SLJIT_SUCCESS; } if (src >= SLJIT_TEMPORARY_REG1 && src <= TMP_REGISTER) { code = emit_x86_instruction(compiler, 1, src, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; return SLJIT_SUCCESS; } if (src & SLJIT_IMM) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw); #else if (!compiler->mode32) { if (NOT_HALFWORD(srcw)) return emit_load_imm64(compiler, dst, srcw); } else return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, 0xb8 + reg_lmap[dst], srcw); #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (!compiler->mode32 && NOT_HALFWORD(srcw)) { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, srcw)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; return SLJIT_SUCCESS; } #endif code = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!code); *code = 0xc7; return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { code = emit_x86_instruction(compiler, 1, dst, 0, src, srcw); FAIL_IF(!code); *code = 0x8b; return SLJIT_SUCCESS; } /* Memory to memory move. Requires two instruction. */ code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src, srcw); FAIL_IF(!code); *code = 0x8b; code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; return SLJIT_SUCCESS; } #define EMIT_MOV(compiler, dst, dstw, src, srcw) \ FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op) { sljit_ub *buf; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) int size; #endif CHECK_ERROR(); check_sljit_emit_op0(compiler, op); switch (GET_OPCODE(op)) { case SLJIT_BREAKPOINT: buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0xcc; break; case SLJIT_NOP: buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0x90; break; case SLJIT_UMUL: case SLJIT_SMUL: case SLJIT_UDIV: case SLJIT_SDIV: compiler->flags_saved = 0; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #ifdef _WIN64 SLJIT_COMPILE_ASSERT( reg_map[SLJIT_TEMPORARY_REG1] == 0 && reg_map[SLJIT_TEMPORARY_REG2] == 2 && reg_map[TMP_REGISTER] > 7, invalid_register_assignment_for_div_mul); #else SLJIT_COMPILE_ASSERT( reg_map[SLJIT_TEMPORARY_REG1] == 0 && reg_map[SLJIT_TEMPORARY_REG2] < 7 && reg_map[TMP_REGISTER] == 2, invalid_register_assignment_for_div_mul); #endif compiler->mode32 = op & SLJIT_INT_OP; #endif op = GET_OPCODE(op); if (op == SLJIT_UDIV) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG2, 0); buf = emit_x86_instruction(compiler, 1, SLJIT_TEMPORARY_REG2, 0, SLJIT_TEMPORARY_REG2, 0); #else buf = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0); #endif FAIL_IF(!buf); *buf = 0x33; } if (op == SLJIT_SDIV) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64) EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG2, 0); #endif /* CDQ instruction */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0x99; #else if (compiler->mode32) { buf = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!buf); INC_SIZE(1); *buf = 0x99; } else { buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = REX_W; *buf = 0x99; } #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) buf = (sljit_ub*)ensure_buf(compiler, 1 + 2); FAIL_IF(!buf); INC_SIZE(2); *buf++ = 0xf7; *buf = 0xc0 | ((op >= SLJIT_UDIV) ? reg_map[TMP_REGISTER] : reg_map[SLJIT_TEMPORARY_REG2]); #else #ifdef _WIN64 size = (!compiler->mode32 || op >= SLJIT_UDIV) ? 3 : 2; #else size = (!compiler->mode32) ? 3 : 2; #endif buf = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!buf); INC_SIZE(size); #ifdef _WIN64 if (!compiler->mode32) *buf++ = REX_W | ((op >= SLJIT_UDIV) ? REX_B : 0); else if (op >= SLJIT_UDIV) *buf++ = REX_B; *buf++ = 0xf7; *buf = 0xc0 | ((op >= SLJIT_UDIV) ? reg_lmap[TMP_REGISTER] : reg_lmap[SLJIT_TEMPORARY_REG2]); #else if (!compiler->mode32) *buf++ = REX_W; *buf++ = 0xf7; *buf = 0xc0 | reg_map[SLJIT_TEMPORARY_REG2]; #endif #endif switch (op) { case SLJIT_UMUL: *buf |= 4 << 3; break; case SLJIT_SMUL: *buf |= 5 << 3; break; case SLJIT_UDIV: *buf |= 6 << 3; break; case SLJIT_SDIV: *buf |= 7 << 3; break; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && !defined(_WIN64) EMIT_MOV(compiler, SLJIT_TEMPORARY_REG2, 0, TMP_REGISTER, 0); #endif break; } return SLJIT_SUCCESS; } #define ENCODE_PREFIX(prefix) \ do { \ code = (sljit_ub*)ensure_buf(compiler, 1 + 1); \ FAIL_IF(!code); \ INC_CSIZE(1); \ *code = (prefix); \ } while (0) static int emit_mov_byte(struct sljit_compiler *compiler, int sign, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int dst_r; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) int work_r; #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw); #else return emit_load_imm64(compiler, dst, srcw); #endif } code = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!code); *code = 0xc6; return SLJIT_SUCCESS; } dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REGISTER; if ((dst & SLJIT_MEM) && src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg_map[src] >= 4) { SLJIT_ASSERT(dst_r == TMP_REGISTER); EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0); } else dst_r = src; #else dst_r = src; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS && reg_map[src] >= 4) { /* src, dst are registers. */ SLJIT_ASSERT(dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER); if (reg_map[dst] < 4) { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); code = emit_x86_instruction(compiler, 2, dst, 0, dst, 0); FAIL_IF(!code); *code++ = 0x0f; *code = sign ? 0xbe : 0xb6; } else { if (dst != src) EMIT_MOV(compiler, dst, 0, src, 0); if (sign) { /* shl reg, 24 */ code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!code); *code |= 0x4 << 3; code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0); FAIL_IF(!code); /* shr/sar reg, 24 */ *code |= 0x7 << 3; } else { /* and dst, 0xff */ code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 255, dst, 0); FAIL_IF(!code); *(code + 1) |= 0x4 << 3; } } return SLJIT_SUCCESS; } #endif else { /* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */ code = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!code); *code++ = 0x0f; *code = sign ? 0xbe : 0xb6; } if (dst & SLJIT_MEM) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst_r == TMP_REGISTER) { /* Find a non-used register, whose reg_map[src] < 4. */ if ((dst & 0xf) == SLJIT_TEMPORARY_REG1) { if ((dst & 0xf0) == (SLJIT_TEMPORARY_REG2 << 4)) work_r = SLJIT_TEMPORARY_REG3; else work_r = SLJIT_TEMPORARY_REG2; } else { if ((dst & 0xf0) != (SLJIT_TEMPORARY_REG1 << 4)) work_r = SLJIT_TEMPORARY_REG1; else if ((dst & 0xf) == SLJIT_TEMPORARY_REG2) work_r = SLJIT_TEMPORARY_REG3; else work_r = SLJIT_TEMPORARY_REG2; } if (work_r == SLJIT_TEMPORARY_REG1) { ENCODE_PREFIX(0x90 + reg_map[TMP_REGISTER]); } else { code = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!code); *code = 0x87; } code = emit_x86_instruction(compiler, 1, work_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x88; if (work_r == SLJIT_TEMPORARY_REG1) { ENCODE_PREFIX(0x90 + reg_map[TMP_REGISTER]); } else { code = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0); FAIL_IF(!code); *code = 0x87; } } else { code = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x88; } #else code = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x88; #endif } return SLJIT_SUCCESS; } static int emit_mov_half(struct sljit_compiler *compiler, int sign, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int dst_r; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM)) return SLJIT_SUCCESS; /* Empty instruction. */ if (src & SLJIT_IMM) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw); #else return emit_load_imm64(compiler, dst, srcw); #endif } code = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw); FAIL_IF(!code); *code = 0xc7; return SLJIT_SUCCESS; } dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REGISTER; if ((dst & SLJIT_MEM) && (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)) dst_r = src; else { code = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw); FAIL_IF(!code); *code++ = 0x0f; *code = sign ? 0xbf : 0xb7; } if (dst & SLJIT_MEM) { code = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x89; } return SLJIT_SUCCESS; } static int emit_unary(struct sljit_compiler *compiler, int un_index, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; return SLJIT_SUCCESS; } if (dst == src && dstw == srcw) { /* Same input and output */ code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= (un_index) << 3; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } static int emit_not_with_flags(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0x0b; return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; code = emit_x86_instruction(compiler, 1, dst, 0, dst, 0); FAIL_IF(!code); *code = 0x0b; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0x0b; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } static int emit_clz(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int dst_r; SLJIT_UNUSED_ARG(op); if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) { /* Just set the zero flag. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0xf7; *code |= 0x2 << 3; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 31, TMP_REGISTER, 0); #else code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 63 : 31, TMP_REGISTER, 0); #endif FAIL_IF(!code); *code |= 0x5 << 3; return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(src & SLJIT_IMM)) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw); src = TMP_REGISTER; srcw = 0; } code = emit_x86_instruction(compiler, 2, TMP_REGISTER, 0, src, srcw); FAIL_IF(!code); *code++ = 0x0f; *code = 0xbd; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) dst_r = dst; else { /* Find an unused temporary register. */ if ((dst & 0xf) != SLJIT_TEMPORARY_REG1 && (dst & 0xf0) != (SLJIT_TEMPORARY_REG1 << 4)) dst_r = SLJIT_TEMPORARY_REG1; else if ((dst & 0xf) != SLJIT_TEMPORARY_REG2 && (dst & 0xf0) != (SLJIT_TEMPORARY_REG2 << 4)) dst_r = SLJIT_TEMPORARY_REG2; else dst_r = SLJIT_TEMPORARY_REG3; EMIT_MOV(compiler, dst, dstw, dst_r, 0); } EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, 32 + 31); #else dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REG2; compiler->mode32 = 0; EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 64 + 63 : 32 + 31); compiler->mode32 = op & SLJIT_INT_OP; #endif code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code++ = 0x0f; *code = 0x45; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0); #else code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 63 : 31, dst_r, 0); #endif FAIL_IF(!code); *(code + 1) |= 0x6 << 3; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (dst & SLJIT_MEM) { code = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!code); *code = 0x87; } #else if (dst & SLJIT_MEM) EMIT_MOV(compiler, dst, dstw, TMP_REG2, 0); #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { sljit_ub* code; int update = 0; #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) int dst_is_ereg = 0; int src_is_ereg = 0; #else #define src_is_ereg 0 #endif CHECK_ERROR(); check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1); CHECK_EXTRA_REGS(src, srcw, src_is_ereg = 1); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op & SLJIT_INT_OP; #endif if (GET_OPCODE(op) >= SLJIT_MOV && GET_OPCODE(op) <= SLJIT_MOVU_SI) { op = GET_OPCODE(op); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif SLJIT_COMPILE_ASSERT(SLJIT_MOV + 7 == SLJIT_MOVU, movu_offset); if (op >= SLJIT_MOVU) { update = 1; op -= 7; } if (src & SLJIT_IMM) { switch (op) { case SLJIT_MOV_UB: srcw = (unsigned char)srcw; break; case SLJIT_MOV_SB: srcw = (signed char)srcw; break; case SLJIT_MOV_UH: srcw = (unsigned short)srcw; break; case SLJIT_MOV_SH: srcw = (signed short)srcw; break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_UI: srcw = (unsigned int)srcw; break; case SLJIT_MOV_SI: srcw = (signed int)srcw; break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg)) return emit_mov(compiler, dst, dstw, src, srcw); #endif } if (SLJIT_UNLIKELY(update) && (src & SLJIT_MEM) && !src_is_ereg && (src & 0xf) && (srcw != 0 || (src & 0xf0) != 0)) { code = emit_x86_instruction(compiler, 1, src & 0xf, 0, src, srcw); FAIL_IF(!code); *code = 0x8d; src &= SLJIT_MEM | 0xf; srcw = 0; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_UI || op == SLJIT_MOV_SI) || (src & SLJIT_MEM))) { SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_LOCALS_REG)); dst = TMP_REGISTER; } #endif switch (op) { case SLJIT_MOV: #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) case SLJIT_MOV_UI: case SLJIT_MOV_SI: #endif FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw)); break; case SLJIT_MOV_UB: FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw)); break; case SLJIT_MOV_SB: FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw)); break; case SLJIT_MOV_UH: FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw)); break; case SLJIT_MOV_SH: FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw)); break; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) case SLJIT_MOV_UI: FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned int)srcw : srcw)); break; case SLJIT_MOV_SI: FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed int)srcw : srcw)); break; #endif } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REGISTER) return emit_mov(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), dstw, TMP_REGISTER, 0); #endif if (SLJIT_UNLIKELY(update) && (dst & SLJIT_MEM) && (dst & 0xf) && (dstw != 0 || (dst & 0xf0) != 0)) { code = emit_x86_instruction(compiler, 1, dst & 0xf, 0, dst, dstw); FAIL_IF(!code); *code = 0x8d; } return SLJIT_SUCCESS; } if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; switch (GET_OPCODE(op)) { case SLJIT_NOT: if (SLJIT_UNLIKELY(op & SLJIT_SET_E)) return emit_not_with_flags(compiler, dst, dstw, src, srcw); return emit_unary(compiler, 0x2, dst, dstw, src, srcw); case SLJIT_NEG: if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_unary(compiler, 0x3, dst, dstw, src, srcw); case SLJIT_CLZ: if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_clz(compiler, op, dst, dstw, src, srcw); } return SLJIT_SUCCESS; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #undef src_is_ereg #endif } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) #define BINARY_IMM(_op_imm_, _op_mr_, immw, arg, argw) \ if (IS_HALFWORD(immw) || compiler->mode32) { \ code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!code); \ *(code + 1) |= (_op_imm_); \ } \ else { \ FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immw)); \ code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, arg, argw); \ FAIL_IF(!code); \ *code = (_op_mr_); \ } #define BINARY_EAX_IMM(_op_eax_imm_, immw) \ FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (_op_eax_imm_), immw)) #else #define BINARY_IMM(_op_imm_, _op_mr_, immw, arg, argw) \ code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \ FAIL_IF(!code); \ *(code + 1) |= (_op_imm_); #define BINARY_EAX_IMM(_op_eax_imm_, immw) \ FAIL_IF(emit_do_imm(compiler, (_op_eax_imm_), immw)) #endif static int emit_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!code); *code = op_rm; } else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REGISTER) { /* Special exception for sljit_emit_cond_value. */ code = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!code); *code = op_mr; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src2, src2w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = op_mr; } return SLJIT_SUCCESS; } /* Only for cumulative operations. */ if (dst == src2 && dstw == src2w) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_TEMPORARY_REG1) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if ((dst == SLJIT_TEMPORARY_REG1) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src1w); } else { BINARY_IMM(op_imm, op_mr, src1w, dst, dstw); } } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w); FAIL_IF(!code); *code = op_rm; } else if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw); FAIL_IF(!code); *code = op_mr; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { code = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } return SLJIT_SUCCESS; } static int emit_non_cum_binary(struct sljit_compiler *compiler, sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } return SLJIT_SUCCESS; } if (dst == src1 && dstw == src1w) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(op_eax_imm, src2w); } else { BINARY_IMM(op_imm, op_mr, src2w, dst, dstw); } } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w); FAIL_IF(!code); *code = op_rm; } else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { code = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw); FAIL_IF(!code); *code = op_mr; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src2, src2w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw); FAIL_IF(!code); *code = op_mr; } return SLJIT_SUCCESS; } /* General version. */ if ((dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) && dst != src2) { EMIT_MOV(compiler, dst, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, dst, 0); } else { code = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } } else { /* This version requires less memory writing. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0); } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = op_rm; } EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } return SLJIT_SUCCESS; } static int emit_mul(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; int dst_r; dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; /* Register destination. */ if (dst_r == src1 && !(src2 & SLJIT_IMM)) { code = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } else if (dst_r == src2 && !(src1 & SLJIT_IMM)) { code = emit_x86_instruction(compiler, 2, dst_r, 0, src1, src1w); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } else if (src1 & SLJIT_IMM) { if (src2 & SLJIT_IMM) { EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w); src2 = dst_r; src2w = 0; } if (src1w <= 127 && src1w >= -128) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!code); *code = 0x6b; code = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!code); INC_CSIZE(1); *code = (sljit_b)src1w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_w*)code = src1w; } #else else if (IS_HALFWORD(src1w)) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_hw*)code = (sljit_hw)src1w; } else { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w); if (dst_r != src2) EMIT_MOV(compiler, dst_r, 0, src2, src2w); code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } #endif } else if (src2 & SLJIT_IMM) { /* Note: src1 is NOT immediate. */ if (src2w <= 127 && src2w >= -128) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!code); *code = 0x6b; code = (sljit_ub*)ensure_buf(compiler, 1 + 1); FAIL_IF(!code); INC_CSIZE(1); *code = (sljit_b)src2w; } #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) else { code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_w*)code = src2w; } #else else if (IS_HALFWORD(src2w)) { code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w); FAIL_IF(!code); *code = 0x69; code = (sljit_ub*)ensure_buf(compiler, 1 + 4); FAIL_IF(!code); INC_CSIZE(4); *(sljit_hw*)code = (sljit_hw)src2w; } else { EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w); if (dst_r != src1) EMIT_MOV(compiler, dst_r, 0, src1, src1w); code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } #endif } else { /* Neither argument is immediate. */ if (ADDRESSING_DEPENDS_ON(src2, dst_r)) dst_r = TMP_REGISTER; EMIT_MOV(compiler, dst_r, 0, src1, src1w); code = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w); FAIL_IF(!code); *code++ = 0x0f; *code = 0xaf; } if (dst_r == TMP_REGISTER) EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } static int emit_lea_binary(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; int dst_r, done = 0; /* These cases better be left to handled by normal way. */ if (dst == src1 && dstw == src1w) return SLJIT_ERR_UNSUPPORTED; if (dst == src2 && dstw == src2w) return SLJIT_ERR_UNSUPPORTED; dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { if ((src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) || src2 == TMP_REGISTER) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0); FAIL_IF(!code); *code = 0x8d; done = 1; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src2w))) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (int)src2w); #else if (src2 & SLJIT_IMM) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w); #endif FAIL_IF(!code); *code = 0x8d; done = 1; } } else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src1 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src1w))) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (int)src1w); #else if (src1 & SLJIT_IMM) { code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w); #endif FAIL_IF(!code); *code = 0x8d; done = 1; } } if (done) { if (dst_r == TMP_REGISTER) return emit_mov(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } return SLJIT_ERR_UNSUPPORTED; } static int emit_cmp_binary(struct sljit_compiler *compiler, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(0x3d, src2w); return SLJIT_SUCCESS; } if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { if (src2 & SLJIT_IMM) { BINARY_IMM(0x7 << 3, 0x39, src2w, src1, 0); } else { code = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!code); *code = 0x3b; } return SLJIT_SUCCESS; } if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS && !(src1 & SLJIT_IMM)) { code = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!code); *code = 0x39; return SLJIT_SUCCESS; } if (src2 & SLJIT_IMM) { if (src1 & SLJIT_IMM) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); src1 = TMP_REGISTER; src1w = 0; } BINARY_IMM(0x7 << 3, 0x39, src2w, src1, src1w); } else { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = 0x3b; } return SLJIT_SUCCESS; } static int emit_test_binary(struct sljit_compiler *compiler, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) { #else if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) { #endif BINARY_EAX_IMM(0xa9, src2w); return SLJIT_SUCCESS; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (src2 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) { #else if (src2 == SLJIT_TEMPORARY_REG1 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128)) { #endif BINARY_EAX_IMM(0xa9, src1w); return SLJIT_SUCCESS; } if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) { if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0); FAIL_IF(!code); *code = 0xf7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src1, 0); FAIL_IF(!code); *code = 0x85; } #else code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0); FAIL_IF(!code); *code = 0xf7; #endif } else { code = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w); FAIL_IF(!code); *code = 0x85; } return SLJIT_SUCCESS; } if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) { if (src1 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src1w) || compiler->mode32) { code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, 0); FAIL_IF(!code); *code = 0xf7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src2, 0); FAIL_IF(!code); *code = 0x85; } #else code = emit_x86_instruction(compiler, 1, src1, src1w, src2, 0); FAIL_IF(!code); *code = 0xf7; #endif } else { code = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w); FAIL_IF(!code); *code = 0x85; } return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (IS_HALFWORD(src2w) || compiler->mode32) { code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0xf7; } else { FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w)); code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0x85; } #else code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code = 0xf7; #endif } else { code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w); FAIL_IF(!code); *code = 0x85; } return SLJIT_SUCCESS; } static int emit_shift(struct sljit_compiler *compiler, sljit_ub mode, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { sljit_ub* code; if ((src2 & SLJIT_IMM) || (src2 == SLJIT_PREF_SHIFT_REG)) { if (dst == src1 && dstw == src1w) { code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw); FAIL_IF(!code); *code |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_UNUSED) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); return SLJIT_SUCCESS; } if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) { EMIT_MOV(compiler, dst, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0); FAIL_IF(!code); *code |= mode; return SLJIT_SUCCESS; } EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); return SLJIT_SUCCESS; } if (dst == SLJIT_PREF_SHIFT_REG) { EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); } else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS && dst != src2 && !ADDRESSING_DEPENDS_ON(src2, dst)) { if (src1 != dst) EMIT_MOV(compiler, dst, 0, src1, src1w); EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_PREF_SHIFT_REG, 0); EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0); FAIL_IF(!code); *code |= mode; EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); } else { /* This case is really difficult, since ecx itself may used for addressing, and we must ensure to work even in that case. */ EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0); #else /* [esp+0] contains the flags. */ EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), sizeof(sljit_w), SLJIT_PREF_SHIFT_REG, 0); #endif EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w); code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0); FAIL_IF(!code); *code |= mode; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0); #else EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), sizeof(sljit_w)); #endif EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } return SLJIT_SUCCESS; } static int emit_shift_with_flags(struct sljit_compiler *compiler, sljit_ub mode, int set_flags, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { /* The CPU does not set flags if the shift count is 0. */ if (src2 & SLJIT_IMM) { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if ((src2w & 0x3f) != 0 || (compiler->mode32 && (src2w & 0x1f) != 0)) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #else if ((src2w & 0x1f) != 0) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); #endif if (!set_flags) return emit_mov(compiler, dst, dstw, src1, src1w); /* OR dst, src, 0 */ return emit_cum_binary(compiler, 0x0b, 0x09, 0x1 << 3, 0x0d, dst, dstw, src1, src1w, SLJIT_IMM, 0); } if (!set_flags) return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w); if (!(dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)) FAIL_IF(emit_cmp_binary(compiler, src1, src1w, SLJIT_IMM, 0)); FAIL_IF(emit_shift(compiler,mode, dst, dstw, src1, src1w, src2, src2w)); if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) return emit_cmp_binary(compiler, dst, dstw, SLJIT_IMM, 0); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { CHECK_ERROR(); check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); CHECK_EXTRA_REGS(dst, dstw, (void)0); CHECK_EXTRA_REGS(src1, src1w, (void)0); CHECK_EXTRA_REGS(src2, src2w, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = op & SLJIT_INT_OP; #endif if (GET_OPCODE(op) >= SLJIT_MUL) { if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); } switch (GET_OPCODE(op)) { case SLJIT_ADD: if (!GET_FLAGS(op)) { if (emit_lea_binary(compiler, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } else compiler->flags_saved = 0; if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); return emit_cum_binary(compiler, 0x03, 0x01, 0x0 << 3, 0x05, dst, dstw, src1, src1w, src2, src2w); case SLJIT_ADDC: if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */ FAIL_IF(emit_restore_flags(compiler, 1)); else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS)) FAIL_IF(emit_save_flags(compiler)); if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; return emit_cum_binary(compiler, 0x13, 0x11, 0x2 << 3, 0x15, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUB: if (!GET_FLAGS(op)) { if ((src2 & SLJIT_IMM) && emit_lea_binary(compiler, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED) return compiler->error; } else compiler->flags_saved = 0; if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved) FAIL_IF(emit_save_flags(compiler)); if (dst == SLJIT_UNUSED) return emit_cmp_binary(compiler, src1, src1w, src2, src2w); return emit_non_cum_binary(compiler, 0x2b, 0x29, 0x5 << 3, 0x2d, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SUBC: if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */ FAIL_IF(emit_restore_flags(compiler, 1)); else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS)) FAIL_IF(emit_save_flags(compiler)); if (SLJIT_UNLIKELY(GET_FLAGS(op))) compiler->flags_saved = 0; return emit_non_cum_binary(compiler, 0x1b, 0x19, 0x3 << 3, 0x1d, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: if (dst == SLJIT_UNUSED) return emit_test_binary(compiler, src1, src1w, src2, src2w); return emit_cum_binary(compiler, 0x23, 0x21, 0x4 << 3, 0x25, dst, dstw, src1, src1w, src2, src2w); case SLJIT_OR: return emit_cum_binary(compiler, 0x0b, 0x09, 0x1 << 3, 0x0d, dst, dstw, src1, src1w, src2, src2w); case SLJIT_XOR: return emit_cum_binary(compiler, 0x33, 0x31, 0x6 << 3, 0x35, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: return emit_shift_with_flags(compiler, 0x4 << 3, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_LSHR: return emit_shift_with_flags(compiler, 0x5 << 3, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); case SLJIT_ASHR: return emit_shift_with_flags(compiler, 0x7 << 3, GET_FLAGS(op), dst, dstw, src1, src1w, src2, src2w); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_get_register_index(int reg) { check_sljit_get_register_index(reg); #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) if (reg == SLJIT_TEMPORARY_EREG1 || reg == SLJIT_TEMPORARY_EREG2 || reg == SLJIT_SAVED_EREG1 || reg == SLJIT_SAVED_EREG2) return -1; #endif return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, int size) { sljit_ub *buf; CHECK_ERROR(); check_sljit_emit_op_custom(compiler, instruction, size); SLJIT_ASSERT(size > 0 && size < 16); buf = (sljit_ub*)ensure_buf(compiler, 1 + size); FAIL_IF(!buf); INC_SIZE(size); SLJIT_MEMMOVE(buf, instruction, size); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ #if (defined SLJIT_SSE2 && SLJIT_SSE2) /* Alignment + 2 * 16 bytes. */ static sljit_i sse2_data[3 + 4 + 4]; static sljit_i *sse2_buffer; static void init_compiler() { sse2_buffer = (sljit_i*)(((sljit_uw)sse2_data + 15) & ~0xf); sse2_buffer[0] = 0; sse2_buffer[1] = 0x80000000; sse2_buffer[4] = 0xffffffff; sse2_buffer[5] = 0x7fffffff; } #endif SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void) { #if (defined SLJIT_SSE2 && SLJIT_SSE2) #if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2) static int sse2_available = -1; int features; if (sse2_available != -1) return sse2_available; #ifdef __GNUC__ /* AT&T syntax. */ asm ( "pushl %%ebx\n" "movl $0x1, %%eax\n" "cpuid\n" "popl %%ebx\n" "movl %%edx, %0\n" : "=g" (features) : : "%eax", "%ecx", "%edx" ); #elif defined(_MSC_VER) || defined(__BORLANDC__) /* Intel syntax. */ __asm { mov eax, 1 push ebx cpuid pop ebx mov features, edx } #else #error "SLJIT_DETECT_SSE2 is not implemented for this C compiler" #endif sse2_available = (features >> 26) & 0x1; return sse2_available; #else return 1; #endif #else return 0; #endif } #if (defined SLJIT_SSE2 && SLJIT_SSE2) static int emit_sse2(struct sljit_compiler *compiler, sljit_ub opcode, int xmm1, int xmm2, sljit_w xmm2w) { sljit_ub *buf; buf = emit_x86_instruction(compiler, 2 | EX86_PREF_F2 | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!buf); *buf++ = 0x0f; *buf = opcode; return SLJIT_SUCCESS; } static int emit_sse2_logic(struct sljit_compiler *compiler, sljit_ub opcode, int xmm1, int xmm2, sljit_w xmm2w) { sljit_ub *buf; buf = emit_x86_instruction(compiler, 2 | EX86_PREF_66 | EX86_SSE2, xmm1, 0, xmm2, xmm2w); FAIL_IF(!buf); *buf++ = 0x0f; *buf = opcode; return SLJIT_SUCCESS; } static SLJIT_INLINE int emit_sse2_load(struct sljit_compiler *compiler, int dst, int src, sljit_w srcw) { return emit_sse2(compiler, 0x10, dst, src, srcw); } static SLJIT_INLINE int emit_sse2_store(struct sljit_compiler *compiler, int dst, sljit_w dstw, int src) { return emit_sse2(compiler, 0x11, src, dst, dstw); } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { int dst_r; CHECK_ERROR(); check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (GET_OPCODE(op) == SLJIT_FCMP) { compiler->flags_saved = 0; if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) dst_r = dst; else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, dst_r, dst, dstw)); } return emit_sse2_logic(compiler, 0x2e, dst_r, src, srcw); } if (op == SLJIT_FMOV) { if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) return emit_sse2_load(compiler, dst, src, srcw); if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) return emit_sse2_store(compiler, dst, dstw, src); FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src, srcw)); return emit_sse2_store(compiler, dst, dstw, TMP_FREG); } if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) { dst_r = dst; if (dst != src) FAIL_IF(emit_sse2_load(compiler, dst_r, src, srcw)); } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, dst_r, src, srcw)); } switch (op) { case SLJIT_FNEG: FAIL_IF(emit_sse2_logic(compiler, 0x57, dst_r, SLJIT_MEM0(), (sljit_w)sse2_buffer)); break; case SLJIT_FABS: FAIL_IF(emit_sse2_logic(compiler, 0x54, dst_r, SLJIT_MEM0(), (sljit_w)(sse2_buffer + 4))); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { int dst_r; CHECK_ERROR(); check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 1; #endif if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) { dst_r = dst; if (dst == src1) ; /* Do nothing here. */ else if (dst == src2 && (op == SLJIT_FADD || op == SLJIT_FMUL)) { /* Swap arguments. */ src2 = src1; src2w = src1w; } else if (dst != src2) FAIL_IF(emit_sse2_load(compiler, dst_r, src1, src1w)); else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src1, src1w)); } } else { dst_r = TMP_FREG; FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src1, src1w)); } switch (op) { case SLJIT_FADD: FAIL_IF(emit_sse2(compiler, 0x58, dst_r, src2, src2w)); break; case SLJIT_FSUB: FAIL_IF(emit_sse2(compiler, 0x5c, dst_r, src2, src2w)); break; case SLJIT_FMUL: FAIL_IF(emit_sse2(compiler, 0x59, dst_r, src2, src2w)); break; case SLJIT_FDIV: FAIL_IF(emit_sse2(compiler, 0x5e, dst_r, src2, src2w)); break; } if (dst_r == TMP_FREG) return emit_sse2_store(compiler, dst, dstw, TMP_FREG); return SLJIT_SUCCESS; } #else SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src, sljit_w srcw) { CHECK_ERROR(); /* Should cause an assertion fail. */ check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw); compiler->error = SLJIT_ERR_UNSUPPORTED; return SLJIT_ERR_UNSUPPORTED; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int src1, sljit_w src1w, int src2, sljit_w src2w) { CHECK_ERROR(); /* Should cause an assertion fail. */ check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w); compiler->error = SLJIT_ERR_UNSUPPORTED; return SLJIT_ERR_UNSUPPORTED; } #endif /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { sljit_ub *buf; struct sljit_label *label; CHECK_ERROR_PTR(); check_sljit_emit_label(compiler); /* We should restore the flags before the label, since other taken jumps has their own flags as well. */ if (SLJIT_UNLIKELY(compiler->flags_saved)) PTR_FAIL_IF(emit_restore_flags(compiler, 0)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); buf = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF(!buf); *buf++ = 0; *buf++ = 0; return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type) { sljit_ub *buf; struct sljit_jump *jump; CHECK_ERROR_PTR(); check_sljit_emit_jump(compiler, type); if (SLJIT_UNLIKELY(compiler->flags_saved)) { if ((type & 0xff) <= SLJIT_JUMP) PTR_FAIL_IF(emit_restore_flags(compiler, 0)); compiler->flags_saved = 0; } jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF_NULL(jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; if (type >= SLJIT_CALL1) PTR_FAIL_IF(call_with_args(compiler, type)); /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += (type >= SLJIT_JUMP) ? 5 : 6; #else compiler->size += (type >= SLJIT_JUMP) ? (10 + 3) : (2 + 10 + 3); #endif buf = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF_NULL(buf); *buf++ = 0; *buf++ = type + 4; return jump; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw) { sljit_ub *code; struct sljit_jump *jump; CHECK_ERROR(); check_sljit_emit_ijump(compiler, type, src, srcw); ADJUST_LOCAL_OFFSET(src, srcw); CHECK_EXTRA_REGS(src, srcw, (void)0); if (SLJIT_UNLIKELY(compiler->flags_saved)) { if (type <= SLJIT_JUMP) FAIL_IF(emit_restore_flags(compiler, 0)); compiler->flags_saved = 0; } if (type >= SLJIT_CALL1) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) #if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL) if (src == SLJIT_TEMPORARY_REG3) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0); src = TMP_REGISTER; } if (src == SLJIT_MEM1(SLJIT_LOCALS_REG) && type >= SLJIT_CALL3) srcw += sizeof(sljit_w); #else if (src == SLJIT_MEM1(SLJIT_LOCALS_REG)) srcw += sizeof(sljit_w) * (type - SLJIT_CALL0); #endif #endif #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && defined(_WIN64) if (src == SLJIT_TEMPORARY_REG3) { EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0); src = TMP_REGISTER; } #endif FAIL_IF(call_with_args(compiler, type)); } if (src == SLJIT_IMM) { jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF_NULL(jump); set_jump(jump, compiler, JUMP_ADDR); jump->u.target = srcw; /* Worst case size. */ #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) compiler->size += 5; #else compiler->size += 10 + 3; #endif code = (sljit_ub*)ensure_buf(compiler, 2); FAIL_IF_NULL(code); *code++ = 0; *code++ = type + 4; } else { #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; #endif code = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!code); *code++ = 0xff; *code |= (type >= SLJIT_FAST_CALL) ? (2 << 3) : (4 << 3); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type) { sljit_ub *buf; sljit_ub cond_set = 0; int dst_save = dst; sljit_w dstw_save = dstw; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) int reg; #endif CHECK_ERROR(); check_sljit_emit_cond_value(compiler, op, dst, dstw, type); if (dst == SLJIT_UNUSED) return SLJIT_SUCCESS; ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); if (SLJIT_UNLIKELY(compiler->flags_saved)) FAIL_IF(emit_restore_flags(compiler, op & SLJIT_KEEP_FLAGS)); switch (type) { case SLJIT_C_EQUAL: case SLJIT_C_FLOAT_EQUAL: cond_set = 0x94; break; case SLJIT_C_NOT_EQUAL: case SLJIT_C_FLOAT_NOT_EQUAL: cond_set = 0x95; break; case SLJIT_C_LESS: case SLJIT_C_FLOAT_LESS: cond_set = 0x92; break; case SLJIT_C_GREATER_EQUAL: case SLJIT_C_FLOAT_GREATER_EQUAL: cond_set = 0x93; break; case SLJIT_C_GREATER: case SLJIT_C_FLOAT_GREATER: cond_set = 0x97; break; case SLJIT_C_LESS_EQUAL: case SLJIT_C_FLOAT_LESS_EQUAL: cond_set = 0x96; break; case SLJIT_C_SIG_LESS: cond_set = 0x9c; break; case SLJIT_C_SIG_GREATER_EQUAL: cond_set = 0x9d; break; case SLJIT_C_SIG_GREATER: cond_set = 0x9f; break; case SLJIT_C_SIG_LESS_EQUAL: cond_set = 0x9e; break; case SLJIT_C_OVERFLOW: case SLJIT_C_MUL_OVERFLOW: cond_set = 0x90; break; case SLJIT_C_NOT_OVERFLOW: case SLJIT_C_MUL_NOT_OVERFLOW: cond_set = 0x91; break; case SLJIT_C_FLOAT_NAN: cond_set = 0x9a; break; case SLJIT_C_FLOAT_NOT_NAN: cond_set = 0x9b; break; } #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) reg = (op == SLJIT_MOV && dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; buf = (sljit_ub*)ensure_buf(compiler, 1 + 4 + 4); FAIL_IF(!buf); INC_SIZE(4 + 4); /* Set low register to conditional flag. */ *buf++ = (reg_map[reg] <= 7) ? 0x40 : REX_B; *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0 | reg_lmap[reg]; *buf++ = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R)); *buf++ = 0x0f; *buf++ = 0xb6; *buf = 0xC0 | (reg_lmap[reg] << 3) | reg_lmap[reg]; if (reg == TMP_REGISTER) { if (op == SLJIT_MOV) { compiler->mode32 = 0; EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0); } else { #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REGISTER, 0); } } #else if (op == SLJIT_MOV) { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_TEMPORARY_REG3) { buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3); FAIL_IF(!buf); INC_SIZE(3 + 3); /* Set low byte to conditional flag. */ *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0 | reg_map[dst]; *buf++ = 0x0f; *buf++ = 0xb6; *buf = 0xC0 | (reg_map[dst] << 3) | reg_map[dst]; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3); FAIL_IF(!buf); INC_SIZE(3 + 3); /* Set al to conditional flag. */ *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0; *buf++ = 0x0f; *buf++ = 0xb6; if (dst >= SLJIT_SAVED_REG1 && dst <= SLJIT_NO_REGISTERS) *buf = 0xC0 | (reg_map[dst] << 3); else { *buf = 0xC0; EMIT_MOV(compiler, dst, dstw, SLJIT_TEMPORARY_REG1, 0); } EMIT_MOV(compiler, SLJIT_TEMPORARY_REG1, 0, TMP_REGISTER, 0); } } else { if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_TEMPORARY_REG3) { EMIT_MOV(compiler, TMP_REGISTER, 0, dst, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3); FAIL_IF(!buf); INC_SIZE(3); *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0 | reg_map[dst]; } else { EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0); buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3 + 1); FAIL_IF(!buf); INC_SIZE(3 + 3 + 1); /* Set al to conditional flag. */ *buf++ = 0x0f; *buf++ = cond_set; *buf++ = 0xC0; *buf++ = 0x0f; *buf++ = 0xb6; *buf++ = 0xC0; *buf++ = 0x90 + reg_map[TMP_REGISTER]; } #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REGISTER, 0); } #endif return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE int sljit_get_local_base(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w offset) { CHECK_ERROR(); check_sljit_get_local_base(compiler, dst, dstw, offset); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; #endif ADJUST_LOCAL_OFFSET(SLJIT_MEM1(SLJIT_LOCALS_REG), offset); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (NOT_HALFWORD(offset)) { FAIL_IF(emit_load_imm64(compiler, TMP_REGISTER, offset)); #if (defined SLJIT_DEBUG && SLJIT_DEBUG) SLJIT_ASSERT(emit_lea_binary(compiler, dst, dstw, SLJIT_LOCALS_REG, 0, TMP_REGISTER, 0) != SLJIT_ERR_UNSUPPORTED); return compiler->error; #else return emit_lea_binary(compiler, dst, dstw, SLJIT_LOCALS_REG, 0, TMP_REGISTER, 0); #endif } #endif if (offset != 0) return emit_lea_binary(compiler, dst, dstw, SLJIT_LOCALS_REG, 0, SLJIT_IMM, offset); return emit_mov(compiler, dst, dstw, SLJIT_LOCALS_REG, 0); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value) { sljit_ub *buf; struct sljit_const *const_; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) int reg; #endif CHECK_ERROR_PTR(); check_sljit_emit_const(compiler, dst, dstw, init_value); ADJUST_LOCAL_OFFSET(dst, dstw); CHECK_EXTRA_REGS(dst, dstw, (void)0); const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) compiler->mode32 = 0; reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER; if (emit_load_imm64(compiler, reg, init_value)) return NULL; #else if (dst == SLJIT_UNUSED) dst = TMP_REGISTER; if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value)) return NULL; #endif buf = (sljit_ub*)ensure_buf(compiler, 2); PTR_FAIL_IF(!buf); *buf++ = 0; *buf++ = 1; #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) if (reg == TMP_REGISTER && dst != SLJIT_UNUSED) if (emit_mov(compiler, dst, dstw, TMP_REGISTER, 0)) return NULL; #endif return const_; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr) { #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) *(sljit_w*)addr = new_addr - (addr + 4); #else *(sljit_uw*)addr = new_addr; #endif } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant) { *(sljit_w*)addr = new_constant; }