Annotation of embedaddon/php/ext/sqlite/libsqlite/src/date.c, revision 1.1.1.1
1.1 misho 1: /*
2: ** 2003 October 31
3: **
4: ** The author disclaims copyright to this source code. In place of
5: ** a legal notice, here is a blessing:
6: **
7: ** May you do good and not evil.
8: ** May you find forgiveness for yourself and forgive others.
9: ** May you share freely, never taking more than you give.
10: **
11: *************************************************************************
12: ** This file contains the C functions that implement date and time
13: ** functions for SQLite.
14: **
15: ** There is only one exported symbol in this file - the function
16: ** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
17: ** All other code has file scope.
18: **
19: ** $Id: date.c 278363 2009-04-07 11:45:13Z kalle $
20: **
21: ** NOTES:
22: **
23: ** SQLite processes all times and dates as Julian Day numbers. The
24: ** dates and times are stored as the number of days since noon
25: ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
26: ** calendar system.
27: **
28: ** 1970-01-01 00:00:00 is JD 2440587.5
29: ** 2000-01-01 00:00:00 is JD 2451544.5
30: **
31: ** This implemention requires years to be expressed as a 4-digit number
32: ** which means that only dates between 0000-01-01 and 9999-12-31 can
33: ** be represented, even though julian day numbers allow a much wider
34: ** range of dates.
35: **
36: ** The Gregorian calendar system is used for all dates and times,
37: ** even those that predate the Gregorian calendar. Historians usually
38: ** use the Julian calendar for dates prior to 1582-10-15 and for some
39: ** dates afterwards, depending on locale. Beware of this difference.
40: **
41: ** The conversion algorithms are implemented based on descriptions
42: ** in the following text:
43: **
44: ** Jean Meeus
45: ** Astronomical Algorithms, 2nd Edition, 1998
46: ** ISBM 0-943396-61-1
47: ** Willmann-Bell, Inc
48: ** Richmond, Virginia (USA)
49: */
50: #include "os.h"
51: #include "sqliteInt.h"
52: #include <ctype.h>
53: #include <stdlib.h>
54: #include <assert.h>
55: #include <time.h>
56: #ifndef PHP_WIN32
57: #include "main/php_reentrancy.h"
58: #endif
59:
60: #ifndef SQLITE_OMIT_DATETIME_FUNCS
61:
62: /*
63: ** A structure for holding a single date and time.
64: */
65: typedef struct DateTime DateTime;
66: struct DateTime {
67: double rJD; /* The julian day number */
68: int Y, M, D; /* Year, month, and day */
69: int h, m; /* Hour and minutes */
70: int tz; /* Timezone offset in minutes */
71: double s; /* Seconds */
72: char validYMD; /* True if Y,M,D are valid */
73: char validHMS; /* True if h,m,s are valid */
74: char validJD; /* True if rJD is valid */
75: char validTZ; /* True if tz is valid */
76: };
77:
78:
79: /*
80: ** Convert zDate into one or more integers. Additional arguments
81: ** come in groups of 5 as follows:
82: **
83: ** N number of digits in the integer
84: ** min minimum allowed value of the integer
85: ** max maximum allowed value of the integer
86: ** nextC first character after the integer
87: ** pVal where to write the integers value.
88: **
89: ** Conversions continue until one with nextC==0 is encountered.
90: ** The function returns the number of successful conversions.
91: */
92: static int getDigits(const char *zDate, ...){
93: va_list ap;
94: int val;
95: int N;
96: int min;
97: int max;
98: int nextC;
99: int *pVal;
100: int cnt = 0;
101: va_start(ap, zDate);
102: do{
103: N = va_arg(ap, int);
104: min = va_arg(ap, int);
105: max = va_arg(ap, int);
106: nextC = va_arg(ap, int);
107: pVal = va_arg(ap, int*);
108: val = 0;
109: while( N-- ){
110: if( !isdigit(*zDate) ){
111: return cnt;
112: }
113: val = val*10 + *zDate - '0';
114: zDate++;
115: }
116: if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
117: return cnt;
118: }
119: *pVal = val;
120: zDate++;
121: cnt++;
122: }while( nextC );
123: return cnt;
124: }
125:
126: /*
127: ** Read text from z[] and convert into a floating point number. Return
128: ** the number of digits converted.
129: */
130: static int getValue(const char *z, double *pR){
131: const char *zEnd;
132: *pR = sqliteAtoF(z, &zEnd);
133: return zEnd - z;
134: }
135:
136: /*
137: ** Parse a timezone extension on the end of a date-time.
138: ** The extension is of the form:
139: **
140: ** (+/-)HH:MM
141: **
142: ** If the parse is successful, write the number of minutes
143: ** of change in *pnMin and return 0. If a parser error occurs,
144: ** return 0.
145: **
146: ** A missing specifier is not considered an error.
147: */
148: static int parseTimezone(const char *zDate, DateTime *p){
149: int sgn = 0;
150: int nHr, nMn;
151: while( isspace(*zDate) ){ zDate++; }
152: p->tz = 0;
153: if( *zDate=='-' ){
154: sgn = -1;
155: }else if( *zDate=='+' ){
156: sgn = +1;
157: }else{
158: return *zDate!=0;
159: }
160: zDate++;
161: if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
162: return 1;
163: }
164: zDate += 5;
165: p->tz = sgn*(nMn + nHr*60);
166: while( isspace(*zDate) ){ zDate++; }
167: return *zDate!=0;
168: }
169:
170: /*
171: ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
172: ** The HH, MM, and SS must each be exactly 2 digits. The
173: ** fractional seconds FFFF can be one or more digits.
174: **
175: ** Return 1 if there is a parsing error and 0 on success.
176: */
177: static int parseHhMmSs(const char *zDate, DateTime *p){
178: int h, m, s;
179: double ms = 0.0;
180: if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
181: return 1;
182: }
183: zDate += 5;
184: if( *zDate==':' ){
185: zDate++;
186: if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
187: return 1;
188: }
189: zDate += 2;
190: if( *zDate=='.' && isdigit(zDate[1]) ){
191: double rScale = 1.0;
192: zDate++;
193: while( isdigit(*zDate) ){
194: ms = ms*10.0 + *zDate - '0';
195: rScale *= 10.0;
196: zDate++;
197: }
198: ms /= rScale;
199: }
200: }else{
201: s = 0;
202: }
203: p->validJD = 0;
204: p->validHMS = 1;
205: p->h = h;
206: p->m = m;
207: p->s = s + ms;
208: if( parseTimezone(zDate, p) ) return 1;
209: p->validTZ = p->tz!=0;
210: return 0;
211: }
212:
213: /*
214: ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
215: ** that the YYYY-MM-DD is according to the Gregorian calendar.
216: **
217: ** Reference: Meeus page 61
218: */
219: static void computeJD(DateTime *p){
220: int Y, M, D, A, B, X1, X2;
221:
222: if( p->validJD ) return;
223: if( p->validYMD ){
224: Y = p->Y;
225: M = p->M;
226: D = p->D;
227: }else{
228: Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
229: M = 1;
230: D = 1;
231: }
232: if( M<=2 ){
233: Y--;
234: M += 12;
235: }
236: A = Y/100;
237: B = 2 - A + (A/4);
238: X1 = 365.25*(Y+4716);
239: X2 = 30.6001*(M+1);
240: p->rJD = X1 + X2 + D + B - 1524.5;
241: p->validJD = 1;
242: p->validYMD = 0;
243: if( p->validHMS ){
244: p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
245: if( p->validTZ ){
246: p->rJD += p->tz*60/86400.0;
247: p->validHMS = 0;
248: p->validTZ = 0;
249: }
250: }
251: }
252:
253: /*
254: ** Parse dates of the form
255: **
256: ** YYYY-MM-DD HH:MM:SS.FFF
257: ** YYYY-MM-DD HH:MM:SS
258: ** YYYY-MM-DD HH:MM
259: ** YYYY-MM-DD
260: **
261: ** Write the result into the DateTime structure and return 0
262: ** on success and 1 if the input string is not a well-formed
263: ** date.
264: */
265: static int parseYyyyMmDd(const char *zDate, DateTime *p){
266: int Y, M, D, neg;
267:
268: if( zDate[0]=='-' ){
269: zDate++;
270: neg = 1;
271: }else{
272: neg = 0;
273: }
274: if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
275: return 1;
276: }
277: zDate += 10;
278: while( isspace(*zDate) ){ zDate++; }
279: if( parseHhMmSs(zDate, p)==0 ){
280: /* We got the time */
281: }else if( *zDate==0 ){
282: p->validHMS = 0;
283: }else{
284: return 1;
285: }
286: p->validJD = 0;
287: p->validYMD = 1;
288: p->Y = neg ? -Y : Y;
289: p->M = M;
290: p->D = D;
291: if( p->validTZ ){
292: computeJD(p);
293: }
294: return 0;
295: }
296:
297: /*
298: ** Attempt to parse the given string into a Julian Day Number. Return
299: ** the number of errors.
300: **
301: ** The following are acceptable forms for the input string:
302: **
303: ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
304: ** DDDD.DD
305: ** now
306: **
307: ** In the first form, the +/-HH:MM is always optional. The fractional
308: ** seconds extension (the ".FFF") is optional. The seconds portion
309: ** (":SS.FFF") is option. The year and date can be omitted as long
310: ** as there is a time string. The time string can be omitted as long
311: ** as there is a year and date.
312: */
313: static int parseDateOrTime(const char *zDate, DateTime *p){
314: memset(p, 0, sizeof(*p));
315: if( parseYyyyMmDd(zDate,p)==0 ){
316: return 0;
317: }else if( parseHhMmSs(zDate, p)==0 ){
318: return 0;
319: }else if( sqliteStrICmp(zDate,"now")==0){
320: double r;
321: if( sqliteOsCurrentTime(&r)==0 ){
322: p->rJD = r;
323: p->validJD = 1;
324: return 0;
325: }
326: return 1;
327: }else if( sqliteIsNumber(zDate) ){
328: p->rJD = sqliteAtoF(zDate, 0);
329: p->validJD = 1;
330: return 0;
331: }
332: return 1;
333: }
334:
335: /*
336: ** Compute the Year, Month, and Day from the julian day number.
337: */
338: static void computeYMD(DateTime *p){
339: int Z, A, B, C, D, E, X1;
340: if( p->validYMD ) return;
341: if( !p->validJD ){
342: p->Y = 2000;
343: p->M = 1;
344: p->D = 1;
345: }else{
346: Z = p->rJD + 0.5;
347: A = (Z - 1867216.25)/36524.25;
348: A = Z + 1 + A - (A/4);
349: B = A + 1524;
350: C = (B - 122.1)/365.25;
351: D = 365.25*C;
352: E = (B-D)/30.6001;
353: X1 = 30.6001*E;
354: p->D = B - D - X1;
355: p->M = E<14 ? E-1 : E-13;
356: p->Y = p->M>2 ? C - 4716 : C - 4715;
357: }
358: p->validYMD = 1;
359: }
360:
361: /*
362: ** Compute the Hour, Minute, and Seconds from the julian day number.
363: */
364: static void computeHMS(DateTime *p){
365: int Z, s;
366: if( p->validHMS ) return;
367: Z = p->rJD + 0.5;
368: s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
369: p->s = 0.001*s;
370: s = p->s;
371: p->s -= s;
372: p->h = s/3600;
373: s -= p->h*3600;
374: p->m = s/60;
375: p->s += s - p->m*60;
376: p->validHMS = 1;
377: }
378:
379: /*
380: ** Compute both YMD and HMS
381: */
382: static void computeYMD_HMS(DateTime *p){
383: computeYMD(p);
384: computeHMS(p);
385: }
386:
387: /*
388: ** Clear the YMD and HMS and the TZ
389: */
390: static void clearYMD_HMS_TZ(DateTime *p){
391: p->validYMD = 0;
392: p->validHMS = 0;
393: p->validTZ = 0;
394: }
395:
396: /*
397: ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
398: ** for the time value p where p is in UTC.
399: */
400: static double localtimeOffset(DateTime *p){
401: DateTime x, y;
402: time_t t;
403: struct tm *pTm, tmbuf;
404: x = *p;
405: computeYMD_HMS(&x);
406: if( x.Y<1971 || x.Y>=2038 ){
407: x.Y = 2000;
408: x.M = 1;
409: x.D = 1;
410: x.h = 0;
411: x.m = 0;
412: x.s = 0.0;
413: } else {
414: int s = x.s + 0.5;
415: x.s = s;
416: }
417: x.tz = 0;
418: x.validJD = 0;
419: computeJD(&x);
420: t = (x.rJD-2440587.5)*86400.0 + 0.5;
421: sqliteOsEnterMutex();
422: pTm = php_localtime_r(&t, &tmbuf);
423: if (!pTm) {
424: return 0;
425: }
426: y.Y = pTm->tm_year + 1900;
427: y.M = pTm->tm_mon + 1;
428: y.D = pTm->tm_mday;
429: y.h = pTm->tm_hour;
430: y.m = pTm->tm_min;
431: y.s = pTm->tm_sec;
432: sqliteOsLeaveMutex();
433: y.validYMD = 1;
434: y.validHMS = 1;
435: y.validJD = 0;
436: y.validTZ = 0;
437: computeJD(&y);
438: return y.rJD - x.rJD;
439: }
440:
441: /*
442: ** Process a modifier to a date-time stamp. The modifiers are
443: ** as follows:
444: **
445: ** NNN days
446: ** NNN hours
447: ** NNN minutes
448: ** NNN.NNNN seconds
449: ** NNN months
450: ** NNN years
451: ** start of month
452: ** start of year
453: ** start of week
454: ** start of day
455: ** weekday N
456: ** unixepoch
457: ** localtime
458: ** utc
459: **
460: ** Return 0 on success and 1 if there is any kind of error.
461: */
462: static int parseModifier(const char *zMod, DateTime *p){
463: int rc = 1;
464: int n;
465: double r;
466: char *z, zBuf[30];
467: z = zBuf;
468: for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
469: z[n] = tolower(zMod[n]);
470: }
471: z[n] = 0;
472: switch( z[0] ){
473: case 'l': {
474: /* localtime
475: **
476: ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
477: ** show local time.
478: */
479: if( strcmp(z, "localtime")==0 ){
480: computeJD(p);
481: p->rJD += localtimeOffset(p);
482: clearYMD_HMS_TZ(p);
483: rc = 0;
484: }
485: break;
486: }
487: case 'u': {
488: /*
489: ** unixepoch
490: **
491: ** Treat the current value of p->rJD as the number of
492: ** seconds since 1970. Convert to a real julian day number.
493: */
494: if( strcmp(z, "unixepoch")==0 && p->validJD ){
495: p->rJD = p->rJD/86400.0 + 2440587.5;
496: clearYMD_HMS_TZ(p);
497: rc = 0;
498: }else if( strcmp(z, "utc")==0 ){
499: double c1;
500: computeJD(p);
501: c1 = localtimeOffset(p);
502: p->rJD -= c1;
503: clearYMD_HMS_TZ(p);
504: p->rJD += c1 - localtimeOffset(p);
505: rc = 0;
506: }
507: break;
508: }
509: case 'w': {
510: /*
511: ** weekday N
512: **
513: ** Move the date to the same time on the next occurrance of
514: ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
515: ** date is already on the appropriate weekday, this is a no-op.
516: */
517: if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
518: && (n=r)==r && n>=0 && r<7 ){
519: int Z;
520: computeYMD_HMS(p);
521: p->validTZ = 0;
522: p->validJD = 0;
523: computeJD(p);
524: Z = p->rJD + 1.5;
525: Z %= 7;
526: if( Z>n ) Z -= 7;
527: p->rJD += n - Z;
528: clearYMD_HMS_TZ(p);
529: rc = 0;
530: }
531: break;
532: }
533: case 's': {
534: /*
535: ** start of TTTTT
536: **
537: ** Move the date backwards to the beginning of the current day,
538: ** or month or year.
539: */
540: if( strncmp(z, "start of ", 9)!=0 ) break;
541: z += 9;
542: computeYMD(p);
543: p->validHMS = 1;
544: p->h = p->m = 0;
545: p->s = 0.0;
546: p->validTZ = 0;
547: p->validJD = 0;
548: if( strcmp(z,"month")==0 ){
549: p->D = 1;
550: rc = 0;
551: }else if( strcmp(z,"year")==0 ){
552: computeYMD(p);
553: p->M = 1;
554: p->D = 1;
555: rc = 0;
556: }else if( strcmp(z,"day")==0 ){
557: rc = 0;
558: }
559: break;
560: }
561: case '+':
562: case '-':
563: case '0':
564: case '1':
565: case '2':
566: case '3':
567: case '4':
568: case '5':
569: case '6':
570: case '7':
571: case '8':
572: case '9': {
573: n = getValue(z, &r);
574: if( n<=0 ) break;
575: if( z[n]==':' ){
576: /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
577: ** specified number of hours, minutes, seconds, and fractional seconds
578: ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
579: ** omitted.
580: */
581: const char *z2 = z;
582: DateTime tx;
583: int day;
584: if( !isdigit(*z2) ) z2++;
585: memset(&tx, 0, sizeof(tx));
586: if( parseHhMmSs(z2, &tx) ) break;
587: computeJD(&tx);
588: tx.rJD -= 0.5;
589: day = (int)tx.rJD;
590: tx.rJD -= day;
591: if( z[0]=='-' ) tx.rJD = -tx.rJD;
592: computeJD(p);
593: clearYMD_HMS_TZ(p);
594: p->rJD += tx.rJD;
595: rc = 0;
596: break;
597: }
598: z += n;
599: while( isspace(z[0]) ) z++;
600: n = strlen(z);
601: if( n>10 || n<3 ) break;
602: if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
603: computeJD(p);
604: rc = 0;
605: if( n==3 && strcmp(z,"day")==0 ){
606: p->rJD += r;
607: }else if( n==4 && strcmp(z,"hour")==0 ){
608: p->rJD += r/24.0;
609: }else if( n==6 && strcmp(z,"minute")==0 ){
610: p->rJD += r/(24.0*60.0);
611: }else if( n==6 && strcmp(z,"second")==0 ){
612: p->rJD += r/(24.0*60.0*60.0);
613: }else if( n==5 && strcmp(z,"month")==0 ){
614: int x, y;
615: computeYMD_HMS(p);
616: p->M += r;
617: x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
618: p->Y += x;
619: p->M -= x*12;
620: p->validJD = 0;
621: computeJD(p);
622: y = r;
623: if( y!=r ){
624: p->rJD += (r - y)*30.0;
625: }
626: }else if( n==4 && strcmp(z,"year")==0 ){
627: computeYMD_HMS(p);
628: p->Y += r;
629: p->validJD = 0;
630: computeJD(p);
631: }else{
632: rc = 1;
633: }
634: clearYMD_HMS_TZ(p);
635: break;
636: }
637: default: {
638: break;
639: }
640: }
641: return rc;
642: }
643:
644: /*
645: ** Process time function arguments. argv[0] is a date-time stamp.
646: ** argv[1] and following are modifiers. Parse them all and write
647: ** the resulting time into the DateTime structure p. Return 0
648: ** on success and 1 if there are any errors.
649: */
650: static int isDate(int argc, const char **argv, DateTime *p){
651: int i;
652: if( argc==0 ) return 1;
653: if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
654: for(i=1; i<argc; i++){
655: if( argv[i]==0 || parseModifier(argv[i], p) ) return 1;
656: }
657: return 0;
658: }
659:
660:
661: /*
662: ** The following routines implement the various date and time functions
663: ** of SQLite.
664: */
665:
666: /*
667: ** julianday( TIMESTRING, MOD, MOD, ...)
668: **
669: ** Return the julian day number of the date specified in the arguments
670: */
671: static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
672: DateTime x;
673: if( isDate(argc, argv, &x)==0 ){
674: computeJD(&x);
675: sqlite_set_result_double(context, x.rJD);
676: }
677: }
678:
679: /*
680: ** datetime( TIMESTRING, MOD, MOD, ...)
681: **
682: ** Return YYYY-MM-DD HH:MM:SS
683: */
684: static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
685: DateTime x;
686: if( isDate(argc, argv, &x)==0 ){
687: char zBuf[100];
688: computeYMD_HMS(&x);
689: sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
690: (int)(x.s));
691: sqlite_set_result_string(context, zBuf, -1);
692: }
693: }
694:
695: /*
696: ** time( TIMESTRING, MOD, MOD, ...)
697: **
698: ** Return HH:MM:SS
699: */
700: static void timeFunc(sqlite_func *context, int argc, const char **argv){
701: DateTime x;
702: if( isDate(argc, argv, &x)==0 ){
703: char zBuf[100];
704: computeHMS(&x);
705: sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
706: sqlite_set_result_string(context, zBuf, -1);
707: }
708: }
709:
710: /*
711: ** date( TIMESTRING, MOD, MOD, ...)
712: **
713: ** Return YYYY-MM-DD
714: */
715: static void dateFunc(sqlite_func *context, int argc, const char **argv){
716: DateTime x;
717: if( isDate(argc, argv, &x)==0 ){
718: char zBuf[100];
719: computeYMD(&x);
720: sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
721: sqlite_set_result_string(context, zBuf, -1);
722: }
723: }
724:
725: /*
726: ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
727: **
728: ** Return a string described by FORMAT. Conversions as follows:
729: **
730: ** %d day of month
731: ** %f ** fractional seconds SS.SSS
732: ** %H hour 00-24
733: ** %j day of year 000-366
734: ** %J ** Julian day number
735: ** %m month 01-12
736: ** %M minute 00-59
737: ** %s seconds since 1970-01-01
738: ** %S seconds 00-59
739: ** %w day of week 0-6 sunday==0
740: ** %W week of year 00-53
741: ** %Y year 0000-9999
742: ** %% %
743: */
744: static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
745: DateTime x;
746: int n, i, j;
747: char *z;
748: const char *zFmt = argv[0];
749: char zBuf[100];
750: if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
751: for(i=0, n=1; zFmt[i]; i++, n++){
752: if( zFmt[i]=='%' ){
753: switch( zFmt[i+1] ){
754: case 'd':
755: case 'H':
756: case 'm':
757: case 'M':
758: case 'S':
759: case 'W':
760: n++;
761: /* fall thru */
762: case 'w':
763: case '%':
764: break;
765: case 'f':
766: n += 8;
767: break;
768: case 'j':
769: n += 3;
770: break;
771: case 'Y':
772: n += 8;
773: break;
774: case 's':
775: case 'J':
776: n += 50;
777: break;
778: default:
779: return; /* ERROR. return a NULL */
780: }
781: i++;
782: }
783: }
784: if( n<sizeof(zBuf) ){
785: z = zBuf;
786: }else{
787: z = sqliteMalloc( n );
788: if( z==0 ) return;
789: }
790: computeJD(&x);
791: computeYMD_HMS(&x);
792: for(i=j=0; zFmt[i]; i++){
793: if( zFmt[i]!='%' ){
794: z[j++] = zFmt[i];
795: }else{
796: i++;
797: switch( zFmt[i] ){
798: case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
799: case 'f': {
800: int s = x.s;
801: int ms = (x.s - s)*1000.0;
802: sprintf(&z[j],"%02d.%03d",s,ms);
803: j += strlen(&z[j]);
804: break;
805: }
806: case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
807: case 'W': /* Fall thru */
808: case 'j': {
809: int n; /* Number of days since 1st day of year */
810: DateTime y = x;
811: y.validJD = 0;
812: y.M = 1;
813: y.D = 1;
814: computeJD(&y);
815: n = x.rJD - y.rJD;
816: if( zFmt[i]=='W' ){
817: int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
818: wd = ((int)(x.rJD+0.5)) % 7;
819: sprintf(&z[j],"%02d",(n+7-wd)/7);
820: j += 2;
821: }else{
822: sprintf(&z[j],"%03d",n+1);
823: j += 3;
824: }
825: break;
826: }
827: case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
828: case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
829: case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
830: case 's': {
831: sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
832: j += strlen(&z[j]);
833: break;
834: }
835: case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
836: case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
837: case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
838: case '%': z[j++] = '%'; break;
839: }
840: }
841: }
842: z[j] = 0;
843: sqlite_set_result_string(context, z, -1);
844: if( z!=zBuf ){
845: sqliteFree(z);
846: }
847: }
848:
849:
850: #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
851:
852: /*
853: ** This function registered all of the above C functions as SQL
854: ** functions. This should be the only routine in this file with
855: ** external linkage.
856: */
857: void sqliteRegisterDateTimeFunctions(sqlite *db){
858: #ifndef SQLITE_OMIT_DATETIME_FUNCS
859: static struct {
860: char *zName;
861: int nArg;
862: int dataType;
863: void (*xFunc)(sqlite_func*,int,const char**);
864: } aFuncs[] = {
865: { "julianday", -1, SQLITE_NUMERIC, juliandayFunc },
866: { "date", -1, SQLITE_TEXT, dateFunc },
867: { "time", -1, SQLITE_TEXT, timeFunc },
868: { "datetime", -1, SQLITE_TEXT, datetimeFunc },
869: { "strftime", -1, SQLITE_TEXT, strftimeFunc },
870: };
871: int i;
872:
873: for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
874: sqlite_create_function(db, aFuncs[i].zName,
875: aFuncs[i].nArg, aFuncs[i].xFunc, 0);
876: if( aFuncs[i].xFunc ){
877: sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
878: }
879: }
880: #endif
881: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>