Annotation of embedaddon/php/ext/sqlite/libsqlite/src/vdbe.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2001 September 15
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** The code in this file implements execution method of the 
                     13: ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
                     14: ** handles housekeeping details such as creating and deleting
                     15: ** VDBE instances.  This file is solely interested in executing
                     16: ** the VDBE program.
                     17: **
                     18: ** In the external interface, an "sqlite_vm*" is an opaque pointer
                     19: ** to a VDBE.
                     20: **
                     21: ** The SQL parser generates a program which is then executed by
                     22: ** the VDBE to do the work of the SQL statement.  VDBE programs are 
                     23: ** similar in form to assembly language.  The program consists of
                     24: ** a linear sequence of operations.  Each operation has an opcode 
                     25: ** and 3 operands.  Operands P1 and P2 are integers.  Operand P3 
                     26: ** is a null-terminated string.   The P2 operand must be non-negative.
                     27: ** Opcodes will typically ignore one or more operands.  Many opcodes
                     28: ** ignore all three operands.
                     29: **
                     30: ** Computation results are stored on a stack.  Each entry on the
                     31: ** stack is either an integer, a null-terminated string, a floating point
                     32: ** number, or the SQL "NULL" value.  An inplicit conversion from one
                     33: ** type to the other occurs as necessary.
                     34: ** 
                     35: ** Most of the code in this file is taken up by the sqliteVdbeExec()
                     36: ** function which does the work of interpreting a VDBE program.
                     37: ** But other routines are also provided to help in building up
                     38: ** a program instruction by instruction.
                     39: **
                     40: ** Various scripts scan this source file in order to generate HTML
                     41: ** documentation, headers files, or other derived files.  The formatting
                     42: ** of the code in this file is, therefore, important.  See other comments
                     43: ** in this file for details.  If in doubt, do not deviate from existing
                     44: ** commenting and indentation practices when changing or adding code.
                     45: **
                     46: ** $Id: vdbe.c 219681 2006-09-09 10:59:05Z tony2001 $
                     47: */
                     48: #include "sqliteInt.h"
                     49: #include "os.h"
                     50: #include <ctype.h>
                     51: #include "vdbeInt.h"
                     52: 
                     53: /*
                     54: ** The following global variable is incremented every time a cursor
                     55: ** moves, either by the OP_MoveTo or the OP_Next opcode.  The test
                     56: ** procedures use this information to make sure that indices are
                     57: ** working correctly.  This variable has no function other than to
                     58: ** help verify the correct operation of the library.
                     59: */
                     60: int sqlite_search_count = 0;
                     61: 
                     62: /*
                     63: ** When this global variable is positive, it gets decremented once before
                     64: ** each instruction in the VDBE.  When reaches zero, the SQLITE_Interrupt
                     65: ** of the db.flags field is set in order to simulate an interrupt.
                     66: **
                     67: ** This facility is used for testing purposes only.  It does not function
                     68: ** in an ordinary build.
                     69: */
                     70: int sqlite_interrupt_count = 0;
                     71: 
                     72: /*
                     73: ** Advance the virtual machine to the next output row.
                     74: **
                     75: ** The return vale will be either SQLITE_BUSY, SQLITE_DONE, 
                     76: ** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
                     77: **
                     78: ** SQLITE_BUSY means that the virtual machine attempted to open
                     79: ** a locked database and there is no busy callback registered.
                     80: ** Call sqlite_step() again to retry the open.  *pN is set to 0
                     81: ** and *pazColName and *pazValue are both set to NULL.
                     82: **
                     83: ** SQLITE_DONE means that the virtual machine has finished
                     84: ** executing.  sqlite_step() should not be called again on this
                     85: ** virtual machine.  *pN and *pazColName are set appropriately
                     86: ** but *pazValue is set to NULL.
                     87: **
                     88: ** SQLITE_ROW means that the virtual machine has generated another
                     89: ** row of the result set.  *pN is set to the number of columns in
                     90: ** the row.  *pazColName is set to the names of the columns followed
                     91: ** by the column datatypes.  *pazValue is set to the values of each
                     92: ** column in the row.  The value of the i-th column is (*pazValue)[i].
                     93: ** The name of the i-th column is (*pazColName)[i] and the datatype
                     94: ** of the i-th column is (*pazColName)[i+*pN].
                     95: **
                     96: ** SQLITE_ERROR means that a run-time error (such as a constraint
                     97: ** violation) has occurred.  The details of the error will be returned
                     98: ** by the next call to sqlite_finalize().  sqlite_step() should not
                     99: ** be called again on the VM.
                    100: **
                    101: ** SQLITE_MISUSE means that the this routine was called inappropriately.
                    102: ** Perhaps it was called on a virtual machine that had already been
                    103: ** finalized or on one that had previously returned SQLITE_ERROR or
                    104: ** SQLITE_DONE.  Or it could be the case the the same database connection
                    105: ** is being used simulataneously by two or more threads.
                    106: */
                    107: int sqlite_step(
                    108:   sqlite_vm *pVm,              /* The virtual machine to execute */
                    109:   int *pN,                     /* OUT: Number of columns in result */
                    110:   const char ***pazValue,      /* OUT: Column data */
                    111:   const char ***pazColName     /* OUT: Column names and datatypes */
                    112: ){
                    113:   Vdbe *p = (Vdbe*)pVm;
                    114:   sqlite *db;
                    115:   int rc;
                    116: 
                    117:   if( !p || p->magic!=VDBE_MAGIC_RUN ){
                    118:     return SQLITE_MISUSE;
                    119:   }
                    120:   db = p->db;
                    121:   if( sqliteSafetyOn(db) ){
                    122:     p->rc = SQLITE_MISUSE;
                    123:     return SQLITE_MISUSE;
                    124:   }
                    125:   if( p->explain ){
                    126:     rc = sqliteVdbeList(p);
                    127:   }else{
                    128:     rc = sqliteVdbeExec(p);
                    129:   }
                    130:   if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
                    131:     if( pazColName ) *pazColName = (const char**)p->azColName;
                    132:     if( pN ) *pN = p->nResColumn;
                    133:   }else{
                    134:     if( pazColName) *pazColName = 0;
                    135:     if( pN ) *pN = 0;
                    136:   }
                    137:   if( pazValue ){
                    138:     if( rc==SQLITE_ROW ){
                    139:       *pazValue = (const char**)p->azResColumn;
                    140:     }else{
                    141:       *pazValue = 0;
                    142:     }
                    143:   }
                    144:   if( sqliteSafetyOff(db) ){
                    145:     return SQLITE_MISUSE;
                    146:   }
                    147:   return rc;
                    148: }
                    149: 
                    150: /*
                    151: ** Insert a new aggregate element and make it the element that
                    152: ** has focus.
                    153: **
                    154: ** Return 0 on success and 1 if memory is exhausted.
                    155: */
                    156: static int AggInsert(Agg *p, char *zKey, int nKey){
                    157:   AggElem *pElem, *pOld;
                    158:   int i;
                    159:   Mem *pMem;
                    160:   pElem = sqliteMalloc( sizeof(AggElem) + nKey +
                    161:                         (p->nMem-1)*sizeof(pElem->aMem[0]) );
                    162:   if( pElem==0 ) return 1;
                    163:   pElem->zKey = (char*)&pElem->aMem[p->nMem];
                    164:   memcpy(pElem->zKey, zKey, nKey);
                    165:   pElem->nKey = nKey;
                    166:   pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
                    167:   if( pOld!=0 ){
                    168:     assert( pOld==pElem );  /* Malloc failed on insert */
                    169:     sqliteFree(pOld);
                    170:     return 0;
                    171:   }
                    172:   for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
                    173:     pMem->flags = MEM_Null;
                    174:   }
                    175:   p->pCurrent = pElem;
                    176:   return 0;
                    177: }
                    178: 
                    179: /*
                    180: ** Get the AggElem currently in focus
                    181: */
                    182: #define AggInFocus(P)   ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
                    183: static AggElem *_AggInFocus(Agg *p){
                    184:   HashElem *pElem = sqliteHashFirst(&p->hash);
                    185:   if( pElem==0 ){
                    186:     AggInsert(p,"",1);
                    187:     pElem = sqliteHashFirst(&p->hash);
                    188:   }
                    189:   return pElem ? sqliteHashData(pElem) : 0;
                    190: }
                    191: 
                    192: /*
                    193: ** Convert the given stack entity into a string if it isn't one
                    194: ** already.
                    195: */
                    196: #define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
                    197: static int hardStringify(Mem *pStack){
                    198:   int fg = pStack->flags;
                    199:   if( fg & MEM_Real ){
                    200:     sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
                    201:   }else if( fg & MEM_Int ){
                    202:     sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
                    203:   }else{
                    204:     pStack->zShort[0] = 0;
                    205:   }
                    206:   pStack->z = pStack->zShort;
                    207:   pStack->n = strlen(pStack->zShort)+1;
                    208:   pStack->flags = MEM_Str | MEM_Short;
                    209:   return 0;
                    210: }
                    211: 
                    212: /*
                    213: ** Convert the given stack entity into a string that has been obtained
                    214: ** from sqliteMalloc().  This is different from Stringify() above in that
                    215: ** Stringify() will use the NBFS bytes of static string space if the string
                    216: ** will fit but this routine always mallocs for space.
                    217: ** Return non-zero if we run out of memory.
                    218: */
                    219: #define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
                    220: static int hardDynamicify(Mem *pStack){
                    221:   int fg = pStack->flags;
                    222:   char *z;
                    223:   if( (fg & MEM_Str)==0 ){
                    224:     hardStringify(pStack);
                    225:   }
                    226:   assert( (fg & MEM_Dyn)==0 );
                    227:   z = sqliteMallocRaw( pStack->n );
                    228:   if( z==0 ) return 1;
                    229:   memcpy(z, pStack->z, pStack->n);
                    230:   pStack->z = z;
                    231:   pStack->flags |= MEM_Dyn;
                    232:   return 0;
                    233: }
                    234: 
                    235: /*
                    236: ** An ephemeral string value (signified by the MEM_Ephem flag) contains
                    237: ** a pointer to a dynamically allocated string where some other entity
                    238: ** is responsible for deallocating that string.  Because the stack entry
                    239: ** does not control the string, it might be deleted without the stack
                    240: ** entry knowing it.
                    241: **
                    242: ** This routine converts an ephemeral string into a dynamically allocated
                    243: ** string that the stack entry itself controls.  In other words, it
                    244: ** converts an MEM_Ephem string into an MEM_Dyn string.
                    245: */
                    246: #define Deephemeralize(P) \
                    247:    if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
                    248: static int hardDeephem(Mem *pStack){
                    249:   char *z;
                    250:   assert( (pStack->flags & MEM_Ephem)!=0 );
                    251:   z = sqliteMallocRaw( pStack->n );
                    252:   if( z==0 ) return 1;
                    253:   memcpy(z, pStack->z, pStack->n);
                    254:   pStack->z = z;
                    255:   pStack->flags &= ~MEM_Ephem;
                    256:   pStack->flags |= MEM_Dyn;
                    257:   return 0;
                    258: }
                    259: 
                    260: /*
                    261: ** Release the memory associated with the given stack level.  This
                    262: ** leaves the Mem.flags field in an inconsistent state.
                    263: */
                    264: #define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
                    265: 
                    266: /*
                    267: ** Pop the stack N times.
                    268: */
                    269: static void popStack(Mem **ppTos, int N){
                    270:   Mem *pTos = *ppTos;
                    271:   while( N>0 ){
                    272:     N--;
                    273:     Release(pTos);
                    274:     pTos--;
                    275:   }
                    276:   *ppTos = pTos;
                    277: }
                    278: 
                    279: /*
                    280: ** Return TRUE if zNum is a 32-bit signed integer and write
                    281: ** the value of the integer into *pNum.  If zNum is not an integer
                    282: ** or is an integer that is too large to be expressed with just 32
                    283: ** bits, then return false.
                    284: **
                    285: ** Under Linux (RedHat 7.2) this routine is much faster than atoi()
                    286: ** for converting strings into integers.
                    287: */
                    288: static int toInt(const char *zNum, int *pNum){
                    289:   int v = 0;
                    290:   int neg;
                    291:   int i, c;
                    292:   if( *zNum=='-' ){
                    293:     neg = 1;
                    294:     zNum++;
                    295:   }else if( *zNum=='+' ){
                    296:     neg = 0;
                    297:     zNum++;
                    298:   }else{
                    299:     neg = 0;
                    300:   }
                    301:   for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
                    302:     v = v*10 + c - '0';
                    303:   }
                    304:   *pNum = neg ? -v : v;
                    305:   return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
                    306: }
                    307: 
                    308: /*
                    309: ** Convert the given stack entity into a integer if it isn't one
                    310: ** already.
                    311: **
                    312: ** Any prior string or real representation is invalidated.  
                    313: ** NULLs are converted into 0.
                    314: */
                    315: #define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
                    316: static void hardIntegerify(Mem *pStack){
                    317:   if( pStack->flags & MEM_Real ){
                    318:     pStack->i = (int)pStack->r;
                    319:     Release(pStack);
                    320:   }else if( pStack->flags & MEM_Str ){
                    321:     toInt(pStack->z, &pStack->i);
                    322:     Release(pStack);
                    323:   }else{
                    324:     pStack->i = 0;
                    325:   }
                    326:   pStack->flags = MEM_Int;
                    327: }
                    328: 
                    329: /*
                    330: ** Get a valid Real representation for the given stack element.
                    331: **
                    332: ** Any prior string or integer representation is retained.
                    333: ** NULLs are converted into 0.0.
                    334: */
                    335: #define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
                    336: static void hardRealify(Mem *pStack){
                    337:   if( pStack->flags & MEM_Str ){
                    338:     pStack->r = sqliteAtoF(pStack->z, 0);
                    339:   }else if( pStack->flags & MEM_Int ){
                    340:     pStack->r = pStack->i;
                    341:   }else{
                    342:     pStack->r = 0.0;
                    343:   }
                    344:   pStack->flags |= MEM_Real;
                    345: }
                    346: 
                    347: /*
                    348: ** The parameters are pointers to the head of two sorted lists
                    349: ** of Sorter structures.  Merge these two lists together and return
                    350: ** a single sorted list.  This routine forms the core of the merge-sort
                    351: ** algorithm.
                    352: **
                    353: ** In the case of a tie, left sorts in front of right.
                    354: */
                    355: static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
                    356:   Sorter sHead;
                    357:   Sorter *pTail;
                    358:   pTail = &sHead;
                    359:   pTail->pNext = 0;
                    360:   while( pLeft && pRight ){
                    361:     int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
                    362:     if( c<=0 ){
                    363:       pTail->pNext = pLeft;
                    364:       pLeft = pLeft->pNext;
                    365:     }else{
                    366:       pTail->pNext = pRight;
                    367:       pRight = pRight->pNext;
                    368:     }
                    369:     pTail = pTail->pNext;
                    370:   }
                    371:   if( pLeft ){
                    372:     pTail->pNext = pLeft;
                    373:   }else if( pRight ){
                    374:     pTail->pNext = pRight;
                    375:   }
                    376:   return sHead.pNext;
                    377: }
                    378: 
                    379: /*
                    380: ** The following routine works like a replacement for the standard
                    381: ** library routine fgets().  The difference is in how end-of-line (EOL)
                    382: ** is handled.  Standard fgets() uses LF for EOL under unix, CRLF
                    383: ** under windows, and CR under mac.  This routine accepts any of these
                    384: ** character sequences as an EOL mark.  The EOL mark is replaced by
                    385: ** a single LF character in zBuf.
                    386: */
                    387: static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
                    388:   int i, c;
                    389:   for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
                    390:     zBuf[i] = c;
                    391:     if( c=='\r' || c=='\n' ){
                    392:       if( c=='\r' ){
                    393:         zBuf[i] = '\n';
                    394:         c = getc(in);
                    395:         if( c!=EOF && c!='\n' ) ungetc(c, in);
                    396:       }
                    397:       i++;
                    398:       break;
                    399:     }
                    400:   }
                    401:   zBuf[i]  = 0;
                    402:   return i>0 ? zBuf : 0;
                    403: }
                    404: 
                    405: /*
                    406: ** Make sure there is space in the Vdbe structure to hold at least
                    407: ** mxCursor cursors.  If there is not currently enough space, then
                    408: ** allocate more.
                    409: **
                    410: ** If a memory allocation error occurs, return 1.  Return 0 if
                    411: ** everything works.
                    412: */
                    413: static int expandCursorArraySize(Vdbe *p, int mxCursor){
                    414:   if( mxCursor>=p->nCursor ){
                    415:     Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
                    416:     if( aCsr==0 ) return 1;
                    417:     p->aCsr = aCsr;
                    418:     memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
                    419:     p->nCursor = mxCursor+1;
                    420:   }
                    421:   return 0;
                    422: }
                    423: 
                    424: #ifdef VDBE_PROFILE
                    425: /*
                    426: ** The following routine only works on pentium-class processors.
                    427: ** It uses the RDTSC opcode to read cycle count value out of the
                    428: ** processor and returns that value.  This can be used for high-res
                    429: ** profiling.
                    430: */
                    431: __inline__ unsigned long long int hwtime(void){
                    432:   unsigned long long int x;
                    433:   __asm__("rdtsc\n\t"
                    434:           "mov %%edx, %%ecx\n\t"
                    435:           :"=A" (x));
                    436:   return x;
                    437: }
                    438: #endif
                    439: 
                    440: /*
                    441: ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
                    442: ** sqlite_interrupt() routine has been called.  If it has been, then
                    443: ** processing of the VDBE program is interrupted.
                    444: **
                    445: ** This macro added to every instruction that does a jump in order to
                    446: ** implement a loop.  This test used to be on every single instruction,
                    447: ** but that meant we more testing that we needed.  By only testing the
                    448: ** flag on jump instructions, we get a (small) speed improvement.
                    449: */
                    450: #define CHECK_FOR_INTERRUPT \
                    451:    if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
                    452: 
                    453: 
                    454: /*
                    455: ** Execute as much of a VDBE program as we can then return.
                    456: **
                    457: ** sqliteVdbeMakeReady() must be called before this routine in order to
                    458: ** close the program with a final OP_Halt and to set up the callbacks
                    459: ** and the error message pointer.
                    460: **
                    461: ** Whenever a row or result data is available, this routine will either
                    462: ** invoke the result callback (if there is one) or return with
                    463: ** SQLITE_ROW.
                    464: **
                    465: ** If an attempt is made to open a locked database, then this routine
                    466: ** will either invoke the busy callback (if there is one) or it will
                    467: ** return SQLITE_BUSY.
                    468: **
                    469: ** If an error occurs, an error message is written to memory obtained
                    470: ** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
                    471: ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
                    472: **
                    473: ** If the callback ever returns non-zero, then the program exits
                    474: ** immediately.  There will be no error message but the p->rc field is
                    475: ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
                    476: **
                    477: ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
                    478: ** routine to return SQLITE_ERROR.
                    479: **
                    480: ** Other fatal errors return SQLITE_ERROR.
                    481: **
                    482: ** After this routine has finished, sqliteVdbeFinalize() should be
                    483: ** used to clean up the mess that was left behind.
                    484: */
                    485: int sqliteVdbeExec(
                    486:   Vdbe *p                    /* The VDBE */
                    487: ){
                    488:   int pc;                    /* The program counter */
                    489:   Op *pOp;                   /* Current operation */
                    490:   int rc = SQLITE_OK;        /* Value to return */
                    491:   sqlite *db = p->db;        /* The database */
                    492:   Mem *pTos;                 /* Top entry in the operand stack */
                    493:   char zBuf[100];            /* Space to sprintf() an integer */
                    494: #ifdef VDBE_PROFILE
                    495:   unsigned long long start;  /* CPU clock count at start of opcode */
                    496:   int origPc;                /* Program counter at start of opcode */
                    497: #endif
                    498: #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
                    499:   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
                    500: #endif
                    501: 
                    502:   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
                    503:   assert( db->magic==SQLITE_MAGIC_BUSY );
                    504:   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
                    505:   p->rc = SQLITE_OK;
                    506:   assert( p->explain==0 );
                    507:   if( sqlite_malloc_failed ) goto no_mem;
                    508:   pTos = p->pTos;
                    509:   if( p->popStack ){
                    510:     popStack(&pTos, p->popStack);
                    511:     p->popStack = 0;
                    512:   }
                    513:   CHECK_FOR_INTERRUPT;
                    514:   for(pc=p->pc; rc==SQLITE_OK; pc++){
                    515:     assert( pc>=0 && pc<p->nOp );
                    516:     assert( pTos<=&p->aStack[pc] );
                    517: #ifdef VDBE_PROFILE
                    518:     origPc = pc;
                    519:     start = hwtime();
                    520: #endif
                    521:     pOp = &p->aOp[pc];
                    522: 
                    523:     /* Only allow tracing if NDEBUG is not defined.
                    524:     */
                    525: #ifndef NDEBUG
                    526:     if( p->trace ){
                    527:       sqliteVdbePrintOp(p->trace, pc, pOp);
                    528:     }
                    529: #endif
                    530: 
                    531:     /* Check to see if we need to simulate an interrupt.  This only happens
                    532:     ** if we have a special test build.
                    533:     */
                    534: #ifdef SQLITE_TEST
                    535:     if( sqlite_interrupt_count>0 ){
                    536:       sqlite_interrupt_count--;
                    537:       if( sqlite_interrupt_count==0 ){
                    538:         sqlite_interrupt(db);
                    539:       }
                    540:     }
                    541: #endif
                    542: 
                    543: #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
                    544:     /* Call the progress callback if it is configured and the required number
                    545:     ** of VDBE ops have been executed (either since this invocation of
                    546:     ** sqliteVdbeExec() or since last time the progress callback was called).
                    547:     ** If the progress callback returns non-zero, exit the virtual machine with
                    548:     ** a return code SQLITE_ABORT.
                    549:     */
                    550:     if( db->xProgress ){
                    551:       if( db->nProgressOps==nProgressOps ){
                    552:         if( db->xProgress(db->pProgressArg)!=0 ){
                    553:           rc = SQLITE_ABORT;
                    554:           continue; /* skip to the next iteration of the for loop */
                    555:         }
                    556:         nProgressOps = 0;
                    557:       }
                    558:       nProgressOps++;
                    559:     }
                    560: #endif
                    561: 
                    562:     switch( pOp->opcode ){
                    563: 
                    564: /*****************************************************************************
                    565: ** What follows is a massive switch statement where each case implements a
                    566: ** separate instruction in the virtual machine.  If we follow the usual
                    567: ** indentation conventions, each case should be indented by 6 spaces.  But
                    568: ** that is a lot of wasted space on the left margin.  So the code within
                    569: ** the switch statement will break with convention and be flush-left. Another
                    570: ** big comment (similar to this one) will mark the point in the code where
                    571: ** we transition back to normal indentation.
                    572: **
                    573: ** The formatting of each case is important.  The makefile for SQLite
                    574: ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
                    575: ** file looking for lines that begin with "case OP_".  The opcodes.h files
                    576: ** will be filled with #defines that give unique integer values to each
                    577: ** opcode and the opcodes.c file is filled with an array of strings where
                    578: ** each string is the symbolic name for the corresponding opcode.
                    579: **
                    580: ** Documentation about VDBE opcodes is generated by scanning this file
                    581: ** for lines of that contain "Opcode:".  That line and all subsequent
                    582: ** comment lines are used in the generation of the opcode.html documentation
                    583: ** file.
                    584: **
                    585: ** SUMMARY:
                    586: **
                    587: **     Formatting is important to scripts that scan this file.
                    588: **     Do not deviate from the formatting style currently in use.
                    589: **
                    590: *****************************************************************************/
                    591: 
                    592: /* Opcode:  Goto * P2 *
                    593: **
                    594: ** An unconditional jump to address P2.
                    595: ** The next instruction executed will be 
                    596: ** the one at index P2 from the beginning of
                    597: ** the program.
                    598: */
                    599: case OP_Goto: {
                    600:   CHECK_FOR_INTERRUPT;
                    601:   pc = pOp->p2 - 1;
                    602:   break;
                    603: }
                    604: 
                    605: /* Opcode:  Gosub * P2 *
                    606: **
                    607: ** Push the current address plus 1 onto the return address stack
                    608: ** and then jump to address P2.
                    609: **
                    610: ** The return address stack is of limited depth.  If too many
                    611: ** OP_Gosub operations occur without intervening OP_Returns, then
                    612: ** the return address stack will fill up and processing will abort
                    613: ** with a fatal error.
                    614: */
                    615: case OP_Gosub: {
                    616:   if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
                    617:     sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
                    618:     p->rc = SQLITE_INTERNAL;
                    619:     return SQLITE_ERROR;
                    620:   }
                    621:   p->returnStack[p->returnDepth++] = pc+1;
                    622:   pc = pOp->p2 - 1;
                    623:   break;
                    624: }
                    625: 
                    626: /* Opcode:  Return * * *
                    627: **
                    628: ** Jump immediately to the next instruction after the last unreturned
                    629: ** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
                    630: ** processing aborts with a fatal error.
                    631: */
                    632: case OP_Return: {
                    633:   if( p->returnDepth<=0 ){
                    634:     sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
                    635:     p->rc = SQLITE_INTERNAL;
                    636:     return SQLITE_ERROR;
                    637:   }
                    638:   p->returnDepth--;
                    639:   pc = p->returnStack[p->returnDepth] - 1;
                    640:   break;
                    641: }
                    642: 
                    643: /* Opcode:  Halt P1 P2 *
                    644: **
                    645: ** Exit immediately.  All open cursors, Lists, Sorts, etc are closed
                    646: ** automatically.
                    647: **
                    648: ** P1 is the result code returned by sqlite_exec().  For a normal
                    649: ** halt, this should be SQLITE_OK (0).  For errors, it can be some
                    650: ** other value.  If P1!=0 then P2 will determine whether or not to
                    651: ** rollback the current transaction.  Do not rollback if P2==OE_Fail.
                    652: ** Do the rollback if P2==OE_Rollback.  If P2==OE_Abort, then back
                    653: ** out all changes that have occurred during this execution of the
                    654: ** VDBE, but do not rollback the transaction. 
                    655: **
                    656: ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
                    657: ** every program.  So a jump past the last instruction of the program
                    658: ** is the same as executing Halt.
                    659: */
                    660: case OP_Halt: {
                    661:   p->magic = VDBE_MAGIC_HALT;
                    662:   p->pTos = pTos;
                    663:   if( pOp->p1!=SQLITE_OK ){
                    664:     p->rc = pOp->p1;
                    665:     p->errorAction = pOp->p2;
                    666:     if( pOp->p3 ){
                    667:       sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
                    668:     }
                    669:     return SQLITE_ERROR;
                    670:   }else{
                    671:     p->rc = SQLITE_OK;
                    672:     return SQLITE_DONE;
                    673:   }
                    674: }
                    675: 
                    676: /* Opcode: Integer P1 * P3
                    677: **
                    678: ** The integer value P1 is pushed onto the stack.  If P3 is not zero
                    679: ** then it is assumed to be a string representation of the same integer.
                    680: */
                    681: case OP_Integer: {
                    682:   pTos++;
                    683:   pTos->i = pOp->p1;
                    684:   pTos->flags = MEM_Int;
                    685:   if( pOp->p3 ){
                    686:     pTos->z = pOp->p3;
                    687:     pTos->flags |= MEM_Str | MEM_Static;
                    688:     pTos->n = strlen(pOp->p3)+1;
                    689:   }
                    690:   break;
                    691: }
                    692: 
                    693: /* Opcode: String * * P3
                    694: **
                    695: ** The string value P3 is pushed onto the stack.  If P3==0 then a
                    696: ** NULL is pushed onto the stack.
                    697: */
                    698: case OP_String: {
                    699:   char *z = pOp->p3;
                    700:   pTos++;
                    701:   if( z==0 ){
                    702:     pTos->flags = MEM_Null;
                    703:   }else{
                    704:     pTos->z = z;
                    705:     pTos->n = strlen(z) + 1;
                    706:     pTos->flags = MEM_Str | MEM_Static;
                    707:   }
                    708:   break;
                    709: }
                    710: 
                    711: /* Opcode: Variable P1 * *
                    712: **
                    713: ** Push the value of variable P1 onto the stack.  A variable is
                    714: ** an unknown in the original SQL string as handed to sqlite_compile().
                    715: ** Any occurance of the '?' character in the original SQL is considered
                    716: ** a variable.  Variables in the SQL string are number from left to
                    717: ** right beginning with 1.  The values of variables are set using the
                    718: ** sqlite_bind() API.
                    719: */
                    720: case OP_Variable: {
                    721:   int j = pOp->p1 - 1;
                    722:   pTos++;
                    723:   if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
                    724:     pTos->z = p->azVar[j];
                    725:     pTos->n = p->anVar[j];
                    726:     pTos->flags = MEM_Str | MEM_Static;
                    727:   }else{
                    728:     pTos->flags = MEM_Null;
                    729:   }
                    730:   break;
                    731: }
                    732: 
                    733: /* Opcode: Pop P1 * *
                    734: **
                    735: ** P1 elements are popped off of the top of stack and discarded.
                    736: */
                    737: case OP_Pop: {
                    738:   assert( pOp->p1>=0 );
                    739:   popStack(&pTos, pOp->p1);
                    740:   assert( pTos>=&p->aStack[-1] );
                    741:   break;
                    742: }
                    743: 
                    744: /* Opcode: Dup P1 P2 *
                    745: **
                    746: ** A copy of the P1-th element of the stack 
                    747: ** is made and pushed onto the top of the stack.
                    748: ** The top of the stack is element 0.  So the
                    749: ** instruction "Dup 0 0 0" will make a copy of the
                    750: ** top of the stack.
                    751: **
                    752: ** If the content of the P1-th element is a dynamically
                    753: ** allocated string, then a new copy of that string
                    754: ** is made if P2==0.  If P2!=0, then just a pointer
                    755: ** to the string is copied.
                    756: **
                    757: ** Also see the Pull instruction.
                    758: */
                    759: case OP_Dup: {
                    760:   Mem *pFrom = &pTos[-pOp->p1];
                    761:   assert( pFrom<=pTos && pFrom>=p->aStack );
                    762:   pTos++;
                    763:   memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
                    764:   if( pTos->flags & MEM_Str ){
                    765:     if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
                    766:       pTos->flags &= ~MEM_Dyn;
                    767:       pTos->flags |= MEM_Ephem;
                    768:     }else if( pTos->flags & MEM_Short ){
                    769:       memcpy(pTos->zShort, pFrom->zShort, pTos->n);
                    770:       pTos->z = pTos->zShort;
                    771:     }else if( (pTos->flags & MEM_Static)==0 ){
                    772:       pTos->z = sqliteMallocRaw(pFrom->n);
                    773:       if( sqlite_malloc_failed ) goto no_mem;
                    774:       memcpy(pTos->z, pFrom->z, pFrom->n);
                    775:       pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
                    776:       pTos->flags |= MEM_Dyn;
                    777:     }
                    778:   }
                    779:   break;
                    780: }
                    781: 
                    782: /* Opcode: Pull P1 * *
                    783: **
                    784: ** The P1-th element is removed from its current location on 
                    785: ** the stack and pushed back on top of the stack.  The
                    786: ** top of the stack is element 0, so "Pull 0 0 0" is
                    787: ** a no-op.  "Pull 1 0 0" swaps the top two elements of
                    788: ** the stack.
                    789: **
                    790: ** See also the Dup instruction.
                    791: */
                    792: case OP_Pull: {
                    793:   Mem *pFrom = &pTos[-pOp->p1];
                    794:   int i;
                    795:   Mem ts;
                    796: 
                    797:   ts = *pFrom;
                    798:   Deephemeralize(pTos);
                    799:   for(i=0; i<pOp->p1; i++, pFrom++){
                    800:     Deephemeralize(&pFrom[1]);
                    801:     *pFrom = pFrom[1];
                    802:     assert( (pFrom->flags & MEM_Ephem)==0 );
                    803:     if( pFrom->flags & MEM_Short ){
                    804:       assert( pFrom->flags & MEM_Str );
                    805:       assert( pFrom->z==pFrom[1].zShort );
                    806:       pFrom->z = pFrom->zShort;
                    807:     }
                    808:   }
                    809:   *pTos = ts;
                    810:   if( pTos->flags & MEM_Short ){
                    811:     assert( pTos->flags & MEM_Str );
                    812:     assert( pTos->z==pTos[-pOp->p1].zShort );
                    813:     pTos->z = pTos->zShort;
                    814:   }
                    815:   break;
                    816: }
                    817: 
                    818: /* Opcode: Push P1 * *
                    819: **
                    820: ** Overwrite the value of the P1-th element down on the
                    821: ** stack (P1==0 is the top of the stack) with the value
                    822: ** of the top of the stack.  Then pop the top of the stack.
                    823: */
                    824: case OP_Push: {
                    825:   Mem *pTo = &pTos[-pOp->p1];
                    826: 
                    827:   assert( pTo>=p->aStack );
                    828:   Deephemeralize(pTos);
                    829:   Release(pTo);
                    830:   *pTo = *pTos;
                    831:   if( pTo->flags & MEM_Short ){
                    832:     assert( pTo->z==pTos->zShort );
                    833:     pTo->z = pTo->zShort;
                    834:   }
                    835:   pTos--;
                    836:   break;
                    837: }
                    838: 
                    839: 
                    840: /* Opcode: ColumnName P1 P2 P3
                    841: **
                    842: ** P3 becomes the P1-th column name (first is 0).  An array of pointers
                    843: ** to all column names is passed as the 4th parameter to the callback.
                    844: ** If P2==1 then this is the last column in the result set and thus the
                    845: ** number of columns in the result set will be P1.  There must be at least
                    846: ** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
                    847: ** number of columns specified in OP_Callback must one more than the P1
                    848: ** value of the OP_ColumnName that has P2==1.
                    849: */
                    850: case OP_ColumnName: {
                    851:   assert( pOp->p1>=0 && pOp->p1<p->nOp );
                    852:   p->azColName[pOp->p1] = pOp->p3;
                    853:   p->nCallback = 0;
                    854:   if( pOp->p2 ) p->nResColumn = pOp->p1+1;
                    855:   break;
                    856: }
                    857: 
                    858: /* Opcode: Callback P1 * *
                    859: **
                    860: ** Pop P1 values off the stack and form them into an array.  Then
                    861: ** invoke the callback function using the newly formed array as the
                    862: ** 3rd parameter.
                    863: */
                    864: case OP_Callback: {
                    865:   int i;
                    866:   char **azArgv = p->zArgv;
                    867:   Mem *pCol;
                    868: 
                    869:   pCol = &pTos[1-pOp->p1];
                    870:   assert( pCol>=p->aStack );
                    871:   for(i=0; i<pOp->p1; i++, pCol++){
                    872:     if( pCol->flags & MEM_Null ){
                    873:       azArgv[i] = 0;
                    874:     }else{
                    875:       Stringify(pCol);
                    876:       azArgv[i] = pCol->z;
                    877:     }
                    878:   }
                    879:   azArgv[i] = 0;
                    880:   p->nCallback++;
                    881:   p->azResColumn = azArgv;
                    882:   assert( p->nResColumn==pOp->p1 );
                    883:   p->popStack = pOp->p1;
                    884:   p->pc = pc + 1;
                    885:   p->pTos = pTos;
                    886:   return SQLITE_ROW;
                    887: }
                    888: 
                    889: /* Opcode: Concat P1 P2 P3
                    890: **
                    891: ** Look at the first P1 elements of the stack.  Append them all 
                    892: ** together with the lowest element first.  Use P3 as a separator.  
                    893: ** Put the result on the top of the stack.  The original P1 elements
                    894: ** are popped from the stack if P2==0 and retained if P2==1.  If
                    895: ** any element of the stack is NULL, then the result is NULL.
                    896: **
                    897: ** If P3 is NULL, then use no separator.  When P1==1, this routine
                    898: ** makes a copy of the top stack element into memory obtained
                    899: ** from sqliteMalloc().
                    900: */
                    901: case OP_Concat: {
                    902:   char *zNew;
                    903:   int nByte;
                    904:   int nField;
                    905:   int i, j;
                    906:   char *zSep;
                    907:   int nSep;
                    908:   Mem *pTerm;
                    909: 
                    910:   nField = pOp->p1;
                    911:   zSep = pOp->p3;
                    912:   if( zSep==0 ) zSep = "";
                    913:   nSep = strlen(zSep);
                    914:   assert( &pTos[1-nField] >= p->aStack );
                    915:   nByte = 1 - nSep;
                    916:   pTerm = &pTos[1-nField];
                    917:   for(i=0; i<nField; i++, pTerm++){
                    918:     if( pTerm->flags & MEM_Null ){
                    919:       nByte = -1;
                    920:       break;
                    921:     }else{
                    922:       Stringify(pTerm);
                    923:       nByte += pTerm->n - 1 + nSep;
                    924:     }
                    925:   }
                    926:   if( nByte<0 ){
                    927:     if( pOp->p2==0 ){
                    928:       popStack(&pTos, nField);
                    929:     }
                    930:     pTos++;
                    931:     pTos->flags = MEM_Null;
                    932:     break;
                    933:   }
                    934:   zNew = sqliteMallocRaw( nByte );
                    935:   if( zNew==0 ) goto no_mem;
                    936:   j = 0;
                    937:   pTerm = &pTos[1-nField];
                    938:   for(i=j=0; i<nField; i++, pTerm++){
                    939:     assert( pTerm->flags & MEM_Str );
                    940:     memcpy(&zNew[j], pTerm->z, pTerm->n-1);
                    941:     j += pTerm->n-1;
                    942:     if( nSep>0 && i<nField-1 ){
                    943:       memcpy(&zNew[j], zSep, nSep);
                    944:       j += nSep;
                    945:     }
                    946:   }
                    947:   zNew[j] = 0;
                    948:   if( pOp->p2==0 ){
                    949:     popStack(&pTos, nField);
                    950:   }
                    951:   pTos++;
                    952:   pTos->n = nByte;
                    953:   pTos->flags = MEM_Str|MEM_Dyn;
                    954:   pTos->z = zNew;
                    955:   break;
                    956: }
                    957: 
                    958: /* Opcode: Add * * *
                    959: **
                    960: ** Pop the top two elements from the stack, add them together,
                    961: ** and push the result back onto the stack.  If either element
                    962: ** is a string then it is converted to a double using the atof()
                    963: ** function before the addition.
                    964: ** If either operand is NULL, the result is NULL.
                    965: */
                    966: /* Opcode: Multiply * * *
                    967: **
                    968: ** Pop the top two elements from the stack, multiply them together,
                    969: ** and push the result back onto the stack.  If either element
                    970: ** is a string then it is converted to a double using the atof()
                    971: ** function before the multiplication.
                    972: ** If either operand is NULL, the result is NULL.
                    973: */
                    974: /* Opcode: Subtract * * *
                    975: **
                    976: ** Pop the top two elements from the stack, subtract the
                    977: ** first (what was on top of the stack) from the second (the
                    978: ** next on stack)
                    979: ** and push the result back onto the stack.  If either element
                    980: ** is a string then it is converted to a double using the atof()
                    981: ** function before the subtraction.
                    982: ** If either operand is NULL, the result is NULL.
                    983: */
                    984: /* Opcode: Divide * * *
                    985: **
                    986: ** Pop the top two elements from the stack, divide the
                    987: ** first (what was on top of the stack) from the second (the
                    988: ** next on stack)
                    989: ** and push the result back onto the stack.  If either element
                    990: ** is a string then it is converted to a double using the atof()
                    991: ** function before the division.  Division by zero returns NULL.
                    992: ** If either operand is NULL, the result is NULL.
                    993: */
                    994: /* Opcode: Remainder * * *
                    995: **
                    996: ** Pop the top two elements from the stack, divide the
                    997: ** first (what was on top of the stack) from the second (the
                    998: ** next on stack)
                    999: ** and push the remainder after division onto the stack.  If either element
                   1000: ** is a string then it is converted to a double using the atof()
                   1001: ** function before the division.  Division by zero returns NULL.
                   1002: ** If either operand is NULL, the result is NULL.
                   1003: */
                   1004: case OP_Add:
                   1005: case OP_Subtract:
                   1006: case OP_Multiply:
                   1007: case OP_Divide:
                   1008: case OP_Remainder: {
                   1009:   Mem *pNos = &pTos[-1];
                   1010:   assert( pNos>=p->aStack );
                   1011:   if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
                   1012:     Release(pTos);
                   1013:     pTos--;
                   1014:     Release(pTos);
                   1015:     pTos->flags = MEM_Null;
                   1016:   }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
                   1017:     int a, b;
                   1018:     a = pTos->i;
                   1019:     b = pNos->i;
                   1020:     switch( pOp->opcode ){
                   1021:       case OP_Add:         b += a;       break;
                   1022:       case OP_Subtract:    b -= a;       break;
                   1023:       case OP_Multiply:    b *= a;       break;
                   1024:       case OP_Divide: {
                   1025:         if( a==0 ) goto divide_by_zero;
                   1026:         b /= a;
                   1027:         break;
                   1028:       }
                   1029:       default: {
                   1030:         if( a==0 ) goto divide_by_zero;
                   1031:         b %= a;
                   1032:         break;
                   1033:       }
                   1034:     }
                   1035:     Release(pTos);
                   1036:     pTos--;
                   1037:     Release(pTos);
                   1038:     pTos->i = b;
                   1039:     pTos->flags = MEM_Int;
                   1040:   }else{
                   1041:     double a, b;
                   1042:     Realify(pTos);
                   1043:     Realify(pNos);
                   1044:     a = pTos->r;
                   1045:     b = pNos->r;
                   1046:     switch( pOp->opcode ){
                   1047:       case OP_Add:         b += a;       break;
                   1048:       case OP_Subtract:    b -= a;       break;
                   1049:       case OP_Multiply:    b *= a;       break;
                   1050:       case OP_Divide: {
                   1051:         if( a==0.0 ) goto divide_by_zero;
                   1052:         b /= a;
                   1053:         break;
                   1054:       }
                   1055:       default: {
                   1056:         int ia = (int)a;
                   1057:         int ib = (int)b;
                   1058:         if( ia==0.0 ) goto divide_by_zero;
                   1059:         b = ib % ia;
                   1060:         break;
                   1061:       }
                   1062:     }
                   1063:     Release(pTos);
                   1064:     pTos--;
                   1065:     Release(pTos);
                   1066:     pTos->r = b;
                   1067:     pTos->flags = MEM_Real;
                   1068:   }
                   1069:   break;
                   1070: 
                   1071: divide_by_zero:
                   1072:   Release(pTos);
                   1073:   pTos--;
                   1074:   Release(pTos);
                   1075:   pTos->flags = MEM_Null;
                   1076:   break;
                   1077: }
                   1078: 
                   1079: /* Opcode: Function P1 * P3
                   1080: **
                   1081: ** Invoke a user function (P3 is a pointer to a Function structure that
                   1082: ** defines the function) with P1 string arguments taken from the stack.
                   1083: ** Pop all arguments from the stack and push back the result.
                   1084: **
                   1085: ** See also: AggFunc
                   1086: */
                   1087: case OP_Function: {
                   1088:   int n, i;
                   1089:   Mem *pArg;
                   1090:   char **azArgv;
                   1091:   sqlite_func ctx;
                   1092: 
                   1093:   n = pOp->p1;
                   1094:   pArg = &pTos[1-n];
                   1095:   azArgv = p->zArgv;
                   1096:   for(i=0; i<n; i++, pArg++){
                   1097:     if( pArg->flags & MEM_Null ){
                   1098:       azArgv[i] = 0;
                   1099:     }else{
                   1100:       Stringify(pArg);
                   1101:       azArgv[i] = pArg->z;
                   1102:     }
                   1103:   }
                   1104:   ctx.pFunc = (FuncDef*)pOp->p3;
                   1105:   ctx.s.flags = MEM_Null;
                   1106:   ctx.s.z = 0;
                   1107:   ctx.isError = 0;
                   1108:   ctx.isStep = 0;
                   1109:   if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
                   1110:   (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
                   1111:   if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
                   1112:   popStack(&pTos, n);
                   1113:   pTos++;
                   1114:   *pTos = ctx.s;
                   1115:   if( pTos->flags & MEM_Short ){
                   1116:     pTos->z = pTos->zShort;
                   1117:   }
                   1118:   if( ctx.isError ){
                   1119:     sqliteSetString(&p->zErrMsg, 
                   1120:        (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
                   1121:     rc = SQLITE_ERROR;
                   1122:   }
                   1123:   break;
                   1124: }
                   1125: 
                   1126: /* Opcode: BitAnd * * *
                   1127: **
                   1128: ** Pop the top two elements from the stack.  Convert both elements
                   1129: ** to integers.  Push back onto the stack the bit-wise AND of the
                   1130: ** two elements.
                   1131: ** If either operand is NULL, the result is NULL.
                   1132: */
                   1133: /* Opcode: BitOr * * *
                   1134: **
                   1135: ** Pop the top two elements from the stack.  Convert both elements
                   1136: ** to integers.  Push back onto the stack the bit-wise OR of the
                   1137: ** two elements.
                   1138: ** If either operand is NULL, the result is NULL.
                   1139: */
                   1140: /* Opcode: ShiftLeft * * *
                   1141: **
                   1142: ** Pop the top two elements from the stack.  Convert both elements
                   1143: ** to integers.  Push back onto the stack the top element shifted
                   1144: ** left by N bits where N is the second element on the stack.
                   1145: ** If either operand is NULL, the result is NULL.
                   1146: */
                   1147: /* Opcode: ShiftRight * * *
                   1148: **
                   1149: ** Pop the top two elements from the stack.  Convert both elements
                   1150: ** to integers.  Push back onto the stack the top element shifted
                   1151: ** right by N bits where N is the second element on the stack.
                   1152: ** If either operand is NULL, the result is NULL.
                   1153: */
                   1154: case OP_BitAnd:
                   1155: case OP_BitOr:
                   1156: case OP_ShiftLeft:
                   1157: case OP_ShiftRight: {
                   1158:   Mem *pNos = &pTos[-1];
                   1159:   int a, b;
                   1160: 
                   1161:   assert( pNos>=p->aStack );
                   1162:   if( (pTos->flags | pNos->flags) & MEM_Null ){
                   1163:     popStack(&pTos, 2);
                   1164:     pTos++;
                   1165:     pTos->flags = MEM_Null;
                   1166:     break;
                   1167:   }
                   1168:   Integerify(pTos);
                   1169:   Integerify(pNos);
                   1170:   a = pTos->i;
                   1171:   b = pNos->i;
                   1172:   switch( pOp->opcode ){
                   1173:     case OP_BitAnd:      a &= b;     break;
                   1174:     case OP_BitOr:       a |= b;     break;
                   1175:     case OP_ShiftLeft:   a <<= b;    break;
                   1176:     case OP_ShiftRight:  a >>= b;    break;
                   1177:     default:   /* CANT HAPPEN */     break;
                   1178:   }
                   1179:   assert( (pTos->flags & MEM_Dyn)==0 );
                   1180:   assert( (pNos->flags & MEM_Dyn)==0 );
                   1181:   pTos--;
                   1182:   Release(pTos);
                   1183:   pTos->i = a;
                   1184:   pTos->flags = MEM_Int;
                   1185:   break;
                   1186: }
                   1187: 
                   1188: /* Opcode: AddImm  P1 * *
                   1189: ** 
                   1190: ** Add the value P1 to whatever is on top of the stack.  The result
                   1191: ** is always an integer.
                   1192: **
                   1193: ** To force the top of the stack to be an integer, just add 0.
                   1194: */
                   1195: case OP_AddImm: {
                   1196:   assert( pTos>=p->aStack );
                   1197:   Integerify(pTos);
                   1198:   pTos->i += pOp->p1;
                   1199:   break;
                   1200: }
                   1201: 
                   1202: /* Opcode: ForceInt P1 P2 *
                   1203: **
                   1204: ** Convert the top of the stack into an integer.  If the current top of
                   1205: ** the stack is not numeric (meaning that is is a NULL or a string that
                   1206: ** does not look like an integer or floating point number) then pop the
                   1207: ** stack and jump to P2.  If the top of the stack is numeric then
                   1208: ** convert it into the least integer that is greater than or equal to its
                   1209: ** current value if P1==0, or to the least integer that is strictly
                   1210: ** greater than its current value if P1==1.
                   1211: */
                   1212: case OP_ForceInt: {
                   1213:   int v;
                   1214:   assert( pTos>=p->aStack );
                   1215:   if( (pTos->flags & (MEM_Int|MEM_Real))==0
                   1216:          && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
                   1217:     Release(pTos);
                   1218:     pTos--;
                   1219:     pc = pOp->p2 - 1;
                   1220:     break;
                   1221:   }
                   1222:   if( pTos->flags & MEM_Int ){
                   1223:     v = pTos->i + (pOp->p1!=0);
                   1224:   }else{
                   1225:     Realify(pTos);
                   1226:     v = (int)pTos->r;
                   1227:     if( pTos->r>(double)v ) v++;
                   1228:     if( pOp->p1 && pTos->r==(double)v ) v++;
                   1229:   }
                   1230:   Release(pTos);
                   1231:   pTos->i = v;
                   1232:   pTos->flags = MEM_Int;
                   1233:   break;
                   1234: }
                   1235: 
                   1236: /* Opcode: MustBeInt P1 P2 *
                   1237: ** 
                   1238: ** Force the top of the stack to be an integer.  If the top of the
                   1239: ** stack is not an integer and cannot be converted into an integer
                   1240: ** with out data loss, then jump immediately to P2, or if P2==0
                   1241: ** raise an SQLITE_MISMATCH exception.
                   1242: **
                   1243: ** If the top of the stack is not an integer and P2 is not zero and
                   1244: ** P1 is 1, then the stack is popped.  In all other cases, the depth
                   1245: ** of the stack is unchanged.
                   1246: */
                   1247: case OP_MustBeInt: {
                   1248:   assert( pTos>=p->aStack );
                   1249:   if( pTos->flags & MEM_Int ){
                   1250:     /* Do nothing */
                   1251:   }else if( pTos->flags & MEM_Real ){
                   1252:     int i = (int)pTos->r;
                   1253:     double r = (double)i;
                   1254:     if( r!=pTos->r ){
                   1255:       goto mismatch;
                   1256:     }
                   1257:     pTos->i = i;
                   1258:   }else if( pTos->flags & MEM_Str ){
                   1259:     int v;
                   1260:     if( !toInt(pTos->z, &v) ){
                   1261:       double r;
                   1262:       if( !sqliteIsNumber(pTos->z) ){
                   1263:         goto mismatch;
                   1264:       }
                   1265:       Realify(pTos);
                   1266:       v = (int)pTos->r;
                   1267:       r = (double)v;
                   1268:       if( r!=pTos->r ){
                   1269:         goto mismatch;
                   1270:       }
                   1271:     }
                   1272:     pTos->i = v;
                   1273:   }else{
                   1274:     goto mismatch;
                   1275:   }
                   1276:   Release(pTos);
                   1277:   pTos->flags = MEM_Int;
                   1278:   break;
                   1279: 
                   1280: mismatch:
                   1281:   if( pOp->p2==0 ){
                   1282:     rc = SQLITE_MISMATCH;
                   1283:     goto abort_due_to_error;
                   1284:   }else{
                   1285:     if( pOp->p1 ) popStack(&pTos, 1);
                   1286:     pc = pOp->p2 - 1;
                   1287:   }
                   1288:   break;
                   1289: }
                   1290: 
                   1291: /* Opcode: Eq P1 P2 *
                   1292: **
                   1293: ** Pop the top two elements from the stack.  If they are equal, then
                   1294: ** jump to instruction P2.  Otherwise, continue to the next instruction.
                   1295: **
                   1296: ** If either operand is NULL (and thus if the result is unknown) then
                   1297: ** take the jump if P1 is true.
                   1298: **
                   1299: ** If both values are numeric, they are converted to doubles using atof()
                   1300: ** and compared for equality that way.  Otherwise the strcmp() library
                   1301: ** routine is used for the comparison.  For a pure text comparison
                   1302: ** use OP_StrEq.
                   1303: **
                   1304: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1305: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1306: ** NULL if either operand was NULL.
                   1307: */
                   1308: /* Opcode: Ne P1 P2 *
                   1309: **
                   1310: ** Pop the top two elements from the stack.  If they are not equal, then
                   1311: ** jump to instruction P2.  Otherwise, continue to the next instruction.
                   1312: **
                   1313: ** If either operand is NULL (and thus if the result is unknown) then
                   1314: ** take the jump if P1 is true.
                   1315: **
                   1316: ** If both values are numeric, they are converted to doubles using atof()
                   1317: ** and compared in that format.  Otherwise the strcmp() library
                   1318: ** routine is used for the comparison.  For a pure text comparison
                   1319: ** use OP_StrNe.
                   1320: **
                   1321: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1322: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1323: ** NULL if either operand was NULL.
                   1324: */
                   1325: /* Opcode: Lt P1 P2 *
                   1326: **
                   1327: ** Pop the top two elements from the stack.  If second element (the
                   1328: ** next on stack) is less than the first (the top of stack), then
                   1329: ** jump to instruction P2.  Otherwise, continue to the next instruction.
                   1330: ** In other words, jump if NOS<TOS.
                   1331: **
                   1332: ** If either operand is NULL (and thus if the result is unknown) then
                   1333: ** take the jump if P1 is true.
                   1334: **
                   1335: ** If both values are numeric, they are converted to doubles using atof()
                   1336: ** and compared in that format.  Numeric values are always less than
                   1337: ** non-numeric values.  If both operands are non-numeric, the strcmp() library
                   1338: ** routine is used for the comparison.  For a pure text comparison
                   1339: ** use OP_StrLt.
                   1340: **
                   1341: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1342: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1343: ** NULL if either operand was NULL.
                   1344: */
                   1345: /* Opcode: Le P1 P2 *
                   1346: **
                   1347: ** Pop the top two elements from the stack.  If second element (the
                   1348: ** next on stack) is less than or equal to the first (the top of stack),
                   1349: ** then jump to instruction P2. In other words, jump if NOS<=TOS.
                   1350: **
                   1351: ** If either operand is NULL (and thus if the result is unknown) then
                   1352: ** take the jump if P1 is true.
                   1353: **
                   1354: ** If both values are numeric, they are converted to doubles using atof()
                   1355: ** and compared in that format.  Numeric values are always less than
                   1356: ** non-numeric values.  If both operands are non-numeric, the strcmp() library
                   1357: ** routine is used for the comparison.  For a pure text comparison
                   1358: ** use OP_StrLe.
                   1359: **
                   1360: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1361: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1362: ** NULL if either operand was NULL.
                   1363: */
                   1364: /* Opcode: Gt P1 P2 *
                   1365: **
                   1366: ** Pop the top two elements from the stack.  If second element (the
                   1367: ** next on stack) is greater than the first (the top of stack),
                   1368: ** then jump to instruction P2. In other words, jump if NOS>TOS.
                   1369: **
                   1370: ** If either operand is NULL (and thus if the result is unknown) then
                   1371: ** take the jump if P1 is true.
                   1372: **
                   1373: ** If both values are numeric, they are converted to doubles using atof()
                   1374: ** and compared in that format.  Numeric values are always less than
                   1375: ** non-numeric values.  If both operands are non-numeric, the strcmp() library
                   1376: ** routine is used for the comparison.  For a pure text comparison
                   1377: ** use OP_StrGt.
                   1378: **
                   1379: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1380: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1381: ** NULL if either operand was NULL.
                   1382: */
                   1383: /* Opcode: Ge P1 P2 *
                   1384: **
                   1385: ** Pop the top two elements from the stack.  If second element (the next
                   1386: ** on stack) is greater than or equal to the first (the top of stack),
                   1387: ** then jump to instruction P2. In other words, jump if NOS>=TOS.
                   1388: **
                   1389: ** If either operand is NULL (and thus if the result is unknown) then
                   1390: ** take the jump if P1 is true.
                   1391: **
                   1392: ** If both values are numeric, they are converted to doubles using atof()
                   1393: ** and compared in that format.  Numeric values are always less than
                   1394: ** non-numeric values.  If both operands are non-numeric, the strcmp() library
                   1395: ** routine is used for the comparison.  For a pure text comparison
                   1396: ** use OP_StrGe.
                   1397: **
                   1398: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1399: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1400: ** NULL if either operand was NULL.
                   1401: */
                   1402: case OP_Eq:
                   1403: case OP_Ne:
                   1404: case OP_Lt:
                   1405: case OP_Le:
                   1406: case OP_Gt:
                   1407: case OP_Ge: {
                   1408:   Mem *pNos = &pTos[-1];
                   1409:   int c, v;
                   1410:   int ft, fn;
                   1411:   assert( pNos>=p->aStack );
                   1412:   ft = pTos->flags;
                   1413:   fn = pNos->flags;
                   1414:   if( (ft | fn) & MEM_Null ){
                   1415:     popStack(&pTos, 2);
                   1416:     if( pOp->p2 ){
                   1417:       if( pOp->p1 ) pc = pOp->p2-1;
                   1418:     }else{
                   1419:       pTos++;
                   1420:       pTos->flags = MEM_Null;
                   1421:     }
                   1422:     break;
                   1423:   }else if( (ft & fn & MEM_Int)==MEM_Int ){
                   1424:     c = pNos->i - pTos->i;
                   1425:   }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
                   1426:     c = v - pTos->i;
                   1427:   }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
                   1428:     c = pNos->i - v;
                   1429:   }else{
                   1430:     Stringify(pTos);
                   1431:     Stringify(pNos);
                   1432:     c = sqliteCompare(pNos->z, pTos->z);
                   1433:   }
                   1434:   switch( pOp->opcode ){
                   1435:     case OP_Eq:    c = c==0;     break;
                   1436:     case OP_Ne:    c = c!=0;     break;
                   1437:     case OP_Lt:    c = c<0;      break;
                   1438:     case OP_Le:    c = c<=0;     break;
                   1439:     case OP_Gt:    c = c>0;      break;
                   1440:     default:       c = c>=0;     break;
                   1441:   }
                   1442:   popStack(&pTos, 2);
                   1443:   if( pOp->p2 ){
                   1444:     if( c ) pc = pOp->p2-1;
                   1445:   }else{
                   1446:     pTos++;
                   1447:     pTos->i = c;
                   1448:     pTos->flags = MEM_Int;
                   1449:   }
                   1450:   break;
                   1451: }
                   1452: /* INSERT NO CODE HERE!
                   1453: **
                   1454: ** The opcode numbers are extracted from this source file by doing
                   1455: **
                   1456: **    grep '^case OP_' vdbe.c | ... >opcodes.h
                   1457: **
                   1458: ** The opcodes are numbered in the order that they appear in this file.
                   1459: ** But in order for the expression generating code to work right, the
                   1460: ** string comparison operators that follow must be numbered exactly 6
                   1461: ** greater than the numeric comparison opcodes above.  So no other
                   1462: ** cases can appear between the two.
                   1463: */
                   1464: /* Opcode: StrEq P1 P2 *
                   1465: **
                   1466: ** Pop the top two elements from the stack.  If they are equal, then
                   1467: ** jump to instruction P2.  Otherwise, continue to the next instruction.
                   1468: **
                   1469: ** If either operand is NULL (and thus if the result is unknown) then
                   1470: ** take the jump if P1 is true.
                   1471: **
                   1472: ** The strcmp() library routine is used for the comparison.  For a
                   1473: ** numeric comparison, use OP_Eq.
                   1474: **
                   1475: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1476: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1477: ** NULL if either operand was NULL.
                   1478: */
                   1479: /* Opcode: StrNe P1 P2 *
                   1480: **
                   1481: ** Pop the top two elements from the stack.  If they are not equal, then
                   1482: ** jump to instruction P2.  Otherwise, continue to the next instruction.
                   1483: **
                   1484: ** If either operand is NULL (and thus if the result is unknown) then
                   1485: ** take the jump if P1 is true.
                   1486: **
                   1487: ** The strcmp() library routine is used for the comparison.  For a
                   1488: ** numeric comparison, use OP_Ne.
                   1489: **
                   1490: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1491: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1492: ** NULL if either operand was NULL.
                   1493: */
                   1494: /* Opcode: StrLt P1 P2 *
                   1495: **
                   1496: ** Pop the top two elements from the stack.  If second element (the
                   1497: ** next on stack) is less than the first (the top of stack), then
                   1498: ** jump to instruction P2.  Otherwise, continue to the next instruction.
                   1499: ** In other words, jump if NOS<TOS.
                   1500: **
                   1501: ** If either operand is NULL (and thus if the result is unknown) then
                   1502: ** take the jump if P1 is true.
                   1503: **
                   1504: ** The strcmp() library routine is used for the comparison.  For a
                   1505: ** numeric comparison, use OP_Lt.
                   1506: **
                   1507: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1508: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1509: ** NULL if either operand was NULL.
                   1510: */
                   1511: /* Opcode: StrLe P1 P2 *
                   1512: **
                   1513: ** Pop the top two elements from the stack.  If second element (the
                   1514: ** next on stack) is less than or equal to the first (the top of stack),
                   1515: ** then jump to instruction P2. In other words, jump if NOS<=TOS.
                   1516: **
                   1517: ** If either operand is NULL (and thus if the result is unknown) then
                   1518: ** take the jump if P1 is true.
                   1519: **
                   1520: ** The strcmp() library routine is used for the comparison.  For a
                   1521: ** numeric comparison, use OP_Le.
                   1522: **
                   1523: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1524: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1525: ** NULL if either operand was NULL.
                   1526: */
                   1527: /* Opcode: StrGt P1 P2 *
                   1528: **
                   1529: ** Pop the top two elements from the stack.  If second element (the
                   1530: ** next on stack) is greater than the first (the top of stack),
                   1531: ** then jump to instruction P2. In other words, jump if NOS>TOS.
                   1532: **
                   1533: ** If either operand is NULL (and thus if the result is unknown) then
                   1534: ** take the jump if P1 is true.
                   1535: **
                   1536: ** The strcmp() library routine is used for the comparison.  For a
                   1537: ** numeric comparison, use OP_Gt.
                   1538: **
                   1539: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1540: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1541: ** NULL if either operand was NULL.
                   1542: */
                   1543: /* Opcode: StrGe P1 P2 *
                   1544: **
                   1545: ** Pop the top two elements from the stack.  If second element (the next
                   1546: ** on stack) is greater than or equal to the first (the top of stack),
                   1547: ** then jump to instruction P2. In other words, jump if NOS>=TOS.
                   1548: **
                   1549: ** If either operand is NULL (and thus if the result is unknown) then
                   1550: ** take the jump if P1 is true.
                   1551: **
                   1552: ** The strcmp() library routine is used for the comparison.  For a
                   1553: ** numeric comparison, use OP_Ge.
                   1554: **
                   1555: ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
                   1556: ** stack if the jump would have been taken, or a 0 if not.  Push a
                   1557: ** NULL if either operand was NULL.
                   1558: */
                   1559: case OP_StrEq:
                   1560: case OP_StrNe:
                   1561: case OP_StrLt:
                   1562: case OP_StrLe:
                   1563: case OP_StrGt:
                   1564: case OP_StrGe: {
                   1565:   Mem *pNos = &pTos[-1];
                   1566:   int c;
                   1567:   assert( pNos>=p->aStack );
                   1568:   if( (pNos->flags | pTos->flags) & MEM_Null ){
                   1569:     popStack(&pTos, 2);
                   1570:     if( pOp->p2 ){
                   1571:       if( pOp->p1 ) pc = pOp->p2-1;
                   1572:     }else{
                   1573:       pTos++;
                   1574:       pTos->flags = MEM_Null;
                   1575:     }
                   1576:     break;
                   1577:   }else{
                   1578:     Stringify(pTos);
                   1579:     Stringify(pNos);
                   1580:     c = strcmp(pNos->z, pTos->z);
                   1581:   }
                   1582:   /* The asserts on each case of the following switch are there to verify
                   1583:   ** that string comparison opcodes are always exactly 6 greater than the
                   1584:   ** corresponding numeric comparison opcodes.  The code generator depends
                   1585:   ** on this fact.
                   1586:   */
                   1587:   switch( pOp->opcode ){
                   1588:     case OP_StrEq:    c = c==0;    assert( pOp->opcode-6==OP_Eq );   break;
                   1589:     case OP_StrNe:    c = c!=0;    assert( pOp->opcode-6==OP_Ne );   break;
                   1590:     case OP_StrLt:    c = c<0;     assert( pOp->opcode-6==OP_Lt );   break;
                   1591:     case OP_StrLe:    c = c<=0;    assert( pOp->opcode-6==OP_Le );   break;
                   1592:     case OP_StrGt:    c = c>0;     assert( pOp->opcode-6==OP_Gt );   break;
                   1593:     default:          c = c>=0;    assert( pOp->opcode-6==OP_Ge );   break;
                   1594:   }
                   1595:   popStack(&pTos, 2);
                   1596:   if( pOp->p2 ){
                   1597:     if( c ) pc = pOp->p2-1;
                   1598:   }else{
                   1599:     pTos++;
                   1600:     pTos->flags = MEM_Int;
                   1601:     pTos->i = c;
                   1602:   }
                   1603:   break;
                   1604: }
                   1605: 
                   1606: /* Opcode: And * * *
                   1607: **
                   1608: ** Pop two values off the stack.  Take the logical AND of the
                   1609: ** two values and push the resulting boolean value back onto the
                   1610: ** stack. 
                   1611: */
                   1612: /* Opcode: Or * * *
                   1613: **
                   1614: ** Pop two values off the stack.  Take the logical OR of the
                   1615: ** two values and push the resulting boolean value back onto the
                   1616: ** stack. 
                   1617: */
                   1618: case OP_And:
                   1619: case OP_Or: {
                   1620:   Mem *pNos = &pTos[-1];
                   1621:   int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
                   1622: 
                   1623:   assert( pNos>=p->aStack );
                   1624:   if( pTos->flags & MEM_Null ){
                   1625:     v1 = 2;
                   1626:   }else{
                   1627:     Integerify(pTos);
                   1628:     v1 = pTos->i==0;
                   1629:   }
                   1630:   if( pNos->flags & MEM_Null ){
                   1631:     v2 = 2;
                   1632:   }else{
                   1633:     Integerify(pNos);
                   1634:     v2 = pNos->i==0;
                   1635:   }
                   1636:   if( pOp->opcode==OP_And ){
                   1637:     static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
                   1638:     v1 = and_logic[v1*3+v2];
                   1639:   }else{
                   1640:     static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
                   1641:     v1 = or_logic[v1*3+v2];
                   1642:   }
                   1643:   popStack(&pTos, 2);
                   1644:   pTos++;
                   1645:   if( v1==2 ){
                   1646:     pTos->flags = MEM_Null;
                   1647:   }else{
                   1648:     pTos->i = v1==0;
                   1649:     pTos->flags = MEM_Int;
                   1650:   }
                   1651:   break;
                   1652: }
                   1653: 
                   1654: /* Opcode: Negative * * *
                   1655: **
                   1656: ** Treat the top of the stack as a numeric quantity.  Replace it
                   1657: ** with its additive inverse.  If the top of the stack is NULL
                   1658: ** its value is unchanged.
                   1659: */
                   1660: /* Opcode: AbsValue * * *
                   1661: **
                   1662: ** Treat the top of the stack as a numeric quantity.  Replace it
                   1663: ** with its absolute value. If the top of the stack is NULL
                   1664: ** its value is unchanged.
                   1665: */
                   1666: case OP_Negative:
                   1667: case OP_AbsValue: {
                   1668:   assert( pTos>=p->aStack );
                   1669:   if( pTos->flags & MEM_Real ){
                   1670:     Release(pTos);
                   1671:     if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
                   1672:       pTos->r = -pTos->r;
                   1673:     }
                   1674:     pTos->flags = MEM_Real;
                   1675:   }else if( pTos->flags & MEM_Int ){
                   1676:     Release(pTos);
                   1677:     if( pOp->opcode==OP_Negative || pTos->i<0 ){
                   1678:       pTos->i = -pTos->i;
                   1679:     }
                   1680:     pTos->flags = MEM_Int;
                   1681:   }else if( pTos->flags & MEM_Null ){
                   1682:     /* Do nothing */
                   1683:   }else{
                   1684:     Realify(pTos);
                   1685:     Release(pTos);
                   1686:     if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
                   1687:       pTos->r = -pTos->r;
                   1688:     }
                   1689:     pTos->flags = MEM_Real;
                   1690:   }
                   1691:   break;
                   1692: }
                   1693: 
                   1694: /* Opcode: Not * * *
                   1695: **
                   1696: ** Interpret the top of the stack as a boolean value.  Replace it
                   1697: ** with its complement.  If the top of the stack is NULL its value
                   1698: ** is unchanged.
                   1699: */
                   1700: case OP_Not: {
                   1701:   assert( pTos>=p->aStack );
                   1702:   if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
                   1703:   Integerify(pTos);
                   1704:   Release(pTos);
                   1705:   pTos->i = !pTos->i;
                   1706:   pTos->flags = MEM_Int;
                   1707:   break;
                   1708: }
                   1709: 
                   1710: /* Opcode: BitNot * * *
                   1711: **
                   1712: ** Interpret the top of the stack as an value.  Replace it
                   1713: ** with its ones-complement.  If the top of the stack is NULL its
                   1714: ** value is unchanged.
                   1715: */
                   1716: case OP_BitNot: {
                   1717:   assert( pTos>=p->aStack );
                   1718:   if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
                   1719:   Integerify(pTos);
                   1720:   Release(pTos);
                   1721:   pTos->i = ~pTos->i;
                   1722:   pTos->flags = MEM_Int;
                   1723:   break;
                   1724: }
                   1725: 
                   1726: /* Opcode: Noop * * *
                   1727: **
                   1728: ** Do nothing.  This instruction is often useful as a jump
                   1729: ** destination.
                   1730: */
                   1731: case OP_Noop: {
                   1732:   break;
                   1733: }
                   1734: 
                   1735: /* Opcode: If P1 P2 *
                   1736: **
                   1737: ** Pop a single boolean from the stack.  If the boolean popped is
                   1738: ** true, then jump to p2.  Otherwise continue to the next instruction.
                   1739: ** An integer is false if zero and true otherwise.  A string is
                   1740: ** false if it has zero length and true otherwise.
                   1741: **
                   1742: ** If the value popped of the stack is NULL, then take the jump if P1
                   1743: ** is true and fall through if P1 is false.
                   1744: */
                   1745: /* Opcode: IfNot P1 P2 *
                   1746: **
                   1747: ** Pop a single boolean from the stack.  If the boolean popped is
                   1748: ** false, then jump to p2.  Otherwise continue to the next instruction.
                   1749: ** An integer is false if zero and true otherwise.  A string is
                   1750: ** false if it has zero length and true otherwise.
                   1751: **
                   1752: ** If the value popped of the stack is NULL, then take the jump if P1
                   1753: ** is true and fall through if P1 is false.
                   1754: */
                   1755: case OP_If:
                   1756: case OP_IfNot: {
                   1757:   int c;
                   1758:   assert( pTos>=p->aStack );
                   1759:   if( pTos->flags & MEM_Null ){
                   1760:     c = pOp->p1;
                   1761:   }else{
                   1762:     Integerify(pTos);
                   1763:     c = pTos->i;
                   1764:     if( pOp->opcode==OP_IfNot ) c = !c;
                   1765:   }
                   1766:   assert( (pTos->flags & MEM_Dyn)==0 );
                   1767:   pTos--;
                   1768:   if( c ) pc = pOp->p2-1;
                   1769:   break;
                   1770: }
                   1771: 
                   1772: /* Opcode: IsNull P1 P2 *
                   1773: **
                   1774: ** If any of the top abs(P1) values on the stack are NULL, then jump
                   1775: ** to P2.  Pop the stack P1 times if P1>0.   If P1<0 leave the stack
                   1776: ** unchanged.
                   1777: */
                   1778: case OP_IsNull: {
                   1779:   int i, cnt;
                   1780:   Mem *pTerm;
                   1781:   cnt = pOp->p1;
                   1782:   if( cnt<0 ) cnt = -cnt;
                   1783:   pTerm = &pTos[1-cnt];
                   1784:   assert( pTerm>=p->aStack );
                   1785:   for(i=0; i<cnt; i++, pTerm++){
                   1786:     if( pTerm->flags & MEM_Null ){
                   1787:       pc = pOp->p2-1;
                   1788:       break;
                   1789:     }
                   1790:   }
                   1791:   if( pOp->p1>0 ) popStack(&pTos, cnt);
                   1792:   break;
                   1793: }
                   1794: 
                   1795: /* Opcode: NotNull P1 P2 *
                   1796: **
                   1797: ** Jump to P2 if the top P1 values on the stack are all not NULL.  Pop the
                   1798: ** stack if P1 times if P1 is greater than zero.  If P1 is less than
                   1799: ** zero then leave the stack unchanged.
                   1800: */
                   1801: case OP_NotNull: {
                   1802:   int i, cnt;
                   1803:   cnt = pOp->p1;
                   1804:   if( cnt<0 ) cnt = -cnt;
                   1805:   assert( &pTos[1-cnt] >= p->aStack );
                   1806:   for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
                   1807:   if( i>=cnt ) pc = pOp->p2-1;
                   1808:   if( pOp->p1>0 ) popStack(&pTos, cnt);
                   1809:   break;
                   1810: }
                   1811: 
                   1812: /* Opcode: MakeRecord P1 P2 *
                   1813: **
                   1814: ** Convert the top P1 entries of the stack into a single entry
                   1815: ** suitable for use as a data record in a database table.  The
                   1816: ** details of the format are irrelavant as long as the OP_Column
                   1817: ** opcode can decode the record later.  Refer to source code
                   1818: ** comments for the details of the record format.
                   1819: **
                   1820: ** If P2 is true (non-zero) and one or more of the P1 entries
                   1821: ** that go into building the record is NULL, then add some extra
                   1822: ** bytes to the record to make it distinct for other entries created
                   1823: ** during the same run of the VDBE.  The extra bytes added are a
                   1824: ** counter that is reset with each run of the VDBE, so records
                   1825: ** created this way will not necessarily be distinct across runs.
                   1826: ** But they should be distinct for transient tables (created using
                   1827: ** OP_OpenTemp) which is what they are intended for.
                   1828: **
                   1829: ** (Later:) The P2==1 option was intended to make NULLs distinct
                   1830: ** for the UNION operator.  But I have since discovered that NULLs
                   1831: ** are indistinct for UNION.  So this option is never used.
                   1832: */
                   1833: case OP_MakeRecord: {
                   1834:   char *zNewRecord;
                   1835:   int nByte;
                   1836:   int nField;
                   1837:   int i, j;
                   1838:   int idxWidth;
                   1839:   u32 addr;
                   1840:   Mem *pRec;
                   1841:   int addUnique = 0;   /* True to cause bytes to be added to make the
                   1842:                        ** generated record distinct */
                   1843:   char zTemp[NBFS];    /* Temp space for small records */
                   1844: 
                   1845:   /* Assuming the record contains N fields, the record format looks
                   1846:   ** like this:
                   1847:   **
                   1848:   **   -------------------------------------------------------------------
                   1849:   **   | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
                   1850:   **   -------------------------------------------------------------------
                   1851:   **
                   1852:   ** All data fields are converted to strings before being stored and
                   1853:   ** are stored with their null terminators.  NULL entries omit the
                   1854:   ** null terminator.  Thus an empty string uses 1 byte and a NULL uses
                   1855:   ** zero bytes.  Data(0) is taken from the lowest element of the stack
                   1856:   ** and data(N-1) is the top of the stack.
                   1857:   **
                   1858:   ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
                   1859:   ** how big the total record is.  Idx(0) contains the offset to the start
                   1860:   ** of data(0).  Idx(k) contains the offset to the start of data(k).
                   1861:   ** Idx(N) contains the total number of bytes in the record.
                   1862:   */
                   1863:   nField = pOp->p1;
                   1864:   pRec = &pTos[1-nField];
                   1865:   assert( pRec>=p->aStack );
                   1866:   nByte = 0;
                   1867:   for(i=0; i<nField; i++, pRec++){
                   1868:     if( pRec->flags & MEM_Null ){
                   1869:       addUnique = pOp->p2;
                   1870:     }else{
                   1871:       Stringify(pRec);
                   1872:       nByte += pRec->n;
                   1873:     }
                   1874:   }
                   1875:   if( addUnique ) nByte += sizeof(p->uniqueCnt);
                   1876:   if( nByte + nField + 1 < 256 ){
                   1877:     idxWidth = 1;
                   1878:   }else if( nByte + 2*nField + 2 < 65536 ){
                   1879:     idxWidth = 2;
                   1880:   }else{
                   1881:     idxWidth = 3;
                   1882:   }
                   1883:   nByte += idxWidth*(nField + 1);
                   1884:   if( nByte>MAX_BYTES_PER_ROW ){
                   1885:     rc = SQLITE_TOOBIG;
                   1886:     goto abort_due_to_error;
                   1887:   }
                   1888:   if( nByte<=NBFS ){
                   1889:     zNewRecord = zTemp;
                   1890:   }else{
                   1891:     zNewRecord = sqliteMallocRaw( nByte );
                   1892:     if( zNewRecord==0 ) goto no_mem;
                   1893:   }
                   1894:   j = 0;
                   1895:   addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
                   1896:   for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
                   1897:     zNewRecord[j++] = addr & 0xff;
                   1898:     if( idxWidth>1 ){
                   1899:       zNewRecord[j++] = (addr>>8)&0xff;
                   1900:       if( idxWidth>2 ){
                   1901:         zNewRecord[j++] = (addr>>16)&0xff;
                   1902:       }
                   1903:     }
                   1904:     if( (pRec->flags & MEM_Null)==0 ){
                   1905:       addr += pRec->n;
                   1906:     }
                   1907:   }
                   1908:   zNewRecord[j++] = addr & 0xff;
                   1909:   if( idxWidth>1 ){
                   1910:     zNewRecord[j++] = (addr>>8)&0xff;
                   1911:     if( idxWidth>2 ){
                   1912:       zNewRecord[j++] = (addr>>16)&0xff;
                   1913:     }
                   1914:   }
                   1915:   if( addUnique ){
                   1916:     memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
                   1917:     p->uniqueCnt++;
                   1918:     j += sizeof(p->uniqueCnt);
                   1919:   }
                   1920:   for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
                   1921:     if( (pRec->flags & MEM_Null)==0 ){
                   1922:       memcpy(&zNewRecord[j], pRec->z, pRec->n);
                   1923:       j += pRec->n;
                   1924:     }
                   1925:   }
                   1926:   popStack(&pTos, nField);
                   1927:   pTos++;
                   1928:   pTos->n = nByte;
                   1929:   if( nByte<=NBFS ){
                   1930:     assert( zNewRecord==zTemp );
                   1931:     memcpy(pTos->zShort, zTemp, nByte);
                   1932:     pTos->z = pTos->zShort;
                   1933:     pTos->flags = MEM_Str | MEM_Short;
                   1934:   }else{
                   1935:     assert( zNewRecord!=zTemp );
                   1936:     pTos->z = zNewRecord;
                   1937:     pTos->flags = MEM_Str | MEM_Dyn;
                   1938:   }
                   1939:   break;
                   1940: }
                   1941: 
                   1942: /* Opcode: MakeKey P1 P2 P3
                   1943: **
                   1944: ** Convert the top P1 entries of the stack into a single entry suitable
                   1945: ** for use as the key in an index.  The top P1 records are
                   1946: ** converted to strings and merged.  The null-terminators 
                   1947: ** are retained and used as separators.
                   1948: ** The lowest entry in the stack is the first field and the top of the
                   1949: ** stack becomes the last.
                   1950: **
                   1951: ** If P2 is not zero, then the original entries remain on the stack
                   1952: ** and the new key is pushed on top.  If P2 is zero, the original
                   1953: ** data is popped off the stack first then the new key is pushed
                   1954: ** back in its place.
                   1955: **
                   1956: ** P3 is a string that is P1 characters long.  Each character is either
                   1957: ** an 'n' or a 't' to indicates if the argument should be intepreted as
                   1958: ** numeric or text type.  The first character of P3 corresponds to the
                   1959: ** lowest element on the stack.  If P3 is NULL then all arguments are
                   1960: ** assumed to be of the numeric type.
                   1961: **
                   1962: ** The type makes a difference in that text-type fields may not be 
                   1963: ** introduced by 'b' (as described in the next paragraph).  The
                   1964: ** first character of a text-type field must be either 'a' (if it is NULL)
                   1965: ** or 'c'.  Numeric fields will be introduced by 'b' if their content
                   1966: ** looks like a well-formed number.  Otherwise the 'a' or 'c' will be
                   1967: ** used.
                   1968: **
                   1969: ** The key is a concatenation of fields.  Each field is terminated by
                   1970: ** a single 0x00 character.  A NULL field is introduced by an 'a' and
                   1971: ** is followed immediately by its 0x00 terminator.  A numeric field is
                   1972: ** introduced by a single character 'b' and is followed by a sequence
                   1973: ** of characters that represent the number such that a comparison of
                   1974: ** the character string using memcpy() sorts the numbers in numerical
                   1975: ** order.  The character strings for numbers are generated using the
                   1976: ** sqliteRealToSortable() function.  A text field is introduced by a
                   1977: ** 'c' character and is followed by the exact text of the field.  The
                   1978: ** use of an 'a', 'b', or 'c' character at the beginning of each field
                   1979: ** guarantees that NULLs sort before numbers and that numbers sort
                   1980: ** before text.  0x00 characters do not occur except as separators
                   1981: ** between fields.
                   1982: **
                   1983: ** See also: MakeIdxKey, SortMakeKey
                   1984: */
                   1985: /* Opcode: MakeIdxKey P1 P2 P3
                   1986: **
                   1987: ** Convert the top P1 entries of the stack into a single entry suitable
                   1988: ** for use as the key in an index.  In addition, take one additional integer
                   1989: ** off of the stack, treat that integer as a four-byte record number, and
                   1990: ** append the four bytes to the key.  Thus a total of P1+1 entries are
                   1991: ** popped from the stack for this instruction and a single entry is pushed
                   1992: ** back.  The first P1 entries that are popped are strings and the last
                   1993: ** entry (the lowest on the stack) is an integer record number.
                   1994: **
                   1995: ** The converstion of the first P1 string entries occurs just like in
                   1996: ** MakeKey.  Each entry is separated from the others by a null.
                   1997: ** The entire concatenation is null-terminated.  The lowest entry
                   1998: ** in the stack is the first field and the top of the stack becomes the
                   1999: ** last.
                   2000: **
                   2001: ** If P2 is not zero and one or more of the P1 entries that go into the
                   2002: ** generated key is NULL, then jump to P2 after the new key has been
                   2003: ** pushed on the stack.  In other words, jump to P2 if the key is
                   2004: ** guaranteed to be unique.  This jump can be used to skip a subsequent
                   2005: ** uniqueness test.
                   2006: **
                   2007: ** P3 is a string that is P1 characters long.  Each character is either
                   2008: ** an 'n' or a 't' to indicates if the argument should be numeric or
                   2009: ** text.  The first character corresponds to the lowest element on the
                   2010: ** stack.  If P3 is null then all arguments are assumed to be numeric.
                   2011: **
                   2012: ** See also:  MakeKey, SortMakeKey
                   2013: */
                   2014: case OP_MakeIdxKey:
                   2015: case OP_MakeKey: {
                   2016:   char *zNewKey;
                   2017:   int nByte;
                   2018:   int nField;
                   2019:   int addRowid;
                   2020:   int i, j;
                   2021:   int containsNull = 0;
                   2022:   Mem *pRec;
                   2023:   char zTemp[NBFS];
                   2024: 
                   2025:   addRowid = pOp->opcode==OP_MakeIdxKey;
                   2026:   nField = pOp->p1;
                   2027:   pRec = &pTos[1-nField];
                   2028:   assert( pRec>=p->aStack );
                   2029:   nByte = 0;
                   2030:   for(j=0, i=0; i<nField; i++, j++, pRec++){
                   2031:     int flags = pRec->flags;
                   2032:     int len;
                   2033:     char *z;
                   2034:     if( flags & MEM_Null ){
                   2035:       nByte += 2;
                   2036:       containsNull = 1;
                   2037:     }else if( pOp->p3 && pOp->p3[j]=='t' ){
                   2038:       Stringify(pRec);
                   2039:       pRec->flags &= ~(MEM_Int|MEM_Real);
                   2040:       nByte += pRec->n+1;
                   2041:     }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
                   2042:       if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
                   2043:         pRec->r = pRec->i;
                   2044:       }else if( (flags & (MEM_Real|MEM_Int))==0 ){
                   2045:         pRec->r = sqliteAtoF(pRec->z, 0);
                   2046:       }
                   2047:       Release(pRec);
                   2048:       z = pRec->zShort;
                   2049:       sqliteRealToSortable(pRec->r, z);
                   2050:       len = strlen(z);
                   2051:       pRec->z = 0;
                   2052:       pRec->flags = MEM_Real;
                   2053:       pRec->n = len+1;
                   2054:       nByte += pRec->n+1;
                   2055:     }else{
                   2056:       nByte += pRec->n+1;
                   2057:     }
                   2058:   }
                   2059:   if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
                   2060:     rc = SQLITE_TOOBIG;
                   2061:     goto abort_due_to_error;
                   2062:   }
                   2063:   if( addRowid ) nByte += sizeof(u32);
                   2064:   if( nByte<=NBFS ){
                   2065:     zNewKey = zTemp;
                   2066:   }else{
                   2067:     zNewKey = sqliteMallocRaw( nByte );
                   2068:     if( zNewKey==0 ) goto no_mem;
                   2069:   }
                   2070:   j = 0;
                   2071:   pRec = &pTos[1-nField];
                   2072:   for(i=0; i<nField; i++, pRec++){
                   2073:     if( pRec->flags & MEM_Null ){
                   2074:       zNewKey[j++] = 'a';
                   2075:       zNewKey[j++] = 0;
                   2076:     }else if( pRec->flags==MEM_Real ){
                   2077:       zNewKey[j++] = 'b';
                   2078:       memcpy(&zNewKey[j], pRec->zShort, pRec->n);
                   2079:       j += pRec->n;
                   2080:     }else{
                   2081:       assert( pRec->flags & MEM_Str );
                   2082:       zNewKey[j++] = 'c';
                   2083:       memcpy(&zNewKey[j], pRec->z, pRec->n);
                   2084:       j += pRec->n;
                   2085:     }
                   2086:   }
                   2087:   if( addRowid ){
                   2088:     u32 iKey;
                   2089:     pRec = &pTos[-nField];
                   2090:     assert( pRec>=p->aStack );
                   2091:     Integerify(pRec);
                   2092:     iKey = intToKey(pRec->i);
                   2093:     memcpy(&zNewKey[j], &iKey, sizeof(u32));
                   2094:     popStack(&pTos, nField+1);
                   2095:     if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
                   2096:   }else{
                   2097:     if( pOp->p2==0 ) popStack(&pTos, nField);
                   2098:   }
                   2099:   pTos++;
                   2100:   pTos->n = nByte;
                   2101:   if( nByte<=NBFS ){
                   2102:     assert( zNewKey==zTemp );
                   2103:     pTos->z = pTos->zShort;
                   2104:     memcpy(pTos->zShort, zTemp, nByte);
                   2105:     pTos->flags = MEM_Str | MEM_Short;
                   2106:   }else{
                   2107:     pTos->z = zNewKey;
                   2108:     pTos->flags = MEM_Str | MEM_Dyn;
                   2109:   }
                   2110:   break;
                   2111: }
                   2112: 
                   2113: /* Opcode: IncrKey * * *
                   2114: **
                   2115: ** The top of the stack should contain an index key generated by
                   2116: ** The MakeKey opcode.  This routine increases the least significant
                   2117: ** byte of that key by one.  This is used so that the MoveTo opcode
                   2118: ** will move to the first entry greater than the key rather than to
                   2119: ** the key itself.
                   2120: */
                   2121: case OP_IncrKey: {
                   2122:   assert( pTos>=p->aStack );
                   2123:   /* The IncrKey opcode is only applied to keys generated by
                   2124:   ** MakeKey or MakeIdxKey and the results of those operands
                   2125:   ** are always dynamic strings or zShort[] strings.  So we
                   2126:   ** are always free to modify the string in place.
                   2127:   */
                   2128:   assert( pTos->flags & (MEM_Dyn|MEM_Short) );
                   2129:   pTos->z[pTos->n-1]++;
                   2130:   break;
                   2131: }
                   2132: 
                   2133: /* Opcode: Checkpoint P1 * *
                   2134: **
                   2135: ** Begin a checkpoint.  A checkpoint is the beginning of a operation that
                   2136: ** is part of a larger transaction but which might need to be rolled back
                   2137: ** itself without effecting the containing transaction.  A checkpoint will
                   2138: ** be automatically committed or rollback when the VDBE halts.
                   2139: **
                   2140: ** The checkpoint is begun on the database file with index P1.  The main
                   2141: ** database file has an index of 0 and the file used for temporary tables
                   2142: ** has an index of 1.
                   2143: */
                   2144: case OP_Checkpoint: {
                   2145:   int i = pOp->p1;
                   2146:   if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
                   2147:     rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
                   2148:     if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
                   2149:   }
                   2150:   break;
                   2151: }
                   2152: 
                   2153: /* Opcode: Transaction P1 * *
                   2154: **
                   2155: ** Begin a transaction.  The transaction ends when a Commit or Rollback
                   2156: ** opcode is encountered.  Depending on the ON CONFLICT setting, the
                   2157: ** transaction might also be rolled back if an error is encountered.
                   2158: **
                   2159: ** P1 is the index of the database file on which the transaction is
                   2160: ** started.  Index 0 is the main database file and index 1 is the
                   2161: ** file used for temporary tables.
                   2162: **
                   2163: ** A write lock is obtained on the database file when a transaction is
                   2164: ** started.  No other process can read or write the file while the
                   2165: ** transaction is underway.  Starting a transaction also creates a
                   2166: ** rollback journal.  A transaction must be started before any changes
                   2167: ** can be made to the database.
                   2168: */
                   2169: case OP_Transaction: {
                   2170:   int busy = 1;
                   2171:   int i = pOp->p1;
                   2172:   assert( i>=0 && i<db->nDb );
                   2173:   if( db->aDb[i].inTrans ) break;
                   2174:   while( db->aDb[i].pBt!=0 && busy ){
                   2175:     rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
                   2176:     switch( rc ){
                   2177:       case SQLITE_BUSY: {
                   2178:         if( db->xBusyCallback==0 ){
                   2179:           p->pc = pc;
                   2180:           p->undoTransOnError = 1;
                   2181:           p->rc = SQLITE_BUSY;
                   2182:           p->pTos = pTos;
                   2183:           return SQLITE_BUSY;
                   2184:         }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
                   2185:           sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
                   2186:           busy = 0;
                   2187:         }
                   2188:         break;
                   2189:       }
                   2190:       case SQLITE_READONLY: {
                   2191:         rc = SQLITE_OK;
                   2192:         /* Fall thru into the next case */
                   2193:       }
                   2194:       case SQLITE_OK: {
                   2195:         p->inTempTrans = 0;
                   2196:         busy = 0;
                   2197:         break;
                   2198:       }
                   2199:       default: {
                   2200:         goto abort_due_to_error;
                   2201:       }
                   2202:     }
                   2203:   }
                   2204:   db->aDb[i].inTrans = 1;
                   2205:   p->undoTransOnError = 1;
                   2206:   break;
                   2207: }
                   2208: 
                   2209: /* Opcode: Commit * * *
                   2210: **
                   2211: ** Cause all modifications to the database that have been made since the
                   2212: ** last Transaction to actually take effect.  No additional modifications
                   2213: ** are allowed until another transaction is started.  The Commit instruction
                   2214: ** deletes the journal file and releases the write lock on the database.
                   2215: ** A read lock continues to be held if there are still cursors open.
                   2216: */
                   2217: case OP_Commit: {
                   2218:   int i;
                   2219:   if( db->xCommitCallback!=0 ){
                   2220:     if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
                   2221:     if( db->xCommitCallback(db->pCommitArg)!=0 ){
                   2222:       rc = SQLITE_CONSTRAINT;
                   2223:     }
                   2224:     if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
                   2225:   }
                   2226:   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
                   2227:     if( db->aDb[i].inTrans ){
                   2228:       rc = sqliteBtreeCommit(db->aDb[i].pBt);
                   2229:       db->aDb[i].inTrans = 0;
                   2230:     }
                   2231:   }
                   2232:   if( rc==SQLITE_OK ){
                   2233:     sqliteCommitInternalChanges(db);
                   2234:   }else{
                   2235:     sqliteRollbackAll(db);
                   2236:   }
                   2237:   break;
                   2238: }
                   2239: 
                   2240: /* Opcode: Rollback P1 * *
                   2241: **
                   2242: ** Cause all modifications to the database that have been made since the
                   2243: ** last Transaction to be undone. The database is restored to its state
                   2244: ** before the Transaction opcode was executed.  No additional modifications
                   2245: ** are allowed until another transaction is started.
                   2246: **
                   2247: ** P1 is the index of the database file that is committed.  An index of 0
                   2248: ** is used for the main database and an index of 1 is used for the file used
                   2249: ** to hold temporary tables.
                   2250: **
                   2251: ** This instruction automatically closes all cursors and releases both
                   2252: ** the read and write locks on the indicated database.
                   2253: */
                   2254: case OP_Rollback: {
                   2255:   sqliteRollbackAll(db);
                   2256:   break;
                   2257: }
                   2258: 
                   2259: /* Opcode: ReadCookie P1 P2 *
                   2260: **
                   2261: ** Read cookie number P2 from database P1 and push it onto the stack.
                   2262: ** P2==0 is the schema version.  P2==1 is the database format.
                   2263: ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
                   2264: ** the main database file and P1==1 is the database file used to store
                   2265: ** temporary tables.
                   2266: **
                   2267: ** There must be a read-lock on the database (either a transaction
                   2268: ** must be started or there must be an open cursor) before
                   2269: ** executing this instruction.
                   2270: */
                   2271: case OP_ReadCookie: {
                   2272:   int aMeta[SQLITE_N_BTREE_META];
                   2273:   assert( pOp->p2<SQLITE_N_BTREE_META );
                   2274:   assert( pOp->p1>=0 && pOp->p1<db->nDb );
                   2275:   assert( db->aDb[pOp->p1].pBt!=0 );
                   2276:   rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
                   2277:   pTos++;
                   2278:   pTos->i = aMeta[1+pOp->p2];
                   2279:   pTos->flags = MEM_Int;
                   2280:   break;
                   2281: }
                   2282: 
                   2283: /* Opcode: SetCookie P1 P2 *
                   2284: **
                   2285: ** Write the top of the stack into cookie number P2 of database P1.
                   2286: ** P2==0 is the schema version.  P2==1 is the database format.
                   2287: ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
                   2288: ** the main database file and P1==1 is the database file used to store
                   2289: ** temporary tables.
                   2290: **
                   2291: ** A transaction must be started before executing this opcode.
                   2292: */
                   2293: case OP_SetCookie: {
                   2294:   int aMeta[SQLITE_N_BTREE_META];
                   2295:   assert( pOp->p2<SQLITE_N_BTREE_META );
                   2296:   assert( pOp->p1>=0 && pOp->p1<db->nDb );
                   2297:   assert( db->aDb[pOp->p1].pBt!=0 );
                   2298:   assert( pTos>=p->aStack );
                   2299:   Integerify(pTos)
                   2300:   rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
                   2301:   if( rc==SQLITE_OK ){
                   2302:     aMeta[1+pOp->p2] = pTos->i;
                   2303:     rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
                   2304:   }
                   2305:   Release(pTos);
                   2306:   pTos--;
                   2307:   break;
                   2308: }
                   2309: 
                   2310: /* Opcode: VerifyCookie P1 P2 *
                   2311: **
                   2312: ** Check the value of global database parameter number 0 (the
                   2313: ** schema version) and make sure it is equal to P2.  
                   2314: ** P1 is the database number which is 0 for the main database file
                   2315: ** and 1 for the file holding temporary tables and some higher number
                   2316: ** for auxiliary databases.
                   2317: **
                   2318: ** The cookie changes its value whenever the database schema changes.
                   2319: ** This operation is used to detect when that the cookie has changed
                   2320: ** and that the current process needs to reread the schema.
                   2321: **
                   2322: ** Either a transaction needs to have been started or an OP_Open needs
                   2323: ** to be executed (to establish a read lock) before this opcode is
                   2324: ** invoked.
                   2325: */
                   2326: case OP_VerifyCookie: {
                   2327:   int aMeta[SQLITE_N_BTREE_META];
                   2328:   assert( pOp->p1>=0 && pOp->p1<db->nDb );
                   2329:   rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
                   2330:   if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
                   2331:     sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
                   2332:     rc = SQLITE_SCHEMA;
                   2333:   }
                   2334:   break;
                   2335: }
                   2336: 
                   2337: /* Opcode: OpenRead P1 P2 P3
                   2338: **
                   2339: ** Open a read-only cursor for the database table whose root page is
                   2340: ** P2 in a database file.  The database file is determined by an 
                   2341: ** integer from the top of the stack.  0 means the main database and
                   2342: ** 1 means the database used for temporary tables.  Give the new 
                   2343: ** cursor an identifier of P1.  The P1 values need not be contiguous
                   2344: ** but all P1 values should be small integers.  It is an error for
                   2345: ** P1 to be negative.
                   2346: **
                   2347: ** If P2==0 then take the root page number from the next of the stack.
                   2348: **
                   2349: ** There will be a read lock on the database whenever there is an
                   2350: ** open cursor.  If the database was unlocked prior to this instruction
                   2351: ** then a read lock is acquired as part of this instruction.  A read
                   2352: ** lock allows other processes to read the database but prohibits
                   2353: ** any other process from modifying the database.  The read lock is
                   2354: ** released when all cursors are closed.  If this instruction attempts
                   2355: ** to get a read lock but fails, the script terminates with an
                   2356: ** SQLITE_BUSY error code.
                   2357: **
                   2358: ** The P3 value is the name of the table or index being opened.
                   2359: ** The P3 value is not actually used by this opcode and may be
                   2360: ** omitted.  But the code generator usually inserts the index or
                   2361: ** table name into P3 to make the code easier to read.
                   2362: **
                   2363: ** See also OpenWrite.
                   2364: */
                   2365: /* Opcode: OpenWrite P1 P2 P3
                   2366: **
                   2367: ** Open a read/write cursor named P1 on the table or index whose root
                   2368: ** page is P2.  If P2==0 then take the root page number from the stack.
                   2369: **
                   2370: ** The P3 value is the name of the table or index being opened.
                   2371: ** The P3 value is not actually used by this opcode and may be
                   2372: ** omitted.  But the code generator usually inserts the index or
                   2373: ** table name into P3 to make the code easier to read.
                   2374: **
                   2375: ** This instruction works just like OpenRead except that it opens the cursor
                   2376: ** in read/write mode.  For a given table, there can be one or more read-only
                   2377: ** cursors or a single read/write cursor but not both.
                   2378: **
                   2379: ** See also OpenRead.
                   2380: */
                   2381: case OP_OpenRead:
                   2382: case OP_OpenWrite: {
                   2383:   int busy = 0;
                   2384:   int i = pOp->p1;
                   2385:   int p2 = pOp->p2;
                   2386:   int wrFlag;
                   2387:   Btree *pX;
                   2388:   int iDb;
                   2389:   
                   2390:   assert( pTos>=p->aStack );
                   2391:   Integerify(pTos);
                   2392:   iDb = pTos->i;
                   2393:   pTos--;
                   2394:   assert( iDb>=0 && iDb<db->nDb );
                   2395:   pX = db->aDb[iDb].pBt;
                   2396:   assert( pX!=0 );
                   2397:   wrFlag = pOp->opcode==OP_OpenWrite;
                   2398:   if( p2<=0 ){
                   2399:     assert( pTos>=p->aStack );
                   2400:     Integerify(pTos);
                   2401:     p2 = pTos->i;
                   2402:     pTos--;
                   2403:     if( p2<2 ){
                   2404:       sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
                   2405:       rc = SQLITE_INTERNAL;
                   2406:       break;
                   2407:     }
                   2408:   }
                   2409:   assert( i>=0 );
                   2410:   if( expandCursorArraySize(p, i) ) goto no_mem;
                   2411:   sqliteVdbeCleanupCursor(&p->aCsr[i]);
                   2412:   memset(&p->aCsr[i], 0, sizeof(Cursor));
                   2413:   p->aCsr[i].nullRow = 1;
                   2414:   if( pX==0 ) break;
                   2415:   do{
                   2416:     rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
                   2417:     switch( rc ){
                   2418:       case SQLITE_BUSY: {
                   2419:         if( db->xBusyCallback==0 ){
                   2420:           p->pc = pc;
                   2421:           p->rc = SQLITE_BUSY;
                   2422:           p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
                   2423:           return SQLITE_BUSY;
                   2424:         }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
                   2425:           sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
                   2426:           busy = 0;
                   2427:         }
                   2428:         break;
                   2429:       }
                   2430:       case SQLITE_OK: {
                   2431:         busy = 0;
                   2432:         break;
                   2433:       }
                   2434:       default: {
                   2435:         goto abort_due_to_error;
                   2436:       }
                   2437:     }
                   2438:   }while( busy );
                   2439:   break;
                   2440: }
                   2441: 
                   2442: /* Opcode: OpenTemp P1 P2 *
                   2443: **
                   2444: ** Open a new cursor to a transient table.
                   2445: ** The transient cursor is always opened read/write even if 
                   2446: ** the main database is read-only.  The transient table is deleted
                   2447: ** automatically when the cursor is closed.
                   2448: **
                   2449: ** The cursor points to a BTree table if P2==0 and to a BTree index
                   2450: ** if P2==1.  A BTree table must have an integer key and can have arbitrary
                   2451: ** data.  A BTree index has no data but can have an arbitrary key.
                   2452: **
                   2453: ** This opcode is used for tables that exist for the duration of a single
                   2454: ** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
                   2455: ** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
                   2456: ** context of this opcode means for the duration of a single SQL statement
                   2457: ** whereas "Temporary" in the context of CREATE TABLE means for the duration
                   2458: ** of the connection to the database.  Same word; different meanings.
                   2459: */
                   2460: case OP_OpenTemp: {
                   2461:   int i = pOp->p1;
                   2462:   Cursor *pCx;
                   2463:   assert( i>=0 );
                   2464:   if( expandCursorArraySize(p, i) ) goto no_mem;
                   2465:   pCx = &p->aCsr[i];
                   2466:   sqliteVdbeCleanupCursor(pCx);
                   2467:   memset(pCx, 0, sizeof(*pCx));
                   2468:   pCx->nullRow = 1;
                   2469:   rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
                   2470: 
                   2471:   if( rc==SQLITE_OK ){
                   2472:     rc = sqliteBtreeBeginTrans(pCx->pBt);
                   2473:   }
                   2474:   if( rc==SQLITE_OK ){
                   2475:     if( pOp->p2 ){
                   2476:       int pgno;
                   2477:       rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
                   2478:       if( rc==SQLITE_OK ){
                   2479:         rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
                   2480:       }
                   2481:     }else{
                   2482:       rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
                   2483:     }
                   2484:   }
                   2485:   break;
                   2486: }
                   2487: 
                   2488: /* Opcode: OpenPseudo P1 * *
                   2489: **
                   2490: ** Open a new cursor that points to a fake table that contains a single
                   2491: ** row of data.  Any attempt to write a second row of data causes the
                   2492: ** first row to be deleted.  All data is deleted when the cursor is
                   2493: ** closed.
                   2494: **
                   2495: ** A pseudo-table created by this opcode is useful for holding the
                   2496: ** NEW or OLD tables in a trigger.
                   2497: */
                   2498: case OP_OpenPseudo: {
                   2499:   int i = pOp->p1;
                   2500:   Cursor *pCx;
                   2501:   assert( i>=0 );
                   2502:   if( expandCursorArraySize(p, i) ) goto no_mem;
                   2503:   pCx = &p->aCsr[i];
                   2504:   sqliteVdbeCleanupCursor(pCx);
                   2505:   memset(pCx, 0, sizeof(*pCx));
                   2506:   pCx->nullRow = 1;
                   2507:   pCx->pseudoTable = 1;
                   2508:   break;
                   2509: }
                   2510: 
                   2511: /* Opcode: Close P1 * *
                   2512: **
                   2513: ** Close a cursor previously opened as P1.  If P1 is not
                   2514: ** currently open, this instruction is a no-op.
                   2515: */
                   2516: case OP_Close: {
                   2517:   int i = pOp->p1;
                   2518:   if( i>=0 && i<p->nCursor ){
                   2519:     sqliteVdbeCleanupCursor(&p->aCsr[i]);
                   2520:   }
                   2521:   break;
                   2522: }
                   2523: 
                   2524: /* Opcode: MoveTo P1 P2 *
                   2525: **
                   2526: ** Pop the top of the stack and use its value as a key.  Reposition
                   2527: ** cursor P1 so that it points to an entry with a matching key.  If
                   2528: ** the table contains no record with a matching key, then the cursor
                   2529: ** is left pointing at the first record that is greater than the key.
                   2530: ** If there are no records greater than the key and P2 is not zero,
                   2531: ** then an immediate jump to P2 is made.
                   2532: **
                   2533: ** See also: Found, NotFound, Distinct, MoveLt
                   2534: */
                   2535: /* Opcode: MoveLt P1 P2 *
                   2536: **
                   2537: ** Pop the top of the stack and use its value as a key.  Reposition
                   2538: ** cursor P1 so that it points to the entry with the largest key that is
                   2539: ** less than the key popped from the stack.
                   2540: ** If there are no records less than than the key and P2
                   2541: ** is not zero then an immediate jump to P2 is made.
                   2542: **
                   2543: ** See also: MoveTo
                   2544: */
                   2545: case OP_MoveLt:
                   2546: case OP_MoveTo: {
                   2547:   int i = pOp->p1;
                   2548:   Cursor *pC;
                   2549: 
                   2550:   assert( pTos>=p->aStack );
                   2551:   assert( i>=0 && i<p->nCursor );
                   2552:   pC = &p->aCsr[i];
                   2553:   if( pC->pCursor!=0 ){
                   2554:     int res, oc;
                   2555:     pC->nullRow = 0;
                   2556:     if( pTos->flags & MEM_Int ){
                   2557:       int iKey = intToKey(pTos->i);
                   2558:       if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
                   2559:         pC->movetoTarget = iKey;
                   2560:         pC->deferredMoveto = 1;
                   2561:         Release(pTos);
                   2562:         pTos--;
                   2563:         break;
                   2564:       }
                   2565:       sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
                   2566:       pC->lastRecno = pTos->i;
                   2567:       pC->recnoIsValid = res==0;
                   2568:     }else{
                   2569:       Stringify(pTos);
                   2570:       sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
                   2571:       pC->recnoIsValid = 0;
                   2572:     }
                   2573:     pC->deferredMoveto = 0;
                   2574:     sqlite_search_count++;
                   2575:     oc = pOp->opcode;
                   2576:     if( oc==OP_MoveTo && res<0 ){
                   2577:       sqliteBtreeNext(pC->pCursor, &res);
                   2578:       pC->recnoIsValid = 0;
                   2579:       if( res && pOp->p2>0 ){
                   2580:         pc = pOp->p2 - 1;
                   2581:       }
                   2582:     }else if( oc==OP_MoveLt ){
                   2583:       if( res>=0 ){
                   2584:         sqliteBtreePrevious(pC->pCursor, &res);
                   2585:         pC->recnoIsValid = 0;
                   2586:       }else{
                   2587:         /* res might be negative because the table is empty.  Check to
                   2588:         ** see if this is the case.
                   2589:         */
                   2590:         int keysize;
                   2591:         res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
                   2592:       }
                   2593:       if( res && pOp->p2>0 ){
                   2594:         pc = pOp->p2 - 1;
                   2595:       }
                   2596:     }
                   2597:   }
                   2598:   Release(pTos);
                   2599:   pTos--;
                   2600:   break;
                   2601: }
                   2602: 
                   2603: /* Opcode: Distinct P1 P2 *
                   2604: **
                   2605: ** Use the top of the stack as a string key.  If a record with that key does
                   2606: ** not exist in the table of cursor P1, then jump to P2.  If the record
                   2607: ** does already exist, then fall thru.  The cursor is left pointing
                   2608: ** at the record if it exists. The key is not popped from the stack.
                   2609: **
                   2610: ** This operation is similar to NotFound except that this operation
                   2611: ** does not pop the key from the stack.
                   2612: **
                   2613: ** See also: Found, NotFound, MoveTo, IsUnique, NotExists
                   2614: */
                   2615: /* Opcode: Found P1 P2 *
                   2616: **
                   2617: ** Use the top of the stack as a string key.  If a record with that key
                   2618: ** does exist in table of P1, then jump to P2.  If the record
                   2619: ** does not exist, then fall thru.  The cursor is left pointing
                   2620: ** to the record if it exists.  The key is popped from the stack.
                   2621: **
                   2622: ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
                   2623: */
                   2624: /* Opcode: NotFound P1 P2 *
                   2625: **
                   2626: ** Use the top of the stack as a string key.  If a record with that key
                   2627: ** does not exist in table of P1, then jump to P2.  If the record
                   2628: ** does exist, then fall thru.  The cursor is left pointing to the
                   2629: ** record if it exists.  The key is popped from the stack.
                   2630: **
                   2631: ** The difference between this operation and Distinct is that
                   2632: ** Distinct does not pop the key from the stack.
                   2633: **
                   2634: ** See also: Distinct, Found, MoveTo, NotExists, IsUnique
                   2635: */
                   2636: case OP_Distinct:
                   2637: case OP_NotFound:
                   2638: case OP_Found: {
                   2639:   int i = pOp->p1;
                   2640:   int alreadyExists = 0;
                   2641:   Cursor *pC;
                   2642:   assert( pTos>=p->aStack );
                   2643:   assert( i>=0 && i<p->nCursor );
                   2644:   if( (pC = &p->aCsr[i])->pCursor!=0 ){
                   2645:     int res, rx;
                   2646:     Stringify(pTos);
                   2647:     rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
                   2648:     alreadyExists = rx==SQLITE_OK && res==0;
                   2649:     pC->deferredMoveto = 0;
                   2650:   }
                   2651:   if( pOp->opcode==OP_Found ){
                   2652:     if( alreadyExists ) pc = pOp->p2 - 1;
                   2653:   }else{
                   2654:     if( !alreadyExists ) pc = pOp->p2 - 1;
                   2655:   }
                   2656:   if( pOp->opcode!=OP_Distinct ){
                   2657:     Release(pTos);
                   2658:     pTos--;
                   2659:   }
                   2660:   break;
                   2661: }
                   2662: 
                   2663: /* Opcode: IsUnique P1 P2 *
                   2664: **
                   2665: ** The top of the stack is an integer record number.  Call this
                   2666: ** record number R.  The next on the stack is an index key created
                   2667: ** using MakeIdxKey.  Call it K.  This instruction pops R from the
                   2668: ** stack but it leaves K unchanged.
                   2669: **
                   2670: ** P1 is an index.  So all but the last four bytes of K are an
                   2671: ** index string.  The last four bytes of K are a record number.
                   2672: **
                   2673: ** This instruction asks if there is an entry in P1 where the
                   2674: ** index string matches K but the record number is different
                   2675: ** from R.  If there is no such entry, then there is an immediate
                   2676: ** jump to P2.  If any entry does exist where the index string
                   2677: ** matches K but the record number is not R, then the record
                   2678: ** number for that entry is pushed onto the stack and control
                   2679: ** falls through to the next instruction.
                   2680: **
                   2681: ** See also: Distinct, NotFound, NotExists, Found
                   2682: */
                   2683: case OP_IsUnique: {
                   2684:   int i = pOp->p1;
                   2685:   Mem *pNos = &pTos[-1];
                   2686:   BtCursor *pCrsr;
                   2687:   int R;
                   2688: 
                   2689:   /* Pop the value R off the top of the stack
                   2690:   */
                   2691:   assert( pNos>=p->aStack );
                   2692:   Integerify(pTos);
                   2693:   R = pTos->i;
                   2694:   pTos--;
                   2695:   assert( i>=0 && i<=p->nCursor );
                   2696:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   2697:     int res, rc;
                   2698:     int v;         /* The record number on the P1 entry that matches K */
                   2699:     char *zKey;    /* The value of K */
                   2700:     int nKey;      /* Number of bytes in K */
                   2701: 
                   2702:     /* Make sure K is a string and make zKey point to K
                   2703:     */
                   2704:     Stringify(pNos);
                   2705:     zKey = pNos->z;
                   2706:     nKey = pNos->n;
                   2707:     assert( nKey >= 4 );
                   2708: 
                   2709:     /* Search for an entry in P1 where all but the last four bytes match K.
                   2710:     ** If there is no such entry, jump immediately to P2.
                   2711:     */
                   2712:     assert( p->aCsr[i].deferredMoveto==0 );
                   2713:     rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
                   2714:     if( rc!=SQLITE_OK ) goto abort_due_to_error;
                   2715:     if( res<0 ){
                   2716:       rc = sqliteBtreeNext(pCrsr, &res);
                   2717:       if( res ){
                   2718:         pc = pOp->p2 - 1;
                   2719:         break;
                   2720:       }
                   2721:     }
                   2722:     rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
                   2723:     if( rc!=SQLITE_OK ) goto abort_due_to_error;
                   2724:     if( res>0 ){
                   2725:       pc = pOp->p2 - 1;
                   2726:       break;
                   2727:     }
                   2728: 
                   2729:     /* At this point, pCrsr is pointing to an entry in P1 where all but
                   2730:     ** the last for bytes of the key match K.  Check to see if the last
                   2731:     ** four bytes of the key are different from R.  If the last four
                   2732:     ** bytes equal R then jump immediately to P2.
                   2733:     */
                   2734:     sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
                   2735:     v = keyToInt(v);
                   2736:     if( v==R ){
                   2737:       pc = pOp->p2 - 1;
                   2738:       break;
                   2739:     }
                   2740: 
                   2741:     /* The last four bytes of the key are different from R.  Convert the
                   2742:     ** last four bytes of the key into an integer and push it onto the
                   2743:     ** stack.  (These bytes are the record number of an entry that
                   2744:     ** violates a UNIQUE constraint.)
                   2745:     */
                   2746:     pTos++;
                   2747:     pTos->i = v;
                   2748:     pTos->flags = MEM_Int;
                   2749:   }
                   2750:   break;
                   2751: }
                   2752: 
                   2753: /* Opcode: NotExists P1 P2 *
                   2754: **
                   2755: ** Use the top of the stack as a integer key.  If a record with that key
                   2756: ** does not exist in table of P1, then jump to P2.  If the record
                   2757: ** does exist, then fall thru.  The cursor is left pointing to the
                   2758: ** record if it exists.  The integer key is popped from the stack.
                   2759: **
                   2760: ** The difference between this operation and NotFound is that this
                   2761: ** operation assumes the key is an integer and NotFound assumes it
                   2762: ** is a string.
                   2763: **
                   2764: ** See also: Distinct, Found, MoveTo, NotFound, IsUnique
                   2765: */
                   2766: case OP_NotExists: {
                   2767:   int i = pOp->p1;
                   2768:   BtCursor *pCrsr;
                   2769:   assert( pTos>=p->aStack );
                   2770:   assert( i>=0 && i<p->nCursor );
                   2771:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   2772:     int res, rx, iKey;
                   2773:     assert( pTos->flags & MEM_Int );
                   2774:     iKey = intToKey(pTos->i);
                   2775:     rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
                   2776:     p->aCsr[i].lastRecno = pTos->i;
                   2777:     p->aCsr[i].recnoIsValid = res==0;
                   2778:     p->aCsr[i].nullRow = 0;
                   2779:     if( rx!=SQLITE_OK || res!=0 ){
                   2780:       pc = pOp->p2 - 1;
                   2781:       p->aCsr[i].recnoIsValid = 0;
                   2782:     }
                   2783:   }
                   2784:   Release(pTos);
                   2785:   pTos--;
                   2786:   break;
                   2787: }
                   2788: 
                   2789: /* Opcode: NewRecno P1 * *
                   2790: **
                   2791: ** Get a new integer record number used as the key to a table.
                   2792: ** The record number is not previously used as a key in the database
                   2793: ** table that cursor P1 points to.  The new record number is pushed 
                   2794: ** onto the stack.
                   2795: */
                   2796: case OP_NewRecno: {
                   2797:   int i = pOp->p1;
                   2798:   int v = 0;
                   2799:   Cursor *pC;
                   2800:   assert( i>=0 && i<p->nCursor );
                   2801:   if( (pC = &p->aCsr[i])->pCursor==0 ){
                   2802:     v = 0;
                   2803:   }else{
                   2804:     /* The next rowid or record number (different terms for the same
                   2805:     ** thing) is obtained in a two-step algorithm.
                   2806:     **
                   2807:     ** First we attempt to find the largest existing rowid and add one
                   2808:     ** to that.  But if the largest existing rowid is already the maximum
                   2809:     ** positive integer, we have to fall through to the second
                   2810:     ** probabilistic algorithm
                   2811:     **
                   2812:     ** The second algorithm is to select a rowid at random and see if
                   2813:     ** it already exists in the table.  If it does not exist, we have
                   2814:     ** succeeded.  If the random rowid does exist, we select a new one
                   2815:     ** and try again, up to 1000 times.
                   2816:     **
                   2817:     ** For a table with less than 2 billion entries, the probability
                   2818:     ** of not finding a unused rowid is about 1.0e-300.  This is a 
                   2819:     ** non-zero probability, but it is still vanishingly small and should
                   2820:     ** never cause a problem.  You are much, much more likely to have a
                   2821:     ** hardware failure than for this algorithm to fail.
                   2822:     **
                   2823:     ** The analysis in the previous paragraph assumes that you have a good
                   2824:     ** source of random numbers.  Is a library function like lrand48()
                   2825:     ** good enough?  Maybe. Maybe not. It's hard to know whether there
                   2826:     ** might be subtle bugs is some implementations of lrand48() that
                   2827:     ** could cause problems. To avoid uncertainty, SQLite uses its own 
                   2828:     ** random number generator based on the RC4 algorithm.
                   2829:     **
                   2830:     ** To promote locality of reference for repetitive inserts, the
                   2831:     ** first few attempts at chosing a random rowid pick values just a little
                   2832:     ** larger than the previous rowid.  This has been shown experimentally
                   2833:     ** to double the speed of the COPY operation.
                   2834:     */
                   2835:     int res, rx, cnt, x;
                   2836:     cnt = 0;
                   2837:     if( !pC->useRandomRowid ){
                   2838:       if( pC->nextRowidValid ){
                   2839:         v = pC->nextRowid;
                   2840:       }else{
                   2841:         rx = sqliteBtreeLast(pC->pCursor, &res);
                   2842:         if( res ){
                   2843:           v = 1;
                   2844:         }else{
                   2845:           sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
                   2846:           v = keyToInt(v);
                   2847:           if( v==0x7fffffff ){
                   2848:             pC->useRandomRowid = 1;
                   2849:           }else{
                   2850:             v++;
                   2851:           }
                   2852:         }
                   2853:       }
                   2854:       if( v<0x7fffffff ){
                   2855:         pC->nextRowidValid = 1;
                   2856:         pC->nextRowid = v+1;
                   2857:       }else{
                   2858:         pC->nextRowidValid = 0;
                   2859:       }
                   2860:     }
                   2861:     if( pC->useRandomRowid ){
                   2862:       v = db->priorNewRowid;
                   2863:       cnt = 0;
                   2864:       do{
                   2865:         if( v==0 || cnt>2 ){
                   2866:           sqliteRandomness(sizeof(v), &v);
                   2867:           if( cnt<5 ) v &= 0xffffff;
                   2868:         }else{
                   2869:           unsigned char r;
                   2870:           sqliteRandomness(1, &r);
                   2871:           v += r + 1;
                   2872:         }
                   2873:         if( v==0 ) continue;
                   2874:         x = intToKey(v);
                   2875:         rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
                   2876:         cnt++;
                   2877:       }while( cnt<1000 && rx==SQLITE_OK && res==0 );
                   2878:       db->priorNewRowid = v;
                   2879:       if( rx==SQLITE_OK && res==0 ){
                   2880:         rc = SQLITE_FULL;
                   2881:         goto abort_due_to_error;
                   2882:       }
                   2883:     }
                   2884:     pC->recnoIsValid = 0;
                   2885:     pC->deferredMoveto = 0;
                   2886:   }
                   2887:   pTos++;
                   2888:   pTos->i = v;
                   2889:   pTos->flags = MEM_Int;
                   2890:   break;
                   2891: }
                   2892: 
                   2893: /* Opcode: PutIntKey P1 P2 *
                   2894: **
                   2895: ** Write an entry into the table of cursor P1.  A new entry is
                   2896: ** created if it doesn't already exist or the data for an existing
                   2897: ** entry is overwritten.  The data is the value on the top of the
                   2898: ** stack.  The key is the next value down on the stack.  The key must
                   2899: ** be an integer.  The stack is popped twice by this instruction.
                   2900: **
                   2901: ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
                   2902: ** incremented (otherwise not).  If the OPFLAG_CSCHANGE flag is set,
                   2903: ** then the current statement change count is incremented (otherwise not).
                   2904: ** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
                   2905: ** stored for subsequent return by the sqlite_last_insert_rowid() function
                   2906: ** (otherwise it's unmodified).
                   2907: */
                   2908: /* Opcode: PutStrKey P1 * *
                   2909: **
                   2910: ** Write an entry into the table of cursor P1.  A new entry is
                   2911: ** created if it doesn't already exist or the data for an existing
                   2912: ** entry is overwritten.  The data is the value on the top of the
                   2913: ** stack.  The key is the next value down on the stack.  The key must
                   2914: ** be a string.  The stack is popped twice by this instruction.
                   2915: **
                   2916: ** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
                   2917: */
                   2918: case OP_PutIntKey:
                   2919: case OP_PutStrKey: {
                   2920:   Mem *pNos = &pTos[-1];
                   2921:   int i = pOp->p1;
                   2922:   Cursor *pC;
                   2923:   assert( pNos>=p->aStack );
                   2924:   assert( i>=0 && i<p->nCursor );
                   2925:   if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
                   2926:     char *zKey;
                   2927:     int nKey, iKey;
                   2928:     if( pOp->opcode==OP_PutStrKey ){
                   2929:       Stringify(pNos);
                   2930:       nKey = pNos->n;
                   2931:       zKey = pNos->z;
                   2932:     }else{
                   2933:       assert( pNos->flags & MEM_Int );
                   2934:       nKey = sizeof(int);
                   2935:       iKey = intToKey(pNos->i);
                   2936:       zKey = (char*)&iKey;
                   2937:       if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
                   2938:       if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
                   2939:       if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
                   2940:       if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
                   2941:         pC->nextRowidValid = 0;
                   2942:       }
                   2943:     }
                   2944:     if( pTos->flags & MEM_Null ){
                   2945:       pTos->z = 0;
                   2946:       pTos->n = 0;
                   2947:     }else{
                   2948:       assert( pTos->flags & MEM_Str );
                   2949:     }
                   2950:     if( pC->pseudoTable ){
                   2951:       /* PutStrKey does not work for pseudo-tables.
                   2952:       ** The following assert makes sure we are not trying to use
                   2953:       ** PutStrKey on a pseudo-table
                   2954:       */
                   2955:       assert( pOp->opcode==OP_PutIntKey );
                   2956:       sqliteFree(pC->pData);
                   2957:       pC->iKey = iKey;
                   2958:       pC->nData = pTos->n;
                   2959:       if( pTos->flags & MEM_Dyn ){
                   2960:         pC->pData = pTos->z;
                   2961:         pTos->flags = MEM_Null;
                   2962:       }else{
                   2963:         pC->pData = sqliteMallocRaw( pC->nData );
                   2964:         if( pC->pData ){
                   2965:           memcpy(pC->pData, pTos->z, pC->nData);
                   2966:         }
                   2967:       }
                   2968:       pC->nullRow = 0;
                   2969:     }else{
                   2970:       rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
                   2971:     }
                   2972:     pC->recnoIsValid = 0;
                   2973:     pC->deferredMoveto = 0;
                   2974:   }
                   2975:   popStack(&pTos, 2);
                   2976:   break;
                   2977: }
                   2978: 
                   2979: /* Opcode: Delete P1 P2 *
                   2980: **
                   2981: ** Delete the record at which the P1 cursor is currently pointing.
                   2982: **
                   2983: ** The cursor will be left pointing at either the next or the previous
                   2984: ** record in the table. If it is left pointing at the next record, then
                   2985: ** the next Next instruction will be a no-op.  Hence it is OK to delete
                   2986: ** a record from within an Next loop.
                   2987: **
                   2988: ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
                   2989: ** incremented (otherwise not).  If OPFLAG_CSCHANGE flag is set,
                   2990: ** then the current statement change count is incremented (otherwise not).
                   2991: **
                   2992: ** If P1 is a pseudo-table, then this instruction is a no-op.
                   2993: */
                   2994: case OP_Delete: {
                   2995:   int i = pOp->p1;
                   2996:   Cursor *pC;
                   2997:   assert( i>=0 && i<p->nCursor );
                   2998:   pC = &p->aCsr[i];
                   2999:   if( pC->pCursor!=0 ){
                   3000:     sqliteVdbeCursorMoveto(pC);
                   3001:     rc = sqliteBtreeDelete(pC->pCursor);
                   3002:     pC->nextRowidValid = 0;
                   3003:   }
                   3004:   if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
                   3005:   if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
                   3006:   break;
                   3007: }
                   3008: 
                   3009: /* Opcode: SetCounts * * *
                   3010: **
                   3011: ** Called at end of statement.  Updates lsChange (last statement change count)
                   3012: ** and resets csChange (current statement change count) to 0.
                   3013: */
                   3014: case OP_SetCounts: {
                   3015:   db->lsChange=db->csChange;
                   3016:   db->csChange=0;
                   3017:   break;
                   3018: }
                   3019: 
                   3020: /* Opcode: KeyAsData P1 P2 *
                   3021: **
                   3022: ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
                   3023: ** off (if P2==0).  In key-as-data mode, the OP_Column opcode pulls
                   3024: ** data off of the key rather than the data.  This is used for
                   3025: ** processing compound selects.
                   3026: */
                   3027: case OP_KeyAsData: {
                   3028:   int i = pOp->p1;
                   3029:   assert( i>=0 && i<p->nCursor );
                   3030:   p->aCsr[i].keyAsData = pOp->p2;
                   3031:   break;
                   3032: }
                   3033: 
                   3034: /* Opcode: RowData P1 * *
                   3035: **
                   3036: ** Push onto the stack the complete row data for cursor P1.
                   3037: ** There is no interpretation of the data.  It is just copied
                   3038: ** onto the stack exactly as it is found in the database file.
                   3039: **
                   3040: ** If the cursor is not pointing to a valid row, a NULL is pushed
                   3041: ** onto the stack.
                   3042: */
                   3043: /* Opcode: RowKey P1 * *
                   3044: **
                   3045: ** Push onto the stack the complete row key for cursor P1.
                   3046: ** There is no interpretation of the key.  It is just copied
                   3047: ** onto the stack exactly as it is found in the database file.
                   3048: **
                   3049: ** If the cursor is not pointing to a valid row, a NULL is pushed
                   3050: ** onto the stack.
                   3051: */
                   3052: case OP_RowKey:
                   3053: case OP_RowData: {
                   3054:   int i = pOp->p1;
                   3055:   Cursor *pC;
                   3056:   int n;
                   3057: 
                   3058:   pTos++;
                   3059:   assert( i>=0 && i<p->nCursor );
                   3060:   pC = &p->aCsr[i];
                   3061:   if( pC->nullRow ){
                   3062:     pTos->flags = MEM_Null;
                   3063:   }else if( pC->pCursor!=0 ){
                   3064:     BtCursor *pCrsr = pC->pCursor;
                   3065:     sqliteVdbeCursorMoveto(pC);
                   3066:     if( pC->nullRow ){
                   3067:       pTos->flags = MEM_Null;
                   3068:       break;
                   3069:     }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
                   3070:       sqliteBtreeKeySize(pCrsr, &n);
                   3071:     }else{
                   3072:       sqliteBtreeDataSize(pCrsr, &n);
                   3073:     }
                   3074:     pTos->n = n;
                   3075:     if( n<=NBFS ){
                   3076:       pTos->flags = MEM_Str | MEM_Short;
                   3077:       pTos->z = pTos->zShort;
                   3078:     }else{
                   3079:       char *z = sqliteMallocRaw( n );
                   3080:       if( z==0 ) goto no_mem;
                   3081:       pTos->flags = MEM_Str | MEM_Dyn;
                   3082:       pTos->z = z;
                   3083:     }
                   3084:     if( pC->keyAsData || pOp->opcode==OP_RowKey ){
                   3085:       sqliteBtreeKey(pCrsr, 0, n, pTos->z);
                   3086:     }else{
                   3087:       sqliteBtreeData(pCrsr, 0, n, pTos->z);
                   3088:     }
                   3089:   }else if( pC->pseudoTable ){
                   3090:     pTos->n = pC->nData;
                   3091:     pTos->z = pC->pData;
                   3092:     pTos->flags = MEM_Str|MEM_Ephem;
                   3093:   }else{
                   3094:     pTos->flags = MEM_Null;
                   3095:   }
                   3096:   break;
                   3097: }
                   3098: 
                   3099: /* Opcode: Column P1 P2 *
                   3100: **
                   3101: ** Interpret the data that cursor P1 points to as
                   3102: ** a structure built using the MakeRecord instruction.
                   3103: ** (See the MakeRecord opcode for additional information about
                   3104: ** the format of the data.)
                   3105: ** Push onto the stack the value of the P2-th column contained
                   3106: ** in the data.
                   3107: **
                   3108: ** If the KeyAsData opcode has previously executed on this cursor,
                   3109: ** then the field might be extracted from the key rather than the
                   3110: ** data.
                   3111: **
                   3112: ** If P1 is negative, then the record is stored on the stack rather
                   3113: ** than in a table.  For P1==-1, the top of the stack is used.
                   3114: ** For P1==-2, the next on the stack is used.  And so forth.  The
                   3115: ** value pushed is always just a pointer into the record which is
                   3116: ** stored further down on the stack.  The column value is not copied.
                   3117: */
                   3118: case OP_Column: {
                   3119:   int amt, offset, end, payloadSize;
                   3120:   int i = pOp->p1;
                   3121:   int p2 = pOp->p2;
                   3122:   Cursor *pC;
                   3123:   char *zRec;
                   3124:   BtCursor *pCrsr;
                   3125:   int idxWidth;
                   3126:   unsigned char aHdr[10];
                   3127: 
                   3128:   assert( i<p->nCursor );
                   3129:   pTos++;
                   3130:   if( i<0 ){
                   3131:     assert( &pTos[i]>=p->aStack );
                   3132:     assert( pTos[i].flags & MEM_Str );
                   3133:     zRec = pTos[i].z;
                   3134:     payloadSize = pTos[i].n;
                   3135:   }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
                   3136:     sqliteVdbeCursorMoveto(pC);
                   3137:     zRec = 0;
                   3138:     pCrsr = pC->pCursor;
                   3139:     if( pC->nullRow ){
                   3140:       payloadSize = 0;
                   3141:     }else if( pC->keyAsData ){
                   3142:       sqliteBtreeKeySize(pCrsr, &payloadSize);
                   3143:     }else{
                   3144:       sqliteBtreeDataSize(pCrsr, &payloadSize);
                   3145:     }
                   3146:   }else if( pC->pseudoTable ){
                   3147:     payloadSize = pC->nData;
                   3148:     zRec = pC->pData;
                   3149:     assert( payloadSize==0 || zRec!=0 );
                   3150:   }else{
                   3151:     payloadSize = 0;
                   3152:   }
                   3153: 
                   3154:   /* Figure out how many bytes in the column data and where the column
                   3155:   ** data begins.
                   3156:   */
                   3157:   if( payloadSize==0 ){
                   3158:     pTos->flags = MEM_Null;
                   3159:     break;
                   3160:   }else if( payloadSize<256 ){
                   3161:     idxWidth = 1;
                   3162:   }else if( payloadSize<65536 ){
                   3163:     idxWidth = 2;
                   3164:   }else{
                   3165:     idxWidth = 3;
                   3166:   }
                   3167: 
                   3168:   /* Figure out where the requested column is stored and how big it is.
                   3169:   */
                   3170:   if( payloadSize < idxWidth*(p2+1) ){
                   3171:     rc = SQLITE_CORRUPT;
                   3172:     goto abort_due_to_error;
                   3173:   }
                   3174:   if( zRec ){
                   3175:     memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
                   3176:   }else if( pC->keyAsData ){
                   3177:     sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
                   3178:   }else{
                   3179:     sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
                   3180:   }
                   3181:   offset = aHdr[0];
                   3182:   end = aHdr[idxWidth];
                   3183:   if( idxWidth>1 ){
                   3184:     offset |= aHdr[1]<<8;
                   3185:     end |= aHdr[idxWidth+1]<<8;
                   3186:     if( idxWidth>2 ){
                   3187:       offset |= aHdr[2]<<16;
                   3188:       end |= aHdr[idxWidth+2]<<16;
                   3189:     }
                   3190:   }
                   3191:   amt = end - offset;
                   3192:   if( amt<0 || offset<0 || end>payloadSize ){
                   3193:     rc = SQLITE_CORRUPT;
                   3194:     goto abort_due_to_error;
                   3195:   }
                   3196: 
                   3197:   /* amt and offset now hold the offset to the start of data and the
                   3198:   ** amount of data.  Go get the data and put it on the stack.
                   3199:   */
                   3200:   pTos->n = amt;
                   3201:   if( amt==0 ){
                   3202:     pTos->flags = MEM_Null;
                   3203:   }else if( zRec ){
                   3204:     pTos->flags = MEM_Str | MEM_Ephem;
                   3205:     pTos->z = &zRec[offset];
                   3206:   }else{
                   3207:     if( amt<=NBFS ){
                   3208:       pTos->flags = MEM_Str | MEM_Short;
                   3209:       pTos->z = pTos->zShort;
                   3210:     }else{
                   3211:       char *z = sqliteMallocRaw( amt );
                   3212:       if( z==0 ) goto no_mem;
                   3213:       pTos->flags = MEM_Str | MEM_Dyn;
                   3214:       pTos->z = z;
                   3215:     }
                   3216:     if( pC->keyAsData ){
                   3217:       sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
                   3218:     }else{
                   3219:       sqliteBtreeData(pCrsr, offset, amt, pTos->z);
                   3220:     }
                   3221:   }
                   3222:   break;
                   3223: }
                   3224: 
                   3225: /* Opcode: Recno P1 * *
                   3226: **
                   3227: ** Push onto the stack an integer which is the first 4 bytes of the
                   3228: ** the key to the current entry in a sequential scan of the database
                   3229: ** file P1.  The sequential scan should have been started using the 
                   3230: ** Next opcode.
                   3231: */
                   3232: case OP_Recno: {
                   3233:   int i = pOp->p1;
                   3234:   Cursor *pC;
                   3235:   int v;
                   3236: 
                   3237:   assert( i>=0 && i<p->nCursor );
                   3238:   pC = &p->aCsr[i];
                   3239:   sqliteVdbeCursorMoveto(pC);
                   3240:   pTos++;
                   3241:   if( pC->recnoIsValid ){
                   3242:     v = pC->lastRecno;
                   3243:   }else if( pC->pseudoTable ){
                   3244:     v = keyToInt(pC->iKey);
                   3245:   }else if( pC->nullRow || pC->pCursor==0 ){
                   3246:     pTos->flags = MEM_Null;
                   3247:     break;
                   3248:   }else{
                   3249:     assert( pC->pCursor!=0 );
                   3250:     sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
                   3251:     v = keyToInt(v);
                   3252:   }
                   3253:   pTos->i = v;
                   3254:   pTos->flags = MEM_Int;
                   3255:   break;
                   3256: }
                   3257: 
                   3258: /* Opcode: FullKey P1 * *
                   3259: **
                   3260: ** Extract the complete key from the record that cursor P1 is currently
                   3261: ** pointing to and push the key onto the stack as a string.
                   3262: **
                   3263: ** Compare this opcode to Recno.  The Recno opcode extracts the first
                   3264: ** 4 bytes of the key and pushes those bytes onto the stack as an
                   3265: ** integer.  This instruction pushes the entire key as a string.
                   3266: **
                   3267: ** This opcode may not be used on a pseudo-table.
                   3268: */
                   3269: case OP_FullKey: {
                   3270:   int i = pOp->p1;
                   3271:   BtCursor *pCrsr;
                   3272: 
                   3273:   assert( p->aCsr[i].keyAsData );
                   3274:   assert( !p->aCsr[i].pseudoTable );
                   3275:   assert( i>=0 && i<p->nCursor );
                   3276:   pTos++;
                   3277:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   3278:     int amt;
                   3279:     char *z;
                   3280: 
                   3281:     sqliteVdbeCursorMoveto(&p->aCsr[i]);
                   3282:     sqliteBtreeKeySize(pCrsr, &amt);
                   3283:     if( amt<=0 ){
                   3284:       rc = SQLITE_CORRUPT;
                   3285:       goto abort_due_to_error;
                   3286:     }
                   3287:     if( amt>NBFS ){
                   3288:       z = sqliteMallocRaw( amt );
                   3289:       if( z==0 ) goto no_mem;
                   3290:       pTos->flags = MEM_Str | MEM_Dyn;
                   3291:     }else{
                   3292:       z = pTos->zShort;
                   3293:       pTos->flags = MEM_Str | MEM_Short;
                   3294:     }
                   3295:     sqliteBtreeKey(pCrsr, 0, amt, z);
                   3296:     pTos->z = z;
                   3297:     pTos->n = amt;
                   3298:   }
                   3299:   break;
                   3300: }
                   3301: 
                   3302: /* Opcode: NullRow P1 * *
                   3303: **
                   3304: ** Move the cursor P1 to a null row.  Any OP_Column operations
                   3305: ** that occur while the cursor is on the null row will always push 
                   3306: ** a NULL onto the stack.
                   3307: */
                   3308: case OP_NullRow: {
                   3309:   int i = pOp->p1;
                   3310: 
                   3311:   assert( i>=0 && i<p->nCursor );
                   3312:   p->aCsr[i].nullRow = 1;
                   3313:   p->aCsr[i].recnoIsValid = 0;
                   3314:   break;
                   3315: }
                   3316: 
                   3317: /* Opcode: Last P1 P2 *
                   3318: **
                   3319: ** The next use of the Recno or Column or Next instruction for P1 
                   3320: ** will refer to the last entry in the database table or index.
                   3321: ** If the table or index is empty and P2>0, then jump immediately to P2.
                   3322: ** If P2 is 0 or if the table or index is not empty, fall through
                   3323: ** to the following instruction.
                   3324: */
                   3325: case OP_Last: {
                   3326:   int i = pOp->p1;
                   3327:   Cursor *pC;
                   3328:   BtCursor *pCrsr;
                   3329: 
                   3330:   assert( i>=0 && i<p->nCursor );
                   3331:   pC = &p->aCsr[i];
                   3332:   if( (pCrsr = pC->pCursor)!=0 ){
                   3333:     int res;
                   3334:     rc = sqliteBtreeLast(pCrsr, &res);
                   3335:     pC->nullRow = res;
                   3336:     pC->deferredMoveto = 0;
                   3337:     if( res && pOp->p2>0 ){
                   3338:       pc = pOp->p2 - 1;
                   3339:     }
                   3340:   }else{
                   3341:     pC->nullRow = 0;
                   3342:   }
                   3343:   break;
                   3344: }
                   3345: 
                   3346: /* Opcode: Rewind P1 P2 *
                   3347: **
                   3348: ** The next use of the Recno or Column or Next instruction for P1 
                   3349: ** will refer to the first entry in the database table or index.
                   3350: ** If the table or index is empty and P2>0, then jump immediately to P2.
                   3351: ** If P2 is 0 or if the table or index is not empty, fall through
                   3352: ** to the following instruction.
                   3353: */
                   3354: case OP_Rewind: {
                   3355:   int i = pOp->p1;
                   3356:   Cursor *pC;
                   3357:   BtCursor *pCrsr;
                   3358: 
                   3359:   assert( i>=0 && i<p->nCursor );
                   3360:   pC = &p->aCsr[i];
                   3361:   if( (pCrsr = pC->pCursor)!=0 ){
                   3362:     int res;
                   3363:     rc = sqliteBtreeFirst(pCrsr, &res);
                   3364:     pC->atFirst = res==0;
                   3365:     pC->nullRow = res;
                   3366:     pC->deferredMoveto = 0;
                   3367:     if( res && pOp->p2>0 ){
                   3368:       pc = pOp->p2 - 1;
                   3369:     }
                   3370:   }else{
                   3371:     pC->nullRow = 0;
                   3372:   }
                   3373:   break;
                   3374: }
                   3375: 
                   3376: /* Opcode: Next P1 P2 *
                   3377: **
                   3378: ** Advance cursor P1 so that it points to the next key/data pair in its
                   3379: ** table or index.  If there are no more key/value pairs then fall through
                   3380: ** to the following instruction.  But if the cursor advance was successful,
                   3381: ** jump immediately to P2.
                   3382: **
                   3383: ** See also: Prev
                   3384: */
                   3385: /* Opcode: Prev P1 P2 *
                   3386: **
                   3387: ** Back up cursor P1 so that it points to the previous key/data pair in its
                   3388: ** table or index.  If there is no previous key/value pairs then fall through
                   3389: ** to the following instruction.  But if the cursor backup was successful,
                   3390: ** jump immediately to P2.
                   3391: */
                   3392: case OP_Prev:
                   3393: case OP_Next: {
                   3394:   Cursor *pC;
                   3395:   BtCursor *pCrsr;
                   3396: 
                   3397:   CHECK_FOR_INTERRUPT;
                   3398:   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
                   3399:   pC = &p->aCsr[pOp->p1];
                   3400:   if( (pCrsr = pC->pCursor)!=0 ){
                   3401:     int res;
                   3402:     if( pC->nullRow ){
                   3403:       res = 1;
                   3404:     }else{
                   3405:       assert( pC->deferredMoveto==0 );
                   3406:       rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
                   3407:                                   sqliteBtreePrevious(pCrsr, &res);
                   3408:       pC->nullRow = res;
                   3409:     }
                   3410:     if( res==0 ){
                   3411:       pc = pOp->p2 - 1;
                   3412:       sqlite_search_count++;
                   3413:     }
                   3414:   }else{
                   3415:     pC->nullRow = 1;
                   3416:   }
                   3417:   pC->recnoIsValid = 0;
                   3418:   break;
                   3419: }
                   3420: 
                   3421: /* Opcode: IdxPut P1 P2 P3
                   3422: **
                   3423: ** The top of the stack holds a SQL index key made using the
                   3424: ** MakeIdxKey instruction.  This opcode writes that key into the
                   3425: ** index P1.  Data for the entry is nil.
                   3426: **
                   3427: ** If P2==1, then the key must be unique.  If the key is not unique,
                   3428: ** the program aborts with a SQLITE_CONSTRAINT error and the database
                   3429: ** is rolled back.  If P3 is not null, then it becomes part of the
                   3430: ** error message returned with the SQLITE_CONSTRAINT.
                   3431: */
                   3432: case OP_IdxPut: {
                   3433:   int i = pOp->p1;
                   3434:   BtCursor *pCrsr;
                   3435:   assert( pTos>=p->aStack );
                   3436:   assert( i>=0 && i<p->nCursor );
                   3437:   assert( pTos->flags & MEM_Str );
                   3438:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   3439:     int nKey = pTos->n;
                   3440:     const char *zKey = pTos->z;
                   3441:     if( pOp->p2 ){
                   3442:       int res, n;
                   3443:       assert( nKey >= 4 );
                   3444:       rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
                   3445:       if( rc!=SQLITE_OK ) goto abort_due_to_error;
                   3446:       while( res!=0 ){
                   3447:         int c;
                   3448:         sqliteBtreeKeySize(pCrsr, &n);
                   3449:         if( n==nKey
                   3450:            && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
                   3451:            && c==0
                   3452:         ){
                   3453:           rc = SQLITE_CONSTRAINT;
                   3454:           if( pOp->p3 && pOp->p3[0] ){
                   3455:             sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
                   3456:           }
                   3457:           goto abort_due_to_error;
                   3458:         }
                   3459:         if( res<0 ){
                   3460:           sqliteBtreeNext(pCrsr, &res);
                   3461:           res = +1;
                   3462:         }else{
                   3463:           break;
                   3464:         }
                   3465:       }
                   3466:     }
                   3467:     rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
                   3468:     assert( p->aCsr[i].deferredMoveto==0 );
                   3469:   }
                   3470:   Release(pTos);
                   3471:   pTos--;
                   3472:   break;
                   3473: }
                   3474: 
                   3475: /* Opcode: IdxDelete P1 * *
                   3476: **
                   3477: ** The top of the stack is an index key built using the MakeIdxKey opcode.
                   3478: ** This opcode removes that entry from the index.
                   3479: */
                   3480: case OP_IdxDelete: {
                   3481:   int i = pOp->p1;
                   3482:   BtCursor *pCrsr;
                   3483:   assert( pTos>=p->aStack );
                   3484:   assert( pTos->flags & MEM_Str );
                   3485:   assert( i>=0 && i<p->nCursor );
                   3486:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   3487:     int rx, res;
                   3488:     rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
                   3489:     if( rx==SQLITE_OK && res==0 ){
                   3490:       rc = sqliteBtreeDelete(pCrsr);
                   3491:     }
                   3492:     assert( p->aCsr[i].deferredMoveto==0 );
                   3493:   }
                   3494:   Release(pTos);
                   3495:   pTos--;
                   3496:   break;
                   3497: }
                   3498: 
                   3499: /* Opcode: IdxRecno P1 * *
                   3500: **
                   3501: ** Push onto the stack an integer which is the last 4 bytes of the
                   3502: ** the key to the current entry in index P1.  These 4 bytes should
                   3503: ** be the record number of the table entry to which this index entry
                   3504: ** points.
                   3505: **
                   3506: ** See also: Recno, MakeIdxKey.
                   3507: */
                   3508: case OP_IdxRecno: {
                   3509:   int i = pOp->p1;
                   3510:   BtCursor *pCrsr;
                   3511: 
                   3512:   assert( i>=0 && i<p->nCursor );
                   3513:   pTos++;
                   3514:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   3515:     int v;
                   3516:     int sz;
                   3517:     assert( p->aCsr[i].deferredMoveto==0 );
                   3518:     sqliteBtreeKeySize(pCrsr, &sz);
                   3519:     if( sz<sizeof(u32) ){
                   3520:       pTos->flags = MEM_Null;
                   3521:     }else{
                   3522:       sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
                   3523:       v = keyToInt(v);
                   3524:       pTos->i = v;
                   3525:       pTos->flags = MEM_Int;
                   3526:     }
                   3527:   }else{
                   3528:     pTos->flags = MEM_Null;
                   3529:   }
                   3530:   break;
                   3531: }
                   3532: 
                   3533: /* Opcode: IdxGT P1 P2 *
                   3534: **
                   3535: ** Compare the top of the stack against the key on the index entry that
                   3536: ** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
                   3537: ** index entry.  If the index entry is greater than the top of the stack
                   3538: ** then jump to P2.  Otherwise fall through to the next instruction.
                   3539: ** In either case, the stack is popped once.
                   3540: */
                   3541: /* Opcode: IdxGE P1 P2 *
                   3542: **
                   3543: ** Compare the top of the stack against the key on the index entry that
                   3544: ** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
                   3545: ** index entry.  If the index entry is greater than or equal to 
                   3546: ** the top of the stack
                   3547: ** then jump to P2.  Otherwise fall through to the next instruction.
                   3548: ** In either case, the stack is popped once.
                   3549: */
                   3550: /* Opcode: IdxLT P1 P2 *
                   3551: **
                   3552: ** Compare the top of the stack against the key on the index entry that
                   3553: ** cursor P1 is currently pointing to.  Ignore the last 4 bytes of the
                   3554: ** index entry.  If the index entry is less than the top of the stack
                   3555: ** then jump to P2.  Otherwise fall through to the next instruction.
                   3556: ** In either case, the stack is popped once.
                   3557: */
                   3558: case OP_IdxLT:
                   3559: case OP_IdxGT:
                   3560: case OP_IdxGE: {
                   3561:   int i= pOp->p1;
                   3562:   BtCursor *pCrsr;
                   3563: 
                   3564:   assert( i>=0 && i<p->nCursor );
                   3565:   assert( pTos>=p->aStack );
                   3566:   if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
                   3567:     int res, rc;
                   3568:  
                   3569:     Stringify(pTos);
                   3570:     assert( p->aCsr[i].deferredMoveto==0 );
                   3571:     rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
                   3572:     if( rc!=SQLITE_OK ){
                   3573:       break;
                   3574:     }
                   3575:     if( pOp->opcode==OP_IdxLT ){
                   3576:       res = -res;
                   3577:     }else if( pOp->opcode==OP_IdxGE ){
                   3578:       res++;
                   3579:     }
                   3580:     if( res>0 ){
                   3581:       pc = pOp->p2 - 1 ;
                   3582:     }
                   3583:   }
                   3584:   Release(pTos);
                   3585:   pTos--;
                   3586:   break;
                   3587: }
                   3588: 
                   3589: /* Opcode: IdxIsNull P1 P2 *
                   3590: **
                   3591: ** The top of the stack contains an index entry such as might be generated
                   3592: ** by the MakeIdxKey opcode.  This routine looks at the first P1 fields of
                   3593: ** that key.  If any of the first P1 fields are NULL, then a jump is made
                   3594: ** to address P2.  Otherwise we fall straight through.
                   3595: **
                   3596: ** The index entry is always popped from the stack.
                   3597: */
                   3598: case OP_IdxIsNull: {
                   3599:   int i = pOp->p1;
                   3600:   int k, n;
                   3601:   const char *z;
                   3602: 
                   3603:   assert( pTos>=p->aStack );
                   3604:   assert( pTos->flags & MEM_Str );
                   3605:   z = pTos->z;
                   3606:   n = pTos->n;
                   3607:   for(k=0; k<n && i>0; i--){
                   3608:     if( z[k]=='a' ){
                   3609:       pc = pOp->p2-1;
                   3610:       break;
                   3611:     }
                   3612:     while( k<n && z[k] ){ k++; }
                   3613:     k++;
                   3614:   }
                   3615:   Release(pTos);
                   3616:   pTos--;
                   3617:   break;
                   3618: }
                   3619: 
                   3620: /* Opcode: Destroy P1 P2 *
                   3621: **
                   3622: ** Delete an entire database table or index whose root page in the database
                   3623: ** file is given by P1.
                   3624: **
                   3625: ** The table being destroyed is in the main database file if P2==0.  If
                   3626: ** P2==1 then the table to be clear is in the auxiliary database file
                   3627: ** that is used to store tables create using CREATE TEMPORARY TABLE.
                   3628: **
                   3629: ** See also: Clear
                   3630: */
                   3631: case OP_Destroy: {
                   3632:   rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
                   3633:   break;
                   3634: }
                   3635: 
                   3636: /* Opcode: Clear P1 P2 *
                   3637: **
                   3638: ** Delete all contents of the database table or index whose root page
                   3639: ** in the database file is given by P1.  But, unlike Destroy, do not
                   3640: ** remove the table or index from the database file.
                   3641: **
                   3642: ** The table being clear is in the main database file if P2==0.  If
                   3643: ** P2==1 then the table to be clear is in the auxiliary database file
                   3644: ** that is used to store tables create using CREATE TEMPORARY TABLE.
                   3645: **
                   3646: ** See also: Destroy
                   3647: */
                   3648: case OP_Clear: {
                   3649:   rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
                   3650:   break;
                   3651: }
                   3652: 
                   3653: /* Opcode: CreateTable * P2 P3
                   3654: **
                   3655: ** Allocate a new table in the main database file if P2==0 or in the
                   3656: ** auxiliary database file if P2==1.  Push the page number
                   3657: ** for the root page of the new table onto the stack.
                   3658: **
                   3659: ** The root page number is also written to a memory location that P3
                   3660: ** points to.  This is the mechanism is used to write the root page
                   3661: ** number into the parser's internal data structures that describe the
                   3662: ** new table.
                   3663: **
                   3664: ** The difference between a table and an index is this:  A table must
                   3665: ** have a 4-byte integer key and can have arbitrary data.  An index
                   3666: ** has an arbitrary key but no data.
                   3667: **
                   3668: ** See also: CreateIndex
                   3669: */
                   3670: /* Opcode: CreateIndex * P2 P3
                   3671: **
                   3672: ** Allocate a new index in the main database file if P2==0 or in the
                   3673: ** auxiliary database file if P2==1.  Push the page number of the
                   3674: ** root page of the new index onto the stack.
                   3675: **
                   3676: ** See documentation on OP_CreateTable for additional information.
                   3677: */
                   3678: case OP_CreateIndex:
                   3679: case OP_CreateTable: {
                   3680:   int pgno;
                   3681:   assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
                   3682:   assert( pOp->p2>=0 && pOp->p2<db->nDb );
                   3683:   assert( db->aDb[pOp->p2].pBt!=0 );
                   3684:   if( pOp->opcode==OP_CreateTable ){
                   3685:     rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
                   3686:   }else{
                   3687:     rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
                   3688:   }
                   3689:   pTos++;
                   3690:   if( rc==SQLITE_OK ){
                   3691:     pTos->i = pgno;
                   3692:     pTos->flags = MEM_Int;
                   3693:     *(u32*)pOp->p3 = pgno;
                   3694:     pOp->p3 = 0;
                   3695:   }else{
                   3696:     pTos->flags = MEM_Null;
                   3697:   }
                   3698:   break;
                   3699: }
                   3700: 
                   3701: /* Opcode: IntegrityCk P1 P2 *
                   3702: **
                   3703: ** Do an analysis of the currently open database.  Push onto the
                   3704: ** stack the text of an error message describing any problems.
                   3705: ** If there are no errors, push a "ok" onto the stack.
                   3706: **
                   3707: ** P1 is the index of a set that contains the root page numbers
                   3708: ** for all tables and indices in the main database file.  The set
                   3709: ** is cleared by this opcode.  In other words, after this opcode
                   3710: ** has executed, the set will be empty.
                   3711: **
                   3712: ** If P2 is not zero, the check is done on the auxiliary database
                   3713: ** file, not the main database file.
                   3714: **
                   3715: ** This opcode is used for testing purposes only.
                   3716: */
                   3717: case OP_IntegrityCk: {
                   3718:   int nRoot;
                   3719:   int *aRoot;
                   3720:   int iSet = pOp->p1;
                   3721:   Set *pSet;
                   3722:   int j;
                   3723:   HashElem *i;
                   3724:   char *z;
                   3725: 
                   3726:   assert( iSet>=0 && iSet<p->nSet );
                   3727:   pTos++;
                   3728:   pSet = &p->aSet[iSet];
                   3729:   nRoot = sqliteHashCount(&pSet->hash);
                   3730:   aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
                   3731:   if( aRoot==0 ) goto no_mem;
                   3732:   for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
                   3733:     toInt((char*)sqliteHashKey(i), &aRoot[j]);
                   3734:   }
                   3735:   aRoot[j] = 0;
                   3736:   sqliteHashClear(&pSet->hash);
                   3737:   pSet->prev = 0;
                   3738:   z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
                   3739:   if( z==0 || z[0]==0 ){
                   3740:     if( z ) sqliteFree(z);
                   3741:     pTos->z = "ok";
                   3742:     pTos->n = 3;
                   3743:     pTos->flags = MEM_Str | MEM_Static;
                   3744:   }else{
                   3745:     pTos->z = z;
                   3746:     pTos->n = strlen(z) + 1;
                   3747:     pTos->flags = MEM_Str | MEM_Dyn;
                   3748:   }
                   3749:   sqliteFree(aRoot);
                   3750:   break;
                   3751: }
                   3752: 
                   3753: /* Opcode: ListWrite * * *
                   3754: **
                   3755: ** Write the integer on the top of the stack
                   3756: ** into the temporary storage list.
                   3757: */
                   3758: case OP_ListWrite: {
                   3759:   Keylist *pKeylist;
                   3760:   assert( pTos>=p->aStack );
                   3761:   pKeylist = p->pList;
                   3762:   if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
                   3763:     pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
                   3764:     if( pKeylist==0 ) goto no_mem;
                   3765:     pKeylist->nKey = 1000;
                   3766:     pKeylist->nRead = 0;
                   3767:     pKeylist->nUsed = 0;
                   3768:     pKeylist->pNext = p->pList;
                   3769:     p->pList = pKeylist;
                   3770:   }
                   3771:   Integerify(pTos);
                   3772:   pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
                   3773:   Release(pTos);
                   3774:   pTos--;
                   3775:   break;
                   3776: }
                   3777: 
                   3778: /* Opcode: ListRewind * * *
                   3779: **
                   3780: ** Rewind the temporary buffer back to the beginning.
                   3781: */
                   3782: case OP_ListRewind: {
                   3783:   /* What this opcode codes, really, is reverse the order of the
                   3784:   ** linked list of Keylist structures so that they are read out
                   3785:   ** in the same order that they were read in. */
                   3786:   Keylist *pRev, *pTop;
                   3787:   pRev = 0;
                   3788:   while( p->pList ){
                   3789:     pTop = p->pList;
                   3790:     p->pList = pTop->pNext;
                   3791:     pTop->pNext = pRev;
                   3792:     pRev = pTop;
                   3793:   }
                   3794:   p->pList = pRev;
                   3795:   break;
                   3796: }
                   3797: 
                   3798: /* Opcode: ListRead * P2 *
                   3799: **
                   3800: ** Attempt to read an integer from the temporary storage buffer
                   3801: ** and push it onto the stack.  If the storage buffer is empty, 
                   3802: ** push nothing but instead jump to P2.
                   3803: */
                   3804: case OP_ListRead: {
                   3805:   Keylist *pKeylist;
                   3806:   CHECK_FOR_INTERRUPT;
                   3807:   pKeylist = p->pList;
                   3808:   if( pKeylist!=0 ){
                   3809:     assert( pKeylist->nRead>=0 );
                   3810:     assert( pKeylist->nRead<pKeylist->nUsed );
                   3811:     assert( pKeylist->nRead<pKeylist->nKey );
                   3812:     pTos++;
                   3813:     pTos->i = pKeylist->aKey[pKeylist->nRead++];
                   3814:     pTos->flags = MEM_Int;
                   3815:     if( pKeylist->nRead>=pKeylist->nUsed ){
                   3816:       p->pList = pKeylist->pNext;
                   3817:       sqliteFree(pKeylist);
                   3818:     }
                   3819:   }else{
                   3820:     pc = pOp->p2 - 1;
                   3821:   }
                   3822:   break;
                   3823: }
                   3824: 
                   3825: /* Opcode: ListReset * * *
                   3826: **
                   3827: ** Reset the temporary storage buffer so that it holds nothing.
                   3828: */
                   3829: case OP_ListReset: {
                   3830:   if( p->pList ){
                   3831:     sqliteVdbeKeylistFree(p->pList);
                   3832:     p->pList = 0;
                   3833:   }
                   3834:   break;
                   3835: }
                   3836: 
                   3837: /* Opcode: ListPush * * * 
                   3838: **
                   3839: ** Save the current Vdbe list such that it can be restored by a ListPop
                   3840: ** opcode. The list is empty after this is executed.
                   3841: */
                   3842: case OP_ListPush: {
                   3843:   p->keylistStackDepth++;
                   3844:   assert(p->keylistStackDepth > 0);
                   3845:   p->keylistStack = sqliteRealloc(p->keylistStack, 
                   3846:           sizeof(Keylist *) * p->keylistStackDepth);
                   3847:   if( p->keylistStack==0 ) goto no_mem;
                   3848:   p->keylistStack[p->keylistStackDepth - 1] = p->pList;
                   3849:   p->pList = 0;
                   3850:   break;
                   3851: }
                   3852: 
                   3853: /* Opcode: ListPop * * * 
                   3854: **
                   3855: ** Restore the Vdbe list to the state it was in when ListPush was last
                   3856: ** executed.
                   3857: */
                   3858: case OP_ListPop: {
                   3859:   assert(p->keylistStackDepth > 0);
                   3860:   p->keylistStackDepth--;
                   3861:   sqliteVdbeKeylistFree(p->pList);
                   3862:   p->pList = p->keylistStack[p->keylistStackDepth];
                   3863:   p->keylistStack[p->keylistStackDepth] = 0;
                   3864:   if( p->keylistStackDepth == 0 ){
                   3865:     sqliteFree(p->keylistStack);
                   3866:     p->keylistStack = 0;
                   3867:   }
                   3868:   break;
                   3869: }
                   3870: 
                   3871: /* Opcode: ContextPush * * * 
                   3872: **
                   3873: ** Save the current Vdbe context such that it can be restored by a ContextPop
                   3874: ** opcode. The context stores the last insert row id, the last statement change
                   3875: ** count, and the current statement change count.
                   3876: */
                   3877: case OP_ContextPush: {
                   3878:   p->contextStackDepth++;
                   3879:   assert(p->contextStackDepth > 0);
                   3880:   p->contextStack = sqliteRealloc(p->contextStack, 
                   3881:           sizeof(Context) * p->contextStackDepth);
                   3882:   if( p->contextStack==0 ) goto no_mem;
                   3883:   p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
                   3884:   p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
                   3885:   p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
                   3886:   break;
                   3887: }
                   3888: 
                   3889: /* Opcode: ContextPop * * * 
                   3890: **
                   3891: ** Restore the Vdbe context to the state it was in when contextPush was last
                   3892: ** executed. The context stores the last insert row id, the last statement
                   3893: ** change count, and the current statement change count.
                   3894: */
                   3895: case OP_ContextPop: {
                   3896:   assert(p->contextStackDepth > 0);
                   3897:   p->contextStackDepth--;
                   3898:   p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
                   3899:   p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
                   3900:   p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
                   3901:   if( p->contextStackDepth == 0 ){
                   3902:     sqliteFree(p->contextStack);
                   3903:     p->contextStack = 0;
                   3904:   }
                   3905:   break;
                   3906: }
                   3907: 
                   3908: /* Opcode: SortPut * * *
                   3909: **
                   3910: ** The TOS is the key and the NOS is the data.  Pop both from the stack
                   3911: ** and put them on the sorter.  The key and data should have been
                   3912: ** made using SortMakeKey and SortMakeRec, respectively.
                   3913: */
                   3914: case OP_SortPut: {
                   3915:   Mem *pNos = &pTos[-1];
                   3916:   Sorter *pSorter;
                   3917:   assert( pNos>=p->aStack );
                   3918:   if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
                   3919:   pSorter = sqliteMallocRaw( sizeof(Sorter) );
                   3920:   if( pSorter==0 ) goto no_mem;
                   3921:   pSorter->pNext = p->pSort;
                   3922:   p->pSort = pSorter;
                   3923:   assert( pTos->flags & MEM_Dyn );
                   3924:   pSorter->nKey = pTos->n;
                   3925:   pSorter->zKey = pTos->z;
                   3926:   assert( pNos->flags & MEM_Dyn );
                   3927:   pSorter->nData = pNos->n;
                   3928:   pSorter->pData = pNos->z;
                   3929:   pTos -= 2;
                   3930:   break;
                   3931: }
                   3932: 
                   3933: /* Opcode: SortMakeRec P1 * *
                   3934: **
                   3935: ** The top P1 elements are the arguments to a callback.  Form these
                   3936: ** elements into a single data entry that can be stored on a sorter
                   3937: ** using SortPut and later fed to a callback using SortCallback.
                   3938: */
                   3939: case OP_SortMakeRec: {
                   3940:   char *z;
                   3941:   char **azArg;
                   3942:   int nByte;
                   3943:   int nField;
                   3944:   int i;
                   3945:   Mem *pRec;
                   3946: 
                   3947:   nField = pOp->p1;
                   3948:   pRec = &pTos[1-nField];
                   3949:   assert( pRec>=p->aStack );
                   3950:   nByte = 0;
                   3951:   for(i=0; i<nField; i++, pRec++){
                   3952:     if( (pRec->flags & MEM_Null)==0 ){
                   3953:       Stringify(pRec);
                   3954:       nByte += pRec->n;
                   3955:     }
                   3956:   }
                   3957:   nByte += sizeof(char*)*(nField+1);
                   3958:   azArg = sqliteMallocRaw( nByte );
                   3959:   if( azArg==0 ) goto no_mem;
                   3960:   z = (char*)&azArg[nField+1];
                   3961:   for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
                   3962:     if( pRec->flags & MEM_Null ){
                   3963:       azArg[i] = 0;
                   3964:     }else{
                   3965:       azArg[i] = z;
                   3966:       memcpy(z, pRec->z, pRec->n);
                   3967:       z += pRec->n;
                   3968:     }
                   3969:   }
                   3970:   popStack(&pTos, nField);
                   3971:   pTos++;
                   3972:   pTos->n = nByte;
                   3973:   pTos->z = (char*)azArg;
                   3974:   pTos->flags = MEM_Str | MEM_Dyn;
                   3975:   break;
                   3976: }
                   3977: 
                   3978: /* Opcode: SortMakeKey * * P3
                   3979: **
                   3980: ** Convert the top few entries of the stack into a sort key.  The
                   3981: ** number of stack entries consumed is the number of characters in 
                   3982: ** the string P3.  One character from P3 is prepended to each entry.
                   3983: ** The first character of P3 is prepended to the element lowest in
                   3984: ** the stack and the last character of P3 is prepended to the top of
                   3985: ** the stack.  All stack entries are separated by a \000 character
                   3986: ** in the result.  The whole key is terminated by two \000 characters
                   3987: ** in a row.
                   3988: **
                   3989: ** "N" is substituted in place of the P3 character for NULL values.
                   3990: **
                   3991: ** See also the MakeKey and MakeIdxKey opcodes.
                   3992: */
                   3993: case OP_SortMakeKey: {
                   3994:   char *zNewKey;
                   3995:   int nByte;
                   3996:   int nField;
                   3997:   int i, j, k;
                   3998:   Mem *pRec;
                   3999: 
                   4000:   nField = strlen(pOp->p3);
                   4001:   pRec = &pTos[1-nField];
                   4002:   nByte = 1;
                   4003:   for(i=0; i<nField; i++, pRec++){
                   4004:     if( pRec->flags & MEM_Null ){
                   4005:       nByte += 2;
                   4006:     }else{
                   4007:       Stringify(pRec);
                   4008:       nByte += pRec->n+2;
                   4009:     }
                   4010:   }
                   4011:   zNewKey = sqliteMallocRaw( nByte );
                   4012:   if( zNewKey==0 ) goto no_mem;
                   4013:   j = 0;
                   4014:   k = 0;
                   4015:   for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
                   4016:     if( pRec->flags & MEM_Null ){
                   4017:       zNewKey[j++] = 'N';
                   4018:       zNewKey[j++] = 0;
                   4019:       k++;
                   4020:     }else{
                   4021:       zNewKey[j++] = pOp->p3[k++];
                   4022:       memcpy(&zNewKey[j], pRec->z, pRec->n-1);
                   4023:       j += pRec->n-1;
                   4024:       zNewKey[j++] = 0;
                   4025:     }
                   4026:   }
                   4027:   zNewKey[j] = 0;
                   4028:   assert( j<nByte );
                   4029:   popStack(&pTos, nField);
                   4030:   pTos++;
                   4031:   pTos->n = nByte;
                   4032:   pTos->flags = MEM_Str|MEM_Dyn;
                   4033:   pTos->z = zNewKey;
                   4034:   break;
                   4035: }
                   4036: 
                   4037: /* Opcode: Sort * * *
                   4038: **
                   4039: ** Sort all elements on the sorter.  The algorithm is a
                   4040: ** mergesort.
                   4041: */
                   4042: case OP_Sort: {
                   4043:   int i;
                   4044:   Sorter *pElem;
                   4045:   Sorter *apSorter[NSORT];
                   4046:   for(i=0; i<NSORT; i++){
                   4047:     apSorter[i] = 0;
                   4048:   }
                   4049:   while( p->pSort ){
                   4050:     pElem = p->pSort;
                   4051:     p->pSort = pElem->pNext;
                   4052:     pElem->pNext = 0;
                   4053:     for(i=0; i<NSORT-1; i++){
                   4054:     if( apSorter[i]==0 ){
                   4055:         apSorter[i] = pElem;
                   4056:         break;
                   4057:       }else{
                   4058:         pElem = Merge(apSorter[i], pElem);
                   4059:         apSorter[i] = 0;
                   4060:       }
                   4061:     }
                   4062:     if( i>=NSORT-1 ){
                   4063:       apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
                   4064:     }
                   4065:   }
                   4066:   pElem = 0;
                   4067:   for(i=0; i<NSORT; i++){
                   4068:     pElem = Merge(apSorter[i], pElem);
                   4069:   }
                   4070:   p->pSort = pElem;
                   4071:   break;
                   4072: }
                   4073: 
                   4074: /* Opcode: SortNext * P2 *
                   4075: **
                   4076: ** Push the data for the topmost element in the sorter onto the
                   4077: ** stack, then remove the element from the sorter.  If the sorter
                   4078: ** is empty, push nothing on the stack and instead jump immediately 
                   4079: ** to instruction P2.
                   4080: */
                   4081: case OP_SortNext: {
                   4082:   Sorter *pSorter = p->pSort;
                   4083:   CHECK_FOR_INTERRUPT;
                   4084:   if( pSorter!=0 ){
                   4085:     p->pSort = pSorter->pNext;
                   4086:     pTos++;
                   4087:     pTos->z = pSorter->pData;
                   4088:     pTos->n = pSorter->nData;
                   4089:     pTos->flags = MEM_Str|MEM_Dyn;
                   4090:     sqliteFree(pSorter->zKey);
                   4091:     sqliteFree(pSorter);
                   4092:   }else{
                   4093:     pc = pOp->p2 - 1;
                   4094:   }
                   4095:   break;
                   4096: }
                   4097: 
                   4098: /* Opcode: SortCallback P1 * *
                   4099: **
                   4100: ** The top of the stack contains a callback record built using
                   4101: ** the SortMakeRec operation with the same P1 value as this
                   4102: ** instruction.  Pop this record from the stack and invoke the
                   4103: ** callback on it.
                   4104: */
                   4105: case OP_SortCallback: {
                   4106:   assert( pTos>=p->aStack );
                   4107:   assert( pTos->flags & MEM_Str );
                   4108:   p->nCallback++;
                   4109:   p->pc = pc+1;
                   4110:   p->azResColumn = (char**)pTos->z;
                   4111:   assert( p->nResColumn==pOp->p1 );
                   4112:   p->popStack = 1;
                   4113:   p->pTos = pTos;
                   4114:   return SQLITE_ROW;
                   4115: }
                   4116: 
                   4117: /* Opcode: SortReset * * *
                   4118: **
                   4119: ** Remove any elements that remain on the sorter.
                   4120: */
                   4121: case OP_SortReset: {
                   4122:   sqliteVdbeSorterReset(p);
                   4123:   break;
                   4124: }
                   4125: 
                   4126: /* Opcode: FileOpen * * P3
                   4127: **
                   4128: ** Open the file named by P3 for reading using the FileRead opcode.
                   4129: ** If P3 is "stdin" then open standard input for reading.
                   4130: */
                   4131: case OP_FileOpen: {
                   4132:   assert( pOp->p3!=0 );
                   4133:   if( p->pFile ){
                   4134:     if( p->pFile!=stdin ) fclose(p->pFile);
                   4135:     p->pFile = 0;
                   4136:   }
                   4137:   if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
                   4138:     p->pFile = stdin;
                   4139:   }else{
                   4140:     p->pFile = fopen(pOp->p3, "r");
                   4141:   }
                   4142:   if( p->pFile==0 ){
                   4143:     sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
                   4144:     rc = SQLITE_ERROR;
                   4145:   }
                   4146:   break;
                   4147: }
                   4148: 
                   4149: /* Opcode: FileRead P1 P2 P3
                   4150: **
                   4151: ** Read a single line of input from the open file (the file opened using
                   4152: ** FileOpen).  If we reach end-of-file, jump immediately to P2.  If
                   4153: ** we are able to get another line, split the line apart using P3 as
                   4154: ** a delimiter.  There should be P1 fields.  If the input line contains
                   4155: ** more than P1 fields, ignore the excess.  If the input line contains
                   4156: ** fewer than P1 fields, assume the remaining fields contain NULLs.
                   4157: **
                   4158: ** Input ends if a line consists of just "\.".  A field containing only
                   4159: ** "\N" is a null field.  The backslash \ character can be used be used
                   4160: ** to escape newlines or the delimiter.
                   4161: */
                   4162: case OP_FileRead: {
                   4163:   int n, eol, nField, i, c, nDelim;
                   4164:   char *zDelim, *z;
                   4165:   CHECK_FOR_INTERRUPT;
                   4166:   if( p->pFile==0 ) goto fileread_jump;
                   4167:   nField = pOp->p1;
                   4168:   if( nField<=0 ) goto fileread_jump;
                   4169:   if( nField!=p->nField || p->azField==0 ){
                   4170:     char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
                   4171:     if( azField==0 ){ goto no_mem; }
                   4172:     p->azField = azField;
                   4173:     p->nField = nField;
                   4174:   }
                   4175:   n = 0;
                   4176:   eol = 0;
                   4177:   while( eol==0 ){
                   4178:     if( p->zLine==0 || n+200>p->nLineAlloc ){
                   4179:       char *zLine;
                   4180:       p->nLineAlloc = p->nLineAlloc*2 + 300;
                   4181:       zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
                   4182:       if( zLine==0 ){
                   4183:         p->nLineAlloc = 0;
                   4184:         sqliteFree(p->zLine);
                   4185:         p->zLine = 0;
                   4186:         goto no_mem;
                   4187:       }
                   4188:       p->zLine = zLine;
                   4189:     }
                   4190:     if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
                   4191:       eol = 1;
                   4192:       p->zLine[n] = 0;
                   4193:     }else{
                   4194:       int c;
                   4195:       while( (c = p->zLine[n])!=0 ){
                   4196:         if( c=='\\' ){
                   4197:           if( p->zLine[n+1]==0 ) break;
                   4198:           n += 2;
                   4199:         }else if( c=='\n' ){
                   4200:           p->zLine[n] = 0;
                   4201:           eol = 1;
                   4202:           break;
                   4203:         }else{
                   4204:           n++;
                   4205:         }
                   4206:       }
                   4207:     }
                   4208:   }
                   4209:   if( n==0 ) goto fileread_jump;
                   4210:   z = p->zLine;
                   4211:   if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
                   4212:     goto fileread_jump;
                   4213:   }
                   4214:   zDelim = pOp->p3;
                   4215:   if( zDelim==0 ) zDelim = "\t";
                   4216:   c = zDelim[0];
                   4217:   nDelim = strlen(zDelim);
                   4218:   p->azField[0] = z;
                   4219:   for(i=1; *z!=0 && i<=nField; i++){
                   4220:     int from, to;
                   4221:     from = to = 0;
                   4222:     if( z[0]=='\\' && z[1]=='N' 
                   4223:        && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
                   4224:       if( i<=nField ) p->azField[i-1] = 0;
                   4225:       z += 2 + nDelim;
                   4226:       if( i<nField ) p->azField[i] = z;
                   4227:       continue;
                   4228:     }
                   4229:     while( z[from] ){
                   4230:       if( z[from]=='\\' && z[from+1]!=0 ){
                   4231:         int tx = z[from+1];
                   4232:         switch( tx ){
                   4233:           case 'b':  tx = '\b'; break;
                   4234:           case 'f':  tx = '\f'; break;
                   4235:           case 'n':  tx = '\n'; break;
                   4236:           case 'r':  tx = '\r'; break;
                   4237:           case 't':  tx = '\t'; break;
                   4238:           case 'v':  tx = '\v'; break;
                   4239:           default:   break;
                   4240:         }
                   4241:         z[to++] = tx;
                   4242:         from += 2;
                   4243:         continue;
                   4244:       }
                   4245:       if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
                   4246:       z[to++] = z[from++];
                   4247:     }
                   4248:     if( z[from] ){
                   4249:       z[to] = 0;
                   4250:       z += from + nDelim;
                   4251:       if( i<nField ) p->azField[i] = z;
                   4252:     }else{
                   4253:       z[to] = 0;
                   4254:       z = "";
                   4255:     }
                   4256:   }
                   4257:   while( i<nField ){
                   4258:     p->azField[i++] = 0;
                   4259:   }
                   4260:   break;
                   4261: 
                   4262:   /* If we reach end-of-file, or if anything goes wrong, jump here.
                   4263:   ** This code will cause a jump to P2 */
                   4264: fileread_jump:
                   4265:   pc = pOp->p2 - 1;
                   4266:   break;
                   4267: }
                   4268: 
                   4269: /* Opcode: FileColumn P1 * *
                   4270: **
                   4271: ** Push onto the stack the P1-th column of the most recently read line
                   4272: ** from the input file.
                   4273: */
                   4274: case OP_FileColumn: {
                   4275:   int i = pOp->p1;
                   4276:   char *z;
                   4277:   assert( i>=0 && i<p->nField );
                   4278:   if( p->azField ){
                   4279:     z = p->azField[i];
                   4280:   }else{
                   4281:     z = 0;
                   4282:   }
                   4283:   pTos++;
                   4284:   if( z ){
                   4285:     pTos->n = strlen(z) + 1;
                   4286:     pTos->z = z;
                   4287:     pTos->flags = MEM_Str | MEM_Ephem;
                   4288:   }else{
                   4289:     pTos->flags = MEM_Null;
                   4290:   }
                   4291:   break;
                   4292: }
                   4293: 
                   4294: /* Opcode: MemStore P1 P2 *
                   4295: **
                   4296: ** Write the top of the stack into memory location P1.
                   4297: ** P1 should be a small integer since space is allocated
                   4298: ** for all memory locations between 0 and P1 inclusive.
                   4299: **
                   4300: ** After the data is stored in the memory location, the
                   4301: ** stack is popped once if P2 is 1.  If P2 is zero, then
                   4302: ** the original data remains on the stack.
                   4303: */
                   4304: case OP_MemStore: {
                   4305:   int i = pOp->p1;
                   4306:   Mem *pMem;
                   4307:   assert( pTos>=p->aStack );
                   4308:   if( i>=p->nMem ){
                   4309:     int nOld = p->nMem;
                   4310:     Mem *aMem;
                   4311:     p->nMem = i + 5;
                   4312:     aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
                   4313:     if( aMem==0 ) goto no_mem;
                   4314:     if( aMem!=p->aMem ){
                   4315:       int j;
                   4316:       for(j=0; j<nOld; j++){
                   4317:         if( aMem[j].flags & MEM_Short ){
                   4318:           aMem[j].z = aMem[j].zShort;
                   4319:         }
                   4320:       }
                   4321:     }
                   4322:     p->aMem = aMem;
                   4323:     if( nOld<p->nMem ){
                   4324:       memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
                   4325:     }
                   4326:   }
                   4327:   Deephemeralize(pTos);
                   4328:   pMem = &p->aMem[i];
                   4329:   Release(pMem);
                   4330:   *pMem = *pTos;
                   4331:   if( pMem->flags & MEM_Dyn ){
                   4332:     if( pOp->p2 ){
                   4333:       pTos->flags = MEM_Null;
                   4334:     }else{
                   4335:       pMem->z = sqliteMallocRaw( pMem->n );
                   4336:       if( pMem->z==0 ) goto no_mem;
                   4337:       memcpy(pMem->z, pTos->z, pMem->n);
                   4338:     }
                   4339:   }else if( pMem->flags & MEM_Short ){
                   4340:     pMem->z = pMem->zShort;
                   4341:   }
                   4342:   if( pOp->p2 ){
                   4343:     Release(pTos);
                   4344:     pTos--;
                   4345:   }
                   4346:   break;
                   4347: }
                   4348: 
                   4349: /* Opcode: MemLoad P1 * *
                   4350: **
                   4351: ** Push a copy of the value in memory location P1 onto the stack.
                   4352: **
                   4353: ** If the value is a string, then the value pushed is a pointer to
                   4354: ** the string that is stored in the memory location.  If the memory
                   4355: ** location is subsequently changed (using OP_MemStore) then the
                   4356: ** value pushed onto the stack will change too.
                   4357: */
                   4358: case OP_MemLoad: {
                   4359:   int i = pOp->p1;
                   4360:   assert( i>=0 && i<p->nMem );
                   4361:   pTos++;
                   4362:   memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
                   4363:   if( pTos->flags & MEM_Str ){
                   4364:     pTos->flags |= MEM_Ephem;
                   4365:     pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
                   4366:   }
                   4367:   break;
                   4368: }
                   4369: 
                   4370: /* Opcode: MemIncr P1 P2 *
                   4371: **
                   4372: ** Increment the integer valued memory cell P1 by 1.  If P2 is not zero
                   4373: ** and the result after the increment is greater than zero, then jump
                   4374: ** to P2.
                   4375: **
                   4376: ** This instruction throws an error if the memory cell is not initially
                   4377: ** an integer.
                   4378: */
                   4379: case OP_MemIncr: {
                   4380:   int i = pOp->p1;
                   4381:   Mem *pMem;
                   4382:   assert( i>=0 && i<p->nMem );
                   4383:   pMem = &p->aMem[i];
                   4384:   assert( pMem->flags==MEM_Int );
                   4385:   pMem->i++;
                   4386:   if( pOp->p2>0 && pMem->i>0 ){
                   4387:      pc = pOp->p2 - 1;
                   4388:   }
                   4389:   break;
                   4390: }
                   4391: 
                   4392: /* Opcode: AggReset * P2 *
                   4393: **
                   4394: ** Reset the aggregator so that it no longer contains any data.
                   4395: ** Future aggregator elements will contain P2 values each.
                   4396: */
                   4397: case OP_AggReset: {
                   4398:   sqliteVdbeAggReset(&p->agg);
                   4399:   p->agg.nMem = pOp->p2;
                   4400:   p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
                   4401:   if( p->agg.apFunc==0 ) goto no_mem;
                   4402:   break;
                   4403: }
                   4404: 
                   4405: /* Opcode: AggInit * P2 P3
                   4406: **
                   4407: ** Initialize the function parameters for an aggregate function.
                   4408: ** The aggregate will operate out of aggregate column P2.
                   4409: ** P3 is a pointer to the FuncDef structure for the function.
                   4410: */
                   4411: case OP_AggInit: {
                   4412:   int i = pOp->p2;
                   4413:   assert( i>=0 && i<p->agg.nMem );
                   4414:   p->agg.apFunc[i] = (FuncDef*)pOp->p3;
                   4415:   break;
                   4416: }
                   4417: 
                   4418: /* Opcode: AggFunc * P2 P3
                   4419: **
                   4420: ** Execute the step function for an aggregate.  The
                   4421: ** function has P2 arguments.  P3 is a pointer to the FuncDef
                   4422: ** structure that specifies the function.
                   4423: **
                   4424: ** The top of the stack must be an integer which is the index of
                   4425: ** the aggregate column that corresponds to this aggregate function.
                   4426: ** Ideally, this index would be another parameter, but there are
                   4427: ** no free parameters left.  The integer is popped from the stack.
                   4428: */
                   4429: case OP_AggFunc: {
                   4430:   int n = pOp->p2;
                   4431:   int i;
                   4432:   Mem *pMem, *pRec;
                   4433:   char **azArgv = p->zArgv;
                   4434:   sqlite_func ctx;
                   4435: 
                   4436:   assert( n>=0 );
                   4437:   assert( pTos->flags==MEM_Int );
                   4438:   pRec = &pTos[-n];
                   4439:   assert( pRec>=p->aStack );
                   4440:   for(i=0; i<n; i++, pRec++){
                   4441:     if( pRec->flags & MEM_Null ){
                   4442:       azArgv[i] = 0;
                   4443:     }else{
                   4444:       Stringify(pRec);
                   4445:       azArgv[i] = pRec->z;
                   4446:     }
                   4447:   }
                   4448:   i = pTos->i;
                   4449:   assert( i>=0 && i<p->agg.nMem );
                   4450:   ctx.pFunc = (FuncDef*)pOp->p3;
                   4451:   pMem = &p->agg.pCurrent->aMem[i];
                   4452:   ctx.s.z = pMem->zShort;  /* Space used for small aggregate contexts */
                   4453:   ctx.pAgg = pMem->z;
                   4454:   ctx.cnt = ++pMem->i;
                   4455:   ctx.isError = 0;
                   4456:   ctx.isStep = 1;
                   4457:   (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
                   4458:   pMem->z = ctx.pAgg;
                   4459:   pMem->flags = MEM_AggCtx;
                   4460:   popStack(&pTos, n+1);
                   4461:   if( ctx.isError ){
                   4462:     rc = SQLITE_ERROR;
                   4463:   }
                   4464:   break;
                   4465: }
                   4466: 
                   4467: /* Opcode: AggFocus * P2 *
                   4468: **
                   4469: ** Pop the top of the stack and use that as an aggregator key.  If
                   4470: ** an aggregator with that same key already exists, then make the
                   4471: ** aggregator the current aggregator and jump to P2.  If no aggregator
                   4472: ** with the given key exists, create one and make it current but
                   4473: ** do not jump.
                   4474: **
                   4475: ** The order of aggregator opcodes is important.  The order is:
                   4476: ** AggReset AggFocus AggNext.  In other words, you must execute
                   4477: ** AggReset first, then zero or more AggFocus operations, then
                   4478: ** zero or more AggNext operations.  You must not execute an AggFocus
                   4479: ** in between an AggNext and an AggReset.
                   4480: */
                   4481: case OP_AggFocus: {
                   4482:   AggElem *pElem;
                   4483:   char *zKey;
                   4484:   int nKey;
                   4485: 
                   4486:   assert( pTos>=p->aStack );
                   4487:   Stringify(pTos);
                   4488:   zKey = pTos->z;
                   4489:   nKey = pTos->n;
                   4490:   pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
                   4491:   if( pElem ){
                   4492:     p->agg.pCurrent = pElem;
                   4493:     pc = pOp->p2 - 1;
                   4494:   }else{
                   4495:     AggInsert(&p->agg, zKey, nKey);
                   4496:     if( sqlite_malloc_failed ) goto no_mem;
                   4497:   }
                   4498:   Release(pTos);
                   4499:   pTos--;
                   4500:   break; 
                   4501: }
                   4502: 
                   4503: /* Opcode: AggSet * P2 *
                   4504: **
                   4505: ** Move the top of the stack into the P2-th field of the current
                   4506: ** aggregate.  String values are duplicated into new memory.
                   4507: */
                   4508: case OP_AggSet: {
                   4509:   AggElem *pFocus = AggInFocus(p->agg);
                   4510:   Mem *pMem;
                   4511:   int i = pOp->p2;
                   4512:   assert( pTos>=p->aStack );
                   4513:   if( pFocus==0 ) goto no_mem;
                   4514:   assert( i>=0 && i<p->agg.nMem );
                   4515:   Deephemeralize(pTos);
                   4516:   pMem = &pFocus->aMem[i];
                   4517:   Release(pMem);
                   4518:   *pMem = *pTos;
                   4519:   if( pMem->flags & MEM_Dyn ){
                   4520:     pTos->flags = MEM_Null;
                   4521:   }else if( pMem->flags & MEM_Short ){
                   4522:     pMem->z = pMem->zShort;
                   4523:   }
                   4524:   Release(pTos);
                   4525:   pTos--;
                   4526:   break;
                   4527: }
                   4528: 
                   4529: /* Opcode: AggGet * P2 *
                   4530: **
                   4531: ** Push a new entry onto the stack which is a copy of the P2-th field
                   4532: ** of the current aggregate.  Strings are not duplicated so
                   4533: ** string values will be ephemeral.
                   4534: */
                   4535: case OP_AggGet: {
                   4536:   AggElem *pFocus = AggInFocus(p->agg);
                   4537:   Mem *pMem;
                   4538:   int i = pOp->p2;
                   4539:   if( pFocus==0 ) goto no_mem;
                   4540:   assert( i>=0 && i<p->agg.nMem );
                   4541:   pTos++;
                   4542:   pMem = &pFocus->aMem[i];
                   4543:   *pTos = *pMem;
                   4544:   if( pTos->flags & MEM_Str ){
                   4545:     pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
                   4546:     pTos->flags |= MEM_Ephem;
                   4547:   }
                   4548:   if( pTos->flags & MEM_AggCtx ){
                   4549:     Release(pTos);
                   4550:     pTos->flags = MEM_Null;
                   4551:   }
                   4552:   break;
                   4553: }
                   4554: 
                   4555: /* Opcode: AggNext * P2 *
                   4556: **
                   4557: ** Make the next aggregate value the current aggregate.  The prior
                   4558: ** aggregate is deleted.  If all aggregate values have been consumed,
                   4559: ** jump to P2.
                   4560: **
                   4561: ** The order of aggregator opcodes is important.  The order is:
                   4562: ** AggReset AggFocus AggNext.  In other words, you must execute
                   4563: ** AggReset first, then zero or more AggFocus operations, then
                   4564: ** zero or more AggNext operations.  You must not execute an AggFocus
                   4565: ** in between an AggNext and an AggReset.
                   4566: */
                   4567: case OP_AggNext: {
                   4568:   CHECK_FOR_INTERRUPT;
                   4569:   if( p->agg.pSearch==0 ){
                   4570:     p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
                   4571:   }else{
                   4572:     p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
                   4573:   }
                   4574:   if( p->agg.pSearch==0 ){
                   4575:     pc = pOp->p2 - 1;
                   4576:   } else {
                   4577:     int i;
                   4578:     sqlite_func ctx;
                   4579:     Mem *aMem;
                   4580:     p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
                   4581:     aMem = p->agg.pCurrent->aMem;
                   4582:     for(i=0; i<p->agg.nMem; i++){
                   4583:       int freeCtx;
                   4584:       if( p->agg.apFunc[i]==0 ) continue;
                   4585:       if( p->agg.apFunc[i]->xFinalize==0 ) continue;
                   4586:       ctx.s.flags = MEM_Null;
                   4587:       ctx.s.z = aMem[i].zShort;
                   4588:       ctx.pAgg = (void*)aMem[i].z;
                   4589:       freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
                   4590:       ctx.cnt = aMem[i].i;
                   4591:       ctx.isStep = 0;
                   4592:       ctx.pFunc = p->agg.apFunc[i];
                   4593:       (*p->agg.apFunc[i]->xFinalize)(&ctx);
                   4594:       if( freeCtx ){
                   4595:         sqliteFree( aMem[i].z );
                   4596:       }
                   4597:       aMem[i] = ctx.s;
                   4598:       if( aMem[i].flags & MEM_Short ){
                   4599:         aMem[i].z = aMem[i].zShort;
                   4600:       }
                   4601:     }
                   4602:   }
                   4603:   break;
                   4604: }
                   4605: 
                   4606: /* Opcode: SetInsert P1 * P3
                   4607: **
                   4608: ** If Set P1 does not exist then create it.  Then insert value
                   4609: ** P3 into that set.  If P3 is NULL, then insert the top of the
                   4610: ** stack into the set.
                   4611: */
                   4612: case OP_SetInsert: {
                   4613:   int i = pOp->p1;
                   4614:   if( p->nSet<=i ){
                   4615:     int k;
                   4616:     Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
                   4617:     if( aSet==0 ) goto no_mem;
                   4618:     p->aSet = aSet;
                   4619:     for(k=p->nSet; k<=i; k++){
                   4620:       sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
                   4621:     }
                   4622:     p->nSet = i+1;
                   4623:   }
                   4624:   if( pOp->p3 ){
                   4625:     sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
                   4626:   }else{
                   4627:     assert( pTos>=p->aStack );
                   4628:     Stringify(pTos);
                   4629:     sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
                   4630:     Release(pTos);
                   4631:     pTos--;
                   4632:   }
                   4633:   if( sqlite_malloc_failed ) goto no_mem;
                   4634:   break;
                   4635: }
                   4636: 
                   4637: /* Opcode: SetFound P1 P2 *
                   4638: **
                   4639: ** Pop the stack once and compare the value popped off with the
                   4640: ** contents of set P1.  If the element popped exists in set P1,
                   4641: ** then jump to P2.  Otherwise fall through.
                   4642: */
                   4643: case OP_SetFound: {
                   4644:   int i = pOp->p1;
                   4645:   assert( pTos>=p->aStack );
                   4646:   Stringify(pTos);
                   4647:   if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
                   4648:     pc = pOp->p2 - 1;
                   4649:   }
                   4650:   Release(pTos);
                   4651:   pTos--;
                   4652:   break;
                   4653: }
                   4654: 
                   4655: /* Opcode: SetNotFound P1 P2 *
                   4656: **
                   4657: ** Pop the stack once and compare the value popped off with the
                   4658: ** contents of set P1.  If the element popped does not exists in 
                   4659: ** set P1, then jump to P2.  Otherwise fall through.
                   4660: */
                   4661: case OP_SetNotFound: {
                   4662:   int i = pOp->p1;
                   4663:   assert( pTos>=p->aStack );
                   4664:   Stringify(pTos);
                   4665:   if( i<0 || i>=p->nSet ||
                   4666:        sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
                   4667:     pc = pOp->p2 - 1;
                   4668:   }
                   4669:   Release(pTos);
                   4670:   pTos--;
                   4671:   break;
                   4672: }
                   4673: 
                   4674: /* Opcode: SetFirst P1 P2 *
                   4675: **
                   4676: ** Read the first element from set P1 and push it onto the stack.  If the
                   4677: ** set is empty, push nothing and jump immediately to P2.  This opcode is
                   4678: ** used in combination with OP_SetNext to loop over all elements of a set.
                   4679: */
                   4680: /* Opcode: SetNext P1 P2 *
                   4681: **
                   4682: ** Read the next element from set P1 and push it onto the stack.  If there
                   4683: ** are no more elements in the set, do not do the push and fall through.
                   4684: ** Otherwise, jump to P2 after pushing the next set element.
                   4685: */
                   4686: case OP_SetFirst: 
                   4687: case OP_SetNext: {
                   4688:   Set *pSet;
                   4689:   CHECK_FOR_INTERRUPT;
                   4690:   if( pOp->p1<0 || pOp->p1>=p->nSet ){
                   4691:     if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
                   4692:     break;
                   4693:   }
                   4694:   pSet = &p->aSet[pOp->p1];
                   4695:   if( pOp->opcode==OP_SetFirst ){
                   4696:     pSet->prev = sqliteHashFirst(&pSet->hash);
                   4697:     if( pSet->prev==0 ){
                   4698:       pc = pOp->p2 - 1;
                   4699:       break;
                   4700:     }
                   4701:   }else{
                   4702:     if( pSet->prev ){
                   4703:       pSet->prev = sqliteHashNext(pSet->prev);
                   4704:     }
                   4705:     if( pSet->prev==0 ){
                   4706:       break;
                   4707:     }else{
                   4708:       pc = pOp->p2 - 1;
                   4709:     }
                   4710:   }
                   4711:   pTos++;
                   4712:   pTos->z = sqliteHashKey(pSet->prev);
                   4713:   pTos->n = sqliteHashKeysize(pSet->prev);
                   4714:   pTos->flags = MEM_Str | MEM_Ephem;
                   4715:   break;
                   4716: }
                   4717: 
                   4718: /* Opcode: Vacuum * * *
                   4719: **
                   4720: ** Vacuum the entire database.  This opcode will cause other virtual
                   4721: ** machines to be created and run.  It may not be called from within
                   4722: ** a transaction.
                   4723: */
                   4724: case OP_Vacuum: {
                   4725:   if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; 
                   4726:   rc = sqliteRunVacuum(&p->zErrMsg, db);
                   4727:   if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
                   4728:   break;
                   4729: }
                   4730: 
                   4731: /* Opcode: StackDepth * * *
                   4732: **
                   4733: ** Push an integer onto the stack which is the depth of the stack prior
                   4734: ** to that integer being pushed.
                   4735: */
                   4736: case OP_StackDepth: {
                   4737:   int depth = (&pTos[1]) - p->aStack;
                   4738:   pTos++;
                   4739:   pTos->i = depth;
                   4740:   pTos->flags = MEM_Int;
                   4741:   break;
                   4742: }
                   4743: 
                   4744: /* Opcode: StackReset * * *
                   4745: **
                   4746: ** Pop a single integer off of the stack.  Then pop the stack
                   4747: ** as many times as necessary to get the depth of the stack down
                   4748: ** to the value of the integer that was popped.
                   4749: */
                   4750: case OP_StackReset: {
                   4751:   int depth, goal;
                   4752:   assert( pTos>=p->aStack );
                   4753:   Integerify(pTos);
                   4754:   goal = pTos->i;
                   4755:   depth = (&pTos[1]) - p->aStack;
                   4756:   assert( goal<depth );
                   4757:   popStack(&pTos, depth-goal);
                   4758:   break;
                   4759: }
                   4760: 
                   4761: /* An other opcode is illegal...
                   4762: */
                   4763: default: {
                   4764:   sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
                   4765:   sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
                   4766:   rc = SQLITE_INTERNAL;
                   4767:   break;
                   4768: }
                   4769: 
                   4770: /*****************************************************************************
                   4771: ** The cases of the switch statement above this line should all be indented
                   4772: ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
                   4773: ** readability.  From this point on down, the normal indentation rules are
                   4774: ** restored.
                   4775: *****************************************************************************/
                   4776:     }
                   4777: 
                   4778: #ifdef VDBE_PROFILE
                   4779:     {
                   4780:       long long elapse = hwtime() - start;
                   4781:       pOp->cycles += elapse;
                   4782:       pOp->cnt++;
                   4783: #if 0
                   4784:         fprintf(stdout, "%10lld ", elapse);
                   4785:         sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
                   4786: #endif
                   4787:     }
                   4788: #endif
                   4789: 
                   4790:     /* The following code adds nothing to the actual functionality
                   4791:     ** of the program.  It is only here for testing and debugging.
                   4792:     ** On the other hand, it does burn CPU cycles every time through
                   4793:     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
                   4794:     */
                   4795: #ifndef NDEBUG
                   4796:     /* Sanity checking on the top element of the stack */
                   4797:     if( pTos>=p->aStack ){
                   4798:       assert( pTos->flags!=0 );  /* Must define some type */
                   4799:       if( pTos->flags & MEM_Str ){
                   4800:         int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
                   4801:         assert( x!=0 );            /* Strings must define a string subtype */
                   4802:         assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
                   4803:         assert( pTos->z!=0 );      /* Strings must have a value */
                   4804:         /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
                   4805:         assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
                   4806:         assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
                   4807:       }else{
                   4808:         /* Cannot define a string subtype for non-string objects */
                   4809:         assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
                   4810:       }
                   4811:       /* MEM_Null excludes all other types */
                   4812:       assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
                   4813:     }
                   4814:     if( pc<-1 || pc>=p->nOp ){
                   4815:       sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
                   4816:       rc = SQLITE_INTERNAL;
                   4817:     }
                   4818:     if( p->trace && pTos>=p->aStack ){
                   4819:       int i;
                   4820:       fprintf(p->trace, "Stack:");
                   4821:       for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
                   4822:         if( pTos[i].flags & MEM_Null ){
                   4823:           fprintf(p->trace, " NULL");
                   4824:         }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
                   4825:           fprintf(p->trace, " si:%d", pTos[i].i);
                   4826:         }else if( pTos[i].flags & MEM_Int ){
                   4827:           fprintf(p->trace, " i:%d", pTos[i].i);
                   4828:         }else if( pTos[i].flags & MEM_Real ){
                   4829:           fprintf(p->trace, " r:%g", pTos[i].r);
                   4830:         }else if( pTos[i].flags & MEM_Str ){
                   4831:           int j, k;
                   4832:           char zBuf[100];
                   4833:           zBuf[0] = ' ';
                   4834:           if( pTos[i].flags & MEM_Dyn ){
                   4835:             zBuf[1] = 'z';
                   4836:             assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
                   4837:           }else if( pTos[i].flags & MEM_Static ){
                   4838:             zBuf[1] = 't';
                   4839:             assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
                   4840:           }else if( pTos[i].flags & MEM_Ephem ){
                   4841:             zBuf[1] = 'e';
                   4842:             assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
                   4843:           }else{
                   4844:             zBuf[1] = 's';
                   4845:           }
                   4846:           zBuf[2] = '[';
                   4847:           k = 3;
                   4848:           for(j=0; j<20 && j<pTos[i].n; j++){
                   4849:             int c = pTos[i].z[j];
                   4850:             if( c==0 && j==pTos[i].n-1 ) break;
                   4851:             if( isprint(c) && !isspace(c) ){
                   4852:               zBuf[k++] = c;
                   4853:             }else{
                   4854:               zBuf[k++] = '.';
                   4855:             }
                   4856:           }
                   4857:           zBuf[k++] = ']';
                   4858:           zBuf[k++] = 0;
                   4859:           fprintf(p->trace, "%s", zBuf);
                   4860:         }else{
                   4861:           fprintf(p->trace, " ???");
                   4862:         }
                   4863:       }
                   4864:       if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
                   4865:       fprintf(p->trace,"\n");
                   4866:     }
                   4867: #endif
                   4868:   }  /* The end of the for(;;) loop the loops through opcodes */
                   4869: 
                   4870:   /* If we reach this point, it means that execution is finished.
                   4871:   */
                   4872: vdbe_halt:
                   4873:   CHECK_FOR_INTERRUPT
                   4874:   if( rc ){
                   4875:     p->rc = rc;
                   4876:     rc = SQLITE_ERROR;
                   4877:   }else{
                   4878:     rc = SQLITE_DONE;
                   4879:   }
                   4880:   p->magic = VDBE_MAGIC_HALT;
                   4881:   p->pTos = pTos;
                   4882:   return rc;
                   4883: 
                   4884:   /* Jump to here if a malloc() fails.  It's hard to get a malloc()
                   4885:   ** to fail on a modern VM computer, so this code is untested.
                   4886:   */
                   4887: no_mem:
                   4888:   sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
                   4889:   rc = SQLITE_NOMEM;
                   4890:   goto vdbe_halt;
                   4891: 
                   4892:   /* Jump to here for an SQLITE_MISUSE error.
                   4893:   */
                   4894: abort_due_to_misuse:
                   4895:   rc = SQLITE_MISUSE;
                   4896:   /* Fall thru into abort_due_to_error */
                   4897: 
                   4898:   /* Jump to here for any other kind of fatal error.  The "rc" variable
                   4899:   ** should hold the error number.
                   4900:   */
                   4901: abort_due_to_error:
                   4902:   if( p->zErrMsg==0 ){
                   4903:     if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
                   4904:     sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
                   4905:   }
                   4906:   goto vdbe_halt;
                   4907: 
                   4908:   /* Jump to here if the sqlite_interrupt() API sets the interrupt
                   4909:   ** flag.
                   4910:   */
                   4911: abort_due_to_interrupt:
                   4912:   assert( db->flags & SQLITE_Interrupt );
                   4913:   db->flags &= ~SQLITE_Interrupt;
                   4914:   if( db->magic!=SQLITE_MAGIC_BUSY ){
                   4915:     rc = SQLITE_MISUSE;
                   4916:   }else{
                   4917:     rc = SQLITE_INTERRUPT;
                   4918:   }
                   4919:   sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
                   4920:   goto vdbe_halt;
                   4921: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>