Annotation of embedaddon/rsync/zlib/adler32.c, revision 1.1.1.1
1.1 misho 1: /* adler32.c -- compute the Adler-32 checksum of a data stream
2: * Copyright (C) 1995-2004 Mark Adler
3: * For conditions of distribution and use, see copyright notice in zlib.h
4: */
5:
6: /* @(#) $Id$ */
7:
8: #define ZLIB_INTERNAL
9: #include "zlib.h"
10:
11: #define BASE 65521UL /* largest prime smaller than 65536 */
12: #define NMAX 5552
13: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
14:
15: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
16: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
17: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
18: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
19: #define DO16(buf) DO8(buf,0); DO8(buf,8);
20:
21: /* use NO_DIVIDE if your processor does not do division in hardware */
22: #ifdef NO_DIVIDE
23: # define MOD(a) \
24: do { \
25: if (a >= (BASE << 16)) a -= (BASE << 16); \
26: if (a >= (BASE << 15)) a -= (BASE << 15); \
27: if (a >= (BASE << 14)) a -= (BASE << 14); \
28: if (a >= (BASE << 13)) a -= (BASE << 13); \
29: if (a >= (BASE << 12)) a -= (BASE << 12); \
30: if (a >= (BASE << 11)) a -= (BASE << 11); \
31: if (a >= (BASE << 10)) a -= (BASE << 10); \
32: if (a >= (BASE << 9)) a -= (BASE << 9); \
33: if (a >= (BASE << 8)) a -= (BASE << 8); \
34: if (a >= (BASE << 7)) a -= (BASE << 7); \
35: if (a >= (BASE << 6)) a -= (BASE << 6); \
36: if (a >= (BASE << 5)) a -= (BASE << 5); \
37: if (a >= (BASE << 4)) a -= (BASE << 4); \
38: if (a >= (BASE << 3)) a -= (BASE << 3); \
39: if (a >= (BASE << 2)) a -= (BASE << 2); \
40: if (a >= (BASE << 1)) a -= (BASE << 1); \
41: if (a >= BASE) a -= BASE; \
42: } while (0)
43: # define MOD4(a) \
44: do { \
45: if (a >= (BASE << 4)) a -= (BASE << 4); \
46: if (a >= (BASE << 3)) a -= (BASE << 3); \
47: if (a >= (BASE << 2)) a -= (BASE << 2); \
48: if (a >= (BASE << 1)) a -= (BASE << 1); \
49: if (a >= BASE) a -= BASE; \
50: } while (0)
51: #else
52: # define MOD(a) a %= BASE
53: # define MOD4(a) a %= BASE
54: #endif
55:
56: /* ========================================================================= */
57: uLong ZEXPORT adler32(adler, buf, len)
58: uLong adler;
59: const Bytef *buf;
60: uInt len;
61: {
62: unsigned long sum2;
63: unsigned n;
64:
65: /* split Adler-32 into component sums */
66: sum2 = (adler >> 16) & 0xffff;
67: adler &= 0xffff;
68:
69: /* in case user likes doing a byte at a time, keep it fast */
70: if (len == 1) {
71: adler += buf[0];
72: if (adler >= BASE)
73: adler -= BASE;
74: sum2 += adler;
75: if (sum2 >= BASE)
76: sum2 -= BASE;
77: return adler | (sum2 << 16);
78: }
79:
80: /* initial Adler-32 value (deferred check for len == 1 speed) */
81: if (buf == Z_NULL)
82: return 1L;
83:
84: /* in case short lengths are provided, keep it somewhat fast */
85: if (len < 16) {
86: while (len--) {
87: adler += *buf++;
88: sum2 += adler;
89: }
90: if (adler >= BASE)
91: adler -= BASE;
92: MOD4(sum2); /* only added so many BASE's */
93: return adler | (sum2 << 16);
94: }
95:
96: /* do length NMAX blocks -- requires just one modulo operation */
97: while (len >= NMAX) {
98: len -= NMAX;
99: n = NMAX / 16; /* NMAX is divisible by 16 */
100: do {
101: DO16(buf); /* 16 sums unrolled */
102: buf += 16;
103: } while (--n);
104: MOD(adler);
105: MOD(sum2);
106: }
107:
108: /* do remaining bytes (less than NMAX, still just one modulo) */
109: if (len) { /* avoid modulos if none remaining */
110: while (len >= 16) {
111: len -= 16;
112: DO16(buf);
113: buf += 16;
114: }
115: while (len--) {
116: adler += *buf++;
117: sum2 += adler;
118: }
119: MOD(adler);
120: MOD(sum2);
121: }
122:
123: /* return recombined sums */
124: return adler | (sum2 << 16);
125: }
126:
127: /* ========================================================================= */
128: uLong ZEXPORT adler32_combine(adler1, adler2, len2)
129: uLong adler1;
130: uLong adler2;
131: z_off_t len2;
132: {
133: unsigned long sum1;
134: unsigned long sum2;
135: unsigned rem;
136:
137: /* the derivation of this formula is left as an exercise for the reader */
138: rem = (unsigned)(len2 % BASE);
139: sum1 = adler1 & 0xffff;
140: sum2 = rem * sum1;
141: MOD(sum2);
142: sum1 += (adler2 & 0xffff) + BASE - 1;
143: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
144: if (sum1 > BASE) sum1 -= BASE;
145: if (sum1 > BASE) sum1 -= BASE;
146: if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
147: if (sum2 > BASE) sum2 -= BASE;
148: return sum1 | (sum2 << 16);
149: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>