File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / rsync / zlib / crc32.c
Revision 1.1.1.3 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Wed Mar 17 00:32:36 2021 UTC (3 years, 3 months ago) by misho
Branches: rsync, MAIN
CVS tags: v3_2_3, HEAD
rsync 3.2.3

    1: /* crc32.c -- compute the CRC-32 of a data stream
    2:  * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
    3:  * For conditions of distribution and use, see copyright notice in zlib.h
    4:  *
    5:  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
    6:  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
    7:  * tables for updating the shift register in one step with three exclusive-ors
    8:  * instead of four steps with four exclusive-ors.  This results in about a
    9:  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
   10:  */
   11: 
   12: /* @(#) $Id: crc32.c,v 1.1.1.3 2021/03/17 00:32:36 misho Exp $ */
   13: 
   14: /*
   15:   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
   16:   protection on the static variables used to control the first-use generation
   17:   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
   18:   first call get_crc_table() to initialize the tables before allowing more than
   19:   one thread to use crc32().
   20: 
   21:   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
   22:  */
   23: 
   24: #ifdef MAKECRCH
   25: #  include <stdio.h>
   26: #  ifndef DYNAMIC_CRC_TABLE
   27: #    define DYNAMIC_CRC_TABLE
   28: #  endif /* !DYNAMIC_CRC_TABLE */
   29: #endif /* MAKECRCH */
   30: 
   31: #include "zutil.h"      /* for STDC and FAR definitions */
   32: 
   33: #define local static
   34: 
   35: /* Definitions for doing the crc four data bytes at a time. */
   36: #if !defined(NOBYFOUR) && defined(Z_U4)
   37: #  define BYFOUR
   38: #endif
   39: #ifdef BYFOUR
   40:    local unsigned long crc32_little OF((unsigned long,
   41:                         const unsigned char FAR *, unsigned));
   42:    local unsigned long crc32_big OF((unsigned long,
   43:                         const unsigned char FAR *, unsigned));
   44: #  define TBLS 8
   45: #else
   46: #  define TBLS 1
   47: #endif /* BYFOUR */
   48: 
   49: /* Local functions for crc concatenation */
   50: local unsigned long gf2_matrix_times OF((unsigned long *mat,
   51:                                          unsigned long vec));
   52: local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
   53: local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
   54: 
   55: 
   56: #ifdef DYNAMIC_CRC_TABLE
   57: 
   58: local volatile int crc_table_empty = 1;
   59: local z_crc_t FAR crc_table[TBLS][256];
   60: local void make_crc_table OF((void));
   61: #ifdef MAKECRCH
   62:    local void write_table OF((FILE *, const z_crc_t FAR *));
   63: #endif /* MAKECRCH */
   64: /*
   65:   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
   66:   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
   67: 
   68:   Polynomials over GF(2) are represented in binary, one bit per coefficient,
   69:   with the lowest powers in the most significant bit.  Then adding polynomials
   70:   is just exclusive-or, and multiplying a polynomial by x is a right shift by
   71:   one.  If we call the above polynomial p, and represent a byte as the
   72:   polynomial q, also with the lowest power in the most significant bit (so the
   73:   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
   74:   where a mod b means the remainder after dividing a by b.
   75: 
   76:   This calculation is done using the shift-register method of multiplying and
   77:   taking the remainder.  The register is initialized to zero, and for each
   78:   incoming bit, x^32 is added mod p to the register if the bit is a one (where
   79:   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
   80:   x (which is shifting right by one and adding x^32 mod p if the bit shifted
   81:   out is a one).  We start with the highest power (least significant bit) of
   82:   q and repeat for all eight bits of q.
   83: 
   84:   The first table is simply the CRC of all possible eight bit values.  This is
   85:   all the information needed to generate CRCs on data a byte at a time for all
   86:   combinations of CRC register values and incoming bytes.  The remaining tables
   87:   allow for word-at-a-time CRC calculation for both big-endian and little-
   88:   endian machines, where a word is four bytes.
   89: */
   90: local void make_crc_table()
   91: {
   92:     z_crc_t c;
   93:     int n, k;
   94:     z_crc_t poly;                       /* polynomial exclusive-or pattern */
   95:     /* terms of polynomial defining this crc (except x^32): */
   96:     static volatile int first = 1;      /* flag to limit concurrent making */
   97:     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
   98: 
   99:     /* See if another task is already doing this (not thread-safe, but better
  100:        than nothing -- significantly reduces duration of vulnerability in
  101:        case the advice about DYNAMIC_CRC_TABLE is ignored) */
  102:     if (first) {
  103:         first = 0;
  104: 
  105:         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
  106:         poly = 0;
  107:         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
  108:             poly |= (z_crc_t)1 << (31 - p[n]);
  109: 
  110:         /* generate a crc for every 8-bit value */
  111:         for (n = 0; n < 256; n++) {
  112:             c = (z_crc_t)n;
  113:             for (k = 0; k < 8; k++)
  114:                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
  115:             crc_table[0][n] = c;
  116:         }
  117: 
  118: #ifdef BYFOUR
  119:         /* generate crc for each value followed by one, two, and three zeros,
  120:            and then the byte reversal of those as well as the first table */
  121:         for (n = 0; n < 256; n++) {
  122:             c = crc_table[0][n];
  123:             crc_table[4][n] = ZSWAP32(c);
  124:             for (k = 1; k < 4; k++) {
  125:                 c = crc_table[0][c & 0xff] ^ (c >> 8);
  126:                 crc_table[k][n] = c;
  127:                 crc_table[k + 4][n] = ZSWAP32(c);
  128:             }
  129:         }
  130: #endif /* BYFOUR */
  131: 
  132:         crc_table_empty = 0;
  133:     }
  134:     else {      /* not first */
  135:         /* wait for the other guy to finish (not efficient, but rare) */
  136:         while (crc_table_empty)
  137:             ;
  138:     }
  139: 
  140: #ifdef MAKECRCH
  141:     /* write out CRC tables to crc32.h */
  142:     {
  143:         FILE *out;
  144: 
  145:         out = fopen("crc32.h", "w");
  146:         if (out == NULL) return;
  147:         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
  148:         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
  149:         fprintf(out, "local const z_crc_t FAR ");
  150:         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
  151:         write_table(out, crc_table[0]);
  152: #  ifdef BYFOUR
  153:         fprintf(out, "#ifdef BYFOUR\n");
  154:         for (k = 1; k < 8; k++) {
  155:             fprintf(out, "  },\n  {\n");
  156:             write_table(out, crc_table[k]);
  157:         }
  158:         fprintf(out, "#endif\n");
  159: #  endif /* BYFOUR */
  160:         fprintf(out, "  }\n};\n");
  161:         fclose(out);
  162:     }
  163: #endif /* MAKECRCH */
  164: }
  165: 
  166: #ifdef MAKECRCH
  167: local void write_table(out, table)
  168:     FILE *out;
  169:     const z_crc_t FAR *table;
  170: {
  171:     int n;
  172: 
  173:     for (n = 0; n < 256; n++)
  174:         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
  175:                 (unsigned long)(table[n]),
  176:                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
  177: }
  178: #endif /* MAKECRCH */
  179: 
  180: #else /* !DYNAMIC_CRC_TABLE */
  181: /* ========================================================================
  182:  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
  183:  */
  184: #include "crc32.h"
  185: #endif /* DYNAMIC_CRC_TABLE */
  186: 
  187: /* =========================================================================
  188:  * This function can be used by asm versions of crc32()
  189:  */
  190: const z_crc_t FAR * ZEXPORT get_crc_table()
  191: {
  192: #ifdef DYNAMIC_CRC_TABLE
  193:     if (crc_table_empty)
  194:         make_crc_table();
  195: #endif /* DYNAMIC_CRC_TABLE */
  196:     return (const z_crc_t FAR *)crc_table;
  197: }
  198: 
  199: /* ========================================================================= */
  200: #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
  201: #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
  202: 
  203: /* ========================================================================= */
  204: unsigned long ZEXPORT crc32(crc, buf, len)
  205:     unsigned long crc;
  206:     const unsigned char FAR *buf;
  207:     uInt len;
  208: {
  209:     if (buf == Z_NULL) return 0UL;
  210: 
  211: #ifdef DYNAMIC_CRC_TABLE
  212:     if (crc_table_empty)
  213:         make_crc_table();
  214: #endif /* DYNAMIC_CRC_TABLE */
  215: 
  216: #ifdef BYFOUR
  217:     if (sizeof(void *) == sizeof(ptrdiff_t)) {
  218:         z_crc_t endian;
  219: 
  220:         endian = 1;
  221:         if (*((unsigned char *)(&endian)))
  222:             return crc32_little(crc, buf, len);
  223:         else
  224:             return crc32_big(crc, buf, len);
  225:     }
  226: #endif /* BYFOUR */
  227:     crc = crc ^ 0xffffffffUL;
  228:     while (len >= 8) {
  229:         DO8;
  230:         len -= 8;
  231:     }
  232:     if (len) do {
  233:         DO1;
  234:     } while (--len);
  235:     return crc ^ 0xffffffffUL;
  236: }
  237: 
  238: #ifdef BYFOUR
  239: 
  240: /* ========================================================================= */
  241: #define DOLIT4 c ^= *buf4++; \
  242:         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
  243:             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
  244: #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
  245: 
  246: /* ========================================================================= */
  247: local unsigned long crc32_little(crc, buf, len)
  248:     unsigned long crc;
  249:     const unsigned char FAR *buf;
  250:     unsigned len;
  251: {
  252:     register z_crc_t c;
  253:     register const z_crc_t FAR *buf4;
  254: 
  255:     c = (z_crc_t)crc;
  256:     c = ~c;
  257:     while (len && ((ptrdiff_t)buf & 3)) {
  258:         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
  259:         len--;
  260:     }
  261: 
  262:     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
  263:     while (len >= 32) {
  264:         DOLIT32;
  265:         len -= 32;
  266:     }
  267:     while (len >= 4) {
  268:         DOLIT4;
  269:         len -= 4;
  270:     }
  271:     buf = (const unsigned char FAR *)buf4;
  272: 
  273:     if (len) do {
  274:         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
  275:     } while (--len);
  276:     c = ~c;
  277:     return (unsigned long)c;
  278: }
  279: 
  280: /* ========================================================================= */
  281: #define DOBIG4 c ^= *buf4++; \
  282:         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
  283:             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
  284: #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
  285: 
  286: /* ========================================================================= */
  287: local unsigned long crc32_big(crc, buf, len)
  288:     unsigned long crc;
  289:     const unsigned char FAR *buf;
  290:     unsigned len;
  291: {
  292:     register z_crc_t c;
  293:     register const z_crc_t FAR *buf4;
  294: 
  295:     c = ZSWAP32((z_crc_t)crc);
  296:     c = ~c;
  297:     while (len && ((ptrdiff_t)buf & 3)) {
  298:         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
  299:         len--;
  300:     }
  301: 
  302:     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
  303:     while (len >= 32) {
  304:         DOBIG32;
  305:         len -= 32;
  306:     }
  307:     while (len >= 4) {
  308:         DOBIG4;
  309:         len -= 4;
  310:     }
  311:     buf = (const unsigned char FAR *)buf4;
  312: 
  313:     if (len) do {
  314:         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
  315:     } while (--len);
  316:     c = ~c;
  317:     return (unsigned long)(ZSWAP32(c));
  318: }
  319: 
  320: #endif /* BYFOUR */
  321: 
  322: #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
  323: 
  324: /* ========================================================================= */
  325: local unsigned long gf2_matrix_times(mat, vec)
  326:     unsigned long *mat;
  327:     unsigned long vec;
  328: {
  329:     unsigned long sum;
  330: 
  331:     sum = 0;
  332:     while (vec) {
  333:         if (vec & 1)
  334:             sum ^= *mat;
  335:         vec >>= 1;
  336:         mat++;
  337:     }
  338:     return sum;
  339: }
  340: 
  341: /* ========================================================================= */
  342: local void gf2_matrix_square(square, mat)
  343:     unsigned long *square;
  344:     unsigned long *mat;
  345: {
  346:     int n;
  347: 
  348:     for (n = 0; n < GF2_DIM; n++)
  349:         square[n] = gf2_matrix_times(mat, mat[n]);
  350: }
  351: 
  352: /* ========================================================================= */
  353: local uLong crc32_combine_(crc1, crc2, len2)
  354:     uLong crc1;
  355:     uLong crc2;
  356:     z_off64_t len2;
  357: {
  358:     int n;
  359:     unsigned long row;
  360:     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
  361:     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
  362: 
  363:     /* degenerate case (also disallow negative lengths) */
  364:     if (len2 <= 0)
  365:         return crc1;
  366: 
  367:     /* put operator for one zero bit in odd */
  368:     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
  369:     row = 1;
  370:     for (n = 1; n < GF2_DIM; n++) {
  371:         odd[n] = row;
  372:         row <<= 1;
  373:     }
  374: 
  375:     /* put operator for two zero bits in even */
  376:     gf2_matrix_square(even, odd);
  377: 
  378:     /* put operator for four zero bits in odd */
  379:     gf2_matrix_square(odd, even);
  380: 
  381:     /* apply len2 zeros to crc1 (first square will put the operator for one
  382:        zero byte, eight zero bits, in even) */
  383:     do {
  384:         /* apply zeros operator for this bit of len2 */
  385:         gf2_matrix_square(even, odd);
  386:         if (len2 & 1)
  387:             crc1 = gf2_matrix_times(even, crc1);
  388:         len2 >>= 1;
  389: 
  390:         /* if no more bits set, then done */
  391:         if (len2 == 0)
  392:             break;
  393: 
  394:         /* another iteration of the loop with odd and even swapped */
  395:         gf2_matrix_square(odd, even);
  396:         if (len2 & 1)
  397:             crc1 = gf2_matrix_times(odd, crc1);
  398:         len2 >>= 1;
  399: 
  400:         /* if no more bits set, then done */
  401:     } while (len2 != 0);
  402: 
  403:     /* return combined crc */
  404:     crc1 ^= crc2;
  405:     return crc1;
  406: }
  407: 
  408: /* ========================================================================= */
  409: uLong ZEXPORT crc32_combine(crc1, crc2, len2)
  410:     uLong crc1;
  411:     uLong crc2;
  412:     z_off_t len2;
  413: {
  414:     return crc32_combine_(crc1, crc2, len2);
  415: }
  416: 
  417: uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
  418:     uLong crc1;
  419:     uLong crc2;
  420:     z_off64_t len2;
  421: {
  422:     return crc32_combine_(crc1, crc2, len2);
  423: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>