File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / rsync / zlib / deflate.c
Revision 1.1.1.2 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Mon Oct 14 07:51:14 2013 UTC (10 years, 8 months ago) by misho
Branches: rsync, MAIN
CVS tags: v3_2_3, v3_1_2p5, RSYNC3_1_0, HEAD
v 3.1.0

    1: /* deflate.c -- compress data using the deflation algorithm
    2:  * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
    3:  * For conditions of distribution and use, see copyright notice in zlib.h
    4:  */
    5: 
    6: /*
    7:  *  ALGORITHM
    8:  *
    9:  *      The "deflation" process depends on being able to identify portions
   10:  *      of the input text which are identical to earlier input (within a
   11:  *      sliding window trailing behind the input currently being processed).
   12:  *
   13:  *      The most straightforward technique turns out to be the fastest for
   14:  *      most input files: try all possible matches and select the longest.
   15:  *      The key feature of this algorithm is that insertions into the string
   16:  *      dictionary are very simple and thus fast, and deletions are avoided
   17:  *      completely. Insertions are performed at each input character, whereas
   18:  *      string matches are performed only when the previous match ends. So it
   19:  *      is preferable to spend more time in matches to allow very fast string
   20:  *      insertions and avoid deletions. The matching algorithm for small
   21:  *      strings is inspired from that of Rabin & Karp. A brute force approach
   22:  *      is used to find longer strings when a small match has been found.
   23:  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
   24:  *      (by Leonid Broukhis).
   25:  *         A previous version of this file used a more sophisticated algorithm
   26:  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
   27:  *      time, but has a larger average cost, uses more memory and is patented.
   28:  *      However the F&G algorithm may be faster for some highly redundant
   29:  *      files if the parameter max_chain_length (described below) is too large.
   30:  *
   31:  *  ACKNOWLEDGEMENTS
   32:  *
   33:  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
   34:  *      I found it in 'freeze' written by Leonid Broukhis.
   35:  *      Thanks to many people for bug reports and testing.
   36:  *
   37:  *  REFERENCES
   38:  *
   39:  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
   40:  *      Available in http://tools.ietf.org/html/rfc1951
   41:  *
   42:  *      A description of the Rabin and Karp algorithm is given in the book
   43:  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
   44:  *
   45:  *      Fiala,E.R., and Greene,D.H.
   46:  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
   47:  *
   48:  */
   49: 
   50: /* @(#) $Id: deflate.c,v 1.1.1.2 2013/10/14 07:51:14 misho Exp $ */
   51: 
   52: #include "deflate.h"
   53: 
   54: #define read_buf dread_buf
   55: 
   56: const char deflate_copyright[] =
   57:    " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler ";
   58: /*
   59:   If you use the zlib library in a product, an acknowledgment is welcome
   60:   in the documentation of your product. If for some reason you cannot
   61:   include such an acknowledgment, I would appreciate that you keep this
   62:   copyright string in the executable of your product.
   63:  */
   64: 
   65: /* ===========================================================================
   66:  *  Function prototypes.
   67:  */
   68: typedef enum {
   69:     need_more,      /* block not completed, need more input or more output */
   70:     block_done,     /* block flush performed */
   71:     finish_started, /* finish started, need only more output at next deflate */
   72:     finish_done     /* finish done, accept no more input or output */
   73: } block_state;
   74: 
   75: typedef block_state (*compress_func) OF((deflate_state *s, int flush));
   76: /* Compression function. Returns the block state after the call. */
   77: 
   78: local void fill_window    OF((deflate_state *s));
   79: local block_state deflate_stored OF((deflate_state *s, int flush));
   80: local block_state deflate_fast   OF((deflate_state *s, int flush));
   81: #ifndef FASTEST
   82: local block_state deflate_slow   OF((deflate_state *s, int flush));
   83: #endif
   84: local block_state deflate_rle    OF((deflate_state *s, int flush));
   85: local block_state deflate_huff   OF((deflate_state *s, int flush));
   86: local void lm_init        OF((deflate_state *s));
   87: local void putShortMSB    OF((deflate_state *s, uInt b));
   88: local void flush_pending  OF((z_streamp strm));
   89: local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
   90: #ifdef ASMV
   91:       void match_init OF((void)); /* asm code initialization */
   92:       uInt longest_match  OF((deflate_state *s, IPos cur_match));
   93: #else
   94: local uInt longest_match  OF((deflate_state *s, IPos cur_match));
   95: #endif
   96: 
   97: #ifdef DEBUG
   98: local  void check_match OF((deflate_state *s, IPos start, IPos match,
   99:                             int length));
  100: #endif
  101: 
  102: /* ===========================================================================
  103:  * Local data
  104:  */
  105: 
  106: #define NIL 0
  107: /* Tail of hash chains */
  108: 
  109: #ifndef TOO_FAR
  110: #  define TOO_FAR 4096
  111: #endif
  112: /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
  113: 
  114: /* Values for max_lazy_match, good_match and max_chain_length, depending on
  115:  * the desired pack level (0..9). The values given below have been tuned to
  116:  * exclude worst case performance for pathological files. Better values may be
  117:  * found for specific files.
  118:  */
  119: typedef struct config_s {
  120:    ush good_length; /* reduce lazy search above this match length */
  121:    ush max_lazy;    /* do not perform lazy search above this match length */
  122:    ush nice_length; /* quit search above this match length */
  123:    ush max_chain;
  124:    compress_func func;
  125: } config;
  126: 
  127: #ifdef FASTEST
  128: local const config configuration_table[2] = {
  129: /*      good lazy nice chain */
  130: /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
  131: /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
  132: #else
  133: local const config configuration_table[10] = {
  134: /*      good lazy nice chain */
  135: /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
  136: /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
  137: /* 2 */ {4,    5, 16,    8, deflate_fast},
  138: /* 3 */ {4,    6, 32,   32, deflate_fast},
  139: 
  140: /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
  141: /* 5 */ {8,   16, 32,   32, deflate_slow},
  142: /* 6 */ {8,   16, 128, 128, deflate_slow},
  143: /* 7 */ {8,   32, 128, 256, deflate_slow},
  144: /* 8 */ {32, 128, 258, 1024, deflate_slow},
  145: /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
  146: #endif
  147: 
  148: /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
  149:  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
  150:  * meaning.
  151:  */
  152: 
  153: #define EQUAL 0
  154: /* result of memcmp for equal strings */
  155: 
  156: #ifndef NO_DUMMY_DECL
  157: struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
  158: #endif
  159: 
  160: /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
  161: #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
  162: 
  163: /* ===========================================================================
  164:  * Update a hash value with the given input byte
  165:  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
  166:  *    input characters, so that a running hash key can be computed from the
  167:  *    previous key instead of complete recalculation each time.
  168:  */
  169: #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
  170: 
  171: 
  172: /* ===========================================================================
  173:  * Insert string str in the dictionary and set match_head to the previous head
  174:  * of the hash chain (the most recent string with same hash key). Return
  175:  * the previous length of the hash chain.
  176:  * If this file is compiled with -DFASTEST, the compression level is forced
  177:  * to 1, and no hash chains are maintained.
  178:  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
  179:  *    input characters and the first MIN_MATCH bytes of str are valid
  180:  *    (except for the last MIN_MATCH-1 bytes of the input file).
  181:  */
  182: #ifdef FASTEST
  183: #define INSERT_STRING(s, str, match_head) \
  184:    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
  185:     match_head = s->head[s->ins_h], \
  186:     s->head[s->ins_h] = (Pos)(str))
  187: #else
  188: #define INSERT_STRING(s, str, match_head) \
  189:    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
  190:     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
  191:     s->head[s->ins_h] = (Pos)(str))
  192: #endif
  193: 
  194: /* ===========================================================================
  195:  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
  196:  * prev[] will be initialized on the fly.
  197:  */
  198: #define CLEAR_HASH(s) \
  199:     s->head[s->hash_size-1] = NIL; \
  200:     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
  201: 
  202: /* ========================================================================= */
  203: int ZEXPORT deflateInit_(strm, level, version, stream_size)
  204:     z_streamp strm;
  205:     int level;
  206:     const char *version;
  207:     int stream_size;
  208: {
  209:     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
  210:                          Z_DEFAULT_STRATEGY, version, stream_size);
  211:     /* To do: ignore strm->next_in if we use it as window */
  212: }
  213: 
  214: /* ========================================================================= */
  215: int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
  216:                   version, stream_size)
  217:     z_streamp strm;
  218:     int  level;
  219:     int  method;
  220:     int  windowBits;
  221:     int  memLevel;
  222:     int  strategy;
  223:     const char *version;
  224:     int stream_size;
  225: {
  226:     deflate_state *s;
  227:     int wrap = 1;
  228:     static const char my_version[] = ZLIB_VERSION;
  229: 
  230:     ushf *overlay;
  231:     /* We overlay pending_buf and d_buf+l_buf. This works since the average
  232:      * output size for (length,distance) codes is <= 24 bits.
  233:      */
  234: 
  235:     if (version == Z_NULL || version[0] != my_version[0] ||
  236:         stream_size != sizeof(z_stream)) {
  237:         return Z_VERSION_ERROR;
  238:     }
  239:     if (strm == Z_NULL) return Z_STREAM_ERROR;
  240: 
  241:     strm->msg = Z_NULL;
  242:     if (strm->zalloc == (alloc_func)0) {
  243: #ifdef Z_SOLO
  244:         return Z_STREAM_ERROR;
  245: #else
  246:         strm->zalloc = zcalloc;
  247:         strm->opaque = (voidpf)0;
  248: #endif
  249:     }
  250:     if (strm->zfree == (free_func)0)
  251: #ifdef Z_SOLO
  252:         return Z_STREAM_ERROR;
  253: #else
  254:         strm->zfree = zcfree;
  255: #endif
  256: 
  257: #ifdef FASTEST
  258:     if (level != 0) level = 1;
  259: #else
  260:     if (level == Z_DEFAULT_COMPRESSION) level = 6;
  261: #endif
  262: 
  263:     if (windowBits < 0) { /* suppress zlib wrapper */
  264:         wrap = 0;
  265:         windowBits = -windowBits;
  266:     }
  267: #ifdef GZIP
  268:     else if (windowBits > 15) {
  269:         wrap = 2;       /* write gzip wrapper instead */
  270:         windowBits -= 16;
  271:     }
  272: #endif
  273:     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
  274:         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
  275:         strategy < 0 || strategy > Z_FIXED) {
  276:         return Z_STREAM_ERROR;
  277:     }
  278:     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
  279:     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
  280:     if (s == Z_NULL) return Z_MEM_ERROR;
  281:     strm->state = (struct internal_state FAR *)s;
  282:     s->strm = strm;
  283: 
  284:     s->wrap = wrap;
  285:     s->gzhead = Z_NULL;
  286:     s->w_bits = windowBits;
  287:     s->w_size = 1 << s->w_bits;
  288:     s->w_mask = s->w_size - 1;
  289: 
  290:     s->hash_bits = memLevel + 7;
  291:     s->hash_size = 1 << s->hash_bits;
  292:     s->hash_mask = s->hash_size - 1;
  293:     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
  294: 
  295:     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
  296:     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
  297:     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
  298: 
  299:     s->high_water = 0;      /* nothing written to s->window yet */
  300: 
  301:     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
  302: 
  303:     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
  304:     s->pending_buf = (uchf *) overlay;
  305:     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
  306: 
  307:     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
  308:         s->pending_buf == Z_NULL) {
  309:         s->status = FINISH_STATE;
  310:         strm->msg = ERR_MSG(Z_MEM_ERROR);
  311:         deflateEnd (strm);
  312:         return Z_MEM_ERROR;
  313:     }
  314:     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
  315:     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
  316: 
  317:     s->level = level;
  318:     s->strategy = strategy;
  319:     s->method = (Byte)method;
  320: 
  321:     return deflateReset(strm);
  322: }
  323: 
  324: /* ========================================================================= */
  325: int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
  326:     z_streamp strm;
  327:     const Bytef *dictionary;
  328:     uInt  dictLength;
  329: {
  330:     deflate_state *s;
  331:     uInt str, n;
  332:     int wrap;
  333:     unsigned avail;
  334:     z_const unsigned char *next;
  335: 
  336:     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
  337:         return Z_STREAM_ERROR;
  338:     s = strm->state;
  339:     wrap = s->wrap;
  340:     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
  341:         return Z_STREAM_ERROR;
  342: 
  343:     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
  344:     if (wrap == 1)
  345:         strm->adler = adler32(strm->adler, dictionary, dictLength);
  346:     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
  347: 
  348:     /* if dictionary would fill window, just replace the history */
  349:     if (dictLength >= s->w_size) {
  350:         if (wrap == 0) {            /* already empty otherwise */
  351:             CLEAR_HASH(s);
  352:             s->strstart = 0;
  353:             s->block_start = 0L;
  354:             s->insert = 0;
  355:         }
  356:         dictionary += dictLength - s->w_size;  /* use the tail */
  357:         dictLength = s->w_size;
  358:     }
  359: 
  360:     /* insert dictionary into window and hash */
  361:     avail = strm->avail_in;
  362:     next = strm->next_in;
  363:     strm->avail_in = dictLength;
  364:     strm->next_in = (z_const Bytef *)dictionary;
  365:     fill_window(s);
  366:     while (s->lookahead >= MIN_MATCH) {
  367:         str = s->strstart;
  368:         n = s->lookahead - (MIN_MATCH-1);
  369:         do {
  370:             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
  371: #ifndef FASTEST
  372:             s->prev[str & s->w_mask] = s->head[s->ins_h];
  373: #endif
  374:             s->head[s->ins_h] = (Pos)str;
  375:             str++;
  376:         } while (--n);
  377:         s->strstart = str;
  378:         s->lookahead = MIN_MATCH-1;
  379:         fill_window(s);
  380:     }
  381:     s->strstart += s->lookahead;
  382:     s->block_start = (long)s->strstart;
  383:     s->insert = s->lookahead;
  384:     s->lookahead = 0;
  385:     s->match_length = s->prev_length = MIN_MATCH-1;
  386:     s->match_available = 0;
  387:     strm->next_in = next;
  388:     strm->avail_in = avail;
  389:     s->wrap = wrap;
  390:     return Z_OK;
  391: }
  392: 
  393: /* ========================================================================= */
  394: int ZEXPORT deflateResetKeep (strm)
  395:     z_streamp strm;
  396: {
  397:     deflate_state *s;
  398: 
  399:     if (strm == Z_NULL || strm->state == Z_NULL ||
  400:         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
  401:         return Z_STREAM_ERROR;
  402:     }
  403: 
  404:     strm->total_in = strm->total_out = 0;
  405:     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
  406:     strm->data_type = Z_UNKNOWN;
  407: 
  408:     s = (deflate_state *)strm->state;
  409:     s->pending = 0;
  410:     s->pending_out = s->pending_buf;
  411: 
  412:     if (s->wrap < 0) {
  413:         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
  414:     }
  415:     s->status = s->wrap ? INIT_STATE : BUSY_STATE;
  416:     strm->adler =
  417: #ifdef GZIP
  418:         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
  419: #endif
  420:         adler32(0L, Z_NULL, 0);
  421:     s->last_flush = Z_NO_FLUSH;
  422: 
  423:     _tr_init(s);
  424: 
  425:     return Z_OK;
  426: }
  427: 
  428: /* ========================================================================= */
  429: int ZEXPORT deflateReset (strm)
  430:     z_streamp strm;
  431: {
  432:     int ret;
  433: 
  434:     ret = deflateResetKeep(strm);
  435:     if (ret == Z_OK)
  436:         lm_init(strm->state);
  437:     return ret;
  438: }
  439: 
  440: /* ========================================================================= */
  441: int ZEXPORT deflateSetHeader (strm, head)
  442:     z_streamp strm;
  443:     gz_headerp head;
  444: {
  445:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  446:     if (strm->state->wrap != 2) return Z_STREAM_ERROR;
  447:     strm->state->gzhead = head;
  448:     return Z_OK;
  449: }
  450: 
  451: /* ========================================================================= */
  452: int ZEXPORT deflatePending (strm, pending, bits)
  453:     unsigned *pending;
  454:     int *bits;
  455:     z_streamp strm;
  456: {
  457:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  458:     if (pending != Z_NULL)
  459:         *pending = strm->state->pending;
  460:     if (bits != Z_NULL)
  461:         *bits = strm->state->bi_valid;
  462:     return Z_OK;
  463: }
  464: 
  465: /* ========================================================================= */
  466: int ZEXPORT deflatePrime (strm, bits, value)
  467:     z_streamp strm;
  468:     int bits;
  469:     int value;
  470: {
  471:     deflate_state *s;
  472:     int put;
  473: 
  474:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  475:     s = strm->state;
  476:     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
  477:         return Z_BUF_ERROR;
  478:     do {
  479:         put = Buf_size - s->bi_valid;
  480:         if (put > bits)
  481:             put = bits;
  482:         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
  483:         s->bi_valid += put;
  484:         _tr_flush_bits(s);
  485:         value >>= put;
  486:         bits -= put;
  487:     } while (bits);
  488:     return Z_OK;
  489: }
  490: 
  491: /* ========================================================================= */
  492: int ZEXPORT deflateParams(strm, level, strategy)
  493:     z_streamp strm;
  494:     int level;
  495:     int strategy;
  496: {
  497:     deflate_state *s;
  498:     compress_func func;
  499:     int err = Z_OK;
  500: 
  501:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  502:     s = strm->state;
  503: 
  504: #ifdef FASTEST
  505:     if (level != 0) level = 1;
  506: #else
  507:     if (level == Z_DEFAULT_COMPRESSION) level = 6;
  508: #endif
  509:     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
  510:         return Z_STREAM_ERROR;
  511:     }
  512:     func = configuration_table[s->level].func;
  513: 
  514:     if ((strategy != s->strategy || func != configuration_table[level].func) &&
  515:         strm->total_in != 0) {
  516:         /* Flush the last buffer: */
  517:         err = deflate(strm, Z_BLOCK);
  518:         if (err == Z_BUF_ERROR && s->pending == 0)
  519:             err = Z_OK;
  520:     }
  521:     if (s->level != level) {
  522:         s->level = level;
  523:         s->max_lazy_match   = configuration_table[level].max_lazy;
  524:         s->good_match       = configuration_table[level].good_length;
  525:         s->nice_match       = configuration_table[level].nice_length;
  526:         s->max_chain_length = configuration_table[level].max_chain;
  527:     }
  528:     s->strategy = strategy;
  529:     return err;
  530: }
  531: 
  532: /* ========================================================================= */
  533: int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
  534:     z_streamp strm;
  535:     int good_length;
  536:     int max_lazy;
  537:     int nice_length;
  538:     int max_chain;
  539: {
  540:     deflate_state *s;
  541: 
  542:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  543:     s = strm->state;
  544:     s->good_match = good_length;
  545:     s->max_lazy_match = max_lazy;
  546:     s->nice_match = nice_length;
  547:     s->max_chain_length = max_chain;
  548:     return Z_OK;
  549: }
  550: 
  551: /* =========================================================================
  552:  * For the default windowBits of 15 and memLevel of 8, this function returns
  553:  * a close to exact, as well as small, upper bound on the compressed size.
  554:  * They are coded as constants here for a reason--if the #define's are
  555:  * changed, then this function needs to be changed as well.  The return
  556:  * value for 15 and 8 only works for those exact settings.
  557:  *
  558:  * For any setting other than those defaults for windowBits and memLevel,
  559:  * the value returned is a conservative worst case for the maximum expansion
  560:  * resulting from using fixed blocks instead of stored blocks, which deflate
  561:  * can emit on compressed data for some combinations of the parameters.
  562:  *
  563:  * This function could be more sophisticated to provide closer upper bounds for
  564:  * every combination of windowBits and memLevel.  But even the conservative
  565:  * upper bound of about 14% expansion does not seem onerous for output buffer
  566:  * allocation.
  567:  */
  568: uLong ZEXPORT deflateBound(strm, sourceLen)
  569:     z_streamp strm;
  570:     uLong sourceLen;
  571: {
  572:     deflate_state *s;
  573:     uLong complen, wraplen;
  574:     Bytef *str;
  575: 
  576:     /* conservative upper bound for compressed data */
  577:     complen = sourceLen +
  578:               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
  579: 
  580:     /* if can't get parameters, return conservative bound plus zlib wrapper */
  581:     if (strm == Z_NULL || strm->state == Z_NULL)
  582:         return complen + 6;
  583: 
  584:     /* compute wrapper length */
  585:     s = strm->state;
  586:     switch (s->wrap) {
  587:     case 0:                                 /* raw deflate */
  588:         wraplen = 0;
  589:         break;
  590:     case 1:                                 /* zlib wrapper */
  591:         wraplen = 6 + (s->strstart ? 4 : 0);
  592:         break;
  593:     case 2:                                 /* gzip wrapper */
  594:         wraplen = 18;
  595:         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
  596:             if (s->gzhead->extra != Z_NULL)
  597:                 wraplen += 2 + s->gzhead->extra_len;
  598:             str = s->gzhead->name;
  599:             if (str != Z_NULL)
  600:                 do {
  601:                     wraplen++;
  602:                 } while (*str++);
  603:             str = s->gzhead->comment;
  604:             if (str != Z_NULL)
  605:                 do {
  606:                     wraplen++;
  607:                 } while (*str++);
  608:             if (s->gzhead->hcrc)
  609:                 wraplen += 2;
  610:         }
  611:         break;
  612:     default:                                /* for compiler happiness */
  613:         wraplen = 6;
  614:     }
  615: 
  616:     /* if not default parameters, return conservative bound */
  617:     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
  618:         return complen + wraplen;
  619: 
  620:     /* default settings: return tight bound for that case */
  621:     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
  622:            (sourceLen >> 25) + 13 - 6 + wraplen;
  623: }
  624: 
  625: /* =========================================================================
  626:  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
  627:  * IN assertion: the stream state is correct and there is enough room in
  628:  * pending_buf.
  629:  */
  630: local void putShortMSB (s, b)
  631:     deflate_state *s;
  632:     uInt b;
  633: {
  634:     put_byte(s, (Byte)(b >> 8));
  635:     put_byte(s, (Byte)(b & 0xff));
  636: }
  637: 
  638: /* =========================================================================
  639:  * Flush as much pending output as possible. All deflate() output goes
  640:  * through this function so some applications may wish to modify it
  641:  * to avoid allocating a large strm->next_out buffer and copying into it.
  642:  * (See also read_buf()).
  643:  */
  644: local void flush_pending(strm)
  645:     z_streamp strm;
  646: {
  647:     unsigned len;
  648:     deflate_state *s = strm->state;
  649: 
  650:     _tr_flush_bits(s);
  651:     len = s->pending;
  652:     if (len > strm->avail_out) len = strm->avail_out;
  653:     if (len == 0) return;
  654: 
  655:     zmemcpy(strm->next_out, s->pending_out, len);
  656:     strm->next_out  += len;
  657:     s->pending_out  += len;
  658:     strm->total_out += len;
  659:     strm->avail_out  -= len;
  660:     s->pending -= len;
  661:     if (s->pending == 0) {
  662:         s->pending_out = s->pending_buf;
  663:     }
  664: }
  665: 
  666: /* ========================================================================= */
  667: int ZEXPORT deflate (strm, flush)
  668:     z_streamp strm;
  669:     int flush;
  670: {
  671:     int old_flush; /* value of flush param for previous deflate call */
  672:     deflate_state *s;
  673: 
  674:     if (strm == Z_NULL || strm->state == Z_NULL ||
  675:         (flush > Z_BLOCK && flush != Z_INSERT_ONLY) || flush < 0) {
  676:         return Z_STREAM_ERROR;
  677:     }
  678:     s = strm->state;
  679: 
  680:     if (strm->next_out == Z_NULL ||
  681:         (strm->next_in == Z_NULL && strm->avail_in != 0) ||
  682:         (s->status == FINISH_STATE && flush != Z_FINISH)) {
  683:         ERR_RETURN(strm, Z_STREAM_ERROR);
  684:     }
  685:     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
  686: 
  687:     s->strm = strm; /* just in case */
  688:     old_flush = s->last_flush;
  689:     s->last_flush = flush;
  690: 
  691:     /* Write the header */
  692:     if (s->status == INIT_STATE) {
  693: #ifdef GZIP
  694:         if (s->wrap == 2) {
  695:             strm->adler = crc32(0L, Z_NULL, 0);
  696:             put_byte(s, 31);
  697:             put_byte(s, 139);
  698:             put_byte(s, 8);
  699:             if (s->gzhead == Z_NULL) {
  700:                 put_byte(s, 0);
  701:                 put_byte(s, 0);
  702:                 put_byte(s, 0);
  703:                 put_byte(s, 0);
  704:                 put_byte(s, 0);
  705:                 put_byte(s, s->level == 9 ? 2 :
  706:                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
  707:                              4 : 0));
  708:                 put_byte(s, OS_CODE);
  709:                 s->status = BUSY_STATE;
  710:             }
  711:             else {
  712:                 put_byte(s, (s->gzhead->text ? 1 : 0) +
  713:                             (s->gzhead->hcrc ? 2 : 0) +
  714:                             (s->gzhead->extra == Z_NULL ? 0 : 4) +
  715:                             (s->gzhead->name == Z_NULL ? 0 : 8) +
  716:                             (s->gzhead->comment == Z_NULL ? 0 : 16)
  717:                         );
  718:                 put_byte(s, (Byte)(s->gzhead->time & 0xff));
  719:                 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
  720:                 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
  721:                 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
  722:                 put_byte(s, s->level == 9 ? 2 :
  723:                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
  724:                              4 : 0));
  725:                 put_byte(s, s->gzhead->os & 0xff);
  726:                 if (s->gzhead->extra != Z_NULL) {
  727:                     put_byte(s, s->gzhead->extra_len & 0xff);
  728:                     put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
  729:                 }
  730:                 if (s->gzhead->hcrc)
  731:                     strm->adler = crc32(strm->adler, s->pending_buf,
  732:                                         s->pending);
  733:                 s->gzindex = 0;
  734:                 s->status = EXTRA_STATE;
  735:             }
  736:         }
  737:         else
  738: #endif
  739:         {
  740:             uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
  741:             uInt level_flags;
  742: 
  743:             if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
  744:                 level_flags = 0;
  745:             else if (s->level < 6)
  746:                 level_flags = 1;
  747:             else if (s->level == 6)
  748:                 level_flags = 2;
  749:             else
  750:                 level_flags = 3;
  751:             header |= (level_flags << 6);
  752:             if (s->strstart != 0) header |= PRESET_DICT;
  753:             header += 31 - (header % 31);
  754: 
  755:             s->status = BUSY_STATE;
  756:             putShortMSB(s, header);
  757: 
  758:             /* Save the adler32 of the preset dictionary: */
  759:             if (s->strstart != 0) {
  760:                 putShortMSB(s, (uInt)(strm->adler >> 16));
  761:                 putShortMSB(s, (uInt)(strm->adler & 0xffff));
  762:             }
  763:             strm->adler = adler32(0L, Z_NULL, 0);
  764:         }
  765:     }
  766: #ifdef GZIP
  767:     if (s->status == EXTRA_STATE) {
  768:         if (s->gzhead->extra != Z_NULL) {
  769:             uInt beg = s->pending;  /* start of bytes to update crc */
  770: 
  771:             while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
  772:                 if (s->pending == s->pending_buf_size) {
  773:                     if (s->gzhead->hcrc && s->pending > beg)
  774:                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
  775:                                             s->pending - beg);
  776:                     flush_pending(strm);
  777:                     beg = s->pending;
  778:                     if (s->pending == s->pending_buf_size)
  779:                         break;
  780:                 }
  781:                 put_byte(s, s->gzhead->extra[s->gzindex]);
  782:                 s->gzindex++;
  783:             }
  784:             if (s->gzhead->hcrc && s->pending > beg)
  785:                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
  786:                                     s->pending - beg);
  787:             if (s->gzindex == s->gzhead->extra_len) {
  788:                 s->gzindex = 0;
  789:                 s->status = NAME_STATE;
  790:             }
  791:         }
  792:         else
  793:             s->status = NAME_STATE;
  794:     }
  795:     if (s->status == NAME_STATE) {
  796:         if (s->gzhead->name != Z_NULL) {
  797:             uInt beg = s->pending;  /* start of bytes to update crc */
  798:             int val;
  799: 
  800:             do {
  801:                 if (s->pending == s->pending_buf_size) {
  802:                     if (s->gzhead->hcrc && s->pending > beg)
  803:                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
  804:                                             s->pending - beg);
  805:                     flush_pending(strm);
  806:                     beg = s->pending;
  807:                     if (s->pending == s->pending_buf_size) {
  808:                         val = 1;
  809:                         break;
  810:                     }
  811:                 }
  812:                 val = s->gzhead->name[s->gzindex++];
  813:                 put_byte(s, val);
  814:             } while (val != 0);
  815:             if (s->gzhead->hcrc && s->pending > beg)
  816:                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
  817:                                     s->pending - beg);
  818:             if (val == 0) {
  819:                 s->gzindex = 0;
  820:                 s->status = COMMENT_STATE;
  821:             }
  822:         }
  823:         else
  824:             s->status = COMMENT_STATE;
  825:     }
  826:     if (s->status == COMMENT_STATE) {
  827:         if (s->gzhead->comment != Z_NULL) {
  828:             uInt beg = s->pending;  /* start of bytes to update crc */
  829:             int val;
  830: 
  831:             do {
  832:                 if (s->pending == s->pending_buf_size) {
  833:                     if (s->gzhead->hcrc && s->pending > beg)
  834:                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
  835:                                             s->pending - beg);
  836:                     flush_pending(strm);
  837:                     beg = s->pending;
  838:                     if (s->pending == s->pending_buf_size) {
  839:                         val = 1;
  840:                         break;
  841:                     }
  842:                 }
  843:                 val = s->gzhead->comment[s->gzindex++];
  844:                 put_byte(s, val);
  845:             } while (val != 0);
  846:             if (s->gzhead->hcrc && s->pending > beg)
  847:                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
  848:                                     s->pending - beg);
  849:             if (val == 0)
  850:                 s->status = HCRC_STATE;
  851:         }
  852:         else
  853:             s->status = HCRC_STATE;
  854:     }
  855:     if (s->status == HCRC_STATE) {
  856:         if (s->gzhead->hcrc) {
  857:             if (s->pending + 2 > s->pending_buf_size)
  858:                 flush_pending(strm);
  859:             if (s->pending + 2 <= s->pending_buf_size) {
  860:                 put_byte(s, (Byte)(strm->adler & 0xff));
  861:                 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
  862:                 strm->adler = crc32(0L, Z_NULL, 0);
  863:                 s->status = BUSY_STATE;
  864:             }
  865:         }
  866:         else
  867:             s->status = BUSY_STATE;
  868:     }
  869: #endif
  870: 
  871:     /* Flush as much pending output as possible */
  872:     if (s->pending != 0) {
  873:         flush_pending(strm);
  874:         if (strm->avail_out == 0) {
  875:             /* Since avail_out is 0, deflate will be called again with
  876:              * more output space, but possibly with both pending and
  877:              * avail_in equal to zero. There won't be anything to do,
  878:              * but this is not an error situation so make sure we
  879:              * return OK instead of BUF_ERROR at next call of deflate:
  880:              */
  881:             s->last_flush = -1;
  882:             return Z_OK;
  883:         }
  884: 
  885:     /* Make sure there is something to do and avoid duplicate consecutive
  886:      * flushes. For repeated and useless calls with Z_FINISH, we keep
  887:      * returning Z_STREAM_END instead of Z_BUF_ERROR.
  888:      */
  889:     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
  890:                flush != Z_FINISH) {
  891:         ERR_RETURN(strm, Z_BUF_ERROR);
  892:     }
  893: 
  894:     /* User must not provide more input after the first FINISH: */
  895:     if (s->status == FINISH_STATE && strm->avail_in != 0) {
  896:         ERR_RETURN(strm, Z_BUF_ERROR);
  897:     }
  898: 
  899:     /* Start a new block or continue the current one.
  900:      */
  901:     if (strm->avail_in != 0 || s->lookahead != 0 ||
  902:         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
  903:         block_state bstate;
  904: 
  905:         bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
  906:                     (s->strategy == Z_RLE ? deflate_rle(s, flush) :
  907:                         (*(configuration_table[s->level].func))(s, flush));
  908: 
  909:         if (bstate == finish_started || bstate == finish_done) {
  910:             s->status = FINISH_STATE;
  911:         }
  912:         if (bstate == need_more || bstate == finish_started) {
  913:             if (strm->avail_out == 0) {
  914:                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
  915:             }
  916:             return Z_OK;
  917:             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
  918:              * of deflate should use the same flush parameter to make sure
  919:              * that the flush is complete. So we don't have to output an
  920:              * empty block here, this will be done at next call. This also
  921:              * ensures that for a very small output buffer, we emit at most
  922:              * one empty block.
  923:              */
  924:         }
  925:         if (bstate == block_done) {
  926:             if (flush == Z_PARTIAL_FLUSH) {
  927:                 _tr_align(s);
  928:             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
  929:                 _tr_stored_block(s, (char*)0, 0L, 0);
  930:                 /* For a full flush, this empty block will be recognized
  931:                  * as a special marker by inflate_sync().
  932:                  */
  933:                 if (flush == Z_FULL_FLUSH) {
  934:                     CLEAR_HASH(s);             /* forget history */
  935:                     if (s->lookahead == 0) {
  936:                         s->strstart = 0;
  937:                         s->block_start = 0L;
  938:                         s->insert = 0;
  939:                     }
  940:                 }
  941:             }
  942:             flush_pending(strm);
  943:             if (strm->avail_out == 0) {
  944:               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
  945:               return Z_OK;
  946:             }
  947:         }
  948:     }
  949:     Assert(strm->avail_out > 0, "bug2");
  950: 
  951:     if (flush != Z_FINISH) return Z_OK;
  952:     if (s->wrap <= 0) return Z_STREAM_END;
  953: 
  954:     /* Write the trailer */
  955: #ifdef GZIP
  956:     if (s->wrap == 2) {
  957:         put_byte(s, (Byte)(strm->adler & 0xff));
  958:         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
  959:         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
  960:         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
  961:         put_byte(s, (Byte)(strm->total_in & 0xff));
  962:         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
  963:         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
  964:         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
  965:     }
  966:     else
  967: #endif
  968:     {
  969:         putShortMSB(s, (uInt)(strm->adler >> 16));
  970:         putShortMSB(s, (uInt)(strm->adler & 0xffff));
  971:     }
  972:     flush_pending(strm);
  973:     /* If avail_out is zero, the application will call deflate again
  974:      * to flush the rest.
  975:      */
  976:     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
  977:     return s->pending != 0 ? Z_OK : Z_STREAM_END;
  978: }
  979: 
  980: /* ========================================================================= */
  981: int ZEXPORT deflateEnd (strm)
  982:     z_streamp strm;
  983: {
  984:     int status;
  985: 
  986:     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
  987: 
  988:     status = strm->state->status;
  989:     if (status != INIT_STATE &&
  990:         status != EXTRA_STATE &&
  991:         status != NAME_STATE &&
  992:         status != COMMENT_STATE &&
  993:         status != HCRC_STATE &&
  994:         status != BUSY_STATE &&
  995:         status != FINISH_STATE) {
  996:       return Z_STREAM_ERROR;
  997:     }
  998: 
  999:     /* Deallocate in reverse order of allocations: */
 1000:     TRY_FREE(strm, strm->state->pending_buf);
 1001:     TRY_FREE(strm, strm->state->head);
 1002:     TRY_FREE(strm, strm->state->prev);
 1003:     TRY_FREE(strm, strm->state->window);
 1004: 
 1005:     ZFREE(strm, strm->state);
 1006:     strm->state = Z_NULL;
 1007: 
 1008:     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
 1009: }
 1010: 
 1011: /* =========================================================================
 1012:  * Copy the source state to the destination state.
 1013:  * To simplify the source, this is not supported for 16-bit MSDOS (which
 1014:  * doesn't have enough memory anyway to duplicate compression states).
 1015:  */
 1016: int ZEXPORT deflateCopy (dest, source)
 1017:     z_streamp dest;
 1018:     z_streamp source;
 1019: {
 1020: #ifdef MAXSEG_64K
 1021:     return Z_STREAM_ERROR;
 1022: #else
 1023:     deflate_state *ds;
 1024:     deflate_state *ss;
 1025:     ushf *overlay;
 1026: 
 1027: 
 1028:     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
 1029:         return Z_STREAM_ERROR;
 1030:     }
 1031: 
 1032:     ss = source->state;
 1033: 
 1034:     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
 1035: 
 1036:     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
 1037:     if (ds == Z_NULL) return Z_MEM_ERROR;
 1038:     dest->state = (struct internal_state FAR *) ds;
 1039:     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
 1040:     ds->strm = dest;
 1041: 
 1042:     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
 1043:     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
 1044:     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
 1045:     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
 1046:     ds->pending_buf = (uchf *) overlay;
 1047: 
 1048:     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
 1049:         ds->pending_buf == Z_NULL) {
 1050:         deflateEnd (dest);
 1051:         return Z_MEM_ERROR;
 1052:     }
 1053:     /* following zmemcpy do not work for 16-bit MSDOS */
 1054:     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
 1055:     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
 1056:     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
 1057:     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
 1058: 
 1059:     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
 1060:     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
 1061:     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
 1062: 
 1063:     ds->l_desc.dyn_tree = ds->dyn_ltree;
 1064:     ds->d_desc.dyn_tree = ds->dyn_dtree;
 1065:     ds->bl_desc.dyn_tree = ds->bl_tree;
 1066: 
 1067:     return Z_OK;
 1068: #endif /* MAXSEG_64K */
 1069: }
 1070: 
 1071: /* ===========================================================================
 1072:  * Read a new buffer from the current input stream, update the adler32
 1073:  * and total number of bytes read.  All deflate() input goes through
 1074:  * this function so some applications may wish to modify it to avoid
 1075:  * allocating a large strm->next_in buffer and copying from it.
 1076:  * (See also flush_pending()).
 1077:  */
 1078: local int read_buf(strm, buf, size)
 1079:     z_streamp strm;
 1080:     Bytef *buf;
 1081:     unsigned size;
 1082: {
 1083:     unsigned len = strm->avail_in;
 1084: 
 1085:     if (len > size) len = size;
 1086:     if (len == 0) return 0;
 1087: 
 1088:     strm->avail_in  -= len;
 1089: 
 1090:     zmemcpy(buf, strm->next_in, len);
 1091:     if (strm->state->wrap == 1) {
 1092:         strm->adler = adler32(strm->adler, buf, len);
 1093:     }
 1094: #ifdef GZIP
 1095:     else if (strm->state->wrap == 2) {
 1096:         strm->adler = crc32(strm->adler, buf, len);
 1097:     }
 1098: #endif
 1099:     strm->next_in  += len;
 1100:     strm->total_in += len;
 1101: 
 1102:     return (int)len;
 1103: }
 1104: 
 1105: /* ===========================================================================
 1106:  * Initialize the "longest match" routines for a new zlib stream
 1107:  */
 1108: local void lm_init (s)
 1109:     deflate_state *s;
 1110: {
 1111:     s->window_size = (ulg)2L*s->w_size;
 1112: 
 1113:     CLEAR_HASH(s);
 1114: 
 1115:     /* Set the default configuration parameters:
 1116:      */
 1117:     s->max_lazy_match   = configuration_table[s->level].max_lazy;
 1118:     s->good_match       = configuration_table[s->level].good_length;
 1119:     s->nice_match       = configuration_table[s->level].nice_length;
 1120:     s->max_chain_length = configuration_table[s->level].max_chain;
 1121: 
 1122:     s->strstart = 0;
 1123:     s->block_start = 0L;
 1124:     s->lookahead = 0;
 1125:     s->insert = 0;
 1126:     s->match_length = s->prev_length = MIN_MATCH-1;
 1127:     s->match_available = 0;
 1128:     s->ins_h = 0;
 1129: #ifndef FASTEST
 1130: #ifdef ASMV
 1131:     match_init(); /* initialize the asm code */
 1132: #endif
 1133: #endif
 1134: }
 1135: 
 1136: #ifndef FASTEST
 1137: /* ===========================================================================
 1138:  * Set match_start to the longest match starting at the given string and
 1139:  * return its length. Matches shorter or equal to prev_length are discarded,
 1140:  * in which case the result is equal to prev_length and match_start is
 1141:  * garbage.
 1142:  * IN assertions: cur_match is the head of the hash chain for the current
 1143:  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 1144:  * OUT assertion: the match length is not greater than s->lookahead.
 1145:  */
 1146: #ifndef ASMV
 1147: /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 1148:  * match.S. The code will be functionally equivalent.
 1149:  */
 1150: local uInt longest_match(s, cur_match)
 1151:     deflate_state *s;
 1152:     IPos cur_match;                             /* current match */
 1153: {
 1154:     unsigned chain_length = s->max_chain_length;/* max hash chain length */
 1155:     register Bytef *scan = s->window + s->strstart; /* current string */
 1156:     register Bytef *match;                       /* matched string */
 1157:     register int len;                           /* length of current match */
 1158:     int best_len = s->prev_length;              /* best match length so far */
 1159:     int nice_match = s->nice_match;             /* stop if match long enough */
 1160:     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
 1161:         s->strstart - (IPos)MAX_DIST(s) : NIL;
 1162:     /* Stop when cur_match becomes <= limit. To simplify the code,
 1163:      * we prevent matches with the string of window index 0.
 1164:      */
 1165:     Posf *prev = s->prev;
 1166:     uInt wmask = s->w_mask;
 1167: 
 1168: #ifdef UNALIGNED_OK
 1169:     /* Compare two bytes at a time. Note: this is not always beneficial.
 1170:      * Try with and without -DUNALIGNED_OK to check.
 1171:      */
 1172:     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
 1173:     register ush scan_start = *(ushf*)scan;
 1174:     register ush scan_end   = *(ushf*)(scan+best_len-1);
 1175: #else
 1176:     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 1177:     register Byte scan_end1  = scan[best_len-1];
 1178:     register Byte scan_end   = scan[best_len];
 1179: #endif
 1180: 
 1181:     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 1182:      * It is easy to get rid of this optimization if necessary.
 1183:      */
 1184:     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 1185: 
 1186:     /* Do not waste too much time if we already have a good match: */
 1187:     if (s->prev_length >= s->good_match) {
 1188:         chain_length >>= 2;
 1189:     }
 1190:     /* Do not look for matches beyond the end of the input. This is necessary
 1191:      * to make deflate deterministic.
 1192:      */
 1193:     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
 1194: 
 1195:     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 1196: 
 1197:     do {
 1198:         Assert(cur_match < s->strstart, "no future");
 1199:         match = s->window + cur_match;
 1200: 
 1201:         /* Skip to next match if the match length cannot increase
 1202:          * or if the match length is less than 2.  Note that the checks below
 1203:          * for insufficient lookahead only occur occasionally for performance
 1204:          * reasons.  Therefore uninitialized memory will be accessed, and
 1205:          * conditional jumps will be made that depend on those values.
 1206:          * However the length of the match is limited to the lookahead, so
 1207:          * the output of deflate is not affected by the uninitialized values.
 1208:          */
 1209: #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
 1210:         /* This code assumes sizeof(unsigned short) == 2. Do not use
 1211:          * UNALIGNED_OK if your compiler uses a different size.
 1212:          */
 1213:         if (*(ushf*)(match+best_len-1) != scan_end ||
 1214:             *(ushf*)match != scan_start) continue;
 1215: 
 1216:         /* It is not necessary to compare scan[2] and match[2] since they are
 1217:          * always equal when the other bytes match, given that the hash keys
 1218:          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
 1219:          * strstart+3, +5, ... up to strstart+257. We check for insufficient
 1220:          * lookahead only every 4th comparison; the 128th check will be made
 1221:          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
 1222:          * necessary to put more guard bytes at the end of the window, or
 1223:          * to check more often for insufficient lookahead.
 1224:          */
 1225:         Assert(scan[2] == match[2], "scan[2]?");
 1226:         scan++, match++;
 1227:         do {
 1228:         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1229:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1230:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1231:                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 1232:                  scan < strend);
 1233:         /* The funny "do {}" generates better code on most compilers */
 1234: 
 1235:         /* Here, scan <= window+strstart+257 */
 1236:         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1237:         if (*scan == *match) scan++;
 1238: 
 1239:         len = (MAX_MATCH - 1) - (int)(strend-scan);
 1240:         scan = strend - (MAX_MATCH-1);
 1241: 
 1242: #else /* UNALIGNED_OK */
 1243: 
 1244:         if (match[best_len]   != scan_end  ||
 1245:             match[best_len-1] != scan_end1 ||
 1246:             *match            != *scan     ||
 1247:             *++match          != scan[1])      continue;
 1248: 
 1249:         /* The check at best_len-1 can be removed because it will be made
 1250:          * again later. (This heuristic is not always a win.)
 1251:          * It is not necessary to compare scan[2] and match[2] since they
 1252:          * are always equal when the other bytes match, given that
 1253:          * the hash keys are equal and that HASH_BITS >= 8.
 1254:          */
 1255:         scan += 2, match++;
 1256:         Assert(*scan == *match, "match[2]?");
 1257: 
 1258:         /* We check for insufficient lookahead only every 8th comparison;
 1259:          * the 256th check will be made at strstart+258.
 1260:          */
 1261:         do {
 1262:         } while (*++scan == *++match && *++scan == *++match &&
 1263:                  *++scan == *++match && *++scan == *++match &&
 1264:                  *++scan == *++match && *++scan == *++match &&
 1265:                  *++scan == *++match && *++scan == *++match &&
 1266:                  scan < strend);
 1267: 
 1268:         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1269: 
 1270:         len = MAX_MATCH - (int)(strend - scan);
 1271:         scan = strend - MAX_MATCH;
 1272: 
 1273: #endif /* UNALIGNED_OK */
 1274: 
 1275:         if (len > best_len) {
 1276:             s->match_start = cur_match;
 1277:             best_len = len;
 1278:             if (len >= nice_match) break;
 1279: #ifdef UNALIGNED_OK
 1280:             scan_end = *(ushf*)(scan+best_len-1);
 1281: #else
 1282:             scan_end1  = scan[best_len-1];
 1283:             scan_end   = scan[best_len];
 1284: #endif
 1285:         }
 1286:     } while ((cur_match = prev[cur_match & wmask]) > limit
 1287:              && --chain_length != 0);
 1288: 
 1289:     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
 1290:     return s->lookahead;
 1291: }
 1292: #endif /* ASMV */
 1293: 
 1294: #else /* FASTEST */
 1295: 
 1296: /* ---------------------------------------------------------------------------
 1297:  * Optimized version for FASTEST only
 1298:  */
 1299: local uInt longest_match(s, cur_match)
 1300:     deflate_state *s;
 1301:     IPos cur_match;                             /* current match */
 1302: {
 1303:     register Bytef *scan = s->window + s->strstart; /* current string */
 1304:     register Bytef *match;                       /* matched string */
 1305:     register int len;                           /* length of current match */
 1306:     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 1307: 
 1308:     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 1309:      * It is easy to get rid of this optimization if necessary.
 1310:      */
 1311:     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 1312: 
 1313:     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 1314: 
 1315:     Assert(cur_match < s->strstart, "no future");
 1316: 
 1317:     match = s->window + cur_match;
 1318: 
 1319:     /* Return failure if the match length is less than 2:
 1320:      */
 1321:     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
 1322: 
 1323:     /* The check at best_len-1 can be removed because it will be made
 1324:      * again later. (This heuristic is not always a win.)
 1325:      * It is not necessary to compare scan[2] and match[2] since they
 1326:      * are always equal when the other bytes match, given that
 1327:      * the hash keys are equal and that HASH_BITS >= 8.
 1328:      */
 1329:     scan += 2, match += 2;
 1330:     Assert(*scan == *match, "match[2]?");
 1331: 
 1332:     /* We check for insufficient lookahead only every 8th comparison;
 1333:      * the 256th check will be made at strstart+258.
 1334:      */
 1335:     do {
 1336:     } while (*++scan == *++match && *++scan == *++match &&
 1337:              *++scan == *++match && *++scan == *++match &&
 1338:              *++scan == *++match && *++scan == *++match &&
 1339:              *++scan == *++match && *++scan == *++match &&
 1340:              scan < strend);
 1341: 
 1342:     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 1343: 
 1344:     len = MAX_MATCH - (int)(strend - scan);
 1345: 
 1346:     if (len < MIN_MATCH) return MIN_MATCH - 1;
 1347: 
 1348:     s->match_start = cur_match;
 1349:     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
 1350: }
 1351: 
 1352: #endif /* FASTEST */
 1353: 
 1354: #ifdef DEBUG
 1355: /* ===========================================================================
 1356:  * Check that the match at match_start is indeed a match.
 1357:  */
 1358: local void check_match(s, start, match, length)
 1359:     deflate_state *s;
 1360:     IPos start, match;
 1361:     int length;
 1362: {
 1363:     /* check that the match is indeed a match */
 1364:     if (zmemcmp(s->window + match,
 1365:                 s->window + start, length) != EQUAL) {
 1366:         fprintf(stderr, " start %u, match %u, length %d\n",
 1367:                 start, match, length);
 1368:         do {
 1369:             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
 1370:         } while (--length != 0);
 1371:         z_error("invalid match");
 1372:     }
 1373:     if (z_verbose > 1) {
 1374:         fprintf(stderr,"\\[%d,%d]", start-match, length);
 1375:         do { putc(s->window[start++], stderr); } while (--length != 0);
 1376:     }
 1377: }
 1378: #else
 1379: #  define check_match(s, start, match, length)
 1380: #endif /* DEBUG */
 1381: 
 1382: /* ===========================================================================
 1383:  * Fill the window when the lookahead becomes insufficient.
 1384:  * Updates strstart and lookahead.
 1385:  *
 1386:  * IN assertion: lookahead < MIN_LOOKAHEAD
 1387:  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 1388:  *    At least one byte has been read, or avail_in == 0; reads are
 1389:  *    performed for at least two bytes (required for the zip translate_eol
 1390:  *    option -- not supported here).
 1391:  */
 1392: local void fill_window(s)
 1393:     deflate_state *s;
 1394: {
 1395:     register unsigned n, m;
 1396:     register Posf *p;
 1397:     unsigned more;    /* Amount of free space at the end of the window. */
 1398:     uInt wsize = s->w_size;
 1399: 
 1400:     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
 1401: 
 1402:     do {
 1403:         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
 1404: 
 1405:         /* Deal with !@#$% 64K limit: */
 1406:         if (sizeof(int) <= 2) {
 1407:             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 1408:                 more = wsize;
 1409: 
 1410:             } else if (more == (unsigned)(-1)) {
 1411:                 /* Very unlikely, but possible on 16 bit machine if
 1412:                  * strstart == 0 && lookahead == 1 (input done a byte at time)
 1413:                  */
 1414:                 more--;
 1415:             }
 1416:         }
 1417: 
 1418:         /* If the window is almost full and there is insufficient lookahead,
 1419:          * move the upper half to the lower one to make room in the upper half.
 1420:          */
 1421:         if (s->strstart >= wsize+MAX_DIST(s)) {
 1422: 
 1423:             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
 1424:             s->match_start -= wsize;
 1425:             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
 1426:             s->block_start -= (long) wsize;
 1427: 
 1428:             /* Slide the hash table (could be avoided with 32 bit values
 1429:                at the expense of memory usage). We slide even when level == 0
 1430:                to keep the hash table consistent if we switch back to level > 0
 1431:                later. (Using level 0 permanently is not an optimal usage of
 1432:                zlib, so we don't care about this pathological case.)
 1433:              */
 1434:             n = s->hash_size;
 1435:             p = &s->head[n];
 1436:             do {
 1437:                 m = *--p;
 1438:                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
 1439:             } while (--n);
 1440: 
 1441:             n = wsize;
 1442: #ifndef FASTEST
 1443:             p = &s->prev[n];
 1444:             do {
 1445:                 m = *--p;
 1446:                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
 1447:                 /* If n is not on any hash chain, prev[n] is garbage but
 1448:                  * its value will never be used.
 1449:                  */
 1450:             } while (--n);
 1451: #endif
 1452:             more += wsize;
 1453:         }
 1454:         if (s->strm->avail_in == 0) break;
 1455: 
 1456:         /* If there was no sliding:
 1457:          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 1458:          *    more == window_size - lookahead - strstart
 1459:          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 1460:          * => more >= window_size - 2*WSIZE + 2
 1461:          * In the BIG_MEM or MMAP case (not yet supported),
 1462:          *   window_size == input_size + MIN_LOOKAHEAD  &&
 1463:          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 1464:          * Otherwise, window_size == 2*WSIZE so more >= 2.
 1465:          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 1466:          */
 1467:         Assert(more >= 2, "more < 2");
 1468: 
 1469:         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
 1470:         s->lookahead += n;
 1471: 
 1472:         /* Initialize the hash value now that we have some input: */
 1473:         if (s->lookahead + s->insert >= MIN_MATCH) {
 1474:             uInt str = s->strstart - s->insert;
 1475:             s->ins_h = s->window[str];
 1476:             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
 1477: #if MIN_MATCH != 3
 1478:             Call UPDATE_HASH() MIN_MATCH-3 more times
 1479: #endif
 1480:             while (s->insert) {
 1481:                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
 1482: #ifndef FASTEST
 1483:                 s->prev[str & s->w_mask] = s->head[s->ins_h];
 1484: #endif
 1485:                 s->head[s->ins_h] = (Pos)str;
 1486:                 str++;
 1487:                 s->insert--;
 1488:                 if (s->lookahead + s->insert < MIN_MATCH)
 1489:                     break;
 1490:             }
 1491:         }
 1492:         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 1493:          * but this is not important since only literal bytes will be emitted.
 1494:          */
 1495: 
 1496:     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
 1497: 
 1498:     /* If the WIN_INIT bytes after the end of the current data have never been
 1499:      * written, then zero those bytes in order to avoid memory check reports of
 1500:      * the use of uninitialized (or uninitialised as Julian writes) bytes by
 1501:      * the longest match routines.  Update the high water mark for the next
 1502:      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 1503:      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 1504:      */
 1505:     if (s->high_water < s->window_size) {
 1506:         ulg curr = s->strstart + (ulg)(s->lookahead);
 1507:         ulg init;
 1508: 
 1509:         if (s->high_water < curr) {
 1510:             /* Previous high water mark below current data -- zero WIN_INIT
 1511:              * bytes or up to end of window, whichever is less.
 1512:              */
 1513:             init = s->window_size - curr;
 1514:             if (init > WIN_INIT)
 1515:                 init = WIN_INIT;
 1516:             zmemzero(s->window + curr, (unsigned)init);
 1517:             s->high_water = curr + init;
 1518:         }
 1519:         else if (s->high_water < (ulg)curr + WIN_INIT) {
 1520:             /* High water mark at or above current data, but below current data
 1521:              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 1522:              * to end of window, whichever is less.
 1523:              */
 1524:             init = (ulg)curr + WIN_INIT - s->high_water;
 1525:             if (init > s->window_size - s->high_water)
 1526:                 init = s->window_size - s->high_water;
 1527:             zmemzero(s->window + s->high_water, (unsigned)init);
 1528:             s->high_water += init;
 1529:         }
 1530:     }
 1531: 
 1532:     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
 1533:            "not enough room for search");
 1534: }
 1535: 
 1536: /* ===========================================================================
 1537:  * Flush the current block, with given end-of-file flag.
 1538:  * IN assertion: strstart is set to the end of the current match.
 1539:  */
 1540: #define FLUSH_BLOCK_ONLY(s, last) { \
 1541:    _tr_flush_block(s, (s->block_start >= 0L ? \
 1542:                    (charf *)&s->window[(unsigned)s->block_start] : \
 1543:                    (charf *)Z_NULL), \
 1544:                 (ulg)((long)s->strstart - s->block_start), \
 1545:                 (last)); \
 1546:    s->block_start = s->strstart; \
 1547:    flush_pending(s->strm); \
 1548:    Tracev((stderr,"[FLUSH]")); \
 1549: }
 1550: 
 1551: /* Same but force premature exit if necessary. */
 1552: #define FLUSH_BLOCK(s, last) { \
 1553:    FLUSH_BLOCK_ONLY(s, last); \
 1554:    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
 1555: }
 1556: 
 1557: /* ===========================================================================
 1558:  * Copy without compression as much as possible from the input stream, return
 1559:  * the current block state.
 1560:  * This function does not insert new strings in the dictionary since
 1561:  * uncompressible data is probably not useful. This function is used
 1562:  * only for the level=0 compression option.
 1563:  * NOTE: this function should be optimized to avoid extra copying from
 1564:  * window to pending_buf.
 1565:  */
 1566: local block_state deflate_stored(s, flush)
 1567:     deflate_state *s;
 1568:     int flush;
 1569: {
 1570:     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
 1571:      * to pending_buf_size, and each stored block has a 5 byte header:
 1572:      */
 1573:     ulg max_block_size = 0xffff;
 1574:     ulg max_start;
 1575: 
 1576:     if (max_block_size > s->pending_buf_size - 5) {
 1577:         max_block_size = s->pending_buf_size - 5;
 1578:     }
 1579: 
 1580:     /* Copy as much as possible from input to output: */
 1581:     for (;;) {
 1582:         /* Fill the window as much as possible: */
 1583:         if (s->lookahead <= 1) {
 1584: 
 1585:             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
 1586:                    s->block_start >= (long)s->w_size, "slide too late");
 1587: 
 1588:             fill_window(s);
 1589:             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
 1590: 
 1591:             if (s->lookahead == 0) break; /* flush the current block */
 1592:         }
 1593:         Assert(s->block_start >= 0L, "block gone");
 1594: 
 1595:         s->strstart += s->lookahead;
 1596:         s->lookahead = 0;
 1597: 
 1598: 	if (flush == Z_INSERT_ONLY) {
 1599: 	    s->block_start = s->strstart;
 1600: 	    continue;
 1601: 	}
 1602: 
 1603:         /* Emit a stored block if pending_buf will be full: */
 1604:         max_start = s->block_start + max_block_size;
 1605:         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
 1606:             /* strstart == 0 is possible when wraparound on 16-bit machine */
 1607:             s->lookahead = (uInt)(s->strstart - max_start);
 1608:             s->strstart = (uInt)max_start;
 1609:             FLUSH_BLOCK(s, 0);
 1610:         }
 1611:         /* Flush if we may have to slide, otherwise block_start may become
 1612:          * negative and the data will be gone:
 1613:          */
 1614:         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
 1615:             FLUSH_BLOCK(s, 0);
 1616:         }
 1617:     }
 1618:     s->insert = 0;
 1619:     if (flush == Z_INSERT_ONLY) {
 1620: 	s->block_start = s->strstart;
 1621: 	return need_more;
 1622:     }
 1623:     if (flush == Z_FINISH) {
 1624:         FLUSH_BLOCK(s, 1);
 1625:         return finish_done;
 1626:     }
 1627:     if ((long)s->strstart > s->block_start)
 1628:         FLUSH_BLOCK(s, 0);
 1629:     return block_done;
 1630: }
 1631: 
 1632: /* ===========================================================================
 1633:  * Compress as much as possible from the input stream, return the current
 1634:  * block state.
 1635:  * This function does not perform lazy evaluation of matches and inserts
 1636:  * new strings in the dictionary only for unmatched strings or for short
 1637:  * matches. It is used only for the fast compression options.
 1638:  */
 1639: local block_state deflate_fast(s, flush)
 1640:     deflate_state *s;
 1641:     int flush;
 1642: {
 1643:     IPos hash_head;       /* head of the hash chain */
 1644:     int bflush;           /* set if current block must be flushed */
 1645: 
 1646:     for (;;) {
 1647:         /* Make sure that we always have enough lookahead, except
 1648:          * at the end of the input file. We need MAX_MATCH bytes
 1649:          * for the next match, plus MIN_MATCH bytes to insert the
 1650:          * string following the next match.
 1651:          */
 1652:         if (s->lookahead < MIN_LOOKAHEAD) {
 1653:             fill_window(s);
 1654:             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 1655:                 return need_more;
 1656:             }
 1657:             if (s->lookahead == 0) break; /* flush the current block */
 1658:         }
 1659: 
 1660:         /* Insert the string window[strstart .. strstart+2] in the
 1661:          * dictionary, and set hash_head to the head of the hash chain:
 1662:          */
 1663:         hash_head = NIL;
 1664:         if (s->lookahead >= MIN_MATCH) {
 1665:             INSERT_STRING(s, s->strstart, hash_head);
 1666:         }
 1667: 
 1668: 	if (flush == Z_INSERT_ONLY) {
 1669: 	    s->strstart++;
 1670: 	    s->lookahead--;
 1671: 	    continue;
 1672: 	}
 1673: 
 1674:         /* Find the longest match, discarding those <= prev_length.
 1675:          * At this point we have always match_length < MIN_MATCH
 1676:          */
 1677:         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
 1678:             /* To simplify the code, we prevent matches with the string
 1679:              * of window index 0 (in particular we have to avoid a match
 1680:              * of the string with itself at the start of the input file).
 1681:              */
 1682:             s->match_length = longest_match (s, hash_head);
 1683:             /* longest_match() sets match_start */
 1684:         }
 1685:         if (s->match_length >= MIN_MATCH) {
 1686:             check_match(s, s->strstart, s->match_start, s->match_length);
 1687: 
 1688:             _tr_tally_dist(s, s->strstart - s->match_start,
 1689:                            s->match_length - MIN_MATCH, bflush);
 1690: 
 1691:             s->lookahead -= s->match_length;
 1692: 
 1693:             /* Insert new strings in the hash table only if the match length
 1694:              * is not too large. This saves time but degrades compression.
 1695:              */
 1696: #ifndef FASTEST
 1697:             if (s->match_length <= s->max_insert_length &&
 1698:                 s->lookahead >= MIN_MATCH) {
 1699:                 s->match_length--; /* string at strstart already in table */
 1700:                 do {
 1701:                     s->strstart++;
 1702:                     INSERT_STRING(s, s->strstart, hash_head);
 1703:                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 1704:                      * always MIN_MATCH bytes ahead.
 1705:                      */
 1706:                 } while (--s->match_length != 0);
 1707:                 s->strstart++;
 1708:             } else
 1709: #endif
 1710:             {
 1711:                 s->strstart += s->match_length;
 1712:                 s->match_length = 0;
 1713:                 s->ins_h = s->window[s->strstart];
 1714:                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 1715: #if MIN_MATCH != 3
 1716:                 Call UPDATE_HASH() MIN_MATCH-3 more times
 1717: #endif
 1718:                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 1719:                  * matter since it will be recomputed at next deflate call.
 1720:                  */
 1721:             }
 1722:         } else {
 1723:             /* No match, output a literal byte */
 1724:             Tracevv((stderr,"%c", s->window[s->strstart]));
 1725:             _tr_tally_lit (s, s->window[s->strstart], bflush);
 1726:             s->lookahead--;
 1727:             s->strstart++;
 1728:         }
 1729:         if (bflush) FLUSH_BLOCK(s, 0);
 1730:     }
 1731:     if (flush == Z_INSERT_ONLY) {
 1732: 	s->block_start = s->strstart;
 1733: 	return need_more;
 1734:     }
 1735:     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
 1736:     if (flush == Z_FINISH) {
 1737:         FLUSH_BLOCK(s, 1);
 1738:         return finish_done;
 1739:     }
 1740:     if (s->last_lit)
 1741:         FLUSH_BLOCK(s, 0);
 1742:     return block_done;
 1743: }
 1744: 
 1745: #ifndef FASTEST
 1746: /* ===========================================================================
 1747:  * Same as above, but achieves better compression. We use a lazy
 1748:  * evaluation for matches: a match is finally adopted only if there is
 1749:  * no better match at the next window position.
 1750:  */
 1751: local block_state deflate_slow(s, flush)
 1752:     deflate_state *s;
 1753:     int flush;
 1754: {
 1755:     IPos hash_head;          /* head of hash chain */
 1756:     int bflush;              /* set if current block must be flushed */
 1757: 
 1758:     /* Process the input block. */
 1759:     for (;;) {
 1760:         /* Make sure that we always have enough lookahead, except
 1761:          * at the end of the input file. We need MAX_MATCH bytes
 1762:          * for the next match, plus MIN_MATCH bytes to insert the
 1763:          * string following the next match.
 1764:          */
 1765:         if (s->lookahead < MIN_LOOKAHEAD) {
 1766:             fill_window(s);
 1767:             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 1768:                 return need_more;
 1769:             }
 1770:             if (s->lookahead == 0) break; /* flush the current block */
 1771:         }
 1772: 
 1773:         /* Insert the string window[strstart .. strstart+2] in the
 1774:          * dictionary, and set hash_head to the head of the hash chain:
 1775:          */
 1776:         hash_head = NIL;
 1777:         if (s->lookahead >= MIN_MATCH) {
 1778:             INSERT_STRING(s, s->strstart, hash_head);
 1779:         }
 1780: 
 1781: 	if (flush == Z_INSERT_ONLY) {
 1782: 	    s->strstart++;
 1783: 	    s->lookahead--;
 1784: 	    continue;
 1785: 	}
 1786: 
 1787:         /* Find the longest match, discarding those <= prev_length.
 1788:          */
 1789:         s->prev_length = s->match_length, s->prev_match = s->match_start;
 1790:         s->match_length = MIN_MATCH-1;
 1791: 
 1792:         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
 1793:             s->strstart - hash_head <= MAX_DIST(s)) {
 1794:             /* To simplify the code, we prevent matches with the string
 1795:              * of window index 0 (in particular we have to avoid a match
 1796:              * of the string with itself at the start of the input file).
 1797:              */
 1798:             s->match_length = longest_match (s, hash_head);
 1799:             /* longest_match() sets match_start */
 1800: 
 1801:             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
 1802: #if TOO_FAR <= 32767
 1803:                 || (s->match_length == MIN_MATCH &&
 1804:                     s->strstart - s->match_start > TOO_FAR)
 1805: #endif
 1806:                 )) {
 1807: 
 1808:                 /* If prev_match is also MIN_MATCH, match_start is garbage
 1809:                  * but we will ignore the current match anyway.
 1810:                  */
 1811:                 s->match_length = MIN_MATCH-1;
 1812:             }
 1813:         }
 1814:         /* If there was a match at the previous step and the current
 1815:          * match is not better, output the previous match:
 1816:          */
 1817:         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
 1818:             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
 1819:             /* Do not insert strings in hash table beyond this. */
 1820: 
 1821:             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
 1822: 
 1823:             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
 1824:                            s->prev_length - MIN_MATCH, bflush);
 1825: 
 1826:             /* Insert in hash table all strings up to the end of the match.
 1827:              * strstart-1 and strstart are already inserted. If there is not
 1828:              * enough lookahead, the last two strings are not inserted in
 1829:              * the hash table.
 1830:              */
 1831:             s->lookahead -= s->prev_length-1;
 1832:             s->prev_length -= 2;
 1833:             do {
 1834:                 if (++s->strstart <= max_insert) {
 1835:                     INSERT_STRING(s, s->strstart, hash_head);
 1836:                 }
 1837:             } while (--s->prev_length != 0);
 1838:             s->match_available = 0;
 1839:             s->match_length = MIN_MATCH-1;
 1840:             s->strstart++;
 1841: 
 1842:             if (bflush) FLUSH_BLOCK(s, 0);
 1843: 
 1844:         } else if (s->match_available) {
 1845:             /* If there was no match at the previous position, output a
 1846:              * single literal. If there was a match but the current match
 1847:              * is longer, truncate the previous match to a single literal.
 1848:              */
 1849:             Tracevv((stderr,"%c", s->window[s->strstart-1]));
 1850:             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 1851:             if (bflush) {
 1852:                 FLUSH_BLOCK_ONLY(s, 0);
 1853:             }
 1854:             s->strstart++;
 1855:             s->lookahead--;
 1856:             if (s->strm->avail_out == 0) return need_more;
 1857:         } else {
 1858:             /* There is no previous match to compare with, wait for
 1859:              * the next step to decide.
 1860:              */
 1861:             s->match_available = 1;
 1862:             s->strstart++;
 1863:             s->lookahead--;
 1864:         }
 1865:     }
 1866:     if (flush == Z_INSERT_ONLY) {
 1867: 	s->block_start = s->strstart;
 1868: 	return need_more;
 1869:     }
 1870:     Assert (flush != Z_NO_FLUSH, "no flush?");
 1871:     if (s->match_available) {
 1872:         Tracevv((stderr,"%c", s->window[s->strstart-1]));
 1873:         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 1874:         s->match_available = 0;
 1875:     }
 1876:     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
 1877:     if (flush == Z_FINISH) {
 1878:         FLUSH_BLOCK(s, 1);
 1879:         return finish_done;
 1880:     }
 1881:     if (s->last_lit)
 1882:         FLUSH_BLOCK(s, 0);
 1883:     return block_done;
 1884: }
 1885: #endif /* FASTEST */
 1886: 
 1887: /* ===========================================================================
 1888:  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 1889:  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 1890:  * deflate switches away from Z_RLE.)
 1891:  */
 1892: local block_state deflate_rle(s, flush)
 1893:     deflate_state *s;
 1894:     int flush;
 1895: {
 1896:     int bflush;             /* set if current block must be flushed */
 1897:     uInt prev;              /* byte at distance one to match */
 1898:     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
 1899: 
 1900:     for (;;) {
 1901:         /* Make sure that we always have enough lookahead, except
 1902:          * at the end of the input file. We need MAX_MATCH bytes
 1903:          * for the longest run, plus one for the unrolled loop.
 1904:          */
 1905:         if (s->lookahead <= MAX_MATCH) {
 1906:             fill_window(s);
 1907:             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
 1908:                 return need_more;
 1909:             }
 1910:             if (s->lookahead == 0) break; /* flush the current block */
 1911:         }
 1912: 
 1913:         /* See how many times the previous byte repeats */
 1914:         s->match_length = 0;
 1915:         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
 1916:             scan = s->window + s->strstart - 1;
 1917:             prev = *scan;
 1918:             if (prev == *++scan && prev == *++scan && prev == *++scan) {
 1919:                 strend = s->window + s->strstart + MAX_MATCH;
 1920:                 do {
 1921:                 } while (prev == *++scan && prev == *++scan &&
 1922:                          prev == *++scan && prev == *++scan &&
 1923:                          prev == *++scan && prev == *++scan &&
 1924:                          prev == *++scan && prev == *++scan &&
 1925:                          scan < strend);
 1926:                 s->match_length = MAX_MATCH - (int)(strend - scan);
 1927:                 if (s->match_length > s->lookahead)
 1928:                     s->match_length = s->lookahead;
 1929:             }
 1930:             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
 1931:         }
 1932: 
 1933:         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 1934:         if (s->match_length >= MIN_MATCH) {
 1935:             check_match(s, s->strstart, s->strstart - 1, s->match_length);
 1936: 
 1937:             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
 1938: 
 1939:             s->lookahead -= s->match_length;
 1940:             s->strstart += s->match_length;
 1941:             s->match_length = 0;
 1942:         } else {
 1943:             /* No match, output a literal byte */
 1944:             Tracevv((stderr,"%c", s->window[s->strstart]));
 1945:             _tr_tally_lit (s, s->window[s->strstart], bflush);
 1946:             s->lookahead--;
 1947:             s->strstart++;
 1948:         }
 1949:         if (bflush) FLUSH_BLOCK(s, 0);
 1950:     }
 1951:     s->insert = 0;
 1952:     if (flush == Z_FINISH) {
 1953:         FLUSH_BLOCK(s, 1);
 1954:         return finish_done;
 1955:     }
 1956:     if (s->last_lit)
 1957:         FLUSH_BLOCK(s, 0);
 1958:     return block_done;
 1959: }
 1960: 
 1961: /* ===========================================================================
 1962:  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 1963:  * (It will be regenerated if this run of deflate switches away from Huffman.)
 1964:  */
 1965: local block_state deflate_huff(s, flush)
 1966:     deflate_state *s;
 1967:     int flush;
 1968: {
 1969:     int bflush;             /* set if current block must be flushed */
 1970: 
 1971:     for (;;) {
 1972:         /* Make sure that we have a literal to write. */
 1973:         if (s->lookahead == 0) {
 1974:             fill_window(s);
 1975:             if (s->lookahead == 0) {
 1976:                 if (flush == Z_NO_FLUSH)
 1977:                     return need_more;
 1978:                 break;      /* flush the current block */
 1979:             }
 1980:         }
 1981: 
 1982:         /* Output a literal byte */
 1983:         s->match_length = 0;
 1984:         Tracevv((stderr,"%c", s->window[s->strstart]));
 1985:         _tr_tally_lit (s, s->window[s->strstart], bflush);
 1986:         s->lookahead--;
 1987:         s->strstart++;
 1988:         if (bflush) FLUSH_BLOCK(s, 0);
 1989:     }
 1990:     s->insert = 0;
 1991:     if (flush == Z_FINISH) {
 1992:         FLUSH_BLOCK(s, 1);
 1993:         return finish_done;
 1994:     }
 1995:     if (s->last_lit)
 1996:         FLUSH_BLOCK(s, 0);
 1997:     return block_done;
 1998: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>