Annotation of embedaddon/rsync/zlib/inftrees.c, revision 1.1.1.1

1.1       misho       1: /* inftrees.c -- generate Huffman trees for efficient decoding
                      2:  * Copyright (C) 1995-2005 Mark Adler
                      3:  * For conditions of distribution and use, see copyright notice in zlib.h
                      4:  */
                      5: 
                      6: #include "zutil.h"
                      7: #include "inftrees.h"
                      8: 
                      9: #define MAXBITS 15
                     10: 
                     11: const char inflate_copyright[] =
                     12:    " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
                     13: /*
                     14:   If you use the zlib library in a product, an acknowledgment is welcome
                     15:   in the documentation of your product. If for some reason you cannot
                     16:   include such an acknowledgment, I would appreciate that you keep this
                     17:   copyright string in the executable of your product.
                     18:  */
                     19: 
                     20: /*
                     21:    Build a set of tables to decode the provided canonical Huffman code.
                     22:    The code lengths are lens[0..codes-1].  The result starts at *table,
                     23:    whose indices are 0..2^bits-1.  work is a writable array of at least
                     24:    lens shorts, which is used as a work area.  type is the type of code
                     25:    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
                     26:    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
                     27:    on return points to the next available entry's address.  bits is the
                     28:    requested root table index bits, and on return it is the actual root
                     29:    table index bits.  It will differ if the request is greater than the
                     30:    longest code or if it is less than the shortest code.
                     31:  */
                     32: int inflate_table(type, lens, codes, table, bits, work)
                     33: codetype type;
                     34: unsigned short FAR *lens;
                     35: unsigned codes;
                     36: code FAR * FAR *table;
                     37: unsigned FAR *bits;
                     38: unsigned short FAR *work;
                     39: {
                     40:     unsigned len;               /* a code's length in bits */
                     41:     unsigned sym;               /* index of code symbols */
                     42:     unsigned min, max;          /* minimum and maximum code lengths */
                     43:     unsigned root;              /* number of index bits for root table */
                     44:     unsigned curr;              /* number of index bits for current table */
                     45:     unsigned drop;              /* code bits to drop for sub-table */
                     46:     int left;                   /* number of prefix codes available */
                     47:     unsigned used;              /* code entries in table used */
                     48:     unsigned huff;              /* Huffman code */
                     49:     unsigned incr;              /* for incrementing code, index */
                     50:     unsigned fill;              /* index for replicating entries */
                     51:     unsigned low;               /* low bits for current root entry */
                     52:     unsigned mask;              /* mask for low root bits */
                     53:     code this;                  /* table entry for duplication */
                     54:     code FAR *next;             /* next available space in table */
                     55:     const unsigned short FAR *base;     /* base value table to use */
                     56:     const unsigned short FAR *extra;    /* extra bits table to use */
                     57:     int end;                    /* use base and extra for symbol > end */
                     58:     unsigned short count[MAXBITS+1];    /* number of codes of each length */
                     59:     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
                     60:     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
                     61:         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
                     62:         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
                     63:     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
                     64:         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
                     65:         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
                     66:     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
                     67:         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
                     68:         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
                     69:         8193, 12289, 16385, 24577, 0, 0};
                     70:     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
                     71:         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
                     72:         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
                     73:         28, 28, 29, 29, 64, 64};
                     74: 
                     75:     /*
                     76:        Process a set of code lengths to create a canonical Huffman code.  The
                     77:        code lengths are lens[0..codes-1].  Each length corresponds to the
                     78:        symbols 0..codes-1.  The Huffman code is generated by first sorting the
                     79:        symbols by length from short to long, and retaining the symbol order
                     80:        for codes with equal lengths.  Then the code starts with all zero bits
                     81:        for the first code of the shortest length, and the codes are integer
                     82:        increments for the same length, and zeros are appended as the length
                     83:        increases.  For the deflate format, these bits are stored backwards
                     84:        from their more natural integer increment ordering, and so when the
                     85:        decoding tables are built in the large loop below, the integer codes
                     86:        are incremented backwards.
                     87: 
                     88:        This routine assumes, but does not check, that all of the entries in
                     89:        lens[] are in the range 0..MAXBITS.  The caller must assure this.
                     90:        1..MAXBITS is interpreted as that code length.  zero means that that
                     91:        symbol does not occur in this code.
                     92: 
                     93:        The codes are sorted by computing a count of codes for each length,
                     94:        creating from that a table of starting indices for each length in the
                     95:        sorted table, and then entering the symbols in order in the sorted
                     96:        table.  The sorted table is work[], with that space being provided by
                     97:        the caller.
                     98: 
                     99:        The length counts are used for other purposes as well, i.e. finding
                    100:        the minimum and maximum length codes, determining if there are any
                    101:        codes at all, checking for a valid set of lengths, and looking ahead
                    102:        at length counts to determine sub-table sizes when building the
                    103:        decoding tables.
                    104:      */
                    105: 
                    106:     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
                    107:     for (len = 0; len <= MAXBITS; len++)
                    108:         count[len] = 0;
                    109:     for (sym = 0; sym < codes; sym++)
                    110:         count[lens[sym]]++;
                    111: 
                    112:     /* bound code lengths, force root to be within code lengths */
                    113:     root = *bits;
                    114:     for (max = MAXBITS; max >= 1; max--)
                    115:         if (count[max] != 0) break;
                    116:     if (root > max) root = max;
                    117:     if (max == 0) {                     /* no symbols to code at all */
                    118:         this.op = (unsigned char)64;    /* invalid code marker */
                    119:         this.bits = (unsigned char)1;
                    120:         this.val = (unsigned short)0;
                    121:         *(*table)++ = this;             /* make a table to force an error */
                    122:         *(*table)++ = this;
                    123:         *bits = 1;
                    124:         return 0;     /* no symbols, but wait for decoding to report error */
                    125:     }
                    126:     for (min = 1; min <= MAXBITS; min++)
                    127:         if (count[min] != 0) break;
                    128:     if (root < min) root = min;
                    129: 
                    130:     /* check for an over-subscribed or incomplete set of lengths */
                    131:     left = 1;
                    132:     for (len = 1; len <= MAXBITS; len++) {
                    133:         left <<= 1;
                    134:         left -= count[len];
                    135:         if (left < 0) return -1;        /* over-subscribed */
                    136:     }
                    137:     if (left > 0 && (type == CODES || max != 1))
                    138:         return -1;                      /* incomplete set */
                    139: 
                    140:     /* generate offsets into symbol table for each length for sorting */
                    141:     offs[1] = 0;
                    142:     for (len = 1; len < MAXBITS; len++)
                    143:         offs[len + 1] = offs[len] + count[len];
                    144: 
                    145:     /* sort symbols by length, by symbol order within each length */
                    146:     for (sym = 0; sym < codes; sym++)
                    147:         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
                    148: 
                    149:     /*
                    150:        Create and fill in decoding tables.  In this loop, the table being
                    151:        filled is at next and has curr index bits.  The code being used is huff
                    152:        with length len.  That code is converted to an index by dropping drop
                    153:        bits off of the bottom.  For codes where len is less than drop + curr,
                    154:        those top drop + curr - len bits are incremented through all values to
                    155:        fill the table with replicated entries.
                    156: 
                    157:        root is the number of index bits for the root table.  When len exceeds
                    158:        root, sub-tables are created pointed to by the root entry with an index
                    159:        of the low root bits of huff.  This is saved in low to check for when a
                    160:        new sub-table should be started.  drop is zero when the root table is
                    161:        being filled, and drop is root when sub-tables are being filled.
                    162: 
                    163:        When a new sub-table is needed, it is necessary to look ahead in the
                    164:        code lengths to determine what size sub-table is needed.  The length
                    165:        counts are used for this, and so count[] is decremented as codes are
                    166:        entered in the tables.
                    167: 
                    168:        used keeps track of how many table entries have been allocated from the
                    169:        provided *table space.  It is checked when a LENS table is being made
                    170:        against the space in *table, ENOUGH, minus the maximum space needed by
                    171:        the worst case distance code, MAXD.  This should never happen, but the
                    172:        sufficiency of ENOUGH has not been proven exhaustively, hence the check.
                    173:        This assumes that when type == LENS, bits == 9.
                    174: 
                    175:        sym increments through all symbols, and the loop terminates when
                    176:        all codes of length max, i.e. all codes, have been processed.  This
                    177:        routine permits incomplete codes, so another loop after this one fills
                    178:        in the rest of the decoding tables with invalid code markers.
                    179:      */
                    180: 
                    181:     /* set up for code type */
                    182:     switch (type) {
                    183:     case CODES:
                    184:         base = extra = work;    /* dummy value--not used */
                    185:         end = 19;
                    186:         break;
                    187:     case LENS:
                    188:         base = lbase;
                    189:         base -= 257;
                    190:         extra = lext;
                    191:         extra -= 257;
                    192:         end = 256;
                    193:         break;
                    194:     default:            /* DISTS */
                    195:         base = dbase;
                    196:         extra = dext;
                    197:         end = -1;
                    198:     }
                    199: 
                    200:     /* initialize state for loop */
                    201:     huff = 0;                   /* starting code */
                    202:     sym = 0;                    /* starting code symbol */
                    203:     len = min;                  /* starting code length */
                    204:     next = *table;              /* current table to fill in */
                    205:     curr = root;                /* current table index bits */
                    206:     drop = 0;                   /* current bits to drop from code for index */
                    207:     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
                    208:     used = 1U << root;          /* use root table entries */
                    209:     mask = used - 1;            /* mask for comparing low */
                    210: 
                    211:     /* check available table space */
                    212:     if (type == LENS && used >= ENOUGH - MAXD)
                    213:         return 1;
                    214: 
                    215:     /* process all codes and make table entries */
                    216:     for (;;) {
                    217:         /* create table entry */
                    218:         this.bits = (unsigned char)(len - drop);
                    219:         if ((int)(work[sym]) < end) {
                    220:             this.op = (unsigned char)0;
                    221:             this.val = work[sym];
                    222:         }
                    223:         else if ((int)(work[sym]) > end) {
                    224:             this.op = (unsigned char)(extra[work[sym]]);
                    225:             this.val = base[work[sym]];
                    226:         }
                    227:         else {
                    228:             this.op = (unsigned char)(32 + 64);         /* end of block */
                    229:             this.val = 0;
                    230:         }
                    231: 
                    232:         /* replicate for those indices with low len bits equal to huff */
                    233:         incr = 1U << (len - drop);
                    234:         fill = 1U << curr;
                    235:         min = fill;                 /* save offset to next table */
                    236:         do {
                    237:             fill -= incr;
                    238:             next[(huff >> drop) + fill] = this;
                    239:         } while (fill != 0);
                    240: 
                    241:         /* backwards increment the len-bit code huff */
                    242:         incr = 1U << (len - 1);
                    243:         while (huff & incr)
                    244:             incr >>= 1;
                    245:         if (incr != 0) {
                    246:             huff &= incr - 1;
                    247:             huff += incr;
                    248:         }
                    249:         else
                    250:             huff = 0;
                    251: 
                    252:         /* go to next symbol, update count, len */
                    253:         sym++;
                    254:         if (--(count[len]) == 0) {
                    255:             if (len == max) break;
                    256:             len = lens[work[sym]];
                    257:         }
                    258: 
                    259:         /* create new sub-table if needed */
                    260:         if (len > root && (huff & mask) != low) {
                    261:             /* if first time, transition to sub-tables */
                    262:             if (drop == 0)
                    263:                 drop = root;
                    264: 
                    265:             /* increment past last table */
                    266:             next += min;            /* here min is 1 << curr */
                    267: 
                    268:             /* determine length of next table */
                    269:             curr = len - drop;
                    270:             left = (int)(1 << curr);
                    271:             while (curr + drop < max) {
                    272:                 left -= count[curr + drop];
                    273:                 if (left <= 0) break;
                    274:                 curr++;
                    275:                 left <<= 1;
                    276:             }
                    277: 
                    278:             /* check for enough space */
                    279:             used += 1U << curr;
                    280:             if (type == LENS && used >= ENOUGH - MAXD)
                    281:                 return 1;
                    282: 
                    283:             /* point entry in root table to sub-table */
                    284:             low = huff & mask;
                    285:             (*table)[low].op = (unsigned char)curr;
                    286:             (*table)[low].bits = (unsigned char)root;
                    287:             (*table)[low].val = (unsigned short)(next - *table);
                    288:         }
                    289:     }
                    290: 
                    291:     /*
                    292:        Fill in rest of table for incomplete codes.  This loop is similar to the
                    293:        loop above in incrementing huff for table indices.  It is assumed that
                    294:        len is equal to curr + drop, so there is no loop needed to increment
                    295:        through high index bits.  When the current sub-table is filled, the loop
                    296:        drops back to the root table to fill in any remaining entries there.
                    297:      */
                    298:     this.op = (unsigned char)64;                /* invalid code marker */
                    299:     this.bits = (unsigned char)(len - drop);
                    300:     this.val = (unsigned short)0;
                    301:     while (huff != 0) {
                    302:         /* when done with sub-table, drop back to root table */
                    303:         if (drop != 0 && (huff & mask) != low) {
                    304:             drop = 0;
                    305:             len = root;
                    306:             next = *table;
                    307:             this.bits = (unsigned char)len;
                    308:         }
                    309: 
                    310:         /* put invalid code marker in table */
                    311:         next[huff >> drop] = this;
                    312: 
                    313:         /* backwards increment the len-bit code huff */
                    314:         incr = 1U << (len - 1);
                    315:         while (huff & incr)
                    316:             incr >>= 1;
                    317:         if (incr != 0) {
                    318:             huff &= incr - 1;
                    319:             huff += incr;
                    320:         }
                    321:         else
                    322:             huff = 0;
                    323:     }
                    324: 
                    325:     /* set return parameters */
                    326:     *table += used;
                    327:     *bits = root;
                    328:     return 0;
                    329: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>