Annotation of embedaddon/rsync/zlib/trees.c, revision 1.1.1.1

1.1       misho       1: /* trees.c -- output deflated data using Huffman coding
                      2:  * Copyright (C) 1995-2005 Jean-loup Gailly
                      3:  * For conditions of distribution and use, see copyright notice in zlib.h
                      4:  */
                      5: 
                      6: /*
                      7:  *  ALGORITHM
                      8:  *
                      9:  *      The "deflation" process uses several Huffman trees. The more
                     10:  *      common source values are represented by shorter bit sequences.
                     11:  *
                     12:  *      Each code tree is stored in a compressed form which is itself
                     13:  * a Huffman encoding of the lengths of all the code strings (in
                     14:  * ascending order by source values).  The actual code strings are
                     15:  * reconstructed from the lengths in the inflate process, as described
                     16:  * in the deflate specification.
                     17:  *
                     18:  *  REFERENCES
                     19:  *
                     20:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
                     21:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
                     22:  *
                     23:  *      Storer, James A.
                     24:  *          Data Compression:  Methods and Theory, pp. 49-50.
                     25:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
                     26:  *
                     27:  *      Sedgewick, R.
                     28:  *          Algorithms, p290.
                     29:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
                     30:  */
                     31: 
                     32: /* @(#) $Id$ */
                     33: 
                     34: /* #define GEN_TREES_H */
                     35: 
                     36: #include "deflate.h"
                     37: 
                     38: #ifdef DEBUG
                     39: #  include <ctype.h>
                     40: #endif
                     41: 
                     42: /* ===========================================================================
                     43:  * Constants
                     44:  */
                     45: 
                     46: #define MAX_BL_BITS 7
                     47: /* Bit length codes must not exceed MAX_BL_BITS bits */
                     48: 
                     49: #define END_BLOCK 256
                     50: /* end of block literal code */
                     51: 
                     52: #define REP_3_6      16
                     53: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
                     54: 
                     55: #define REPZ_3_10    17
                     56: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
                     57: 
                     58: #define REPZ_11_138  18
                     59: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
                     60: 
                     61: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
                     62:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
                     63: 
                     64: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
                     65:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
                     66: 
                     67: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
                     68:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
                     69: 
                     70: local const uch bl_order[BL_CODES]
                     71:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
                     72: /* The lengths of the bit length codes are sent in order of decreasing
                     73:  * probability, to avoid transmitting the lengths for unused bit length codes.
                     74:  */
                     75: 
                     76: #define Buf_size (8 * 2*sizeof(char))
                     77: /* Number of bits used within bi_buf. (bi_buf might be implemented on
                     78:  * more than 16 bits on some systems.)
                     79:  */
                     80: 
                     81: /* ===========================================================================
                     82:  * Local data. These are initialized only once.
                     83:  */
                     84: 
                     85: #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
                     86: 
                     87: #if defined(GEN_TREES_H) || !defined(STDC)
                     88: /* non ANSI compilers may not accept trees.h */
                     89: 
                     90: local ct_data static_ltree[L_CODES+2];
                     91: /* The static literal tree. Since the bit lengths are imposed, there is no
                     92:  * need for the L_CODES extra codes used during heap construction. However
                     93:  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
                     94:  * below).
                     95:  */
                     96: 
                     97: local ct_data static_dtree[D_CODES];
                     98: /* The static distance tree. (Actually a trivial tree since all codes use
                     99:  * 5 bits.)
                    100:  */
                    101: 
                    102: uch _dist_code[DIST_CODE_LEN];
                    103: /* Distance codes. The first 256 values correspond to the distances
                    104:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
                    105:  * the 15 bit distances.
                    106:  */
                    107: 
                    108: uch _length_code[MAX_MATCH-MIN_MATCH+1];
                    109: /* length code for each normalized match length (0 == MIN_MATCH) */
                    110: 
                    111: local int base_length[LENGTH_CODES];
                    112: /* First normalized length for each code (0 = MIN_MATCH) */
                    113: 
                    114: local int base_dist[D_CODES];
                    115: /* First normalized distance for each code (0 = distance of 1) */
                    116: 
                    117: #else
                    118: #  include "trees.h"
                    119: #endif /* GEN_TREES_H */
                    120: 
                    121: struct static_tree_desc_s {
                    122:     const ct_data *static_tree;  /* static tree or NULL */
                    123:     const intf *extra_bits;      /* extra bits for each code or NULL */
                    124:     int     extra_base;          /* base index for extra_bits */
                    125:     int     elems;               /* max number of elements in the tree */
                    126:     int     max_length;          /* max bit length for the codes */
                    127: };
                    128: 
                    129: local static_tree_desc  static_l_desc =
                    130: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
                    131: 
                    132: local static_tree_desc  static_d_desc =
                    133: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
                    134: 
                    135: local static_tree_desc  static_bl_desc =
                    136: {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
                    137: 
                    138: /* ===========================================================================
                    139:  * Local (static) routines in this file.
                    140:  */
                    141: 
                    142: local void tr_static_init OF((void));
                    143: local void init_block     OF((deflate_state *s));
                    144: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
                    145: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
                    146: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
                    147: local void build_tree     OF((deflate_state *s, tree_desc *desc));
                    148: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
                    149: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
                    150: local int  build_bl_tree  OF((deflate_state *s));
                    151: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
                    152:                               int blcodes));
                    153: local void compress_block OF((deflate_state *s, ct_data *ltree,
                    154:                               ct_data *dtree));
                    155: local void set_data_type  OF((deflate_state *s));
                    156: local unsigned bi_reverse OF((unsigned value, int length));
                    157: local void bi_windup      OF((deflate_state *s));
                    158: local void bi_flush       OF((deflate_state *s));
                    159: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
                    160:                               int header));
                    161: 
                    162: #ifdef GEN_TREES_H
                    163: local void gen_trees_header OF((void));
                    164: #endif
                    165: 
                    166: #ifndef DEBUG
                    167: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
                    168:    /* Send a code of the given tree. c and tree must not have side effects */
                    169: 
                    170: #else /* DEBUG */
                    171: #  define send_code(s, c, tree) \
                    172:      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
                    173:        send_bits(s, tree[c].Code, tree[c].Len); }
                    174: #endif
                    175: 
                    176: /* ===========================================================================
                    177:  * Output a short LSB first on the stream.
                    178:  * IN assertion: there is enough room in pendingBuf.
                    179:  */
                    180: #define put_short(s, w) { \
                    181:     put_byte(s, (uch)((w) & 0xff)); \
                    182:     put_byte(s, (uch)((ush)(w) >> 8)); \
                    183: }
                    184: 
                    185: /* ===========================================================================
                    186:  * Send a value on a given number of bits.
                    187:  * IN assertion: length <= 16 and value fits in length bits.
                    188:  */
                    189: #ifdef DEBUG
                    190: local void send_bits      OF((deflate_state *s, int value, int length));
                    191: 
                    192: local void send_bits(s, value, length)
                    193:     deflate_state *s;
                    194:     int value;  /* value to send */
                    195:     int length; /* number of bits */
                    196: {
                    197:     Tracevv((stderr," l %2d v %4x ", length, value));
                    198:     Assert(length > 0 && length <= 15, "invalid length");
                    199:     s->bits_sent += (ulg)length;
                    200: 
                    201:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
                    202:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
                    203:      * unused bits in value.
                    204:      */
                    205:     if (s->bi_valid > (int)Buf_size - length) {
                    206:         s->bi_buf |= (value << s->bi_valid);
                    207:         put_short(s, s->bi_buf);
                    208:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
                    209:         s->bi_valid += length - Buf_size;
                    210:     } else {
                    211:         s->bi_buf |= value << s->bi_valid;
                    212:         s->bi_valid += length;
                    213:     }
                    214: }
                    215: #else /* !DEBUG */
                    216: 
                    217: #define send_bits(s, value, length) \
                    218: { int len = length;\
                    219:   if (s->bi_valid > (int)Buf_size - len) {\
                    220:     int val = value;\
                    221:     s->bi_buf |= (val << s->bi_valid);\
                    222:     put_short(s, s->bi_buf);\
                    223:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
                    224:     s->bi_valid += len - Buf_size;\
                    225:   } else {\
                    226:     s->bi_buf |= (value) << s->bi_valid;\
                    227:     s->bi_valid += len;\
                    228:   }\
                    229: }
                    230: #endif /* DEBUG */
                    231: 
                    232: 
                    233: /* the arguments must not have side effects */
                    234: 
                    235: /* ===========================================================================
                    236:  * Initialize the various 'constant' tables.
                    237:  */
                    238: local void tr_static_init()
                    239: {
                    240: #if defined(GEN_TREES_H) || !defined(STDC)
                    241:     static int static_init_done = 0;
                    242:     int n;        /* iterates over tree elements */
                    243:     int bits;     /* bit counter */
                    244:     int length;   /* length value */
                    245:     int code;     /* code value */
                    246:     int dist;     /* distance index */
                    247:     ush bl_count[MAX_BITS+1];
                    248:     /* number of codes at each bit length for an optimal tree */
                    249: 
                    250:     if (static_init_done) return;
                    251: 
                    252:     /* For some embedded targets, global variables are not initialized: */
                    253:     static_l_desc.static_tree = static_ltree;
                    254:     static_l_desc.extra_bits = extra_lbits;
                    255:     static_d_desc.static_tree = static_dtree;
                    256:     static_d_desc.extra_bits = extra_dbits;
                    257:     static_bl_desc.extra_bits = extra_blbits;
                    258: 
                    259:     /* Initialize the mapping length (0..255) -> length code (0..28) */
                    260:     length = 0;
                    261:     for (code = 0; code < LENGTH_CODES-1; code++) {
                    262:         base_length[code] = length;
                    263:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
                    264:             _length_code[length++] = (uch)code;
                    265:         }
                    266:     }
                    267:     Assert (length == 256, "tr_static_init: length != 256");
                    268:     /* Note that the length 255 (match length 258) can be represented
                    269:      * in two different ways: code 284 + 5 bits or code 285, so we
                    270:      * overwrite length_code[255] to use the best encoding:
                    271:      */
                    272:     _length_code[length-1] = (uch)code;
                    273: 
                    274:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
                    275:     dist = 0;
                    276:     for (code = 0 ; code < 16; code++) {
                    277:         base_dist[code] = dist;
                    278:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
                    279:             _dist_code[dist++] = (uch)code;
                    280:         }
                    281:     }
                    282:     Assert (dist == 256, "tr_static_init: dist != 256");
                    283:     dist >>= 7; /* from now on, all distances are divided by 128 */
                    284:     for ( ; code < D_CODES; code++) {
                    285:         base_dist[code] = dist << 7;
                    286:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
                    287:             _dist_code[256 + dist++] = (uch)code;
                    288:         }
                    289:     }
                    290:     Assert (dist == 256, "tr_static_init: 256+dist != 512");
                    291: 
                    292:     /* Construct the codes of the static literal tree */
                    293:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
                    294:     n = 0;
                    295:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
                    296:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
                    297:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
                    298:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
                    299:     /* Codes 286 and 287 do not exist, but we must include them in the
                    300:      * tree construction to get a canonical Huffman tree (longest code
                    301:      * all ones)
                    302:      */
                    303:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
                    304: 
                    305:     /* The static distance tree is trivial: */
                    306:     for (n = 0; n < D_CODES; n++) {
                    307:         static_dtree[n].Len = 5;
                    308:         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
                    309:     }
                    310:     static_init_done = 1;
                    311: 
                    312: #  ifdef GEN_TREES_H
                    313:     gen_trees_header();
                    314: #  endif
                    315: #endif /* defined(GEN_TREES_H) || !defined(STDC) */
                    316: }
                    317: 
                    318: /* ===========================================================================
                    319:  * Genererate the file trees.h describing the static trees.
                    320:  */
                    321: #ifdef GEN_TREES_H
                    322: #  ifndef DEBUG
                    323: #    include <stdio.h>
                    324: #  endif
                    325: 
                    326: #  define SEPARATOR(i, last, width) \
                    327:       ((i) == (last)? "\n};\n\n" :    \
                    328:        ((i) % (width) == (width)-1 ? ",\n" : ", "))
                    329: 
                    330: void gen_trees_header()
                    331: {
                    332:     FILE *header = fopen("trees.h", "w");
                    333:     int i;
                    334: 
                    335:     Assert (header != NULL, "Can't open trees.h");
                    336:     fprintf(header,
                    337:             "/* header created automatically with -DGEN_TREES_H */\n\n");
                    338: 
                    339:     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
                    340:     for (i = 0; i < L_CODES+2; i++) {
                    341:         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
                    342:                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
                    343:     }
                    344: 
                    345:     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
                    346:     for (i = 0; i < D_CODES; i++) {
                    347:         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
                    348:                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
                    349:     }
                    350: 
                    351:     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
                    352:     for (i = 0; i < DIST_CODE_LEN; i++) {
                    353:         fprintf(header, "%2u%s", _dist_code[i],
                    354:                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
                    355:     }
                    356: 
                    357:     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
                    358:     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
                    359:         fprintf(header, "%2u%s", _length_code[i],
                    360:                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
                    361:     }
                    362: 
                    363:     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
                    364:     for (i = 0; i < LENGTH_CODES; i++) {
                    365:         fprintf(header, "%1u%s", base_length[i],
                    366:                 SEPARATOR(i, LENGTH_CODES-1, 20));
                    367:     }
                    368: 
                    369:     fprintf(header, "local const int base_dist[D_CODES] = {\n");
                    370:     for (i = 0; i < D_CODES; i++) {
                    371:         fprintf(header, "%5u%s", base_dist[i],
                    372:                 SEPARATOR(i, D_CODES-1, 10));
                    373:     }
                    374: 
                    375:     fclose(header);
                    376: }
                    377: #endif /* GEN_TREES_H */
                    378: 
                    379: /* ===========================================================================
                    380:  * Initialize the tree data structures for a new zlib stream.
                    381:  */
                    382: void _tr_init(s)
                    383:     deflate_state *s;
                    384: {
                    385:     tr_static_init();
                    386: 
                    387:     s->l_desc.dyn_tree = s->dyn_ltree;
                    388:     s->l_desc.stat_desc = &static_l_desc;
                    389: 
                    390:     s->d_desc.dyn_tree = s->dyn_dtree;
                    391:     s->d_desc.stat_desc = &static_d_desc;
                    392: 
                    393:     s->bl_desc.dyn_tree = s->bl_tree;
                    394:     s->bl_desc.stat_desc = &static_bl_desc;
                    395: 
                    396:     s->bi_buf = 0;
                    397:     s->bi_valid = 0;
                    398:     s->last_eob_len = 8; /* enough lookahead for inflate */
                    399: #ifdef DEBUG
                    400:     s->compressed_len = 0L;
                    401:     s->bits_sent = 0L;
                    402: #endif
                    403: 
                    404:     /* Initialize the first block of the first file: */
                    405:     init_block(s);
                    406: }
                    407: 
                    408: /* ===========================================================================
                    409:  * Initialize a new block.
                    410:  */
                    411: local void init_block(s)
                    412:     deflate_state *s;
                    413: {
                    414:     int n; /* iterates over tree elements */
                    415: 
                    416:     /* Initialize the trees. */
                    417:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
                    418:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
                    419:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
                    420: 
                    421:     s->dyn_ltree[END_BLOCK].Freq = 1;
                    422:     s->opt_len = s->static_len = 0L;
                    423:     s->last_lit = s->matches = 0;
                    424: }
                    425: 
                    426: #define SMALLEST 1
                    427: /* Index within the heap array of least frequent node in the Huffman tree */
                    428: 
                    429: 
                    430: /* ===========================================================================
                    431:  * Remove the smallest element from the heap and recreate the heap with
                    432:  * one less element. Updates heap and heap_len.
                    433:  */
                    434: #define pqremove(s, tree, top) \
                    435: {\
                    436:     top = s->heap[SMALLEST]; \
                    437:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
                    438:     pqdownheap(s, tree, SMALLEST); \
                    439: }
                    440: 
                    441: /* ===========================================================================
                    442:  * Compares to subtrees, using the tree depth as tie breaker when
                    443:  * the subtrees have equal frequency. This minimizes the worst case length.
                    444:  */
                    445: #define smaller(tree, n, m, depth) \
                    446:    (tree[n].Freq < tree[m].Freq || \
                    447:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
                    448: 
                    449: /* ===========================================================================
                    450:  * Restore the heap property by moving down the tree starting at node k,
                    451:  * exchanging a node with the smallest of its two sons if necessary, stopping
                    452:  * when the heap property is re-established (each father smaller than its
                    453:  * two sons).
                    454:  */
                    455: local void pqdownheap(s, tree, k)
                    456:     deflate_state *s;
                    457:     ct_data *tree;  /* the tree to restore */
                    458:     int k;               /* node to move down */
                    459: {
                    460:     int v = s->heap[k];
                    461:     int j = k << 1;  /* left son of k */
                    462:     while (j <= s->heap_len) {
                    463:         /* Set j to the smallest of the two sons: */
                    464:         if (j < s->heap_len &&
                    465:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
                    466:             j++;
                    467:         }
                    468:         /* Exit if v is smaller than both sons */
                    469:         if (smaller(tree, v, s->heap[j], s->depth)) break;
                    470: 
                    471:         /* Exchange v with the smallest son */
                    472:         s->heap[k] = s->heap[j];  k = j;
                    473: 
                    474:         /* And continue down the tree, setting j to the left son of k */
                    475:         j <<= 1;
                    476:     }
                    477:     s->heap[k] = v;
                    478: }
                    479: 
                    480: /* ===========================================================================
                    481:  * Compute the optimal bit lengths for a tree and update the total bit length
                    482:  * for the current block.
                    483:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
                    484:  *    above are the tree nodes sorted by increasing frequency.
                    485:  * OUT assertions: the field len is set to the optimal bit length, the
                    486:  *     array bl_count contains the frequencies for each bit length.
                    487:  *     The length opt_len is updated; static_len is also updated if stree is
                    488:  *     not null.
                    489:  */
                    490: local void gen_bitlen(s, desc)
                    491:     deflate_state *s;
                    492:     tree_desc *desc;    /* the tree descriptor */
                    493: {
                    494:     ct_data *tree        = desc->dyn_tree;
                    495:     int max_code         = desc->max_code;
                    496:     const ct_data *stree = desc->stat_desc->static_tree;
                    497:     const intf *extra    = desc->stat_desc->extra_bits;
                    498:     int base             = desc->stat_desc->extra_base;
                    499:     int max_length       = desc->stat_desc->max_length;
                    500:     int h;              /* heap index */
                    501:     int n, m;           /* iterate over the tree elements */
                    502:     int bits;           /* bit length */
                    503:     int xbits;          /* extra bits */
                    504:     ush f;              /* frequency */
                    505:     int overflow = 0;   /* number of elements with bit length too large */
                    506: 
                    507:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
                    508: 
                    509:     /* In a first pass, compute the optimal bit lengths (which may
                    510:      * overflow in the case of the bit length tree).
                    511:      */
                    512:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
                    513: 
                    514:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
                    515:         n = s->heap[h];
                    516:         bits = tree[tree[n].Dad].Len + 1;
                    517:         if (bits > max_length) bits = max_length, overflow++;
                    518:         tree[n].Len = (ush)bits;
                    519:         /* We overwrite tree[n].Dad which is no longer needed */
                    520: 
                    521:         if (n > max_code) continue; /* not a leaf node */
                    522: 
                    523:         s->bl_count[bits]++;
                    524:         xbits = 0;
                    525:         if (n >= base) xbits = extra[n-base];
                    526:         f = tree[n].Freq;
                    527:         s->opt_len += (ulg)f * (bits + xbits);
                    528:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
                    529:     }
                    530:     if (overflow == 0) return;
                    531: 
                    532:     Trace((stderr,"\nbit length overflow\n"));
                    533:     /* This happens for example on obj2 and pic of the Calgary corpus */
                    534: 
                    535:     /* Find the first bit length which could increase: */
                    536:     do {
                    537:         bits = max_length-1;
                    538:         while (s->bl_count[bits] == 0) bits--;
                    539:         s->bl_count[bits]--;      /* move one leaf down the tree */
                    540:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
                    541:         s->bl_count[max_length]--;
                    542:         /* The brother of the overflow item also moves one step up,
                    543:          * but this does not affect bl_count[max_length]
                    544:          */
                    545:         overflow -= 2;
                    546:     } while (overflow > 0);
                    547: 
                    548:     /* Now recompute all bit lengths, scanning in increasing frequency.
                    549:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
                    550:      * lengths instead of fixing only the wrong ones. This idea is taken
                    551:      * from 'ar' written by Haruhiko Okumura.)
                    552:      */
                    553:     for (bits = max_length; bits != 0; bits--) {
                    554:         n = s->bl_count[bits];
                    555:         while (n != 0) {
                    556:             m = s->heap[--h];
                    557:             if (m > max_code) continue;
                    558:             if ((unsigned) tree[m].Len != (unsigned) bits) {
                    559:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                    560:                 s->opt_len += ((long)bits - (long)tree[m].Len)
                    561:                               *(long)tree[m].Freq;
                    562:                 tree[m].Len = (ush)bits;
                    563:             }
                    564:             n--;
                    565:         }
                    566:     }
                    567: }
                    568: 
                    569: /* ===========================================================================
                    570:  * Generate the codes for a given tree and bit counts (which need not be
                    571:  * optimal).
                    572:  * IN assertion: the array bl_count contains the bit length statistics for
                    573:  * the given tree and the field len is set for all tree elements.
                    574:  * OUT assertion: the field code is set for all tree elements of non
                    575:  *     zero code length.
                    576:  */
                    577: local void gen_codes (tree, max_code, bl_count)
                    578:     ct_data *tree;             /* the tree to decorate */
                    579:     int max_code;              /* largest code with non zero frequency */
                    580:     ushf *bl_count;            /* number of codes at each bit length */
                    581: {
                    582:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
                    583:     ush code = 0;              /* running code value */
                    584:     int bits;                  /* bit index */
                    585:     int n;                     /* code index */
                    586: 
                    587:     /* The distribution counts are first used to generate the code values
                    588:      * without bit reversal.
                    589:      */
                    590:     for (bits = 1; bits <= MAX_BITS; bits++) {
                    591:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
                    592:     }
                    593:     /* Check that the bit counts in bl_count are consistent. The last code
                    594:      * must be all ones.
                    595:      */
                    596:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
                    597:             "inconsistent bit counts");
                    598:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
                    599: 
                    600:     for (n = 0;  n <= max_code; n++) {
                    601:         int len = tree[n].Len;
                    602:         if (len == 0) continue;
                    603:         /* Now reverse the bits */
                    604:         tree[n].Code = bi_reverse(next_code[len]++, len);
                    605: 
                    606:         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
                    607:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
                    608:     }
                    609: }
                    610: 
                    611: /* ===========================================================================
                    612:  * Construct one Huffman tree and assigns the code bit strings and lengths.
                    613:  * Update the total bit length for the current block.
                    614:  * IN assertion: the field freq is set for all tree elements.
                    615:  * OUT assertions: the fields len and code are set to the optimal bit length
                    616:  *     and corresponding code. The length opt_len is updated; static_len is
                    617:  *     also updated if stree is not null. The field max_code is set.
                    618:  */
                    619: local void build_tree(s, desc)
                    620:     deflate_state *s;
                    621:     tree_desc *desc; /* the tree descriptor */
                    622: {
                    623:     ct_data *tree         = desc->dyn_tree;
                    624:     const ct_data *stree  = desc->stat_desc->static_tree;
                    625:     int elems             = desc->stat_desc->elems;
                    626:     int n, m;          /* iterate over heap elements */
                    627:     int max_code = -1; /* largest code with non zero frequency */
                    628:     int node;          /* new node being created */
                    629: 
                    630:     /* Construct the initial heap, with least frequent element in
                    631:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
                    632:      * heap[0] is not used.
                    633:      */
                    634:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
                    635: 
                    636:     for (n = 0; n < elems; n++) {
                    637:         if (tree[n].Freq != 0) {
                    638:             s->heap[++(s->heap_len)] = max_code = n;
                    639:             s->depth[n] = 0;
                    640:         } else {
                    641:             tree[n].Len = 0;
                    642:         }
                    643:     }
                    644: 
                    645:     /* The pkzip format requires that at least one distance code exists,
                    646:      * and that at least one bit should be sent even if there is only one
                    647:      * possible code. So to avoid special checks later on we force at least
                    648:      * two codes of non zero frequency.
                    649:      */
                    650:     while (s->heap_len < 2) {
                    651:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
                    652:         tree[node].Freq = 1;
                    653:         s->depth[node] = 0;
                    654:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
                    655:         /* node is 0 or 1 so it does not have extra bits */
                    656:     }
                    657:     desc->max_code = max_code;
                    658: 
                    659:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
                    660:      * establish sub-heaps of increasing lengths:
                    661:      */
                    662:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
                    663: 
                    664:     /* Construct the Huffman tree by repeatedly combining the least two
                    665:      * frequent nodes.
                    666:      */
                    667:     node = elems;              /* next internal node of the tree */
                    668:     do {
                    669:         pqremove(s, tree, n);  /* n = node of least frequency */
                    670:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
                    671: 
                    672:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
                    673:         s->heap[--(s->heap_max)] = m;
                    674: 
                    675:         /* Create a new node father of n and m */
                    676:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
                    677:         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
                    678:                                 s->depth[n] : s->depth[m]) + 1);
                    679:         tree[n].Dad = tree[m].Dad = (ush)node;
                    680: #ifdef DUMP_BL_TREE
                    681:         if (tree == s->bl_tree) {
                    682:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
                    683:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
                    684:         }
                    685: #endif
                    686:         /* and insert the new node in the heap */
                    687:         s->heap[SMALLEST] = node++;
                    688:         pqdownheap(s, tree, SMALLEST);
                    689: 
                    690:     } while (s->heap_len >= 2);
                    691: 
                    692:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
                    693: 
                    694:     /* At this point, the fields freq and dad are set. We can now
                    695:      * generate the bit lengths.
                    696:      */
                    697:     gen_bitlen(s, (tree_desc *)desc);
                    698: 
                    699:     /* The field len is now set, we can generate the bit codes */
                    700:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
                    701: }
                    702: 
                    703: /* ===========================================================================
                    704:  * Scan a literal or distance tree to determine the frequencies of the codes
                    705:  * in the bit length tree.
                    706:  */
                    707: local void scan_tree (s, tree, max_code)
                    708:     deflate_state *s;
                    709:     ct_data *tree;   /* the tree to be scanned */
                    710:     int max_code;    /* and its largest code of non zero frequency */
                    711: {
                    712:     int n;                     /* iterates over all tree elements */
                    713:     int prevlen = -1;          /* last emitted length */
                    714:     int curlen;                /* length of current code */
                    715:     int nextlen = tree[0].Len; /* length of next code */
                    716:     int count = 0;             /* repeat count of the current code */
                    717:     int max_count = 7;         /* max repeat count */
                    718:     int min_count = 4;         /* min repeat count */
                    719: 
                    720:     if (nextlen == 0) max_count = 138, min_count = 3;
                    721:     tree[max_code+1].Len = (ush)0xffff; /* guard */
                    722: 
                    723:     for (n = 0; n <= max_code; n++) {
                    724:         curlen = nextlen; nextlen = tree[n+1].Len;
                    725:         if (++count < max_count && curlen == nextlen) {
                    726:             continue;
                    727:         } else if (count < min_count) {
                    728:             s->bl_tree[curlen].Freq += count;
                    729:         } else if (curlen != 0) {
                    730:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
                    731:             s->bl_tree[REP_3_6].Freq++;
                    732:         } else if (count <= 10) {
                    733:             s->bl_tree[REPZ_3_10].Freq++;
                    734:         } else {
                    735:             s->bl_tree[REPZ_11_138].Freq++;
                    736:         }
                    737:         count = 0; prevlen = curlen;
                    738:         if (nextlen == 0) {
                    739:             max_count = 138, min_count = 3;
                    740:         } else if (curlen == nextlen) {
                    741:             max_count = 6, min_count = 3;
                    742:         } else {
                    743:             max_count = 7, min_count = 4;
                    744:         }
                    745:     }
                    746: }
                    747: 
                    748: /* ===========================================================================
                    749:  * Send a literal or distance tree in compressed form, using the codes in
                    750:  * bl_tree.
                    751:  */
                    752: local void send_tree (s, tree, max_code)
                    753:     deflate_state *s;
                    754:     ct_data *tree; /* the tree to be scanned */
                    755:     int max_code;       /* and its largest code of non zero frequency */
                    756: {
                    757:     int n;                     /* iterates over all tree elements */
                    758:     int prevlen = -1;          /* last emitted length */
                    759:     int curlen;                /* length of current code */
                    760:     int nextlen = tree[0].Len; /* length of next code */
                    761:     int count = 0;             /* repeat count of the current code */
                    762:     int max_count = 7;         /* max repeat count */
                    763:     int min_count = 4;         /* min repeat count */
                    764: 
                    765:     /* tree[max_code+1].Len = -1; */  /* guard already set */
                    766:     if (nextlen == 0) max_count = 138, min_count = 3;
                    767: 
                    768:     for (n = 0; n <= max_code; n++) {
                    769:         curlen = nextlen; nextlen = tree[n+1].Len;
                    770:         if (++count < max_count && curlen == nextlen) {
                    771:             continue;
                    772:         } else if (count < min_count) {
                    773:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
                    774: 
                    775:         } else if (curlen != 0) {
                    776:             if (curlen != prevlen) {
                    777:                 send_code(s, curlen, s->bl_tree); count--;
                    778:             }
                    779:             Assert(count >= 3 && count <= 6, " 3_6?");
                    780:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
                    781: 
                    782:         } else if (count <= 10) {
                    783:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
                    784: 
                    785:         } else {
                    786:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
                    787:         }
                    788:         count = 0; prevlen = curlen;
                    789:         if (nextlen == 0) {
                    790:             max_count = 138, min_count = 3;
                    791:         } else if (curlen == nextlen) {
                    792:             max_count = 6, min_count = 3;
                    793:         } else {
                    794:             max_count = 7, min_count = 4;
                    795:         }
                    796:     }
                    797: }
                    798: 
                    799: /* ===========================================================================
                    800:  * Construct the Huffman tree for the bit lengths and return the index in
                    801:  * bl_order of the last bit length code to send.
                    802:  */
                    803: local int build_bl_tree(s)
                    804:     deflate_state *s;
                    805: {
                    806:     int max_blindex;  /* index of last bit length code of non zero freq */
                    807: 
                    808:     /* Determine the bit length frequencies for literal and distance trees */
                    809:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
                    810:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
                    811: 
                    812:     /* Build the bit length tree: */
                    813:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
                    814:     /* opt_len now includes the length of the tree representations, except
                    815:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
                    816:      */
                    817: 
                    818:     /* Determine the number of bit length codes to send. The pkzip format
                    819:      * requires that at least 4 bit length codes be sent. (appnote.txt says
                    820:      * 3 but the actual value used is 4.)
                    821:      */
                    822:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
                    823:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
                    824:     }
                    825:     /* Update opt_len to include the bit length tree and counts */
                    826:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
                    827:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
                    828:             s->opt_len, s->static_len));
                    829: 
                    830:     return max_blindex;
                    831: }
                    832: 
                    833: /* ===========================================================================
                    834:  * Send the header for a block using dynamic Huffman trees: the counts, the
                    835:  * lengths of the bit length codes, the literal tree and the distance tree.
                    836:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
                    837:  */
                    838: local void send_all_trees(s, lcodes, dcodes, blcodes)
                    839:     deflate_state *s;
                    840:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
                    841: {
                    842:     int rank;                    /* index in bl_order */
                    843: 
                    844:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
                    845:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
                    846:             "too many codes");
                    847:     Tracev((stderr, "\nbl counts: "));
                    848:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
                    849:     send_bits(s, dcodes-1,   5);
                    850:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
                    851:     for (rank = 0; rank < blcodes; rank++) {
                    852:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
                    853:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
                    854:     }
                    855:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
                    856: 
                    857:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
                    858:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
                    859: 
                    860:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
                    861:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
                    862: }
                    863: 
                    864: /* ===========================================================================
                    865:  * Send a stored block
                    866:  */
                    867: void _tr_stored_block(s, buf, stored_len, eof)
                    868:     deflate_state *s;
                    869:     charf *buf;       /* input block */
                    870:     ulg stored_len;   /* length of input block */
                    871:     int eof;          /* true if this is the last block for a file */
                    872: {
                    873:     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
                    874: #ifdef DEBUG
                    875:     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
                    876:     s->compressed_len += (stored_len + 4) << 3;
                    877: #endif
                    878:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
                    879: }
                    880: 
                    881: /* ===========================================================================
                    882:  * Send one empty static block to give enough lookahead for inflate.
                    883:  * This takes 10 bits, of which 7 may remain in the bit buffer.
                    884:  * The current inflate code requires 9 bits of lookahead. If the
                    885:  * last two codes for the previous block (real code plus EOB) were coded
                    886:  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
                    887:  * the last real code. In this case we send two empty static blocks instead
                    888:  * of one. (There are no problems if the previous block is stored or fixed.)
                    889:  * To simplify the code, we assume the worst case of last real code encoded
                    890:  * on one bit only.
                    891:  */
                    892: void _tr_align(s)
                    893:     deflate_state *s;
                    894: {
                    895:     send_bits(s, STATIC_TREES<<1, 3);
                    896:     send_code(s, END_BLOCK, static_ltree);
                    897: #ifdef DEBUG
                    898:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
                    899: #endif
                    900:     bi_flush(s);
                    901:     /* Of the 10 bits for the empty block, we have already sent
                    902:      * (10 - bi_valid) bits. The lookahead for the last real code (before
                    903:      * the EOB of the previous block) was thus at least one plus the length
                    904:      * of the EOB plus what we have just sent of the empty static block.
                    905:      */
                    906:     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
                    907:         send_bits(s, STATIC_TREES<<1, 3);
                    908:         send_code(s, END_BLOCK, static_ltree);
                    909: #ifdef DEBUG
                    910:         s->compressed_len += 10L;
                    911: #endif
                    912:         bi_flush(s);
                    913:     }
                    914:     s->last_eob_len = 7;
                    915: }
                    916: 
                    917: /* ===========================================================================
                    918:  * Determine the best encoding for the current block: dynamic trees, static
                    919:  * trees or store, and output the encoded block to the zip file.
                    920:  */
                    921: void _tr_flush_block(s, buf, stored_len, eof)
                    922:     deflate_state *s;
                    923:     charf *buf;       /* input block, or NULL if too old */
                    924:     ulg stored_len;   /* length of input block */
                    925:     int eof;          /* true if this is the last block for a file */
                    926: {
                    927:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
                    928:     int max_blindex = 0;  /* index of last bit length code of non zero freq */
                    929: 
                    930:     /* Build the Huffman trees unless a stored block is forced */
                    931:     if (s->level > 0) {
                    932: 
                    933:         /* Check if the file is binary or text */
                    934:         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
                    935:             set_data_type(s);
                    936: 
                    937:         /* Construct the literal and distance trees */
                    938:         build_tree(s, (tree_desc *)(&(s->l_desc)));
                    939:         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
                    940:                 s->static_len));
                    941: 
                    942:         build_tree(s, (tree_desc *)(&(s->d_desc)));
                    943:         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
                    944:                 s->static_len));
                    945:         /* At this point, opt_len and static_len are the total bit lengths of
                    946:          * the compressed block data, excluding the tree representations.
                    947:          */
                    948: 
                    949:         /* Build the bit length tree for the above two trees, and get the index
                    950:          * in bl_order of the last bit length code to send.
                    951:          */
                    952:         max_blindex = build_bl_tree(s);
                    953: 
                    954:         /* Determine the best encoding. Compute the block lengths in bytes. */
                    955:         opt_lenb = (s->opt_len+3+7)>>3;
                    956:         static_lenb = (s->static_len+3+7)>>3;
                    957: 
                    958:         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
                    959:                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
                    960:                 s->last_lit));
                    961: 
                    962:         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
                    963: 
                    964:     } else {
                    965:         Assert(buf != (char*)0, "lost buf");
                    966:         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
                    967:     }
                    968: 
                    969: #ifdef FORCE_STORED
                    970:     if (buf != (char*)0) { /* force stored block */
                    971: #else
                    972:     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
                    973:                        /* 4: two words for the lengths */
                    974: #endif
                    975:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
                    976:          * Otherwise we can't have processed more than WSIZE input bytes since
                    977:          * the last block flush, because compression would have been
                    978:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
                    979:          * transform a block into a stored block.
                    980:          */
                    981:         _tr_stored_block(s, buf, stored_len, eof);
                    982: 
                    983: #ifdef FORCE_STATIC
                    984:     } else if (static_lenb >= 0) { /* force static trees */
                    985: #else
                    986:     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
                    987: #endif
                    988:         send_bits(s, (STATIC_TREES<<1)+eof, 3);
                    989:         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
                    990: #ifdef DEBUG
                    991:         s->compressed_len += 3 + s->static_len;
                    992: #endif
                    993:     } else {
                    994:         send_bits(s, (DYN_TREES<<1)+eof, 3);
                    995:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                    996:                        max_blindex+1);
                    997:         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
                    998: #ifdef DEBUG
                    999:         s->compressed_len += 3 + s->opt_len;
                   1000: #endif
                   1001:     }
                   1002:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
                   1003:     /* The above check is made mod 2^32, for files larger than 512 MB
                   1004:      * and uLong implemented on 32 bits.
                   1005:      */
                   1006:     init_block(s);
                   1007: 
                   1008:     if (eof) {
                   1009:         bi_windup(s);
                   1010: #ifdef DEBUG
                   1011:         s->compressed_len += 7;  /* align on byte boundary */
                   1012: #endif
                   1013:     }
                   1014:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
                   1015:            s->compressed_len-7*eof));
                   1016: }
                   1017: 
                   1018: /* ===========================================================================
                   1019:  * Save the match info and tally the frequency counts. Return true if
                   1020:  * the current block must be flushed.
                   1021:  */
                   1022: int _tr_tally (s, dist, lc)
                   1023:     deflate_state *s;
                   1024:     unsigned dist;  /* distance of matched string */
                   1025:     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
                   1026: {
                   1027:     s->d_buf[s->last_lit] = (ush)dist;
                   1028:     s->l_buf[s->last_lit++] = (uch)lc;
                   1029:     if (dist == 0) {
                   1030:         /* lc is the unmatched char */
                   1031:         s->dyn_ltree[lc].Freq++;
                   1032:     } else {
                   1033:         s->matches++;
                   1034:         /* Here, lc is the match length - MIN_MATCH */
                   1035:         dist--;             /* dist = match distance - 1 */
                   1036:         Assert((ush)dist < (ush)MAX_DIST(s) &&
                   1037:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
                   1038:                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
                   1039: 
                   1040:         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
                   1041:         s->dyn_dtree[d_code(dist)].Freq++;
                   1042:     }
                   1043: 
                   1044: #ifdef TRUNCATE_BLOCK
                   1045:     /* Try to guess if it is profitable to stop the current block here */
                   1046:     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
                   1047:         /* Compute an upper bound for the compressed length */
                   1048:         ulg out_length = (ulg)s->last_lit*8L;
                   1049:         ulg in_length = (ulg)((long)s->strstart - s->block_start);
                   1050:         int dcode;
                   1051:         for (dcode = 0; dcode < D_CODES; dcode++) {
                   1052:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
                   1053:                 (5L+extra_dbits[dcode]);
                   1054:         }
                   1055:         out_length >>= 3;
                   1056:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
                   1057:                s->last_lit, in_length, out_length,
                   1058:                100L - out_length*100L/in_length));
                   1059:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
                   1060:     }
                   1061: #endif
                   1062:     return (s->last_lit == s->lit_bufsize-1);
                   1063:     /* We avoid equality with lit_bufsize because of wraparound at 64K
                   1064:      * on 16 bit machines and because stored blocks are restricted to
                   1065:      * 64K-1 bytes.
                   1066:      */
                   1067: }
                   1068: 
                   1069: /* ===========================================================================
                   1070:  * Send the block data compressed using the given Huffman trees
                   1071:  */
                   1072: local void compress_block(s, ltree, dtree)
                   1073:     deflate_state *s;
                   1074:     ct_data *ltree; /* literal tree */
                   1075:     ct_data *dtree; /* distance tree */
                   1076: {
                   1077:     unsigned dist;      /* distance of matched string */
                   1078:     int lc;             /* match length or unmatched char (if dist == 0) */
                   1079:     unsigned lx = 0;    /* running index in l_buf */
                   1080:     unsigned code;      /* the code to send */
                   1081:     int extra;          /* number of extra bits to send */
                   1082: 
                   1083:     if (s->last_lit != 0) do {
                   1084:         dist = s->d_buf[lx];
                   1085:         lc = s->l_buf[lx++];
                   1086:         if (dist == 0) {
                   1087:             send_code(s, lc, ltree); /* send a literal byte */
                   1088:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
                   1089:         } else {
                   1090:             /* Here, lc is the match length - MIN_MATCH */
                   1091:             code = _length_code[lc];
                   1092:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
                   1093:             extra = extra_lbits[code];
                   1094:             if (extra != 0) {
                   1095:                 lc -= base_length[code];
                   1096:                 send_bits(s, lc, extra);       /* send the extra length bits */
                   1097:             }
                   1098:             dist--; /* dist is now the match distance - 1 */
                   1099:             code = d_code(dist);
                   1100:             Assert (code < D_CODES, "bad d_code");
                   1101: 
                   1102:             send_code(s, code, dtree);       /* send the distance code */
                   1103:             extra = extra_dbits[code];
                   1104:             if (extra != 0) {
                   1105:                 dist -= base_dist[code];
                   1106:                 send_bits(s, dist, extra);   /* send the extra distance bits */
                   1107:             }
                   1108:         } /* literal or match pair ? */
                   1109: 
                   1110:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
                   1111:         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
                   1112:                "pendingBuf overflow");
                   1113: 
                   1114:     } while (lx < s->last_lit);
                   1115: 
                   1116:     send_code(s, END_BLOCK, ltree);
                   1117:     s->last_eob_len = ltree[END_BLOCK].Len;
                   1118: }
                   1119: 
                   1120: /* ===========================================================================
                   1121:  * Set the data type to BINARY or TEXT, using a crude approximation:
                   1122:  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
                   1123:  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
                   1124:  * IN assertion: the fields Freq of dyn_ltree are set.
                   1125:  */
                   1126: local void set_data_type(s)
                   1127:     deflate_state *s;
                   1128: {
                   1129:     int n;
                   1130: 
                   1131:     for (n = 0; n < 9; n++)
                   1132:         if (s->dyn_ltree[n].Freq != 0)
                   1133:             break;
                   1134:     if (n == 9)
                   1135:         for (n = 14; n < 32; n++)
                   1136:             if (s->dyn_ltree[n].Freq != 0)
                   1137:                 break;
                   1138:     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
                   1139: }
                   1140: 
                   1141: /* ===========================================================================
                   1142:  * Reverse the first len bits of a code, using straightforward code (a faster
                   1143:  * method would use a table)
                   1144:  * IN assertion: 1 <= len <= 15
                   1145:  */
                   1146: local unsigned bi_reverse(code, len)
                   1147:     unsigned code; /* the value to invert */
                   1148:     int len;       /* its bit length */
                   1149: {
                   1150:     register unsigned res = 0;
                   1151:     do {
                   1152:         res |= code & 1;
                   1153:         code >>= 1, res <<= 1;
                   1154:     } while (--len > 0);
                   1155:     return res >> 1;
                   1156: }
                   1157: 
                   1158: /* ===========================================================================
                   1159:  * Flush the bit buffer, keeping at most 7 bits in it.
                   1160:  */
                   1161: local void bi_flush(s)
                   1162:     deflate_state *s;
                   1163: {
                   1164:     if (s->bi_valid == 16) {
                   1165:         put_short(s, s->bi_buf);
                   1166:         s->bi_buf = 0;
                   1167:         s->bi_valid = 0;
                   1168:     } else if (s->bi_valid >= 8) {
                   1169:         put_byte(s, (Byte)s->bi_buf);
                   1170:         s->bi_buf >>= 8;
                   1171:         s->bi_valid -= 8;
                   1172:     }
                   1173: }
                   1174: 
                   1175: /* ===========================================================================
                   1176:  * Flush the bit buffer and align the output on a byte boundary
                   1177:  */
                   1178: local void bi_windup(s)
                   1179:     deflate_state *s;
                   1180: {
                   1181:     if (s->bi_valid > 8) {
                   1182:         put_short(s, s->bi_buf);
                   1183:     } else if (s->bi_valid > 0) {
                   1184:         put_byte(s, (Byte)s->bi_buf);
                   1185:     }
                   1186:     s->bi_buf = 0;
                   1187:     s->bi_valid = 0;
                   1188: #ifdef DEBUG
                   1189:     s->bits_sent = (s->bits_sent+7) & ~7;
                   1190: #endif
                   1191: }
                   1192: 
                   1193: /* ===========================================================================
                   1194:  * Copy a stored block, storing first the length and its
                   1195:  * one's complement if requested.
                   1196:  */
                   1197: local void copy_block(s, buf, len, header)
                   1198:     deflate_state *s;
                   1199:     charf    *buf;    /* the input data */
                   1200:     unsigned len;     /* its length */
                   1201:     int      header;  /* true if block header must be written */
                   1202: {
                   1203:     bi_windup(s);        /* align on byte boundary */
                   1204:     s->last_eob_len = 8; /* enough lookahead for inflate */
                   1205: 
                   1206:     if (header) {
                   1207:         put_short(s, (ush)len);
                   1208:         put_short(s, (ush)~len);
                   1209: #ifdef DEBUG
                   1210:         s->bits_sent += 2*16;
                   1211: #endif
                   1212:     }
                   1213: #ifdef DEBUG
                   1214:     s->bits_sent += (ulg)len<<3;
                   1215: #endif
                   1216:     while (len--) {
                   1217:         put_byte(s, *buf++);
                   1218:     }
                   1219: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>