File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / rsync / zlib / trees.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Fri Feb 17 15:09:30 2012 UTC (12 years, 5 months ago) by misho
Branches: rsync, MAIN
CVS tags: rsync3_0_9p0, RSYNC3_0_9, HEAD
rsync

    1: /* trees.c -- output deflated data using Huffman coding
    2:  * Copyright (C) 1995-2005 Jean-loup Gailly
    3:  * For conditions of distribution and use, see copyright notice in zlib.h
    4:  */
    5: 
    6: /*
    7:  *  ALGORITHM
    8:  *
    9:  *      The "deflation" process uses several Huffman trees. The more
   10:  *      common source values are represented by shorter bit sequences.
   11:  *
   12:  *      Each code tree is stored in a compressed form which is itself
   13:  * a Huffman encoding of the lengths of all the code strings (in
   14:  * ascending order by source values).  The actual code strings are
   15:  * reconstructed from the lengths in the inflate process, as described
   16:  * in the deflate specification.
   17:  *
   18:  *  REFERENCES
   19:  *
   20:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   21:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   22:  *
   23:  *      Storer, James A.
   24:  *          Data Compression:  Methods and Theory, pp. 49-50.
   25:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   26:  *
   27:  *      Sedgewick, R.
   28:  *          Algorithms, p290.
   29:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   30:  */
   31: 
   32: /* @(#) $Id: trees.c,v 1.1.1.1 2012/02/17 15:09:30 misho Exp $ */
   33: 
   34: /* #define GEN_TREES_H */
   35: 
   36: #include "deflate.h"
   37: 
   38: #ifdef DEBUG
   39: #  include <ctype.h>
   40: #endif
   41: 
   42: /* ===========================================================================
   43:  * Constants
   44:  */
   45: 
   46: #define MAX_BL_BITS 7
   47: /* Bit length codes must not exceed MAX_BL_BITS bits */
   48: 
   49: #define END_BLOCK 256
   50: /* end of block literal code */
   51: 
   52: #define REP_3_6      16
   53: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   54: 
   55: #define REPZ_3_10    17
   56: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   57: 
   58: #define REPZ_11_138  18
   59: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   60: 
   61: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   62:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   63: 
   64: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   65:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   66: 
   67: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   68:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   69: 
   70: local const uch bl_order[BL_CODES]
   71:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   72: /* The lengths of the bit length codes are sent in order of decreasing
   73:  * probability, to avoid transmitting the lengths for unused bit length codes.
   74:  */
   75: 
   76: #define Buf_size (8 * 2*sizeof(char))
   77: /* Number of bits used within bi_buf. (bi_buf might be implemented on
   78:  * more than 16 bits on some systems.)
   79:  */
   80: 
   81: /* ===========================================================================
   82:  * Local data. These are initialized only once.
   83:  */
   84: 
   85: #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   86: 
   87: #if defined(GEN_TREES_H) || !defined(STDC)
   88: /* non ANSI compilers may not accept trees.h */
   89: 
   90: local ct_data static_ltree[L_CODES+2];
   91: /* The static literal tree. Since the bit lengths are imposed, there is no
   92:  * need for the L_CODES extra codes used during heap construction. However
   93:  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   94:  * below).
   95:  */
   96: 
   97: local ct_data static_dtree[D_CODES];
   98: /* The static distance tree. (Actually a trivial tree since all codes use
   99:  * 5 bits.)
  100:  */
  101: 
  102: uch _dist_code[DIST_CODE_LEN];
  103: /* Distance codes. The first 256 values correspond to the distances
  104:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
  105:  * the 15 bit distances.
  106:  */
  107: 
  108: uch _length_code[MAX_MATCH-MIN_MATCH+1];
  109: /* length code for each normalized match length (0 == MIN_MATCH) */
  110: 
  111: local int base_length[LENGTH_CODES];
  112: /* First normalized length for each code (0 = MIN_MATCH) */
  113: 
  114: local int base_dist[D_CODES];
  115: /* First normalized distance for each code (0 = distance of 1) */
  116: 
  117: #else
  118: #  include "trees.h"
  119: #endif /* GEN_TREES_H */
  120: 
  121: struct static_tree_desc_s {
  122:     const ct_data *static_tree;  /* static tree or NULL */
  123:     const intf *extra_bits;      /* extra bits for each code or NULL */
  124:     int     extra_base;          /* base index for extra_bits */
  125:     int     elems;               /* max number of elements in the tree */
  126:     int     max_length;          /* max bit length for the codes */
  127: };
  128: 
  129: local static_tree_desc  static_l_desc =
  130: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
  131: 
  132: local static_tree_desc  static_d_desc =
  133: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
  134: 
  135: local static_tree_desc  static_bl_desc =
  136: {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
  137: 
  138: /* ===========================================================================
  139:  * Local (static) routines in this file.
  140:  */
  141: 
  142: local void tr_static_init OF((void));
  143: local void init_block     OF((deflate_state *s));
  144: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
  145: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
  146: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
  147: local void build_tree     OF((deflate_state *s, tree_desc *desc));
  148: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  149: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  150: local int  build_bl_tree  OF((deflate_state *s));
  151: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
  152:                               int blcodes));
  153: local void compress_block OF((deflate_state *s, ct_data *ltree,
  154:                               ct_data *dtree));
  155: local void set_data_type  OF((deflate_state *s));
  156: local unsigned bi_reverse OF((unsigned value, int length));
  157: local void bi_windup      OF((deflate_state *s));
  158: local void bi_flush       OF((deflate_state *s));
  159: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
  160:                               int header));
  161: 
  162: #ifdef GEN_TREES_H
  163: local void gen_trees_header OF((void));
  164: #endif
  165: 
  166: #ifndef DEBUG
  167: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
  168:    /* Send a code of the given tree. c and tree must not have side effects */
  169: 
  170: #else /* DEBUG */
  171: #  define send_code(s, c, tree) \
  172:      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
  173:        send_bits(s, tree[c].Code, tree[c].Len); }
  174: #endif
  175: 
  176: /* ===========================================================================
  177:  * Output a short LSB first on the stream.
  178:  * IN assertion: there is enough room in pendingBuf.
  179:  */
  180: #define put_short(s, w) { \
  181:     put_byte(s, (uch)((w) & 0xff)); \
  182:     put_byte(s, (uch)((ush)(w) >> 8)); \
  183: }
  184: 
  185: /* ===========================================================================
  186:  * Send a value on a given number of bits.
  187:  * IN assertion: length <= 16 and value fits in length bits.
  188:  */
  189: #ifdef DEBUG
  190: local void send_bits      OF((deflate_state *s, int value, int length));
  191: 
  192: local void send_bits(s, value, length)
  193:     deflate_state *s;
  194:     int value;  /* value to send */
  195:     int length; /* number of bits */
  196: {
  197:     Tracevv((stderr," l %2d v %4x ", length, value));
  198:     Assert(length > 0 && length <= 15, "invalid length");
  199:     s->bits_sent += (ulg)length;
  200: 
  201:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
  202:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
  203:      * unused bits in value.
  204:      */
  205:     if (s->bi_valid > (int)Buf_size - length) {
  206:         s->bi_buf |= (value << s->bi_valid);
  207:         put_short(s, s->bi_buf);
  208:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
  209:         s->bi_valid += length - Buf_size;
  210:     } else {
  211:         s->bi_buf |= value << s->bi_valid;
  212:         s->bi_valid += length;
  213:     }
  214: }
  215: #else /* !DEBUG */
  216: 
  217: #define send_bits(s, value, length) \
  218: { int len = length;\
  219:   if (s->bi_valid > (int)Buf_size - len) {\
  220:     int val = value;\
  221:     s->bi_buf |= (val << s->bi_valid);\
  222:     put_short(s, s->bi_buf);\
  223:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
  224:     s->bi_valid += len - Buf_size;\
  225:   } else {\
  226:     s->bi_buf |= (value) << s->bi_valid;\
  227:     s->bi_valid += len;\
  228:   }\
  229: }
  230: #endif /* DEBUG */
  231: 
  232: 
  233: /* the arguments must not have side effects */
  234: 
  235: /* ===========================================================================
  236:  * Initialize the various 'constant' tables.
  237:  */
  238: local void tr_static_init()
  239: {
  240: #if defined(GEN_TREES_H) || !defined(STDC)
  241:     static int static_init_done = 0;
  242:     int n;        /* iterates over tree elements */
  243:     int bits;     /* bit counter */
  244:     int length;   /* length value */
  245:     int code;     /* code value */
  246:     int dist;     /* distance index */
  247:     ush bl_count[MAX_BITS+1];
  248:     /* number of codes at each bit length for an optimal tree */
  249: 
  250:     if (static_init_done) return;
  251: 
  252:     /* For some embedded targets, global variables are not initialized: */
  253:     static_l_desc.static_tree = static_ltree;
  254:     static_l_desc.extra_bits = extra_lbits;
  255:     static_d_desc.static_tree = static_dtree;
  256:     static_d_desc.extra_bits = extra_dbits;
  257:     static_bl_desc.extra_bits = extra_blbits;
  258: 
  259:     /* Initialize the mapping length (0..255) -> length code (0..28) */
  260:     length = 0;
  261:     for (code = 0; code < LENGTH_CODES-1; code++) {
  262:         base_length[code] = length;
  263:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
  264:             _length_code[length++] = (uch)code;
  265:         }
  266:     }
  267:     Assert (length == 256, "tr_static_init: length != 256");
  268:     /* Note that the length 255 (match length 258) can be represented
  269:      * in two different ways: code 284 + 5 bits or code 285, so we
  270:      * overwrite length_code[255] to use the best encoding:
  271:      */
  272:     _length_code[length-1] = (uch)code;
  273: 
  274:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  275:     dist = 0;
  276:     for (code = 0 ; code < 16; code++) {
  277:         base_dist[code] = dist;
  278:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
  279:             _dist_code[dist++] = (uch)code;
  280:         }
  281:     }
  282:     Assert (dist == 256, "tr_static_init: dist != 256");
  283:     dist >>= 7; /* from now on, all distances are divided by 128 */
  284:     for ( ; code < D_CODES; code++) {
  285:         base_dist[code] = dist << 7;
  286:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
  287:             _dist_code[256 + dist++] = (uch)code;
  288:         }
  289:     }
  290:     Assert (dist == 256, "tr_static_init: 256+dist != 512");
  291: 
  292:     /* Construct the codes of the static literal tree */
  293:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
  294:     n = 0;
  295:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
  296:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
  297:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
  298:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
  299:     /* Codes 286 and 287 do not exist, but we must include them in the
  300:      * tree construction to get a canonical Huffman tree (longest code
  301:      * all ones)
  302:      */
  303:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
  304: 
  305:     /* The static distance tree is trivial: */
  306:     for (n = 0; n < D_CODES; n++) {
  307:         static_dtree[n].Len = 5;
  308:         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
  309:     }
  310:     static_init_done = 1;
  311: 
  312: #  ifdef GEN_TREES_H
  313:     gen_trees_header();
  314: #  endif
  315: #endif /* defined(GEN_TREES_H) || !defined(STDC) */
  316: }
  317: 
  318: /* ===========================================================================
  319:  * Genererate the file trees.h describing the static trees.
  320:  */
  321: #ifdef GEN_TREES_H
  322: #  ifndef DEBUG
  323: #    include <stdio.h>
  324: #  endif
  325: 
  326: #  define SEPARATOR(i, last, width) \
  327:       ((i) == (last)? "\n};\n\n" :    \
  328:        ((i) % (width) == (width)-1 ? ",\n" : ", "))
  329: 
  330: void gen_trees_header()
  331: {
  332:     FILE *header = fopen("trees.h", "w");
  333:     int i;
  334: 
  335:     Assert (header != NULL, "Can't open trees.h");
  336:     fprintf(header,
  337:             "/* header created automatically with -DGEN_TREES_H */\n\n");
  338: 
  339:     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
  340:     for (i = 0; i < L_CODES+2; i++) {
  341:         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
  342:                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
  343:     }
  344: 
  345:     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
  346:     for (i = 0; i < D_CODES; i++) {
  347:         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
  348:                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
  349:     }
  350: 
  351:     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
  352:     for (i = 0; i < DIST_CODE_LEN; i++) {
  353:         fprintf(header, "%2u%s", _dist_code[i],
  354:                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
  355:     }
  356: 
  357:     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
  358:     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
  359:         fprintf(header, "%2u%s", _length_code[i],
  360:                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
  361:     }
  362: 
  363:     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
  364:     for (i = 0; i < LENGTH_CODES; i++) {
  365:         fprintf(header, "%1u%s", base_length[i],
  366:                 SEPARATOR(i, LENGTH_CODES-1, 20));
  367:     }
  368: 
  369:     fprintf(header, "local const int base_dist[D_CODES] = {\n");
  370:     for (i = 0; i < D_CODES; i++) {
  371:         fprintf(header, "%5u%s", base_dist[i],
  372:                 SEPARATOR(i, D_CODES-1, 10));
  373:     }
  374: 
  375:     fclose(header);
  376: }
  377: #endif /* GEN_TREES_H */
  378: 
  379: /* ===========================================================================
  380:  * Initialize the tree data structures for a new zlib stream.
  381:  */
  382: void _tr_init(s)
  383:     deflate_state *s;
  384: {
  385:     tr_static_init();
  386: 
  387:     s->l_desc.dyn_tree = s->dyn_ltree;
  388:     s->l_desc.stat_desc = &static_l_desc;
  389: 
  390:     s->d_desc.dyn_tree = s->dyn_dtree;
  391:     s->d_desc.stat_desc = &static_d_desc;
  392: 
  393:     s->bl_desc.dyn_tree = s->bl_tree;
  394:     s->bl_desc.stat_desc = &static_bl_desc;
  395: 
  396:     s->bi_buf = 0;
  397:     s->bi_valid = 0;
  398:     s->last_eob_len = 8; /* enough lookahead for inflate */
  399: #ifdef DEBUG
  400:     s->compressed_len = 0L;
  401:     s->bits_sent = 0L;
  402: #endif
  403: 
  404:     /* Initialize the first block of the first file: */
  405:     init_block(s);
  406: }
  407: 
  408: /* ===========================================================================
  409:  * Initialize a new block.
  410:  */
  411: local void init_block(s)
  412:     deflate_state *s;
  413: {
  414:     int n; /* iterates over tree elements */
  415: 
  416:     /* Initialize the trees. */
  417:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
  418:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
  419:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
  420: 
  421:     s->dyn_ltree[END_BLOCK].Freq = 1;
  422:     s->opt_len = s->static_len = 0L;
  423:     s->last_lit = s->matches = 0;
  424: }
  425: 
  426: #define SMALLEST 1
  427: /* Index within the heap array of least frequent node in the Huffman tree */
  428: 
  429: 
  430: /* ===========================================================================
  431:  * Remove the smallest element from the heap and recreate the heap with
  432:  * one less element. Updates heap and heap_len.
  433:  */
  434: #define pqremove(s, tree, top) \
  435: {\
  436:     top = s->heap[SMALLEST]; \
  437:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
  438:     pqdownheap(s, tree, SMALLEST); \
  439: }
  440: 
  441: /* ===========================================================================
  442:  * Compares to subtrees, using the tree depth as tie breaker when
  443:  * the subtrees have equal frequency. This minimizes the worst case length.
  444:  */
  445: #define smaller(tree, n, m, depth) \
  446:    (tree[n].Freq < tree[m].Freq || \
  447:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
  448: 
  449: /* ===========================================================================
  450:  * Restore the heap property by moving down the tree starting at node k,
  451:  * exchanging a node with the smallest of its two sons if necessary, stopping
  452:  * when the heap property is re-established (each father smaller than its
  453:  * two sons).
  454:  */
  455: local void pqdownheap(s, tree, k)
  456:     deflate_state *s;
  457:     ct_data *tree;  /* the tree to restore */
  458:     int k;               /* node to move down */
  459: {
  460:     int v = s->heap[k];
  461:     int j = k << 1;  /* left son of k */
  462:     while (j <= s->heap_len) {
  463:         /* Set j to the smallest of the two sons: */
  464:         if (j < s->heap_len &&
  465:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
  466:             j++;
  467:         }
  468:         /* Exit if v is smaller than both sons */
  469:         if (smaller(tree, v, s->heap[j], s->depth)) break;
  470: 
  471:         /* Exchange v with the smallest son */
  472:         s->heap[k] = s->heap[j];  k = j;
  473: 
  474:         /* And continue down the tree, setting j to the left son of k */
  475:         j <<= 1;
  476:     }
  477:     s->heap[k] = v;
  478: }
  479: 
  480: /* ===========================================================================
  481:  * Compute the optimal bit lengths for a tree and update the total bit length
  482:  * for the current block.
  483:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
  484:  *    above are the tree nodes sorted by increasing frequency.
  485:  * OUT assertions: the field len is set to the optimal bit length, the
  486:  *     array bl_count contains the frequencies for each bit length.
  487:  *     The length opt_len is updated; static_len is also updated if stree is
  488:  *     not null.
  489:  */
  490: local void gen_bitlen(s, desc)
  491:     deflate_state *s;
  492:     tree_desc *desc;    /* the tree descriptor */
  493: {
  494:     ct_data *tree        = desc->dyn_tree;
  495:     int max_code         = desc->max_code;
  496:     const ct_data *stree = desc->stat_desc->static_tree;
  497:     const intf *extra    = desc->stat_desc->extra_bits;
  498:     int base             = desc->stat_desc->extra_base;
  499:     int max_length       = desc->stat_desc->max_length;
  500:     int h;              /* heap index */
  501:     int n, m;           /* iterate over the tree elements */
  502:     int bits;           /* bit length */
  503:     int xbits;          /* extra bits */
  504:     ush f;              /* frequency */
  505:     int overflow = 0;   /* number of elements with bit length too large */
  506: 
  507:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
  508: 
  509:     /* In a first pass, compute the optimal bit lengths (which may
  510:      * overflow in the case of the bit length tree).
  511:      */
  512:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
  513: 
  514:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
  515:         n = s->heap[h];
  516:         bits = tree[tree[n].Dad].Len + 1;
  517:         if (bits > max_length) bits = max_length, overflow++;
  518:         tree[n].Len = (ush)bits;
  519:         /* We overwrite tree[n].Dad which is no longer needed */
  520: 
  521:         if (n > max_code) continue; /* not a leaf node */
  522: 
  523:         s->bl_count[bits]++;
  524:         xbits = 0;
  525:         if (n >= base) xbits = extra[n-base];
  526:         f = tree[n].Freq;
  527:         s->opt_len += (ulg)f * (bits + xbits);
  528:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
  529:     }
  530:     if (overflow == 0) return;
  531: 
  532:     Trace((stderr,"\nbit length overflow\n"));
  533:     /* This happens for example on obj2 and pic of the Calgary corpus */
  534: 
  535:     /* Find the first bit length which could increase: */
  536:     do {
  537:         bits = max_length-1;
  538:         while (s->bl_count[bits] == 0) bits--;
  539:         s->bl_count[bits]--;      /* move one leaf down the tree */
  540:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
  541:         s->bl_count[max_length]--;
  542:         /* The brother of the overflow item also moves one step up,
  543:          * but this does not affect bl_count[max_length]
  544:          */
  545:         overflow -= 2;
  546:     } while (overflow > 0);
  547: 
  548:     /* Now recompute all bit lengths, scanning in increasing frequency.
  549:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
  550:      * lengths instead of fixing only the wrong ones. This idea is taken
  551:      * from 'ar' written by Haruhiko Okumura.)
  552:      */
  553:     for (bits = max_length; bits != 0; bits--) {
  554:         n = s->bl_count[bits];
  555:         while (n != 0) {
  556:             m = s->heap[--h];
  557:             if (m > max_code) continue;
  558:             if ((unsigned) tree[m].Len != (unsigned) bits) {
  559:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
  560:                 s->opt_len += ((long)bits - (long)tree[m].Len)
  561:                               *(long)tree[m].Freq;
  562:                 tree[m].Len = (ush)bits;
  563:             }
  564:             n--;
  565:         }
  566:     }
  567: }
  568: 
  569: /* ===========================================================================
  570:  * Generate the codes for a given tree and bit counts (which need not be
  571:  * optimal).
  572:  * IN assertion: the array bl_count contains the bit length statistics for
  573:  * the given tree and the field len is set for all tree elements.
  574:  * OUT assertion: the field code is set for all tree elements of non
  575:  *     zero code length.
  576:  */
  577: local void gen_codes (tree, max_code, bl_count)
  578:     ct_data *tree;             /* the tree to decorate */
  579:     int max_code;              /* largest code with non zero frequency */
  580:     ushf *bl_count;            /* number of codes at each bit length */
  581: {
  582:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
  583:     ush code = 0;              /* running code value */
  584:     int bits;                  /* bit index */
  585:     int n;                     /* code index */
  586: 
  587:     /* The distribution counts are first used to generate the code values
  588:      * without bit reversal.
  589:      */
  590:     for (bits = 1; bits <= MAX_BITS; bits++) {
  591:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
  592:     }
  593:     /* Check that the bit counts in bl_count are consistent. The last code
  594:      * must be all ones.
  595:      */
  596:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  597:             "inconsistent bit counts");
  598:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
  599: 
  600:     for (n = 0;  n <= max_code; n++) {
  601:         int len = tree[n].Len;
  602:         if (len == 0) continue;
  603:         /* Now reverse the bits */
  604:         tree[n].Code = bi_reverse(next_code[len]++, len);
  605: 
  606:         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
  607:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  608:     }
  609: }
  610: 
  611: /* ===========================================================================
  612:  * Construct one Huffman tree and assigns the code bit strings and lengths.
  613:  * Update the total bit length for the current block.
  614:  * IN assertion: the field freq is set for all tree elements.
  615:  * OUT assertions: the fields len and code are set to the optimal bit length
  616:  *     and corresponding code. The length opt_len is updated; static_len is
  617:  *     also updated if stree is not null. The field max_code is set.
  618:  */
  619: local void build_tree(s, desc)
  620:     deflate_state *s;
  621:     tree_desc *desc; /* the tree descriptor */
  622: {
  623:     ct_data *tree         = desc->dyn_tree;
  624:     const ct_data *stree  = desc->stat_desc->static_tree;
  625:     int elems             = desc->stat_desc->elems;
  626:     int n, m;          /* iterate over heap elements */
  627:     int max_code = -1; /* largest code with non zero frequency */
  628:     int node;          /* new node being created */
  629: 
  630:     /* Construct the initial heap, with least frequent element in
  631:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
  632:      * heap[0] is not used.
  633:      */
  634:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
  635: 
  636:     for (n = 0; n < elems; n++) {
  637:         if (tree[n].Freq != 0) {
  638:             s->heap[++(s->heap_len)] = max_code = n;
  639:             s->depth[n] = 0;
  640:         } else {
  641:             tree[n].Len = 0;
  642:         }
  643:     }
  644: 
  645:     /* The pkzip format requires that at least one distance code exists,
  646:      * and that at least one bit should be sent even if there is only one
  647:      * possible code. So to avoid special checks later on we force at least
  648:      * two codes of non zero frequency.
  649:      */
  650:     while (s->heap_len < 2) {
  651:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
  652:         tree[node].Freq = 1;
  653:         s->depth[node] = 0;
  654:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
  655:         /* node is 0 or 1 so it does not have extra bits */
  656:     }
  657:     desc->max_code = max_code;
  658: 
  659:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
  660:      * establish sub-heaps of increasing lengths:
  661:      */
  662:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
  663: 
  664:     /* Construct the Huffman tree by repeatedly combining the least two
  665:      * frequent nodes.
  666:      */
  667:     node = elems;              /* next internal node of the tree */
  668:     do {
  669:         pqremove(s, tree, n);  /* n = node of least frequency */
  670:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
  671: 
  672:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
  673:         s->heap[--(s->heap_max)] = m;
  674: 
  675:         /* Create a new node father of n and m */
  676:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
  677:         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
  678:                                 s->depth[n] : s->depth[m]) + 1);
  679:         tree[n].Dad = tree[m].Dad = (ush)node;
  680: #ifdef DUMP_BL_TREE
  681:         if (tree == s->bl_tree) {
  682:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
  683:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
  684:         }
  685: #endif
  686:         /* and insert the new node in the heap */
  687:         s->heap[SMALLEST] = node++;
  688:         pqdownheap(s, tree, SMALLEST);
  689: 
  690:     } while (s->heap_len >= 2);
  691: 
  692:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
  693: 
  694:     /* At this point, the fields freq and dad are set. We can now
  695:      * generate the bit lengths.
  696:      */
  697:     gen_bitlen(s, (tree_desc *)desc);
  698: 
  699:     /* The field len is now set, we can generate the bit codes */
  700:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
  701: }
  702: 
  703: /* ===========================================================================
  704:  * Scan a literal or distance tree to determine the frequencies of the codes
  705:  * in the bit length tree.
  706:  */
  707: local void scan_tree (s, tree, max_code)
  708:     deflate_state *s;
  709:     ct_data *tree;   /* the tree to be scanned */
  710:     int max_code;    /* and its largest code of non zero frequency */
  711: {
  712:     int n;                     /* iterates over all tree elements */
  713:     int prevlen = -1;          /* last emitted length */
  714:     int curlen;                /* length of current code */
  715:     int nextlen = tree[0].Len; /* length of next code */
  716:     int count = 0;             /* repeat count of the current code */
  717:     int max_count = 7;         /* max repeat count */
  718:     int min_count = 4;         /* min repeat count */
  719: 
  720:     if (nextlen == 0) max_count = 138, min_count = 3;
  721:     tree[max_code+1].Len = (ush)0xffff; /* guard */
  722: 
  723:     for (n = 0; n <= max_code; n++) {
  724:         curlen = nextlen; nextlen = tree[n+1].Len;
  725:         if (++count < max_count && curlen == nextlen) {
  726:             continue;
  727:         } else if (count < min_count) {
  728:             s->bl_tree[curlen].Freq += count;
  729:         } else if (curlen != 0) {
  730:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
  731:             s->bl_tree[REP_3_6].Freq++;
  732:         } else if (count <= 10) {
  733:             s->bl_tree[REPZ_3_10].Freq++;
  734:         } else {
  735:             s->bl_tree[REPZ_11_138].Freq++;
  736:         }
  737:         count = 0; prevlen = curlen;
  738:         if (nextlen == 0) {
  739:             max_count = 138, min_count = 3;
  740:         } else if (curlen == nextlen) {
  741:             max_count = 6, min_count = 3;
  742:         } else {
  743:             max_count = 7, min_count = 4;
  744:         }
  745:     }
  746: }
  747: 
  748: /* ===========================================================================
  749:  * Send a literal or distance tree in compressed form, using the codes in
  750:  * bl_tree.
  751:  */
  752: local void send_tree (s, tree, max_code)
  753:     deflate_state *s;
  754:     ct_data *tree; /* the tree to be scanned */
  755:     int max_code;       /* and its largest code of non zero frequency */
  756: {
  757:     int n;                     /* iterates over all tree elements */
  758:     int prevlen = -1;          /* last emitted length */
  759:     int curlen;                /* length of current code */
  760:     int nextlen = tree[0].Len; /* length of next code */
  761:     int count = 0;             /* repeat count of the current code */
  762:     int max_count = 7;         /* max repeat count */
  763:     int min_count = 4;         /* min repeat count */
  764: 
  765:     /* tree[max_code+1].Len = -1; */  /* guard already set */
  766:     if (nextlen == 0) max_count = 138, min_count = 3;
  767: 
  768:     for (n = 0; n <= max_code; n++) {
  769:         curlen = nextlen; nextlen = tree[n+1].Len;
  770:         if (++count < max_count && curlen == nextlen) {
  771:             continue;
  772:         } else if (count < min_count) {
  773:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
  774: 
  775:         } else if (curlen != 0) {
  776:             if (curlen != prevlen) {
  777:                 send_code(s, curlen, s->bl_tree); count--;
  778:             }
  779:             Assert(count >= 3 && count <= 6, " 3_6?");
  780:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
  781: 
  782:         } else if (count <= 10) {
  783:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
  784: 
  785:         } else {
  786:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
  787:         }
  788:         count = 0; prevlen = curlen;
  789:         if (nextlen == 0) {
  790:             max_count = 138, min_count = 3;
  791:         } else if (curlen == nextlen) {
  792:             max_count = 6, min_count = 3;
  793:         } else {
  794:             max_count = 7, min_count = 4;
  795:         }
  796:     }
  797: }
  798: 
  799: /* ===========================================================================
  800:  * Construct the Huffman tree for the bit lengths and return the index in
  801:  * bl_order of the last bit length code to send.
  802:  */
  803: local int build_bl_tree(s)
  804:     deflate_state *s;
  805: {
  806:     int max_blindex;  /* index of last bit length code of non zero freq */
  807: 
  808:     /* Determine the bit length frequencies for literal and distance trees */
  809:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
  810:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
  811: 
  812:     /* Build the bit length tree: */
  813:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
  814:     /* opt_len now includes the length of the tree representations, except
  815:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
  816:      */
  817: 
  818:     /* Determine the number of bit length codes to send. The pkzip format
  819:      * requires that at least 4 bit length codes be sent. (appnote.txt says
  820:      * 3 but the actual value used is 4.)
  821:      */
  822:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
  823:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
  824:     }
  825:     /* Update opt_len to include the bit length tree and counts */
  826:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
  827:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  828:             s->opt_len, s->static_len));
  829: 
  830:     return max_blindex;
  831: }
  832: 
  833: /* ===========================================================================
  834:  * Send the header for a block using dynamic Huffman trees: the counts, the
  835:  * lengths of the bit length codes, the literal tree and the distance tree.
  836:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  837:  */
  838: local void send_all_trees(s, lcodes, dcodes, blcodes)
  839:     deflate_state *s;
  840:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
  841: {
  842:     int rank;                    /* index in bl_order */
  843: 
  844:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  845:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  846:             "too many codes");
  847:     Tracev((stderr, "\nbl counts: "));
  848:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
  849:     send_bits(s, dcodes-1,   5);
  850:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
  851:     for (rank = 0; rank < blcodes; rank++) {
  852:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
  853:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
  854:     }
  855:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
  856: 
  857:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
  858:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
  859: 
  860:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
  861:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  862: }
  863: 
  864: /* ===========================================================================
  865:  * Send a stored block
  866:  */
  867: void _tr_stored_block(s, buf, stored_len, eof)
  868:     deflate_state *s;
  869:     charf *buf;       /* input block */
  870:     ulg stored_len;   /* length of input block */
  871:     int eof;          /* true if this is the last block for a file */
  872: {
  873:     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
  874: #ifdef DEBUG
  875:     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
  876:     s->compressed_len += (stored_len + 4) << 3;
  877: #endif
  878:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
  879: }
  880: 
  881: /* ===========================================================================
  882:  * Send one empty static block to give enough lookahead for inflate.
  883:  * This takes 10 bits, of which 7 may remain in the bit buffer.
  884:  * The current inflate code requires 9 bits of lookahead. If the
  885:  * last two codes for the previous block (real code plus EOB) were coded
  886:  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
  887:  * the last real code. In this case we send two empty static blocks instead
  888:  * of one. (There are no problems if the previous block is stored or fixed.)
  889:  * To simplify the code, we assume the worst case of last real code encoded
  890:  * on one bit only.
  891:  */
  892: void _tr_align(s)
  893:     deflate_state *s;
  894: {
  895:     send_bits(s, STATIC_TREES<<1, 3);
  896:     send_code(s, END_BLOCK, static_ltree);
  897: #ifdef DEBUG
  898:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
  899: #endif
  900:     bi_flush(s);
  901:     /* Of the 10 bits for the empty block, we have already sent
  902:      * (10 - bi_valid) bits. The lookahead for the last real code (before
  903:      * the EOB of the previous block) was thus at least one plus the length
  904:      * of the EOB plus what we have just sent of the empty static block.
  905:      */
  906:     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
  907:         send_bits(s, STATIC_TREES<<1, 3);
  908:         send_code(s, END_BLOCK, static_ltree);
  909: #ifdef DEBUG
  910:         s->compressed_len += 10L;
  911: #endif
  912:         bi_flush(s);
  913:     }
  914:     s->last_eob_len = 7;
  915: }
  916: 
  917: /* ===========================================================================
  918:  * Determine the best encoding for the current block: dynamic trees, static
  919:  * trees or store, and output the encoded block to the zip file.
  920:  */
  921: void _tr_flush_block(s, buf, stored_len, eof)
  922:     deflate_state *s;
  923:     charf *buf;       /* input block, or NULL if too old */
  924:     ulg stored_len;   /* length of input block */
  925:     int eof;          /* true if this is the last block for a file */
  926: {
  927:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  928:     int max_blindex = 0;  /* index of last bit length code of non zero freq */
  929: 
  930:     /* Build the Huffman trees unless a stored block is forced */
  931:     if (s->level > 0) {
  932: 
  933:         /* Check if the file is binary or text */
  934:         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
  935:             set_data_type(s);
  936: 
  937:         /* Construct the literal and distance trees */
  938:         build_tree(s, (tree_desc *)(&(s->l_desc)));
  939:         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  940:                 s->static_len));
  941: 
  942:         build_tree(s, (tree_desc *)(&(s->d_desc)));
  943:         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  944:                 s->static_len));
  945:         /* At this point, opt_len and static_len are the total bit lengths of
  946:          * the compressed block data, excluding the tree representations.
  947:          */
  948: 
  949:         /* Build the bit length tree for the above two trees, and get the index
  950:          * in bl_order of the last bit length code to send.
  951:          */
  952:         max_blindex = build_bl_tree(s);
  953: 
  954:         /* Determine the best encoding. Compute the block lengths in bytes. */
  955:         opt_lenb = (s->opt_len+3+7)>>3;
  956:         static_lenb = (s->static_len+3+7)>>3;
  957: 
  958:         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  959:                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  960:                 s->last_lit));
  961: 
  962:         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  963: 
  964:     } else {
  965:         Assert(buf != (char*)0, "lost buf");
  966:         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  967:     }
  968: 
  969: #ifdef FORCE_STORED
  970:     if (buf != (char*)0) { /* force stored block */
  971: #else
  972:     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
  973:                        /* 4: two words for the lengths */
  974: #endif
  975:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
  976:          * Otherwise we can't have processed more than WSIZE input bytes since
  977:          * the last block flush, because compression would have been
  978:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
  979:          * transform a block into a stored block.
  980:          */
  981:         _tr_stored_block(s, buf, stored_len, eof);
  982: 
  983: #ifdef FORCE_STATIC
  984:     } else if (static_lenb >= 0) { /* force static trees */
  985: #else
  986:     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
  987: #endif
  988:         send_bits(s, (STATIC_TREES<<1)+eof, 3);
  989:         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
  990: #ifdef DEBUG
  991:         s->compressed_len += 3 + s->static_len;
  992: #endif
  993:     } else {
  994:         send_bits(s, (DYN_TREES<<1)+eof, 3);
  995:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
  996:                        max_blindex+1);
  997:         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
  998: #ifdef DEBUG
  999:         s->compressed_len += 3 + s->opt_len;
 1000: #endif
 1001:     }
 1002:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 1003:     /* The above check is made mod 2^32, for files larger than 512 MB
 1004:      * and uLong implemented on 32 bits.
 1005:      */
 1006:     init_block(s);
 1007: 
 1008:     if (eof) {
 1009:         bi_windup(s);
 1010: #ifdef DEBUG
 1011:         s->compressed_len += 7;  /* align on byte boundary */
 1012: #endif
 1013:     }
 1014:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 1015:            s->compressed_len-7*eof));
 1016: }
 1017: 
 1018: /* ===========================================================================
 1019:  * Save the match info and tally the frequency counts. Return true if
 1020:  * the current block must be flushed.
 1021:  */
 1022: int _tr_tally (s, dist, lc)
 1023:     deflate_state *s;
 1024:     unsigned dist;  /* distance of matched string */
 1025:     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 1026: {
 1027:     s->d_buf[s->last_lit] = (ush)dist;
 1028:     s->l_buf[s->last_lit++] = (uch)lc;
 1029:     if (dist == 0) {
 1030:         /* lc is the unmatched char */
 1031:         s->dyn_ltree[lc].Freq++;
 1032:     } else {
 1033:         s->matches++;
 1034:         /* Here, lc is the match length - MIN_MATCH */
 1035:         dist--;             /* dist = match distance - 1 */
 1036:         Assert((ush)dist < (ush)MAX_DIST(s) &&
 1037:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 1038:                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 1039: 
 1040:         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
 1041:         s->dyn_dtree[d_code(dist)].Freq++;
 1042:     }
 1043: 
 1044: #ifdef TRUNCATE_BLOCK
 1045:     /* Try to guess if it is profitable to stop the current block here */
 1046:     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
 1047:         /* Compute an upper bound for the compressed length */
 1048:         ulg out_length = (ulg)s->last_lit*8L;
 1049:         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 1050:         int dcode;
 1051:         for (dcode = 0; dcode < D_CODES; dcode++) {
 1052:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
 1053:                 (5L+extra_dbits[dcode]);
 1054:         }
 1055:         out_length >>= 3;
 1056:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 1057:                s->last_lit, in_length, out_length,
 1058:                100L - out_length*100L/in_length));
 1059:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 1060:     }
 1061: #endif
 1062:     return (s->last_lit == s->lit_bufsize-1);
 1063:     /* We avoid equality with lit_bufsize because of wraparound at 64K
 1064:      * on 16 bit machines and because stored blocks are restricted to
 1065:      * 64K-1 bytes.
 1066:      */
 1067: }
 1068: 
 1069: /* ===========================================================================
 1070:  * Send the block data compressed using the given Huffman trees
 1071:  */
 1072: local void compress_block(s, ltree, dtree)
 1073:     deflate_state *s;
 1074:     ct_data *ltree; /* literal tree */
 1075:     ct_data *dtree; /* distance tree */
 1076: {
 1077:     unsigned dist;      /* distance of matched string */
 1078:     int lc;             /* match length or unmatched char (if dist == 0) */
 1079:     unsigned lx = 0;    /* running index in l_buf */
 1080:     unsigned code;      /* the code to send */
 1081:     int extra;          /* number of extra bits to send */
 1082: 
 1083:     if (s->last_lit != 0) do {
 1084:         dist = s->d_buf[lx];
 1085:         lc = s->l_buf[lx++];
 1086:         if (dist == 0) {
 1087:             send_code(s, lc, ltree); /* send a literal byte */
 1088:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 1089:         } else {
 1090:             /* Here, lc is the match length - MIN_MATCH */
 1091:             code = _length_code[lc];
 1092:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 1093:             extra = extra_lbits[code];
 1094:             if (extra != 0) {
 1095:                 lc -= base_length[code];
 1096:                 send_bits(s, lc, extra);       /* send the extra length bits */
 1097:             }
 1098:             dist--; /* dist is now the match distance - 1 */
 1099:             code = d_code(dist);
 1100:             Assert (code < D_CODES, "bad d_code");
 1101: 
 1102:             send_code(s, code, dtree);       /* send the distance code */
 1103:             extra = extra_dbits[code];
 1104:             if (extra != 0) {
 1105:                 dist -= base_dist[code];
 1106:                 send_bits(s, dist, extra);   /* send the extra distance bits */
 1107:             }
 1108:         } /* literal or match pair ? */
 1109: 
 1110:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 1111:         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 1112:                "pendingBuf overflow");
 1113: 
 1114:     } while (lx < s->last_lit);
 1115: 
 1116:     send_code(s, END_BLOCK, ltree);
 1117:     s->last_eob_len = ltree[END_BLOCK].Len;
 1118: }
 1119: 
 1120: /* ===========================================================================
 1121:  * Set the data type to BINARY or TEXT, using a crude approximation:
 1122:  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
 1123:  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
 1124:  * IN assertion: the fields Freq of dyn_ltree are set.
 1125:  */
 1126: local void set_data_type(s)
 1127:     deflate_state *s;
 1128: {
 1129:     int n;
 1130: 
 1131:     for (n = 0; n < 9; n++)
 1132:         if (s->dyn_ltree[n].Freq != 0)
 1133:             break;
 1134:     if (n == 9)
 1135:         for (n = 14; n < 32; n++)
 1136:             if (s->dyn_ltree[n].Freq != 0)
 1137:                 break;
 1138:     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
 1139: }
 1140: 
 1141: /* ===========================================================================
 1142:  * Reverse the first len bits of a code, using straightforward code (a faster
 1143:  * method would use a table)
 1144:  * IN assertion: 1 <= len <= 15
 1145:  */
 1146: local unsigned bi_reverse(code, len)
 1147:     unsigned code; /* the value to invert */
 1148:     int len;       /* its bit length */
 1149: {
 1150:     register unsigned res = 0;
 1151:     do {
 1152:         res |= code & 1;
 1153:         code >>= 1, res <<= 1;
 1154:     } while (--len > 0);
 1155:     return res >> 1;
 1156: }
 1157: 
 1158: /* ===========================================================================
 1159:  * Flush the bit buffer, keeping at most 7 bits in it.
 1160:  */
 1161: local void bi_flush(s)
 1162:     deflate_state *s;
 1163: {
 1164:     if (s->bi_valid == 16) {
 1165:         put_short(s, s->bi_buf);
 1166:         s->bi_buf = 0;
 1167:         s->bi_valid = 0;
 1168:     } else if (s->bi_valid >= 8) {
 1169:         put_byte(s, (Byte)s->bi_buf);
 1170:         s->bi_buf >>= 8;
 1171:         s->bi_valid -= 8;
 1172:     }
 1173: }
 1174: 
 1175: /* ===========================================================================
 1176:  * Flush the bit buffer and align the output on a byte boundary
 1177:  */
 1178: local void bi_windup(s)
 1179:     deflate_state *s;
 1180: {
 1181:     if (s->bi_valid > 8) {
 1182:         put_short(s, s->bi_buf);
 1183:     } else if (s->bi_valid > 0) {
 1184:         put_byte(s, (Byte)s->bi_buf);
 1185:     }
 1186:     s->bi_buf = 0;
 1187:     s->bi_valid = 0;
 1188: #ifdef DEBUG
 1189:     s->bits_sent = (s->bits_sent+7) & ~7;
 1190: #endif
 1191: }
 1192: 
 1193: /* ===========================================================================
 1194:  * Copy a stored block, storing first the length and its
 1195:  * one's complement if requested.
 1196:  */
 1197: local void copy_block(s, buf, len, header)
 1198:     deflate_state *s;
 1199:     charf    *buf;    /* the input data */
 1200:     unsigned len;     /* its length */
 1201:     int      header;  /* true if block header must be written */
 1202: {
 1203:     bi_windup(s);        /* align on byte boundary */
 1204:     s->last_eob_len = 8; /* enough lookahead for inflate */
 1205: 
 1206:     if (header) {
 1207:         put_short(s, (ush)len);
 1208:         put_short(s, (ush)~len);
 1209: #ifdef DEBUG
 1210:         s->bits_sent += 2*16;
 1211: #endif
 1212:     }
 1213: #ifdef DEBUG
 1214:     s->bits_sent += (ulg)len<<3;
 1215: #endif
 1216:     while (len--) {
 1217:         put_byte(s, *buf++);
 1218:     }
 1219: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>