File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / rsync / zlib / trees.c
Revision 1.1.1.2 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Mon Oct 14 07:51:14 2013 UTC (10 years, 9 months ago) by misho
Branches: rsync, MAIN
CVS tags: v3_2_3, v3_1_2p5, RSYNC3_1_0, HEAD
v 3.1.0

    1: /* trees.c -- output deflated data using Huffman coding
    2:  * Copyright (C) 1995-2012 Jean-loup Gailly
    3:  * detect_data_type() function provided freely by Cosmin Truta, 2006
    4:  * For conditions of distribution and use, see copyright notice in zlib.h
    5:  */
    6: 
    7: /*
    8:  *  ALGORITHM
    9:  *
   10:  *      The "deflation" process uses several Huffman trees. The more
   11:  *      common source values are represented by shorter bit sequences.
   12:  *
   13:  *      Each code tree is stored in a compressed form which is itself
   14:  * a Huffman encoding of the lengths of all the code strings (in
   15:  * ascending order by source values).  The actual code strings are
   16:  * reconstructed from the lengths in the inflate process, as described
   17:  * in the deflate specification.
   18:  *
   19:  *  REFERENCES
   20:  *
   21:  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   22:  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   23:  *
   24:  *      Storer, James A.
   25:  *          Data Compression:  Methods and Theory, pp. 49-50.
   26:  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   27:  *
   28:  *      Sedgewick, R.
   29:  *          Algorithms, p290.
   30:  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   31:  */
   32: 
   33: /* @(#) $Id: trees.c,v 1.1.1.2 2013/10/14 07:51:14 misho Exp $ */
   34: 
   35: /* #define GEN_TREES_H */
   36: 
   37: #include "deflate.h"
   38: 
   39: #ifdef DEBUG
   40: #  include <ctype.h>
   41: #endif
   42: 
   43: /* ===========================================================================
   44:  * Constants
   45:  */
   46: 
   47: #define MAX_BL_BITS 7
   48: /* Bit length codes must not exceed MAX_BL_BITS bits */
   49: 
   50: #define END_BLOCK 256
   51: /* end of block literal code */
   52: 
   53: #define REP_3_6      16
   54: /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   55: 
   56: #define REPZ_3_10    17
   57: /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   58: 
   59: #define REPZ_11_138  18
   60: /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   61: 
   62: local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   63:    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   64: 
   65: local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   66:    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   67: 
   68: local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   69:    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   70: 
   71: local const uch bl_order[BL_CODES]
   72:    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   73: /* The lengths of the bit length codes are sent in order of decreasing
   74:  * probability, to avoid transmitting the lengths for unused bit length codes.
   75:  */
   76: 
   77: /* ===========================================================================
   78:  * Local data. These are initialized only once.
   79:  */
   80: 
   81: #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   82: 
   83: #if defined(GEN_TREES_H) || !defined(STDC)
   84: /* non ANSI compilers may not accept trees.h */
   85: 
   86: local ct_data static_ltree[L_CODES+2];
   87: /* The static literal tree. Since the bit lengths are imposed, there is no
   88:  * need for the L_CODES extra codes used during heap construction. However
   89:  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   90:  * below).
   91:  */
   92: 
   93: local ct_data static_dtree[D_CODES];
   94: /* The static distance tree. (Actually a trivial tree since all codes use
   95:  * 5 bits.)
   96:  */
   97: 
   98: uch _dist_code[DIST_CODE_LEN];
   99: /* Distance codes. The first 256 values correspond to the distances
  100:  * 3 .. 258, the last 256 values correspond to the top 8 bits of
  101:  * the 15 bit distances.
  102:  */
  103: 
  104: uch _length_code[MAX_MATCH-MIN_MATCH+1];
  105: /* length code for each normalized match length (0 == MIN_MATCH) */
  106: 
  107: local int base_length[LENGTH_CODES];
  108: /* First normalized length for each code (0 = MIN_MATCH) */
  109: 
  110: local int base_dist[D_CODES];
  111: /* First normalized distance for each code (0 = distance of 1) */
  112: 
  113: #else
  114: #  include "trees.h"
  115: #endif /* GEN_TREES_H */
  116: 
  117: struct static_tree_desc_s {
  118:     const ct_data *static_tree;  /* static tree or NULL */
  119:     const intf *extra_bits;      /* extra bits for each code or NULL */
  120:     int     extra_base;          /* base index for extra_bits */
  121:     int     elems;               /* max number of elements in the tree */
  122:     int     max_length;          /* max bit length for the codes */
  123: };
  124: 
  125: local static_tree_desc  static_l_desc =
  126: {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
  127: 
  128: local static_tree_desc  static_d_desc =
  129: {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
  130: 
  131: local static_tree_desc  static_bl_desc =
  132: {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
  133: 
  134: /* ===========================================================================
  135:  * Local (static) routines in this file.
  136:  */
  137: 
  138: local void tr_static_init OF((void));
  139: local void init_block     OF((deflate_state *s));
  140: local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
  141: local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
  142: local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
  143: local void build_tree     OF((deflate_state *s, tree_desc *desc));
  144: local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  145: local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
  146: local int  build_bl_tree  OF((deflate_state *s));
  147: local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
  148:                               int blcodes));
  149: local void compress_block OF((deflate_state *s, const ct_data *ltree,
  150:                               const ct_data *dtree));
  151: local int  detect_data_type OF((deflate_state *s));
  152: local unsigned bi_reverse OF((unsigned value, int length));
  153: local void bi_windup      OF((deflate_state *s));
  154: local void bi_flush       OF((deflate_state *s));
  155: local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
  156:                               int header));
  157: 
  158: #ifdef GEN_TREES_H
  159: local void gen_trees_header OF((void));
  160: #endif
  161: 
  162: #ifndef DEBUG
  163: #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
  164:    /* Send a code of the given tree. c and tree must not have side effects */
  165: 
  166: #else /* DEBUG */
  167: #  define send_code(s, c, tree) \
  168:      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
  169:        send_bits(s, tree[c].Code, tree[c].Len); }
  170: #endif
  171: 
  172: /* ===========================================================================
  173:  * Output a short LSB first on the stream.
  174:  * IN assertion: there is enough room in pendingBuf.
  175:  */
  176: #define put_short(s, w) { \
  177:     put_byte(s, (uch)((w) & 0xff)); \
  178:     put_byte(s, (uch)((ush)(w) >> 8)); \
  179: }
  180: 
  181: /* ===========================================================================
  182:  * Send a value on a given number of bits.
  183:  * IN assertion: length <= 16 and value fits in length bits.
  184:  */
  185: #ifdef DEBUG
  186: local void send_bits      OF((deflate_state *s, int value, int length));
  187: 
  188: local void send_bits(s, value, length)
  189:     deflate_state *s;
  190:     int value;  /* value to send */
  191:     int length; /* number of bits */
  192: {
  193:     Tracevv((stderr," l %2d v %4x ", length, value));
  194:     Assert(length > 0 && length <= 15, "invalid length");
  195:     s->bits_sent += (ulg)length;
  196: 
  197:     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
  198:      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
  199:      * unused bits in value.
  200:      */
  201:     if (s->bi_valid > (int)Buf_size - length) {
  202:         s->bi_buf |= (ush)value << s->bi_valid;
  203:         put_short(s, s->bi_buf);
  204:         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
  205:         s->bi_valid += length - Buf_size;
  206:     } else {
  207:         s->bi_buf |= (ush)value << s->bi_valid;
  208:         s->bi_valid += length;
  209:     }
  210: }
  211: #else /* !DEBUG */
  212: 
  213: #define send_bits(s, value, length) \
  214: { int len = length;\
  215:   if (s->bi_valid > (int)Buf_size - len) {\
  216:     int val = value;\
  217:     s->bi_buf |= (ush)val << s->bi_valid;\
  218:     put_short(s, s->bi_buf);\
  219:     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
  220:     s->bi_valid += len - Buf_size;\
  221:   } else {\
  222:     s->bi_buf |= (ush)(value) << s->bi_valid;\
  223:     s->bi_valid += len;\
  224:   }\
  225: }
  226: #endif /* DEBUG */
  227: 
  228: 
  229: /* the arguments must not have side effects */
  230: 
  231: /* ===========================================================================
  232:  * Initialize the various 'constant' tables.
  233:  */
  234: local void tr_static_init()
  235: {
  236: #if defined(GEN_TREES_H) || !defined(STDC)
  237:     static int static_init_done = 0;
  238:     int n;        /* iterates over tree elements */
  239:     int bits;     /* bit counter */
  240:     int length;   /* length value */
  241:     int code;     /* code value */
  242:     int dist;     /* distance index */
  243:     ush bl_count[MAX_BITS+1];
  244:     /* number of codes at each bit length for an optimal tree */
  245: 
  246:     if (static_init_done) return;
  247: 
  248:     /* For some embedded targets, global variables are not initialized: */
  249: #ifdef NO_INIT_GLOBAL_POINTERS
  250:     static_l_desc.static_tree = static_ltree;
  251:     static_l_desc.extra_bits = extra_lbits;
  252:     static_d_desc.static_tree = static_dtree;
  253:     static_d_desc.extra_bits = extra_dbits;
  254:     static_bl_desc.extra_bits = extra_blbits;
  255: #endif
  256: 
  257:     /* Initialize the mapping length (0..255) -> length code (0..28) */
  258:     length = 0;
  259:     for (code = 0; code < LENGTH_CODES-1; code++) {
  260:         base_length[code] = length;
  261:         for (n = 0; n < (1<<extra_lbits[code]); n++) {
  262:             _length_code[length++] = (uch)code;
  263:         }
  264:     }
  265:     Assert (length == 256, "tr_static_init: length != 256");
  266:     /* Note that the length 255 (match length 258) can be represented
  267:      * in two different ways: code 284 + 5 bits or code 285, so we
  268:      * overwrite length_code[255] to use the best encoding:
  269:      */
  270:     _length_code[length-1] = (uch)code;
  271: 
  272:     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  273:     dist = 0;
  274:     for (code = 0 ; code < 16; code++) {
  275:         base_dist[code] = dist;
  276:         for (n = 0; n < (1<<extra_dbits[code]); n++) {
  277:             _dist_code[dist++] = (uch)code;
  278:         }
  279:     }
  280:     Assert (dist == 256, "tr_static_init: dist != 256");
  281:     dist >>= 7; /* from now on, all distances are divided by 128 */
  282:     for ( ; code < D_CODES; code++) {
  283:         base_dist[code] = dist << 7;
  284:         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
  285:             _dist_code[256 + dist++] = (uch)code;
  286:         }
  287:     }
  288:     Assert (dist == 256, "tr_static_init: 256+dist != 512");
  289: 
  290:     /* Construct the codes of the static literal tree */
  291:     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
  292:     n = 0;
  293:     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
  294:     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
  295:     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
  296:     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
  297:     /* Codes 286 and 287 do not exist, but we must include them in the
  298:      * tree construction to get a canonical Huffman tree (longest code
  299:      * all ones)
  300:      */
  301:     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
  302: 
  303:     /* The static distance tree is trivial: */
  304:     for (n = 0; n < D_CODES; n++) {
  305:         static_dtree[n].Len = 5;
  306:         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
  307:     }
  308:     static_init_done = 1;
  309: 
  310: #  ifdef GEN_TREES_H
  311:     gen_trees_header();
  312: #  endif
  313: #endif /* defined(GEN_TREES_H) || !defined(STDC) */
  314: }
  315: 
  316: /* ===========================================================================
  317:  * Genererate the file trees.h describing the static trees.
  318:  */
  319: #ifdef GEN_TREES_H
  320: #  ifndef DEBUG
  321: #    include <stdio.h>
  322: #  endif
  323: 
  324: #  define SEPARATOR(i, last, width) \
  325:       ((i) == (last)? "\n};\n\n" :    \
  326:        ((i) % (width) == (width)-1 ? ",\n" : ", "))
  327: 
  328: void gen_trees_header()
  329: {
  330:     FILE *header = fopen("trees.h", "w");
  331:     int i;
  332: 
  333:     Assert (header != NULL, "Can't open trees.h");
  334:     fprintf(header,
  335:             "/* header created automatically with -DGEN_TREES_H */\n\n");
  336: 
  337:     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
  338:     for (i = 0; i < L_CODES+2; i++) {
  339:         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
  340:                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
  341:     }
  342: 
  343:     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
  344:     for (i = 0; i < D_CODES; i++) {
  345:         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
  346:                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
  347:     }
  348: 
  349:     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
  350:     for (i = 0; i < DIST_CODE_LEN; i++) {
  351:         fprintf(header, "%2u%s", _dist_code[i],
  352:                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
  353:     }
  354: 
  355:     fprintf(header,
  356:         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
  357:     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
  358:         fprintf(header, "%2u%s", _length_code[i],
  359:                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
  360:     }
  361: 
  362:     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
  363:     for (i = 0; i < LENGTH_CODES; i++) {
  364:         fprintf(header, "%1u%s", base_length[i],
  365:                 SEPARATOR(i, LENGTH_CODES-1, 20));
  366:     }
  367: 
  368:     fprintf(header, "local const int base_dist[D_CODES] = {\n");
  369:     for (i = 0; i < D_CODES; i++) {
  370:         fprintf(header, "%5u%s", base_dist[i],
  371:                 SEPARATOR(i, D_CODES-1, 10));
  372:     }
  373: 
  374:     fclose(header);
  375: }
  376: #endif /* GEN_TREES_H */
  377: 
  378: /* ===========================================================================
  379:  * Initialize the tree data structures for a new zlib stream.
  380:  */
  381: void ZLIB_INTERNAL _tr_init(s)
  382:     deflate_state *s;
  383: {
  384:     tr_static_init();
  385: 
  386:     s->l_desc.dyn_tree = s->dyn_ltree;
  387:     s->l_desc.stat_desc = &static_l_desc;
  388: 
  389:     s->d_desc.dyn_tree = s->dyn_dtree;
  390:     s->d_desc.stat_desc = &static_d_desc;
  391: 
  392:     s->bl_desc.dyn_tree = s->bl_tree;
  393:     s->bl_desc.stat_desc = &static_bl_desc;
  394: 
  395:     s->bi_buf = 0;
  396:     s->bi_valid = 0;
  397: #ifdef DEBUG
  398:     s->compressed_len = 0L;
  399:     s->bits_sent = 0L;
  400: #endif
  401: 
  402:     /* Initialize the first block of the first file: */
  403:     init_block(s);
  404: }
  405: 
  406: /* ===========================================================================
  407:  * Initialize a new block.
  408:  */
  409: local void init_block(s)
  410:     deflate_state *s;
  411: {
  412:     int n; /* iterates over tree elements */
  413: 
  414:     /* Initialize the trees. */
  415:     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
  416:     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
  417:     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
  418: 
  419:     s->dyn_ltree[END_BLOCK].Freq = 1;
  420:     s->opt_len = s->static_len = 0L;
  421:     s->last_lit = s->matches = 0;
  422: }
  423: 
  424: #define SMALLEST 1
  425: /* Index within the heap array of least frequent node in the Huffman tree */
  426: 
  427: 
  428: /* ===========================================================================
  429:  * Remove the smallest element from the heap and recreate the heap with
  430:  * one less element. Updates heap and heap_len.
  431:  */
  432: #define pqremove(s, tree, top) \
  433: {\
  434:     top = s->heap[SMALLEST]; \
  435:     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
  436:     pqdownheap(s, tree, SMALLEST); \
  437: }
  438: 
  439: /* ===========================================================================
  440:  * Compares to subtrees, using the tree depth as tie breaker when
  441:  * the subtrees have equal frequency. This minimizes the worst case length.
  442:  */
  443: #define smaller(tree, n, m, depth) \
  444:    (tree[n].Freq < tree[m].Freq || \
  445:    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
  446: 
  447: /* ===========================================================================
  448:  * Restore the heap property by moving down the tree starting at node k,
  449:  * exchanging a node with the smallest of its two sons if necessary, stopping
  450:  * when the heap property is re-established (each father smaller than its
  451:  * two sons).
  452:  */
  453: local void pqdownheap(s, tree, k)
  454:     deflate_state *s;
  455:     ct_data *tree;  /* the tree to restore */
  456:     int k;               /* node to move down */
  457: {
  458:     int v = s->heap[k];
  459:     int j = k << 1;  /* left son of k */
  460:     while (j <= s->heap_len) {
  461:         /* Set j to the smallest of the two sons: */
  462:         if (j < s->heap_len &&
  463:             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
  464:             j++;
  465:         }
  466:         /* Exit if v is smaller than both sons */
  467:         if (smaller(tree, v, s->heap[j], s->depth)) break;
  468: 
  469:         /* Exchange v with the smallest son */
  470:         s->heap[k] = s->heap[j];  k = j;
  471: 
  472:         /* And continue down the tree, setting j to the left son of k */
  473:         j <<= 1;
  474:     }
  475:     s->heap[k] = v;
  476: }
  477: 
  478: /* ===========================================================================
  479:  * Compute the optimal bit lengths for a tree and update the total bit length
  480:  * for the current block.
  481:  * IN assertion: the fields freq and dad are set, heap[heap_max] and
  482:  *    above are the tree nodes sorted by increasing frequency.
  483:  * OUT assertions: the field len is set to the optimal bit length, the
  484:  *     array bl_count contains the frequencies for each bit length.
  485:  *     The length opt_len is updated; static_len is also updated if stree is
  486:  *     not null.
  487:  */
  488: local void gen_bitlen(s, desc)
  489:     deflate_state *s;
  490:     tree_desc *desc;    /* the tree descriptor */
  491: {
  492:     ct_data *tree        = desc->dyn_tree;
  493:     int max_code         = desc->max_code;
  494:     const ct_data *stree = desc->stat_desc->static_tree;
  495:     const intf *extra    = desc->stat_desc->extra_bits;
  496:     int base             = desc->stat_desc->extra_base;
  497:     int max_length       = desc->stat_desc->max_length;
  498:     int h;              /* heap index */
  499:     int n, m;           /* iterate over the tree elements */
  500:     int bits;           /* bit length */
  501:     int xbits;          /* extra bits */
  502:     ush f;              /* frequency */
  503:     int overflow = 0;   /* number of elements with bit length too large */
  504: 
  505:     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
  506: 
  507:     /* In a first pass, compute the optimal bit lengths (which may
  508:      * overflow in the case of the bit length tree).
  509:      */
  510:     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
  511: 
  512:     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
  513:         n = s->heap[h];
  514:         bits = tree[tree[n].Dad].Len + 1;
  515:         if (bits > max_length) bits = max_length, overflow++;
  516:         tree[n].Len = (ush)bits;
  517:         /* We overwrite tree[n].Dad which is no longer needed */
  518: 
  519:         if (n > max_code) continue; /* not a leaf node */
  520: 
  521:         s->bl_count[bits]++;
  522:         xbits = 0;
  523:         if (n >= base) xbits = extra[n-base];
  524:         f = tree[n].Freq;
  525:         s->opt_len += (ulg)f * (bits + xbits);
  526:         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
  527:     }
  528:     if (overflow == 0) return;
  529: 
  530:     Trace((stderr,"\nbit length overflow\n"));
  531:     /* This happens for example on obj2 and pic of the Calgary corpus */
  532: 
  533:     /* Find the first bit length which could increase: */
  534:     do {
  535:         bits = max_length-1;
  536:         while (s->bl_count[bits] == 0) bits--;
  537:         s->bl_count[bits]--;      /* move one leaf down the tree */
  538:         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
  539:         s->bl_count[max_length]--;
  540:         /* The brother of the overflow item also moves one step up,
  541:          * but this does not affect bl_count[max_length]
  542:          */
  543:         overflow -= 2;
  544:     } while (overflow > 0);
  545: 
  546:     /* Now recompute all bit lengths, scanning in increasing frequency.
  547:      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
  548:      * lengths instead of fixing only the wrong ones. This idea is taken
  549:      * from 'ar' written by Haruhiko Okumura.)
  550:      */
  551:     for (bits = max_length; bits != 0; bits--) {
  552:         n = s->bl_count[bits];
  553:         while (n != 0) {
  554:             m = s->heap[--h];
  555:             if (m > max_code) continue;
  556:             if ((unsigned) tree[m].Len != (unsigned) bits) {
  557:                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
  558:                 s->opt_len += ((long)bits - (long)tree[m].Len)
  559:                               *(long)tree[m].Freq;
  560:                 tree[m].Len = (ush)bits;
  561:             }
  562:             n--;
  563:         }
  564:     }
  565: }
  566: 
  567: /* ===========================================================================
  568:  * Generate the codes for a given tree and bit counts (which need not be
  569:  * optimal).
  570:  * IN assertion: the array bl_count contains the bit length statistics for
  571:  * the given tree and the field len is set for all tree elements.
  572:  * OUT assertion: the field code is set for all tree elements of non
  573:  *     zero code length.
  574:  */
  575: local void gen_codes (tree, max_code, bl_count)
  576:     ct_data *tree;             /* the tree to decorate */
  577:     int max_code;              /* largest code with non zero frequency */
  578:     ushf *bl_count;            /* number of codes at each bit length */
  579: {
  580:     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
  581:     ush code = 0;              /* running code value */
  582:     int bits;                  /* bit index */
  583:     int n;                     /* code index */
  584: 
  585:     /* The distribution counts are first used to generate the code values
  586:      * without bit reversal.
  587:      */
  588:     for (bits = 1; bits <= MAX_BITS; bits++) {
  589:         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
  590:     }
  591:     /* Check that the bit counts in bl_count are consistent. The last code
  592:      * must be all ones.
  593:      */
  594:     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  595:             "inconsistent bit counts");
  596:     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
  597: 
  598:     for (n = 0;  n <= max_code; n++) {
  599:         int len = tree[n].Len;
  600:         if (len == 0) continue;
  601:         /* Now reverse the bits */
  602:         tree[n].Code = bi_reverse(next_code[len]++, len);
  603: 
  604:         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
  605:              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  606:     }
  607: }
  608: 
  609: /* ===========================================================================
  610:  * Construct one Huffman tree and assigns the code bit strings and lengths.
  611:  * Update the total bit length for the current block.
  612:  * IN assertion: the field freq is set for all tree elements.
  613:  * OUT assertions: the fields len and code are set to the optimal bit length
  614:  *     and corresponding code. The length opt_len is updated; static_len is
  615:  *     also updated if stree is not null. The field max_code is set.
  616:  */
  617: local void build_tree(s, desc)
  618:     deflate_state *s;
  619:     tree_desc *desc; /* the tree descriptor */
  620: {
  621:     ct_data *tree         = desc->dyn_tree;
  622:     const ct_data *stree  = desc->stat_desc->static_tree;
  623:     int elems             = desc->stat_desc->elems;
  624:     int n, m;          /* iterate over heap elements */
  625:     int max_code = -1; /* largest code with non zero frequency */
  626:     int node;          /* new node being created */
  627: 
  628:     /* Construct the initial heap, with least frequent element in
  629:      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
  630:      * heap[0] is not used.
  631:      */
  632:     s->heap_len = 0, s->heap_max = HEAP_SIZE;
  633: 
  634:     for (n = 0; n < elems; n++) {
  635:         if (tree[n].Freq != 0) {
  636:             s->heap[++(s->heap_len)] = max_code = n;
  637:             s->depth[n] = 0;
  638:         } else {
  639:             tree[n].Len = 0;
  640:         }
  641:     }
  642: 
  643:     /* The pkzip format requires that at least one distance code exists,
  644:      * and that at least one bit should be sent even if there is only one
  645:      * possible code. So to avoid special checks later on we force at least
  646:      * two codes of non zero frequency.
  647:      */
  648:     while (s->heap_len < 2) {
  649:         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
  650:         tree[node].Freq = 1;
  651:         s->depth[node] = 0;
  652:         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
  653:         /* node is 0 or 1 so it does not have extra bits */
  654:     }
  655:     desc->max_code = max_code;
  656: 
  657:     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
  658:      * establish sub-heaps of increasing lengths:
  659:      */
  660:     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
  661: 
  662:     /* Construct the Huffman tree by repeatedly combining the least two
  663:      * frequent nodes.
  664:      */
  665:     node = elems;              /* next internal node of the tree */
  666:     do {
  667:         pqremove(s, tree, n);  /* n = node of least frequency */
  668:         m = s->heap[SMALLEST]; /* m = node of next least frequency */
  669: 
  670:         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
  671:         s->heap[--(s->heap_max)] = m;
  672: 
  673:         /* Create a new node father of n and m */
  674:         tree[node].Freq = tree[n].Freq + tree[m].Freq;
  675:         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
  676:                                 s->depth[n] : s->depth[m]) + 1);
  677:         tree[n].Dad = tree[m].Dad = (ush)node;
  678: #ifdef DUMP_BL_TREE
  679:         if (tree == s->bl_tree) {
  680:             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
  681:                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
  682:         }
  683: #endif
  684:         /* and insert the new node in the heap */
  685:         s->heap[SMALLEST] = node++;
  686:         pqdownheap(s, tree, SMALLEST);
  687: 
  688:     } while (s->heap_len >= 2);
  689: 
  690:     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
  691: 
  692:     /* At this point, the fields freq and dad are set. We can now
  693:      * generate the bit lengths.
  694:      */
  695:     gen_bitlen(s, (tree_desc *)desc);
  696: 
  697:     /* The field len is now set, we can generate the bit codes */
  698:     gen_codes ((ct_data *)tree, max_code, s->bl_count);
  699: }
  700: 
  701: /* ===========================================================================
  702:  * Scan a literal or distance tree to determine the frequencies of the codes
  703:  * in the bit length tree.
  704:  */
  705: local void scan_tree (s, tree, max_code)
  706:     deflate_state *s;
  707:     ct_data *tree;   /* the tree to be scanned */
  708:     int max_code;    /* and its largest code of non zero frequency */
  709: {
  710:     int n;                     /* iterates over all tree elements */
  711:     int prevlen = -1;          /* last emitted length */
  712:     int curlen;                /* length of current code */
  713:     int nextlen = tree[0].Len; /* length of next code */
  714:     int count = 0;             /* repeat count of the current code */
  715:     int max_count = 7;         /* max repeat count */
  716:     int min_count = 4;         /* min repeat count */
  717: 
  718:     if (nextlen == 0) max_count = 138, min_count = 3;
  719:     tree[max_code+1].Len = (ush)0xffff; /* guard */
  720: 
  721:     for (n = 0; n <= max_code; n++) {
  722:         curlen = nextlen; nextlen = tree[n+1].Len;
  723:         if (++count < max_count && curlen == nextlen) {
  724:             continue;
  725:         } else if (count < min_count) {
  726:             s->bl_tree[curlen].Freq += count;
  727:         } else if (curlen != 0) {
  728:             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
  729:             s->bl_tree[REP_3_6].Freq++;
  730:         } else if (count <= 10) {
  731:             s->bl_tree[REPZ_3_10].Freq++;
  732:         } else {
  733:             s->bl_tree[REPZ_11_138].Freq++;
  734:         }
  735:         count = 0; prevlen = curlen;
  736:         if (nextlen == 0) {
  737:             max_count = 138, min_count = 3;
  738:         } else if (curlen == nextlen) {
  739:             max_count = 6, min_count = 3;
  740:         } else {
  741:             max_count = 7, min_count = 4;
  742:         }
  743:     }
  744: }
  745: 
  746: /* ===========================================================================
  747:  * Send a literal or distance tree in compressed form, using the codes in
  748:  * bl_tree.
  749:  */
  750: local void send_tree (s, tree, max_code)
  751:     deflate_state *s;
  752:     ct_data *tree; /* the tree to be scanned */
  753:     int max_code;       /* and its largest code of non zero frequency */
  754: {
  755:     int n;                     /* iterates over all tree elements */
  756:     int prevlen = -1;          /* last emitted length */
  757:     int curlen;                /* length of current code */
  758:     int nextlen = tree[0].Len; /* length of next code */
  759:     int count = 0;             /* repeat count of the current code */
  760:     int max_count = 7;         /* max repeat count */
  761:     int min_count = 4;         /* min repeat count */
  762: 
  763:     /* tree[max_code+1].Len = -1; */  /* guard already set */
  764:     if (nextlen == 0) max_count = 138, min_count = 3;
  765: 
  766:     for (n = 0; n <= max_code; n++) {
  767:         curlen = nextlen; nextlen = tree[n+1].Len;
  768:         if (++count < max_count && curlen == nextlen) {
  769:             continue;
  770:         } else if (count < min_count) {
  771:             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
  772: 
  773:         } else if (curlen != 0) {
  774:             if (curlen != prevlen) {
  775:                 send_code(s, curlen, s->bl_tree); count--;
  776:             }
  777:             Assert(count >= 3 && count <= 6, " 3_6?");
  778:             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
  779: 
  780:         } else if (count <= 10) {
  781:             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
  782: 
  783:         } else {
  784:             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
  785:         }
  786:         count = 0; prevlen = curlen;
  787:         if (nextlen == 0) {
  788:             max_count = 138, min_count = 3;
  789:         } else if (curlen == nextlen) {
  790:             max_count = 6, min_count = 3;
  791:         } else {
  792:             max_count = 7, min_count = 4;
  793:         }
  794:     }
  795: }
  796: 
  797: /* ===========================================================================
  798:  * Construct the Huffman tree for the bit lengths and return the index in
  799:  * bl_order of the last bit length code to send.
  800:  */
  801: local int build_bl_tree(s)
  802:     deflate_state *s;
  803: {
  804:     int max_blindex;  /* index of last bit length code of non zero freq */
  805: 
  806:     /* Determine the bit length frequencies for literal and distance trees */
  807:     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
  808:     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
  809: 
  810:     /* Build the bit length tree: */
  811:     build_tree(s, (tree_desc *)(&(s->bl_desc)));
  812:     /* opt_len now includes the length of the tree representations, except
  813:      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
  814:      */
  815: 
  816:     /* Determine the number of bit length codes to send. The pkzip format
  817:      * requires that at least 4 bit length codes be sent. (appnote.txt says
  818:      * 3 but the actual value used is 4.)
  819:      */
  820:     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
  821:         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
  822:     }
  823:     /* Update opt_len to include the bit length tree and counts */
  824:     s->opt_len += 3*(max_blindex+1) + 5+5+4;
  825:     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  826:             s->opt_len, s->static_len));
  827: 
  828:     return max_blindex;
  829: }
  830: 
  831: /* ===========================================================================
  832:  * Send the header for a block using dynamic Huffman trees: the counts, the
  833:  * lengths of the bit length codes, the literal tree and the distance tree.
  834:  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  835:  */
  836: local void send_all_trees(s, lcodes, dcodes, blcodes)
  837:     deflate_state *s;
  838:     int lcodes, dcodes, blcodes; /* number of codes for each tree */
  839: {
  840:     int rank;                    /* index in bl_order */
  841: 
  842:     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  843:     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  844:             "too many codes");
  845:     Tracev((stderr, "\nbl counts: "));
  846:     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
  847:     send_bits(s, dcodes-1,   5);
  848:     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
  849:     for (rank = 0; rank < blcodes; rank++) {
  850:         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
  851:         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
  852:     }
  853:     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
  854: 
  855:     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
  856:     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
  857: 
  858:     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
  859:     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  860: }
  861: 
  862: /* ===========================================================================
  863:  * Send a stored block
  864:  */
  865: void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
  866:     deflate_state *s;
  867:     charf *buf;       /* input block */
  868:     ulg stored_len;   /* length of input block */
  869:     int last;         /* one if this is the last block for a file */
  870: {
  871:     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
  872: #ifdef DEBUG
  873:     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
  874:     s->compressed_len += (stored_len + 4) << 3;
  875: #endif
  876:     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
  877: }
  878: 
  879: /* ===========================================================================
  880:  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
  881:  */
  882: void ZLIB_INTERNAL _tr_flush_bits(s)
  883:     deflate_state *s;
  884: {
  885:     bi_flush(s);
  886: }
  887: 
  888: /* ===========================================================================
  889:  * Send one empty static block to give enough lookahead for inflate.
  890:  * This takes 10 bits, of which 7 may remain in the bit buffer.
  891:  */
  892: void ZLIB_INTERNAL _tr_align(s)
  893:     deflate_state *s;
  894: {
  895:     send_bits(s, STATIC_TREES<<1, 3);
  896:     send_code(s, END_BLOCK, static_ltree);
  897: #ifdef DEBUG
  898:     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
  899: #endif
  900:     bi_flush(s);
  901: }
  902: 
  903: /* ===========================================================================
  904:  * Determine the best encoding for the current block: dynamic trees, static
  905:  * trees or store, and output the encoded block to the zip file.
  906:  */
  907: void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
  908:     deflate_state *s;
  909:     charf *buf;       /* input block, or NULL if too old */
  910:     ulg stored_len;   /* length of input block */
  911:     int last;         /* one if this is the last block for a file */
  912: {
  913:     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  914:     int max_blindex = 0;  /* index of last bit length code of non zero freq */
  915: 
  916:     /* Build the Huffman trees unless a stored block is forced */
  917:     if (s->level > 0) {
  918: 
  919:         /* Check if the file is binary or text */
  920:         if (s->strm->data_type == Z_UNKNOWN)
  921:             s->strm->data_type = detect_data_type(s);
  922: 
  923:         /* Construct the literal and distance trees */
  924:         build_tree(s, (tree_desc *)(&(s->l_desc)));
  925:         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  926:                 s->static_len));
  927: 
  928:         build_tree(s, (tree_desc *)(&(s->d_desc)));
  929:         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  930:                 s->static_len));
  931:         /* At this point, opt_len and static_len are the total bit lengths of
  932:          * the compressed block data, excluding the tree representations.
  933:          */
  934: 
  935:         /* Build the bit length tree for the above two trees, and get the index
  936:          * in bl_order of the last bit length code to send.
  937:          */
  938:         max_blindex = build_bl_tree(s);
  939: 
  940:         /* Determine the best encoding. Compute the block lengths in bytes. */
  941:         opt_lenb = (s->opt_len+3+7)>>3;
  942:         static_lenb = (s->static_len+3+7)>>3;
  943: 
  944:         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  945:                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  946:                 s->last_lit));
  947: 
  948:         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  949: 
  950:     } else {
  951:         Assert(buf != (char*)0, "lost buf");
  952:         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  953:     }
  954: 
  955: #ifdef FORCE_STORED
  956:     if (buf != (char*)0) { /* force stored block */
  957: #else
  958:     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
  959:                        /* 4: two words for the lengths */
  960: #endif
  961:         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
  962:          * Otherwise we can't have processed more than WSIZE input bytes since
  963:          * the last block flush, because compression would have been
  964:          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
  965:          * transform a block into a stored block.
  966:          */
  967:         _tr_stored_block(s, buf, stored_len, last);
  968: 
  969: #ifdef FORCE_STATIC
  970:     } else if (static_lenb >= 0) { /* force static trees */
  971: #else
  972:     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
  973: #endif
  974:         send_bits(s, (STATIC_TREES<<1)+last, 3);
  975:         compress_block(s, (const ct_data *)static_ltree,
  976:                        (const ct_data *)static_dtree);
  977: #ifdef DEBUG
  978:         s->compressed_len += 3 + s->static_len;
  979: #endif
  980:     } else {
  981:         send_bits(s, (DYN_TREES<<1)+last, 3);
  982:         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
  983:                        max_blindex+1);
  984:         compress_block(s, (const ct_data *)s->dyn_ltree,
  985:                        (const ct_data *)s->dyn_dtree);
  986: #ifdef DEBUG
  987:         s->compressed_len += 3 + s->opt_len;
  988: #endif
  989:     }
  990:     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  991:     /* The above check is made mod 2^32, for files larger than 512 MB
  992:      * and uLong implemented on 32 bits.
  993:      */
  994:     init_block(s);
  995: 
  996:     if (last) {
  997:         bi_windup(s);
  998: #ifdef DEBUG
  999:         s->compressed_len += 7;  /* align on byte boundary */
 1000: #endif
 1001:     }
 1002:     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 1003:            s->compressed_len-7*last));
 1004: }
 1005: 
 1006: /* ===========================================================================
 1007:  * Save the match info and tally the frequency counts. Return true if
 1008:  * the current block must be flushed.
 1009:  */
 1010: int ZLIB_INTERNAL _tr_tally (s, dist, lc)
 1011:     deflate_state *s;
 1012:     unsigned dist;  /* distance of matched string */
 1013:     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
 1014: {
 1015:     s->d_buf[s->last_lit] = (ush)dist;
 1016:     s->l_buf[s->last_lit++] = (uch)lc;
 1017:     if (dist == 0) {
 1018:         /* lc is the unmatched char */
 1019:         s->dyn_ltree[lc].Freq++;
 1020:     } else {
 1021:         s->matches++;
 1022:         /* Here, lc is the match length - MIN_MATCH */
 1023:         dist--;             /* dist = match distance - 1 */
 1024:         Assert((ush)dist < (ush)MAX_DIST(s) &&
 1025:                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 1026:                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
 1027: 
 1028:         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
 1029:         s->dyn_dtree[d_code(dist)].Freq++;
 1030:     }
 1031: 
 1032: #ifdef TRUNCATE_BLOCK
 1033:     /* Try to guess if it is profitable to stop the current block here */
 1034:     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
 1035:         /* Compute an upper bound for the compressed length */
 1036:         ulg out_length = (ulg)s->last_lit*8L;
 1037:         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 1038:         int dcode;
 1039:         for (dcode = 0; dcode < D_CODES; dcode++) {
 1040:             out_length += (ulg)s->dyn_dtree[dcode].Freq *
 1041:                 (5L+extra_dbits[dcode]);
 1042:         }
 1043:         out_length >>= 3;
 1044:         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 1045:                s->last_lit, in_length, out_length,
 1046:                100L - out_length*100L/in_length));
 1047:         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 1048:     }
 1049: #endif
 1050:     return (s->last_lit == s->lit_bufsize-1);
 1051:     /* We avoid equality with lit_bufsize because of wraparound at 64K
 1052:      * on 16 bit machines and because stored blocks are restricted to
 1053:      * 64K-1 bytes.
 1054:      */
 1055: }
 1056: 
 1057: /* ===========================================================================
 1058:  * Send the block data compressed using the given Huffman trees
 1059:  */
 1060: local void compress_block(s, ltree, dtree)
 1061:     deflate_state *s;
 1062:     const ct_data *ltree; /* literal tree */
 1063:     const ct_data *dtree; /* distance tree */
 1064: {
 1065:     unsigned dist;      /* distance of matched string */
 1066:     int lc;             /* match length or unmatched char (if dist == 0) */
 1067:     unsigned lx = 0;    /* running index in l_buf */
 1068:     unsigned code;      /* the code to send */
 1069:     int extra;          /* number of extra bits to send */
 1070: 
 1071:     if (s->last_lit != 0) do {
 1072:         dist = s->d_buf[lx];
 1073:         lc = s->l_buf[lx++];
 1074:         if (dist == 0) {
 1075:             send_code(s, lc, ltree); /* send a literal byte */
 1076:             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 1077:         } else {
 1078:             /* Here, lc is the match length - MIN_MATCH */
 1079:             code = _length_code[lc];
 1080:             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 1081:             extra = extra_lbits[code];
 1082:             if (extra != 0) {
 1083:                 lc -= base_length[code];
 1084:                 send_bits(s, lc, extra);       /* send the extra length bits */
 1085:             }
 1086:             dist--; /* dist is now the match distance - 1 */
 1087:             code = d_code(dist);
 1088:             Assert (code < D_CODES, "bad d_code");
 1089: 
 1090:             send_code(s, code, dtree);       /* send the distance code */
 1091:             extra = extra_dbits[code];
 1092:             if (extra != 0) {
 1093:                 dist -= base_dist[code];
 1094:                 send_bits(s, dist, extra);   /* send the extra distance bits */
 1095:             }
 1096:         } /* literal or match pair ? */
 1097: 
 1098:         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 1099:         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
 1100:                "pendingBuf overflow");
 1101: 
 1102:     } while (lx < s->last_lit);
 1103: 
 1104:     send_code(s, END_BLOCK, ltree);
 1105: }
 1106: 
 1107: /* ===========================================================================
 1108:  * Check if the data type is TEXT or BINARY, using the following algorithm:
 1109:  * - TEXT if the two conditions below are satisfied:
 1110:  *    a) There are no non-portable control characters belonging to the
 1111:  *       "black list" (0..6, 14..25, 28..31).
 1112:  *    b) There is at least one printable character belonging to the
 1113:  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 1114:  * - BINARY otherwise.
 1115:  * - The following partially-portable control characters form a
 1116:  *   "gray list" that is ignored in this detection algorithm:
 1117:  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 1118:  * IN assertion: the fields Freq of dyn_ltree are set.
 1119:  */
 1120: local int detect_data_type(s)
 1121:     deflate_state *s;
 1122: {
 1123:     /* black_mask is the bit mask of black-listed bytes
 1124:      * set bits 0..6, 14..25, and 28..31
 1125:      * 0xf3ffc07f = binary 11110011111111111100000001111111
 1126:      */
 1127:     unsigned long black_mask = 0xf3ffc07fUL;
 1128:     int n;
 1129: 
 1130:     /* Check for non-textual ("black-listed") bytes. */
 1131:     for (n = 0; n <= 31; n++, black_mask >>= 1)
 1132:         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
 1133:             return Z_BINARY;
 1134: 
 1135:     /* Check for textual ("white-listed") bytes. */
 1136:     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
 1137:             || s->dyn_ltree[13].Freq != 0)
 1138:         return Z_TEXT;
 1139:     for (n = 32; n < LITERALS; n++)
 1140:         if (s->dyn_ltree[n].Freq != 0)
 1141:             return Z_TEXT;
 1142: 
 1143:     /* There are no "black-listed" or "white-listed" bytes:
 1144:      * this stream either is empty or has tolerated ("gray-listed") bytes only.
 1145:      */
 1146:     return Z_BINARY;
 1147: }
 1148: 
 1149: /* ===========================================================================
 1150:  * Reverse the first len bits of a code, using straightforward code (a faster
 1151:  * method would use a table)
 1152:  * IN assertion: 1 <= len <= 15
 1153:  */
 1154: local unsigned bi_reverse(code, len)
 1155:     unsigned code; /* the value to invert */
 1156:     int len;       /* its bit length */
 1157: {
 1158:     register unsigned res = 0;
 1159:     do {
 1160:         res |= code & 1;
 1161:         code >>= 1, res <<= 1;
 1162:     } while (--len > 0);
 1163:     return res >> 1;
 1164: }
 1165: 
 1166: /* ===========================================================================
 1167:  * Flush the bit buffer, keeping at most 7 bits in it.
 1168:  */
 1169: local void bi_flush(s)
 1170:     deflate_state *s;
 1171: {
 1172:     if (s->bi_valid == 16) {
 1173:         put_short(s, s->bi_buf);
 1174:         s->bi_buf = 0;
 1175:         s->bi_valid = 0;
 1176:     } else if (s->bi_valid >= 8) {
 1177:         put_byte(s, (Byte)s->bi_buf);
 1178:         s->bi_buf >>= 8;
 1179:         s->bi_valid -= 8;
 1180:     }
 1181: }
 1182: 
 1183: /* ===========================================================================
 1184:  * Flush the bit buffer and align the output on a byte boundary
 1185:  */
 1186: local void bi_windup(s)
 1187:     deflate_state *s;
 1188: {
 1189:     if (s->bi_valid > 8) {
 1190:         put_short(s, s->bi_buf);
 1191:     } else if (s->bi_valid > 0) {
 1192:         put_byte(s, (Byte)s->bi_buf);
 1193:     }
 1194:     s->bi_buf = 0;
 1195:     s->bi_valid = 0;
 1196: #ifdef DEBUG
 1197:     s->bits_sent = (s->bits_sent+7) & ~7;
 1198: #endif
 1199: }
 1200: 
 1201: /* ===========================================================================
 1202:  * Copy a stored block, storing first the length and its
 1203:  * one's complement if requested.
 1204:  */
 1205: local void copy_block(s, buf, len, header)
 1206:     deflate_state *s;
 1207:     charf    *buf;    /* the input data */
 1208:     unsigned len;     /* its length */
 1209:     int      header;  /* true if block header must be written */
 1210: {
 1211:     bi_windup(s);        /* align on byte boundary */
 1212: 
 1213:     if (header) {
 1214:         put_short(s, (ush)len);
 1215:         put_short(s, (ush)~len);
 1216: #ifdef DEBUG
 1217:         s->bits_sent += 2*16;
 1218: #endif
 1219:     }
 1220: #ifdef DEBUG
 1221:     s->bits_sent += (ulg)len<<3;
 1222: #endif
 1223:     while (len--) {
 1224:         put_byte(s, *buf++);
 1225:     }
 1226: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>