/* * atacmds.cpp * * Home page of code is: http://smartmontools.sourceforge.net * * Copyright (C) 2002-11 Bruce Allen * Copyright (C) 2008-11 Christian Franke * Copyright (C) 1999-2000 Michael Cornwell * Copyright (C) 2000 Andre Hedrick * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * This code was originally developed as a Senior Thesis by Michael Cornwell * at the Concurrent Systems Laboratory (now part of the Storage Systems * Research Center), Jack Baskin School of Engineering, University of * California, Santa Cruz. http://ssrc.soe.ucsc.edu/ * */ #include #include #include #include #include #include "config.h" #include "int64.h" #include "atacmds.h" #include "utility.h" #include "dev_ata_cmd_set.h" // for parsed_ata_device const char * atacmds_cpp_cvsid = "$Id: atacmds.cpp,v 1.1.1.1 2012/02/21 16:32:16 misho Exp $" ATACMDS_H_CVSID; // Print ATA debug messages? unsigned char ata_debugmode = 0; // Suppress serial number? // (also used in scsiprint.cpp) bool dont_print_serial_number = false; #define SMART_CYL_LOW 0x4F #define SMART_CYL_HI 0xC2 // SMART RETURN STATUS yields SMART_CYL_HI,SMART_CYL_LOW to indicate drive // is healthy and SRET_STATUS_HI_EXCEEDED,SRET_STATUS_MID_EXCEEDED to // indicate that a threshhold exceeded condition has been detected. // Those values (byte pairs) are placed in ATA register "LBA 23:8". #define SRET_STATUS_HI_EXCEEDED 0x2C #define SRET_STATUS_MID_EXCEEDED 0xF4 // These Drive Identity tables are taken from hdparm 5.2, and are also // given in the ATA/ATAPI specs for the IDENTIFY DEVICE command. Note // that SMART was first added into the ATA/ATAPI-3 Standard with // Revision 3 of the document, July 25, 1995. Look at the "Document // Status" revision commands at the beginning of // http://www.t13.org/Documents/UploadedDocuments/project/d2008r7b-ATA-3.pdf // to see this. #define NOVAL_0 0x0000 #define NOVAL_1 0xffff /* word 81: minor version number */ #define MINOR_MAX 0x22 static const char * const minor_str[] = { /* word 81 value: */ "Device does not report version", /* 0x0000 */ "ATA-1 X3T9.2 781D prior to revision 4", /* 0x0001 */ "ATA-1 published, ANSI X3.221-1994", /* 0x0002 */ "ATA-1 X3T9.2 781D revision 4", /* 0x0003 */ "ATA-2 published, ANSI X3.279-1996", /* 0x0004 */ "ATA-2 X3T10 948D prior to revision 2k", /* 0x0005 */ "ATA-3 X3T10 2008D revision 1", /* 0x0006 */ /* SMART NOT INCLUDED */ "ATA-2 X3T10 948D revision 2k", /* 0x0007 */ "ATA-3 X3T10 2008D revision 0", /* 0x0008 */ "ATA-2 X3T10 948D revision 3", /* 0x0009 */ "ATA-3 published, ANSI X3.298-199x", /* 0x000a */ "ATA-3 X3T10 2008D revision 6", /* 0x000b */ /* 1st VERSION WITH SMART */ "ATA-3 X3T13 2008D revision 7 and 7a", /* 0x000c */ "ATA/ATAPI-4 X3T13 1153D revision 6", /* 0x000d */ "ATA/ATAPI-4 T13 1153D revision 13", /* 0x000e */ "ATA/ATAPI-4 X3T13 1153D revision 7", /* 0x000f */ "ATA/ATAPI-4 T13 1153D revision 18", /* 0x0010 */ "ATA/ATAPI-4 T13 1153D revision 15", /* 0x0011 */ "ATA/ATAPI-4 published, ANSI NCITS 317-1998", /* 0x0012 */ "ATA/ATAPI-5 T13 1321D revision 3", /* 0x0013 */ "ATA/ATAPI-4 T13 1153D revision 14", /* 0x0014 */ "ATA/ATAPI-5 T13 1321D revision 1", /* 0x0015 */ "ATA/ATAPI-5 published, ANSI NCITS 340-2000", /* 0x0016 */ "ATA/ATAPI-4 T13 1153D revision 17", /* 0x0017 */ "ATA/ATAPI-6 T13 1410D revision 0", /* 0x0018 */ "ATA/ATAPI-6 T13 1410D revision 3a", /* 0x0019 */ "ATA/ATAPI-7 T13 1532D revision 1", /* 0x001a */ "ATA/ATAPI-6 T13 1410D revision 2", /* 0x001b */ "ATA/ATAPI-6 T13 1410D revision 1", /* 0x001c */ "ATA/ATAPI-7 published, ANSI INCITS 397-2005",/* 0x001d */ "ATA/ATAPI-7 T13 1532D revision 0", /* 0x001e */ "reserved", /* 0x001f */ "reserved", /* 0x0020 */ "ATA/ATAPI-7 T13 1532D revision 4a", /* 0x0021 */ "ATA/ATAPI-6 published, ANSI INCITS 361-2002" /* 0x0022 */ }; // NOTE ATA/ATAPI-4 REV 4 was the LAST revision where the device // attribute structures were NOT completely vendor specific. So any // disk that is ATA/ATAPI-4 or above can not be trusted to show the // vendor values in sensible format. // Negative values below are because it doesn't support SMART static const int actual_ver[] = { /* word 81 value: */ 0, /* 0x0000 WARNING: */ 1, /* 0x0001 WARNING: */ 1, /* 0x0002 WARNING: */ 1, /* 0x0003 WARNING: */ 2, /* 0x0004 WARNING: This array */ 2, /* 0x0005 WARNING: corresponds */ -3, /*<== */ /* 0x0006 WARNING: *exactly* */ 2, /* 0x0007 WARNING: to the ATA/ */ -3, /*<== */ /* 0x0008 WARNING: ATAPI version */ 2, /* 0x0009 WARNING: listed in */ 3, /* 0x000a WARNING: the */ 3, /* 0x000b WARNING: minor_str */ 3, /* 0x000c WARNING: array */ 4, /* 0x000d WARNING: above. */ 4, /* 0x000e WARNING: */ 4, /* 0x000f WARNING: If you change */ 4, /* 0x0010 WARNING: that one, */ 4, /* 0x0011 WARNING: change this one */ 4, /* 0x0012 WARNING: too!!! */ 5, /* 0x0013 WARNING: */ 4, /* 0x0014 WARNING: */ 5, /* 0x0015 WARNING: */ 5, /* 0x0016 WARNING: */ 4, /* 0x0017 WARNING: */ 6, /* 0x0018 WARNING: */ 6, /* 0x0019 WARNING: */ 7, /* 0x001a WARNING: */ 6, /* 0x001b WARNING: */ 6, /* 0x001c WARNING: */ 7, /* 0x001d WARNING: */ 7, /* 0x001e WARNING: */ 0, /* 0x001f WARNING: */ 0, /* 0x0020 WARNING: */ 7, /* 0x0021 WARNING: */ 6 /* 0x0022 WARNING: */ }; // Compile time check of above array sizes typedef char assert_sizeof_minor_str [sizeof(minor_str) /sizeof(minor_str[0]) == MINOR_MAX+1 ? 1 : -1]; typedef char assert_sizeof_actual_ver[sizeof(actual_ver)/sizeof(actual_ver[0]) == MINOR_MAX+1 ? 1 : -1]; // Get ID and increase flag of current pending or offline // uncorrectable attribute. unsigned char get_unc_attr_id(bool offline, const ata_vendor_attr_defs & defs, bool & increase) { unsigned char id = (!offline ? 197 : 198); const ata_vendor_attr_defs::entry & def = defs[id]; if (def.flags & ATTRFLAG_INCREASING) increase = true; // '-v 19[78],increasing' option else if (def.name.empty() || (id == 198 && def.name == "Offline_Scan_UNC_SectCt")) increase = false; // no or '-v 198,offlinescanuncsectorct' option else id = 0; // other '-v 19[78],...' option return id; } #if 0 // TODO: never used // This are the meanings of the Self-test failure checkpoint byte. // This is in the self-test log at offset 4 bytes into the self-test // descriptor and in the SMART READ DATA structure at byte offset // 371. These codes are not well documented. The meanings returned by // this routine are used (at least) by Maxtor and IBM. Returns NULL if // not recognized. Currently the maximum length is 15 bytes. const char *SelfTestFailureCodeName(unsigned char which){ switch (which) { case 0: return "Write_Test"; case 1: return "Servo_Basic"; case 2: return "Servo_Random"; case 3: return "G-list_Scan"; case 4: return "Handling_Damage"; case 5: return "Read_Scan"; default: return NULL; } } #endif // Table of raw print format names struct format_name_entry { const char * name; ata_attr_raw_format format; }; const format_name_entry format_names[] = { {"raw8" , RAWFMT_RAW8}, {"raw16" , RAWFMT_RAW16}, {"raw48" , RAWFMT_RAW48}, {"hex48" , RAWFMT_HEX48}, {"raw64" , RAWFMT_RAW64}, {"hex64" , RAWFMT_HEX64}, {"raw16(raw16)" , RAWFMT_RAW16_OPT_RAW16}, {"raw16(avg16)" , RAWFMT_RAW16_OPT_AVG16}, {"raw24/raw24" , RAWFMT_RAW24_DIV_RAW24}, {"raw24/raw32" , RAWFMT_RAW24_DIV_RAW32}, {"sec2hour" , RAWFMT_SEC2HOUR}, {"min2hour" , RAWFMT_MIN2HOUR}, {"halfmin2hour" , RAWFMT_HALFMIN2HOUR}, {"msec24hour32" , RAWFMT_MSEC24_HOUR32}, {"tempminmax" , RAWFMT_TEMPMINMAX}, {"temp10x" , RAWFMT_TEMP10X}, }; const unsigned num_format_names = sizeof(format_names)/sizeof(format_names[0]); // Table to map old to new '-v' option arguments const char * map_old_vendor_opts[][2] = { { "9,halfminutes" , "9,halfmin2hour,Power_On_Half_Minutes"}, { "9,minutes" , "9,min2hour,Power_On_Minutes"}, { "9,seconds" , "9,sec2hour,Power_On_Seconds"}, { "9,temp" , "9,tempminmax,Temperature_Celsius"}, {"192,emergencyretractcyclect" , "192,raw48,Emerg_Retract_Cycle_Ct"}, {"193,loadunload" , "193,raw24/raw24"}, {"194,10xCelsius" , "194,temp10x,Temperature_Celsius_x10"}, {"194,unknown" , "194,raw48,Unknown_Attribute"}, {"197,increasing" , "197,raw48+,Total_Pending_Sectors"}, // '+' sets flag {"198,offlinescanuncsectorct" , "198,raw48,Offline_Scan_UNC_SectCt"}, // see also get_unc_attr_id() above {"198,increasing" , "198,raw48+,Total_Offl_Uncorrectabl"}, // '+' sets flag {"200,writeerrorcount" , "200,raw48,Write_Error_Count"}, {"201,detectedtacount" , "201,raw48,Detected_TA_Count"}, {"220,temp" , "220,raw48,Temperature_Celsius"}, }; const unsigned num_old_vendor_opts = sizeof(map_old_vendor_opts)/sizeof(map_old_vendor_opts[0]); // Parse vendor attribute display def (-v option). // Return false on error. bool parse_attribute_def(const char * opt, ata_vendor_attr_defs & defs, ata_vendor_def_prior priority) { // Map old -> new options unsigned i; for (i = 0; i < num_old_vendor_opts; i++) { if (!strcmp(opt, map_old_vendor_opts[i][0])) { opt = map_old_vendor_opts[i][1]; break; } } // Parse option int len = strlen(opt); int id = 0, n1 = -1, n2 = -1; char fmtname[32+1], attrname[32+1]; if (opt[0] == 'N') { // "N,format" if (!( sscanf(opt, "N,%32[^,]%n,%32[^,]%n", fmtname, &n1, attrname, &n2) >= 1 && (n1 == len || n2 == len))) return false; } else { // "id,format[+][,name]" if (!( sscanf(opt, "%d,%32[^,]%n,%32[^,]%n", &id, fmtname, &n1, attrname, &n2) >= 2 && 1 <= id && id <= 255 && (n1 == len || n2 == len))) return false; } if (n1 == len) attrname[0] = 0; unsigned flags = 0; // For "-v 19[78],increasing" above if (fmtname[strlen(fmtname)-1] == '+') { fmtname[strlen(fmtname)-1] = 0; flags = ATTRFLAG_INCREASING; } // Split "format[:byteorder]" char byteorder[8+1] = ""; if (strchr(fmtname, ':')) { if (!( sscanf(fmtname, "%*[^:]%n:%8[012345rvwz]%n", &n1, byteorder, &n2) >= 1 && n2 == (int)strlen(fmtname))) return false; fmtname[n1] = 0; if (strchr(byteorder, 'v')) flags |= (ATTRFLAG_NO_NORMVAL|ATTRFLAG_NO_WORSTVAL); if (strchr(byteorder, 'w')) flags |= ATTRFLAG_NO_WORSTVAL; } // Find format name for (i = 0; ; i++) { if (i >= num_format_names) return false; // Not found if (!strcmp(fmtname, format_names[i].name)) break; } ata_attr_raw_format format = format_names[i].format; // 64-bit formats use the normalized and worst value bytes. if (!*byteorder && (format == RAWFMT_RAW64 || format == RAWFMT_HEX64)) flags |= (ATTRFLAG_NO_NORMVAL|ATTRFLAG_NO_WORSTVAL); if (!id) { // "N,format" -> set format for all entries for (i = 0; i < MAX_ATTRIBUTE_NUM; i++) { if (defs[i].priority >= priority) continue; if (attrname[0]) defs[i].name = attrname; defs[i].priority = priority; defs[i].raw_format = format; defs[i].flags = flags; strcpy(defs[i].byteorder, byteorder); } } else if (defs[id].priority <= priority) { // "id,format[,name]" if (attrname[0]) defs[id].name = attrname; defs[id].raw_format = format; defs[id].priority = priority; defs[id].flags = flags; strcpy(defs[id].byteorder, byteorder); } return true; } // Return a multiline string containing a list of valid arguments for // parse_attribute_def(). The strings are preceeded by tabs and followed // (except for the last) by newlines. std::string create_vendor_attribute_arg_list() { std::string s; unsigned i; for (i = 0; i < num_format_names; i++) s += strprintf("%s\tN,%s[:012345rvwz][,ATTR_NAME]", (i>0 ? "\n" : ""), format_names[i].name); for (i = 0; i < num_old_vendor_opts; i++) s += strprintf("\n\t%s", map_old_vendor_opts[i][0]); return s; } // swap two bytes. Point to low address void swap2(char *location){ char tmp=*location; *location=*(location+1); *(location+1)=tmp; return; } // swap four bytes. Point to low address void swap4(char *location){ char tmp=*location; *location=*(location+3); *(location+3)=tmp; swap2(location+1); return; } // swap eight bytes. Points to low address void swap8(char *location){ char tmp=*location; *location=*(location+7); *(location+7)=tmp; tmp=*(location+1); *(location+1)=*(location+6); *(location+6)=tmp; swap4(location+2); return; } // Invalidate serial number and WWN and adjust checksum in IDENTIFY data static void invalidate_serno(ata_identify_device * id) { unsigned char sum = 0; unsigned i; for (i = 0; i < sizeof(id->serial_no); i++) { sum += id->serial_no[i]; sum -= id->serial_no[i] = 'X'; } unsigned char * b = (unsigned char *)id; for (i = 2*108; i < 2*112; i++) { // words108-111: WWN sum += b[i]; sum -= b[i] = 0x00; } #ifndef __NetBSD__ bool must_swap = !!isbigendian(); if (must_swap) swapx(id->words088_255+255-88); #endif if ((id->words088_255[255-88] & 0x00ff) == 0x00a5) id->words088_255[255-88] += sum << 8; #ifndef __NetBSD__ if (must_swap) swapx(id->words088_255+255-88); #endif } static const char * const commandstrings[]={ "SMART ENABLE", "SMART DISABLE", "SMART AUTOMATIC ATTRIBUTE SAVE", "SMART IMMEDIATE OFFLINE", "SMART AUTO OFFLINE", "SMART STATUS", "SMART STATUS CHECK", "SMART READ ATTRIBUTE VALUES", "SMART READ ATTRIBUTE THRESHOLDS", "SMART READ LOG", "IDENTIFY DEVICE", "IDENTIFY PACKET DEVICE", "CHECK POWER MODE", "SMART WRITE LOG", "WARNING (UNDEFINED COMMAND -- CONTACT DEVELOPERS AT " PACKAGE_BUGREPORT ")\n" }; static const char * preg(const ata_register & r, char * buf) { if (!r.is_set()) //return "n/a "; return "...."; sprintf(buf, "0x%02x", r.val()); return buf; } static void print_regs(const char * prefix, const ata_in_regs & r, const char * suffix = "\n") { char bufs[7][4+1+13]; pout("%s FR=%s, SC=%s, LL=%s, LM=%s, LH=%s, DEV=%s, CMD=%s%s", prefix, preg(r.features, bufs[0]), preg(r.sector_count, bufs[1]), preg(r.lba_low, bufs[2]), preg(r.lba_mid, bufs[3]), preg(r.lba_high, bufs[4]), preg(r.device, bufs[5]), preg(r.command, bufs[6]), suffix); } static void print_regs(const char * prefix, const ata_out_regs & r, const char * suffix = "\n") { char bufs[7][4+1+13]; pout("%sERR=%s, SC=%s, LL=%s, LM=%s, LH=%s, DEV=%s, STS=%s%s", prefix, preg(r.error, bufs[0]), preg(r.sector_count, bufs[1]), preg(r.lba_low, bufs[2]), preg(r.lba_mid, bufs[3]), preg(r.lba_high, bufs[4]), preg(r.device, bufs[5]), preg(r.status, bufs[6]), suffix); } static void prettyprint(const unsigned char *p, const char *name){ pout("\n===== [%s] DATA START (BASE-16) =====\n", name); for (int i=0; i<512; i+=16, p+=16) #define P(n) (' ' <= p[n] && p[n] <= '~' ? (int)p[n] : '.') // print complete line to avoid slow tty output and extra lines in syslog. pout("%03d-%03d: %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x" " |%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c|" "%c", i, i+16-1, p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7], p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15], P( 0), P( 1), P( 2), P( 3), P( 4), P( 5), P( 6), P( 7), P( 8), P( 9), P(10), P(11), P(12), P(13), P(14), P(15), '\n'); #undef P pout("===== [%s] DATA END (512 Bytes) =====\n\n", name); } // This function provides the pretty-print reporting for SMART // commands: it implements the various -r "reporting" options for ATA // ioctls. int smartcommandhandler(ata_device * device, smart_command_set command, int select, char *data){ // TODO: Rework old stuff below // This conditional is true for commands that return data int getsdata=(command==PIDENTIFY || command==IDENTIFY || command==READ_LOG || command==READ_THRESHOLDS || command==READ_VALUES || command==CHECK_POWER_MODE); int sendsdata=(command==WRITE_LOG); // If reporting is enabled, say what the command will be before it's executed if (ata_debugmode) { // conditional is true for commands that use parameters int usesparam=(command==READ_LOG || command==AUTO_OFFLINE || command==AUTOSAVE || command==IMMEDIATE_OFFLINE || command==WRITE_LOG); pout("\nREPORT-IOCTL: Device=%s Command=%s", device->get_dev_name(), commandstrings[command]); if (usesparam) pout(" InputParameter=%d\n", select); else pout("\n"); } if ((getsdata || sendsdata) && !data){ pout("REPORT-IOCTL: Unable to execute command %s : data destination address is NULL\n", commandstrings[command]); return -1; } // The reporting is cleaner, and we will find coding bugs faster, if // the commands that failed clearly return empty (zeroed) data // structures if (getsdata) { if (command==CHECK_POWER_MODE) data[0]=0; else memset(data, '\0', 512); } // if requested, pretty-print the input data structure if (ata_debugmode > 1 && sendsdata) //pout("REPORT-IOCTL: Device=%s Command=%s\n", device->get_dev_name(), commandstrings[command]); prettyprint((unsigned char *)data, commandstrings[command]); // now execute the command int retval = -1; { ata_cmd_in in; // Set common register values switch (command) { default: // SMART commands in.in_regs.command = ATA_SMART_CMD; in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; break; case IDENTIFY: case PIDENTIFY: case CHECK_POWER_MODE: // Non SMART commands break; } // Set specific values switch (command) { case IDENTIFY: in.in_regs.command = ATA_IDENTIFY_DEVICE; in.set_data_in(data, 1); break; case PIDENTIFY: in.in_regs.command = ATA_IDENTIFY_PACKET_DEVICE; in.set_data_in(data, 1); break; case CHECK_POWER_MODE: in.in_regs.command = ATA_CHECK_POWER_MODE; in.out_needed.sector_count = true; // Powermode returned here break; case READ_VALUES: in.in_regs.features = ATA_SMART_READ_VALUES; in.set_data_in(data, 1); break; case READ_THRESHOLDS: in.in_regs.features = ATA_SMART_READ_THRESHOLDS; in.in_regs.lba_low = 1; // TODO: CORRECT ??? in.set_data_in(data, 1); break; case READ_LOG: in.in_regs.features = ATA_SMART_READ_LOG_SECTOR; in.in_regs.lba_low = select; in.set_data_in(data, 1); break; case WRITE_LOG: in.in_regs.features = ATA_SMART_WRITE_LOG_SECTOR; in.in_regs.lba_low = select; in.set_data_out(data, 1); break; case ENABLE: in.in_regs.features = ATA_SMART_ENABLE; in.in_regs.lba_low = 1; // TODO: CORRECT ??? break; case DISABLE: in.in_regs.features = ATA_SMART_DISABLE; in.in_regs.lba_low = 1; // TODO: CORRECT ??? break; case STATUS_CHECK: in.out_needed.lba_high = in.out_needed.lba_mid = true; // Status returned here case STATUS: in.in_regs.features = ATA_SMART_STATUS; break; case AUTO_OFFLINE: in.in_regs.features = ATA_SMART_AUTO_OFFLINE; in.in_regs.sector_count = select; // Caution: Non-DATA command! break; case AUTOSAVE: in.in_regs.features = ATA_SMART_AUTOSAVE; in.in_regs.sector_count = select; // Caution: Non-DATA command! break; case IMMEDIATE_OFFLINE: in.in_regs.features = ATA_SMART_IMMEDIATE_OFFLINE; in.in_regs.lba_low = select; break; default: pout("Unrecognized command %d in smartcommandhandler()\n" "Please contact " PACKAGE_BUGREPORT "\n", command); device->set_err(ENOSYS); return -1; } if (ata_debugmode) print_regs(" Input: ", in.in_regs, (in.direction==ata_cmd_in::data_in ? " IN\n": in.direction==ata_cmd_in::data_out ? " OUT\n":"\n")); ata_cmd_out out; bool ok = device->ata_pass_through(in, out); if (ata_debugmode && out.out_regs.is_set()) print_regs(" Output: ", out.out_regs); if (ok) switch (command) { default: retval = 0; break; case CHECK_POWER_MODE: if (out.out_regs.sector_count.is_set()) { data[0] = out.out_regs.sector_count; retval = 0; } else { pout("CHECK POWER MODE: incomplete response, ATA output registers missing\n"); device->set_err(ENOSYS); retval = -1; } break; case STATUS_CHECK: // Cyl low and Cyl high unchanged means "Good SMART status" if ((out.out_regs.lba_high == SMART_CYL_HI) && (out.out_regs.lba_mid == SMART_CYL_LOW)) retval = 0; // These values mean "Bad SMART status" else if ((out.out_regs.lba_high == SRET_STATUS_HI_EXCEEDED) && (out.out_regs.lba_mid == SRET_STATUS_MID_EXCEEDED)) retval = 1; else if (out.out_regs.lba_mid == SMART_CYL_LOW) { retval = 0; if (ata_debugmode) pout("SMART STATUS RETURN: half healthy response sequence, " "probable SAT/USB truncation\n"); } else if (out.out_regs.lba_mid == SRET_STATUS_MID_EXCEEDED) { retval = 1; if (ata_debugmode) pout("SMART STATUS RETURN: half unhealthy response sequence, " "probable SAT/USB truncation\n"); } else if (!out.out_regs.is_set()) { pout("SMART STATUS RETURN: incomplete response, ATA output registers missing\n"); device->set_err(ENOSYS); retval = -1; } else { // We haven't gotten output that makes sense; print out some debugging info pout("Error SMART Status command failed\n"); pout("Please get assistance from %s\n", PACKAGE_HOMEPAGE); pout("Register values returned from SMART Status command are:\n"); print_regs(" ", out.out_regs); device->set_err(EIO); retval = -1; } break; } } // If requested, invalidate serial number before any printing is done if ((command == IDENTIFY || command == PIDENTIFY) && !retval && dont_print_serial_number) invalidate_serno((ata_identify_device *)data); // If reporting is enabled, say what output was produced by the command if (ata_debugmode) { if (device->get_errno()) pout("REPORT-IOCTL: Device=%s Command=%s returned %d errno=%d [%s]\n", device->get_dev_name(), commandstrings[command], retval, device->get_errno(), device->get_errmsg()); else pout("REPORT-IOCTL: Device=%s Command=%s returned %d\n", device->get_dev_name(), commandstrings[command], retval); // if requested, pretty-print the output data structure if (ata_debugmode > 1 && getsdata) { if (command==CHECK_POWER_MODE) pout("Sector Count Register (BASE-16): %02x\n", (unsigned char)(*data)); else prettyprint((unsigned char *)data, commandstrings[command]); } } return retval; } // Get capacity and sector sizes from IDENTIFY data void ata_get_size_info(const ata_identify_device * id, ata_size_info & sizes) { sizes.sectors = sizes.capacity = 0; sizes.log_sector_size = sizes.phy_sector_size = 0; sizes.log_sector_offset = 0; // Return if no LBA support if (!(id->words047_079[49-47] & 0x0200)) return; // Determine 28-bit LBA capacity unsigned lba28 = (unsigned)id->words047_079[61-47] << 16 | (unsigned)id->words047_079[60-47] ; // Determine 48-bit LBA capacity if supported uint64_t lba48 = 0; if ((id->command_set_2 & 0xc400) == 0x4400) lba48 = (uint64_t)id->words088_255[103-88] << 48 | (uint64_t)id->words088_255[102-88] << 32 | (uint64_t)id->words088_255[101-88] << 16 | (uint64_t)id->words088_255[100-88] ; // Return if capacity unknown (ATAPI CD/DVD) if (!(lba28 || lba48)) return; // Determine sector sizes sizes.log_sector_size = sizes.phy_sector_size = 512; unsigned short word106 = id->words088_255[106-88]; if ((word106 & 0xc000) == 0x4000) { // Long Logical/Physical Sectors (LLS/LPS) ? if (word106 & 0x1000) // Logical sector size is specified in 16-bit words sizes.log_sector_size = sizes.phy_sector_size = ((id->words088_255[118-88] << 16) | id->words088_255[117-88]) << 1; if (word106 & 0x2000) // Physical sector size is multiple of logical sector size sizes.phy_sector_size <<= (word106 & 0x0f); unsigned short word209 = id->words088_255[209-88]; if ((word209 & 0xc000) == 0x4000) sizes.log_sector_offset = (word209 & 0x3fff) * sizes.log_sector_size; } // Some early 4KiB LLS disks (Samsung N3U-3) return bogus lba28 value if (lba48 >= lba28 || (lba48 && sizes.log_sector_size > 512)) sizes.sectors = lba48; else sizes.sectors = lba28; sizes.capacity = sizes.sectors * sizes.log_sector_size; } // This function computes the checksum of a single disk sector (512 // bytes). Returns zero if checksum is OK, nonzero if the checksum is // incorrect. The size (512) is correct for all SMART structures. unsigned char checksum(const void * data) { unsigned char sum = 0; for (int i = 0; i < 512; i++) sum += ((const unsigned char *)data)[i]; return sum; } // Copies n bytes (or n-1 if n is odd) from in to out, but swaps adjacents // bytes. static void swapbytes(char * out, const char * in, size_t n) { for (size_t i = 0; i < n; i += 2) { out[i] = in[i+1]; out[i+1] = in[i]; } } // Copies in to out, but removes leading and trailing whitespace. static void trim(char * out, const char * in) { // Find the first non-space character (maybe none). int first = -1; int i; for (i = 0; in[i]; i++) if (!isspace((int)in[i])) { first = i; break; } if (first == -1) { // There are no non-space characters. out[0] = '\0'; return; } // Find the last non-space character. for (i = strlen(in)-1; i >= first && isspace((int)in[i]); i--) ; int last = i; strncpy(out, in+first, last-first+1); out[last-first+1] = '\0'; } // Convenience function for formatting strings from ata_identify_device void ata_format_id_string(char * out, const unsigned char * in, int n) { bool must_swap = true; #ifdef __NetBSD__ /* NetBSD kernel delivers IDENTIFY data in host byte order (but all else is LE) */ // TODO: Handle NetBSD case in os_netbsd.cpp if (isbigendian()) must_swap = !must_swap; #endif char tmp[65]; n = n > 64 ? 64 : n; if (!must_swap) strncpy(tmp, (const char *)in, n); else swapbytes(tmp, (const char *)in, n); tmp[n] = '\0'; trim(out, tmp); } // returns -1 if command fails or the device is in Sleep mode, else // value of Sector Count register. Sector Count result values: // 00h device is in Standby mode. // 80h device is in Idle mode. // FFh device is in Active mode or Idle mode. int ataCheckPowerMode(ata_device * device) { unsigned char result; if ((smartcommandhandler(device, CHECK_POWER_MODE, 0, (char *)&result))) return -1; if (result!=0 && result!=0x80 && result!=0xff) pout("ataCheckPowerMode(): ATA CHECK POWER MODE returned unknown Sector Count Register value %02x\n", result); return (int)result; } // Reads current Device Identity info (512 bytes) into buf. Returns 0 // if all OK. Returns -1 if no ATA Device identity can be // established. Returns >0 if Device is ATA Packet Device (not SMART // capable). The value of the integer helps identify the type of // Packet device, which is useful so that the user can connect the // formal device number with whatever object is inside their computer. int ata_read_identity(ata_device * device, ata_identify_device * buf, bool fix_swapped_id) { unsigned short *rawshort=(unsigned short *)buf; unsigned char *rawbyte =(unsigned char *)buf; // See if device responds either to IDENTIFY DEVICE or IDENTIFY // PACKET DEVICE bool packet = false; if ((smartcommandhandler(device, IDENTIFY, 0, (char *)buf))){ if (smartcommandhandler(device, PIDENTIFY, 0, (char *)buf)){ return -1; } packet = true; } unsigned i; if (fix_swapped_id) { // Swap ID strings for (i = 0; i < sizeof(buf->serial_no)-1; i += 2) swap2((char *)(buf->serial_no+i)); for (i = 0; i < sizeof(buf->fw_rev)-1; i += 2) swap2((char *)(buf->fw_rev+i)); for (i = 0; i < sizeof(buf->model)-1; i += 2) swap2((char *)(buf->model+i)); } #ifndef __NetBSD__ // if machine is big-endian, swap byte order as needed // NetBSD kernel delivers IDENTIFY data in host byte order // TODO: Handle NetBSD case in os_netbsd.cpp if (isbigendian()){ // swap various capability words that are needed for (i=0; i<33; i++) swap2((char *)(buf->words047_079+i)); for (i=80; i<=87; i++) swap2((char *)(rawshort+i)); for (i=0; i<168; i++) swap2((char *)(buf->words088_255+i)); } #endif // If there is a checksum there, validate it if ((rawshort[255] & 0x00ff) == 0x00a5 && checksum(rawbyte)) checksumwarning("Drive Identity Structure"); // AT Attachment 8 - ATA/ATAPI Command Set (ATA8-ACS) // T13/1699-D Revision 6a (Final Draft), September 6, 2008. // Sections 7.16.7 and 7.17.6: // // Word 0 of IDENTIFY DEVICE data: // Bit 15 = 0 : ATA device // // Word 0 of IDENTIFY PACKET DEVICE data: // Bits 15:14 = 10b : ATAPI device // Bits 15:14 = 11b : Reserved // Bits 12:8 : Device type (SPC-4, e.g 0x05 = CD/DVD) // CF+ and CompactFlash Specification Revision 4.0, May 24, 2006. // Section 6.2.1.6: // // Word 0 of IDENTIFY DEVICE data: // 848Ah = Signature for CompactFlash Storage Card // 044Ah = Alternate value turns on ATA device while preserving all retired bits // 0040h = Alternate value turns on ATA device while zeroing all retired bits // Assume ATA if IDENTIFY DEVICE returns CompactFlash Signature if (!packet && rawbyte[1] == 0x84 && rawbyte[0] == 0x8a) return 0; // If this is a PACKET DEVICE, return device type if (rawbyte[1] & 0x80) return 1+(rawbyte[1] & 0x1f); // Not a PACKET DEVICE return 0; } // Returns ATA version as an integer, and a pointer to a string // describing which revision. Note that Revision 0 of ATA-3 does NOT // support SMART. For this one case we return -3 rather than +3 as // the version number. See notes above. int ataVersionInfo(const char ** description, const ata_identify_device * drive, unsigned short * minor) { // get major and minor ATA revision numbers unsigned short major = drive->major_rev_num; *minor=drive->minor_rev_num; // First check if device has ANY ATA version information in it if (major==NOVAL_0 || major==NOVAL_1) { *description=NULL; return 0; // No info found } // The minor revision number has more information - try there first if (*minor && (*minor<=MINOR_MAX)){ int std = actual_ver[*minor]; if (std) { *description=minor_str[*minor]; return std; } } // Try new ATA-8 ACS minor revision numbers. // Table 55 of T13/2015-D Revision 4a (ACS-2), December 9, 2010. // (not in actual_ver/minor_str to avoid large sparse tables) const char *desc; switch (*minor) { case 0x0027: desc = "ATA-8-ACS revision 3c"; break; case 0x0028: desc = "ATA-8-ACS revision 6"; break; case 0x0029: desc = "ATA-8-ACS revision 4"; break; case 0x0031: desc = "ACS-2 revision 2"; break; case 0x0033: desc = "ATA-8-ACS revision 3e"; break; case 0x0039: desc = "ATA-8-ACS revision 4c"; break; case 0x0042: desc = "ATA-8-ACS revision 3f"; break; case 0x0052: desc = "ATA-8-ACS revision 3b"; break; case 0x0107: desc = "ATA-8-ACS revision 2d"; break; case 0x0110: desc = "ACS-2 revision 3"; break; default: desc = 0; break; } if (desc) { *description = desc; return 8; } // HDPARM has a very complicated algorithm from here on. Since SMART only // exists on ATA-3 and later standards, let's punt on this. If you don't // like it, please fix it. The code's in CVS. int i; for (i=15; i>0; i--) if (major & (0x1<csf_default; if ((word087 & 0xc100) != 0x4100) return -1; // word not valid or WWN support bit 8 not set unsigned short word108 = id->words088_255[108-88]; unsigned short word109 = id->words088_255[109-88]; unsigned short word110 = id->words088_255[110-88]; unsigned short word111 = id->words088_255[111-88]; oui = ((word108 & 0x0fff) << 12) | (word109 >> 4); unique_id = ((uint64_t)(word109 & 0xf) << 32) | (unsigned)((word110 << 16) | word111); return (word108 >> 12); } // returns 1 if SMART supported, 0 if SMART unsupported, -1 if can't tell int ataSmartSupport(const ata_identify_device * drive) { unsigned short word82=drive->command_set_1; unsigned short word83=drive->command_set_2; // check if words 82/83 contain valid info if ((word83>>14) == 0x01) // return value of SMART support bit return word82 & 0x0001; // since we can're rely on word 82, we don't know if SMART supported return -1; } // returns 1 if SMART enabled, 0 if SMART disabled, -1 if can't tell int ataIsSmartEnabled(const ata_identify_device * drive) { unsigned short word85=drive->cfs_enable_1; unsigned short word87=drive->csf_default; // check if words 85/86/87 contain valid info if ((word87>>14) == 0x01) // return value of SMART enabled bit return word85 & 0x0001; // Since we can't rely word85, we don't know if SMART is enabled. return -1; } // Reads SMART attributes into *data int ataReadSmartValues(ata_device * device, struct ata_smart_values *data){ if (smartcommandhandler(device, READ_VALUES, 0, (char *)data)){ pout("Error SMART Values Read failed: %s\n", device->get_errmsg()); return -1; } // compute checksum if (checksum(data)) checksumwarning("SMART Attribute Data Structure"); // swap endian order if needed if (isbigendian()){ int i; swap2((char *)&(data->revnumber)); swap2((char *)&(data->total_time_to_complete_off_line)); swap2((char *)&(data->smart_capability)); for (i=0; ivendor_attributes+i; swap2((char *)&(x->flags)); } } return 0; } // This corrects some quantities that are byte reversed in the SMART // SELF TEST LOG static void fixsamsungselftestlog(ata_smart_selftestlog * data) { // bytes 508/509 (numbered from 0) swapped (swap of self-test index // with one byte of reserved. swap2((char *)&(data->mostrecenttest)); // LBA low register (here called 'selftestnumber", containing // information about the TYPE of the self-test) is byte swapped with // Self-test execution status byte. These are bytes N, N+1 in the // entries. for (int i = 0; i < 21; i++) swap2((char *)&(data->selftest_struct[i].selftestnumber)); return; } // Reads the Self Test Log (log #6) int ataReadSelfTestLog (ata_device * device, ata_smart_selftestlog * data, unsigned char fix_firmwarebug) { // get data from device if (smartcommandhandler(device, READ_LOG, 0x06, (char *)data)){ pout("Error SMART Error Self-Test Log Read failed: %s\n", device->get_errmsg()); return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART Self-Test Log Structure"); // fix firmware bugs in self-test log if (fix_firmwarebug == FIX_SAMSUNG) fixsamsungselftestlog(data); // swap endian order if needed if (isbigendian()){ int i; swap2((char*)&(data->revnumber)); for (i=0; i<21; i++){ struct ata_smart_selftestlog_struct *x=data->selftest_struct+i; swap2((char *)&(x->timestamp)); swap4((char *)&(x->lbafirstfailure)); } } return 0; } // Print checksum warning for multi sector log static void check_multi_sector_sum(const void * data, unsigned nsectors, const char * msg) { unsigned errs = 0; for (unsigned i = 0; i < nsectors; i++) { if (checksum((const unsigned char *)data + i*512)) errs++; } if (errs > 0) { if (nsectors == 1) checksumwarning(msg); else checksumwarning(strprintf("%s (%u/%u)", msg, errs, nsectors).c_str()); } } // Read SMART Extended Self-test Log bool ataReadExtSelfTestLog(ata_device * device, ata_smart_extselftestlog * log, unsigned nsectors) { if (!ataReadLogExt(device, 0x07, 0x00, 0, log, nsectors)) return false; check_multi_sector_sum(log, nsectors, "SMART Extended Self-test Log Structure"); if (isbigendian()) { swapx(&log->log_desc_index); for (unsigned i = 0; i < nsectors; i++) { for (unsigned j = 0; j < 19; j++) swapx(&log->log_descs[i].timestamp); } } return true; } // Read GP Log page(s) bool ataReadLogExt(ata_device * device, unsigned char logaddr, unsigned char features, unsigned page, void * data, unsigned nsectors) { ata_cmd_in in; in.in_regs.command = ATA_READ_LOG_EXT; in.in_regs.features = features; // log specific in.set_data_in_48bit(data, nsectors); in.in_regs.lba_low = logaddr; in.in_regs.lba_mid_16 = page; if (!device->ata_pass_through(in)) { // TODO: Debug output if (nsectors <= 1) { pout("ATA_READ_LOG_EXT (addr=0x%02x:0x%02x, page=%u, n=%u) failed: %s\n", logaddr, features, page, nsectors, device->get_errmsg()); return false; } // Recurse to retry with single sectors, // multi-sector reads may not be supported by ioctl. for (unsigned i = 0; i < nsectors; i++) { if (!ataReadLogExt(device, logaddr, features, page + i, (char *)data + 512*i, 1)) return false; } } return true; } // Read SMART Log page(s) bool ataReadSmartLog(ata_device * device, unsigned char logaddr, void * data, unsigned nsectors) { ata_cmd_in in; in.in_regs.command = ATA_SMART_CMD; in.in_regs.features = ATA_SMART_READ_LOG_SECTOR; in.set_data_in(data, nsectors); in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; in.in_regs.lba_low = logaddr; if (!device->ata_pass_through(in)) { // TODO: Debug output pout("ATA_SMART_READ_LOG failed: %s\n", device->get_errmsg()); return false; } return true; } // Reads the SMART or GPL Log Directory (log #0) int ataReadLogDirectory(ata_device * device, ata_smart_log_directory * data, bool gpl) { if (!gpl) { // SMART Log directory if (smartcommandhandler(device, READ_LOG, 0x00, (char *)data)) return -1; } else { // GP Log directory if (!ataReadLogExt(device, 0x00, 0x00, 0, data, 1)) return -1; } // swap endian order if needed if (isbigendian()) swapx(&data->logversion); return 0; } // Reads the selective self-test log (log #9) int ataReadSelectiveSelfTestLog(ata_device * device, struct ata_selective_self_test_log *data){ // get data from device if (smartcommandhandler(device, READ_LOG, 0x09, (char *)data)){ pout("Error SMART Read Selective Self-Test Log failed: %s\n", device->get_errmsg()); return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART Selective Self-Test Log Structure"); // swap endian order if needed if (isbigendian()){ int i; swap2((char *)&(data->logversion)); for (i=0;i<5;i++){ swap8((char *)&(data->span[i].start)); swap8((char *)&(data->span[i].end)); } swap8((char *)&(data->currentlba)); swap2((char *)&(data->currentspan)); swap2((char *)&(data->flags)); swap2((char *)&(data->pendingtime)); } if (data->logversion != 1) pout("Note: selective self-test log revision number (%d) not 1 implies that no selective self-test has ever been run\n", data->logversion); return 0; } // Writes the selective self-test log (log #9) int ataWriteSelectiveSelfTestLog(ata_device * device, ata_selective_selftest_args & args, const ata_smart_values * sv, uint64_t num_sectors, const ata_selective_selftest_args * prev_args) { // Disk size must be known if (!num_sectors) { pout("Disk size is unknown, unable to check selective self-test spans\n"); return -1; } // Read log struct ata_selective_self_test_log sstlog, *data=&sstlog; unsigned char *ptr=(unsigned char *)data; if (ataReadSelectiveSelfTestLog(device, data)) { pout("Since Read failed, will not attempt to WRITE Selective Self-test Log\n"); return -1; } // Set log version data->logversion = 1; // Host is NOT allowed to write selective self-test log if a selective // self-test is in progress. if (0currentspan && data->currentspan<6 && ((sv->self_test_exec_status)>>4)==15) { pout("Error SMART Selective or other Self-Test in progress.\n"); return -4; } // Set start/end values based on old spans for special -t select,... options int i; for (i = 0; i < args.num_spans; i++) { int mode = args.span[i].mode; uint64_t start = args.span[i].start; uint64_t end = args.span[i].end; if (mode == SEL_CONT) {// redo or next dependig on last test status switch (sv->self_test_exec_status >> 4) { case 1: case 2: // Aborted/Interrupted by host pout("Continue Selective Self-Test: Redo last span\n"); mode = SEL_REDO; break; default: // All others pout("Continue Selective Self-Test: Start next span\n"); mode = SEL_NEXT; break; } } if ( (mode == SEL_REDO || mode == SEL_NEXT) && prev_args && i < prev_args->num_spans && !data->span[i].start && !data->span[i].end) { // Some drives do not preserve the selective self-test log accross // power-cyles. If old span on drive is cleared use span provided // by caller. This is used by smartd (first span only). data->span[i].start = prev_args->span[i].start; data->span[i].end = prev_args->span[i].end; } switch (mode) { case SEL_RANGE: // -t select,START-END break; case SEL_REDO: // -t select,redo... => Redo current start = data->span[i].start; if (end > 0) { // -t select,redo+SIZE end--; end += start; // [oldstart, oldstart+SIZE) } else // -t select,redo end = data->span[i].end; // [oldstart, oldend] break; case SEL_NEXT: // -t select,next... => Do next if (data->span[i].end == 0) { start = end = 0; break; // skip empty spans } start = data->span[i].end + 1; if (start >= num_sectors) start = 0; // wrap around if (end > 0) { // -t select,next+SIZE end--; end += start; // (oldend, oldend+SIZE] } else { // -t select,next uint64_t oldsize = data->span[i].end - data->span[i].start + 1; end = start + oldsize - 1; // (oldend, oldend+oldsize] if (end >= num_sectors) { // Adjust size to allow round-robin testing without future size decrease uint64_t spans = (num_sectors + oldsize-1) / oldsize; uint64_t newsize = (num_sectors + spans-1) / spans; uint64_t newstart = num_sectors - newsize, newend = num_sectors - 1; pout("Span %d changed from %"PRIu64"-%"PRIu64" (%"PRIu64" sectors)\n", i, start, end, oldsize); pout(" to %"PRIu64"-%"PRIu64" (%"PRIu64" sectors) (%"PRIu64" spans)\n", newstart, newend, newsize, spans); start = newstart; end = newend; } } break; default: pout("ataWriteSelectiveSelfTestLog: Invalid mode %d\n", mode); return -1; } // Range check if (start < num_sectors && num_sectors <= end) { if (end != ~(uint64_t)0) // -t select,N-max pout("Size of self-test span %d decreased according to disk size\n", i); end = num_sectors - 1; } if (!(start <= end && end < num_sectors)) { pout("Invalid selective self-test span %d: %"PRIu64"-%"PRIu64" (%"PRIu64" sectors)\n", i, start, end, num_sectors); return -1; } // Return the actual mode and range to caller. args.span[i].mode = mode; args.span[i].start = start; args.span[i].end = end; } // Clear spans for (i=0; i<5; i++) memset(data->span+i, 0, sizeof(struct test_span)); // Set spans for testing for (i = 0; i < args.num_spans; i++){ data->span[i].start = args.span[i].start; data->span[i].end = args.span[i].end; } // host must initialize to zero before initiating selective self-test data->currentlba=0; data->currentspan=0; // Perform off-line scan after selective test? if (args.scan_after_select == 1) // NO data->flags &= ~SELECTIVE_FLAG_DOSCAN; else if (args.scan_after_select == 2) // YES data->flags |= SELECTIVE_FLAG_DOSCAN; // Must clear active and pending flags before writing data->flags &= ~(SELECTIVE_FLAG_ACTIVE); data->flags &= ~(SELECTIVE_FLAG_PENDING); // modify pending time? if (args.pending_time) data->pendingtime = (unsigned short)(args.pending_time-1); // Set checksum to zero, then compute checksum data->checksum=0; unsigned char cksum=0; for (i=0; i<512; i++) cksum+=ptr[i]; cksum=~cksum; cksum+=1; data->checksum=cksum; // swap endian order if needed if (isbigendian()){ swap2((char *)&(data->logversion)); for (int b = 0; b < 5; b++) { swap8((char *)&(data->span[b].start)); swap8((char *)&(data->span[b].end)); } swap8((char *)&(data->currentlba)); swap2((char *)&(data->currentspan)); swap2((char *)&(data->flags)); swap2((char *)&(data->pendingtime)); } // write new selective self-test log if (smartcommandhandler(device, WRITE_LOG, 0x09, (char *)data)){ pout("Error Write Selective Self-Test Log failed: %s\n", device->get_errmsg()); return -3; } return 0; } // This corrects some quantities that are byte reversed in the SMART // ATA ERROR LOG. static void fixsamsungerrorlog(ata_smart_errorlog * data) { // FIXED IN SAMSUNG -25 FIRMWARE??? // Device error count in bytes 452-3 swap2((char *)&(data->ata_error_count)); // FIXED IN SAMSUNG -22a FIRMWARE // step through 5 error log data structures for (int i = 0; i < 5; i++){ // step through 5 command data structures for (int j = 0; j < 5; j++) // Command data structure 4-byte millisec timestamp. These are // bytes (N+8, N+9, N+10, N+11). swap4((char *)&(data->errorlog_struct[i].commands[j].timestamp)); // Error data structure two-byte hour life timestamp. These are // bytes (N+28, N+29). swap2((char *)&(data->errorlog_struct[i].error_struct.timestamp)); } return; } // NEEDED ONLY FOR SAMSUNG -22 (some) -23 AND -24?? FIRMWARE static void fixsamsungerrorlog2(ata_smart_errorlog * data) { // Device error count in bytes 452-3 swap2((char *)&(data->ata_error_count)); return; } // Reads the Summary SMART Error Log (log #1). The Comprehensive SMART // Error Log is #2, and the Extended Comprehensive SMART Error log is // #3 int ataReadErrorLog (ata_device * device, ata_smart_errorlog *data, unsigned char fix_firmwarebug) { // get data from device if (smartcommandhandler(device, READ_LOG, 0x01, (char *)data)){ pout("Error SMART Error Log Read failed: %s\n", device->get_errmsg()); return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART ATA Error Log Structure"); // Some disks have the byte order reversed in some SMART Summary // Error log entries if (fix_firmwarebug == FIX_SAMSUNG) fixsamsungerrorlog(data); else if (fix_firmwarebug == FIX_SAMSUNG2) fixsamsungerrorlog2(data); // swap endian order if needed if (isbigendian()){ int i,j; // Device error count in bytes 452-3 swap2((char *)&(data->ata_error_count)); // step through 5 error log data structures for (i=0; i<5; i++){ // step through 5 command data structures for (j=0; j<5; j++) // Command data structure 4-byte millisec timestamp swap4((char *)&(data->errorlog_struct[i].commands[j].timestamp)); // Error data structure life timestamp swap2((char *)&(data->errorlog_struct[i].error_struct.timestamp)); } } return 0; } // Read Extended Comprehensive Error Log bool ataReadExtErrorLog(ata_device * device, ata_smart_exterrlog * log, unsigned nsectors) { if (!ataReadLogExt(device, 0x03, 0x00, 0, log, nsectors)) return false; check_multi_sector_sum(log, nsectors, "SMART Extended Comprehensive Error Log Structure"); if (isbigendian()) { swapx(&log->device_error_count); swapx(&log->error_log_index); for (unsigned i = 0; i < nsectors; i++) { for (unsigned j = 0; j < 4; j++) swapx(&log->error_logs[i].commands[j].timestamp); swapx(&log->error_logs[i].error.timestamp); } } return true; } int ataReadSmartThresholds (ata_device * device, struct ata_smart_thresholds_pvt *data){ // get data from device if (smartcommandhandler(device, READ_THRESHOLDS, 0, (char *)data)){ pout("Error SMART Thresholds Read failed: %s\n", device->get_errmsg()); return -1; } // compute its checksum, and issue a warning if needed if (checksum(data)) checksumwarning("SMART Attribute Thresholds Structure"); // swap endian order if needed if (isbigendian()) swap2((char *)&(data->revnumber)); return 0; } int ataEnableSmart (ata_device * device ){ if (smartcommandhandler(device, ENABLE, 0, NULL)){ pout("Error SMART Enable failed: %s\n", device->get_errmsg()); return -1; } return 0; } int ataDisableSmart (ata_device * device ){ if (smartcommandhandler(device, DISABLE, 0, NULL)){ pout("Error SMART Disable failed: %s\n", device->get_errmsg()); return -1; } return 0; } int ataEnableAutoSave(ata_device * device){ if (smartcommandhandler(device, AUTOSAVE, 241, NULL)){ pout("Error SMART Enable Auto-save failed: %s\n", device->get_errmsg()); return -1; } return 0; } int ataDisableAutoSave(ata_device * device){ if (smartcommandhandler(device, AUTOSAVE, 0, NULL)){ pout("Error SMART Disable Auto-save failed: %s\n", device->get_errmsg()); return -1; } return 0; } // In *ALL* ATA standards the Enable/Disable AutoOffline command is // marked "OBSOLETE". It is defined in SFF-8035i Revision 2, and most // vendors still support it for backwards compatibility. IBM documents // it for some drives. int ataEnableAutoOffline (ata_device * device){ /* timer hard coded to 4 hours */ if (smartcommandhandler(device, AUTO_OFFLINE, 248, NULL)){ pout("Error SMART Enable Automatic Offline failed: %s\n", device->get_errmsg()); return -1; } return 0; } // Another Obsolete Command. See comments directly above, associated // with the corresponding Enable command. int ataDisableAutoOffline (ata_device * device){ if (smartcommandhandler(device, AUTO_OFFLINE, 0, NULL)){ pout("Error SMART Disable Automatic Offline failed: %s\n", device->get_errmsg()); return -1; } return 0; } // If SMART is enabled, supported, and working, then this call is // guaranteed to return 1, else zero. Note that it should return 1 // regardless of whether the disk's SMART status is 'healthy' or // 'failing'. int ataDoesSmartWork(ata_device * device){ int retval=smartcommandhandler(device, STATUS, 0, NULL); if (-1 == retval) return 0; return 1; } // This function uses a different interface (DRIVE_TASK) than the // other commands in this file. int ataSmartStatus2(ata_device * device){ return smartcommandhandler(device, STATUS_CHECK, 0, NULL); } // This is the way to execute ALL tests: offline, short self-test, // extended self test, with and without captive mode, etc. // TODO: Move to ataprint.cpp ? int ataSmartTest(ata_device * device, int testtype, const ata_selective_selftest_args & selargs, const ata_smart_values * sv, uint64_t num_sectors) { char cmdmsg[128]; const char *type, *captive; int cap, retval, select=0; // Boolean, if set, says test is captive cap=testtype & CAPTIVE_MASK; // Set up strings that describe the type of test if (cap) captive="captive"; else captive="off-line"; if (testtype==OFFLINE_FULL_SCAN) type="off-line"; else if (testtype==SHORT_SELF_TEST || testtype==SHORT_CAPTIVE_SELF_TEST) type="Short self-test"; else if (testtype==EXTEND_SELF_TEST || testtype==EXTEND_CAPTIVE_SELF_TEST) type="Extended self-test"; else if (testtype==CONVEYANCE_SELF_TEST || testtype==CONVEYANCE_CAPTIVE_SELF_TEST) type="Conveyance self-test"; else if ((select=(testtype==SELECTIVE_SELF_TEST || testtype==SELECTIVE_CAPTIVE_SELF_TEST))) type="Selective self-test"; else type = 0; // If doing a selective self-test, first use WRITE_LOG to write the // selective self-test log. ata_selective_selftest_args selargs_io = selargs; // filled with info about actual spans if (select && (retval = ataWriteSelectiveSelfTestLog(device, selargs_io, sv, num_sectors))) { if (retval==-4) pout("Can't start selective self-test without aborting current test: use '-X' option to smartctl.\n"); return retval; } // Print ouf message that we are sending the command to test if (testtype==ABORT_SELF_TEST) sprintf(cmdmsg,"Abort SMART off-line mode self-test routine"); else if (!type) sprintf(cmdmsg, "SMART EXECUTE OFF-LINE IMMEDIATE subcommand 0x%02x", testtype); else sprintf(cmdmsg,"Execute SMART %s routine immediately in %s mode",type,captive); pout("Sending command: \"%s\".\n",cmdmsg); if (select) { int i; pout("SPAN STARTING_LBA ENDING_LBA\n"); for (i = 0; i < selargs_io.num_spans; i++) pout(" %d %20"PRId64" %20"PRId64"\n", i, selargs_io.span[i].start, selargs_io.span[i].end); } // Now send the command to test if (smartcommandhandler(device, IMMEDIATE_OFFLINE, testtype, NULL)) { if (!(cap && device->get_errno() == EIO)) { pout("Command \"%s\" failed: %s\n", cmdmsg, device->get_errmsg()); return -1; } } // Since the command succeeded, tell user if (testtype==ABORT_SELF_TEST) pout("Self-testing aborted!\n"); else { pout("Drive command \"%s\" successful.\n", cmdmsg); if (type) pout("Testing has begun.\n"); } return 0; } /* Test Time Functions */ int TestTime(const ata_smart_values *data, int testtype) { switch (testtype){ case OFFLINE_FULL_SCAN: return (int) data->total_time_to_complete_off_line; case SHORT_SELF_TEST: case SHORT_CAPTIVE_SELF_TEST: return (int) data->short_test_completion_time; case EXTEND_SELF_TEST: case EXTEND_CAPTIVE_SELF_TEST: return (int) data->extend_test_completion_time; case CONVEYANCE_SELF_TEST: case CONVEYANCE_CAPTIVE_SELF_TEST: return (int) data->conveyance_test_completion_time; default: return 0; } } // This function tells you both about the ATA error log and the // self-test error log capability (introduced in ATA-5). The bit is // poorly documented in the ATA/ATAPI standard. Starting with ATA-6, // SMART error logging is also indicated in bit 0 of DEVICE IDENTIFY // word 84 and 87. Top two bits must match the pattern 01. BEFORE // ATA-6 these top two bits still had to match the pattern 01, but the // remaining bits were reserved (==0). int isSmartErrorLogCapable (const ata_smart_values * data, const ata_identify_device * identity) { unsigned short word84=identity->command_set_extension; unsigned short word87=identity->csf_default; int isata6=identity->major_rev_num & (0x01<<6); int isata7=identity->major_rev_num & (0x01<<7); if ((isata6 || isata7) && (word84>>14) == 0x01 && (word84 & 0x01)) return 1; if ((isata6 || isata7) && (word87>>14) == 0x01 && (word87 & 0x01)) return 1; // otherwise we'll use the poorly documented capability bit return data->errorlog_capability & 0x01; } // See previous function. If the error log exists then the self-test // log should (must?) also exist. int isSmartTestLogCapable (const ata_smart_values * data, const ata_identify_device *identity) { unsigned short word84=identity->command_set_extension; unsigned short word87=identity->csf_default; int isata6=identity->major_rev_num & (0x01<<6); int isata7=identity->major_rev_num & (0x01<<7); if ((isata6 || isata7) && (word84>>14) == 0x01 && (word84 & 0x02)) return 1; if ((isata6 || isata7) && (word87>>14) == 0x01 && (word87 & 0x02)) return 1; // otherwise we'll use the poorly documented capability bit return data->errorlog_capability & 0x01; } int isGeneralPurposeLoggingCapable(const ata_identify_device *identity) { unsigned short word84=identity->command_set_extension; unsigned short word87=identity->csf_default; // If bit 14 of word 84 is set to one and bit 15 of word 84 is // cleared to zero, the contents of word 84 contains valid support // information. If not, support information is not valid in this // word. if ((word84>>14) == 0x01) // If bit 5 of word 84 is set to one, the device supports the // General Purpose Logging feature set. return (word84 & (0x01 << 5)); // If bit 14 of word 87 is set to one and bit 15 of word 87 is // cleared to zero, the contents of words (87:85) contain valid // information. If not, information is not valid in these words. if ((word87>>14) == 0x01) // If bit 5 of word 87 is set to one, the device supports // the General Purpose Logging feature set. return (word87 & (0x01 << 5)); // not capable return 0; } // SMART self-test capability is also indicated in bit 1 of DEVICE // IDENTIFY word 87 (if top two bits of word 87 match pattern 01). // However this was only introduced in ATA-6 (but self-test log was in // ATA-5). int isSupportExecuteOfflineImmediate(const ata_smart_values *data) { return data->offline_data_collection_capability & 0x01; } // Note in the ATA-5 standard, the following bit is listed as "Vendor // Specific". So it may not be reliable. The only use of this that I // have found is in IBM drives, where it is well-documented. See for // example page 170, section 13.32.1.18 of the IBM Travelstar 40GNX // hard disk drive specifications page 164 Revision 1.1 22 Apr 2002. int isSupportAutomaticTimer(const ata_smart_values * data) { return data->offline_data_collection_capability & 0x02; } int isSupportOfflineAbort(const ata_smart_values *data) { return data->offline_data_collection_capability & 0x04; } int isSupportOfflineSurfaceScan(const ata_smart_values * data) { return data->offline_data_collection_capability & 0x08; } int isSupportSelfTest (const ata_smart_values * data) { return data->offline_data_collection_capability & 0x10; } int isSupportConveyanceSelfTest(const ata_smart_values * data) { return data->offline_data_collection_capability & 0x20; } int isSupportSelectiveSelfTest(const ata_smart_values * data) { return data->offline_data_collection_capability & 0x40; } // Get attribute state ata_attr_state ata_get_attr_state(const ata_smart_attribute & attr, int attridx, const ata_smart_threshold_entry * thresholds, const ata_vendor_attr_defs & defs, unsigned char * threshval /* = 0 */) { if (!attr.id) return ATTRSTATE_NON_EXISTING; // Normalized values (current,worst,threshold) not valid // if specified by '-v' option. // (Some SSD disks uses these bytes to store raw value). if (defs[attr.id].flags & ATTRFLAG_NO_NORMVAL) return ATTRSTATE_NO_NORMVAL; // Normally threshold is at same index as attribute int i = attridx; if (thresholds[i].id != attr.id) { // Find threshold id in table for (i = 0; thresholds[i].id != attr.id; ) { if (++i >= NUMBER_ATA_SMART_ATTRIBUTES) // Threshold id missing or thresholds cannot be read return ATTRSTATE_NO_THRESHOLD; } } unsigned char threshold = thresholds[i].threshold; // Return threshold if requested if (threshval) *threshval = threshold; // Don't report a failed attribute if its threshold is 0. // ATA-3 (X3T13/2008D Revision 7b) declares 0x00 as the "always passing" // threshold (Later ATA versions declare all thresholds as "obsolete"). // In practice, threshold value 0 is often used for usage attributes. if (!threshold) return ATTRSTATE_OK; // Failed now if current value is below threshold if (attr.current <= threshold) return ATTRSTATE_FAILED_NOW; // Failed in the past if worst value is below threshold if (!(defs[attr.id].flags & ATTRFLAG_NO_WORSTVAL) && attr.worst <= threshold) return ATTRSTATE_FAILED_PAST; return ATTRSTATE_OK; } // Get default raw value print format static ata_attr_raw_format get_default_raw_format(unsigned char id) { switch (id) { case 3: // Spin-up time return RAWFMT_RAW16_OPT_AVG16; case 5: // Reallocated sector count case 196: // Reallocated event count return RAWFMT_RAW16_OPT_RAW16; case 190: // Temperature case 194: return RAWFMT_TEMPMINMAX; default: return RAWFMT_RAW48; } } // Get attribute raw value. uint64_t ata_get_attr_raw_value(const ata_smart_attribute & attr, const ata_vendor_attr_defs & defs) { const ata_vendor_attr_defs::entry & def = defs[attr.id]; // Use default byteorder if not specified const char * byteorder = def.byteorder; if (!*byteorder) { switch (def.raw_format) { case RAWFMT_RAW64: case RAWFMT_HEX64: byteorder = "543210wv"; break; case RAWFMT_RAW24_DIV_RAW32: case RAWFMT_MSEC24_HOUR32: byteorder = "r543210"; break; default: byteorder = "543210"; break; } } // Build 64-bit value from selected bytes uint64_t rawvalue = 0; for (int i = 0; byteorder[i]; i++) { unsigned char b; switch (byteorder[i]) { case '0': b = attr.raw[0]; break; case '1': b = attr.raw[1]; break; case '2': b = attr.raw[2]; break; case '3': b = attr.raw[3]; break; case '4': b = attr.raw[4]; break; case '5': b = attr.raw[5]; break; case 'r': b = attr.reserv; break; case 'v': b = attr.current; break; case 'w': b = attr.worst; break; default : b = 0; break; } rawvalue <<= 8; rawvalue |= b; } return rawvalue; } // Format attribute raw value. std::string ata_format_attr_raw_value(const ata_smart_attribute & attr, const ata_vendor_attr_defs & defs) { // Get 48 bit or 64 bit raw value uint64_t rawvalue = ata_get_attr_raw_value(attr, defs); // Split into bytes and words unsigned char raw[6]; raw[0] = (unsigned char) rawvalue; raw[1] = (unsigned char)(rawvalue >> 8); raw[2] = (unsigned char)(rawvalue >> 16); raw[3] = (unsigned char)(rawvalue >> 24); raw[4] = (unsigned char)(rawvalue >> 32); raw[5] = (unsigned char)(rawvalue >> 40); unsigned word[3]; word[0] = raw[0] | (raw[1] << 8); word[1] = raw[2] | (raw[3] << 8); word[2] = raw[4] | (raw[5] << 8); // Get print format ata_attr_raw_format format = defs[attr.id].raw_format; if (format == RAWFMT_DEFAULT) format = get_default_raw_format(attr.id); // Print std::string s; switch (format) { case RAWFMT_RAW8: s = strprintf("%d %d %d %d %d %d", raw[5], raw[4], raw[3], raw[2], raw[1], raw[0]); break; case RAWFMT_RAW16: s = strprintf("%u %u %u", word[2], word[1], word[0]); break; case RAWFMT_RAW48: case RAWFMT_RAW64: s = strprintf("%"PRIu64, rawvalue); break; case RAWFMT_HEX48: s = strprintf("0x%012"PRIx64, rawvalue); break; case RAWFMT_HEX64: s = strprintf("0x%016"PRIx64, rawvalue); break; case RAWFMT_RAW16_OPT_RAW16: s = strprintf("%u", word[0]); if (word[1] || word[2]) s += strprintf(" (%u, %u)", word[2], word[1]); break; case RAWFMT_RAW16_OPT_AVG16: s = strprintf("%u", word[0]); if (word[1]) s += strprintf(" (Average %u)", word[1]); break; case RAWFMT_RAW24_DIV_RAW24: s = strprintf("%u/%u", (unsigned)(rawvalue >> 24), (unsigned)(rawvalue & 0x00ffffffULL)); break; case RAWFMT_RAW24_DIV_RAW32: s = strprintf("%u/%u", (unsigned)(rawvalue >> 32), (unsigned)(rawvalue & 0xffffffffULL)); break; case RAWFMT_MIN2HOUR: { // minutes int64_t temp = word[0]+(word[1]<<16); int64_t tmp1 = temp/60; int64_t tmp2 = temp%60; s = strprintf("%"PRIu64"h+%02"PRIu64"m", tmp1, tmp2); if (word[2]) s += strprintf(" (%u)", word[2]); } break; case RAWFMT_SEC2HOUR: { // seconds int64_t hours = rawvalue/3600; int64_t minutes = (rawvalue-3600*hours)/60; int64_t seconds = rawvalue%60; s = strprintf("%"PRIu64"h+%02"PRIu64"m+%02"PRIu64"s", hours, minutes, seconds); } break; case RAWFMT_HALFMIN2HOUR: { // 30-second counter int64_t hours = rawvalue/120; int64_t minutes = (rawvalue-120*hours)/2; s += strprintf("%"PRIu64"h+%02"PRIu64"m", hours, minutes); } break; case RAWFMT_MSEC24_HOUR32: { // hours + milliseconds unsigned hours = (unsigned)(rawvalue & 0xffffffffULL); unsigned milliseconds = (unsigned)(rawvalue >> 32); unsigned seconds = milliseconds / 1000; s = strprintf("%uh+%02um+%02u.%03us", hours, seconds / 60, seconds % 60, milliseconds % 1000); } break; case RAWFMT_TEMPMINMAX: // Temperature { // Search for possible min/max values // 00 HH 00 LL 00 TT (Hitachi/IBM) // 00 00 HH LL 00 TT (Maxtor, Samsung) // 00 00 00 HH LL TT (WDC) unsigned char lo = 0, hi = 0; int cnt = 0; for (int i = 1; i < 6; i++) { if (raw[i]) switch (cnt++) { case 0: lo = raw[i]; break; case 1: if (raw[i] < lo) { hi = lo; lo = raw[i]; } else hi = raw[i]; break; } } unsigned char t = raw[0]; if (cnt == 0) s = strprintf("%d", t); else if (cnt == 2 && 0 < lo && lo <= t && t <= hi && hi < 128) s = strprintf("%d (Min/Max %d/%d)", t, lo, hi); else s = strprintf("%d (%d %d %d %d %d)", t, raw[5], raw[4], raw[3], raw[2], raw[1]); } break; case RAWFMT_TEMP10X: // ten times temperature in Celsius s = strprintf("%d.%d", word[0]/10, word[0]%10); break; default: s = "?"; // Should not happen break; } return s; } // Attribute names shouldn't be longer than 23 chars, otherwise they break the // output of smartctl. static const char * get_default_attr_name(unsigned char id) { switch (id) { case 1: return "Raw_Read_Error_Rate"; case 2: return "Throughput_Performance"; case 3: return "Spin_Up_Time"; case 4: return "Start_Stop_Count"; case 5: return "Reallocated_Sector_Ct"; case 6: return "Read_Channel_Margin"; case 7: return "Seek_Error_Rate"; case 8: return "Seek_Time_Performance"; case 9: return "Power_On_Hours"; case 10: return "Spin_Retry_Count"; case 11: return "Calibration_Retry_Count"; case 12: return "Power_Cycle_Count"; case 13: return "Read_Soft_Error_Rate"; case 175: return "Program_Fail_Count_Chip"; case 176: return "Erase_Fail_Count_Chip"; case 177: return "Wear_Leveling_Count"; case 178: return "Used_Rsvd_Blk_Cnt_Chip"; case 179: return "Used_Rsvd_Blk_Cnt_Tot"; case 180: return "Unused_Rsvd_Blk_Cnt_Tot"; case 181: return "Program_Fail_Cnt_Total"; case 182: return "Erase_Fail_Count_Total"; case 183: return "Runtime_Bad_Block"; case 184: return "End-to-End_Error"; case 187: return "Reported_Uncorrect"; case 188: return "Command_Timeout"; case 189: return "High_Fly_Writes"; case 190: // Western Digital uses this for temperature. // It's identical to Attribute 194 except that it // has a failure threshold set to correspond to the // max allowed operating temperature of the drive, which // is typically 55C. So if this attribute has failed // in the past, it indicates that the drive temp exceeded // 55C sometime in the past. return "Airflow_Temperature_Cel"; case 191: return "G-Sense_Error_Rate"; case 192: return "Power-Off_Retract_Count"; case 193: return "Load_Cycle_Count"; case 194: return "Temperature_Celsius"; case 195: // Fujitsu: "ECC_On_The_Fly_Count"; return "Hardware_ECC_Recovered"; case 196: return "Reallocated_Event_Count"; case 197: return "Current_Pending_Sector"; case 198: return "Offline_Uncorrectable"; case 199: return "UDMA_CRC_Error_Count"; case 200: // Western Digital return "Multi_Zone_Error_Rate"; case 201: return "Soft_Read_Error_Rate"; case 202: // Fujitsu: "TA_Increase_Count" return "Data_Address_Mark_Errs"; case 203: // Fujitsu return "Run_Out_Cancel"; // Maxtor: ECC Errors case 204: // Fujitsu: "Shock_Count_Write_Opern" return "Soft_ECC_Correction"; case 205: // Fujitsu: "Shock_Rate_Write_Opern" return "Thermal_Asperity_Rate"; case 206: // Fujitsu return "Flying_Height"; case 207: // Maxtor return "Spin_High_Current"; case 208: // Maxtor return "Spin_Buzz"; case 209: // Maxtor return "Offline_Seek_Performnce"; case 220: return "Disk_Shift"; case 221: return "G-Sense_Error_Rate"; case 222: return "Loaded_Hours"; case 223: return "Load_Retry_Count"; case 224: return "Load_Friction"; case 225: return "Load_Cycle_Count"; case 226: return "Load-in_Time"; case 227: return "Torq-amp_Count"; case 228: return "Power-off_Retract_Count"; case 230: // seen in IBM DTPA-353750 return "Head_Amplitude"; case 231: return "Temperature_Celsius"; case 232: // seen in Intel X25-E SSD return "Available_Reservd_Space"; case 233: // seen in Intel X25-E SSD return "Media_Wearout_Indicator"; case 240: return "Head_Flying_Hours"; case 241: return "Total_LBAs_Written"; case 242: return "Total_LBAs_Read"; case 250: return "Read_Error_Retry_Rate"; case 254: return "Free_Fall_Sensor"; default: return "Unknown_Attribute"; } } // Get attribute name std::string ata_get_smart_attr_name(unsigned char id, const ata_vendor_attr_defs & defs) { if (!defs[id].name.empty()) return defs[id].name; else return get_default_attr_name(id); } // Find attribute index for attribute id, -1 if not found. int ata_find_attr_index(unsigned char id, const ata_smart_values & smartval) { if (!id) return -1; for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) { if (smartval.vendor_attributes[i].id == id) return i; } return -1; } // Return Temperature Attribute raw value selected according to possible // non-default interpretations. If the Attribute does not exist, return 0 unsigned char ata_return_temperature_value(const ata_smart_values * data, const ata_vendor_attr_defs & defs) { for (int i = 0; i < 3; i++) { static const unsigned char ids[3] = {194, 9, 220}; unsigned char id = ids[i]; const ata_attr_raw_format format = defs[id].raw_format; if (!( (id == 194 && format == RAWFMT_DEFAULT) || format == RAWFMT_TEMPMINMAX || format == RAWFMT_TEMP10X)) continue; int idx = ata_find_attr_index(id, *data); if (idx < 0) continue; uint64_t raw = ata_get_attr_raw_value(data->vendor_attributes[idx], defs); unsigned temp; // ignore possible min/max values in high words if (format == RAWFMT_TEMP10X) // -v N,temp10x temp = ((unsigned short)raw + 5) / 10; else temp = (unsigned char)raw; if (!(0 < temp && temp < 128)) continue; return temp; } // No valid attribute found return 0; } // Read SCT Status int ataReadSCTStatus(ata_device * device, ata_sct_status_response * sts) { // read SCT status via SMART log 0xe0 memset(sts, 0, sizeof(*sts)); if (smartcommandhandler(device, READ_LOG, 0xe0, (char *)sts)){ pout("Error Read SCT Status failed: %s\n", device->get_errmsg()); return -1; } // swap endian order if needed if (isbigendian()){ swapx(&sts->format_version); swapx(&sts->sct_version); swapx(&sts->sct_spec); swapx(&sts->ext_status_code); swapx(&sts->action_code); swapx(&sts->function_code); swapx(&sts->over_limit_count); swapx(&sts->under_limit_count); } // Check format version if (!(sts->format_version == 2 || sts->format_version == 3)) { pout("Error unknown SCT Status format version %u, should be 2 or 3.\n", sts->format_version); return -1; } return 0; } // Read SCT Temperature History Table and Status int ataReadSCTTempHist(ata_device * device, ata_sct_temperature_history_table * tmh, ata_sct_status_response * sts) { // Check initial status if (ataReadSCTStatus(device, sts)) return -1; // Do nothing if other SCT command is executing if (sts->ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Read Data Table\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts->ext_status_code, sts->action_code, sts->function_code); return -1; } ata_sct_data_table_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 5; // Data table command cmd.function_code = 1; // Read table cmd.table_id = 2; // Temperature History Table // swap endian order if needed if (isbigendian()) { swapx(&cmd.action_code); swapx(&cmd.function_code); swapx(&cmd.table_id); } // write command via SMART log page 0xe0 if (smartcommandhandler(device, WRITE_LOG, 0xe0, (char *)&cmd)){ pout("Error Write SCT Data Table command failed: %s\n", device->get_errmsg()); return -1; } // read SCT data via SMART log page 0xe1 memset(tmh, 0, sizeof(*tmh)); if (smartcommandhandler(device, READ_LOG, 0xe1, (char *)tmh)){ pout("Error Read SCT Data Table failed: %s\n", device->get_errmsg()); return -1; } // re-read and check SCT status if (ataReadSCTStatus(device, sts)) return -1; if (!(sts->ext_status_code == 0 && sts->action_code == 5 && sts->function_code == 1)) { pout("Error unexpected SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts->ext_status_code, sts->action_code, sts->function_code); return -1; } // swap endian order if needed if (isbigendian()){ swapx(&tmh->format_version); swapx(&tmh->sampling_period); swapx(&tmh->interval); } // Check format version if (tmh->format_version != 2) { pout("Error unknown SCT Temperature History Format Version (%u), should be 2.\n", tmh->format_version); return -1; } return 0; } // Set SCT Temperature Logging Interval int ataSetSCTTempInterval(ata_device * device, unsigned interval, bool persistent) { // Check initial status ata_sct_status_response sts; if (ataReadSCTStatus(device, &sts)) return -1; // Do nothing if other SCT command is executing if (sts.ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Feature Control\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } ata_sct_feature_control_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 4; // Feature Control command cmd.function_code = 1; // Set state cmd.feature_code = 3; // Temperature logging interval cmd.state = interval; cmd.option_flags = (persistent ? 0x01 : 0x00); // swap endian order if needed if (isbigendian()) { swapx(&cmd.action_code); swapx(&cmd.function_code); swapx(&cmd.feature_code); swapx(&cmd.state); swapx(&cmd.option_flags); } // write command via SMART log page 0xe0 if (smartcommandhandler(device, WRITE_LOG, 0xe0, (char *)&cmd)){ pout("Error Write SCT Feature Control Command failed: %s\n", device->get_errmsg()); return -1; } // re-read and check SCT status if (ataReadSCTStatus(device, &sts)) return -1; if (!(sts.ext_status_code == 0 && sts.action_code == 4 && sts.function_code == 1)) { pout("Error unexcepted SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } return 0; } // Get/Set SCT Error Recovery Control static int ataGetSetSCTErrorRecoveryControltime(ata_device * device, unsigned type, bool set, unsigned short & time_limit) { // Check initial status ata_sct_status_response sts; if (ataReadSCTStatus(device, &sts)) return -1; // Do nothing if other SCT command is executing if (sts.ext_status_code == 0xffff) { pout("Another SCT command is executing, abort Error Recovery Control\n" "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } ata_sct_error_recovery_control_command cmd; memset(&cmd, 0, sizeof(cmd)); // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK) cmd.action_code = 3; // Error Recovery Control command cmd.function_code = (set ? 1 : 2); // 1=Set timer, 2=Get timer cmd.selection_code = type; // 1=Read timer, 2=Write timer if (set) cmd.time_limit = time_limit; // swap endian order if needed if (isbigendian()) { swapx(&cmd.action_code); swapx(&cmd.function_code); swapx(&cmd.selection_code); swapx(&cmd.time_limit); } // write command via SMART log page 0xe0 // TODO: Debug output ata_cmd_in in; in.in_regs.command = ATA_SMART_CMD; in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW; in.in_regs.features = ATA_SMART_WRITE_LOG_SECTOR; in.in_regs.lba_low = 0xe0; in.set_data_out(&cmd, 1); if (!set) // Time limit returned in ATA registers in.out_needed.sector_count = in.out_needed.lba_low = true; ata_cmd_out out; if (!device->ata_pass_through(in, out)) { pout("Error Write SCT (%cet) Error Recovery Control Command failed: %s\n", (!set ? 'G' : 'S'), device->get_errmsg()); return -1; } // re-read and check SCT status if (ataReadSCTStatus(device, &sts)) return -1; if (!(sts.ext_status_code == 0 && sts.action_code == 3 && sts.function_code == (set ? 1 : 2))) { pout("Error unexcepted SCT status 0x%04x (action_code=%u, function_code=%u)\n", sts.ext_status_code, sts.action_code, sts.function_code); return -1; } if (!set) { // Check whether registers are properly returned by ioctl() if (!(out.out_regs.sector_count.is_set() && out.out_regs.lba_low.is_set())) { // TODO: Output register support should be checked within each ata_pass_through() // implementation before command is issued. pout("Error SMART WRITE LOG does not return COUNT and LBA_LOW register\n"); return -1; } // Return value to caller time_limit = out.out_regs.sector_count | (out.out_regs.lba_low << 8); } return 0; } // Get SCT Error Recovery Control int ataGetSCTErrorRecoveryControltime(ata_device * device, unsigned type, unsigned short & time_limit) { return ataGetSetSCTErrorRecoveryControltime(device, type, false/*get*/, time_limit); } // Set SCT Error Recovery Control int ataSetSCTErrorRecoveryControltime(ata_device * device, unsigned type, unsigned short time_limit) { return ataGetSetSCTErrorRecoveryControltime(device, type, true/*set*/, time_limit); } // Print one self-test log entry. // Returns: // -1: self-test failed // 1: extended self-test completed without error // 0: otherwise int ataPrintSmartSelfTestEntry(unsigned testnum, unsigned char test_type, unsigned char test_status, unsigned short timestamp, uint64_t failing_lba, bool print_error_only, bool & print_header) { // Check status and type for return value int retval = 0; switch (test_status >> 4) { case 0x0: if ((test_type & 0x0f) == 0x02) retval = 1; // extended self-test completed without error break; case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: case 0x8: retval = -1; // self-test failed break; } if (retval >= 0 && print_error_only) return retval; std::string msgtest; switch (test_type) { case 0x00: msgtest = "Offline"; break; case 0x01: msgtest = "Short offline"; break; case 0x02: msgtest = "Extended offline"; break; case 0x03: msgtest = "Conveyance offline"; break; case 0x04: msgtest = "Selective offline"; break; case 0x7f: msgtest = "Abort offline test"; break; case 0x81: msgtest = "Short captive"; break; case 0x82: msgtest = "Extended captive"; break; case 0x83: msgtest = "Conveyance captive"; break; case 0x84: msgtest = "Selective captive"; break; default: if ((0x40 <= test_type && test_type <= 0x7e) || 0x90 <= test_type) msgtest = strprintf("Vendor (0x%02x)", test_type); else msgtest = strprintf("Reserved (0x%02x)", test_type); } std::string msgstat; switch (test_status >> 4) { case 0x0: msgstat = "Completed without error"; break; case 0x1: msgstat = "Aborted by host"; break; case 0x2: msgstat = "Interrupted (host reset)"; break; case 0x3: msgstat = "Fatal or unknown error"; break; case 0x4: msgstat = "Completed: unknown failure"; break; case 0x5: msgstat = "Completed: electrical failure"; break; case 0x6: msgstat = "Completed: servo/seek failure"; break; case 0x7: msgstat = "Completed: read failure"; break; case 0x8: msgstat = "Completed: handling damage??"; break; case 0xf: msgstat = "Self-test routine in progress"; break; default: msgstat = strprintf("Unknown status (0x%x)", test_status >> 4); } // Print header once if (print_header) { print_header = false; pout("Num Test_Description Status Remaining LifeTime(hours) LBA_of_first_error\n"); } char msglba[32]; if (retval < 0 && failing_lba < 0xffffffffffffULL) snprintf(msglba, sizeof(msglba), "%"PRIu64, failing_lba); else strcpy(msglba, "-"); pout("#%2u %-19s %-29s %1d0%% %8u %s\n", testnum, msgtest.c_str(), msgstat.c_str(), test_status & 0x0f, timestamp, msglba); return retval; } // Print Smart self-test log, used by smartctl and smartd. // return value is: // bottom 8 bits: number of entries found where self-test showed an error // remaining bits: if nonzero, power on hours of last self-test where error was found int ataPrintSmartSelfTestlog(const ata_smart_selftestlog * data, bool allentries, unsigned char fix_firmwarebug) { if (allentries) pout("SMART Self-test log structure revision number %d\n",(int)data->revnumber); if ((data->revnumber!=0x0001) && allentries && fix_firmwarebug != FIX_SAMSUNG) pout("Warning: ATA Specification requires self-test log structure revision number = 1\n"); if (data->mostrecenttest==0){ if (allentries) pout("No self-tests have been logged. [To run self-tests, use: smartctl -t]\n\n"); return 0; } bool noheaderprinted = true; int errcnt = 0, hours = 0, igncnt = 0; int testno = 0, ext_ok_testno = -1; // print log for (int i = 20; i >= 0; i--) { // log is a circular buffer int j = (i+data->mostrecenttest)%21; const ata_smart_selftestlog_struct * log = data->selftest_struct+j; if (nonempty(log, sizeof(*log))) { // count entry based on non-empty structures -- needed for // Seagate only -- other vendors don't have blank entries 'in // the middle' testno++; // T13/1321D revision 1c: (Data structure Rev #1) //The failing LBA shall be the LBA of the uncorrectable sector //that caused the test to fail. If the device encountered more //than one uncorrectable sector during the test, this field //shall indicate the LBA of the first uncorrectable sector //encountered. If the test passed or the test failed for some //reason other than an uncorrectable sector, the value of this //field is undefined. // This is true in ALL ATA-5 specs uint64_t lba48 = (log->lbafirstfailure < 0xffffffff ? log->lbafirstfailure : 0xffffffffffffULL); // Print entry int state = ataPrintSmartSelfTestEntry(testno, log->selftestnumber, log->selfteststatus, log->timestamp, lba48, !allentries, noheaderprinted); if (state < 0) { // Self-test showed an error if (ext_ok_testno < 0) { errcnt++; // keep track of time of most recent error if (!hours) hours = log->timestamp; } else // Newer successful extended self-test exits igncnt++; } else if (state > 0 && ext_ok_testno < 0) { // Latest successful extended self-test ext_ok_testno = testno; } } } if (igncnt) pout("%d of %d failed self-tests are outdated by newer successful extended offline self-test #%2d\n", igncnt, igncnt+errcnt, ext_ok_testno); if (!allentries && !noheaderprinted) pout("\n"); return ((hours << 8) | errcnt); } ///////////////////////////////////////////////////////////////////////////// // Pseudo-device to parse "smartctl -r ataioctl,2 ..." output and simulate // an ATA device with same behaviour namespace { class parsed_ata_device : public /*implements*/ ata_device_with_command_set { public: parsed_ata_device(smart_interface * intf, const char * dev_name); virtual ~parsed_ata_device() throw(); virtual bool is_open() const; virtual bool open(); virtual bool close(); virtual bool ata_identify_is_cached() const; protected: virtual int ata_command_interface(smart_command_set command, int select, char * data); private: // Table of parsed commands, return value, data struct parsed_ata_command { smart_command_set command; int select; int retval, errval; char * data; }; enum { max_num_commands = 32 }; parsed_ata_command m_command_table[max_num_commands]; int m_num_commands; int m_next_replay_command; bool m_replay_out_of_sync; bool m_ata_identify_is_cached; }; static const char * nextline(const char * s, int & lineno) { for (s += strcspn(s, "\r\n"); *s == '\r' || *s == '\n'; s++) { if (*s == '\r' && s[1] == '\n') s++; lineno++; } return s; } static int name2command(const char * s) { for (int i = 0; i < (int)(sizeof(commandstrings)/sizeof(commandstrings[0])); i++) { if (!strcmp(s, commandstrings[i])) return i; } return -1; } static bool matchcpy(char * dest, size_t size, const char * src, const regmatch_t & srcmatch) { if (srcmatch.rm_so < 0) return false; size_t n = srcmatch.rm_eo - srcmatch.rm_so; if (n >= size) n = size-1; memcpy(dest, src + srcmatch.rm_so, n); dest[n] = 0; return true; } static inline int matchtoi(const char * src, const regmatch_t & srcmatch, int defval) { if (srcmatch.rm_so < 0) return defval; return atoi(src + srcmatch.rm_so); } parsed_ata_device::parsed_ata_device(smart_interface * intf, const char * dev_name) : smart_device(intf, dev_name, "ata", ""), m_num_commands(0), m_next_replay_command(0), m_replay_out_of_sync(false), m_ata_identify_is_cached(false) { memset(m_command_table, 0, sizeof(m_command_table)); } parsed_ata_device::~parsed_ata_device() throw() { close(); } bool parsed_ata_device::is_open() const { return (m_num_commands > 0); } // Parse stdin and build command table bool parsed_ata_device::open() { const char * pathname = get_dev_name(); if (strcmp(pathname, "-")) return set_err(EINVAL); pathname = ""; // Fill buffer char buffer[64*1024]; int size = 0; while (size < (int)sizeof(buffer)) { int nr = fread(buffer, 1, sizeof(buffer), stdin); if (nr <= 0) break; size += nr; } if (size <= 0) return set_err(ENOENT, "%s: Unexpected EOF", pathname); if (size >= (int)sizeof(buffer)) return set_err(EIO, "%s: Buffer overflow", pathname); buffer[size] = 0; // Regex to match output from "-r ataioctl,2" static const char pattern[] = "^" "(" // (1 "REPORT-IOCTL: DeviceF?D?=[^ ]+ Command=([A-Z ]*[A-Z])" // (2) "(" // (3 "( InputParameter=([0-9]+))?" // (4 (5)) "|" "( returned (-?[0-9]+)( errno=([0-9]+)[^\r\n]*)?)" // (6 (7) (8 (9))) ")" // ) "[\r\n]" // EOL match necessary to match optional parts above "|" "===== \\[([A-Z ]*[A-Z])\\] DATA START " // (10) "|" " *(En|Dis)abled status cached by OS, " // (11) ")"; // ) // Compile regex const regular_expression regex(pattern, REG_EXTENDED); // Parse buffer const char * errmsg = 0; int i = -1, state = 0, lineno = 1; for (const char * line = buffer; *line; line = nextline(line, lineno)) { // Match line if (!(line[0] == 'R' || line[0] == '=' || line[0] == ' ')) continue; const int nmatch = 1+11; regmatch_t match[nmatch]; if (!regex.execute(line, nmatch, match)) continue; char cmdname[40]; if (matchcpy(cmdname, sizeof(cmdname), line, match[2])) { // "REPORT-IOCTL:... Command=%s ..." int nc = name2command(cmdname); if (nc < 0) { errmsg = "Unknown ATA command name"; break; } if (match[7].rm_so < 0) { // "returned %d" // Start of command if (!(state == 0 || state == 2)) { errmsg = "Missing REPORT-IOCTL result"; break; } if (++i >= max_num_commands) { errmsg = "Too many ATA commands"; break; } m_command_table[i].command = (smart_command_set)nc; m_command_table[i].select = matchtoi(line, match[5], 0); // "InputParameter=%d" state = 1; } else { // End of command if (!(state == 1 && (int)m_command_table[i].command == nc)) { errmsg = "Missing REPORT-IOCTL start"; break; } m_command_table[i].retval = matchtoi(line, match[7], -1); // "returned %d" m_command_table[i].errval = matchtoi(line, match[9], 0); // "errno=%d" state = 2; } } else if (matchcpy(cmdname, sizeof(cmdname), line, match[10])) { // "===== [%s] DATA START " // Start of sector hexdump int nc = name2command(cmdname); if (!(state == (nc == WRITE_LOG ? 1 : 2) && (int)m_command_table[i].command == nc)) { errmsg = "Unexpected DATA START"; break; } line = nextline(line, lineno); char * data = (char *)malloc(512); unsigned j; for (j = 0; j < 32; j++) { unsigned b[16]; unsigned u1, u2; int n1 = -1; if (!(sscanf(line, "%3u-%3u: " "%2x %2x %2x %2x %2x %2x %2x %2x " "%2x %2x %2x %2x %2x %2x %2x %2x%n", &u1, &u2, b+ 0, b+ 1, b+ 2, b+ 3, b+ 4, b+ 5, b+ 6, b+ 7, b+ 8, b+ 9, b+10, b+11, b+12, b+13, b+14, b+15, &n1) == 18 && n1 >= 56 && u1 == j*16 && u2 == j*16+15)) break; for (unsigned k = 0; k < 16; k++) data[j*16+k] = b[k]; line = nextline(line, lineno); } if (j < 32) { free(data); errmsg = "Incomplete sector hex dump"; break; } m_command_table[i].data = data; if (nc != WRITE_LOG) state = 0; } else if (match[11].rm_so > 0) { // "(En|Dis)abled status cached by OS" m_ata_identify_is_cached = true; } } if (!(state == 0 || state == 2)) errmsg = "Missing REPORT-IOCTL result"; if (!errmsg && i < 0) errmsg = "No information found"; m_num_commands = i+1; m_next_replay_command = 0; m_replay_out_of_sync = false; if (errmsg) { close(); return set_err(EIO, "%s(%d): Syntax error: %s", pathname, lineno, errmsg); } return true; } // Report warnings and free command table bool parsed_ata_device::close() { if (m_replay_out_of_sync) pout("REPLAY-IOCTL: Warning: commands replayed out of sync\n"); else if (m_next_replay_command != 0) pout("REPLAY-IOCTL: Warning: %d command(s) not replayed\n", m_num_commands-m_next_replay_command); for (int i = 0; i < m_num_commands; i++) { if (m_command_table[i].data) { free(m_command_table[i].data); m_command_table[i].data = 0; } } m_num_commands = 0; m_next_replay_command = 0; m_replay_out_of_sync = false; return true; } bool parsed_ata_device::ata_identify_is_cached() const { return m_ata_identify_is_cached; } // Simulate ATA command from command table int parsed_ata_device::ata_command_interface(smart_command_set command, int select, char * data) { // Find command, try round-robin if out of sync int i = m_next_replay_command; for (int j = 0; ; j++) { if (j >= m_num_commands) { pout("REPLAY-IOCTL: Warning: Command not found\n"); errno = ENOSYS; return -1; } if (m_command_table[i].command == command && m_command_table[i].select == select) break; if (!m_replay_out_of_sync) { m_replay_out_of_sync = true; pout("REPLAY-IOCTL: Warning: Command #%d is out of sync\n", i+1); } if (++i >= m_num_commands) i = 0; } m_next_replay_command = i; if (++m_next_replay_command >= m_num_commands) m_next_replay_command = 0; // Return command data switch (command) { case IDENTIFY: case PIDENTIFY: case READ_VALUES: case READ_THRESHOLDS: case READ_LOG: if (m_command_table[i].data) memcpy(data, m_command_table[i].data, 512); break; case WRITE_LOG: if (!(m_command_table[i].data && !memcmp(data, m_command_table[i].data, 512))) pout("REPLAY-IOCTL: Warning: WRITE LOG data does not match\n"); break; case CHECK_POWER_MODE: data[0] = (char)0xff; default: break; } if (m_command_table[i].errval) errno = m_command_table[i].errval; return m_command_table[i].retval; } } // namespace ata_device * get_parsed_ata_device(smart_interface * intf, const char * dev_name) { return new parsed_ata_device(intf, dev_name); }