/* * ataprint.cpp * * Home page of code is: http://smartmontools.sourceforge.net * * Copyright (C) 2002-11 Bruce Allen * Copyright (C) 2008-13 Christian Franke * Copyright (C) 1999-2000 Michael Cornwell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example COPYING); If not, see . * * This code was originally developed as a Senior Thesis by Michael Cornwell * at the Concurrent Systems Laboratory (now part of the Storage Systems * Research Center), Jack Baskin School of Engineering, University of * California, Santa Cruz. http://ssrc.soe.ucsc.edu/ * */ #include "config.h" #include #include #include #include #include #include "int64.h" #include "atacmdnames.h" #include "atacmds.h" #include "ataidentify.h" #include "dev_interface.h" #include "ataprint.h" #include "smartctl.h" #include "utility.h" #include "knowndrives.h" const char * ataprint_cpp_cvsid = "$Id: ataprint.cpp,v 1.1.1.4 2013/10/14 07:54:03 misho Exp $" ATAPRINT_H_CVSID; static const char * infofound(const char *output) { return (*output ? output : "[No Information Found]"); } // Return true if '-T permissive' is specified, // used to ignore missing capabilities static bool is_permissive() { if (!failuretest_permissive) return false; failuretest_permissive--; return true; } /* For the given Command Register (CR) and Features Register (FR), attempts * to construct a string that describes the contents of the Status * Register (ST) and Error Register (ER). If the meanings of the flags of * the error register are not known for the given command then it returns an * empty string. * * The meanings of the flags of the error register for all commands are * described in the ATA spec and could all be supported here in theory. * Currently, only a few commands are supported (those that have been seen * to produce errors). If many more are to be added then this function * should probably be redesigned. */ static std::string format_st_er_desc( unsigned char CR, unsigned char FR, unsigned char ST, unsigned char ER, unsigned short SC, const ata_smart_errorlog_error_struct * lba28_regs, const ata_smart_exterrlog_error * lba48_regs ) { const char *error_flag[8]; int i, print_lba=0, print_sector=0; // Set of character strings corresponding to different error codes. // Please keep in alphabetic order if you add more. const char *abrt = "ABRT"; // ABORTED const char *amnf = "AMNF"; // ADDRESS MARK NOT FOUND const char *ccto = "CCTO"; // COMMAND COMPLETION TIMED OUT const char *eom = "EOM"; // END OF MEDIA const char *icrc = "ICRC"; // INTERFACE CRC ERROR const char *idnf = "IDNF"; // ID NOT FOUND const char *ili = "ILI"; // MEANING OF THIS BIT IS COMMAND-SET SPECIFIC const char *mc = "MC"; // MEDIA CHANGED const char *mcr = "MCR"; // MEDIA CHANGE REQUEST const char *nm = "NM"; // NO MEDIA const char *obs = "obs"; // OBSOLETE const char *tk0nf = "TK0NF"; // TRACK 0 NOT FOUND const char *unc = "UNC"; // UNCORRECTABLE const char *wp = "WP"; // WRITE PROTECTED /* If for any command the Device Fault flag of the status register is * not used then used_device_fault should be set to 0 (in the CR switch * below) */ int uses_device_fault = 1; /* A value of NULL means that the error flag isn't used */ for (i = 0; i < 8; i++) error_flag[i] = NULL; std::string str; switch (CR) { case 0x10: // RECALIBRATE error_flag[2] = abrt; error_flag[1] = tk0nf; break; case 0x20: /* READ SECTOR(S) */ case 0x21: // READ SECTOR(S) case 0x24: // READ SECTOR(S) EXT case 0xC4: /* READ MULTIPLE */ case 0x29: // READ MULTIPLE EXT error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; break; case 0x22: // READ LONG (with retries) case 0x23: // READ LONG (without retries) error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = amnf; print_lba=1; break; case 0x2a: // READ STREAM DMA case 0x2b: // READ STREAM PIO if (CR==0x2a) error_flag[7] = icrc; error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = ccto; print_lba=1; print_sector=SC; break; case 0x3A: // WRITE STREAM DMA case 0x3B: // WRITE STREAM PIO if (CR==0x3A) error_flag[7] = icrc; error_flag[6] = wp; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = ccto; print_lba=1; print_sector=SC; break; case 0x25: // READ DMA EXT case 0x26: // READ DMA QUEUED EXT case 0xC7: // READ DMA QUEUED case 0xC8: // READ DMA (with retries) case 0xC9: // READ DMA (without retries, obsolete since ATA-5) case 0x60: // READ FPDMA QUEUED (NCQ) error_flag[7] = icrc; error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; if (CR==0x25 || CR==0xC8) print_sector=SC; break; case 0x30: /* WRITE SECTOR(S) */ case 0x31: // WRITE SECTOR(S) case 0x34: // WRITE SECTOR(S) EXT case 0xC5: /* WRITE MULTIPLE */ case 0x39: // WRITE MULTIPLE EXT case 0xCE: // WRITE MULTIPLE FUA EXT error_flag[6] = wp; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; print_lba=1; break; case 0x32: // WRITE LONG (with retries) case 0x33: // WRITE LONG (without retries) error_flag[4] = idnf; error_flag[2] = abrt; print_lba=1; break; case 0x3C: // WRITE VERIFY error_flag[6] = unc; error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = amnf; print_lba=1; break; case 0x40: // READ VERIFY SECTOR(S) with retries case 0x41: // READ VERIFY SECTOR(S) without retries case 0x42: // READ VERIFY SECTOR(S) EXT error_flag[6] = unc; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; break; case 0xA0: /* PACKET */ /* Bits 4-7 are all used for sense key (a 'command packet set specific error * indication' according to the ATA/ATAPI-7 standard), so "Sense key" will * be repeated in the error description string if more than one of those * bits is set. */ error_flag[7] = "Sense key (bit 3)", error_flag[6] = "Sense key (bit 2)", error_flag[5] = "Sense key (bit 1)", error_flag[4] = "Sense key (bit 0)", error_flag[2] = abrt; error_flag[1] = eom; error_flag[0] = ili; break; case 0xA1: /* IDENTIFY PACKET DEVICE */ case 0xEF: /* SET FEATURES */ case 0x00: /* NOP */ case 0xC6: /* SET MULTIPLE MODE */ error_flag[2] = abrt; break; case 0x2F: // READ LOG EXT error_flag[6] = unc; error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0x3F: // WRITE LOG EXT error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0xB0: /* SMART */ switch(FR) { case 0xD0: // SMART READ DATA case 0xD1: // SMART READ ATTRIBUTE THRESHOLDS case 0xD5: /* SMART READ LOG */ error_flag[6] = unc; error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0xD6: /* SMART WRITE LOG */ error_flag[4] = idnf; error_flag[2] = abrt; error_flag[0] = obs; break; case 0xD2: // Enable/Disable Attribute Autosave case 0xD3: // SMART SAVE ATTRIBUTE VALUES (ATA-3) case 0xD8: // SMART ENABLE OPERATIONS case 0xD9: /* SMART DISABLE OPERATIONS */ case 0xDA: /* SMART RETURN STATUS */ case 0xDB: // Enable/Disable Auto Offline (SFF) error_flag[2] = abrt; break; case 0xD4: // SMART EXECUTE IMMEDIATE OFFLINE error_flag[4] = idnf; error_flag[2] = abrt; break; default: return str; // "" break; } break; case 0xB1: /* DEVICE CONFIGURATION */ switch (FR) { case 0xC0: /* DEVICE CONFIGURATION RESTORE */ error_flag[2] = abrt; break; default: return str; // "" break; } break; case 0xCA: // WRITE DMA (with retries) case 0xCB: // WRITE DMA (without retries, obsolete since ATA-5) case 0x35: // WRITE DMA EXT case 0x3D: // WRITE DMA FUA EXT case 0xCC: // WRITE DMA QUEUED case 0x36: // WRITE DMA QUEUED EXT case 0x3E: // WRITE DMA QUEUED FUA EXT case 0x61: // WRITE FPDMA QUEUED (NCQ) error_flag[7] = icrc; error_flag[6] = wp; error_flag[5] = mc; error_flag[4] = idnf; error_flag[3] = mcr; error_flag[2] = abrt; error_flag[1] = nm; error_flag[0] = amnf; print_lba=1; if (CR==0x35) print_sector=SC; break; case 0xE4: // READ BUFFER case 0xE8: // WRITE BUFFER error_flag[2] = abrt; break; default: return str; // "" } /* We ignore any status flags other than Device Fault and Error */ if (uses_device_fault && (ST & (1 << 5))) { str = "Device Fault"; if (ST & 1) // Error flag str += "; "; } if (ST & 1) { // Error flag int count = 0; str += "Error: "; for (i = 7; i >= 0; i--) if ((ER & (1 << i)) && (error_flag[i])) { if (count++ > 0) str += ", "; str += error_flag[i]; } } // If the error was a READ or WRITE error, print the Logical Block // Address (LBA) at which the read or write failed. if (print_lba) { // print number of sectors, if known, and append to print string if (print_sector) str += strprintf(" %d sectors", print_sector); if (lba28_regs) { unsigned lba; // bits 24-27: bits 0-3 of DH lba = 0xf & lba28_regs->drive_head; lba <<= 8; // bits 16-23: CH lba |= lba28_regs->cylinder_high; lba <<= 8; // bits 8-15: CL lba |= lba28_regs->cylinder_low; lba <<= 8; // bits 0-7: SN lba |= lba28_regs->sector_number; str += strprintf(" at LBA = 0x%08x = %u", lba, lba); } else if (lba48_regs) { // This assumes that upper LBA registers are 0 for 28-bit commands // (TODO: detect 48-bit commands above) uint64_t lba48; lba48 = lba48_regs->lba_high_register_hi; lba48 <<= 8; lba48 |= lba48_regs->lba_mid_register_hi; lba48 <<= 8; lba48 |= lba48_regs->lba_low_register_hi; lba48 |= lba48_regs->device_register & 0xf; lba48 <<= 8; lba48 |= lba48_regs->lba_high_register; lba48 <<= 8; lba48 |= lba48_regs->lba_mid_register; lba48 <<= 8; lba48 |= lba48_regs->lba_low_register; str += strprintf(" at LBA = 0x%08"PRIx64" = %"PRIu64, lba48, lba48); } } return str; } static inline std::string format_st_er_desc( const ata_smart_errorlog_struct * data) { return format_st_er_desc( data->commands[4].commandreg, data->commands[4].featuresreg, data->error_struct.status, data->error_struct.error_register, data->error_struct.sector_count, &data->error_struct, (const ata_smart_exterrlog_error *)0); } static inline std::string format_st_er_desc( const ata_smart_exterrlog_error_log * data) { return format_st_er_desc( data->commands[4].command_register, data->commands[4].features_register, data->error.status_register, data->error.error_register, data->error.count_register_hi << 8 | data->error.count_register, (const ata_smart_errorlog_error_struct *)0, &data->error); } static int find_msb(unsigned short word) { for (int bit = 15; bit >= 0; bit--) if (word & (1 << bit)) return bit; return -1; } static const char * get_ata_major_version(const ata_identify_device * drive) { switch (find_msb(drive->major_rev_num)) { case 10: return "ACS-3"; case 9: return "ACS-2"; case 8: return "ATA8-ACS"; case 7: return "ATA/ATAPI-7"; case 6: return "ATA/ATAPI-6"; case 5: return "ATA/ATAPI-5"; case 4: return "ATA/ATAPI-4"; case 3: return "ATA-3"; case 2: return "ATA-2"; case 1: return "ATA-1"; default: return 0; } } static const char * get_ata_minor_version(const ata_identify_device * drive) { switch (drive->minor_rev_num) { case 0x0001: return "ATA-1 X3T9.2/781D prior to revision 4"; case 0x0002: return "ATA-1 published, ANSI X3.221-1994"; case 0x0003: return "ATA-1 X3T9.2/781D revision 4"; case 0x0004: return "ATA-2 published, ANSI X3.279-1996"; case 0x0005: return "ATA-2 X3T10/948D prior to revision 2k"; case 0x0006: return "ATA-3 X3T10/2008D revision 1"; case 0x0007: return "ATA-2 X3T10/948D revision 2k"; case 0x0008: return "ATA-3 X3T10/2008D revision 0"; case 0x0009: return "ATA-2 X3T10/948D revision 3"; case 0x000a: return "ATA-3 published, ANSI X3.298-1997"; case 0x000b: return "ATA-3 X3T10/2008D revision 6"; // 1st ATA-3 revision with SMART case 0x000c: return "ATA-3 X3T13/2008D revision 7 and 7a"; case 0x000d: return "ATA/ATAPI-4 X3T13/1153D revision 6"; case 0x000e: return "ATA/ATAPI-4 T13/1153D revision 13"; case 0x000f: return "ATA/ATAPI-4 X3T13/1153D revision 7"; case 0x0010: return "ATA/ATAPI-4 T13/1153D revision 18"; case 0x0011: return "ATA/ATAPI-4 T13/1153D revision 15"; case 0x0012: return "ATA/ATAPI-4 published, ANSI NCITS 317-1998"; case 0x0013: return "ATA/ATAPI-5 T13/1321D revision 3"; case 0x0014: return "ATA/ATAPI-4 T13/1153D revision 14"; case 0x0015: return "ATA/ATAPI-5 T13/1321D revision 1"; case 0x0016: return "ATA/ATAPI-5 published, ANSI NCITS 340-2000"; case 0x0017: return "ATA/ATAPI-4 T13/1153D revision 17"; case 0x0018: return "ATA/ATAPI-6 T13/1410D revision 0"; case 0x0019: return "ATA/ATAPI-6 T13/1410D revision 3a"; case 0x001a: return "ATA/ATAPI-7 T13/1532D revision 1"; case 0x001b: return "ATA/ATAPI-6 T13/1410D revision 2"; case 0x001c: return "ATA/ATAPI-6 T13/1410D revision 1"; case 0x001d: return "ATA/ATAPI-7 published, ANSI INCITS 397-2005"; case 0x001e: return "ATA/ATAPI-7 T13/1532D revision 0"; case 0x001f: return "ACS-3 T13/2161-D revision 3b"; case 0x0021: return "ATA/ATAPI-7 T13/1532D revision 4a"; case 0x0022: return "ATA/ATAPI-6 published, ANSI INCITS 361-2002"; case 0x0027: return "ATA8-ACS T13/1699-D revision 3c"; case 0x0028: return "ATA8-ACS T13/1699-D revision 6"; case 0x0029: return "ATA8-ACS T13/1699-D revision 4"; case 0x0031: return "ACS-2 T13/2015-D revision 2"; case 0x0033: return "ATA8-ACS T13/1699-D revision 3e"; case 0x0039: return "ATA8-ACS T13/1699-D revision 4c"; case 0x0042: return "ATA8-ACS T13/1699-D revision 3f"; case 0x0052: return "ATA8-ACS T13/1699-D revision 3b"; case 0x0107: return "ATA8-ACS T13/1699-D revision 2d"; case 0x0110: return "ACS-2 T13/2015-D revision 3"; default: return 0; } } static const char * get_sata_version(const ata_identify_device * drive) { unsigned short word222 = drive->words088_255[222-88]; if ((word222 & 0xf000) != 0x1000) return 0; switch (find_msb(word222 & 0x0fff)) { default: return "SATA >3.1"; case 6: return "SATA 3.1"; case 5: return "SATA 3.0"; case 4: return "SATA 2.6"; case 3: return "SATA 2.5"; case 2: return "SATA II Ext"; case 1: return "SATA 1.0a"; case 0: return "ATA8-AST"; case -1: return 0; } } static const char * get_sata_speed(int level) { if (level <= 0) return 0; switch (level) { default: return ">6.0 Gb/s"; case 3: return "6.0 Gb/s"; case 2: return "3.0 Gb/s"; case 1: return "1.5 Gb/s"; } } static const char * get_sata_maxspeed(const ata_identify_device * drive) { unsigned short word076 = drive->words047_079[76-47]; if (word076 & 0x0001) return 0; return get_sata_speed(find_msb(word076 & 0x00fe)); } static const char * get_sata_curspeed(const ata_identify_device * drive) { unsigned short word077 = drive->words047_079[77-47]; if (word077 & 0x0001) return 0; return get_sata_speed((word077 >> 1) & 0x7); } static void print_drive_info(const ata_identify_device * drive, const ata_size_info & sizes, int rpm, const drive_settings * dbentry) { // format drive information (with byte swapping as needed) char model[40+1], serial[20+1], firmware[8+1]; ata_format_id_string(model, drive->model, sizeof(model)-1); ata_format_id_string(serial, drive->serial_no, sizeof(serial)-1); ata_format_id_string(firmware, drive->fw_rev, sizeof(firmware)-1); // Print model family if known if (dbentry && *dbentry->modelfamily) pout("Model Family: %s\n", dbentry->modelfamily); pout("Device Model: %s\n", infofound(model)); if (!dont_print_serial_number) { pout("Serial Number: %s\n", infofound(serial)); unsigned oui = 0; uint64_t unique_id = 0; int naa = ata_get_wwn(drive, oui, unique_id); if (naa >= 0) pout("LU WWN Device Id: %x %06x %09"PRIx64"\n", naa, oui, unique_id); // Additional Product Identifier (OEM Id) string in words 170-173 // (e08130r1, added in ACS-2 Revision 1, December 17, 2008) if (0x2020 <= drive->words088_255[170-88] && drive->words088_255[170-88] <= 0x7e7e) { char add[8+1]; ata_format_id_string(add, (const unsigned char *)(drive->words088_255+170-88), sizeof(add)-1); if (add[0]) pout("Add. Product Id: %s\n", add); } } pout("Firmware Version: %s\n", infofound(firmware)); if (sizes.capacity) { // Print capacity char num[64], cap[32]; pout("User Capacity: %s bytes [%s]\n", format_with_thousands_sep(num, sizeof(num), sizes.capacity), format_capacity(cap, sizeof(cap), sizes.capacity)); // Print sector sizes. if (sizes.phy_sector_size == sizes.log_sector_size) pout("Sector Size: %u bytes logical/physical\n", sizes.log_sector_size); else { pout("Sector Sizes: %u bytes logical, %u bytes physical", sizes.log_sector_size, sizes.phy_sector_size); if (sizes.log_sector_offset) pout(" (offset %u bytes)", sizes.log_sector_offset); pout("\n"); } } // Print nominal media rotation rate if reported if (rpm) { if (rpm == 1) pout("Rotation Rate: Solid State Device\n"); else if (rpm > 1) pout("Rotation Rate: %d rpm\n", rpm); else pout("Rotation Rate: Unknown (0x%04x)\n", -rpm); } // See if drive is recognized pout("Device is: %s\n", !dbentry ? "Not in smartctl database [for details use: -P showall]": "In smartctl database [for details use: -P show]"); // Print ATA version std::string ataver; if ( (drive->major_rev_num != 0x0000 && drive->major_rev_num != 0xffff) || (drive->minor_rev_num != 0x0000 && drive->minor_rev_num != 0xffff)) { const char * majorver = get_ata_major_version(drive); const char * minorver = get_ata_minor_version(drive); if (majorver && minorver && str_starts_with(minorver, majorver)) { // Major and minor strings match, print minor string only ataver = minorver; } else { if (majorver) ataver = majorver; else ataver = strprintf("Unknown(0x%04x)", drive->major_rev_num); if (minorver) ataver += strprintf(", %s", minorver); else if (drive->minor_rev_num != 0x0000 && drive->minor_rev_num != 0xffff) ataver += strprintf(" (unknown minor revision code: 0x%04x)", drive->minor_rev_num); else ataver += " (minor revision not indicated)"; } } pout("ATA Version is: %s\n", infofound(ataver.c_str())); // If SATA drive print SATA version and speed const char * sataver = get_sata_version(drive); if (sataver) { const char * maxspeed = get_sata_maxspeed(drive); const char * curspeed = get_sata_curspeed(drive); pout("SATA Version is: %s%s%s%s%s%s\n", sataver, (maxspeed ? ", " : ""), (maxspeed ? maxspeed : ""), (curspeed ? " (current: " : ""), (curspeed ? curspeed : ""), (curspeed ? ")" : "")); } // print current time and date and timezone char timedatetz[DATEANDEPOCHLEN]; dateandtimezone(timedatetz); pout("Local Time is: %s\n", timedatetz); // Print warning message, if there is one if (dbentry && *dbentry->warningmsg) pout("\n==> WARNING: %s\n\n", dbentry->warningmsg); } static const char *OfflineDataCollectionStatus(unsigned char status_byte) { unsigned char stat=status_byte & 0x7f; switch(stat){ case 0x00: return "was never started"; case 0x02: return "was completed without error"; case 0x03: if (status_byte == 0x03) return "is in progress"; else return "is in a Reserved state"; case 0x04: return "was suspended by an interrupting command from host"; case 0x05: return "was aborted by an interrupting command from host"; case 0x06: return "was aborted by the device with a fatal error"; default: if (stat >= 0x40) return "is in a Vendor Specific state"; else return "is in a Reserved state"; } } // prints verbose value Off-line data collection status byte static void PrintSmartOfflineStatus(const ata_smart_values * data) { pout("Offline data collection status: (0x%02x)\t", (int)data->offline_data_collection_status); // Off-line data collection status byte is not a reserved // or vendor specific value pout("Offline data collection activity\n" "\t\t\t\t\t%s.\n", OfflineDataCollectionStatus(data->offline_data_collection_status)); // Report on Automatic Data Collection Status. Only IBM documents // this bit. See SFF 8035i Revision 2 for details. if (data->offline_data_collection_status & 0x80) pout("\t\t\t\t\tAuto Offline Data Collection: Enabled.\n"); else pout("\t\t\t\t\tAuto Offline Data Collection: Disabled.\n"); return; } static void PrintSmartSelfExecStatus(const ata_smart_values * data, firmwarebug_defs firmwarebugs) { pout("Self-test execution status: "); switch (data->self_test_exec_status >> 4) { case 0: pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("without error or no self-test has ever \n\t\t\t\t\tbeen run.\n"); break; case 1: pout("(%4d)\tThe self-test routine was aborted by\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the host.\n"); break; case 2: pout("(%4d)\tThe self-test routine was interrupted\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("by the host with a hard or soft reset.\n"); break; case 3: pout("(%4d)\tA fatal error or unknown test error\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("occurred while the device was executing\n\t\t\t\t\t"); pout("its self-test routine and the device \n\t\t\t\t\t"); pout("was unable to complete the self-test \n\t\t\t\t\t"); pout("routine.\n"); break; case 4: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("a test element that failed and the test\n\t\t\t\t\t"); pout("element that failed is not known.\n"); break; case 5: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the electrical element of the test\n\t\t\t\t\t"); pout("failed.\n"); break; case 6: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the servo (and/or seek) element of the \n\t\t\t\t\t"); pout("test failed.\n"); break; case 7: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("the read element of the test failed.\n"); break; case 8: pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("a test element that failed and the\n\t\t\t\t\t"); pout("device is suspected of having handling\n\t\t\t\t\t"); pout("damage.\n"); break; case 15: if (firmwarebugs.is_set(BUG_SAMSUNG3) && data->self_test_exec_status == 0xf0) { pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("with unknown result or self-test in\n\t\t\t\t\t"); pout("progress with less than 10%% remaining.\n"); } else { pout("(%4d)\tSelf-test routine in progress...\n\t\t\t\t\t", (int)data->self_test_exec_status); pout("%1d0%% of test remaining.\n", (int)(data->self_test_exec_status & 0x0f)); } break; default: pout("(%4d)\tReserved.\n", (int)data->self_test_exec_status); break; } } static void PrintSmartTotalTimeCompleteOffline (const ata_smart_values * data) { pout("Total time to complete Offline \n"); pout("data collection: \t\t(%5d) seconds.\n", (int)data->total_time_to_complete_off_line); } static void PrintSmartOfflineCollectCap(const ata_smart_values *data) { pout("Offline data collection\n"); pout("capabilities: \t\t\t (0x%02x) ", (int)data->offline_data_collection_capability); if (data->offline_data_collection_capability == 0x00){ pout("\tOffline data collection not supported.\n"); } else { pout( "%s\n", isSupportExecuteOfflineImmediate(data)? "SMART execute Offline immediate." : "No SMART execute Offline immediate."); pout( "\t\t\t\t\t%s\n", isSupportAutomaticTimer(data)? "Auto Offline data collection on/off support.": "No Auto Offline data collection support."); pout( "\t\t\t\t\t%s\n", isSupportOfflineAbort(data)? "Abort Offline collection upon new\n\t\t\t\t\tcommand.": "Suspend Offline collection upon new\n\t\t\t\t\tcommand."); pout( "\t\t\t\t\t%s\n", isSupportOfflineSurfaceScan(data)? "Offline surface scan supported.": "No Offline surface scan supported."); pout( "\t\t\t\t\t%s\n", isSupportSelfTest(data)? "Self-test supported.": "No Self-test supported."); pout( "\t\t\t\t\t%s\n", isSupportConveyanceSelfTest(data)? "Conveyance Self-test supported.": "No Conveyance Self-test supported."); pout( "\t\t\t\t\t%s\n", isSupportSelectiveSelfTest(data)? "Selective Self-test supported.": "No Selective Self-test supported."); } } static void PrintSmartCapability(const ata_smart_values *data) { pout("SMART capabilities: "); pout("(0x%04x)\t", (int)data->smart_capability); if (data->smart_capability == 0x00) { pout("Automatic saving of SMART data\t\t\t\t\tis not implemented.\n"); } else { pout( "%s\n", (data->smart_capability & 0x01)? "Saves SMART data before entering\n\t\t\t\t\tpower-saving mode.": "Does not save SMART data before\n\t\t\t\t\tentering power-saving mode."); if ( data->smart_capability & 0x02 ) { pout("\t\t\t\t\tSupports SMART auto save timer.\n"); } } } static void PrintSmartErrorLogCapability(const ata_smart_values * data, const ata_identify_device * identity) { pout("Error logging capability: "); if ( isSmartErrorLogCapable(data, identity) ) { pout(" (0x%02x)\tError logging supported.\n", (int)data->errorlog_capability); } else { pout(" (0x%02x)\tError logging NOT supported.\n", (int)data->errorlog_capability); } } static void PrintSmartShortSelfTestPollingTime(const ata_smart_values * data) { pout("Short self-test routine \n"); if (isSupportSelfTest(data)) pout("recommended polling time: \t (%4d) minutes.\n", (int)data->short_test_completion_time); else pout("recommended polling time: \t Not Supported.\n"); } static void PrintSmartExtendedSelfTestPollingTime(const ata_smart_values * data) { pout("Extended self-test routine\n"); if (isSupportSelfTest(data)) pout("recommended polling time: \t (%4d) minutes.\n", TestTime(data, EXTEND_SELF_TEST)); else pout("recommended polling time: \t Not Supported.\n"); } static void PrintSmartConveyanceSelfTestPollingTime(const ata_smart_values * data) { pout("Conveyance self-test routine\n"); if (isSupportConveyanceSelfTest(data)) pout("recommended polling time: \t (%4d) minutes.\n", (int)data->conveyance_test_completion_time); else pout("recommended polling time: \t Not Supported.\n"); } // Check SMART attribute table for Threshold failure // onlyfailed=0: are or were any age or prefailure attributes <= threshold // onlyfailed=1: are any prefailure attributes <= threshold now static int find_failed_attr(const ata_smart_values * data, const ata_smart_thresholds_pvt * thresholds, const ata_vendor_attr_defs & defs, int onlyfailed) { for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) { const ata_smart_attribute & attr = data->vendor_attributes[i]; ata_attr_state state = ata_get_attr_state(attr, i, thresholds->thres_entries, defs); if (!onlyfailed) { if (state >= ATTRSTATE_FAILED_PAST) return attr.id; } else { if (state == ATTRSTATE_FAILED_NOW && ATTRIBUTE_FLAGS_PREFAILURE(attr.flags)) return attr.id; } } return 0; } // onlyfailed=0 : print all attribute values // onlyfailed=1: just ones that are currently failed and have prefailure bit set // onlyfailed=2: ones that are failed, or have failed with or without prefailure bit set static void PrintSmartAttribWithThres(const ata_smart_values * data, const ata_smart_thresholds_pvt * thresholds, const ata_vendor_attr_defs & defs, int rpm, int onlyfailed, unsigned char format) { bool brief = !!(format & ata_print_options::FMT_BRIEF); bool hexid = !!(format & ata_print_options::FMT_HEX_ID); bool hexval = !!(format & ata_print_options::FMT_HEX_VAL); bool needheader = true; // step through all vendor attributes for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) { const ata_smart_attribute & attr = data->vendor_attributes[i]; // Check attribute and threshold unsigned char threshold = 0; ata_attr_state state = ata_get_attr_state(attr, i, thresholds->thres_entries, defs, &threshold); if (state == ATTRSTATE_NON_EXISTING) continue; // These break out of the loop if we are only printing certain entries... if (onlyfailed == 1 && !(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) && state == ATTRSTATE_FAILED_NOW)) continue; if (onlyfailed == 2 && state < ATTRSTATE_FAILED_PAST) continue; // print header only if needed if (needheader) { if (!onlyfailed) { pout("SMART Attributes Data Structure revision number: %d\n",(int)data->revnumber); pout("Vendor Specific SMART Attributes with Thresholds:\n"); } if (!brief) pout("ID#%s ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE\n", (!hexid ? "" : " ")); else pout("ID#%s ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE\n", (!hexid ? "" : " ")); needheader = false; } // Format value, worst, threshold std::string valstr, worstr, threstr; if (state > ATTRSTATE_NO_NORMVAL) valstr = (!hexval ? strprintf("%.3d", attr.current) : strprintf("0x%02x", attr.current)); else valstr = (!hexval ? "---" : "----"); if (!(defs[attr.id].flags & ATTRFLAG_NO_WORSTVAL)) worstr = (!hexval ? strprintf("%.3d", attr.worst) : strprintf("0x%02x", attr.worst)); else worstr = (!hexval ? "---" : "----"); if (state > ATTRSTATE_NO_THRESHOLD) threstr = (!hexval ? strprintf("%.3d", threshold) : strprintf("0x%02x", threshold)); else threstr = (!hexval ? "---" : "----"); // Print line for each valid attribute std::string idstr = (!hexid ? strprintf("%3d", attr.id) : strprintf("0x%02x", attr.id)); std::string attrname = ata_get_smart_attr_name(attr.id, defs, rpm); std::string rawstr = ata_format_attr_raw_value(attr, defs); if (!brief) pout("%s %-24s0x%04x %-4s %-4s %-4s %-10s%-9s%-12s%s\n", idstr.c_str(), attrname.c_str(), attr.flags, valstr.c_str(), worstr.c_str(), threstr.c_str(), (ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) ? "Pre-fail" : "Old_age"), (ATTRIBUTE_FLAGS_ONLINE(attr.flags) ? "Always" : "Offline"), (state == ATTRSTATE_FAILED_NOW ? "FAILING_NOW" : state == ATTRSTATE_FAILED_PAST ? "In_the_past" : " -" ) , rawstr.c_str()); else pout("%s %-24s%c%c%c%c%c%c%c %-4s %-4s %-4s %-5s%s\n", idstr.c_str(), attrname.c_str(), (ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) ? 'P' : '-'), (ATTRIBUTE_FLAGS_ONLINE(attr.flags) ? 'O' : '-'), (ATTRIBUTE_FLAGS_PERFORMANCE(attr.flags) ? 'S' : '-'), (ATTRIBUTE_FLAGS_ERRORRATE(attr.flags) ? 'R' : '-'), (ATTRIBUTE_FLAGS_EVENTCOUNT(attr.flags) ? 'C' : '-'), (ATTRIBUTE_FLAGS_SELFPRESERVING(attr.flags) ? 'K' : '-'), (ATTRIBUTE_FLAGS_OTHER(attr.flags) ? '+' : ' '), valstr.c_str(), worstr.c_str(), threstr.c_str(), (state == ATTRSTATE_FAILED_NOW ? "NOW" : state == ATTRSTATE_FAILED_PAST ? "Past" : "-" ), rawstr.c_str()); } if (!needheader) { if (!onlyfailed && brief) { int n = (!hexid ? 28 : 29); pout("%*s||||||_ K auto-keep\n" "%*s|||||__ C event count\n" "%*s||||___ R error rate\n" "%*s|||____ S speed/performance\n" "%*s||_____ O updated online\n" "%*s|______ P prefailure warning\n", n, "", n, "", n, "", n, "", n, "", n, ""); } pout("\n"); } } // Print SMART related SCT capabilities static void ataPrintSCTCapability(const ata_identify_device *drive) { unsigned short sctcaps = drive->words088_255[206-88]; if (!(sctcaps & 0x01)) return; pout("SCT capabilities: \t (0x%04x)\tSCT Status supported.\n", sctcaps); if (sctcaps & 0x08) pout("\t\t\t\t\tSCT Error Recovery Control supported.\n"); if (sctcaps & 0x10) pout("\t\t\t\t\tSCT Feature Control supported.\n"); if (sctcaps & 0x20) pout("\t\t\t\t\tSCT Data Table supported.\n"); } static void PrintGeneralSmartValues(const ata_smart_values *data, const ata_identify_device *drive, firmwarebug_defs firmwarebugs) { pout("General SMART Values:\n"); PrintSmartOfflineStatus(data); if (isSupportSelfTest(data)){ PrintSmartSelfExecStatus(data, firmwarebugs); } PrintSmartTotalTimeCompleteOffline(data); PrintSmartOfflineCollectCap(data); PrintSmartCapability(data); PrintSmartErrorLogCapability(data, drive); pout( "\t\t\t\t\t%s\n", isGeneralPurposeLoggingCapable(drive)? "General Purpose Logging supported.": "No General Purpose Logging support."); if (isSupportSelfTest(data)){ PrintSmartShortSelfTestPollingTime (data); PrintSmartExtendedSelfTestPollingTime (data); } if (isSupportConveyanceSelfTest(data)) PrintSmartConveyanceSelfTestPollingTime (data); ataPrintSCTCapability(drive); pout("\n"); } // Get # sectors of a log addr, 0 if log does not exist. static unsigned GetNumLogSectors(const ata_smart_log_directory * logdir, unsigned logaddr, bool gpl) { if (!logdir) return 0; if (logaddr > 0xff) return 0; if (logaddr == 0) return 1; unsigned n = logdir->entry[logaddr-1].numsectors; if (gpl) // GP logs may have >255 sectors n |= logdir->entry[logaddr-1].reserved << 8; return n; } // Get name of log. // Table A.2 of T13/2161-D (ACS-3) Revision 4, September 4, 2012 static const char * GetLogName(unsigned logaddr) { switch (logaddr) { case 0x00: return "Log Directory"; case 0x01: return "Summary SMART error log"; case 0x02: return "Comprehensive SMART error log"; case 0x03: return "Ext. Comprehensive SMART error log"; case 0x04: return "Device Statistics log"; case 0x05: return "Reserved for CFA"; // ACS-2 case 0x06: return "SMART self-test log"; case 0x07: return "Extended self-test log"; case 0x08: return "Power Conditions log"; // ACS-2 case 0x09: return "Selective self-test log"; case 0x0a: return "Device Statistics Notification"; // ACS-3 case 0x0b: return "Reserved for CFA"; // ACS-3 case 0x0d: return "LPS Mis-alignment log"; // ACS-2 case 0x10: return "NCQ Command Error log"; case 0x11: return "SATA Phy Event Counters"; case 0x12: return "SATA NCQ Queue Management log"; // ACS-3 case 0x13: return "SATA NCQ Send and Receive log"; // ACS-3 case 0x14: case 0x15: case 0x16: return "Reserved for Serial ATA"; case 0x19: return "LBA Status log"; // ACS-3 case 0x20: return "Streaming performance log [OBS-8]"; case 0x21: return "Write stream error log"; case 0x22: return "Read stream error log"; case 0x23: return "Delayed sector log [OBS-8]"; case 0x24: return "Current Device Internal Status Data log"; // ACS-3 case 0x25: return "Saved Device Internal Status Data log"; // ACS-3 case 0x30: return "IDENTIFY DEVICE data log"; // ACS-3 case 0xe0: return "SCT Command/Status"; case 0xe1: return "SCT Data Transfer"; default: if (0xa0 <= logaddr && logaddr <= 0xdf) return "Device vendor specific log"; if (0x80 <= logaddr && logaddr <= 0x9f) return "Host vendor specific log"; return "Reserved"; } /*NOTREACHED*/ } // Get log access permissions static const char * get_log_rw(unsigned logaddr) { if ( ( logaddr <= 0x08) || (0x0d == logaddr) || (0x10 <= logaddr && logaddr <= 0x13) || (0x19 == logaddr) || (0x20 <= logaddr && logaddr <= 0x25) || (0x30 == logaddr)) return "R/O"; if ( (0x09 <= logaddr && logaddr <= 0x0a) || (0x80 <= logaddr && logaddr <= 0x9f) || (0xe0 <= logaddr && logaddr <= 0xe1)) return "R/W"; if (0xa0 <= logaddr && logaddr <= 0xdf) return "VS"; // Vendor specific return "-"; // Unknown/Reserved } // Init a fake log directory, assume that standard logs are supported const ata_smart_log_directory * fake_logdir(ata_smart_log_directory * logdir, const ata_print_options & options) { memset(logdir, 0, sizeof(*logdir)); logdir->logversion = 255; logdir->entry[0x01-1].numsectors = 1; logdir->entry[0x03-1].numsectors = (options.smart_ext_error_log + (4-1)) / 4; logdir->entry[0x04-1].numsectors = 8; logdir->entry[0x06-1].numsectors = 1; logdir->entry[0x07-1].numsectors = (options.smart_ext_selftest_log + (19-1)) / 19; logdir->entry[0x09-1].numsectors = 1; logdir->entry[0x11-1].numsectors = 1; return logdir; } // Print SMART and/or GP Log Directory static void PrintLogDirectories(const ata_smart_log_directory * gplogdir, const ata_smart_log_directory * smartlogdir) { if (gplogdir) pout("General Purpose Log Directory Version %u\n", gplogdir->logversion); if (smartlogdir) pout("SMART %sLog Directory Version %u%s\n", (gplogdir ? " " : ""), smartlogdir->logversion, (smartlogdir->logversion==1 ? " [multi-sector log support]" : "")); pout("Address Access R/W Size Description\n"); for (unsigned i = 0; i <= 0xff; i++) { // Get number of sectors unsigned smart_numsect = GetNumLogSectors(smartlogdir, i, false); unsigned gp_numsect = GetNumLogSectors(gplogdir , i, true ); if (!(smart_numsect || gp_numsect)) continue; // Log does not exist const char * acc; unsigned size; if (smart_numsect == gp_numsect) { acc = "GPL,SL"; size = gp_numsect; } else if (!smart_numsect) { acc = "GPL"; size = gp_numsect; } else if (!gp_numsect) { acc = " SL"; size = smart_numsect; } else { acc = 0; size = 0; } unsigned i2 = i; if (acc && ((0x80 <= i && i < 0x9f) || (0xa0 <= i && i < 0xdf))) { // Find range of Host/Device vendor specific logs with same size unsigned imax = (i < 0x9f ? 0x9f : 0xdf); for (unsigned j = i+1; j <= imax; j++) { unsigned sn = GetNumLogSectors(smartlogdir, j, false); unsigned gn = GetNumLogSectors(gplogdir , j, true ); if (!(sn == smart_numsect && gn == gp_numsect)) break; i2 = j; } } const char * name = GetLogName(i); const char * rw = get_log_rw(i); if (i2 > i) { pout("0x%02x-0x%02x %-6s %-3s %5u %s\n", i, i2, acc, rw, size, name); i = i2; } else if (acc) pout( "0x%02x %-6s %-3s %5u %s\n", i, acc, rw, size, name); else { // GPL and SL support different sizes pout( "0x%02x %-6s %-3s %5u %s\n", i, "GPL", rw, gp_numsect, name); pout( "0x%02x %-6s %-3s %5u %s\n", i, "SL", rw, smart_numsect, name); } } pout("\n"); } // Print hexdump of log pages. // Format is compatible with 'xxd -r'. static void PrintLogPages(const char * type, const unsigned char * data, unsigned char logaddr, unsigned page, unsigned num_pages, unsigned max_pages) { pout("%s Log 0x%02x [%s], Page %u-%u (of %u)\n", type, logaddr, GetLogName(logaddr), page, page+num_pages-1, max_pages); for (unsigned i = 0; i < num_pages * 512; i += 16) { const unsigned char * p = data+i; pout("%07x: %02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x ", (page * 512) + i, p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7], p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15]); #define P(n) (' ' <= p[n] && p[n] <= '~' ? (int)p[n] : '.') pout("|%c%c%c%c%c%c%c%c" "%c%c%c%c%c%c%c%c|\n", P( 0), P( 1), P( 2), P( 3), P( 4), P( 5), P( 6), P( 7), P( 8), P( 9), P(10), P(11), P(12), P(13), P(14), P(15)); #undef P if ((i & 0x1ff) == 0x1f0) pout("\n"); } } /////////////////////////////////////////////////////////////////////// // Device statistics (Log 0x04) // See Section A.5 of // ATA/ATAPI Command Set - 3 (ACS-3) // T13/2161-D Revision 2, February 21, 2012. struct devstat_entry_info { short size; // #bytes of value, -1 for signed char const char * name; }; const devstat_entry_info devstat_info_0x00[] = { { 2, "List of supported log pages" }, { 0, 0 } }; const devstat_entry_info devstat_info_0x01[] = { { 2, "General Statistics" }, { 4, "Lifetime Power-On Resets" }, { 4, "Power-on Hours" }, // spec says no flags(?) { 6, "Logical Sectors Written" }, { 6, "Number of Write Commands" }, { 6, "Logical Sectors Read" }, { 6, "Number of Read Commands" }, { 6, "Date and Time TimeStamp" }, // ACS-3 { 0, 0 } }; const devstat_entry_info devstat_info_0x02[] = { { 2, "Free-Fall Statistics" }, { 4, "Number of Free-Fall Events Detected" }, { 4, "Overlimit Shock Events" }, { 0, 0 } }; const devstat_entry_info devstat_info_0x03[] = { { 2, "Rotating Media Statistics" }, { 4, "Spindle Motor Power-on Hours" }, { 4, "Head Flying Hours" }, { 4, "Head Load Events" }, { 4, "Number of Reallocated Logical Sectors" }, { 4, "Read Recovery Attempts" }, { 4, "Number of Mechanical Start Failures" }, { 4, "Number of Realloc. Candidate Logical Sectors" }, // ACS-3 { 0, 0 } }; const devstat_entry_info devstat_info_0x04[] = { { 2, "General Errors Statistics" }, { 4, "Number of Reported Uncorrectable Errors" }, //{ 4, "Number of Resets Between Command Acceptance and Command Completion" }, { 4, "Resets Between Cmd Acceptance and Completion" }, { 0, 0 } }; const devstat_entry_info devstat_info_0x05[] = { { 2, "Temperature Statistics" }, { -1, "Current Temperature" }, { -1, "Average Short Term Temperature" }, { -1, "Average Long Term Temperature" }, { -1, "Highest Temperature" }, { -1, "Lowest Temperature" }, { -1, "Highest Average Short Term Temperature" }, { -1, "Lowest Average Short Term Temperature" }, { -1, "Highest Average Long Term Temperature" }, { -1, "Lowest Average Long Term Temperature" }, { 4, "Time in Over-Temperature" }, { -1, "Specified Maximum Operating Temperature" }, { 4, "Time in Under-Temperature" }, { -1, "Specified Minimum Operating Temperature" }, { 0, 0 } }; const devstat_entry_info devstat_info_0x06[] = { { 2, "Transport Statistics" }, { 4, "Number of Hardware Resets" }, { 4, "Number of ASR Events" }, { 4, "Number of Interface CRC Errors" }, { 0, 0 } }; const devstat_entry_info devstat_info_0x07[] = { { 2, "Solid State Device Statistics" }, { 1, "Percentage Used Endurance Indicator" }, { 0, 0 } }; const devstat_entry_info * devstat_infos[] = { devstat_info_0x00, devstat_info_0x01, devstat_info_0x02, devstat_info_0x03, devstat_info_0x04, devstat_info_0x05, devstat_info_0x06, devstat_info_0x07 }; const int num_devstat_infos = sizeof(devstat_infos)/sizeof(devstat_infos[0]); static void print_device_statistics_page(const unsigned char * data, int page, bool & need_trailer) { const devstat_entry_info * info = (page < num_devstat_infos ? devstat_infos[page] : 0); const char * name = (info ? info[0].name : "Unknown Statistics"); // Check page number in header static const char line[] = " ===== = = == "; if (!data[2]) { pout("%3d%s%s (empty) ==\n", page, line, name); return; } if (data[2] != page) { pout("%3d%s%s (invalid page %d in header) ==\n", page, line, name, data[2]); return; } pout("%3d%s%s (rev %d) ==\n", page, line, name, data[0]); // Print entries for (int i = 1, offset = 8; offset < 512-7; i++, offset+=8) { // Check for last known entry if (info && !info[i].size) info = 0; // Skip unsupported entries unsigned char flags = data[offset+7]; if (!(flags & 0x80)) continue; // Get value size, default to max if unknown int size = (info ? info[i].size : 7); // Format value char valstr[32]; if (flags & 0x40) { // valid flag // Get value int64_t val; if (size < 0) { val = (signed char)data[offset]; } else { val = 0; for (int j = 0; j < size; j++) val |= (int64_t)data[offset+j] << (j*8); } snprintf(valstr, sizeof(valstr), "%"PRId64, val); } else { // Value not known (yet) valstr[0] = '-'; valstr[1] = 0; } pout("%3d 0x%03x %d%c %15s%c %s\n", page, offset, abs(size), (flags & 0x1f ? '+' : ' '), // unknown flags valstr, (flags & 0x20 ? '~' : ' '), // normalized flag (info ? info[i].name : "Unknown")); if (flags & 0x20) need_trailer = true; } } static bool print_device_statistics(ata_device * device, unsigned nsectors, const std::vector & single_pages, bool all_pages, bool ssd_page) { // Read list of supported pages from page 0 unsigned char page_0[512] = {0, }; if (!ataReadLogExt(device, 0x04, 0, 0, page_0, 1)) { pout("Read Device Statistics page 0 failed\n\n"); return false; } unsigned char nentries = page_0[8]; if (!(page_0[2] == 0 && nentries > 0)) { pout("Device Statistics page 0 is invalid (page=%d, nentries=%d)\n\n", page_0[2], nentries); return false; } // Prepare list of pages to print std::vector pages; unsigned i; if (all_pages) { // Add all supported pages for (i = 0; i < nentries; i++) { int page = page_0[8+1+i]; if (page) pages.push_back(page); } ssd_page = false; } // Add manually specified pages bool print_page_0 = false; for (i = 0; i < single_pages.size() || ssd_page; i++) { int page = (i < single_pages.size() ? single_pages[i] : 7); if (!page) print_page_0 = true; else if (page >= (int)nsectors) pout("Device Statistics Log has only %u pages\n", nsectors); else pages.push_back(page); if (page == 7) ssd_page = false; } // Print list of supported pages if requested if (print_page_0) { pout("Device Statistics (GP Log 0x04) supported pages\n"); pout("Page Description\n"); for (i = 0; i < nentries; i++) { int page = page_0[8+1+i]; pout("%3d %s\n", page, (page < num_devstat_infos ? devstat_infos[page][0].name : "Unknown Statistics")); } pout("\n"); } // Read & print pages if (!pages.empty()) { pout("Device Statistics (GP Log 0x04)\n"); pout("Page Offset Size Value Description\n"); bool need_trailer = false; for (i = 0; i < pages.size(); i++) { int page = pages[i]; unsigned char page_n[512] = {0, }; if (!ataReadLogExt(device, 0x04, 0, page, page_n, 1)) { pout("Read Device Statistics page %d failed\n\n", page); return false; } print_device_statistics_page(page_n, page, need_trailer); } if (need_trailer) pout("%30s|_ ~ normalized value\n", ""); pout("\n"); } return true; } /////////////////////////////////////////////////////////////////////// // Print log 0x11 static void PrintSataPhyEventCounters(const unsigned char * data, bool reset) { if (checksum(data)) checksumwarning("SATA Phy Event Counters"); pout("SATA Phy Event Counters (GP Log 0x11)\n"); if (data[0] || data[1] || data[2] || data[3]) pout("[Reserved: 0x%02x 0x%02x 0x%02x 0x%02x]\n", data[0], data[1], data[2], data[3]); pout("ID Size Value Description\n"); for (unsigned i = 4; ; ) { // Get counter id and size (bits 14:12) unsigned id = data[i] | (data[i+1] << 8); unsigned size = ((id >> 12) & 0x7) << 1; id &= 0x8fff; // End of counter table ? if (!id) break; i += 2; if (!(2 <= size && size <= 8 && i + size < 512)) { pout("0x%04x %u: Invalid entry\n", id, size); break; } // Get value uint64_t val = 0, max_val = 0; for (unsigned j = 0; j < size; j+=2) { val |= (uint64_t)(data[i+j] | (data[i+j+1] << 8)) << (j*8); max_val |= (uint64_t)0xffffU << (j*8); } i += size; // Get name const char * name; switch (id) { case 0x001: name = "Command failed due to ICRC error"; break; // Mandatory case 0x002: name = "R_ERR response for data FIS"; break; case 0x003: name = "R_ERR response for device-to-host data FIS"; break; case 0x004: name = "R_ERR response for host-to-device data FIS"; break; case 0x005: name = "R_ERR response for non-data FIS"; break; case 0x006: name = "R_ERR response for device-to-host non-data FIS"; break; case 0x007: name = "R_ERR response for host-to-device non-data FIS"; break; case 0x008: name = "Device-to-host non-data FIS retries"; break; case 0x009: name = "Transition from drive PhyRdy to drive PhyNRdy"; break; case 0x00A: name = "Device-to-host register FISes sent due to a COMRESET"; break; // Mandatory case 0x00B: name = "CRC errors within host-to-device FIS"; break; case 0x00D: name = "Non-CRC errors within host-to-device FIS"; break; case 0x00F: name = "R_ERR response for host-to-device data FIS, CRC"; break; case 0x010: name = "R_ERR response for host-to-device data FIS, non-CRC"; break; case 0x012: name = "R_ERR response for host-to-device non-data FIS, CRC"; break; case 0x013: name = "R_ERR response for host-to-device non-data FIS, non-CRC"; break; default: name = (id & 0x8000 ? "Vendor specific" : "Unknown"); break; } // Counters stop at max value, add '+' in this case pout("0x%04x %u %12"PRIu64"%c %s\n", id, size, val, (val == max_val ? '+' : ' '), name); } if (reset) pout("All counters reset\n"); pout("\n"); } // Format milliseconds from error log entry as "DAYS+H:M:S.MSEC" static std::string format_milliseconds(unsigned msec) { unsigned days = msec / 86400000U; msec -= days * 86400000U; unsigned hours = msec / 3600000U; msec -= hours * 3600000U; unsigned min = msec / 60000U; msec -= min * 60000U; unsigned sec = msec / 1000U; msec -= sec * 1000U; std::string str; if (days) str = strprintf("%2ud+", days); str += strprintf("%02u:%02u:%02u.%03u", hours, min, sec, msec); return str; } // Get description for 'state' value from SMART Error Logs static const char * get_error_log_state_desc(unsigned state) { state &= 0x0f; switch (state){ case 0x0: return "in an unknown state"; case 0x1: return "sleeping"; case 0x2: return "in standby mode"; case 0x3: return "active or idle"; case 0x4: return "doing SMART Offline or Self-test"; default: return (state < 0xb ? "in a reserved state" : "in a vendor specific state"); } } // returns number of errors static int PrintSmartErrorlog(const ata_smart_errorlog *data, firmwarebug_defs firmwarebugs) { pout("SMART Error Log Version: %d\n", (int)data->revnumber); // if no errors logged, return if (!data->error_log_pointer){ pout("No Errors Logged\n\n"); return 0; } print_on(); // If log pointer out of range, return if (data->error_log_pointer>5){ pout("Invalid Error Log index = 0x%02x (T13/1321D rev 1c " "Section 8.41.6.8.2.2 gives valid range from 1 to 5)\n\n", (int)data->error_log_pointer); return 0; } // Some internal consistency checking of the data structures if ((data->ata_error_count-data->error_log_pointer) % 5 && !firmwarebugs.is_set(BUG_SAMSUNG2)) { pout("Warning: ATA error count %d inconsistent with error log pointer %d\n\n", data->ata_error_count,data->error_log_pointer); } // starting printing error log info if (data->ata_error_count<=5) pout( "ATA Error Count: %d\n", (int)data->ata_error_count); else pout( "ATA Error Count: %d (device log contains only the most recent five errors)\n", (int)data->ata_error_count); print_off(); pout("\tCR = Command Register [HEX]\n" "\tFR = Features Register [HEX]\n" "\tSC = Sector Count Register [HEX]\n" "\tSN = Sector Number Register [HEX]\n" "\tCL = Cylinder Low Register [HEX]\n" "\tCH = Cylinder High Register [HEX]\n" "\tDH = Device/Head Register [HEX]\n" "\tDC = Device Command Register [HEX]\n" "\tER = Error register [HEX]\n" "\tST = Status register [HEX]\n" "Powered_Up_Time is measured from power on, and printed as\n" "DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n" "SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n"); // now step through the five error log data structures (table 39 of spec) for (int k = 4; k >= 0; k-- ) { // The error log data structure entries are a circular buffer int j, i=(data->error_log_pointer+k)%5; const ata_smart_errorlog_struct * elog = data->errorlog_struct+i; const ata_smart_errorlog_error_struct * summary = &(elog->error_struct); // Spec says: unused error log structures shall be zero filled if (nonempty(elog, sizeof(*elog))){ // Table 57 of T13/1532D Volume 1 Revision 3 const char *msgstate = get_error_log_state_desc(summary->state); int days = (int)summary->timestamp/24; // See table 42 of ATA5 spec print_on(); pout("Error %d occurred at disk power-on lifetime: %d hours (%d days + %d hours)\n", (int)(data->ata_error_count+k-4), (int)summary->timestamp, days, (int)(summary->timestamp-24*days)); print_off(); pout(" When the command that caused the error occurred, the device was %s.\n\n",msgstate); pout(" After command completion occurred, registers were:\n" " ER ST SC SN CL CH DH\n" " -- -- -- -- -- -- --\n" " %02x %02x %02x %02x %02x %02x %02x", (int)summary->error_register, (int)summary->status, (int)summary->sector_count, (int)summary->sector_number, (int)summary->cylinder_low, (int)summary->cylinder_high, (int)summary->drive_head); // Add a description of the contents of the status and error registers // if possible std::string st_er_desc = format_st_er_desc(elog); if (!st_er_desc.empty()) pout(" %s", st_er_desc.c_str()); pout("\n\n"); pout(" Commands leading to the command that caused the error were:\n" " CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name\n" " -- -- -- -- -- -- -- -- ---------------- --------------------\n"); for ( j = 4; j >= 0; j--){ const ata_smart_errorlog_command_struct * thiscommand = elog->commands+j; // Spec says: unused data command structures shall be zero filled if (nonempty(thiscommand, sizeof(*thiscommand))) { pout(" %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n", (int)thiscommand->commandreg, (int)thiscommand->featuresreg, (int)thiscommand->sector_count, (int)thiscommand->sector_number, (int)thiscommand->cylinder_low, (int)thiscommand->cylinder_high, (int)thiscommand->drive_head, (int)thiscommand->devicecontrolreg, format_milliseconds(thiscommand->timestamp).c_str(), look_up_ata_command(thiscommand->commandreg, thiscommand->featuresreg)); } } pout("\n"); } } print_on(); if (printing_is_switchable) pout("\n"); print_off(); return data->ata_error_count; } // Print SMART Extended Comprehensive Error Log (GP Log 0x03) static int PrintSmartExtErrorLog(const ata_smart_exterrlog * log, unsigned nsectors, unsigned max_errors) { pout("SMART Extended Comprehensive Error Log Version: %u (%u sectors)\n", log->version, nsectors); if (!log->device_error_count) { pout("No Errors Logged\n\n"); return 0; } print_on(); // Check index unsigned nentries = nsectors * 4; unsigned erridx = log->error_log_index; if (!(1 <= erridx && erridx <= nentries)){ // Some Samsung disks (at least SP1614C/SW100-25, HD300LJ/ZT100-12) use the // former index from Summary Error Log (byte 1, now reserved) and set byte 2-3 // to 0. if (!(erridx == 0 && 1 <= log->reserved1 && log->reserved1 <= nentries)) { pout("Invalid Error Log index = 0x%04x (reserved = 0x%02x)\n", erridx, log->reserved1); return 0; } pout("Invalid Error Log index = 0x%04x, trying reserved byte (0x%02x) instead\n", erridx, log->reserved1); erridx = log->reserved1; } // Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a), // it is 1-based in practice. erridx--; // Calculate #errors to print unsigned errcnt = log->device_error_count; if (errcnt <= nentries) pout("Device Error Count: %u\n", log->device_error_count); else { errcnt = nentries; pout("Device Error Count: %u (device log contains only the most recent %u errors)\n", log->device_error_count, errcnt); } if (max_errors < errcnt) errcnt = max_errors; print_off(); pout("\tCR = Command Register\n" "\tFEATR = Features Register\n" "\tCOUNT = Count (was: Sector Count) Register\n" "\tLBA_48 = Upper bytes of LBA High/Mid/Low Registers ] ATA-8\n" "\tLH = LBA High (was: Cylinder High) Register ] LBA\n" "\tLM = LBA Mid (was: Cylinder Low) Register ] Register\n" "\tLL = LBA Low (was: Sector Number) Register ]\n" "\tDV = Device (was: Device/Head) Register\n" "\tDC = Device Control Register\n" "\tER = Error register\n" "\tST = Status register\n" "Powered_Up_Time is measured from power on, and printed as\n" "DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n" "SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n"); // Iterate through circular buffer in reverse direction for (unsigned i = 0, errnum = log->device_error_count; i < errcnt; i++, errnum--, erridx = (erridx > 0 ? erridx - 1 : nentries - 1)) { const ata_smart_exterrlog_error_log & entry = log[erridx / 4].error_logs[erridx % 4]; // Skip unused entries if (!nonempty(&entry, sizeof(entry))) { pout("Error %u [%u] log entry is empty\n", errnum, erridx); continue; } // Print error information print_on(); const ata_smart_exterrlog_error & err = entry.error; pout("Error %u [%u] occurred at disk power-on lifetime: %u hours (%u days + %u hours)\n", errnum, erridx, err.timestamp, err.timestamp / 24, err.timestamp % 24); print_off(); pout(" When the command that caused the error occurred, the device was %s.\n\n", get_error_log_state_desc(err.state)); // Print registers pout(" After command completion occurred, registers were:\n" " ER -- ST COUNT LBA_48 LH LM LL DV DC\n" " -- -- -- == -- == == == -- -- -- -- --\n" " %02x -- %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", err.error_register, err.status_register, err.count_register_hi, err.count_register, err.lba_high_register_hi, err.lba_mid_register_hi, err.lba_low_register_hi, err.lba_high_register, err.lba_mid_register, err.lba_low_register, err.device_register, err.device_control_register); // Add a description of the contents of the status and error registers // if possible std::string st_er_desc = format_st_er_desc(&entry); if (!st_er_desc.empty()) pout(" %s", st_er_desc.c_str()); pout("\n\n"); // Print command history pout(" Commands leading to the command that caused the error were:\n" " CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name\n" " -- == -- == -- == == == -- -- -- -- -- --------------- --------------------\n"); for (int ci = 4; ci >= 0; ci--) { const ata_smart_exterrlog_command & cmd = entry.commands[ci]; // Skip unused entries if (!nonempty(&cmd, sizeof(cmd))) continue; // Print registers, timestamp and ATA command name pout(" %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n", cmd.command_register, cmd.features_register_hi, cmd.features_register, cmd.count_register_hi, cmd.count_register, cmd.lba_high_register_hi, cmd.lba_mid_register_hi, cmd.lba_low_register_hi, cmd.lba_high_register, cmd.lba_mid_register, cmd.lba_low_register, cmd.device_register, cmd.device_control_register, format_milliseconds(cmd.timestamp).c_str(), look_up_ata_command(cmd.command_register, cmd.features_register)); } pout("\n"); } print_on(); if (printing_is_switchable) pout("\n"); print_off(); return log->device_error_count; } // Print SMART Extended Self-test Log (GP Log 0x07) static int PrintSmartExtSelfTestLog(const ata_smart_extselftestlog * log, unsigned nsectors, unsigned max_entries) { pout("SMART Extended Self-test Log Version: %u (%u sectors)\n", log->version, nsectors); if (!log->log_desc_index){ pout("No self-tests have been logged. [To run self-tests, use: smartctl -t]\n\n"); return 0; } // Check index unsigned nentries = nsectors * 19; unsigned logidx = log->log_desc_index; if (logidx > nentries) { pout("Invalid Self-test Log index = 0x%04x (reserved = 0x%02x)\n", logidx, log->reserved1); return 0; } // Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a), // it is 1-based in practice. logidx--; bool print_header = true; int errcnt = 0, igncnt = 0; int ext_ok_testnum = -1; // Iterate through circular buffer in reverse direction for (unsigned i = 0, testnum = 1; i < nentries && testnum <= max_entries; i++, logidx = (logidx > 0 ? logidx - 1 : nentries - 1)) { const ata_smart_extselftestlog_desc & entry = log[logidx / 19].log_descs[logidx % 19]; // Skip unused entries if (!nonempty(&entry, sizeof(entry))) continue; // Get LBA const unsigned char * b = entry.failing_lba; uint64_t lba48 = b[0] | ( b[1] << 8) | ( b[2] << 16) | ((uint64_t)b[3] << 24) | ((uint64_t)b[4] << 32) | ((uint64_t)b[5] << 40); // Print entry int state = ataPrintSmartSelfTestEntry(testnum, entry.self_test_type, entry.self_test_status, entry.timestamp, lba48, false /*!print_error_only*/, print_header); if (state < 0) { // Self-test showed an error if (ext_ok_testnum < 0) errcnt++; else // Newer successful extended self-test exits igncnt++; } else if (state > 0 && ext_ok_testnum < 0) { // Latest successful extended self-test ext_ok_testnum = testnum; } testnum++; } if (igncnt) pout("%d of %d failed self-tests are outdated by newer successful extended offline self-test #%2d\n", igncnt, igncnt+errcnt, ext_ok_testnum); pout("\n"); return errcnt; } static void ataPrintSelectiveSelfTestLog(const ata_selective_self_test_log * log, const ata_smart_values * sv) { int i,field1,field2; const char *msg; char tmp[64]; uint64_t maxl=0,maxr=0; uint64_t current=log->currentlba; uint64_t currentend=current+65535; // print data structure revision number pout("SMART Selective self-test log data structure revision number %d\n",(int)log->logversion); if (1 != log->logversion) pout("Note: revision number not 1 implies that no selective self-test has ever been run\n"); switch((sv->self_test_exec_status)>>4){ case 0:msg="Completed"; break; case 1:msg="Aborted_by_host"; break; case 2:msg="Interrupted"; break; case 3:msg="Fatal_error"; break; case 4:msg="Completed_unknown_failure"; break; case 5:msg="Completed_electrical_failure"; break; case 6:msg="Completed_servo/seek_failure"; break; case 7:msg="Completed_read_failure"; break; case 8:msg="Completed_handling_damage??"; break; case 15:msg="Self_test_in_progress"; break; default:msg="Unknown_status "; break; } // find the number of columns needed for printing. If in use, the // start/end of span being read-scanned... if (log->currentspan>5) { maxl=current; maxr=currentend; } for (i=0; i<5; i++) { uint64_t start=log->span[i].start; uint64_t end =log->span[i].end; // ... plus max start/end of each of the five test spans. if (start>maxl) maxl=start; if (end > maxr) maxr=end; } // we need at least 7 characters wide fields to accomodate the // labels if ((field1=snprintf(tmp,64, "%"PRIu64, maxl))<7) field1=7; if ((field2=snprintf(tmp,64, "%"PRIu64, maxr))<7) field2=7; // now print the five test spans pout(" SPAN %*s %*s CURRENT_TEST_STATUS\n", field1, "MIN_LBA", field2, "MAX_LBA"); for (i=0; i<5; i++) { uint64_t start=log->span[i].start; uint64_t end=log->span[i].end; if ((i+1)==(int)log->currentspan) // this span is currently under test pout(" %d %*"PRIu64" %*"PRIu64" %s [%01d0%% left] (%"PRIu64"-%"PRIu64")\n", i+1, field1, start, field2, end, msg, (int)(sv->self_test_exec_status & 0xf), current, currentend); else // this span is not currently under test pout(" %d %*"PRIu64" %*"PRIu64" Not_testing\n", i+1, field1, start, field2, end); } // if we are currently read-scanning, print LBAs and the status of // the read scan if (log->currentspan>5) pout("%5d %*"PRIu64" %*"PRIu64" Read_scanning %s\n", (int)log->currentspan, field1, current, field2, currentend, OfflineDataCollectionStatus(sv->offline_data_collection_status)); /* Print selective self-test flags. Possible flag combinations are (numbering bits from 0-15): Bit-1 Bit-3 Bit-4 Scan Pending Active 0 * * Don't scan 1 0 0 Will carry out scan after selective test 1 1 0 Waiting to carry out scan after powerup 1 0 1 Currently scanning 1 1 1 Currently scanning */ pout("Selective self-test flags (0x%x):\n", (unsigned int)log->flags); if (log->flags & SELECTIVE_FLAG_DOSCAN) { if (log->flags & SELECTIVE_FLAG_ACTIVE) pout(" Currently read-scanning the remainder of the disk.\n"); else if (log->flags & SELECTIVE_FLAG_PENDING) pout(" Read-scan of remainder of disk interrupted; will resume %d min after power-up.\n", (int)log->pendingtime); else pout(" After scanning selected spans, read-scan remainder of disk.\n"); } else pout(" After scanning selected spans, do NOT read-scan remainder of disk.\n"); // print pending time pout("If Selective self-test is pending on power-up, resume after %d minute delay.\n", (int)log->pendingtime); return; } // Format SCT Temperature value static const char * sct_ptemp(signed char x, char (& buf)[20]) { if (x == -128 /*0x80 = unknown*/) return " ?"; snprintf(buf, sizeof(buf), "%2d", x); return buf; } static const char * sct_pbar(int x, char (& buf)[64]) { if (x <= 19) x = 0; else x -= 19; bool ov = false; if (x > 40) { x = 40; ov = true; } if (x > 0) { memset(buf, '*', x); if (ov) buf[x-1] = '+'; buf[x] = 0; } else { buf[0] = '-'; buf[1] = 0; } return buf; } static const char * sct_device_state_msg(unsigned char state) { switch (state) { case 0: return "Active"; case 1: return "Stand-by"; case 2: return "Sleep"; case 3: return "DST executing in background"; case 4: return "SMART Off-line Data Collection executing in background"; case 5: return "SCT command executing in background"; default:return "Unknown"; } } // Print SCT Status static int ataPrintSCTStatus(const ata_sct_status_response * sts) { pout("SCT Status Version: %u\n", sts->format_version); pout("SCT Version (vendor specific): %u (0x%04x)\n", sts->sct_version, sts->sct_version); pout("SCT Support Level: %u\n", sts->sct_spec); pout("Device State: %s (%u)\n", sct_device_state_msg(sts->device_state), sts->device_state); char buf1[20], buf2[20]; if ( !sts->min_temp && !sts->life_min_temp && !sts->under_limit_count && !sts->over_limit_count) { // "Reserved" fields not set, assume "old" format version 2 // Table 11 of T13/1701DT-N (SMART Command Transport) Revision 5, February 2005 // Table 54 of T13/1699-D (ATA8-ACS) Revision 3e, July 2006 pout("Current Temperature: %s Celsius\n", sct_ptemp(sts->hda_temp, buf1)); pout("Power Cycle Max Temperature: %s Celsius\n", sct_ptemp(sts->max_temp, buf2)); pout("Lifetime Max Temperature: %s Celsius\n", sct_ptemp(sts->life_max_temp, buf2)); } else { // Assume "new" format version 2 or version 3 // T13/e06152r0-3 (Additional SCT Temperature Statistics), August - October 2006 // Table 60 of T13/1699-D (ATA8-ACS) Revision 3f, December 2006 (format version 2) // Table 80 of T13/1699-D (ATA8-ACS) Revision 6a, September 2008 (format version 3) pout("Current Temperature: %s Celsius\n", sct_ptemp(sts->hda_temp, buf1)); pout("Power Cycle Min/Max Temperature: %s/%s Celsius\n", sct_ptemp(sts->min_temp, buf1), sct_ptemp(sts->max_temp, buf2)); pout("Lifetime Min/Max Temperature: %s/%s Celsius\n", sct_ptemp(sts->life_min_temp, buf1), sct_ptemp(sts->life_max_temp, buf2)); signed char avg = sts->byte205; // Average Temperature from e06152r0-2, removed in e06152r3 if (0 < avg && sts->life_min_temp <= avg && avg <= sts->life_max_temp) pout("Lifetime Average Temperature: %2d Celsius\n", avg); pout("Under/Over Temperature Limit Count: %2u/%u\n", sts->under_limit_count, sts->over_limit_count); } return 0; } // Print SCT Temperature History Table static int ataPrintSCTTempHist(const ata_sct_temperature_history_table * tmh) { char buf1[20], buf2[20], buf3[64]; pout("SCT Temperature History Version: %u%s\n", tmh->format_version, (tmh->format_version != 2 ? " (Unknown, should be 2)" : "")); pout("Temperature Sampling Period: %u minute%s\n", tmh->sampling_period, (tmh->sampling_period==1?"":"s")); pout("Temperature Logging Interval: %u minute%s\n", tmh->interval, (tmh->interval==1?"":"s")); pout("Min/Max recommended Temperature: %s/%s Celsius\n", sct_ptemp(tmh->min_op_limit, buf1), sct_ptemp(tmh->max_op_limit, buf2)); pout("Min/Max Temperature Limit: %s/%s Celsius\n", sct_ptemp(tmh->under_limit, buf1), sct_ptemp(tmh->over_limit, buf2)); pout("Temperature History Size (Index): %u (%u)\n", tmh->cb_size, tmh->cb_index); if (!(0 < tmh->cb_size && tmh->cb_size <= sizeof(tmh->cb) && tmh->cb_index < tmh->cb_size)) { if (!tmh->cb_size) pout("Temperature History is empty\n"); else pout("Invalid Temperature History Size or Index\n"); return 0; } // Print table pout("\nIndex Estimated Time Temperature Celsius\n"); unsigned n = 0, i = (tmh->cb_index+1) % tmh->cb_size; unsigned interval = (tmh->interval > 0 ? tmh->interval : 1); time_t t = time(0) - (tmh->cb_size-1) * interval * 60; t -= t % (interval * 60); while (n < tmh->cb_size) { // Find range of identical temperatures unsigned n1 = n, n2 = n+1, i2 = (i+1) % tmh->cb_size; while (n2 < tmh->cb_size && tmh->cb[i2] == tmh->cb[i]) { n2++; i2 = (i2+1) % tmh->cb_size; } // Print range while (n < n2) { if (n == n1 || n == n2-1 || n2 <= n1+3) { char date[30]; // TODO: Don't print times < boot time strftime(date, sizeof(date), "%Y-%m-%d %H:%M", localtime(&t)); pout(" %3u %s %s %s\n", i, date, sct_ptemp(tmh->cb[i], buf1), sct_pbar(tmh->cb[i], buf3)); } else if (n == n1+1) { pout(" ... ..(%3u skipped). .. %s\n", n2-n1-2, sct_pbar(tmh->cb[i], buf3)); } t += interval * 60; i = (i+1) % tmh->cb_size; n++; } } //assert(n == tmh->cb_size && i == (tmh->cb_index+1) % tmh->cb_size); return 0; } // Print SCT Error Recovery Control timers static void ataPrintSCTErrorRecoveryControl(bool set, unsigned short read_timer, unsigned short write_timer) { pout("SCT Error Recovery Control%s:\n", (set ? " set to" : "")); if (!read_timer) pout(" Read: Disabled\n"); else pout(" Read: %6d (%0.1f seconds)\n", read_timer, read_timer/10.0); if (!write_timer) pout(" Write: Disabled\n"); else pout(" Write: %6d (%0.1f seconds)\n", write_timer, write_timer/10.0); } static void print_aam_level(const char * msg, int level, int recommended = -1) { // Table 56 of T13/1699-D (ATA8-ACS) Revision 6a, September 6, 2008 // Obsolete since T13/2015-D (ACS-2) Revision 4a, December 9, 2010 const char * s; if (level == 0) s = "vendor specific"; else if (level < 128) s = "unknown/retired"; else if (level == 128) s = "quiet"; else if (level < 254) s = "intermediate"; else if (level == 254) s = "maximum performance"; else s = "reserved"; if (recommended >= 0) pout("%s%d (%s), recommended: %d\n", msg, level, s, recommended); else pout("%s%d (%s)\n", msg, level, s); } static void print_apm_level(const char * msg, int level) { // Table 120 of T13/2015-D (ACS-2) Revision 7, June 22, 2011 const char * s; if (!(1 <= level && level <= 254)) s = "reserved"; else if (level == 1) s = "minimum power consumption with standby"; else if (level < 128) s = "intermediate level with standby"; else if (level == 128) s = "minimum power consumption without standby"; else if (level < 254) s = "intermediate level without standby"; else s = "maximum performance"; pout("%s%d (%s)\n", msg, level, s); } static void print_ata_security_status(const char * msg, unsigned short state) { const char * s1, * s2 = "", * s3 = "", * s4 = ""; // Table 6 of T13/2015-D (ACS-2) Revision 7, June 22, 2011 if (!(state & 0x0001)) s1 = "Unavailable"; else if (!(state & 0x0002)) { s1 = "Disabled, "; if (!(state & 0x0008)) s2 = "NOT FROZEN [SEC1]"; else s2 = "frozen [SEC2]"; } else { s1 = "ENABLED, PW level "; if (!(state & 0x0020)) s2 = "HIGH"; else s2 = "MAX"; if (!(state & 0x0004)) { s3 = ", not locked, "; if (!(state & 0x0008)) s4 = "not frozen [SEC5]"; else s4 = "frozen [SEC6]"; } else { s3 = ", **LOCKED** [SEC4]"; if (state & 0x0010) s4 = ", PW ATTEMPTS EXCEEDED"; } } pout("%s%s%s%s%s\n", msg, s1, s2, s3, s4); } static void print_standby_timer(const char * msg, int timer, const ata_identify_device & drive) { const char * s1 = 0; int hours = 0, minutes = 0 , seconds = 0; // Table 63 of T13/2015-D (ACS-2) Revision 7, June 22, 2011 if (timer == 0) s1 = "disabled"; else if (timer <= 240) seconds = timer * 5, minutes = seconds / 60, seconds %= 60; else if (timer <= 251) minutes = (timer - 240) * 30, hours = minutes / 60, minutes %= 60; else if (timer == 252) minutes = 21; else if (timer == 253) s1 = "between 8 hours and 12 hours"; else if (timer == 255) minutes = 21, seconds = 15; else s1 = "reserved"; const char * s2 = "", * s3 = ""; if (!(drive.words047_079[49-47] & 0x2000)) s2 = " or vendor-specific"; if (timer > 0 && (drive.words047_079[50-47] & 0xc001) == 0x4001) s3 = ", a vendor-specific minimum applies"; if (s1) pout("%s%d (%s%s%s)\n", msg, timer, s1, s2, s3); else pout("%s%d (%02d:%02d:%02d%s%s)\n", msg, timer, hours, minutes, seconds, s2, s3); } int ataPrintMain (ata_device * device, const ata_print_options & options) { // If requested, check power mode first const char * powername = 0; bool powerchg = false; if (options.powermode) { unsigned char powerlimit = 0xff; int powermode = ataCheckPowerMode(device); switch (powermode) { case -1: if (device->is_syscall_unsup()) { pout("CHECK POWER MODE not implemented, ignoring -n option\n"); break; } powername = "SLEEP"; powerlimit = 2; break; case 0: powername = "STANDBY"; powerlimit = 3; break; case 0x80: powername = "IDLE"; powerlimit = 4; break; case 0xff: powername = "ACTIVE or IDLE"; break; default: pout("CHECK POWER MODE returned unknown value 0x%02x, ignoring -n option\n", powermode); break; } if (powername) { if (options.powermode >= powerlimit) { pout("Device is in %s mode, exit(%d)\n", powername, FAILPOWER); return FAILPOWER; } powerchg = (powermode != 0xff); // SMART tests will spin up drives } } // SMART values needed ? bool need_smart_val = ( options.smart_check_status || options.smart_general_values || options.smart_vendor_attrib || options.smart_error_log || options.smart_selftest_log || options.smart_selective_selftest_log || options.smart_ext_error_log || options.smart_ext_selftest_log || options.smart_auto_offl_enable || options.smart_auto_offl_disable || options.smart_selftest_type != -1 ); // SMART must be enabled ? bool need_smart_enabled = ( need_smart_val || options.smart_auto_save_enable || options.smart_auto_save_disable ); // SMART feature set needed ? bool need_smart_support = ( need_smart_enabled || options.smart_enable || options.smart_disable ); // SMART and GP log directories needed ? bool need_smart_logdir = options.smart_logdir; bool need_gp_logdir = ( options.gp_logdir || options.smart_ext_error_log || options.smart_ext_selftest_log || options.devstat_all_pages || options.devstat_ssd_page || !options.devstat_pages.empty() ); unsigned i; for (i = 0; i < options.log_requests.size(); i++) { if (options.log_requests[i].gpl) need_gp_logdir = true; else need_smart_logdir = true; } // SCT commands needed ? bool need_sct_support = ( options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int || options.sct_erc_get || options.sct_erc_set || options.sct_wcache_reorder_get || options.sct_wcache_reorder_set ); // Exit if no further options specified if (!( options.drive_info || options.show_presets || need_smart_support || need_smart_logdir || need_gp_logdir || need_sct_support || options.sataphy || options.identify_word_level >= 0 || options.get_set_used )) { if (powername) pout("Device is in %s mode\n", powername); else pout("ATA device successfully opened\n\n" "Use 'smartctl -a' (or '-x') to print SMART (and more) information\n\n"); return 0; } // Start by getting Drive ID information. We need this, to know if SMART is supported. int returnval = 0; ata_identify_device drive; memset(&drive, 0, sizeof(drive)); unsigned char raw_drive[sizeof(drive)]; memset(&raw_drive, 0, sizeof(raw_drive)); device->clear_err(); int retid = ata_read_identity(device, &drive, options.fix_swapped_id, raw_drive); if (retid < 0) { pout("Read Device Identity failed: %s\n\n", (device->get_errno() ? device->get_errmsg() : "Unknown error")); failuretest(MANDATORY_CMD, returnval|=FAILID); } else if (!nonempty(&drive, sizeof(drive))) { pout("Read Device Identity failed: empty IDENTIFY data\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILID); } // If requested, show which presets would be used for this drive and exit. if (options.show_presets) { show_presets(&drive); return 0; } // Use preset vendor attribute options unless user has requested otherwise. ata_vendor_attr_defs attribute_defs = options.attribute_defs; firmwarebug_defs firmwarebugs = options.firmwarebugs; const drive_settings * dbentry = 0; if (!options.ignore_presets) dbentry = lookup_drive_apply_presets(&drive, attribute_defs, firmwarebugs); // Get capacity, sector sizes and rotation rate ata_size_info sizes; ata_get_size_info(&drive, sizes); int rpm = ata_get_rotation_rate(&drive); // Print ATA IDENTIFY info if requested if (options.identify_word_level >= 0) { pout("=== ATA IDENTIFY DATA ===\n"); // Pass raw data without endianness adjustments ata_print_identify_data(raw_drive, (options.identify_word_level > 0), options.identify_bit_level); } // Print most drive identity information if requested if (options.drive_info) { pout("=== START OF INFORMATION SECTION ===\n"); print_drive_info(&drive, sizes, rpm, dbentry); } // Check and print SMART support and state int smart_supported = -1, smart_enabled = -1; if (need_smart_support || options.drive_info) { // Packet device ? if (retid > 0) { pout("SMART support is: Unavailable - Packet Interface Devices [this device: %s] don't support ATA SMART\n", packetdevicetype(retid-1)); } else { // Disk device: SMART supported and enabled ? smart_supported = ataSmartSupport(&drive); smart_enabled = ataIsSmartEnabled(&drive); if (smart_supported < 0) pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 82-83 don't show if SMART supported.\n"); if (smart_supported && smart_enabled < 0) { pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 85-87 don't show if SMART is enabled.\n"); if (need_smart_support) { failuretest(MANDATORY_CMD, returnval|=FAILSMART); // check SMART support by trying a command pout(" Checking to be sure by trying SMART RETURN STATUS command.\n"); if (ataDoesSmartWork(device)) smart_supported = smart_enabled = 1; } } else if (smart_supported < 0 && (smart_enabled > 0 || dbentry)) // Assume supported if enabled or in drive database smart_supported = 1; if (smart_supported < 0) pout("SMART support is: Unknown - Try option -s with argument 'on' to enable it."); else if (!smart_supported) pout("SMART support is: Unavailable - device lacks SMART capability.\n"); else { if (options.drive_info) pout("SMART support is: Available - device has SMART capability.\n"); if (smart_enabled >= 0) { if (device->ata_identify_is_cached()) { if (options.drive_info) pout(" %sabled status cached by OS, trying SMART RETURN STATUS cmd.\n", (smart_enabled?"En":"Dis")); smart_enabled = ataDoesSmartWork(device); } if (options.drive_info) pout("SMART support is: %s\n", (smart_enabled ? "Enabled" : "Disabled")); } } } } // Print AAM status if (options.get_aam) { if ((drive.command_set_2 & 0xc200) != 0x4200) // word083 pout("AAM feature is: Unavailable\n"); else if (!(drive.word086 & 0x0200)) pout("AAM feature is: Disabled\n"); else print_aam_level("AAM level is: ", drive.words088_255[94-88] & 0xff, drive.words088_255[94-88] >> 8); } // Print APM status if (options.get_apm) { if ((drive.command_set_2 & 0xc008) != 0x4008) // word083 pout("APM feature is: Unavailable\n"); else if (!(drive.word086 & 0x0008)) pout("APM feature is: Disabled\n"); else print_apm_level("APM level is: ", drive.words088_255[91-88] & 0xff); } // Print read look-ahead status if (options.get_lookahead) { pout("Rd look-ahead is: %s\n", ( (drive.command_set_2 & 0xc000) != 0x4000 // word083 || !(drive.command_set_1 & 0x0040)) ? "Unavailable" : // word082 !(drive.cfs_enable_1 & 0x0040) ? "Disabled" : "Enabled"); // word085 } // Print write cache status if (options.get_wcache) { pout("Write cache is: %s\n", ( (drive.command_set_2 & 0xc000) != 0x4000 // word083 || !(drive.command_set_1 & 0x0020)) ? "Unavailable" : // word082 !(drive.cfs_enable_1 & 0x0020) ? "Disabled" : "Enabled"); // word085 } // Print ATA security status if (options.get_security) print_ata_security_status("ATA Security is: ", drive.words088_255[128-88]); // Check if SCT commands available bool sct_ok = false; if (need_sct_support) { if (!isSCTCapable(&drive)) { failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else sct_ok = true; } // Print write cache reordering status if (sct_ok && options.sct_wcache_reorder_get) { int wcache_reorder=ataGetSetSCTWriteCacheReordering(device, false /* enable */, false /* persistent */, false /*set*/); pout("Wt Cache Reorder: "); switch(wcache_reorder) { case 0: /* not defined in standard but returned on some drives if not set */ pout("Unknown"); break; case 1: pout("Enabled"); break; case 2: pout("Disabled"); break; default: /* error? */ pout("N/A"); break; } pout("\n"); } if (!sct_ok && options.sct_wcache_reorder_get) { pout("Wt Cache Reorder: Unavailable\n"); } // Print remaining drive info if (options.drive_info) { // Print the (now possibly changed) power mode if available if (powername) pout("Power mode %s %s\n", (powerchg?"was:":"is: "), powername); pout("\n"); } // Exit if SMART is not supported but must be available to proceed if (smart_supported <= 0 && need_smart_support) failuretest(MANDATORY_CMD, returnval|=FAILSMART); // START OF THE ENABLE/DISABLE SECTION OF THE CODE if ( options.smart_disable || options.smart_enable || options.smart_auto_save_disable || options.smart_auto_save_enable || options.smart_auto_offl_disable || options.smart_auto_offl_enable || options.set_aam || options.set_apm || options.set_lookahead || options.set_wcache || options.set_security_freeze || options.set_standby || options.sct_wcache_reorder_set) pout("=== START OF ENABLE/DISABLE COMMANDS SECTION ===\n"); // Enable/Disable AAM if (options.set_aam) { if (options.set_aam > 0) { if (!ata_set_features(device, ATA_ENABLE_AAM, options.set_aam-1)) { pout("AAM enable failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else print_aam_level("AAM set to level ", options.set_aam-1); } else { if (!ata_set_features(device, ATA_DISABLE_AAM)) { pout("AAM disable failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else pout("AAM disabled\n"); } } // Enable/Disable APM if (options.set_apm) { if (options.set_apm > 0) { if (!ata_set_features(device, ATA_ENABLE_APM, options.set_apm-1)) { pout("APM enable failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else print_apm_level("APM set to level ", options.set_apm-1); } else { if (!ata_set_features(device, ATA_DISABLE_APM)) { pout("APM disable failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else pout("APM disabled\n"); } } // Enable/Disable read look-ahead if (options.set_lookahead) { bool enable = (options.set_lookahead > 0); if (!ata_set_features(device, (enable ? ATA_ENABLE_READ_LOOK_AHEAD : ATA_DISABLE_READ_LOOK_AHEAD))) { pout("Read look-ahead %sable failed: %s\n", (enable ? "en" : "dis"), device->get_errmsg()); returnval |= FAILSMART; } else pout("Read look-ahead %sabled\n", (enable ? "en" : "dis")); } // Enable/Disable write cache if (options.set_wcache) { bool enable = (options.set_wcache > 0); if (!ata_set_features(device, (enable ? ATA_ENABLE_WRITE_CACHE : ATA_DISABLE_WRITE_CACHE))) { pout("Write cache %sable failed: %s\n", (enable ? "en" : "dis"), device->get_errmsg()); returnval |= FAILSMART; } else pout("Write cache %sabled\n", (enable ? "en" : "dis")); } // Enable/Disable write cache reordering if (sct_ok && options.sct_wcache_reorder_set) { bool enable = (options.sct_wcache_reorder_set > 0); int wcache_reorder=ataGetSetSCTWriteCacheReordering(device, enable, false /* persistent */, true /*set*/); if (wcache_reorder < 0) { pout("Write cache reordering %sable failed: %s\n", (enable ? "en" : "dis"), device->get_errmsg()); returnval |= FAILSMART; } else pout("Write cache reordering %sabled\n", (enable ? "en" : "dis")); } // Freeze ATA security if (options.set_security_freeze) { if (!ata_nodata_command(device, ATA_SECURITY_FREEZE_LOCK)) { pout("ATA SECURITY FREEZE LOCK failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else pout("ATA Security set to frozen mode\n"); } // Set standby timer if (options.set_standby) { if (!ata_nodata_command(device, ATA_IDLE, options.set_standby-1)) { pout("ATA IDLE command failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else print_standby_timer("Standby timer set to ", options.set_standby-1, drive); } // Enable/Disable SMART commands if (options.smart_enable) { if (ataEnableSmart(device)) { pout("SMART Enable failed: %s\n\n", device->get_errmsg()); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } else { pout("SMART Enabled.\n"); smart_enabled = 1; } } // Turn off SMART on device if (options.smart_disable) { if (ataDisableSmart(device)) { pout("SMART Disable failed: %s\n\n", device->get_errmsg()); failuretest(MANDATORY_CMD,returnval|=FAILSMART); } } // Exit if SMART is disabled but must be enabled to proceed if (options.smart_disable || (smart_enabled <= 0 && need_smart_enabled && !is_permissive())) { pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n"); if (!options.smart_disable) pout("(override with '-T permissive' option)\n"); return returnval; } // Enable/Disable Auto-save attributes if (options.smart_auto_save_enable) { if (ataEnableAutoSave(device)){ pout("SMART Enable Attribute Autosave failed: %s\n\n", device->get_errmsg()); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } else pout("SMART Attribute Autosave Enabled.\n"); } if (options.smart_auto_save_disable) { if (ataDisableAutoSave(device)){ pout("SMART Disable Attribute Autosave failed: %s\n\n", device->get_errmsg()); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } else pout("SMART Attribute Autosave Disabled.\n"); } // Read SMART values and thresholds if necessary ata_smart_values smartval; memset(&smartval, 0, sizeof(smartval)); ata_smart_thresholds_pvt smartthres; memset(&smartthres, 0, sizeof(smartthres)); bool smart_val_ok = false, smart_thres_ok = false; if (need_smart_val) { if (ataReadSmartValues(device, &smartval)) { pout("Read SMART Data failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { smart_val_ok = true; if (options.smart_check_status || options.smart_vendor_attrib) { if (ataReadSmartThresholds(device, &smartthres)){ pout("Read SMART Thresholds failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else smart_thres_ok = true; } } } // Enable/Disable Off-line testing bool needupdate = false; if (options.smart_auto_offl_enable) { if (!isSupportAutomaticTimer(&smartval)){ pout("SMART Automatic Timers not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } needupdate = smart_val_ok; if (ataEnableAutoOffline(device)){ pout("SMART Enable Automatic Offline failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else pout("SMART Automatic Offline Testing Enabled every four hours.\n"); } if (options.smart_auto_offl_disable) { if (!isSupportAutomaticTimer(&smartval)){ pout("SMART Automatic Timers not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } needupdate = smart_val_ok; if (ataDisableAutoOffline(device)){ pout("SMART Disable Automatic Offline failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else pout("SMART Automatic Offline Testing Disabled.\n"); } if (needupdate && ataReadSmartValues(device, &smartval)){ pout("Read SMART Data failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); smart_val_ok = false; } // all this for a newline! if ( options.smart_disable || options.smart_enable || options.smart_auto_save_disable || options.smart_auto_save_enable || options.smart_auto_offl_disable || options.smart_auto_offl_enable || options.set_aam || options.set_apm || options.set_lookahead || options.set_wcache || options.set_security_freeze || options.set_standby || options.sct_wcache_reorder_set) pout("\n"); // START OF READ-ONLY OPTIONS APART FROM -V and -i if ( options.smart_check_status || options.smart_general_values || options.smart_vendor_attrib || options.smart_error_log || options.smart_selftest_log || options.smart_selective_selftest_log || options.smart_ext_error_log || options.smart_ext_selftest_log || options.sct_temp_sts || options.sct_temp_hist ) pout("=== START OF READ SMART DATA SECTION ===\n"); // Check SMART status if (options.smart_check_status) { switch (ataSmartStatus2(device)) { case 0: // The case where the disk health is OK pout("SMART overall-health self-assessment test result: PASSED\n"); if (smart_thres_ok && find_failed_attr(&smartval, &smartthres, attribute_defs, 0)) { if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for marginal Attributes.\n\n"); else { print_on(); pout("Please note the following marginal Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 2, options.output_format); } returnval|=FAILAGE; } else pout("\n"); break; case 1: // The case where the disk health is NOT OK print_on(); pout("SMART overall-health self-assessment test result: FAILED!\n" "Drive failure expected in less than 24 hours. SAVE ALL DATA.\n"); print_off(); if (smart_thres_ok && find_failed_attr(&smartval, &smartthres, attribute_defs, 1)) { returnval|=FAILATTR; if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for failed Attributes.\n\n"); else { print_on(); pout("Failed Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 1, options.output_format); } } else pout("No failed Attributes found.\n\n"); returnval|=FAILSTATUS; print_off(); break; case -1: default: // Something went wrong with the SMART STATUS command. // The ATA SMART RETURN STATUS command provides the result in the ATA output // registers. Buggy ATA/SATA drivers and SAT Layers often do not properly // return the registers values. failuretest(OPTIONAL_CMD, returnval|=FAILSMART); if (!(smart_val_ok && smart_thres_ok)) { print_on(); pout("SMART overall-health self-assessment test result: UNKNOWN!\n" "SMART Status, Attributes and Thresholds cannot be read.\n\n"); } else if (find_failed_attr(&smartval, &smartthres, attribute_defs, 1)) { print_on(); pout("SMART overall-health self-assessment test result: FAILED!\n" "Drive failure expected in less than 24 hours. SAVE ALL DATA.\n"); print_off(); returnval|=FAILATTR; returnval|=FAILSTATUS; if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for failed Attributes.\n\n"); else { print_on(); pout("Failed Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 1, options.output_format); } } else { pout("SMART overall-health self-assessment test result: PASSED\n"); pout("Warning: This result is based on an Attribute check.\n"); if (find_failed_attr(&smartval, &smartthres, attribute_defs, 0)) { if (options.smart_vendor_attrib) pout("See vendor-specific Attribute list for marginal Attributes.\n\n"); else { print_on(); pout("Please note the following marginal Attributes:\n"); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 2, options.output_format); } returnval|=FAILAGE; } else pout("\n"); } print_off(); break; } // end of switch statement print_off(); } // end of checking SMART Status // Print general SMART values if (smart_val_ok && options.smart_general_values) PrintGeneralSmartValues(&smartval, &drive, firmwarebugs); // Print vendor-specific attributes if (smart_val_ok && options.smart_vendor_attrib) { print_on(); PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, (printing_is_switchable ? 2 : 0), options.output_format); print_off(); } // If GP Log is supported use smart log directory for // error and selftest log support check. if ( isGeneralPurposeLoggingCapable(&drive) && ( options.smart_error_log || options.smart_selftest_log || options.retry_error_log || options.retry_selftest_log)) need_smart_logdir = true; ata_smart_log_directory smartlogdir_buf, gplogdir_buf; const ata_smart_log_directory * smartlogdir = 0, * gplogdir = 0; // Read SMART Log directory if (need_smart_logdir) { if (firmwarebugs.is_set(BUG_NOLOGDIR)) smartlogdir = fake_logdir(&smartlogdir_buf, options); else if (ataReadLogDirectory(device, &smartlogdir_buf, false)) { pout("Read SMART Log Directory failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else smartlogdir = &smartlogdir_buf; } // Read GP Log directory if (need_gp_logdir) { if (firmwarebugs.is_set(BUG_NOLOGDIR)) gplogdir = fake_logdir(&gplogdir_buf, options); else if (ataReadLogDirectory(device, &gplogdir_buf, true)) { pout("Read GP Log Directory failed\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else gplogdir = &gplogdir_buf; } // Print log directories if ((options.gp_logdir && gplogdir) || (options.smart_logdir && smartlogdir)) { if (firmwarebugs.is_set(BUG_NOLOGDIR)) pout("Log Directories not read due to '-F nologdir' option\n\n"); else PrintLogDirectories(gplogdir, smartlogdir); } // Print log pages for (i = 0; i < options.log_requests.size(); i++) { const ata_log_request & req = options.log_requests[i]; const char * type; unsigned max_nsectors; if (req.gpl) { type = "General Purpose"; max_nsectors = GetNumLogSectors(gplogdir, req.logaddr, true); } else { type = "SMART"; max_nsectors = GetNumLogSectors(smartlogdir, req.logaddr, false); } if (!max_nsectors) { if (!is_permissive()) { pout("%s Log 0x%02x does not exist (override with '-T permissive' option)\n", type, req.logaddr); continue; } max_nsectors = req.page+1; } if (max_nsectors <= req.page) { pout("%s Log 0x%02x has only %u sectors, output skipped\n", type, req.logaddr, max_nsectors); continue; } unsigned ns = req.nsectors; if (ns > max_nsectors - req.page) { if (req.nsectors != ~0U) // "FIRST-max" pout("%s Log 0x%02x has only %u sectors, output truncated\n", type, req.logaddr, max_nsectors); ns = max_nsectors - req.page; } // SMART log don't support sector offset, start with first sector unsigned offs = (req.gpl ? 0 : req.page); raw_buffer log_buf((offs + ns) * 512); bool ok; if (req.gpl) ok = ataReadLogExt(device, req.logaddr, 0x00, req.page, log_buf.data(), ns); else ok = ataReadSmartLog(device, req.logaddr, log_buf.data(), offs + ns); if (!ok) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else PrintLogPages(type, log_buf.data() + offs*512, req.logaddr, req.page, ns, max_nsectors); } // Print SMART Extendend Comprehensive Error Log bool do_smart_error_log = options.smart_error_log; if (options.smart_ext_error_log) { bool ok = false; unsigned nsectors = GetNumLogSectors(gplogdir, 0x03, true); if (!nsectors) pout("SMART Extended Comprehensive Error Log (GP Log 0x03) not supported\n\n"); else if (nsectors >= 256) pout("SMART Extended Comprehensive Error Log size %u not supported\n\n", nsectors); else { raw_buffer log_03_buf(nsectors * 512); ata_smart_exterrlog * log_03 = (ata_smart_exterrlog *)log_03_buf.data(); if (!ataReadExtErrorLog(device, log_03, nsectors, firmwarebugs)) { pout("Read SMART Extended Comprehensive Error Log failed\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { if (PrintSmartExtErrorLog(log_03, nsectors, options.smart_ext_error_log)) returnval |= FAILERR; ok = true; } } if (!ok) { if (options.retry_error_log) do_smart_error_log = true; else if (!do_smart_error_log) pout("Try '-l [xerror,]error' to read traditional SMART Error Log\n"); } } // Print SMART error log if (do_smart_error_log) { if (!( ( smartlogdir && GetNumLogSectors(smartlogdir, 0x01, false)) || (!smartlogdir && isSmartErrorLogCapable(&smartval, &drive) ) || is_permissive() )) { pout("SMART Error Log not supported\n\n"); } else { ata_smart_errorlog smarterror; memset(&smarterror, 0, sizeof(smarterror)); if (ataReadErrorLog(device, &smarterror, firmwarebugs)) { pout("Read SMART Error Log failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { // quiet mode is turned on inside PrintSmartErrorLog() if (PrintSmartErrorlog(&smarterror, firmwarebugs)) returnval|=FAILERR; print_off(); } } } // Print SMART Extendend Self-test Log bool do_smart_selftest_log = options.smart_selftest_log; if (options.smart_ext_selftest_log) { bool ok = false; unsigned nsectors = GetNumLogSectors(gplogdir, 0x07, true); if (!nsectors) pout("SMART Extended Self-test Log (GP Log 0x07) not supported\n\n"); else if (nsectors >= 256) pout("SMART Extended Self-test Log size %u not supported\n\n", nsectors); else { raw_buffer log_07_buf(nsectors * 512); ata_smart_extselftestlog * log_07 = (ata_smart_extselftestlog *)log_07_buf.data(); if (!ataReadExtSelfTestLog(device, log_07, nsectors)) { pout("Read SMART Extended Self-test Log failed\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { if (PrintSmartExtSelfTestLog(log_07, nsectors, options.smart_ext_selftest_log)) returnval |= FAILLOG; ok = true; } } if (!ok) { if (options.retry_selftest_log) do_smart_selftest_log = true; else if (!do_smart_selftest_log) pout("Try '-l [xselftest,]selftest' to read traditional SMART Self Test Log\n"); } } // Print SMART self-test log if (do_smart_selftest_log) { if (!( ( smartlogdir && GetNumLogSectors(smartlogdir, 0x06, false)) || (!smartlogdir && isSmartTestLogCapable(&smartval, &drive) ) || is_permissive() )) { pout("SMART Self-test Log not supported\n\n"); } else { ata_smart_selftestlog smartselftest; memset(&smartselftest, 0, sizeof(smartselftest)); if (ataReadSelfTestLog(device, &smartselftest, firmwarebugs)) { pout("Read SMART Self-test Log failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { print_on(); if (ataPrintSmartSelfTestlog(&smartselftest, !printing_is_switchable, firmwarebugs)) returnval |= FAILLOG; print_off(); pout("\n"); } } } // Print SMART selective self-test log if (options.smart_selective_selftest_log) { ata_selective_self_test_log log; if (!isSupportSelectiveSelfTest(&smartval)) pout("Selective Self-tests/Logging not supported\n\n"); else if(ataReadSelectiveSelfTestLog(device, &log)) { pout("Read SMART Selective Self-test Log failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { print_on(); // If any errors were found, they are logged in the SMART Self-test log. // So there is no need to print the Selective Self Test log in silent // mode. if (!printing_is_switchable) ataPrintSelectiveSelfTestLog(&log, &smartval); print_off(); pout("\n"); } } if(!sct_ok && (options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int || options.sct_erc_get || options.sct_erc_set )) pout("SCT Commands not supported\n\n"); // Print SCT status and temperature history table if (sct_ok && (options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int)) { for (;;) { if (options.sct_temp_sts || options.sct_temp_hist) { ata_sct_status_response sts; ata_sct_temperature_history_table tmh; if (!options.sct_temp_hist) { // Read SCT status only if (ataReadSCTStatus(device, &sts)) { failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } } else { if (!isSCTDataTableCapable(&drive)) { pout("SCT Data Table command not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } // Read SCT status and temperature history if (ataReadSCTTempHist(device, &tmh, &sts)) { pout("Read SCT Temperature History failed\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } } if (options.sct_temp_sts) ataPrintSCTStatus(&sts); if (options.sct_temp_hist) ataPrintSCTTempHist(&tmh); pout("\n"); } if (options.sct_temp_int) { // Set new temperature logging interval if (!isSCTFeatureControlCapable(&drive)) { pout("SCT Feature Control command not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } if (ataSetSCTTempInterval(device, options.sct_temp_int, options.sct_temp_int_pers)) { pout("Write Temperature Logging Interval failed\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); break; } pout("Temperature Logging Interval set to %u minute%s (%s)\n", options.sct_temp_int, (options.sct_temp_int == 1 ? "" : "s"), (options.sct_temp_int_pers ? "persistent" : "volatile")); } break; } } // SCT Error Recovery Control if (sct_ok && (options.sct_erc_get || options.sct_erc_set)) { if (!isSCTErrorRecoveryControlCapable(&drive)) { pout("SCT Error Recovery Control command not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else { bool sct_erc_get = options.sct_erc_get; if (options.sct_erc_set) { // Set SCT Error Recovery Control if ( ataSetSCTErrorRecoveryControltime(device, 1, options.sct_erc_readtime ) || ataSetSCTErrorRecoveryControltime(device, 2, options.sct_erc_writetime)) { pout("SCT (Set) Error Recovery Control command failed\n"); if (!( (options.sct_erc_readtime == 70 && options.sct_erc_writetime == 70) || (options.sct_erc_readtime == 0 && options.sct_erc_writetime == 0))) pout("Retry with: 'scterc,70,70' to enable ERC or 'scterc,0,0' to disable\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); sct_erc_get = false; } else if (!sct_erc_get) ataPrintSCTErrorRecoveryControl(true, options.sct_erc_readtime, options.sct_erc_writetime); } if (sct_erc_get) { // Print SCT Error Recovery Control unsigned short read_timer, write_timer; if ( ataGetSCTErrorRecoveryControltime(device, 1, read_timer ) || ataGetSCTErrorRecoveryControltime(device, 2, write_timer)) { pout("SCT (Get) Error Recovery Control command failed\n"); if (options.sct_erc_set) { pout("The previous SCT (Set) Error Recovery Control command succeeded\n"); ataPrintSCTErrorRecoveryControl(true, options.sct_erc_readtime, options.sct_erc_writetime); } failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else ataPrintSCTErrorRecoveryControl(false, read_timer, write_timer); } pout("\n"); } } // Print Device Statistics if (options.devstat_all_pages || options.devstat_ssd_page || !options.devstat_pages.empty()) { unsigned nsectors = GetNumLogSectors(gplogdir, 0x04, true); if (!nsectors) pout("Device Statistics (GP Log 0x04) not supported\n\n"); else if (!print_device_statistics(device, nsectors, options.devstat_pages, options.devstat_all_pages, options.devstat_ssd_page)) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } // Print SATA Phy Event Counters if (options.sataphy) { unsigned nsectors = GetNumLogSectors(gplogdir, 0x11, true); // Packet interface devices do not provide a log directory, check support bit if (!nsectors && (drive.words047_079[76-47] & 0x0401) == 0x0400) nsectors = 1; if (!nsectors) pout("SATA Phy Event Counters (GP Log 0x11) not supported\n\n"); else if (nsectors != 1) pout("SATA Phy Event Counters with %u sectors not supported\n\n", nsectors); else { unsigned char log_11[512] = {0, }; unsigned char features = (options.sataphy_reset ? 0x01 : 0x00); if (!ataReadLogExt(device, 0x11, features, 0, log_11, 1)) { pout("Read SATA Phy Event Counters failed\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } else PrintSataPhyEventCounters(log_11, options.sataphy_reset); } } // Set to standby (spindown) mode // (Above commands may spinup drive) if (options.set_standby_now) { if (!ata_nodata_command(device, ATA_STANDBY_IMMEDIATE)) { pout("ATA STANDBY IMMEDIATE command failed: %s\n", device->get_errmsg()); returnval |= FAILSMART; } else pout("Device placed in STANDBY mode\n"); } // START OF THE TESTING SECTION OF THE CODE. IF NO TESTING, RETURN if (!smart_val_ok || options.smart_selftest_type == -1) return returnval; pout("=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===\n"); // if doing a self-test, be sure it's supported by the hardware switch (options.smart_selftest_type) { case OFFLINE_FULL_SCAN: if (!isSupportExecuteOfflineImmediate(&smartval)){ pout("Execute Offline Immediate function not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } break; case ABORT_SELF_TEST: case SHORT_SELF_TEST: case EXTEND_SELF_TEST: case SHORT_CAPTIVE_SELF_TEST: case EXTEND_CAPTIVE_SELF_TEST: if (!isSupportSelfTest(&smartval)){ pout("Self-test functions not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } break; case CONVEYANCE_SELF_TEST: case CONVEYANCE_CAPTIVE_SELF_TEST: if (!isSupportConveyanceSelfTest(&smartval)){ pout("Conveyance Self-test functions not supported\n\n"); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } break; case SELECTIVE_SELF_TEST: case SELECTIVE_CAPTIVE_SELF_TEST: if (!isSupportSelectiveSelfTest(&smartval)){ pout("Selective Self-test functions not supported\n\n"); failuretest(MANDATORY_CMD, returnval|=FAILSMART); } break; default: break; // Vendor specific type } // Now do the test. Note ataSmartTest prints its own error/success // messages if (ataSmartTest(device, options.smart_selftest_type, options.smart_selftest_force, options.smart_selective_args, &smartval, sizes.sectors )) failuretest(OPTIONAL_CMD, returnval|=FAILSMART); else { // Tell user how long test will take to complete. This is tricky // because in the case of an Offline Full Scan, the completion // timer is volatile, and needs to be read AFTER the command is // given. If this will interrupt the Offline Full Scan, we don't // do it, just warn user. if (options.smart_selftest_type == OFFLINE_FULL_SCAN) { if (isSupportOfflineAbort(&smartval)) pout("Note: giving further SMART commands will abort Offline testing\n"); else if (ataReadSmartValues(device, &smartval)){ pout("Read SMART Data failed: %s\n\n", device->get_errmsg()); failuretest(OPTIONAL_CMD, returnval|=FAILSMART); } } // Now say how long the test will take to complete int timewait = TestTime(&smartval, options.smart_selftest_type); if (timewait) { time_t t=time(NULL); if (options.smart_selftest_type == OFFLINE_FULL_SCAN) { t+=timewait; pout("Please wait %d seconds for test to complete.\n", (int)timewait); } else { t+=timewait*60; pout("Please wait %d minutes for test to complete.\n", (int)timewait); } pout("Test will complete after %s\n", ctime(&t)); if ( options.smart_selftest_type != SHORT_CAPTIVE_SELF_TEST && options.smart_selftest_type != EXTEND_CAPTIVE_SELF_TEST && options.smart_selftest_type != CONVEYANCE_CAPTIVE_SELF_TEST && options.smart_selftest_type != SELECTIVE_CAPTIVE_SELF_TEST ) pout("Use smartctl -X to abort test.\n"); } } return returnval; }