/*
* ataprint.cpp
*
* Home page of code is: http://smartmontools.sourceforge.net
*
* Copyright (C) 2002-11 Bruce Allen <smartmontools-support@lists.sourceforge.net>
* Copyright (C) 2008-13 Christian Franke <smartmontools-support@lists.sourceforge.net>
* Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example COPYING); If not, see <http://www.gnu.org/licenses/>.
*
* This code was originally developed as a Senior Thesis by Michael Cornwell
* at the Concurrent Systems Laboratory (now part of the Storage Systems
* Research Center), Jack Baskin School of Engineering, University of
* California, Santa Cruz. http://ssrc.soe.ucsc.edu/
*
*/
#include "config.h"
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "int64.h"
#include "atacmdnames.h"
#include "atacmds.h"
#include "ataidentify.h"
#include "dev_interface.h"
#include "ataprint.h"
#include "smartctl.h"
#include "utility.h"
#include "knowndrives.h"
const char * ataprint_cpp_cvsid = "$Id: ataprint.cpp,v 1.1.1.4 2013/10/14 07:54:03 misho Exp $"
ATAPRINT_H_CVSID;
static const char * infofound(const char *output) {
return (*output ? output : "[No Information Found]");
}
// Return true if '-T permissive' is specified,
// used to ignore missing capabilities
static bool is_permissive()
{
if (!failuretest_permissive)
return false;
failuretest_permissive--;
return true;
}
/* For the given Command Register (CR) and Features Register (FR), attempts
* to construct a string that describes the contents of the Status
* Register (ST) and Error Register (ER). If the meanings of the flags of
* the error register are not known for the given command then it returns an
* empty string.
*
* The meanings of the flags of the error register for all commands are
* described in the ATA spec and could all be supported here in theory.
* Currently, only a few commands are supported (those that have been seen
* to produce errors). If many more are to be added then this function
* should probably be redesigned.
*/
static std::string format_st_er_desc(
unsigned char CR, unsigned char FR,
unsigned char ST, unsigned char ER,
unsigned short SC,
const ata_smart_errorlog_error_struct * lba28_regs,
const ata_smart_exterrlog_error * lba48_regs
)
{
const char *error_flag[8];
int i, print_lba=0, print_sector=0;
// Set of character strings corresponding to different error codes.
// Please keep in alphabetic order if you add more.
const char *abrt = "ABRT"; // ABORTED
const char *amnf = "AMNF"; // ADDRESS MARK NOT FOUND
const char *ccto = "CCTO"; // COMMAND COMPLETION TIMED OUT
const char *eom = "EOM"; // END OF MEDIA
const char *icrc = "ICRC"; // INTERFACE CRC ERROR
const char *idnf = "IDNF"; // ID NOT FOUND
const char *ili = "ILI"; // MEANING OF THIS BIT IS COMMAND-SET SPECIFIC
const char *mc = "MC"; // MEDIA CHANGED
const char *mcr = "MCR"; // MEDIA CHANGE REQUEST
const char *nm = "NM"; // NO MEDIA
const char *obs = "obs"; // OBSOLETE
const char *tk0nf = "TK0NF"; // TRACK 0 NOT FOUND
const char *unc = "UNC"; // UNCORRECTABLE
const char *wp = "WP"; // WRITE PROTECTED
/* If for any command the Device Fault flag of the status register is
* not used then used_device_fault should be set to 0 (in the CR switch
* below)
*/
int uses_device_fault = 1;
/* A value of NULL means that the error flag isn't used */
for (i = 0; i < 8; i++)
error_flag[i] = NULL;
std::string str;
switch (CR) {
case 0x10: // RECALIBRATE
error_flag[2] = abrt;
error_flag[1] = tk0nf;
break;
case 0x20: /* READ SECTOR(S) */
case 0x21: // READ SECTOR(S)
case 0x24: // READ SECTOR(S) EXT
case 0xC4: /* READ MULTIPLE */
case 0x29: // READ MULTIPLE EXT
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
break;
case 0x22: // READ LONG (with retries)
case 0x23: // READ LONG (without retries)
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = amnf;
print_lba=1;
break;
case 0x2a: // READ STREAM DMA
case 0x2b: // READ STREAM PIO
if (CR==0x2a)
error_flag[7] = icrc;
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = ccto;
print_lba=1;
print_sector=SC;
break;
case 0x3A: // WRITE STREAM DMA
case 0x3B: // WRITE STREAM PIO
if (CR==0x3A)
error_flag[7] = icrc;
error_flag[6] = wp;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = ccto;
print_lba=1;
print_sector=SC;
break;
case 0x25: // READ DMA EXT
case 0x26: // READ DMA QUEUED EXT
case 0xC7: // READ DMA QUEUED
case 0xC8: // READ DMA (with retries)
case 0xC9: // READ DMA (without retries, obsolete since ATA-5)
case 0x60: // READ FPDMA QUEUED (NCQ)
error_flag[7] = icrc;
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
if (CR==0x25 || CR==0xC8)
print_sector=SC;
break;
case 0x30: /* WRITE SECTOR(S) */
case 0x31: // WRITE SECTOR(S)
case 0x34: // WRITE SECTOR(S) EXT
case 0xC5: /* WRITE MULTIPLE */
case 0x39: // WRITE MULTIPLE EXT
case 0xCE: // WRITE MULTIPLE FUA EXT
error_flag[6] = wp;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
print_lba=1;
break;
case 0x32: // WRITE LONG (with retries)
case 0x33: // WRITE LONG (without retries)
error_flag[4] = idnf;
error_flag[2] = abrt;
print_lba=1;
break;
case 0x3C: // WRITE VERIFY
error_flag[6] = unc;
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = amnf;
print_lba=1;
break;
case 0x40: // READ VERIFY SECTOR(S) with retries
case 0x41: // READ VERIFY SECTOR(S) without retries
case 0x42: // READ VERIFY SECTOR(S) EXT
error_flag[6] = unc;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
break;
case 0xA0: /* PACKET */
/* Bits 4-7 are all used for sense key (a 'command packet set specific error
* indication' according to the ATA/ATAPI-7 standard), so "Sense key" will
* be repeated in the error description string if more than one of those
* bits is set.
*/
error_flag[7] = "Sense key (bit 3)",
error_flag[6] = "Sense key (bit 2)",
error_flag[5] = "Sense key (bit 1)",
error_flag[4] = "Sense key (bit 0)",
error_flag[2] = abrt;
error_flag[1] = eom;
error_flag[0] = ili;
break;
case 0xA1: /* IDENTIFY PACKET DEVICE */
case 0xEF: /* SET FEATURES */
case 0x00: /* NOP */
case 0xC6: /* SET MULTIPLE MODE */
error_flag[2] = abrt;
break;
case 0x2F: // READ LOG EXT
error_flag[6] = unc;
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0x3F: // WRITE LOG EXT
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0xB0: /* SMART */
switch(FR) {
case 0xD0: // SMART READ DATA
case 0xD1: // SMART READ ATTRIBUTE THRESHOLDS
case 0xD5: /* SMART READ LOG */
error_flag[6] = unc;
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0xD6: /* SMART WRITE LOG */
error_flag[4] = idnf;
error_flag[2] = abrt;
error_flag[0] = obs;
break;
case 0xD2: // Enable/Disable Attribute Autosave
case 0xD3: // SMART SAVE ATTRIBUTE VALUES (ATA-3)
case 0xD8: // SMART ENABLE OPERATIONS
case 0xD9: /* SMART DISABLE OPERATIONS */
case 0xDA: /* SMART RETURN STATUS */
case 0xDB: // Enable/Disable Auto Offline (SFF)
error_flag[2] = abrt;
break;
case 0xD4: // SMART EXECUTE IMMEDIATE OFFLINE
error_flag[4] = idnf;
error_flag[2] = abrt;
break;
default:
return str; // ""
break;
}
break;
case 0xB1: /* DEVICE CONFIGURATION */
switch (FR) {
case 0xC0: /* DEVICE CONFIGURATION RESTORE */
error_flag[2] = abrt;
break;
default:
return str; // ""
break;
}
break;
case 0xCA: // WRITE DMA (with retries)
case 0xCB: // WRITE DMA (without retries, obsolete since ATA-5)
case 0x35: // WRITE DMA EXT
case 0x3D: // WRITE DMA FUA EXT
case 0xCC: // WRITE DMA QUEUED
case 0x36: // WRITE DMA QUEUED EXT
case 0x3E: // WRITE DMA QUEUED FUA EXT
case 0x61: // WRITE FPDMA QUEUED (NCQ)
error_flag[7] = icrc;
error_flag[6] = wp;
error_flag[5] = mc;
error_flag[4] = idnf;
error_flag[3] = mcr;
error_flag[2] = abrt;
error_flag[1] = nm;
error_flag[0] = amnf;
print_lba=1;
if (CR==0x35)
print_sector=SC;
break;
case 0xE4: // READ BUFFER
case 0xE8: // WRITE BUFFER
error_flag[2] = abrt;
break;
default:
return str; // ""
}
/* We ignore any status flags other than Device Fault and Error */
if (uses_device_fault && (ST & (1 << 5))) {
str = "Device Fault";
if (ST & 1) // Error flag
str += "; ";
}
if (ST & 1) { // Error flag
int count = 0;
str += "Error: ";
for (i = 7; i >= 0; i--)
if ((ER & (1 << i)) && (error_flag[i])) {
if (count++ > 0)
str += ", ";
str += error_flag[i];
}
}
// If the error was a READ or WRITE error, print the Logical Block
// Address (LBA) at which the read or write failed.
if (print_lba) {
// print number of sectors, if known, and append to print string
if (print_sector)
str += strprintf(" %d sectors", print_sector);
if (lba28_regs) {
unsigned lba;
// bits 24-27: bits 0-3 of DH
lba = 0xf & lba28_regs->drive_head;
lba <<= 8;
// bits 16-23: CH
lba |= lba28_regs->cylinder_high;
lba <<= 8;
// bits 8-15: CL
lba |= lba28_regs->cylinder_low;
lba <<= 8;
// bits 0-7: SN
lba |= lba28_regs->sector_number;
str += strprintf(" at LBA = 0x%08x = %u", lba, lba);
}
else if (lba48_regs) {
// This assumes that upper LBA registers are 0 for 28-bit commands
// (TODO: detect 48-bit commands above)
uint64_t lba48;
lba48 = lba48_regs->lba_high_register_hi;
lba48 <<= 8;
lba48 |= lba48_regs->lba_mid_register_hi;
lba48 <<= 8;
lba48 |= lba48_regs->lba_low_register_hi;
lba48 |= lba48_regs->device_register & 0xf;
lba48 <<= 8;
lba48 |= lba48_regs->lba_high_register;
lba48 <<= 8;
lba48 |= lba48_regs->lba_mid_register;
lba48 <<= 8;
lba48 |= lba48_regs->lba_low_register;
str += strprintf(" at LBA = 0x%08"PRIx64" = %"PRIu64, lba48, lba48);
}
}
return str;
}
static inline std::string format_st_er_desc(
const ata_smart_errorlog_struct * data)
{
return format_st_er_desc(
data->commands[4].commandreg,
data->commands[4].featuresreg,
data->error_struct.status,
data->error_struct.error_register,
data->error_struct.sector_count,
&data->error_struct, (const ata_smart_exterrlog_error *)0);
}
static inline std::string format_st_er_desc(
const ata_smart_exterrlog_error_log * data)
{
return format_st_er_desc(
data->commands[4].command_register,
data->commands[4].features_register,
data->error.status_register,
data->error.error_register,
data->error.count_register_hi << 8 | data->error.count_register,
(const ata_smart_errorlog_error_struct *)0, &data->error);
}
static int find_msb(unsigned short word)
{
for (int bit = 15; bit >= 0; bit--)
if (word & (1 << bit))
return bit;
return -1;
}
static const char * get_ata_major_version(const ata_identify_device * drive)
{
switch (find_msb(drive->major_rev_num)) {
case 10: return "ACS-3";
case 9: return "ACS-2";
case 8: return "ATA8-ACS";
case 7: return "ATA/ATAPI-7";
case 6: return "ATA/ATAPI-6";
case 5: return "ATA/ATAPI-5";
case 4: return "ATA/ATAPI-4";
case 3: return "ATA-3";
case 2: return "ATA-2";
case 1: return "ATA-1";
default: return 0;
}
}
static const char * get_ata_minor_version(const ata_identify_device * drive)
{
switch (drive->minor_rev_num) {
case 0x0001: return "ATA-1 X3T9.2/781D prior to revision 4";
case 0x0002: return "ATA-1 published, ANSI X3.221-1994";
case 0x0003: return "ATA-1 X3T9.2/781D revision 4";
case 0x0004: return "ATA-2 published, ANSI X3.279-1996";
case 0x0005: return "ATA-2 X3T10/948D prior to revision 2k";
case 0x0006: return "ATA-3 X3T10/2008D revision 1";
case 0x0007: return "ATA-2 X3T10/948D revision 2k";
case 0x0008: return "ATA-3 X3T10/2008D revision 0";
case 0x0009: return "ATA-2 X3T10/948D revision 3";
case 0x000a: return "ATA-3 published, ANSI X3.298-1997";
case 0x000b: return "ATA-3 X3T10/2008D revision 6"; // 1st ATA-3 revision with SMART
case 0x000c: return "ATA-3 X3T13/2008D revision 7 and 7a";
case 0x000d: return "ATA/ATAPI-4 X3T13/1153D revision 6";
case 0x000e: return "ATA/ATAPI-4 T13/1153D revision 13";
case 0x000f: return "ATA/ATAPI-4 X3T13/1153D revision 7";
case 0x0010: return "ATA/ATAPI-4 T13/1153D revision 18";
case 0x0011: return "ATA/ATAPI-4 T13/1153D revision 15";
case 0x0012: return "ATA/ATAPI-4 published, ANSI NCITS 317-1998";
case 0x0013: return "ATA/ATAPI-5 T13/1321D revision 3";
case 0x0014: return "ATA/ATAPI-4 T13/1153D revision 14";
case 0x0015: return "ATA/ATAPI-5 T13/1321D revision 1";
case 0x0016: return "ATA/ATAPI-5 published, ANSI NCITS 340-2000";
case 0x0017: return "ATA/ATAPI-4 T13/1153D revision 17";
case 0x0018: return "ATA/ATAPI-6 T13/1410D revision 0";
case 0x0019: return "ATA/ATAPI-6 T13/1410D revision 3a";
case 0x001a: return "ATA/ATAPI-7 T13/1532D revision 1";
case 0x001b: return "ATA/ATAPI-6 T13/1410D revision 2";
case 0x001c: return "ATA/ATAPI-6 T13/1410D revision 1";
case 0x001d: return "ATA/ATAPI-7 published, ANSI INCITS 397-2005";
case 0x001e: return "ATA/ATAPI-7 T13/1532D revision 0";
case 0x001f: return "ACS-3 T13/2161-D revision 3b";
case 0x0021: return "ATA/ATAPI-7 T13/1532D revision 4a";
case 0x0022: return "ATA/ATAPI-6 published, ANSI INCITS 361-2002";
case 0x0027: return "ATA8-ACS T13/1699-D revision 3c";
case 0x0028: return "ATA8-ACS T13/1699-D revision 6";
case 0x0029: return "ATA8-ACS T13/1699-D revision 4";
case 0x0031: return "ACS-2 T13/2015-D revision 2";
case 0x0033: return "ATA8-ACS T13/1699-D revision 3e";
case 0x0039: return "ATA8-ACS T13/1699-D revision 4c";
case 0x0042: return "ATA8-ACS T13/1699-D revision 3f";
case 0x0052: return "ATA8-ACS T13/1699-D revision 3b";
case 0x0107: return "ATA8-ACS T13/1699-D revision 2d";
case 0x0110: return "ACS-2 T13/2015-D revision 3";
default: return 0;
}
}
static const char * get_sata_version(const ata_identify_device * drive)
{
unsigned short word222 = drive->words088_255[222-88];
if ((word222 & 0xf000) != 0x1000)
return 0;
switch (find_msb(word222 & 0x0fff)) {
default: return "SATA >3.1";
case 6: return "SATA 3.1";
case 5: return "SATA 3.0";
case 4: return "SATA 2.6";
case 3: return "SATA 2.5";
case 2: return "SATA II Ext";
case 1: return "SATA 1.0a";
case 0: return "ATA8-AST";
case -1: return 0;
}
}
static const char * get_sata_speed(int level)
{
if (level <= 0)
return 0;
switch (level) {
default: return ">6.0 Gb/s";
case 3: return "6.0 Gb/s";
case 2: return "3.0 Gb/s";
case 1: return "1.5 Gb/s";
}
}
static const char * get_sata_maxspeed(const ata_identify_device * drive)
{
unsigned short word076 = drive->words047_079[76-47];
if (word076 & 0x0001)
return 0;
return get_sata_speed(find_msb(word076 & 0x00fe));
}
static const char * get_sata_curspeed(const ata_identify_device * drive)
{
unsigned short word077 = drive->words047_079[77-47];
if (word077 & 0x0001)
return 0;
return get_sata_speed((word077 >> 1) & 0x7);
}
static void print_drive_info(const ata_identify_device * drive,
const ata_size_info & sizes, int rpm,
const drive_settings * dbentry)
{
// format drive information (with byte swapping as needed)
char model[40+1], serial[20+1], firmware[8+1];
ata_format_id_string(model, drive->model, sizeof(model)-1);
ata_format_id_string(serial, drive->serial_no, sizeof(serial)-1);
ata_format_id_string(firmware, drive->fw_rev, sizeof(firmware)-1);
// Print model family if known
if (dbentry && *dbentry->modelfamily)
pout("Model Family: %s\n", dbentry->modelfamily);
pout("Device Model: %s\n", infofound(model));
if (!dont_print_serial_number) {
pout("Serial Number: %s\n", infofound(serial));
unsigned oui = 0; uint64_t unique_id = 0;
int naa = ata_get_wwn(drive, oui, unique_id);
if (naa >= 0)
pout("LU WWN Device Id: %x %06x %09"PRIx64"\n", naa, oui, unique_id);
// Additional Product Identifier (OEM Id) string in words 170-173
// (e08130r1, added in ACS-2 Revision 1, December 17, 2008)
if (0x2020 <= drive->words088_255[170-88] && drive->words088_255[170-88] <= 0x7e7e) {
char add[8+1];
ata_format_id_string(add, (const unsigned char *)(drive->words088_255+170-88), sizeof(add)-1);
if (add[0])
pout("Add. Product Id: %s\n", add);
}
}
pout("Firmware Version: %s\n", infofound(firmware));
if (sizes.capacity) {
// Print capacity
char num[64], cap[32];
pout("User Capacity: %s bytes [%s]\n",
format_with_thousands_sep(num, sizeof(num), sizes.capacity),
format_capacity(cap, sizeof(cap), sizes.capacity));
// Print sector sizes.
if (sizes.phy_sector_size == sizes.log_sector_size)
pout("Sector Size: %u bytes logical/physical\n", sizes.log_sector_size);
else {
pout("Sector Sizes: %u bytes logical, %u bytes physical",
sizes.log_sector_size, sizes.phy_sector_size);
if (sizes.log_sector_offset)
pout(" (offset %u bytes)", sizes.log_sector_offset);
pout("\n");
}
}
// Print nominal media rotation rate if reported
if (rpm) {
if (rpm == 1)
pout("Rotation Rate: Solid State Device\n");
else if (rpm > 1)
pout("Rotation Rate: %d rpm\n", rpm);
else
pout("Rotation Rate: Unknown (0x%04x)\n", -rpm);
}
// See if drive is recognized
pout("Device is: %s\n", !dbentry ?
"Not in smartctl database [for details use: -P showall]":
"In smartctl database [for details use: -P show]");
// Print ATA version
std::string ataver;
if ( (drive->major_rev_num != 0x0000 && drive->major_rev_num != 0xffff)
|| (drive->minor_rev_num != 0x0000 && drive->minor_rev_num != 0xffff)) {
const char * majorver = get_ata_major_version(drive);
const char * minorver = get_ata_minor_version(drive);
if (majorver && minorver && str_starts_with(minorver, majorver)) {
// Major and minor strings match, print minor string only
ataver = minorver;
}
else {
if (majorver)
ataver = majorver;
else
ataver = strprintf("Unknown(0x%04x)", drive->major_rev_num);
if (minorver)
ataver += strprintf(", %s", minorver);
else if (drive->minor_rev_num != 0x0000 && drive->minor_rev_num != 0xffff)
ataver += strprintf(" (unknown minor revision code: 0x%04x)", drive->minor_rev_num);
else
ataver += " (minor revision not indicated)";
}
}
pout("ATA Version is: %s\n", infofound(ataver.c_str()));
// If SATA drive print SATA version and speed
const char * sataver = get_sata_version(drive);
if (sataver) {
const char * maxspeed = get_sata_maxspeed(drive);
const char * curspeed = get_sata_curspeed(drive);
pout("SATA Version is: %s%s%s%s%s%s\n", sataver,
(maxspeed ? ", " : ""), (maxspeed ? maxspeed : ""),
(curspeed ? " (current: " : ""), (curspeed ? curspeed : ""),
(curspeed ? ")" : ""));
}
// print current time and date and timezone
char timedatetz[DATEANDEPOCHLEN]; dateandtimezone(timedatetz);
pout("Local Time is: %s\n", timedatetz);
// Print warning message, if there is one
if (dbentry && *dbentry->warningmsg)
pout("\n==> WARNING: %s\n\n", dbentry->warningmsg);
}
static const char *OfflineDataCollectionStatus(unsigned char status_byte)
{
unsigned char stat=status_byte & 0x7f;
switch(stat){
case 0x00:
return "was never started";
case 0x02:
return "was completed without error";
case 0x03:
if (status_byte == 0x03)
return "is in progress";
else
return "is in a Reserved state";
case 0x04:
return "was suspended by an interrupting command from host";
case 0x05:
return "was aborted by an interrupting command from host";
case 0x06:
return "was aborted by the device with a fatal error";
default:
if (stat >= 0x40)
return "is in a Vendor Specific state";
else
return "is in a Reserved state";
}
}
// prints verbose value Off-line data collection status byte
static void PrintSmartOfflineStatus(const ata_smart_values * data)
{
pout("Offline data collection status: (0x%02x)\t",
(int)data->offline_data_collection_status);
// Off-line data collection status byte is not a reserved
// or vendor specific value
pout("Offline data collection activity\n"
"\t\t\t\t\t%s.\n", OfflineDataCollectionStatus(data->offline_data_collection_status));
// Report on Automatic Data Collection Status. Only IBM documents
// this bit. See SFF 8035i Revision 2 for details.
if (data->offline_data_collection_status & 0x80)
pout("\t\t\t\t\tAuto Offline Data Collection: Enabled.\n");
else
pout("\t\t\t\t\tAuto Offline Data Collection: Disabled.\n");
return;
}
static void PrintSmartSelfExecStatus(const ata_smart_values * data,
firmwarebug_defs firmwarebugs)
{
pout("Self-test execution status: ");
switch (data->self_test_exec_status >> 4)
{
case 0:
pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("without error or no self-test has ever \n\t\t\t\t\tbeen run.\n");
break;
case 1:
pout("(%4d)\tThe self-test routine was aborted by\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the host.\n");
break;
case 2:
pout("(%4d)\tThe self-test routine was interrupted\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("by the host with a hard or soft reset.\n");
break;
case 3:
pout("(%4d)\tA fatal error or unknown test error\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("occurred while the device was executing\n\t\t\t\t\t");
pout("its self-test routine and the device \n\t\t\t\t\t");
pout("was unable to complete the self-test \n\t\t\t\t\t");
pout("routine.\n");
break;
case 4:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("a test element that failed and the test\n\t\t\t\t\t");
pout("element that failed is not known.\n");
break;
case 5:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the electrical element of the test\n\t\t\t\t\t");
pout("failed.\n");
break;
case 6:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the servo (and/or seek) element of the \n\t\t\t\t\t");
pout("test failed.\n");
break;
case 7:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("the read element of the test failed.\n");
break;
case 8:
pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("a test element that failed and the\n\t\t\t\t\t");
pout("device is suspected of having handling\n\t\t\t\t\t");
pout("damage.\n");
break;
case 15:
if (firmwarebugs.is_set(BUG_SAMSUNG3) && data->self_test_exec_status == 0xf0) {
pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("with unknown result or self-test in\n\t\t\t\t\t");
pout("progress with less than 10%% remaining.\n");
}
else {
pout("(%4d)\tSelf-test routine in progress...\n\t\t\t\t\t",
(int)data->self_test_exec_status);
pout("%1d0%% of test remaining.\n",
(int)(data->self_test_exec_status & 0x0f));
}
break;
default:
pout("(%4d)\tReserved.\n",
(int)data->self_test_exec_status);
break;
}
}
static void PrintSmartTotalTimeCompleteOffline (const ata_smart_values * data)
{
pout("Total time to complete Offline \n");
pout("data collection: \t\t(%5d) seconds.\n",
(int)data->total_time_to_complete_off_line);
}
static void PrintSmartOfflineCollectCap(const ata_smart_values *data)
{
pout("Offline data collection\n");
pout("capabilities: \t\t\t (0x%02x) ",
(int)data->offline_data_collection_capability);
if (data->offline_data_collection_capability == 0x00){
pout("\tOffline data collection not supported.\n");
}
else {
pout( "%s\n", isSupportExecuteOfflineImmediate(data)?
"SMART execute Offline immediate." :
"No SMART execute Offline immediate.");
pout( "\t\t\t\t\t%s\n", isSupportAutomaticTimer(data)?
"Auto Offline data collection on/off support.":
"No Auto Offline data collection support.");
pout( "\t\t\t\t\t%s\n", isSupportOfflineAbort(data)?
"Abort Offline collection upon new\n\t\t\t\t\tcommand.":
"Suspend Offline collection upon new\n\t\t\t\t\tcommand.");
pout( "\t\t\t\t\t%s\n", isSupportOfflineSurfaceScan(data)?
"Offline surface scan supported.":
"No Offline surface scan supported.");
pout( "\t\t\t\t\t%s\n", isSupportSelfTest(data)?
"Self-test supported.":
"No Self-test supported.");
pout( "\t\t\t\t\t%s\n", isSupportConveyanceSelfTest(data)?
"Conveyance Self-test supported.":
"No Conveyance Self-test supported.");
pout( "\t\t\t\t\t%s\n", isSupportSelectiveSelfTest(data)?
"Selective Self-test supported.":
"No Selective Self-test supported.");
}
}
static void PrintSmartCapability(const ata_smart_values *data)
{
pout("SMART capabilities: ");
pout("(0x%04x)\t", (int)data->smart_capability);
if (data->smart_capability == 0x00)
{
pout("Automatic saving of SMART data\t\t\t\t\tis not implemented.\n");
}
else
{
pout( "%s\n", (data->smart_capability & 0x01)?
"Saves SMART data before entering\n\t\t\t\t\tpower-saving mode.":
"Does not save SMART data before\n\t\t\t\t\tentering power-saving mode.");
if ( data->smart_capability & 0x02 )
{
pout("\t\t\t\t\tSupports SMART auto save timer.\n");
}
}
}
static void PrintSmartErrorLogCapability(const ata_smart_values * data, const ata_identify_device * identity)
{
pout("Error logging capability: ");
if ( isSmartErrorLogCapable(data, identity) )
{
pout(" (0x%02x)\tError logging supported.\n",
(int)data->errorlog_capability);
}
else {
pout(" (0x%02x)\tError logging NOT supported.\n",
(int)data->errorlog_capability);
}
}
static void PrintSmartShortSelfTestPollingTime(const ata_smart_values * data)
{
pout("Short self-test routine \n");
if (isSupportSelfTest(data))
pout("recommended polling time: \t (%4d) minutes.\n",
(int)data->short_test_completion_time);
else
pout("recommended polling time: \t Not Supported.\n");
}
static void PrintSmartExtendedSelfTestPollingTime(const ata_smart_values * data)
{
pout("Extended self-test routine\n");
if (isSupportSelfTest(data))
pout("recommended polling time: \t (%4d) minutes.\n",
TestTime(data, EXTEND_SELF_TEST));
else
pout("recommended polling time: \t Not Supported.\n");
}
static void PrintSmartConveyanceSelfTestPollingTime(const ata_smart_values * data)
{
pout("Conveyance self-test routine\n");
if (isSupportConveyanceSelfTest(data))
pout("recommended polling time: \t (%4d) minutes.\n",
(int)data->conveyance_test_completion_time);
else
pout("recommended polling time: \t Not Supported.\n");
}
// Check SMART attribute table for Threshold failure
// onlyfailed=0: are or were any age or prefailure attributes <= threshold
// onlyfailed=1: are any prefailure attributes <= threshold now
static int find_failed_attr(const ata_smart_values * data,
const ata_smart_thresholds_pvt * thresholds,
const ata_vendor_attr_defs & defs, int onlyfailed)
{
for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) {
const ata_smart_attribute & attr = data->vendor_attributes[i];
ata_attr_state state = ata_get_attr_state(attr, i, thresholds->thres_entries, defs);
if (!onlyfailed) {
if (state >= ATTRSTATE_FAILED_PAST)
return attr.id;
}
else {
if (state == ATTRSTATE_FAILED_NOW && ATTRIBUTE_FLAGS_PREFAILURE(attr.flags))
return attr.id;
}
}
return 0;
}
// onlyfailed=0 : print all attribute values
// onlyfailed=1: just ones that are currently failed and have prefailure bit set
// onlyfailed=2: ones that are failed, or have failed with or without prefailure bit set
static void PrintSmartAttribWithThres(const ata_smart_values * data,
const ata_smart_thresholds_pvt * thresholds,
const ata_vendor_attr_defs & defs, int rpm,
int onlyfailed, unsigned char format)
{
bool brief = !!(format & ata_print_options::FMT_BRIEF);
bool hexid = !!(format & ata_print_options::FMT_HEX_ID);
bool hexval = !!(format & ata_print_options::FMT_HEX_VAL);
bool needheader = true;
// step through all vendor attributes
for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) {
const ata_smart_attribute & attr = data->vendor_attributes[i];
// Check attribute and threshold
unsigned char threshold = 0;
ata_attr_state state = ata_get_attr_state(attr, i, thresholds->thres_entries, defs, &threshold);
if (state == ATTRSTATE_NON_EXISTING)
continue;
// These break out of the loop if we are only printing certain entries...
if (onlyfailed == 1 && !(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) && state == ATTRSTATE_FAILED_NOW))
continue;
if (onlyfailed == 2 && state < ATTRSTATE_FAILED_PAST)
continue;
// print header only if needed
if (needheader) {
if (!onlyfailed) {
pout("SMART Attributes Data Structure revision number: %d\n",(int)data->revnumber);
pout("Vendor Specific SMART Attributes with Thresholds:\n");
}
if (!brief)
pout("ID#%s ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE\n",
(!hexid ? "" : " "));
else
pout("ID#%s ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE\n",
(!hexid ? "" : " "));
needheader = false;
}
// Format value, worst, threshold
std::string valstr, worstr, threstr;
if (state > ATTRSTATE_NO_NORMVAL)
valstr = (!hexval ? strprintf("%.3d", attr.current)
: strprintf("0x%02x", attr.current));
else
valstr = (!hexval ? "---" : "----");
if (!(defs[attr.id].flags & ATTRFLAG_NO_WORSTVAL))
worstr = (!hexval ? strprintf("%.3d", attr.worst)
: strprintf("0x%02x", attr.worst));
else
worstr = (!hexval ? "---" : "----");
if (state > ATTRSTATE_NO_THRESHOLD)
threstr = (!hexval ? strprintf("%.3d", threshold)
: strprintf("0x%02x", threshold));
else
threstr = (!hexval ? "---" : "----");
// Print line for each valid attribute
std::string idstr = (!hexid ? strprintf("%3d", attr.id)
: strprintf("0x%02x", attr.id));
std::string attrname = ata_get_smart_attr_name(attr.id, defs, rpm);
std::string rawstr = ata_format_attr_raw_value(attr, defs);
if (!brief)
pout("%s %-24s0x%04x %-4s %-4s %-4s %-10s%-9s%-12s%s\n",
idstr.c_str(), attrname.c_str(), attr.flags,
valstr.c_str(), worstr.c_str(), threstr.c_str(),
(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) ? "Pre-fail" : "Old_age"),
(ATTRIBUTE_FLAGS_ONLINE(attr.flags) ? "Always" : "Offline"),
(state == ATTRSTATE_FAILED_NOW ? "FAILING_NOW" :
state == ATTRSTATE_FAILED_PAST ? "In_the_past"
: " -" ) ,
rawstr.c_str());
else
pout("%s %-24s%c%c%c%c%c%c%c %-4s %-4s %-4s %-5s%s\n",
idstr.c_str(), attrname.c_str(),
(ATTRIBUTE_FLAGS_PREFAILURE(attr.flags) ? 'P' : '-'),
(ATTRIBUTE_FLAGS_ONLINE(attr.flags) ? 'O' : '-'),
(ATTRIBUTE_FLAGS_PERFORMANCE(attr.flags) ? 'S' : '-'),
(ATTRIBUTE_FLAGS_ERRORRATE(attr.flags) ? 'R' : '-'),
(ATTRIBUTE_FLAGS_EVENTCOUNT(attr.flags) ? 'C' : '-'),
(ATTRIBUTE_FLAGS_SELFPRESERVING(attr.flags) ? 'K' : '-'),
(ATTRIBUTE_FLAGS_OTHER(attr.flags) ? '+' : ' '),
valstr.c_str(), worstr.c_str(), threstr.c_str(),
(state == ATTRSTATE_FAILED_NOW ? "NOW" :
state == ATTRSTATE_FAILED_PAST ? "Past"
: "-" ),
rawstr.c_str());
}
if (!needheader) {
if (!onlyfailed && brief) {
int n = (!hexid ? 28 : 29);
pout("%*s||||||_ K auto-keep\n"
"%*s|||||__ C event count\n"
"%*s||||___ R error rate\n"
"%*s|||____ S speed/performance\n"
"%*s||_____ O updated online\n"
"%*s|______ P prefailure warning\n",
n, "", n, "", n, "", n, "", n, "", n, "");
}
pout("\n");
}
}
// Print SMART related SCT capabilities
static void ataPrintSCTCapability(const ata_identify_device *drive)
{
unsigned short sctcaps = drive->words088_255[206-88];
if (!(sctcaps & 0x01))
return;
pout("SCT capabilities: \t (0x%04x)\tSCT Status supported.\n", sctcaps);
if (sctcaps & 0x08)
pout("\t\t\t\t\tSCT Error Recovery Control supported.\n");
if (sctcaps & 0x10)
pout("\t\t\t\t\tSCT Feature Control supported.\n");
if (sctcaps & 0x20)
pout("\t\t\t\t\tSCT Data Table supported.\n");
}
static void PrintGeneralSmartValues(const ata_smart_values *data, const ata_identify_device *drive,
firmwarebug_defs firmwarebugs)
{
pout("General SMART Values:\n");
PrintSmartOfflineStatus(data);
if (isSupportSelfTest(data)){
PrintSmartSelfExecStatus(data, firmwarebugs);
}
PrintSmartTotalTimeCompleteOffline(data);
PrintSmartOfflineCollectCap(data);
PrintSmartCapability(data);
PrintSmartErrorLogCapability(data, drive);
pout( "\t\t\t\t\t%s\n", isGeneralPurposeLoggingCapable(drive)?
"General Purpose Logging supported.":
"No General Purpose Logging support.");
if (isSupportSelfTest(data)){
PrintSmartShortSelfTestPollingTime (data);
PrintSmartExtendedSelfTestPollingTime (data);
}
if (isSupportConveyanceSelfTest(data))
PrintSmartConveyanceSelfTestPollingTime (data);
ataPrintSCTCapability(drive);
pout("\n");
}
// Get # sectors of a log addr, 0 if log does not exist.
static unsigned GetNumLogSectors(const ata_smart_log_directory * logdir, unsigned logaddr, bool gpl)
{
if (!logdir)
return 0;
if (logaddr > 0xff)
return 0;
if (logaddr == 0)
return 1;
unsigned n = logdir->entry[logaddr-1].numsectors;
if (gpl)
// GP logs may have >255 sectors
n |= logdir->entry[logaddr-1].reserved << 8;
return n;
}
// Get name of log.
// Table A.2 of T13/2161-D (ACS-3) Revision 4, September 4, 2012
static const char * GetLogName(unsigned logaddr)
{
switch (logaddr) {
case 0x00: return "Log Directory";
case 0x01: return "Summary SMART error log";
case 0x02: return "Comprehensive SMART error log";
case 0x03: return "Ext. Comprehensive SMART error log";
case 0x04: return "Device Statistics log";
case 0x05: return "Reserved for CFA"; // ACS-2
case 0x06: return "SMART self-test log";
case 0x07: return "Extended self-test log";
case 0x08: return "Power Conditions log"; // ACS-2
case 0x09: return "Selective self-test log";
case 0x0a: return "Device Statistics Notification"; // ACS-3
case 0x0b: return "Reserved for CFA"; // ACS-3
case 0x0d: return "LPS Mis-alignment log"; // ACS-2
case 0x10: return "NCQ Command Error log";
case 0x11: return "SATA Phy Event Counters";
case 0x12: return "SATA NCQ Queue Management log"; // ACS-3
case 0x13: return "SATA NCQ Send and Receive log"; // ACS-3
case 0x14:
case 0x15:
case 0x16: return "Reserved for Serial ATA";
case 0x19: return "LBA Status log"; // ACS-3
case 0x20: return "Streaming performance log [OBS-8]";
case 0x21: return "Write stream error log";
case 0x22: return "Read stream error log";
case 0x23: return "Delayed sector log [OBS-8]";
case 0x24: return "Current Device Internal Status Data log"; // ACS-3
case 0x25: return "Saved Device Internal Status Data log"; // ACS-3
case 0x30: return "IDENTIFY DEVICE data log"; // ACS-3
case 0xe0: return "SCT Command/Status";
case 0xe1: return "SCT Data Transfer";
default:
if (0xa0 <= logaddr && logaddr <= 0xdf)
return "Device vendor specific log";
if (0x80 <= logaddr && logaddr <= 0x9f)
return "Host vendor specific log";
return "Reserved";
}
/*NOTREACHED*/
}
// Get log access permissions
static const char * get_log_rw(unsigned logaddr)
{
if ( ( logaddr <= 0x08)
|| (0x0d == logaddr)
|| (0x10 <= logaddr && logaddr <= 0x13)
|| (0x19 == logaddr)
|| (0x20 <= logaddr && logaddr <= 0x25)
|| (0x30 == logaddr))
return "R/O";
if ( (0x09 <= logaddr && logaddr <= 0x0a)
|| (0x80 <= logaddr && logaddr <= 0x9f)
|| (0xe0 <= logaddr && logaddr <= 0xe1))
return "R/W";
if (0xa0 <= logaddr && logaddr <= 0xdf)
return "VS"; // Vendor specific
return "-"; // Unknown/Reserved
}
// Init a fake log directory, assume that standard logs are supported
const ata_smart_log_directory * fake_logdir(ata_smart_log_directory * logdir,
const ata_print_options & options)
{
memset(logdir, 0, sizeof(*logdir));
logdir->logversion = 255;
logdir->entry[0x01-1].numsectors = 1;
logdir->entry[0x03-1].numsectors = (options.smart_ext_error_log + (4-1)) / 4;
logdir->entry[0x04-1].numsectors = 8;
logdir->entry[0x06-1].numsectors = 1;
logdir->entry[0x07-1].numsectors = (options.smart_ext_selftest_log + (19-1)) / 19;
logdir->entry[0x09-1].numsectors = 1;
logdir->entry[0x11-1].numsectors = 1;
return logdir;
}
// Print SMART and/or GP Log Directory
static void PrintLogDirectories(const ata_smart_log_directory * gplogdir,
const ata_smart_log_directory * smartlogdir)
{
if (gplogdir)
pout("General Purpose Log Directory Version %u\n", gplogdir->logversion);
if (smartlogdir)
pout("SMART %sLog Directory Version %u%s\n",
(gplogdir ? " " : ""), smartlogdir->logversion,
(smartlogdir->logversion==1 ? " [multi-sector log support]" : ""));
pout("Address Access R/W Size Description\n");
for (unsigned i = 0; i <= 0xff; i++) {
// Get number of sectors
unsigned smart_numsect = GetNumLogSectors(smartlogdir, i, false);
unsigned gp_numsect = GetNumLogSectors(gplogdir , i, true );
if (!(smart_numsect || gp_numsect))
continue; // Log does not exist
const char * acc; unsigned size;
if (smart_numsect == gp_numsect) {
acc = "GPL,SL"; size = gp_numsect;
}
else if (!smart_numsect) {
acc = "GPL"; size = gp_numsect;
}
else if (!gp_numsect) {
acc = " SL"; size = smart_numsect;
}
else {
acc = 0; size = 0;
}
unsigned i2 = i;
if (acc && ((0x80 <= i && i < 0x9f) || (0xa0 <= i && i < 0xdf))) {
// Find range of Host/Device vendor specific logs with same size
unsigned imax = (i < 0x9f ? 0x9f : 0xdf);
for (unsigned j = i+1; j <= imax; j++) {
unsigned sn = GetNumLogSectors(smartlogdir, j, false);
unsigned gn = GetNumLogSectors(gplogdir , j, true );
if (!(sn == smart_numsect && gn == gp_numsect))
break;
i2 = j;
}
}
const char * name = GetLogName(i);
const char * rw = get_log_rw(i);
if (i2 > i) {
pout("0x%02x-0x%02x %-6s %-3s %5u %s\n", i, i2, acc, rw, size, name);
i = i2;
}
else if (acc)
pout( "0x%02x %-6s %-3s %5u %s\n", i, acc, rw, size, name);
else {
// GPL and SL support different sizes
pout( "0x%02x %-6s %-3s %5u %s\n", i, "GPL", rw, gp_numsect, name);
pout( "0x%02x %-6s %-3s %5u %s\n", i, "SL", rw, smart_numsect, name);
}
}
pout("\n");
}
// Print hexdump of log pages.
// Format is compatible with 'xxd -r'.
static void PrintLogPages(const char * type, const unsigned char * data,
unsigned char logaddr, unsigned page,
unsigned num_pages, unsigned max_pages)
{
pout("%s Log 0x%02x [%s], Page %u-%u (of %u)\n",
type, logaddr, GetLogName(logaddr), page, page+num_pages-1, max_pages);
for (unsigned i = 0; i < num_pages * 512; i += 16) {
const unsigned char * p = data+i;
pout("%07x: %02x %02x %02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x %02x %02x ",
(page * 512) + i,
p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7],
p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15]);
#define P(n) (' ' <= p[n] && p[n] <= '~' ? (int)p[n] : '.')
pout("|%c%c%c%c%c%c%c%c"
"%c%c%c%c%c%c%c%c|\n",
P( 0), P( 1), P( 2), P( 3), P( 4), P( 5), P( 6), P( 7),
P( 8), P( 9), P(10), P(11), P(12), P(13), P(14), P(15));
#undef P
if ((i & 0x1ff) == 0x1f0)
pout("\n");
}
}
///////////////////////////////////////////////////////////////////////
// Device statistics (Log 0x04)
// See Section A.5 of
// ATA/ATAPI Command Set - 3 (ACS-3)
// T13/2161-D Revision 2, February 21, 2012.
struct devstat_entry_info
{
short size; // #bytes of value, -1 for signed char
const char * name;
};
const devstat_entry_info devstat_info_0x00[] = {
{ 2, "List of supported log pages" },
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x01[] = {
{ 2, "General Statistics" },
{ 4, "Lifetime Power-On Resets" },
{ 4, "Power-on Hours" }, // spec says no flags(?)
{ 6, "Logical Sectors Written" },
{ 6, "Number of Write Commands" },
{ 6, "Logical Sectors Read" },
{ 6, "Number of Read Commands" },
{ 6, "Date and Time TimeStamp" }, // ACS-3
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x02[] = {
{ 2, "Free-Fall Statistics" },
{ 4, "Number of Free-Fall Events Detected" },
{ 4, "Overlimit Shock Events" },
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x03[] = {
{ 2, "Rotating Media Statistics" },
{ 4, "Spindle Motor Power-on Hours" },
{ 4, "Head Flying Hours" },
{ 4, "Head Load Events" },
{ 4, "Number of Reallocated Logical Sectors" },
{ 4, "Read Recovery Attempts" },
{ 4, "Number of Mechanical Start Failures" },
{ 4, "Number of Realloc. Candidate Logical Sectors" }, // ACS-3
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x04[] = {
{ 2, "General Errors Statistics" },
{ 4, "Number of Reported Uncorrectable Errors" },
//{ 4, "Number of Resets Between Command Acceptance and Command Completion" },
{ 4, "Resets Between Cmd Acceptance and Completion" },
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x05[] = {
{ 2, "Temperature Statistics" },
{ -1, "Current Temperature" },
{ -1, "Average Short Term Temperature" },
{ -1, "Average Long Term Temperature" },
{ -1, "Highest Temperature" },
{ -1, "Lowest Temperature" },
{ -1, "Highest Average Short Term Temperature" },
{ -1, "Lowest Average Short Term Temperature" },
{ -1, "Highest Average Long Term Temperature" },
{ -1, "Lowest Average Long Term Temperature" },
{ 4, "Time in Over-Temperature" },
{ -1, "Specified Maximum Operating Temperature" },
{ 4, "Time in Under-Temperature" },
{ -1, "Specified Minimum Operating Temperature" },
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x06[] = {
{ 2, "Transport Statistics" },
{ 4, "Number of Hardware Resets" },
{ 4, "Number of ASR Events" },
{ 4, "Number of Interface CRC Errors" },
{ 0, 0 }
};
const devstat_entry_info devstat_info_0x07[] = {
{ 2, "Solid State Device Statistics" },
{ 1, "Percentage Used Endurance Indicator" },
{ 0, 0 }
};
const devstat_entry_info * devstat_infos[] = {
devstat_info_0x00,
devstat_info_0x01,
devstat_info_0x02,
devstat_info_0x03,
devstat_info_0x04,
devstat_info_0x05,
devstat_info_0x06,
devstat_info_0x07
};
const int num_devstat_infos = sizeof(devstat_infos)/sizeof(devstat_infos[0]);
static void print_device_statistics_page(const unsigned char * data, int page,
bool & need_trailer)
{
const devstat_entry_info * info = (page < num_devstat_infos ? devstat_infos[page] : 0);
const char * name = (info ? info[0].name : "Unknown Statistics");
// Check page number in header
static const char line[] = " ===== = = == ";
if (!data[2]) {
pout("%3d%s%s (empty) ==\n", page, line, name);
return;
}
if (data[2] != page) {
pout("%3d%s%s (invalid page %d in header) ==\n", page, line, name, data[2]);
return;
}
pout("%3d%s%s (rev %d) ==\n", page, line, name, data[0]);
// Print entries
for (int i = 1, offset = 8; offset < 512-7; i++, offset+=8) {
// Check for last known entry
if (info && !info[i].size)
info = 0;
// Skip unsupported entries
unsigned char flags = data[offset+7];
if (!(flags & 0x80))
continue;
// Get value size, default to max if unknown
int size = (info ? info[i].size : 7);
// Format value
char valstr[32];
if (flags & 0x40) { // valid flag
// Get value
int64_t val;
if (size < 0) {
val = (signed char)data[offset];
}
else {
val = 0;
for (int j = 0; j < size; j++)
val |= (int64_t)data[offset+j] << (j*8);
}
snprintf(valstr, sizeof(valstr), "%"PRId64, val);
}
else {
// Value not known (yet)
valstr[0] = '-'; valstr[1] = 0;
}
pout("%3d 0x%03x %d%c %15s%c %s\n",
page, offset,
abs(size),
(flags & 0x1f ? '+' : ' '), // unknown flags
valstr,
(flags & 0x20 ? '~' : ' '), // normalized flag
(info ? info[i].name : "Unknown"));
if (flags & 0x20)
need_trailer = true;
}
}
static bool print_device_statistics(ata_device * device, unsigned nsectors,
const std::vector<int> & single_pages, bool all_pages, bool ssd_page)
{
// Read list of supported pages from page 0
unsigned char page_0[512] = {0, };
if (!ataReadLogExt(device, 0x04, 0, 0, page_0, 1)) {
pout("Read Device Statistics page 0 failed\n\n");
return false;
}
unsigned char nentries = page_0[8];
if (!(page_0[2] == 0 && nentries > 0)) {
pout("Device Statistics page 0 is invalid (page=%d, nentries=%d)\n\n", page_0[2], nentries);
return false;
}
// Prepare list of pages to print
std::vector<int> pages;
unsigned i;
if (all_pages) {
// Add all supported pages
for (i = 0; i < nentries; i++) {
int page = page_0[8+1+i];
if (page)
pages.push_back(page);
}
ssd_page = false;
}
// Add manually specified pages
bool print_page_0 = false;
for (i = 0; i < single_pages.size() || ssd_page; i++) {
int page = (i < single_pages.size() ? single_pages[i] : 7);
if (!page)
print_page_0 = true;
else if (page >= (int)nsectors)
pout("Device Statistics Log has only %u pages\n", nsectors);
else
pages.push_back(page);
if (page == 7)
ssd_page = false;
}
// Print list of supported pages if requested
if (print_page_0) {
pout("Device Statistics (GP Log 0x04) supported pages\n");
pout("Page Description\n");
for (i = 0; i < nentries; i++) {
int page = page_0[8+1+i];
pout("%3d %s\n", page,
(page < num_devstat_infos ? devstat_infos[page][0].name : "Unknown Statistics"));
}
pout("\n");
}
// Read & print pages
if (!pages.empty()) {
pout("Device Statistics (GP Log 0x04)\n");
pout("Page Offset Size Value Description\n");
bool need_trailer = false;
for (i = 0; i < pages.size(); i++) {
int page = pages[i];
unsigned char page_n[512] = {0, };
if (!ataReadLogExt(device, 0x04, 0, page, page_n, 1)) {
pout("Read Device Statistics page %d failed\n\n", page);
return false;
}
print_device_statistics_page(page_n, page, need_trailer);
}
if (need_trailer)
pout("%30s|_ ~ normalized value\n", "");
pout("\n");
}
return true;
}
///////////////////////////////////////////////////////////////////////
// Print log 0x11
static void PrintSataPhyEventCounters(const unsigned char * data, bool reset)
{
if (checksum(data))
checksumwarning("SATA Phy Event Counters");
pout("SATA Phy Event Counters (GP Log 0x11)\n");
if (data[0] || data[1] || data[2] || data[3])
pout("[Reserved: 0x%02x 0x%02x 0x%02x 0x%02x]\n",
data[0], data[1], data[2], data[3]);
pout("ID Size Value Description\n");
for (unsigned i = 4; ; ) {
// Get counter id and size (bits 14:12)
unsigned id = data[i] | (data[i+1] << 8);
unsigned size = ((id >> 12) & 0x7) << 1;
id &= 0x8fff;
// End of counter table ?
if (!id)
break;
i += 2;
if (!(2 <= size && size <= 8 && i + size < 512)) {
pout("0x%04x %u: Invalid entry\n", id, size);
break;
}
// Get value
uint64_t val = 0, max_val = 0;
for (unsigned j = 0; j < size; j+=2) {
val |= (uint64_t)(data[i+j] | (data[i+j+1] << 8)) << (j*8);
max_val |= (uint64_t)0xffffU << (j*8);
}
i += size;
// Get name
const char * name;
switch (id) {
case 0x001: name = "Command failed due to ICRC error"; break; // Mandatory
case 0x002: name = "R_ERR response for data FIS"; break;
case 0x003: name = "R_ERR response for device-to-host data FIS"; break;
case 0x004: name = "R_ERR response for host-to-device data FIS"; break;
case 0x005: name = "R_ERR response for non-data FIS"; break;
case 0x006: name = "R_ERR response for device-to-host non-data FIS"; break;
case 0x007: name = "R_ERR response for host-to-device non-data FIS"; break;
case 0x008: name = "Device-to-host non-data FIS retries"; break;
case 0x009: name = "Transition from drive PhyRdy to drive PhyNRdy"; break;
case 0x00A: name = "Device-to-host register FISes sent due to a COMRESET"; break; // Mandatory
case 0x00B: name = "CRC errors within host-to-device FIS"; break;
case 0x00D: name = "Non-CRC errors within host-to-device FIS"; break;
case 0x00F: name = "R_ERR response for host-to-device data FIS, CRC"; break;
case 0x010: name = "R_ERR response for host-to-device data FIS, non-CRC"; break;
case 0x012: name = "R_ERR response for host-to-device non-data FIS, CRC"; break;
case 0x013: name = "R_ERR response for host-to-device non-data FIS, non-CRC"; break;
default: name = (id & 0x8000 ? "Vendor specific" : "Unknown"); break;
}
// Counters stop at max value, add '+' in this case
pout("0x%04x %u %12"PRIu64"%c %s\n", id, size, val,
(val == max_val ? '+' : ' '), name);
}
if (reset)
pout("All counters reset\n");
pout("\n");
}
// Format milliseconds from error log entry as "DAYS+H:M:S.MSEC"
static std::string format_milliseconds(unsigned msec)
{
unsigned days = msec / 86400000U;
msec -= days * 86400000U;
unsigned hours = msec / 3600000U;
msec -= hours * 3600000U;
unsigned min = msec / 60000U;
msec -= min * 60000U;
unsigned sec = msec / 1000U;
msec -= sec * 1000U;
std::string str;
if (days)
str = strprintf("%2ud+", days);
str += strprintf("%02u:%02u:%02u.%03u", hours, min, sec, msec);
return str;
}
// Get description for 'state' value from SMART Error Logs
static const char * get_error_log_state_desc(unsigned state)
{
state &= 0x0f;
switch (state){
case 0x0: return "in an unknown state";
case 0x1: return "sleeping";
case 0x2: return "in standby mode";
case 0x3: return "active or idle";
case 0x4: return "doing SMART Offline or Self-test";
default:
return (state < 0xb ? "in a reserved state"
: "in a vendor specific state");
}
}
// returns number of errors
static int PrintSmartErrorlog(const ata_smart_errorlog *data,
firmwarebug_defs firmwarebugs)
{
pout("SMART Error Log Version: %d\n", (int)data->revnumber);
// if no errors logged, return
if (!data->error_log_pointer){
pout("No Errors Logged\n\n");
return 0;
}
print_on();
// If log pointer out of range, return
if (data->error_log_pointer>5){
pout("Invalid Error Log index = 0x%02x (T13/1321D rev 1c "
"Section 8.41.6.8.2.2 gives valid range from 1 to 5)\n\n",
(int)data->error_log_pointer);
return 0;
}
// Some internal consistency checking of the data structures
if ((data->ata_error_count-data->error_log_pointer) % 5 && !firmwarebugs.is_set(BUG_SAMSUNG2)) {
pout("Warning: ATA error count %d inconsistent with error log pointer %d\n\n",
data->ata_error_count,data->error_log_pointer);
}
// starting printing error log info
if (data->ata_error_count<=5)
pout( "ATA Error Count: %d\n", (int)data->ata_error_count);
else
pout( "ATA Error Count: %d (device log contains only the most recent five errors)\n",
(int)data->ata_error_count);
print_off();
pout("\tCR = Command Register [HEX]\n"
"\tFR = Features Register [HEX]\n"
"\tSC = Sector Count Register [HEX]\n"
"\tSN = Sector Number Register [HEX]\n"
"\tCL = Cylinder Low Register [HEX]\n"
"\tCH = Cylinder High Register [HEX]\n"
"\tDH = Device/Head Register [HEX]\n"
"\tDC = Device Command Register [HEX]\n"
"\tER = Error register [HEX]\n"
"\tST = Status register [HEX]\n"
"Powered_Up_Time is measured from power on, and printed as\n"
"DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n"
"SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n");
// now step through the five error log data structures (table 39 of spec)
for (int k = 4; k >= 0; k-- ) {
// The error log data structure entries are a circular buffer
int j, i=(data->error_log_pointer+k)%5;
const ata_smart_errorlog_struct * elog = data->errorlog_struct+i;
const ata_smart_errorlog_error_struct * summary = &(elog->error_struct);
// Spec says: unused error log structures shall be zero filled
if (nonempty(elog, sizeof(*elog))){
// Table 57 of T13/1532D Volume 1 Revision 3
const char *msgstate = get_error_log_state_desc(summary->state);
int days = (int)summary->timestamp/24;
// See table 42 of ATA5 spec
print_on();
pout("Error %d occurred at disk power-on lifetime: %d hours (%d days + %d hours)\n",
(int)(data->ata_error_count+k-4), (int)summary->timestamp, days, (int)(summary->timestamp-24*days));
print_off();
pout(" When the command that caused the error occurred, the device was %s.\n\n",msgstate);
pout(" After command completion occurred, registers were:\n"
" ER ST SC SN CL CH DH\n"
" -- -- -- -- -- -- --\n"
" %02x %02x %02x %02x %02x %02x %02x",
(int)summary->error_register,
(int)summary->status,
(int)summary->sector_count,
(int)summary->sector_number,
(int)summary->cylinder_low,
(int)summary->cylinder_high,
(int)summary->drive_head);
// Add a description of the contents of the status and error registers
// if possible
std::string st_er_desc = format_st_er_desc(elog);
if (!st_er_desc.empty())
pout(" %s", st_er_desc.c_str());
pout("\n\n");
pout(" Commands leading to the command that caused the error were:\n"
" CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name\n"
" -- -- -- -- -- -- -- -- ---------------- --------------------\n");
for ( j = 4; j >= 0; j--){
const ata_smart_errorlog_command_struct * thiscommand = elog->commands+j;
// Spec says: unused data command structures shall be zero filled
if (nonempty(thiscommand, sizeof(*thiscommand))) {
pout(" %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n",
(int)thiscommand->commandreg,
(int)thiscommand->featuresreg,
(int)thiscommand->sector_count,
(int)thiscommand->sector_number,
(int)thiscommand->cylinder_low,
(int)thiscommand->cylinder_high,
(int)thiscommand->drive_head,
(int)thiscommand->devicecontrolreg,
format_milliseconds(thiscommand->timestamp).c_str(),
look_up_ata_command(thiscommand->commandreg, thiscommand->featuresreg));
}
}
pout("\n");
}
}
print_on();
if (printing_is_switchable)
pout("\n");
print_off();
return data->ata_error_count;
}
// Print SMART Extended Comprehensive Error Log (GP Log 0x03)
static int PrintSmartExtErrorLog(const ata_smart_exterrlog * log,
unsigned nsectors, unsigned max_errors)
{
pout("SMART Extended Comprehensive Error Log Version: %u (%u sectors)\n",
log->version, nsectors);
if (!log->device_error_count) {
pout("No Errors Logged\n\n");
return 0;
}
print_on();
// Check index
unsigned nentries = nsectors * 4;
unsigned erridx = log->error_log_index;
if (!(1 <= erridx && erridx <= nentries)){
// Some Samsung disks (at least SP1614C/SW100-25, HD300LJ/ZT100-12) use the
// former index from Summary Error Log (byte 1, now reserved) and set byte 2-3
// to 0.
if (!(erridx == 0 && 1 <= log->reserved1 && log->reserved1 <= nentries)) {
pout("Invalid Error Log index = 0x%04x (reserved = 0x%02x)\n", erridx, log->reserved1);
return 0;
}
pout("Invalid Error Log index = 0x%04x, trying reserved byte (0x%02x) instead\n", erridx, log->reserved1);
erridx = log->reserved1;
}
// Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a),
// it is 1-based in practice.
erridx--;
// Calculate #errors to print
unsigned errcnt = log->device_error_count;
if (errcnt <= nentries)
pout("Device Error Count: %u\n", log->device_error_count);
else {
errcnt = nentries;
pout("Device Error Count: %u (device log contains only the most recent %u errors)\n",
log->device_error_count, errcnt);
}
if (max_errors < errcnt)
errcnt = max_errors;
print_off();
pout("\tCR = Command Register\n"
"\tFEATR = Features Register\n"
"\tCOUNT = Count (was: Sector Count) Register\n"
"\tLBA_48 = Upper bytes of LBA High/Mid/Low Registers ] ATA-8\n"
"\tLH = LBA High (was: Cylinder High) Register ] LBA\n"
"\tLM = LBA Mid (was: Cylinder Low) Register ] Register\n"
"\tLL = LBA Low (was: Sector Number) Register ]\n"
"\tDV = Device (was: Device/Head) Register\n"
"\tDC = Device Control Register\n"
"\tER = Error register\n"
"\tST = Status register\n"
"Powered_Up_Time is measured from power on, and printed as\n"
"DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n"
"SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n");
// Iterate through circular buffer in reverse direction
for (unsigned i = 0, errnum = log->device_error_count;
i < errcnt; i++, errnum--, erridx = (erridx > 0 ? erridx - 1 : nentries - 1)) {
const ata_smart_exterrlog_error_log & entry = log[erridx / 4].error_logs[erridx % 4];
// Skip unused entries
if (!nonempty(&entry, sizeof(entry))) {
pout("Error %u [%u] log entry is empty\n", errnum, erridx);
continue;
}
// Print error information
print_on();
const ata_smart_exterrlog_error & err = entry.error;
pout("Error %u [%u] occurred at disk power-on lifetime: %u hours (%u days + %u hours)\n",
errnum, erridx, err.timestamp, err.timestamp / 24, err.timestamp % 24);
print_off();
pout(" When the command that caused the error occurred, the device was %s.\n\n",
get_error_log_state_desc(err.state));
// Print registers
pout(" After command completion occurred, registers were:\n"
" ER -- ST COUNT LBA_48 LH LM LL DV DC\n"
" -- -- -- == -- == == == -- -- -- -- --\n"
" %02x -- %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
err.error_register,
err.status_register,
err.count_register_hi,
err.count_register,
err.lba_high_register_hi,
err.lba_mid_register_hi,
err.lba_low_register_hi,
err.lba_high_register,
err.lba_mid_register,
err.lba_low_register,
err.device_register,
err.device_control_register);
// Add a description of the contents of the status and error registers
// if possible
std::string st_er_desc = format_st_er_desc(&entry);
if (!st_er_desc.empty())
pout(" %s", st_er_desc.c_str());
pout("\n\n");
// Print command history
pout(" Commands leading to the command that caused the error were:\n"
" CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name\n"
" -- == -- == -- == == == -- -- -- -- -- --------------- --------------------\n");
for (int ci = 4; ci >= 0; ci--) {
const ata_smart_exterrlog_command & cmd = entry.commands[ci];
// Skip unused entries
if (!nonempty(&cmd, sizeof(cmd)))
continue;
// Print registers, timestamp and ATA command name
pout(" %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %16s %s\n",
cmd.command_register,
cmd.features_register_hi,
cmd.features_register,
cmd.count_register_hi,
cmd.count_register,
cmd.lba_high_register_hi,
cmd.lba_mid_register_hi,
cmd.lba_low_register_hi,
cmd.lba_high_register,
cmd.lba_mid_register,
cmd.lba_low_register,
cmd.device_register,
cmd.device_control_register,
format_milliseconds(cmd.timestamp).c_str(),
look_up_ata_command(cmd.command_register, cmd.features_register));
}
pout("\n");
}
print_on();
if (printing_is_switchable)
pout("\n");
print_off();
return log->device_error_count;
}
// Print SMART Extended Self-test Log (GP Log 0x07)
static int PrintSmartExtSelfTestLog(const ata_smart_extselftestlog * log,
unsigned nsectors, unsigned max_entries)
{
pout("SMART Extended Self-test Log Version: %u (%u sectors)\n",
log->version, nsectors);
if (!log->log_desc_index){
pout("No self-tests have been logged. [To run self-tests, use: smartctl -t]\n\n");
return 0;
}
// Check index
unsigned nentries = nsectors * 19;
unsigned logidx = log->log_desc_index;
if (logidx > nentries) {
pout("Invalid Self-test Log index = 0x%04x (reserved = 0x%02x)\n", logidx, log->reserved1);
return 0;
}
// Index base is not clearly specified by ATA8-ACS (T13/1699-D Revision 6a),
// it is 1-based in practice.
logidx--;
bool print_header = true;
int errcnt = 0, igncnt = 0;
int ext_ok_testnum = -1;
// Iterate through circular buffer in reverse direction
for (unsigned i = 0, testnum = 1;
i < nentries && testnum <= max_entries;
i++, logidx = (logidx > 0 ? logidx - 1 : nentries - 1)) {
const ata_smart_extselftestlog_desc & entry = log[logidx / 19].log_descs[logidx % 19];
// Skip unused entries
if (!nonempty(&entry, sizeof(entry)))
continue;
// Get LBA
const unsigned char * b = entry.failing_lba;
uint64_t lba48 = b[0]
| ( b[1] << 8)
| ( b[2] << 16)
| ((uint64_t)b[3] << 24)
| ((uint64_t)b[4] << 32)
| ((uint64_t)b[5] << 40);
// Print entry
int state = ataPrintSmartSelfTestEntry(testnum, entry.self_test_type,
entry.self_test_status, entry.timestamp, lba48,
false /*!print_error_only*/, print_header);
if (state < 0) {
// Self-test showed an error
if (ext_ok_testnum < 0)
errcnt++;
else
// Newer successful extended self-test exits
igncnt++;
}
else if (state > 0 && ext_ok_testnum < 0) {
// Latest successful extended self-test
ext_ok_testnum = testnum;
}
testnum++;
}
if (igncnt)
pout("%d of %d failed self-tests are outdated by newer successful extended offline self-test #%2d\n",
igncnt, igncnt+errcnt, ext_ok_testnum);
pout("\n");
return errcnt;
}
static void ataPrintSelectiveSelfTestLog(const ata_selective_self_test_log * log, const ata_smart_values * sv)
{
int i,field1,field2;
const char *msg;
char tmp[64];
uint64_t maxl=0,maxr=0;
uint64_t current=log->currentlba;
uint64_t currentend=current+65535;
// print data structure revision number
pout("SMART Selective self-test log data structure revision number %d\n",(int)log->logversion);
if (1 != log->logversion)
pout("Note: revision number not 1 implies that no selective self-test has ever been run\n");
switch((sv->self_test_exec_status)>>4){
case 0:msg="Completed";
break;
case 1:msg="Aborted_by_host";
break;
case 2:msg="Interrupted";
break;
case 3:msg="Fatal_error";
break;
case 4:msg="Completed_unknown_failure";
break;
case 5:msg="Completed_electrical_failure";
break;
case 6:msg="Completed_servo/seek_failure";
break;
case 7:msg="Completed_read_failure";
break;
case 8:msg="Completed_handling_damage??";
break;
case 15:msg="Self_test_in_progress";
break;
default:msg="Unknown_status ";
break;
}
// find the number of columns needed for printing. If in use, the
// start/end of span being read-scanned...
if (log->currentspan>5) {
maxl=current;
maxr=currentend;
}
for (i=0; i<5; i++) {
uint64_t start=log->span[i].start;
uint64_t end =log->span[i].end;
// ... plus max start/end of each of the five test spans.
if (start>maxl)
maxl=start;
if (end > maxr)
maxr=end;
}
// we need at least 7 characters wide fields to accomodate the
// labels
if ((field1=snprintf(tmp,64, "%"PRIu64, maxl))<7)
field1=7;
if ((field2=snprintf(tmp,64, "%"PRIu64, maxr))<7)
field2=7;
// now print the five test spans
pout(" SPAN %*s %*s CURRENT_TEST_STATUS\n", field1, "MIN_LBA", field2, "MAX_LBA");
for (i=0; i<5; i++) {
uint64_t start=log->span[i].start;
uint64_t end=log->span[i].end;
if ((i+1)==(int)log->currentspan)
// this span is currently under test
pout(" %d %*"PRIu64" %*"PRIu64" %s [%01d0%% left] (%"PRIu64"-%"PRIu64")\n",
i+1, field1, start, field2, end, msg,
(int)(sv->self_test_exec_status & 0xf), current, currentend);
else
// this span is not currently under test
pout(" %d %*"PRIu64" %*"PRIu64" Not_testing\n",
i+1, field1, start, field2, end);
}
// if we are currently read-scanning, print LBAs and the status of
// the read scan
if (log->currentspan>5)
pout("%5d %*"PRIu64" %*"PRIu64" Read_scanning %s\n",
(int)log->currentspan, field1, current, field2, currentend,
OfflineDataCollectionStatus(sv->offline_data_collection_status));
/* Print selective self-test flags. Possible flag combinations are
(numbering bits from 0-15):
Bit-1 Bit-3 Bit-4
Scan Pending Active
0 * * Don't scan
1 0 0 Will carry out scan after selective test
1 1 0 Waiting to carry out scan after powerup
1 0 1 Currently scanning
1 1 1 Currently scanning
*/
pout("Selective self-test flags (0x%x):\n", (unsigned int)log->flags);
if (log->flags & SELECTIVE_FLAG_DOSCAN) {
if (log->flags & SELECTIVE_FLAG_ACTIVE)
pout(" Currently read-scanning the remainder of the disk.\n");
else if (log->flags & SELECTIVE_FLAG_PENDING)
pout(" Read-scan of remainder of disk interrupted; will resume %d min after power-up.\n",
(int)log->pendingtime);
else
pout(" After scanning selected spans, read-scan remainder of disk.\n");
}
else
pout(" After scanning selected spans, do NOT read-scan remainder of disk.\n");
// print pending time
pout("If Selective self-test is pending on power-up, resume after %d minute delay.\n",
(int)log->pendingtime);
return;
}
// Format SCT Temperature value
static const char * sct_ptemp(signed char x, char (& buf)[20])
{
if (x == -128 /*0x80 = unknown*/)
return " ?";
snprintf(buf, sizeof(buf), "%2d", x);
return buf;
}
static const char * sct_pbar(int x, char (& buf)[64])
{
if (x <= 19)
x = 0;
else
x -= 19;
bool ov = false;
if (x > 40) {
x = 40; ov = true;
}
if (x > 0) {
memset(buf, '*', x);
if (ov)
buf[x-1] = '+';
buf[x] = 0;
}
else {
buf[0] = '-'; buf[1] = 0;
}
return buf;
}
static const char * sct_device_state_msg(unsigned char state)
{
switch (state) {
case 0: return "Active";
case 1: return "Stand-by";
case 2: return "Sleep";
case 3: return "DST executing in background";
case 4: return "SMART Off-line Data Collection executing in background";
case 5: return "SCT command executing in background";
default:return "Unknown";
}
}
// Print SCT Status
static int ataPrintSCTStatus(const ata_sct_status_response * sts)
{
pout("SCT Status Version: %u\n", sts->format_version);
pout("SCT Version (vendor specific): %u (0x%04x)\n", sts->sct_version, sts->sct_version);
pout("SCT Support Level: %u\n", sts->sct_spec);
pout("Device State: %s (%u)\n",
sct_device_state_msg(sts->device_state), sts->device_state);
char buf1[20], buf2[20];
if ( !sts->min_temp && !sts->life_min_temp
&& !sts->under_limit_count && !sts->over_limit_count) {
// "Reserved" fields not set, assume "old" format version 2
// Table 11 of T13/1701DT-N (SMART Command Transport) Revision 5, February 2005
// Table 54 of T13/1699-D (ATA8-ACS) Revision 3e, July 2006
pout("Current Temperature: %s Celsius\n",
sct_ptemp(sts->hda_temp, buf1));
pout("Power Cycle Max Temperature: %s Celsius\n",
sct_ptemp(sts->max_temp, buf2));
pout("Lifetime Max Temperature: %s Celsius\n",
sct_ptemp(sts->life_max_temp, buf2));
}
else {
// Assume "new" format version 2 or version 3
// T13/e06152r0-3 (Additional SCT Temperature Statistics), August - October 2006
// Table 60 of T13/1699-D (ATA8-ACS) Revision 3f, December 2006 (format version 2)
// Table 80 of T13/1699-D (ATA8-ACS) Revision 6a, September 2008 (format version 3)
pout("Current Temperature: %s Celsius\n",
sct_ptemp(sts->hda_temp, buf1));
pout("Power Cycle Min/Max Temperature: %s/%s Celsius\n",
sct_ptemp(sts->min_temp, buf1), sct_ptemp(sts->max_temp, buf2));
pout("Lifetime Min/Max Temperature: %s/%s Celsius\n",
sct_ptemp(sts->life_min_temp, buf1), sct_ptemp(sts->life_max_temp, buf2));
signed char avg = sts->byte205; // Average Temperature from e06152r0-2, removed in e06152r3
if (0 < avg && sts->life_min_temp <= avg && avg <= sts->life_max_temp)
pout("Lifetime Average Temperature: %2d Celsius\n", avg);
pout("Under/Over Temperature Limit Count: %2u/%u\n",
sts->under_limit_count, sts->over_limit_count);
}
return 0;
}
// Print SCT Temperature History Table
static int ataPrintSCTTempHist(const ata_sct_temperature_history_table * tmh)
{
char buf1[20], buf2[20], buf3[64];
pout("SCT Temperature History Version: %u%s\n", tmh->format_version,
(tmh->format_version != 2 ? " (Unknown, should be 2)" : ""));
pout("Temperature Sampling Period: %u minute%s\n",
tmh->sampling_period, (tmh->sampling_period==1?"":"s"));
pout("Temperature Logging Interval: %u minute%s\n",
tmh->interval, (tmh->interval==1?"":"s"));
pout("Min/Max recommended Temperature: %s/%s Celsius\n",
sct_ptemp(tmh->min_op_limit, buf1), sct_ptemp(tmh->max_op_limit, buf2));
pout("Min/Max Temperature Limit: %s/%s Celsius\n",
sct_ptemp(tmh->under_limit, buf1), sct_ptemp(tmh->over_limit, buf2));
pout("Temperature History Size (Index): %u (%u)\n", tmh->cb_size, tmh->cb_index);
if (!(0 < tmh->cb_size && tmh->cb_size <= sizeof(tmh->cb) && tmh->cb_index < tmh->cb_size)) {
if (!tmh->cb_size)
pout("Temperature History is empty\n");
else
pout("Invalid Temperature History Size or Index\n");
return 0;
}
// Print table
pout("\nIndex Estimated Time Temperature Celsius\n");
unsigned n = 0, i = (tmh->cb_index+1) % tmh->cb_size;
unsigned interval = (tmh->interval > 0 ? tmh->interval : 1);
time_t t = time(0) - (tmh->cb_size-1) * interval * 60;
t -= t % (interval * 60);
while (n < tmh->cb_size) {
// Find range of identical temperatures
unsigned n1 = n, n2 = n+1, i2 = (i+1) % tmh->cb_size;
while (n2 < tmh->cb_size && tmh->cb[i2] == tmh->cb[i]) {
n2++; i2 = (i2+1) % tmh->cb_size;
}
// Print range
while (n < n2) {
if (n == n1 || n == n2-1 || n2 <= n1+3) {
char date[30];
// TODO: Don't print times < boot time
strftime(date, sizeof(date), "%Y-%m-%d %H:%M", localtime(&t));
pout(" %3u %s %s %s\n", i, date,
sct_ptemp(tmh->cb[i], buf1), sct_pbar(tmh->cb[i], buf3));
}
else if (n == n1+1) {
pout(" ... ..(%3u skipped). .. %s\n",
n2-n1-2, sct_pbar(tmh->cb[i], buf3));
}
t += interval * 60; i = (i+1) % tmh->cb_size; n++;
}
}
//assert(n == tmh->cb_size && i == (tmh->cb_index+1) % tmh->cb_size);
return 0;
}
// Print SCT Error Recovery Control timers
static void ataPrintSCTErrorRecoveryControl(bool set, unsigned short read_timer, unsigned short write_timer)
{
pout("SCT Error Recovery Control%s:\n", (set ? " set to" : ""));
if (!read_timer)
pout(" Read: Disabled\n");
else
pout(" Read: %6d (%0.1f seconds)\n", read_timer, read_timer/10.0);
if (!write_timer)
pout(" Write: Disabled\n");
else
pout(" Write: %6d (%0.1f seconds)\n", write_timer, write_timer/10.0);
}
static void print_aam_level(const char * msg, int level, int recommended = -1)
{
// Table 56 of T13/1699-D (ATA8-ACS) Revision 6a, September 6, 2008
// Obsolete since T13/2015-D (ACS-2) Revision 4a, December 9, 2010
const char * s;
if (level == 0)
s = "vendor specific";
else if (level < 128)
s = "unknown/retired";
else if (level == 128)
s = "quiet";
else if (level < 254)
s = "intermediate";
else if (level == 254)
s = "maximum performance";
else
s = "reserved";
if (recommended >= 0)
pout("%s%d (%s), recommended: %d\n", msg, level, s, recommended);
else
pout("%s%d (%s)\n", msg, level, s);
}
static void print_apm_level(const char * msg, int level)
{
// Table 120 of T13/2015-D (ACS-2) Revision 7, June 22, 2011
const char * s;
if (!(1 <= level && level <= 254))
s = "reserved";
else if (level == 1)
s = "minimum power consumption with standby";
else if (level < 128)
s = "intermediate level with standby";
else if (level == 128)
s = "minimum power consumption without standby";
else if (level < 254)
s = "intermediate level without standby";
else
s = "maximum performance";
pout("%s%d (%s)\n", msg, level, s);
}
static void print_ata_security_status(const char * msg, unsigned short state)
{
const char * s1, * s2 = "", * s3 = "", * s4 = "";
// Table 6 of T13/2015-D (ACS-2) Revision 7, June 22, 2011
if (!(state & 0x0001))
s1 = "Unavailable";
else if (!(state & 0x0002)) {
s1 = "Disabled, ";
if (!(state & 0x0008))
s2 = "NOT FROZEN [SEC1]";
else
s2 = "frozen [SEC2]";
}
else {
s1 = "ENABLED, PW level ";
if (!(state & 0x0020))
s2 = "HIGH";
else
s2 = "MAX";
if (!(state & 0x0004)) {
s3 = ", not locked, ";
if (!(state & 0x0008))
s4 = "not frozen [SEC5]";
else
s4 = "frozen [SEC6]";
}
else {
s3 = ", **LOCKED** [SEC4]";
if (state & 0x0010)
s4 = ", PW ATTEMPTS EXCEEDED";
}
}
pout("%s%s%s%s%s\n", msg, s1, s2, s3, s4);
}
static void print_standby_timer(const char * msg, int timer, const ata_identify_device & drive)
{
const char * s1 = 0;
int hours = 0, minutes = 0 , seconds = 0;
// Table 63 of T13/2015-D (ACS-2) Revision 7, June 22, 2011
if (timer == 0)
s1 = "disabled";
else if (timer <= 240)
seconds = timer * 5, minutes = seconds / 60, seconds %= 60;
else if (timer <= 251)
minutes = (timer - 240) * 30, hours = minutes / 60, minutes %= 60;
else if (timer == 252)
minutes = 21;
else if (timer == 253)
s1 = "between 8 hours and 12 hours";
else if (timer == 255)
minutes = 21, seconds = 15;
else
s1 = "reserved";
const char * s2 = "", * s3 = "";
if (!(drive.words047_079[49-47] & 0x2000))
s2 = " or vendor-specific";
if (timer > 0 && (drive.words047_079[50-47] & 0xc001) == 0x4001)
s3 = ", a vendor-specific minimum applies";
if (s1)
pout("%s%d (%s%s%s)\n", msg, timer, s1, s2, s3);
else
pout("%s%d (%02d:%02d:%02d%s%s)\n", msg, timer, hours, minutes, seconds, s2, s3);
}
int ataPrintMain (ata_device * device, const ata_print_options & options)
{
// If requested, check power mode first
const char * powername = 0;
bool powerchg = false;
if (options.powermode) {
unsigned char powerlimit = 0xff;
int powermode = ataCheckPowerMode(device);
switch (powermode) {
case -1:
if (device->is_syscall_unsup()) {
pout("CHECK POWER MODE not implemented, ignoring -n option\n"); break;
}
powername = "SLEEP"; powerlimit = 2;
break;
case 0:
powername = "STANDBY"; powerlimit = 3; break;
case 0x80:
powername = "IDLE"; powerlimit = 4; break;
case 0xff:
powername = "ACTIVE or IDLE"; break;
default:
pout("CHECK POWER MODE returned unknown value 0x%02x, ignoring -n option\n", powermode);
break;
}
if (powername) {
if (options.powermode >= powerlimit) {
pout("Device is in %s mode, exit(%d)\n", powername, FAILPOWER);
return FAILPOWER;
}
powerchg = (powermode != 0xff); // SMART tests will spin up drives
}
}
// SMART values needed ?
bool need_smart_val = (
options.smart_check_status
|| options.smart_general_values
|| options.smart_vendor_attrib
|| options.smart_error_log
|| options.smart_selftest_log
|| options.smart_selective_selftest_log
|| options.smart_ext_error_log
|| options.smart_ext_selftest_log
|| options.smart_auto_offl_enable
|| options.smart_auto_offl_disable
|| options.smart_selftest_type != -1
);
// SMART must be enabled ?
bool need_smart_enabled = (
need_smart_val
|| options.smart_auto_save_enable
|| options.smart_auto_save_disable
);
// SMART feature set needed ?
bool need_smart_support = (
need_smart_enabled
|| options.smart_enable
|| options.smart_disable
);
// SMART and GP log directories needed ?
bool need_smart_logdir = options.smart_logdir;
bool need_gp_logdir = (
options.gp_logdir
|| options.smart_ext_error_log
|| options.smart_ext_selftest_log
|| options.devstat_all_pages
|| options.devstat_ssd_page
|| !options.devstat_pages.empty()
);
unsigned i;
for (i = 0; i < options.log_requests.size(); i++) {
if (options.log_requests[i].gpl)
need_gp_logdir = true;
else
need_smart_logdir = true;
}
// SCT commands needed ?
bool need_sct_support = (
options.sct_temp_sts
|| options.sct_temp_hist
|| options.sct_temp_int
|| options.sct_erc_get
|| options.sct_erc_set
|| options.sct_wcache_reorder_get
|| options.sct_wcache_reorder_set
);
// Exit if no further options specified
if (!( options.drive_info || options.show_presets
|| need_smart_support || need_smart_logdir
|| need_gp_logdir || need_sct_support
|| options.sataphy
|| options.identify_word_level >= 0
|| options.get_set_used )) {
if (powername)
pout("Device is in %s mode\n", powername);
else
pout("ATA device successfully opened\n\n"
"Use 'smartctl -a' (or '-x') to print SMART (and more) information\n\n");
return 0;
}
// Start by getting Drive ID information. We need this, to know if SMART is supported.
int returnval = 0;
ata_identify_device drive; memset(&drive, 0, sizeof(drive));
unsigned char raw_drive[sizeof(drive)]; memset(&raw_drive, 0, sizeof(raw_drive));
device->clear_err();
int retid = ata_read_identity(device, &drive, options.fix_swapped_id, raw_drive);
if (retid < 0) {
pout("Read Device Identity failed: %s\n\n",
(device->get_errno() ? device->get_errmsg() : "Unknown error"));
failuretest(MANDATORY_CMD, returnval|=FAILID);
}
else if (!nonempty(&drive, sizeof(drive))) {
pout("Read Device Identity failed: empty IDENTIFY data\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILID);
}
// If requested, show which presets would be used for this drive and exit.
if (options.show_presets) {
show_presets(&drive);
return 0;
}
// Use preset vendor attribute options unless user has requested otherwise.
ata_vendor_attr_defs attribute_defs = options.attribute_defs;
firmwarebug_defs firmwarebugs = options.firmwarebugs;
const drive_settings * dbentry = 0;
if (!options.ignore_presets)
dbentry = lookup_drive_apply_presets(&drive, attribute_defs,
firmwarebugs);
// Get capacity, sector sizes and rotation rate
ata_size_info sizes;
ata_get_size_info(&drive, sizes);
int rpm = ata_get_rotation_rate(&drive);
// Print ATA IDENTIFY info if requested
if (options.identify_word_level >= 0) {
pout("=== ATA IDENTIFY DATA ===\n");
// Pass raw data without endianness adjustments
ata_print_identify_data(raw_drive, (options.identify_word_level > 0), options.identify_bit_level);
}
// Print most drive identity information if requested
if (options.drive_info) {
pout("=== START OF INFORMATION SECTION ===\n");
print_drive_info(&drive, sizes, rpm, dbentry);
}
// Check and print SMART support and state
int smart_supported = -1, smart_enabled = -1;
if (need_smart_support || options.drive_info) {
// Packet device ?
if (retid > 0) {
pout("SMART support is: Unavailable - Packet Interface Devices [this device: %s] don't support ATA SMART\n",
packetdevicetype(retid-1));
}
else {
// Disk device: SMART supported and enabled ?
smart_supported = ataSmartSupport(&drive);
smart_enabled = ataIsSmartEnabled(&drive);
if (smart_supported < 0)
pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 82-83 don't show if SMART supported.\n");
if (smart_supported && smart_enabled < 0) {
pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 85-87 don't show if SMART is enabled.\n");
if (need_smart_support) {
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
// check SMART support by trying a command
pout(" Checking to be sure by trying SMART RETURN STATUS command.\n");
if (ataDoesSmartWork(device))
smart_supported = smart_enabled = 1;
}
}
else if (smart_supported < 0 && (smart_enabled > 0 || dbentry))
// Assume supported if enabled or in drive database
smart_supported = 1;
if (smart_supported < 0)
pout("SMART support is: Unknown - Try option -s with argument 'on' to enable it.");
else if (!smart_supported)
pout("SMART support is: Unavailable - device lacks SMART capability.\n");
else {
if (options.drive_info)
pout("SMART support is: Available - device has SMART capability.\n");
if (smart_enabled >= 0) {
if (device->ata_identify_is_cached()) {
if (options.drive_info)
pout(" %sabled status cached by OS, trying SMART RETURN STATUS cmd.\n",
(smart_enabled?"En":"Dis"));
smart_enabled = ataDoesSmartWork(device);
}
if (options.drive_info)
pout("SMART support is: %s\n",
(smart_enabled ? "Enabled" : "Disabled"));
}
}
}
}
// Print AAM status
if (options.get_aam) {
if ((drive.command_set_2 & 0xc200) != 0x4200) // word083
pout("AAM feature is: Unavailable\n");
else if (!(drive.word086 & 0x0200))
pout("AAM feature is: Disabled\n");
else
print_aam_level("AAM level is: ", drive.words088_255[94-88] & 0xff,
drive.words088_255[94-88] >> 8);
}
// Print APM status
if (options.get_apm) {
if ((drive.command_set_2 & 0xc008) != 0x4008) // word083
pout("APM feature is: Unavailable\n");
else if (!(drive.word086 & 0x0008))
pout("APM feature is: Disabled\n");
else
print_apm_level("APM level is: ", drive.words088_255[91-88] & 0xff);
}
// Print read look-ahead status
if (options.get_lookahead) {
pout("Rd look-ahead is: %s\n",
( (drive.command_set_2 & 0xc000) != 0x4000 // word083
|| !(drive.command_set_1 & 0x0040)) ? "Unavailable" : // word082
!(drive.cfs_enable_1 & 0x0040) ? "Disabled" : "Enabled"); // word085
}
// Print write cache status
if (options.get_wcache) {
pout("Write cache is: %s\n",
( (drive.command_set_2 & 0xc000) != 0x4000 // word083
|| !(drive.command_set_1 & 0x0020)) ? "Unavailable" : // word082
!(drive.cfs_enable_1 & 0x0020) ? "Disabled" : "Enabled"); // word085
}
// Print ATA security status
if (options.get_security)
print_ata_security_status("ATA Security is: ", drive.words088_255[128-88]);
// Check if SCT commands available
bool sct_ok = false;
if (need_sct_support) {
if (!isSCTCapable(&drive)) {
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
sct_ok = true;
}
// Print write cache reordering status
if (sct_ok && options.sct_wcache_reorder_get) {
int wcache_reorder=ataGetSetSCTWriteCacheReordering(device,
false /* enable */, false /* persistent */, false /*set*/);
pout("Wt Cache Reorder: ");
switch(wcache_reorder) {
case 0: /* not defined in standard but returned on some drives if not set */
pout("Unknown"); break;
case 1:
pout("Enabled"); break;
case 2:
pout("Disabled"); break;
default: /* error? */
pout("N/A"); break;
}
pout("\n");
}
if (!sct_ok && options.sct_wcache_reorder_get) {
pout("Wt Cache Reorder: Unavailable\n");
}
// Print remaining drive info
if (options.drive_info) {
// Print the (now possibly changed) power mode if available
if (powername)
pout("Power mode %s %s\n", (powerchg?"was:":"is: "), powername);
pout("\n");
}
// Exit if SMART is not supported but must be available to proceed
if (smart_supported <= 0 && need_smart_support)
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
// START OF THE ENABLE/DISABLE SECTION OF THE CODE
if ( options.smart_disable || options.smart_enable
|| options.smart_auto_save_disable || options.smart_auto_save_enable
|| options.smart_auto_offl_disable || options.smart_auto_offl_enable
|| options.set_aam || options.set_apm || options.set_lookahead
|| options.set_wcache || options.set_security_freeze || options.set_standby
|| options.sct_wcache_reorder_set)
pout("=== START OF ENABLE/DISABLE COMMANDS SECTION ===\n");
// Enable/Disable AAM
if (options.set_aam) {
if (options.set_aam > 0) {
if (!ata_set_features(device, ATA_ENABLE_AAM, options.set_aam-1)) {
pout("AAM enable failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
print_aam_level("AAM set to level ", options.set_aam-1);
}
else {
if (!ata_set_features(device, ATA_DISABLE_AAM)) {
pout("AAM disable failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("AAM disabled\n");
}
}
// Enable/Disable APM
if (options.set_apm) {
if (options.set_apm > 0) {
if (!ata_set_features(device, ATA_ENABLE_APM, options.set_apm-1)) {
pout("APM enable failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
print_apm_level("APM set to level ", options.set_apm-1);
}
else {
if (!ata_set_features(device, ATA_DISABLE_APM)) {
pout("APM disable failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("APM disabled\n");
}
}
// Enable/Disable read look-ahead
if (options.set_lookahead) {
bool enable = (options.set_lookahead > 0);
if (!ata_set_features(device, (enable ? ATA_ENABLE_READ_LOOK_AHEAD : ATA_DISABLE_READ_LOOK_AHEAD))) {
pout("Read look-ahead %sable failed: %s\n", (enable ? "en" : "dis"), device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("Read look-ahead %sabled\n", (enable ? "en" : "dis"));
}
// Enable/Disable write cache
if (options.set_wcache) {
bool enable = (options.set_wcache > 0);
if (!ata_set_features(device, (enable ? ATA_ENABLE_WRITE_CACHE : ATA_DISABLE_WRITE_CACHE))) {
pout("Write cache %sable failed: %s\n", (enable ? "en" : "dis"), device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("Write cache %sabled\n", (enable ? "en" : "dis"));
}
// Enable/Disable write cache reordering
if (sct_ok && options.sct_wcache_reorder_set) {
bool enable = (options.sct_wcache_reorder_set > 0);
int wcache_reorder=ataGetSetSCTWriteCacheReordering(device,
enable, false /* persistent */, true /*set*/);
if (wcache_reorder < 0) {
pout("Write cache reordering %sable failed: %s\n", (enable ? "en" : "dis"), device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("Write cache reordering %sabled\n", (enable ? "en" : "dis"));
}
// Freeze ATA security
if (options.set_security_freeze) {
if (!ata_nodata_command(device, ATA_SECURITY_FREEZE_LOCK)) {
pout("ATA SECURITY FREEZE LOCK failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("ATA Security set to frozen mode\n");
}
// Set standby timer
if (options.set_standby) {
if (!ata_nodata_command(device, ATA_IDLE, options.set_standby-1)) {
pout("ATA IDLE command failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
print_standby_timer("Standby timer set to ", options.set_standby-1, drive);
}
// Enable/Disable SMART commands
if (options.smart_enable) {
if (ataEnableSmart(device)) {
pout("SMART Enable failed: %s\n\n", device->get_errmsg());
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
else {
pout("SMART Enabled.\n");
smart_enabled = 1;
}
}
// Turn off SMART on device
if (options.smart_disable) {
if (ataDisableSmart(device)) {
pout("SMART Disable failed: %s\n\n", device->get_errmsg());
failuretest(MANDATORY_CMD,returnval|=FAILSMART);
}
}
// Exit if SMART is disabled but must be enabled to proceed
if (options.smart_disable || (smart_enabled <= 0 && need_smart_enabled && !is_permissive())) {
pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n");
if (!options.smart_disable)
pout("(override with '-T permissive' option)\n");
return returnval;
}
// Enable/Disable Auto-save attributes
if (options.smart_auto_save_enable) {
if (ataEnableAutoSave(device)){
pout("SMART Enable Attribute Autosave failed: %s\n\n", device->get_errmsg());
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
else
pout("SMART Attribute Autosave Enabled.\n");
}
if (options.smart_auto_save_disable) {
if (ataDisableAutoSave(device)){
pout("SMART Disable Attribute Autosave failed: %s\n\n", device->get_errmsg());
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
else
pout("SMART Attribute Autosave Disabled.\n");
}
// Read SMART values and thresholds if necessary
ata_smart_values smartval; memset(&smartval, 0, sizeof(smartval));
ata_smart_thresholds_pvt smartthres; memset(&smartthres, 0, sizeof(smartthres));
bool smart_val_ok = false, smart_thres_ok = false;
if (need_smart_val) {
if (ataReadSmartValues(device, &smartval)) {
pout("Read SMART Data failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
smart_val_ok = true;
if (options.smart_check_status || options.smart_vendor_attrib) {
if (ataReadSmartThresholds(device, &smartthres)){
pout("Read SMART Thresholds failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
smart_thres_ok = true;
}
}
}
// Enable/Disable Off-line testing
bool needupdate = false;
if (options.smart_auto_offl_enable) {
if (!isSupportAutomaticTimer(&smartval)){
pout("SMART Automatic Timers not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
needupdate = smart_val_ok;
if (ataEnableAutoOffline(device)){
pout("SMART Enable Automatic Offline failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
pout("SMART Automatic Offline Testing Enabled every four hours.\n");
}
if (options.smart_auto_offl_disable) {
if (!isSupportAutomaticTimer(&smartval)){
pout("SMART Automatic Timers not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
needupdate = smart_val_ok;
if (ataDisableAutoOffline(device)){
pout("SMART Disable Automatic Offline failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
pout("SMART Automatic Offline Testing Disabled.\n");
}
if (needupdate && ataReadSmartValues(device, &smartval)){
pout("Read SMART Data failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
smart_val_ok = false;
}
// all this for a newline!
if ( options.smart_disable || options.smart_enable
|| options.smart_auto_save_disable || options.smart_auto_save_enable
|| options.smart_auto_offl_disable || options.smart_auto_offl_enable
|| options.set_aam || options.set_apm || options.set_lookahead
|| options.set_wcache || options.set_security_freeze || options.set_standby
|| options.sct_wcache_reorder_set)
pout("\n");
// START OF READ-ONLY OPTIONS APART FROM -V and -i
if ( options.smart_check_status || options.smart_general_values
|| options.smart_vendor_attrib || options.smart_error_log
|| options.smart_selftest_log || options.smart_selective_selftest_log
|| options.smart_ext_error_log || options.smart_ext_selftest_log
|| options.sct_temp_sts || options.sct_temp_hist )
pout("=== START OF READ SMART DATA SECTION ===\n");
// Check SMART status
if (options.smart_check_status) {
switch (ataSmartStatus2(device)) {
case 0:
// The case where the disk health is OK
pout("SMART overall-health self-assessment test result: PASSED\n");
if (smart_thres_ok && find_failed_attr(&smartval, &smartthres, attribute_defs, 0)) {
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for marginal Attributes.\n\n");
else {
print_on();
pout("Please note the following marginal Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 2, options.output_format);
}
returnval|=FAILAGE;
}
else
pout("\n");
break;
case 1:
// The case where the disk health is NOT OK
print_on();
pout("SMART overall-health self-assessment test result: FAILED!\n"
"Drive failure expected in less than 24 hours. SAVE ALL DATA.\n");
print_off();
if (smart_thres_ok && find_failed_attr(&smartval, &smartthres, attribute_defs, 1)) {
returnval|=FAILATTR;
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for failed Attributes.\n\n");
else {
print_on();
pout("Failed Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 1, options.output_format);
}
}
else
pout("No failed Attributes found.\n\n");
returnval|=FAILSTATUS;
print_off();
break;
case -1:
default:
// Something went wrong with the SMART STATUS command.
// The ATA SMART RETURN STATUS command provides the result in the ATA output
// registers. Buggy ATA/SATA drivers and SAT Layers often do not properly
// return the registers values.
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
if (!(smart_val_ok && smart_thres_ok)) {
print_on();
pout("SMART overall-health self-assessment test result: UNKNOWN!\n"
"SMART Status, Attributes and Thresholds cannot be read.\n\n");
}
else if (find_failed_attr(&smartval, &smartthres, attribute_defs, 1)) {
print_on();
pout("SMART overall-health self-assessment test result: FAILED!\n"
"Drive failure expected in less than 24 hours. SAVE ALL DATA.\n");
print_off();
returnval|=FAILATTR;
returnval|=FAILSTATUS;
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for failed Attributes.\n\n");
else {
print_on();
pout("Failed Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 1, options.output_format);
}
}
else {
pout("SMART overall-health self-assessment test result: PASSED\n");
pout("Warning: This result is based on an Attribute check.\n");
if (find_failed_attr(&smartval, &smartthres, attribute_defs, 0)) {
if (options.smart_vendor_attrib)
pout("See vendor-specific Attribute list for marginal Attributes.\n\n");
else {
print_on();
pout("Please note the following marginal Attributes:\n");
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm, 2, options.output_format);
}
returnval|=FAILAGE;
}
else
pout("\n");
}
print_off();
break;
} // end of switch statement
print_off();
} // end of checking SMART Status
// Print general SMART values
if (smart_val_ok && options.smart_general_values)
PrintGeneralSmartValues(&smartval, &drive, firmwarebugs);
// Print vendor-specific attributes
if (smart_val_ok && options.smart_vendor_attrib) {
print_on();
PrintSmartAttribWithThres(&smartval, &smartthres, attribute_defs, rpm,
(printing_is_switchable ? 2 : 0), options.output_format);
print_off();
}
// If GP Log is supported use smart log directory for
// error and selftest log support check.
if ( isGeneralPurposeLoggingCapable(&drive)
&& ( options.smart_error_log || options.smart_selftest_log
|| options.retry_error_log || options.retry_selftest_log))
need_smart_logdir = true;
ata_smart_log_directory smartlogdir_buf, gplogdir_buf;
const ata_smart_log_directory * smartlogdir = 0, * gplogdir = 0;
// Read SMART Log directory
if (need_smart_logdir) {
if (firmwarebugs.is_set(BUG_NOLOGDIR))
smartlogdir = fake_logdir(&smartlogdir_buf, options);
else if (ataReadLogDirectory(device, &smartlogdir_buf, false)) {
pout("Read SMART Log Directory failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
smartlogdir = &smartlogdir_buf;
}
// Read GP Log directory
if (need_gp_logdir) {
if (firmwarebugs.is_set(BUG_NOLOGDIR))
gplogdir = fake_logdir(&gplogdir_buf, options);
else if (ataReadLogDirectory(device, &gplogdir_buf, true)) {
pout("Read GP Log Directory failed\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
gplogdir = &gplogdir_buf;
}
// Print log directories
if ((options.gp_logdir && gplogdir) || (options.smart_logdir && smartlogdir)) {
if (firmwarebugs.is_set(BUG_NOLOGDIR))
pout("Log Directories not read due to '-F nologdir' option\n\n");
else
PrintLogDirectories(gplogdir, smartlogdir);
}
// Print log pages
for (i = 0; i < options.log_requests.size(); i++) {
const ata_log_request & req = options.log_requests[i];
const char * type;
unsigned max_nsectors;
if (req.gpl) {
type = "General Purpose";
max_nsectors = GetNumLogSectors(gplogdir, req.logaddr, true);
}
else {
type = "SMART";
max_nsectors = GetNumLogSectors(smartlogdir, req.logaddr, false);
}
if (!max_nsectors) {
if (!is_permissive()) {
pout("%s Log 0x%02x does not exist (override with '-T permissive' option)\n", type, req.logaddr);
continue;
}
max_nsectors = req.page+1;
}
if (max_nsectors <= req.page) {
pout("%s Log 0x%02x has only %u sectors, output skipped\n", type, req.logaddr, max_nsectors);
continue;
}
unsigned ns = req.nsectors;
if (ns > max_nsectors - req.page) {
if (req.nsectors != ~0U) // "FIRST-max"
pout("%s Log 0x%02x has only %u sectors, output truncated\n", type, req.logaddr, max_nsectors);
ns = max_nsectors - req.page;
}
// SMART log don't support sector offset, start with first sector
unsigned offs = (req.gpl ? 0 : req.page);
raw_buffer log_buf((offs + ns) * 512);
bool ok;
if (req.gpl)
ok = ataReadLogExt(device, req.logaddr, 0x00, req.page, log_buf.data(), ns);
else
ok = ataReadSmartLog(device, req.logaddr, log_buf.data(), offs + ns);
if (!ok)
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else
PrintLogPages(type, log_buf.data() + offs*512, req.logaddr, req.page, ns, max_nsectors);
}
// Print SMART Extendend Comprehensive Error Log
bool do_smart_error_log = options.smart_error_log;
if (options.smart_ext_error_log) {
bool ok = false;
unsigned nsectors = GetNumLogSectors(gplogdir, 0x03, true);
if (!nsectors)
pout("SMART Extended Comprehensive Error Log (GP Log 0x03) not supported\n\n");
else if (nsectors >= 256)
pout("SMART Extended Comprehensive Error Log size %u not supported\n\n", nsectors);
else {
raw_buffer log_03_buf(nsectors * 512);
ata_smart_exterrlog * log_03 = (ata_smart_exterrlog *)log_03_buf.data();
if (!ataReadExtErrorLog(device, log_03, nsectors, firmwarebugs)) {
pout("Read SMART Extended Comprehensive Error Log failed\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
if (PrintSmartExtErrorLog(log_03, nsectors, options.smart_ext_error_log))
returnval |= FAILERR;
ok = true;
}
}
if (!ok) {
if (options.retry_error_log)
do_smart_error_log = true;
else if (!do_smart_error_log)
pout("Try '-l [xerror,]error' to read traditional SMART Error Log\n");
}
}
// Print SMART error log
if (do_smart_error_log) {
if (!( ( smartlogdir && GetNumLogSectors(smartlogdir, 0x01, false))
|| (!smartlogdir && isSmartErrorLogCapable(&smartval, &drive) )
|| is_permissive() )) {
pout("SMART Error Log not supported\n\n");
}
else {
ata_smart_errorlog smarterror; memset(&smarterror, 0, sizeof(smarterror));
if (ataReadErrorLog(device, &smarterror, firmwarebugs)) {
pout("Read SMART Error Log failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
// quiet mode is turned on inside PrintSmartErrorLog()
if (PrintSmartErrorlog(&smarterror, firmwarebugs))
returnval|=FAILERR;
print_off();
}
}
}
// Print SMART Extendend Self-test Log
bool do_smart_selftest_log = options.smart_selftest_log;
if (options.smart_ext_selftest_log) {
bool ok = false;
unsigned nsectors = GetNumLogSectors(gplogdir, 0x07, true);
if (!nsectors)
pout("SMART Extended Self-test Log (GP Log 0x07) not supported\n\n");
else if (nsectors >= 256)
pout("SMART Extended Self-test Log size %u not supported\n\n", nsectors);
else {
raw_buffer log_07_buf(nsectors * 512);
ata_smart_extselftestlog * log_07 = (ata_smart_extselftestlog *)log_07_buf.data();
if (!ataReadExtSelfTestLog(device, log_07, nsectors)) {
pout("Read SMART Extended Self-test Log failed\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
if (PrintSmartExtSelfTestLog(log_07, nsectors, options.smart_ext_selftest_log))
returnval |= FAILLOG;
ok = true;
}
}
if (!ok) {
if (options.retry_selftest_log)
do_smart_selftest_log = true;
else if (!do_smart_selftest_log)
pout("Try '-l [xselftest,]selftest' to read traditional SMART Self Test Log\n");
}
}
// Print SMART self-test log
if (do_smart_selftest_log) {
if (!( ( smartlogdir && GetNumLogSectors(smartlogdir, 0x06, false))
|| (!smartlogdir && isSmartTestLogCapable(&smartval, &drive) )
|| is_permissive() )) {
pout("SMART Self-test Log not supported\n\n");
}
else {
ata_smart_selftestlog smartselftest; memset(&smartselftest, 0, sizeof(smartselftest));
if (ataReadSelfTestLog(device, &smartselftest, firmwarebugs)) {
pout("Read SMART Self-test Log failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
print_on();
if (ataPrintSmartSelfTestlog(&smartselftest, !printing_is_switchable, firmwarebugs))
returnval |= FAILLOG;
print_off();
pout("\n");
}
}
}
// Print SMART selective self-test log
if (options.smart_selective_selftest_log) {
ata_selective_self_test_log log;
if (!isSupportSelectiveSelfTest(&smartval))
pout("Selective Self-tests/Logging not supported\n\n");
else if(ataReadSelectiveSelfTestLog(device, &log)) {
pout("Read SMART Selective Self-test Log failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
print_on();
// If any errors were found, they are logged in the SMART Self-test log.
// So there is no need to print the Selective Self Test log in silent
// mode.
if (!printing_is_switchable)
ataPrintSelectiveSelfTestLog(&log, &smartval);
print_off();
pout("\n");
}
}
if(!sct_ok && (options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int
|| options.sct_erc_get || options.sct_erc_set ))
pout("SCT Commands not supported\n\n");
// Print SCT status and temperature history table
if (sct_ok && (options.sct_temp_sts || options.sct_temp_hist || options.sct_temp_int)) {
for (;;) {
if (options.sct_temp_sts || options.sct_temp_hist) {
ata_sct_status_response sts;
ata_sct_temperature_history_table tmh;
if (!options.sct_temp_hist) {
// Read SCT status only
if (ataReadSCTStatus(device, &sts)) {
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
}
else {
if (!isSCTDataTableCapable(&drive)) {
pout("SCT Data Table command not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
// Read SCT status and temperature history
if (ataReadSCTTempHist(device, &tmh, &sts)) {
pout("Read SCT Temperature History failed\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
}
if (options.sct_temp_sts)
ataPrintSCTStatus(&sts);
if (options.sct_temp_hist)
ataPrintSCTTempHist(&tmh);
pout("\n");
}
if (options.sct_temp_int) {
// Set new temperature logging interval
if (!isSCTFeatureControlCapable(&drive)) {
pout("SCT Feature Control command not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
if (ataSetSCTTempInterval(device, options.sct_temp_int, options.sct_temp_int_pers)) {
pout("Write Temperature Logging Interval failed\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
break;
}
pout("Temperature Logging Interval set to %u minute%s (%s)\n",
options.sct_temp_int, (options.sct_temp_int == 1 ? "" : "s"),
(options.sct_temp_int_pers ? "persistent" : "volatile"));
}
break;
}
}
// SCT Error Recovery Control
if (sct_ok && (options.sct_erc_get || options.sct_erc_set)) {
if (!isSCTErrorRecoveryControlCapable(&drive)) {
pout("SCT Error Recovery Control command not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else {
bool sct_erc_get = options.sct_erc_get;
if (options.sct_erc_set) {
// Set SCT Error Recovery Control
if ( ataSetSCTErrorRecoveryControltime(device, 1, options.sct_erc_readtime )
|| ataSetSCTErrorRecoveryControltime(device, 2, options.sct_erc_writetime)) {
pout("SCT (Set) Error Recovery Control command failed\n");
if (!( (options.sct_erc_readtime == 70 && options.sct_erc_writetime == 70)
|| (options.sct_erc_readtime == 0 && options.sct_erc_writetime == 0)))
pout("Retry with: 'scterc,70,70' to enable ERC or 'scterc,0,0' to disable\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
sct_erc_get = false;
}
else if (!sct_erc_get)
ataPrintSCTErrorRecoveryControl(true, options.sct_erc_readtime,
options.sct_erc_writetime);
}
if (sct_erc_get) {
// Print SCT Error Recovery Control
unsigned short read_timer, write_timer;
if ( ataGetSCTErrorRecoveryControltime(device, 1, read_timer )
|| ataGetSCTErrorRecoveryControltime(device, 2, write_timer)) {
pout("SCT (Get) Error Recovery Control command failed\n");
if (options.sct_erc_set) {
pout("The previous SCT (Set) Error Recovery Control command succeeded\n");
ataPrintSCTErrorRecoveryControl(true, options.sct_erc_readtime,
options.sct_erc_writetime);
}
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
ataPrintSCTErrorRecoveryControl(false, read_timer, write_timer);
}
pout("\n");
}
}
// Print Device Statistics
if (options.devstat_all_pages || options.devstat_ssd_page || !options.devstat_pages.empty()) {
unsigned nsectors = GetNumLogSectors(gplogdir, 0x04, true);
if (!nsectors)
pout("Device Statistics (GP Log 0x04) not supported\n\n");
else if (!print_device_statistics(device, nsectors, options.devstat_pages,
options.devstat_all_pages, options.devstat_ssd_page))
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
// Print SATA Phy Event Counters
if (options.sataphy) {
unsigned nsectors = GetNumLogSectors(gplogdir, 0x11, true);
// Packet interface devices do not provide a log directory, check support bit
if (!nsectors && (drive.words047_079[76-47] & 0x0401) == 0x0400)
nsectors = 1;
if (!nsectors)
pout("SATA Phy Event Counters (GP Log 0x11) not supported\n\n");
else if (nsectors != 1)
pout("SATA Phy Event Counters with %u sectors not supported\n\n", nsectors);
else {
unsigned char log_11[512] = {0, };
unsigned char features = (options.sataphy_reset ? 0x01 : 0x00);
if (!ataReadLogExt(device, 0x11, features, 0, log_11, 1)) {
pout("Read SATA Phy Event Counters failed\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
else
PrintSataPhyEventCounters(log_11, options.sataphy_reset);
}
}
// Set to standby (spindown) mode
// (Above commands may spinup drive)
if (options.set_standby_now) {
if (!ata_nodata_command(device, ATA_STANDBY_IMMEDIATE)) {
pout("ATA STANDBY IMMEDIATE command failed: %s\n", device->get_errmsg());
returnval |= FAILSMART;
}
else
pout("Device placed in STANDBY mode\n");
}
// START OF THE TESTING SECTION OF THE CODE. IF NO TESTING, RETURN
if (!smart_val_ok || options.smart_selftest_type == -1)
return returnval;
pout("=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===\n");
// if doing a self-test, be sure it's supported by the hardware
switch (options.smart_selftest_type) {
case OFFLINE_FULL_SCAN:
if (!isSupportExecuteOfflineImmediate(&smartval)){
pout("Execute Offline Immediate function not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
break;
case ABORT_SELF_TEST:
case SHORT_SELF_TEST:
case EXTEND_SELF_TEST:
case SHORT_CAPTIVE_SELF_TEST:
case EXTEND_CAPTIVE_SELF_TEST:
if (!isSupportSelfTest(&smartval)){
pout("Self-test functions not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
break;
case CONVEYANCE_SELF_TEST:
case CONVEYANCE_CAPTIVE_SELF_TEST:
if (!isSupportConveyanceSelfTest(&smartval)){
pout("Conveyance Self-test functions not supported\n\n");
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
break;
case SELECTIVE_SELF_TEST:
case SELECTIVE_CAPTIVE_SELF_TEST:
if (!isSupportSelectiveSelfTest(&smartval)){
pout("Selective Self-test functions not supported\n\n");
failuretest(MANDATORY_CMD, returnval|=FAILSMART);
}
break;
default:
break; // Vendor specific type
}
// Now do the test. Note ataSmartTest prints its own error/success
// messages
if (ataSmartTest(device, options.smart_selftest_type, options.smart_selftest_force,
options.smart_selective_args, &smartval, sizes.sectors ))
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
else {
// Tell user how long test will take to complete. This is tricky
// because in the case of an Offline Full Scan, the completion
// timer is volatile, and needs to be read AFTER the command is
// given. If this will interrupt the Offline Full Scan, we don't
// do it, just warn user.
if (options.smart_selftest_type == OFFLINE_FULL_SCAN) {
if (isSupportOfflineAbort(&smartval))
pout("Note: giving further SMART commands will abort Offline testing\n");
else if (ataReadSmartValues(device, &smartval)){
pout("Read SMART Data failed: %s\n\n", device->get_errmsg());
failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
}
}
// Now say how long the test will take to complete
int timewait = TestTime(&smartval, options.smart_selftest_type);
if (timewait) {
time_t t=time(NULL);
if (options.smart_selftest_type == OFFLINE_FULL_SCAN) {
t+=timewait;
pout("Please wait %d seconds for test to complete.\n", (int)timewait);
} else {
t+=timewait*60;
pout("Please wait %d minutes for test to complete.\n", (int)timewait);
}
pout("Test will complete after %s\n", ctime(&t));
if ( options.smart_selftest_type != SHORT_CAPTIVE_SELF_TEST
&& options.smart_selftest_type != EXTEND_CAPTIVE_SELF_TEST
&& options.smart_selftest_type != CONVEYANCE_CAPTIVE_SELF_TEST
&& options.smart_selftest_type != SELECTIVE_CAPTIVE_SELF_TEST )
pout("Use smartctl -X to abort test.\n");
}
}
return returnval;
}
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>