/*
* os_win32.cpp
*
* Home page of code is: http://smartmontools.sourceforge.net
*
* Copyright (C) 2004-13 Christian Franke <smartmontools-support@lists.sourceforge.net>
* Copyright (C) 2012 Hank Wu <hank@areca.com.tw>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example COPYING); If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "config.h"
#define WINVER 0x0502
#define _WIN32_WINNT WINVER
#include "int64.h"
#include "atacmds.h"
#include "scsicmds.h"
#include "utility.h"
#include "smartctl.h" // TODO: Do not use smartctl only variables here
#include "dev_interface.h"
#include "dev_ata_cmd_set.h"
#include "dev_areca.h"
#include "os_win32/wmiquery.h"
#include <errno.h>
#ifdef _DEBUG
#include <assert.h>
#else
#undef assert
#define assert(x) /* */
#endif
#include <stddef.h> // offsetof()
#include <io.h> // access()
// WIN32_LEAN_AND_MEAN may be required to prevent inclusion of <winioctl.h>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#if HAVE_NTDDDISK_H
// i686-pc-cygwin, i686-w64-mingw32, x86_64-w64-mingw32
// (Missing: FILE_DEVICE_SCSI)
#include <devioctl.h>
#include <ntdddisk.h>
#include <ntddscsi.h>
#include <ntddstor.h>
#elif HAVE_DDK_NTDDDISK_H
// older i686-pc-cygwin, i686-pc-mingw32, i586-mingw32msvc
// (Missing: IOCTL_IDE_PASS_THROUGH, IOCTL_ATA_PASS_THROUGH, FILE_DEVICE_SCSI)
#include <ddk/ntdddisk.h>
#include <ddk/ntddscsi.h>
#include <ddk/ntddstor.h>
#else
// MSVC10, older MinGW
// (Missing: IOCTL_SCSI_MINIPORT_*)
#include <ntddscsi.h>
#include <winioctl.h>
#endif
#ifndef _WIN32
// csmisas.h requires _WIN32 but w32api-headers no longer define it on Cygwin
#define _WIN32
#endif
// CSMI support
#include "csmisas.h"
// Silence -Wunused-local-typedefs warning from g++ >= 4.8
#if __GNUC__ >= 4
#define ATTR_UNUSED __attribute__((unused))
#else
#define ATTR_UNUSED /**/
#endif
// Macro to check constants at compile time using a dummy typedef
#define ASSERT_CONST(c, n) \
typedef char assert_const_##c[((c) == (n)) ? 1 : -1] ATTR_UNUSED
#define ASSERT_SIZEOF(t, n) \
typedef char assert_sizeof_##t[(sizeof(t) == (n)) ? 1 : -1] ATTR_UNUSED
#ifndef _WIN64
#define SELECT_WIN_32_64(x32, x64) (x32)
#else
#define SELECT_WIN_32_64(x32, x64) (x64)
#endif
const char * os_win32_cpp_cvsid = "$Id: os_win32.cpp,v 1.1.1.4 2013/10/14 07:54:03 misho Exp $";
/////////////////////////////////////////////////////////////////////////////
// Windows I/O-controls, some declarations are missing in the include files
extern "C" {
// SMART_* IOCTLs, also known as DFP_* (Disk Fault Protection)
ASSERT_CONST(SMART_GET_VERSION, 0x074080);
ASSERT_CONST(SMART_SEND_DRIVE_COMMAND, 0x07c084);
ASSERT_CONST(SMART_RCV_DRIVE_DATA, 0x07c088);
ASSERT_SIZEOF(GETVERSIONINPARAMS, 24);
ASSERT_SIZEOF(SENDCMDINPARAMS, 32+1);
ASSERT_SIZEOF(SENDCMDOUTPARAMS, 16+1);
// IDE PASS THROUGH (2000, XP, undocumented)
#ifndef IOCTL_IDE_PASS_THROUGH
#define IOCTL_IDE_PASS_THROUGH \
CTL_CODE(IOCTL_SCSI_BASE, 0x040A, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#endif // IOCTL_IDE_PASS_THROUGH
#pragma pack(1)
typedef struct {
IDEREGS IdeReg;
ULONG DataBufferSize;
UCHAR DataBuffer[1];
} ATA_PASS_THROUGH;
#pragma pack()
ASSERT_CONST(IOCTL_IDE_PASS_THROUGH, 0x04d028);
ASSERT_SIZEOF(ATA_PASS_THROUGH, 12+1);
// ATA PASS THROUGH (Win2003, XP SP2)
#ifndef IOCTL_ATA_PASS_THROUGH
#define IOCTL_ATA_PASS_THROUGH \
CTL_CODE(IOCTL_SCSI_BASE, 0x040B, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _ATA_PASS_THROUGH_EX {
USHORT Length;
USHORT AtaFlags;
UCHAR PathId;
UCHAR TargetId;
UCHAR Lun;
UCHAR ReservedAsUchar;
ULONG DataTransferLength;
ULONG TimeOutValue;
ULONG ReservedAsUlong;
ULONG_PTR DataBufferOffset;
UCHAR PreviousTaskFile[8];
UCHAR CurrentTaskFile[8];
} ATA_PASS_THROUGH_EX;
#define ATA_FLAGS_DRDY_REQUIRED 0x01
#define ATA_FLAGS_DATA_IN 0x02
#define ATA_FLAGS_DATA_OUT 0x04
#define ATA_FLAGS_48BIT_COMMAND 0x08
#define ATA_FLAGS_USE_DMA 0x10
#define ATA_FLAGS_NO_MULTIPLE 0x20 // Vista
#endif // IOCTL_ATA_PASS_THROUGH
ASSERT_CONST(IOCTL_ATA_PASS_THROUGH, 0x04d02c);
ASSERT_SIZEOF(ATA_PASS_THROUGH_EX, SELECT_WIN_32_64(40, 48));
// IOCTL_SCSI_PASS_THROUGH[_DIRECT]
ASSERT_CONST(IOCTL_SCSI_PASS_THROUGH, 0x04d004);
ASSERT_CONST(IOCTL_SCSI_PASS_THROUGH_DIRECT, 0x04d014);
ASSERT_SIZEOF(SCSI_PASS_THROUGH, SELECT_WIN_32_64(44, 56));
ASSERT_SIZEOF(SCSI_PASS_THROUGH_DIRECT, SELECT_WIN_32_64(44, 56));
// SMART IOCTL via SCSI MINIPORT ioctl
#ifndef FILE_DEVICE_SCSI
#define FILE_DEVICE_SCSI 0x001b
#endif
#ifndef IOCTL_SCSI_MINIPORT_SMART_VERSION
#define IOCTL_SCSI_MINIPORT_SMART_VERSION ((FILE_DEVICE_SCSI << 16) + 0x0500)
#define IOCTL_SCSI_MINIPORT_IDENTIFY ((FILE_DEVICE_SCSI << 16) + 0x0501)
#define IOCTL_SCSI_MINIPORT_READ_SMART_ATTRIBS ((FILE_DEVICE_SCSI << 16) + 0x0502)
#define IOCTL_SCSI_MINIPORT_READ_SMART_THRESHOLDS ((FILE_DEVICE_SCSI << 16) + 0x0503)
#define IOCTL_SCSI_MINIPORT_ENABLE_SMART ((FILE_DEVICE_SCSI << 16) + 0x0504)
#define IOCTL_SCSI_MINIPORT_DISABLE_SMART ((FILE_DEVICE_SCSI << 16) + 0x0505)
#define IOCTL_SCSI_MINIPORT_RETURN_STATUS ((FILE_DEVICE_SCSI << 16) + 0x0506)
#define IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTOSAVE ((FILE_DEVICE_SCSI << 16) + 0x0507)
#define IOCTL_SCSI_MINIPORT_SAVE_ATTRIBUTE_VALUES ((FILE_DEVICE_SCSI << 16) + 0x0508)
#define IOCTL_SCSI_MINIPORT_EXECUTE_OFFLINE_DIAGS ((FILE_DEVICE_SCSI << 16) + 0x0509)
#define IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTO_OFFLINE ((FILE_DEVICE_SCSI << 16) + 0x050a)
#define IOCTL_SCSI_MINIPORT_READ_SMART_LOG ((FILE_DEVICE_SCSI << 16) + 0x050b)
#define IOCTL_SCSI_MINIPORT_WRITE_SMART_LOG ((FILE_DEVICE_SCSI << 16) + 0x050c)
#endif // IOCTL_SCSI_MINIPORT_SMART_VERSION
ASSERT_CONST(IOCTL_SCSI_MINIPORT, 0x04d008);
ASSERT_SIZEOF(SRB_IO_CONTROL, 28);
// IOCTL_STORAGE_QUERY_PROPERTY
#ifndef IOCTL_STORAGE_QUERY_PROPERTY
#define IOCTL_STORAGE_QUERY_PROPERTY \
CTL_CODE(IOCTL_STORAGE_BASE, 0x0500, METHOD_BUFFERED, FILE_ANY_ACCESS)
typedef struct _STORAGE_DEVICE_DESCRIPTOR {
ULONG Version;
ULONG Size;
UCHAR DeviceType;
UCHAR DeviceTypeModifier;
BOOLEAN RemovableMedia;
BOOLEAN CommandQueueing;
ULONG VendorIdOffset;
ULONG ProductIdOffset;
ULONG ProductRevisionOffset;
ULONG SerialNumberOffset;
STORAGE_BUS_TYPE BusType;
ULONG RawPropertiesLength;
UCHAR RawDeviceProperties[1];
} STORAGE_DEVICE_DESCRIPTOR;
typedef enum _STORAGE_QUERY_TYPE {
PropertyStandardQuery = 0,
PropertyExistsQuery,
PropertyMaskQuery,
PropertyQueryMaxDefined
} STORAGE_QUERY_TYPE;
typedef enum _STORAGE_PROPERTY_ID {
StorageDeviceProperty = 0,
StorageAdapterProperty,
StorageDeviceIdProperty,
StorageDeviceUniqueIdProperty,
StorageDeviceWriteCacheProperty,
StorageMiniportProperty,
StorageAccessAlignmentProperty
} STORAGE_PROPERTY_ID;
typedef struct _STORAGE_PROPERTY_QUERY {
STORAGE_PROPERTY_ID PropertyId;
STORAGE_QUERY_TYPE QueryType;
UCHAR AdditionalParameters[1];
} STORAGE_PROPERTY_QUERY;
#endif // IOCTL_STORAGE_QUERY_PROPERTY
ASSERT_CONST(IOCTL_STORAGE_QUERY_PROPERTY, 0x002d1400);
ASSERT_SIZEOF(STORAGE_DEVICE_DESCRIPTOR, 36+1+3);
ASSERT_SIZEOF(STORAGE_PROPERTY_QUERY, 8+1+3);
// IOCTL_STORAGE_PREDICT_FAILURE
ASSERT_CONST(IOCTL_STORAGE_PREDICT_FAILURE, 0x002d1100);
ASSERT_SIZEOF(STORAGE_PREDICT_FAILURE, 4+512);
// 3ware specific versions of SMART ioctl structs
#define SMART_VENDOR_3WARE 0x13C1 // identifies 3ware specific parameters
#pragma pack(1)
typedef struct _GETVERSIONINPARAMS_EX {
BYTE bVersion;
BYTE bRevision;
BYTE bReserved;
BYTE bIDEDeviceMap;
DWORD fCapabilities;
DWORD dwDeviceMapEx; // 3ware specific: RAID drive bit map
WORD wIdentifier; // Vendor specific identifier
WORD wControllerId; // 3ware specific: Controller ID (0,1,...)
ULONG dwReserved[2];
} GETVERSIONINPARAMS_EX;
typedef struct _SENDCMDINPARAMS_EX {
DWORD cBufferSize;
IDEREGS irDriveRegs;
BYTE bDriveNumber;
BYTE bPortNumber; // 3ware specific: port number
WORD wIdentifier; // Vendor specific identifier
DWORD dwReserved[4];
BYTE bBuffer[1];
} SENDCMDINPARAMS_EX;
#pragma pack()
ASSERT_SIZEOF(GETVERSIONINPARAMS_EX, sizeof(GETVERSIONINPARAMS));
ASSERT_SIZEOF(SENDCMDINPARAMS_EX, sizeof(SENDCMDINPARAMS));
// CSMI structs
ASSERT_SIZEOF(IOCTL_HEADER, sizeof(SRB_IO_CONTROL));
ASSERT_SIZEOF(CSMI_SAS_DRIVER_INFO_BUFFER, 204);
ASSERT_SIZEOF(CSMI_SAS_PHY_INFO_BUFFER, 2080);
ASSERT_SIZEOF(CSMI_SAS_STP_PASSTHRU_BUFFER, 168);
} // extern "C"
/////////////////////////////////////////////////////////////////////////////
namespace os_win32 { // no need to publish anything, name provided for Doxygen
#ifdef _MSC_VER
#pragma warning(disable:4250)
#endif
class win_smart_device
: virtual public /*implements*/ smart_device
{
public:
win_smart_device()
: smart_device(never_called),
m_fh(INVALID_HANDLE_VALUE)
{ }
virtual ~win_smart_device() throw();
virtual bool is_open() const;
virtual bool close();
protected:
/// Set handle for open() in derived classes.
void set_fh(HANDLE fh)
{ m_fh = fh; }
/// Return handle for derived classes.
HANDLE get_fh() const
{ return m_fh; }
private:
HANDLE m_fh; ///< File handle
};
/////////////////////////////////////////////////////////////////////////////
class win_ata_device
: public /*implements*/ ata_device,
public /*extends*/ win_smart_device
{
public:
win_ata_device(smart_interface * intf, const char * dev_name, const char * req_type);
virtual ~win_ata_device() throw();
virtual bool open();
virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
virtual bool ata_identify_is_cached() const;
private:
bool open(int phydrive, int logdrive, const char * options, int port);
std::string m_options;
bool m_usr_options; // options set by user?
bool m_admin; // open with admin access?
int m_phydrive; // PhysicalDriveN or -1
bool m_id_is_cached; // ata_identify_is_cached() return value.
bool m_is_3ware; // LSI/3ware controller detected?
int m_port; // LSI/3ware port
int m_smartver_state;
};
/////////////////////////////////////////////////////////////////////////////
class win_scsi_device
: public /*implements*/ scsi_device,
virtual public /*extends*/ win_smart_device
{
public:
win_scsi_device(smart_interface * intf, const char * dev_name, const char * req_type);
virtual bool open();
virtual bool scsi_pass_through(scsi_cmnd_io * iop);
private:
bool open(int pd_num, int ld_num, int tape_num, int sub_addr);
};
/////////////////////////////////////////////////////////////////////////////
class csmi_device
: virtual public /*extends*/ smart_device
{
public:
/// Get phy info
bool get_phy_info(CSMI_SAS_PHY_INFO & phy_info);
/// Check physical drive existence
bool check_phy(const CSMI_SAS_PHY_INFO & phy_info, unsigned phy_no);
protected:
csmi_device()
: smart_device(never_called)
{ memset(&m_phy_ent, 0, sizeof(m_phy_ent)); }
/// Select physical drive
bool select_phy(unsigned phy_no);
/// Get info for selected physical drive
const CSMI_SAS_PHY_ENTITY & get_phy_ent() const
{ return m_phy_ent; }
/// Call platform-specific CSMI ioctl
virtual bool csmi_ioctl(unsigned code, IOCTL_HEADER * csmi_buffer,
unsigned csmi_bufsiz) = 0;
private:
CSMI_SAS_PHY_ENTITY m_phy_ent; ///< CSMI info for this phy
};
class csmi_ata_device
: virtual public /*extends*/ csmi_device,
virtual public /*implements*/ ata_device
{
public:
virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
protected:
csmi_ata_device()
: smart_device(never_called) { }
};
//////////////////////////////////////////////////////////////////////
class win_csmi_device
: public /*implements*/ csmi_ata_device
{
public:
win_csmi_device(smart_interface * intf, const char * dev_name,
const char * req_type);
virtual ~win_csmi_device() throw();
virtual bool open();
virtual bool close();
virtual bool is_open() const;
bool open_scsi();
protected:
virtual bool csmi_ioctl(unsigned code, IOCTL_HEADER * csmi_buffer,
unsigned csmi_bufsiz);
private:
HANDLE m_fh; ///< Controller device handle
unsigned m_phy_no; ///< Physical drive number
};
//////////////////////////////////////////////////////////////////////
class win_tw_cli_device
: public /*implements*/ ata_device_with_command_set
{
public:
win_tw_cli_device(smart_interface * intf, const char * dev_name, const char * req_type);
virtual bool is_open() const;
virtual bool open();
virtual bool close();
protected:
virtual int ata_command_interface(smart_command_set command, int select, char * data);
private:
bool m_ident_valid, m_smart_valid;
ata_identify_device m_ident_buf;
ata_smart_values m_smart_buf;
};
/////////////////////////////////////////////////////////////////////////////
/// Areca RAID support
///////////////////////////////////////////////////////////////////
// SATA(ATA) device behind Areca RAID Controller
class win_areca_ata_device
: public /*implements*/ areca_ata_device,
public /*extends*/ win_smart_device
{
public:
win_areca_ata_device(smart_interface * intf, const char * dev_name, int disknum, int encnum = 1);
virtual bool open();
virtual smart_device * autodetect_open();
virtual bool arcmsr_lock();
virtual bool arcmsr_unlock();
virtual int arcmsr_do_scsi_io(struct scsi_cmnd_io * iop);
private:
HANDLE m_mutex;
};
///////////////////////////////////////////////////////////////////
// SAS(SCSI) device behind Areca RAID Controller
class win_areca_scsi_device
: public /*implements*/ areca_scsi_device,
public /*extends*/ win_smart_device
{
public:
win_areca_scsi_device(smart_interface * intf, const char * dev_name, int disknum, int encnum = 1);
virtual bool open();
virtual smart_device * autodetect_open();
virtual bool arcmsr_lock();
virtual bool arcmsr_unlock();
virtual int arcmsr_do_scsi_io(struct scsi_cmnd_io * iop);
private:
HANDLE m_mutex;
};
//////////////////////////////////////////////////////////////////////
// Platform specific interface
class win_smart_interface
: public /*implements part of*/ smart_interface
{
public:
virtual std::string get_os_version_str();
virtual std::string get_app_examples(const char * appname);
#ifndef __CYGWIN__
virtual int64_t get_timer_usec();
#endif
virtual bool disable_system_auto_standby(bool disable);
virtual bool scan_smart_devices(smart_device_list & devlist, const char * type,
const char * pattern = 0);
protected:
virtual ata_device * get_ata_device(const char * name, const char * type);
virtual scsi_device * get_scsi_device(const char * name, const char * type);
virtual smart_device * autodetect_smart_device(const char * name);
virtual smart_device * get_custom_smart_device(const char * name, const char * type);
virtual std::string get_valid_custom_dev_types_str();
};
//////////////////////////////////////////////////////////////////////
#ifndef _WIN64
// Running on 64-bit Windows as 32-bit app ?
static bool is_wow64()
{
BOOL (WINAPI * IsWow64Process_p)(HANDLE, PBOOL) =
(BOOL (WINAPI *)(HANDLE, PBOOL))
GetProcAddress(GetModuleHandleA("kernel32.dll"), "IsWow64Process");
if (!IsWow64Process_p)
return false;
BOOL w64 = FALSE;
if (!IsWow64Process_p(GetCurrentProcess(), &w64))
return false;
return !!w64;
}
#endif // _WIN64
// Return info string about build host and OS version
std::string win_smart_interface::get_os_version_str()
{
char vstr[sizeof(SMARTMONTOOLS_BUILD_HOST)-1+sizeof("-2003r2(64)-sp2.1")+13]
= SMARTMONTOOLS_BUILD_HOST;
if (vstr[1] < '6')
vstr[1] = '6';
char * const vptr = vstr+sizeof(SMARTMONTOOLS_BUILD_HOST)-1;
const int vlen = sizeof(vstr)-sizeof(SMARTMONTOOLS_BUILD_HOST);
assert(vptr == vstr+strlen(vstr) && vptr+vlen+1 == vstr+sizeof(vstr));
OSVERSIONINFOEXA vi; memset(&vi, 0, sizeof(vi));
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionExA((OSVERSIONINFOA *)&vi)) {
memset(&vi, 0, sizeof(vi));
vi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOA);
if (!GetVersionExA((OSVERSIONINFOA *)&vi))
return vstr;
}
const char * w = 0;
if (vi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
if (vi.dwMajorVersion > 6 || (vi.dwMajorVersion == 6 && vi.dwMinorVersion >= 2)) {
// Starting with Windows 8.1 Preview, GetVersionEx() does no longer report the
// actual OS version, see:
// http://msdn.microsoft.com/en-us/library/windows/desktop/dn302074.aspx
ULONGLONG major_equal = VerSetConditionMask(0, VER_MAJORVERSION, VER_EQUAL);
for (unsigned major = vi.dwMajorVersion; major <= 9; major++) {
OSVERSIONINFOEXA vi2; memset(&vi2, 0, sizeof(vi2));
vi2.dwOSVersionInfoSize = sizeof(vi2); vi2.dwMajorVersion = major;
if (!VerifyVersionInfo(&vi2, VER_MAJORVERSION, major_equal))
continue;
if (vi.dwMajorVersion < major) {
vi.dwMajorVersion = major; vi.dwMinorVersion = 0;
}
ULONGLONG minor_equal = VerSetConditionMask(0, VER_MINORVERSION, VER_EQUAL);
for (unsigned minor = vi.dwMinorVersion; minor <= 9; minor++) {
memset(&vi2, 0, sizeof(vi2)); vi2.dwOSVersionInfoSize = sizeof(vi2);
vi2.dwMinorVersion = minor;
if (!VerifyVersionInfo(&vi2, VER_MINORVERSION, minor_equal))
continue;
vi.dwMinorVersion = minor;
break;
}
break;
}
}
if (vi.dwMajorVersion <= 0xf && vi.dwMinorVersion <= 0xf) {
bool ws = (vi.wProductType <= VER_NT_WORKSTATION);
switch (vi.dwMajorVersion << 4 | vi.dwMinorVersion) {
case 0x50: w = "2000"; break;
case 0x51: w = "xp"; break;
case 0x52: w = (!GetSystemMetrics(89/*SM_SERVERR2*/)
? "2003" : "2003r2"); break;
case 0x60: w = (ws ? "vista" : "2008" ); break;
case 0x61: w = (ws ? "win7" : "2008r2"); break;
case 0x62: w = (ws ? "win8" : "2012" ); break;
case 0x63: w = (ws ? "win8.1": "2012r2"); break;
}
}
}
const char * w64 = "";
#ifndef _WIN64
if (is_wow64())
w64 = "(64)";
#endif
if (!w)
snprintf(vptr, vlen, "-%s%u.%u%s",
(vi.dwPlatformId==VER_PLATFORM_WIN32_NT ? "nt" : "??"),
(unsigned)vi.dwMajorVersion, (unsigned)vi.dwMinorVersion, w64);
else if (vi.wServicePackMinor)
snprintf(vptr, vlen, "-%s%s-sp%u.%u", w, w64, vi.wServicePackMajor, vi.wServicePackMinor);
else if (vi.wServicePackMajor)
snprintf(vptr, vlen, "-%s%s-sp%u", w, w64, vi.wServicePackMajor);
else
snprintf(vptr, vlen, "-%s%s", w, w64);
return vstr;
}
#ifndef __CYGWIN__
// MSVCRT only provides ftime() which uses GetSystemTime()
// This provides only ~15ms resolution by default.
// Use QueryPerformanceCounter instead (~300ns).
// (Cygwin provides CLOCK_MONOTONIC which has the same effect)
int64_t win_smart_interface::get_timer_usec()
{
static int64_t freq = 0;
LARGE_INTEGER t;
if (freq == 0)
freq = (QueryPerformanceFrequency(&t) ? t.QuadPart : -1);
if (freq <= 0)
return smart_interface::get_timer_usec();
if (!QueryPerformanceCounter(&t))
return -1;
if (!(0 <= t.QuadPart && t.QuadPart <= (int64_t)(~(uint64_t)0 >> 1)/1000000))
return -1;
return (t.QuadPart * 1000000LL) / freq;
}
#endif // __CYGWIN__
// Return value for device detection functions
enum win_dev_type { DEV_UNKNOWN = 0, DEV_ATA, DEV_SCSI, DEV_USB };
static win_dev_type get_phy_drive_type(int drive);
static win_dev_type get_phy_drive_type(int drive, GETVERSIONINPARAMS_EX * ata_version_ex);
static win_dev_type get_log_drive_type(int drive);
static bool get_usb_id(int drive, unsigned short & vendor_id,
unsigned short & product_id);
static const char * ata_get_def_options(void);
static int is_permissive()
{
if (!failuretest_permissive) {
pout("To continue, add one or more '-T permissive' options.\n");
return 0;
}
failuretest_permissive--;
return 1;
}
// return number for drive letter, -1 on error
// "[A-Za-z]:([/\\][.]?)?" => 0-25
// Accepts trailing '"' to fix broken "X:\" parameter passing from .bat files
static int drive_letter(const char * s)
{
return ( (('A' <= s[0] && s[0] <= 'Z') || ('a' <= s[0] && s[0] <= 'z'))
&& s[1] == ':'
&& (!s[2] || ( strchr("/\\\"", s[2])
&& (!s[3] || (s[3] == '.' && !s[4]))) ) ?
(s[0] & 0x1f) - 1 : -1);
}
// Skip trailing "/dev/", do not allow "/dev/X:"
static const char * skipdev(const char * s)
{
return (!strncmp(s, "/dev/", 5) && drive_letter(s+5) < 0 ? s+5 : s);
}
ata_device * win_smart_interface::get_ata_device(const char * name, const char * type)
{
const char * testname = skipdev(name);
if (!strncmp(testname, "csmi", 4))
return new win_csmi_device(this, name, type);
if (!strncmp(testname, "tw_cli", 6))
return new win_tw_cli_device(this, name, type);
return new win_ata_device(this, name, type);
}
scsi_device * win_smart_interface::get_scsi_device(const char * name, const char * type)
{
return new win_scsi_device(this, name, type);
}
static int sdxy_to_phydrive(const char (& xy)[2+1])
{
int phydrive = xy[0] - 'a';
if (xy[1])
phydrive = (phydrive + 1) * ('z' - 'a' + 1) + (xy[1] - 'a');
return phydrive;
}
static win_dev_type get_dev_type(const char * name, int & phydrive)
{
phydrive = -1;
name = skipdev(name);
if (!strncmp(name, "st", 2))
return DEV_SCSI;
if (!strncmp(name, "nst", 3))
return DEV_SCSI;
if (!strncmp(name, "tape", 4))
return DEV_SCSI;
int logdrive = drive_letter(name);
if (logdrive >= 0) {
win_dev_type type = get_log_drive_type(logdrive);
return (type != DEV_UNKNOWN ? type : DEV_SCSI);
}
char drive[2+1] = "";
if (sscanf(name, "sd%2[a-z]", drive) == 1) {
phydrive = sdxy_to_phydrive(drive);
return get_phy_drive_type(phydrive);
}
phydrive = -1;
if (sscanf(name, "pd%d", &phydrive) == 1 && phydrive >= 0)
return get_phy_drive_type(phydrive);
return DEV_UNKNOWN;
}
smart_device * win_smart_interface::get_custom_smart_device(const char * name, const char * type)
{
// Areca?
int disknum = -1, n1 = -1, n2 = -1;
int encnum = 1;
char devpath[32];
if (sscanf(type, "areca,%n%d/%d%n", &n1, &disknum, &encnum, &n2) >= 1 || n1 == 6) {
if (!(1 <= disknum && disknum <= 128)) {
set_err(EINVAL, "Option -d areca,N/E (N=%d) must have 1 <= N <= 128", disknum);
return 0;
}
if (!(1 <= encnum && encnum <= 8)) {
set_err(EINVAL, "Option -d areca,N/E (E=%d) must have 1 <= E <= 8", encnum);
return 0;
}
name = skipdev(name);
#define ARECA_MAX_CTLR_NUM 16
n1 = -1;
int ctlrindex = 0;
if (sscanf(name, "arcmsr%d%n", &ctlrindex, &n1) >= 1 && n1 == (int)strlen(name)) {
/*
1. scan from "\\\\.\\scsi[0]:" up to "\\\\.\\scsi[ARECA_MAX_CTLR_NUM]:" and
2. map arcmsrX into "\\\\.\\scsiX"
*/
for (int idx = 0; idx < ARECA_MAX_CTLR_NUM; idx++) {
memset(devpath, 0, sizeof(devpath));
snprintf(devpath, sizeof(devpath), "\\\\.\\scsi%d:", idx);
win_areca_ata_device *arcdev = new win_areca_ata_device(this, devpath, disknum, encnum);
if(arcdev->arcmsr_probe()) {
if(ctlrindex-- == 0) {
return arcdev;
}
}
delete arcdev;
}
set_err(ENOENT, "No Areca controller found");
}
else
set_err(EINVAL, "Option -d areca,N/E requires device name /dev/arcmsrX");
}
return 0;
}
std::string win_smart_interface::get_valid_custom_dev_types_str()
{
return "areca,N[/E]";
}
smart_device * win_smart_interface::autodetect_smart_device(const char * name)
{
const char * testname = skipdev(name);
if (str_starts_with(testname, "hd"))
return new win_ata_device(this, name, "");
if (str_starts_with(testname, "tw_cli"))
return new win_tw_cli_device(this, name, "");
if (str_starts_with(testname, "csmi"))
return new win_csmi_device(this, name, "");
int phydrive = -1;
win_dev_type type = get_dev_type(name, phydrive);
if (type == DEV_ATA)
return new win_ata_device(this, name, "");
if (type == DEV_SCSI)
return new win_scsi_device(this, name, "");
if (type == DEV_USB) {
// Get USB bridge ID
unsigned short vendor_id = 0, product_id = 0;
if (!(phydrive >= 0 && get_usb_id(phydrive, vendor_id, product_id))) {
set_err(EINVAL, "Unable to read USB device ID");
return 0;
}
// Get type name for this ID
const char * usbtype = get_usb_dev_type_by_id(vendor_id, product_id);
if (!usbtype)
return 0;
// Return SAT/USB device for this type
return get_sat_device(usbtype, new win_scsi_device(this, name, ""));
}
return 0;
}
// Scan for devices
bool win_smart_interface::scan_smart_devices(smart_device_list & devlist,
const char * type, const char * pattern /* = 0*/)
{
if (pattern) {
set_err(EINVAL, "DEVICESCAN with pattern not implemented yet");
return false;
}
// Check for "[*,]pd" type
bool pd = false;
char type2[16+1] = "";
if (type) {
int nc = -1;
if (!strcmp(type, "pd")) {
pd = true;
type = 0;
}
else if (sscanf(type, "%16[^,],pd%n", type2, &nc) == 1 &&
nc == (int)strlen(type)) {
pd = true;
type = type2;
}
}
// Set valid types
bool ata, scsi, usb, csmi;
if (!type) {
ata = scsi = usb = csmi = true;
}
else {
ata = scsi = usb = csmi = false;
if (!strcmp(type, "ata"))
ata = true;
else if (!strcmp(type, "scsi"))
scsi = true;
else if (!strcmp(type, "usb"))
usb = true;
else if (!strcmp(type, "csmi"))
csmi = true;
else {
set_err(EINVAL, "Invalid type '%s', valid arguments are: ata[,pd], scsi[,pd], usb[,pd], csmi, pd", type);
return false;
}
}
char name[20];
if (ata || scsi || usb) {
// Scan up to 128 drives and 2 3ware controllers
const int max_raid = 2;
bool raid_seen[max_raid] = {false, false};
for (int i = 0; i < 128; i++) {
if (pd)
snprintf(name, sizeof(name), "/dev/pd%d", i);
else if (i + 'a' <= 'z')
snprintf(name, sizeof(name), "/dev/sd%c", i + 'a');
else
snprintf(name, sizeof(name), "/dev/sd%c%c",
i / ('z'-'a'+1) - 1 + 'a',
i % ('z'-'a'+1) + 'a');
GETVERSIONINPARAMS_EX vers_ex;
switch (get_phy_drive_type(i, (ata ? &vers_ex : 0))) {
case DEV_ATA:
// Driver supports SMART_GET_VERSION or STORAGE_QUERY_PROPERTY returned ATA/SATA
if (!ata)
continue;
// Interpret RAID drive map if present
if (vers_ex.wIdentifier == SMART_VENDOR_3WARE) {
// Skip if too many controllers or logical drive from this controller already seen
if (!(vers_ex.wControllerId < max_raid && !raid_seen[vers_ex.wControllerId]))
continue;
raid_seen[vers_ex.wControllerId] = true;
// Add physical drives
int len = strlen(name);
for (int pi = 0; pi < 32; pi++) {
if (vers_ex.dwDeviceMapEx & (1L << pi)) {
snprintf(name+len, sizeof(name)-1-len, ",%u", pi);
devlist.push_back( new win_ata_device(this, name, "ata") );
}
}
}
else {
devlist.push_back( new win_ata_device(this, name, "ata") );
}
break;
case DEV_SCSI:
// STORAGE_QUERY_PROPERTY returned SCSI/SAS/...
if (!scsi)
continue;
devlist.push_back( new win_scsi_device(this, name, "scsi") );
break;
case DEV_USB:
// STORAGE_QUERY_PROPERTY returned USB
if (!usb)
continue;
{
// TODO: Use common function for this and autodetect_smart_device()
// Get USB bridge ID
unsigned short vendor_id = 0, product_id = 0;
if (!get_usb_id(i, vendor_id, product_id))
continue;
// Get type name for this ID
const char * usbtype = get_usb_dev_type_by_id(vendor_id, product_id);
if (!usbtype)
continue;
// Return SAT/USB device for this type
ata_device * dev = get_sat_device(usbtype, new win_scsi_device(this, name, ""));
if (!dev)
continue;
devlist.push_back(dev);
}
break;
default:
// Unknown type
break;
}
}
}
if (csmi) {
// Scan CSMI devices
for (int i = 0; i <= 9; i++) {
snprintf(name, sizeof(name)-1, "/dev/csmi%d,0", i);
win_csmi_device test_dev(this, name, "");
if (!test_dev.open_scsi())
continue;
CSMI_SAS_PHY_INFO phy_info;
if (!test_dev.get_phy_info(phy_info))
continue;
for (int pi = 0; pi < phy_info.bNumberOfPhys; pi++) {
if (!test_dev.check_phy(phy_info, pi))
continue;
snprintf(name, sizeof(name)-1, "/dev/csmi%d,%d", i, pi);
devlist.push_back( new win_csmi_device(this, name, "ata") );
}
}
}
return true;
}
// get examples for smartctl
std::string win_smart_interface::get_app_examples(const char * appname)
{
if (strcmp(appname, "smartctl"))
return "";
return "=================================================== SMARTCTL EXAMPLES =====\n\n"
" smartctl -a /dev/sda (Prints all SMART information)\n\n"
" smartctl --smart=on --offlineauto=on --saveauto=on /dev/sda\n"
" (Enables SMART on first disk)\n\n"
" smartctl -t long /dev/sda (Executes extended disk self-test)\n\n"
" smartctl --attributes --log=selftest --quietmode=errorsonly /dev/sda\n"
" (Prints Self-Test & Attribute errors)\n"
" smartctl -a /dev/sda\n"
" (Prints all information for disk on PhysicalDrive 0)\n"
" smartctl -a /dev/pd3\n"
" (Prints all information for disk on PhysicalDrive 3)\n"
" smartctl -a /dev/tape1\n"
" (Prints all information for SCSI tape on Tape 1)\n"
" smartctl -A /dev/hdb,3\n"
" (Prints Attributes for physical drive 3 on 3ware 9000 RAID)\n"
" smartctl -A /dev/tw_cli/c0/p1\n"
" (Prints Attributes for 3ware controller 0, port 1 using tw_cli)\n"
" smartctl --all --device=areca,3/1 /dev/arcmsr0\n"
" (Prints all SMART info for 3rd ATA disk of the 1st enclosure\n"
" on 1st Areca RAID controller)\n"
"\n"
" ATA SMART access methods and ordering may be specified by modifiers\n"
" following the device name: /dev/hdX:[saicm], where\n"
" 's': SMART_* IOCTLs, 'a': IOCTL_ATA_PASS_THROUGH,\n"
" 'i': IOCTL_IDE_PASS_THROUGH, 'f': IOCTL_STORAGE_*,\n"
" 'm': IOCTL_SCSI_MINIPORT_*.\n"
+ strprintf(
" The default on this system is /dev/sdX:%s\n", ata_get_def_options()
);
}
bool win_smart_interface::disable_system_auto_standby(bool disable)
{
if (disable) {
SYSTEM_POWER_STATUS ps;
if (!GetSystemPowerStatus(&ps))
return set_err(ENOSYS, "Unknown power status");
if (ps.ACLineStatus != 1) {
SetThreadExecutionState(ES_CONTINUOUS);
if (ps.ACLineStatus == 0)
set_err(EIO, "AC offline");
else
set_err(EIO, "Unknown AC line status");
return false;
}
}
if (!SetThreadExecutionState(ES_CONTINUOUS | (disable ? ES_SYSTEM_REQUIRED : 0)))
return set_err(ENOSYS);
return true;
}
/////////////////////////////////////////////////////////////////////////////
// ATA Interface
/////////////////////////////////////////////////////////////////////////////
#define SMART_CYL_LOW 0x4F
#define SMART_CYL_HI 0xC2
static void print_ide_regs(const IDEREGS * r, int out)
{
pout("%s=0x%02x,%s=0x%02x, SC=0x%02x, SN=0x%02x, CL=0x%02x, CH=0x%02x, SEL=0x%02x\n",
(out?"STS":"CMD"), r->bCommandReg, (out?"ERR":" FR"), r->bFeaturesReg,
r->bSectorCountReg, r->bSectorNumberReg, r->bCylLowReg, r->bCylHighReg, r->bDriveHeadReg);
}
static void print_ide_regs_io(const IDEREGS * ri, const IDEREGS * ro)
{
pout(" Input : "); print_ide_regs(ri, 0);
if (ro) {
pout(" Output: "); print_ide_regs(ro, 1);
}
}
/////////////////////////////////////////////////////////////////////////////
// call SMART_GET_VERSION, return device map or -1 on error
static int smart_get_version(HANDLE hdevice, GETVERSIONINPARAMS_EX * ata_version_ex = 0)
{
GETVERSIONINPARAMS vers; memset(&vers, 0, sizeof(vers));
const GETVERSIONINPARAMS_EX & vers_ex = (const GETVERSIONINPARAMS_EX &)vers;
DWORD num_out;
if (!DeviceIoControl(hdevice, SMART_GET_VERSION,
NULL, 0, &vers, sizeof(vers), &num_out, NULL)) {
if (ata_debugmode)
pout(" SMART_GET_VERSION failed, Error=%u\n", (unsigned)GetLastError());
errno = ENOSYS;
return -1;
}
assert(num_out == sizeof(GETVERSIONINPARAMS));
if (ata_debugmode > 1) {
pout(" SMART_GET_VERSION suceeded, bytes returned: %u\n"
" Vers = %d.%d, Caps = 0x%x, DeviceMap = 0x%02x\n",
(unsigned)num_out, vers.bVersion, vers.bRevision,
(unsigned)vers.fCapabilities, vers.bIDEDeviceMap);
if (vers_ex.wIdentifier == SMART_VENDOR_3WARE)
pout(" Identifier = %04x(3WARE), ControllerId=%u, DeviceMapEx = 0x%08x\n",
vers_ex.wIdentifier, vers_ex.wControllerId, (unsigned)vers_ex.dwDeviceMapEx);
}
if (ata_version_ex)
*ata_version_ex = vers_ex;
// TODO: Check vers.fCapabilities here?
return vers.bIDEDeviceMap;
}
// call SMART_* ioctl
static int smart_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, unsigned datasize, int port)
{
SENDCMDINPARAMS inpar;
SENDCMDINPARAMS_EX & inpar_ex = (SENDCMDINPARAMS_EX &)inpar;
unsigned char outbuf[sizeof(SENDCMDOUTPARAMS)-1 + 512];
const SENDCMDOUTPARAMS * outpar;
DWORD code, num_out;
unsigned int size_out;
const char * name;
memset(&inpar, 0, sizeof(inpar));
inpar.irDriveRegs = *regs;
// Older drivers may require bits 5 and 7 set
// ATA-3: bits shall be set, ATA-4 and later: bits are obsolete
inpar.irDriveRegs.bDriveHeadReg |= 0xa0;
// Drive number 0-3 was required on Win9x/ME only
//inpar.irDriveRegs.bDriveHeadReg |= (drive & 1) << 4;
//inpar.bDriveNumber = drive;
if (port >= 0) {
// Set RAID port
inpar_ex.wIdentifier = SMART_VENDOR_3WARE;
inpar_ex.bPortNumber = port;
}
if (datasize == 512) {
code = SMART_RCV_DRIVE_DATA; name = "SMART_RCV_DRIVE_DATA";
inpar.cBufferSize = size_out = 512;
}
else if (datasize == 0) {
code = SMART_SEND_DRIVE_COMMAND; name = "SMART_SEND_DRIVE_COMMAND";
if (regs->bFeaturesReg == ATA_SMART_STATUS)
size_out = sizeof(IDEREGS); // ioctl returns new IDEREGS as data
// Note: cBufferSize must be 0 on Win9x
else
size_out = 0;
}
else {
errno = EINVAL;
return -1;
}
memset(&outbuf, 0, sizeof(outbuf));
if (!DeviceIoControl(hdevice, code, &inpar, sizeof(SENDCMDINPARAMS)-1,
outbuf, sizeof(SENDCMDOUTPARAMS)-1 + size_out, &num_out, NULL)) {
// CAUTION: DO NOT change "regs" Parameter in this case, see win_ata_device::ata_pass_through()
long err = GetLastError();
if (ata_debugmode && (err != ERROR_INVALID_PARAMETER || ata_debugmode > 1)) {
pout(" %s failed, Error=%ld\n", name, err);
print_ide_regs_io(regs, NULL);
}
errno = ( err == ERROR_INVALID_FUNCTION/*9x*/
|| err == ERROR_INVALID_PARAMETER/*NT/2K/XP*/
|| err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO);
return -1;
}
// NOTE: On Win9x, inpar.irDriveRegs now contains the returned regs
outpar = (const SENDCMDOUTPARAMS *)outbuf;
if (outpar->DriverStatus.bDriverError) {
if (ata_debugmode) {
pout(" %s failed, DriverError=0x%02x, IDEError=0x%02x\n", name,
outpar->DriverStatus.bDriverError, outpar->DriverStatus.bIDEError);
print_ide_regs_io(regs, NULL);
}
errno = (!outpar->DriverStatus.bIDEError ? ENOSYS : EIO);
return -1;
}
if (ata_debugmode > 1) {
pout(" %s suceeded, bytes returned: %u (buffer %u)\n", name,
(unsigned)num_out, (unsigned)outpar->cBufferSize);
print_ide_regs_io(regs, (regs->bFeaturesReg == ATA_SMART_STATUS ?
(const IDEREGS *)(outpar->bBuffer) : NULL));
}
if (datasize)
memcpy(data, outpar->bBuffer, 512);
else if (regs->bFeaturesReg == ATA_SMART_STATUS) {
if (nonempty(outpar->bBuffer, sizeof(IDEREGS)))
memcpy(regs, outpar->bBuffer, sizeof(IDEREGS));
else { // Workaround for driver not returning regs
if (ata_debugmode)
pout(" WARNING: driver does not return ATA registers in output buffer!\n");
*regs = inpar.irDriveRegs;
}
}
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// IDE PASS THROUGH (2000, XP, undocumented)
//
// Based on WinATA.cpp, 2002 c't/Matthias Withopf
// ftp://ftp.heise.de/pub/ct/listings/0207-218.zip
static int ide_pass_through_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, unsigned datasize)
{
if (datasize > 512) {
errno = EINVAL;
return -1;
}
unsigned int size = sizeof(ATA_PASS_THROUGH)-1 + datasize;
ATA_PASS_THROUGH * buf = (ATA_PASS_THROUGH *)VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
DWORD num_out;
const unsigned char magic = 0xcf;
if (!buf) {
errno = ENOMEM;
return -1;
}
buf->IdeReg = *regs;
buf->DataBufferSize = datasize;
if (datasize)
buf->DataBuffer[0] = magic;
if (!DeviceIoControl(hdevice, IOCTL_IDE_PASS_THROUGH,
buf, size, buf, size, &num_out, NULL)) {
long err = GetLastError();
if (ata_debugmode) {
pout(" IOCTL_IDE_PASS_THROUGH failed, Error=%ld\n", err);
print_ide_regs_io(regs, NULL);
}
VirtualFree(buf, 0, MEM_RELEASE);
errno = (err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO);
return -1;
}
// Check ATA status
if (buf->IdeReg.bCommandReg/*Status*/ & 0x01) {
if (ata_debugmode) {
pout(" IOCTL_IDE_PASS_THROUGH command failed:\n");
print_ide_regs_io(regs, &buf->IdeReg);
}
VirtualFree(buf, 0, MEM_RELEASE);
errno = EIO;
return -1;
}
// Check and copy data
if (datasize) {
if ( num_out != size
|| (buf->DataBuffer[0] == magic && !nonempty(buf->DataBuffer+1, datasize-1))) {
if (ata_debugmode) {
pout(" IOCTL_IDE_PASS_THROUGH output data missing (%u, %u)\n",
(unsigned)num_out, (unsigned)buf->DataBufferSize);
print_ide_regs_io(regs, &buf->IdeReg);
}
VirtualFree(buf, 0, MEM_RELEASE);
errno = EIO;
return -1;
}
memcpy(data, buf->DataBuffer, datasize);
}
if (ata_debugmode > 1) {
pout(" IOCTL_IDE_PASS_THROUGH suceeded, bytes returned: %u (buffer %u)\n",
(unsigned)num_out, (unsigned)buf->DataBufferSize);
print_ide_regs_io(regs, &buf->IdeReg);
}
*regs = buf->IdeReg;
// Caution: VirtualFree() fails if parameter "dwSize" is nonzero
VirtualFree(buf, 0, MEM_RELEASE);
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// ATA PASS THROUGH (Win2003, XP SP2)
// Warning:
// IOCTL_ATA_PASS_THROUGH[_DIRECT] can only handle one interrupt/DRQ data
// transfer per command. Therefore, multi-sector transfers are only supported
// for the READ/WRITE MULTIPLE [EXT] commands. Other commands like READ/WRITE SECTORS
// or READ/WRITE LOG EXT work only with single sector transfers.
// The latter are supported on Vista (only) through new ATA_FLAGS_NO_MULTIPLE.
// See:
// http://social.msdn.microsoft.com/Forums/en-US/storageplatformata/thread/eb408507-f221-455b-9bbb-d1069b29c4da
static int ata_pass_through_ioctl(HANDLE hdevice, IDEREGS * regs, IDEREGS * prev_regs, char * data, int datasize)
{
const int max_sectors = 32; // TODO: Allocate dynamic buffer
typedef struct {
ATA_PASS_THROUGH_EX apt;
ULONG Filler;
UCHAR ucDataBuf[max_sectors * 512];
} ATA_PASS_THROUGH_EX_WITH_BUFFERS;
const unsigned char magic = 0xcf;
ATA_PASS_THROUGH_EX_WITH_BUFFERS ab; memset(&ab, 0, sizeof(ab));
ab.apt.Length = sizeof(ATA_PASS_THROUGH_EX);
//ab.apt.PathId = 0;
//ab.apt.TargetId = 0;
//ab.apt.Lun = 0;
ab.apt.TimeOutValue = 10;
unsigned size = offsetof(ATA_PASS_THROUGH_EX_WITH_BUFFERS, ucDataBuf);
ab.apt.DataBufferOffset = size;
if (datasize > 0) {
if (datasize > (int)sizeof(ab.ucDataBuf)) {
errno = EINVAL;
return -1;
}
ab.apt.AtaFlags = ATA_FLAGS_DATA_IN;
ab.apt.DataTransferLength = datasize;
size += datasize;
ab.ucDataBuf[0] = magic;
}
else if (datasize < 0) {
if (-datasize > (int)sizeof(ab.ucDataBuf)) {
errno = EINVAL;
return -1;
}
ab.apt.AtaFlags = ATA_FLAGS_DATA_OUT;
ab.apt.DataTransferLength = -datasize;
size += -datasize;
memcpy(ab.ucDataBuf, data, -datasize);
}
else {
assert(ab.apt.AtaFlags == 0);
assert(ab.apt.DataTransferLength == 0);
}
assert(sizeof(ab.apt.CurrentTaskFile) == sizeof(IDEREGS));
IDEREGS * ctfregs = (IDEREGS *)ab.apt.CurrentTaskFile;
IDEREGS * ptfregs = (IDEREGS *)ab.apt.PreviousTaskFile;
*ctfregs = *regs;
if (prev_regs) {
*ptfregs = *prev_regs;
ab.apt.AtaFlags |= ATA_FLAGS_48BIT_COMMAND;
}
DWORD num_out;
if (!DeviceIoControl(hdevice, IOCTL_ATA_PASS_THROUGH,
&ab, size, &ab, size, &num_out, NULL)) {
long err = GetLastError();
if (ata_debugmode) {
pout(" IOCTL_ATA_PASS_THROUGH failed, Error=%ld\n", err);
print_ide_regs_io(regs, NULL);
}
errno = (err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO);
return -1;
}
// Check ATA status
if (ctfregs->bCommandReg/*Status*/ & (0x01/*Err*/|0x08/*DRQ*/)) {
if (ata_debugmode) {
pout(" IOCTL_ATA_PASS_THROUGH command failed:\n");
print_ide_regs_io(regs, ctfregs);
}
errno = EIO;
return -1;
}
// Check and copy data
if (datasize > 0) {
if ( num_out != size
|| (ab.ucDataBuf[0] == magic && !nonempty(ab.ucDataBuf+1, datasize-1))) {
if (ata_debugmode) {
pout(" IOCTL_ATA_PASS_THROUGH output data missing (%u)\n", (unsigned)num_out);
print_ide_regs_io(regs, ctfregs);
}
errno = EIO;
return -1;
}
memcpy(data, ab.ucDataBuf, datasize);
}
if (ata_debugmode > 1) {
pout(" IOCTL_ATA_PASS_THROUGH suceeded, bytes returned: %u\n", (unsigned)num_out);
print_ide_regs_io(regs, ctfregs);
}
*regs = *ctfregs;
if (prev_regs)
*prev_regs = *ptfregs;
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// SMART IOCTL via SCSI MINIPORT ioctl
// This function is handled by ATAPI port driver (atapi.sys) or by SCSI
// miniport driver (via SCSI port driver scsiport.sys).
// It can be used to skip the missing or broken handling of some SMART
// command codes (e.g. READ_LOG) in the disk class driver (disk.sys)
static int ata_via_scsi_miniport_smart_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, int datasize)
{
// Select code
DWORD code = 0; const char * name = 0;
if (regs->bCommandReg == ATA_IDENTIFY_DEVICE) {
code = IOCTL_SCSI_MINIPORT_IDENTIFY; name = "IDENTIFY";
}
else if (regs->bCommandReg == ATA_SMART_CMD) switch (regs->bFeaturesReg) {
case ATA_SMART_READ_VALUES:
code = IOCTL_SCSI_MINIPORT_READ_SMART_ATTRIBS; name = "READ_SMART_ATTRIBS"; break;
case ATA_SMART_READ_THRESHOLDS:
code = IOCTL_SCSI_MINIPORT_READ_SMART_THRESHOLDS; name = "READ_SMART_THRESHOLDS"; break;
case ATA_SMART_ENABLE:
code = IOCTL_SCSI_MINIPORT_ENABLE_SMART; name = "ENABLE_SMART"; break;
case ATA_SMART_DISABLE:
code = IOCTL_SCSI_MINIPORT_DISABLE_SMART; name = "DISABLE_SMART"; break;
case ATA_SMART_STATUS:
code = IOCTL_SCSI_MINIPORT_RETURN_STATUS; name = "RETURN_STATUS"; break;
case ATA_SMART_AUTOSAVE:
code = IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTOSAVE; name = "ENABLE_DISABLE_AUTOSAVE"; break;
//case ATA_SMART_SAVE: // obsolete since ATA-6, not used by smartmontools
// code = IOCTL_SCSI_MINIPORT_SAVE_ATTRIBUTE_VALUES; name = "SAVE_ATTRIBUTE_VALUES"; break;
case ATA_SMART_IMMEDIATE_OFFLINE:
code = IOCTL_SCSI_MINIPORT_EXECUTE_OFFLINE_DIAGS; name = "EXECUTE_OFFLINE_DIAGS"; break;
case ATA_SMART_AUTO_OFFLINE:
code = IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTO_OFFLINE; name = "ENABLE_DISABLE_AUTO_OFFLINE"; break;
case ATA_SMART_READ_LOG_SECTOR:
code = IOCTL_SCSI_MINIPORT_READ_SMART_LOG; name = "READ_SMART_LOG"; break;
case ATA_SMART_WRITE_LOG_SECTOR:
code = IOCTL_SCSI_MINIPORT_WRITE_SMART_LOG; name = "WRITE_SMART_LOG"; break;
}
if (!code) {
errno = ENOSYS;
return -1;
}
// Set SRB
struct {
SRB_IO_CONTROL srbc;
union {
SENDCMDINPARAMS in;
SENDCMDOUTPARAMS out;
} params;
char space[512-1];
} sb;
ASSERT_SIZEOF(sb, sizeof(SRB_IO_CONTROL)+sizeof(SENDCMDINPARAMS)-1+512);
memset(&sb, 0, sizeof(sb));
unsigned size;
if (datasize > 0) {
if (datasize > (int)sizeof(sb.space)+1) {
errno = EINVAL;
return -1;
}
size = datasize;
}
else if (datasize < 0) {
if (-datasize > (int)sizeof(sb.space)+1) {
errno = EINVAL;
return -1;
}
size = -datasize;
memcpy(sb.params.in.bBuffer, data, size);
}
else if (code == IOCTL_SCSI_MINIPORT_RETURN_STATUS)
size = sizeof(IDEREGS);
else
size = 0;
sb.srbc.HeaderLength = sizeof(SRB_IO_CONTROL);
memcpy(sb.srbc.Signature, "SCSIDISK", 8); // atapi.sys
sb.srbc.Timeout = 60; // seconds
sb.srbc.ControlCode = code;
//sb.srbc.ReturnCode = 0;
sb.srbc.Length = sizeof(SENDCMDINPARAMS)-1 + size;
sb.params.in.irDriveRegs = *regs;
sb.params.in.cBufferSize = size;
// Call miniport ioctl
size += sizeof(SRB_IO_CONTROL) + sizeof(SENDCMDINPARAMS)-1;
DWORD num_out;
if (!DeviceIoControl(hdevice, IOCTL_SCSI_MINIPORT,
&sb, size, &sb, size, &num_out, NULL)) {
long err = GetLastError();
if (ata_debugmode) {
pout(" IOCTL_SCSI_MINIPORT_%s failed, Error=%ld\n", name, err);
print_ide_regs_io(regs, NULL);
}
errno = (err == ERROR_INVALID_FUNCTION || err == ERROR_NOT_SUPPORTED ? ENOSYS : EIO);
return -1;
}
// Check result
if (sb.srbc.ReturnCode) {
if (ata_debugmode) {
pout(" IOCTL_SCSI_MINIPORT_%s failed, ReturnCode=0x%08x\n", name, (unsigned)sb.srbc.ReturnCode);
print_ide_regs_io(regs, NULL);
}
errno = EIO;
return -1;
}
if (sb.params.out.DriverStatus.bDriverError) {
if (ata_debugmode) {
pout(" IOCTL_SCSI_MINIPORT_%s failed, DriverError=0x%02x, IDEError=0x%02x\n", name,
sb.params.out.DriverStatus.bDriverError, sb.params.out.DriverStatus.bIDEError);
print_ide_regs_io(regs, NULL);
}
errno = (!sb.params.out.DriverStatus.bIDEError ? ENOSYS : EIO);
return -1;
}
if (ata_debugmode > 1) {
pout(" IOCTL_SCSI_MINIPORT_%s suceeded, bytes returned: %u (buffer %u)\n", name,
(unsigned)num_out, (unsigned)sb.params.out.cBufferSize);
print_ide_regs_io(regs, (code == IOCTL_SCSI_MINIPORT_RETURN_STATUS ?
(const IDEREGS *)(sb.params.out.bBuffer) : 0));
}
if (datasize > 0)
memcpy(data, sb.params.out.bBuffer, datasize);
else if (datasize == 0 && code == IOCTL_SCSI_MINIPORT_RETURN_STATUS)
memcpy(regs, sb.params.out.bBuffer, sizeof(IDEREGS));
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// ATA PASS THROUGH via 3ware specific SCSI MINIPORT ioctl
static int ata_via_3ware_miniport_ioctl(HANDLE hdevice, IDEREGS * regs, char * data, int datasize, int port)
{
struct {
SRB_IO_CONTROL srbc;
IDEREGS regs;
UCHAR buffer[512];
} sb;
ASSERT_SIZEOF(sb, sizeof(SRB_IO_CONTROL)+sizeof(IDEREGS)+512);
if (!(0 <= datasize && datasize <= (int)sizeof(sb.buffer) && port >= 0)) {
errno = EINVAL;
return -1;
}
memset(&sb, 0, sizeof(sb));
strncpy((char *)sb.srbc.Signature, "<3ware>", sizeof(sb.srbc.Signature));
sb.srbc.HeaderLength = sizeof(SRB_IO_CONTROL);
sb.srbc.Timeout = 60; // seconds
sb.srbc.ControlCode = 0xA0000000;
sb.srbc.ReturnCode = 0;
sb.srbc.Length = sizeof(IDEREGS) + (datasize > 0 ? datasize : 1);
sb.regs = *regs;
sb.regs.bReserved = port;
DWORD num_out;
if (!DeviceIoControl(hdevice, IOCTL_SCSI_MINIPORT,
&sb, sizeof(sb), &sb, sizeof(sb), &num_out, NULL)) {
long err = GetLastError();
if (ata_debugmode) {
pout(" ATA via IOCTL_SCSI_MINIPORT failed, Error=%ld\n", err);
print_ide_regs_io(regs, NULL);
}
errno = (err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO);
return -1;
}
if (sb.srbc.ReturnCode) {
if (ata_debugmode) {
pout(" ATA via IOCTL_SCSI_MINIPORT failed, ReturnCode=0x%08x\n", (unsigned)sb.srbc.ReturnCode);
print_ide_regs_io(regs, NULL);
}
errno = EIO;
return -1;
}
// Copy data
if (datasize > 0)
memcpy(data, sb.buffer, datasize);
if (ata_debugmode > 1) {
pout(" ATA via IOCTL_SCSI_MINIPORT suceeded, bytes returned: %u\n", (unsigned)num_out);
print_ide_regs_io(regs, &sb.regs);
}
*regs = sb.regs;
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// 3ware specific call to update the devicemap returned by SMART_GET_VERSION.
// 3DM/CLI "Rescan Controller" function does not to always update it.
static int update_3ware_devicemap_ioctl(HANDLE hdevice)
{
SRB_IO_CONTROL srbc;
memset(&srbc, 0, sizeof(srbc));
strncpy((char *)srbc.Signature, "<3ware>", sizeof(srbc.Signature));
srbc.HeaderLength = sizeof(SRB_IO_CONTROL);
srbc.Timeout = 60; // seconds
srbc.ControlCode = 0xCC010014;
srbc.ReturnCode = 0;
srbc.Length = 0;
DWORD num_out;
if (!DeviceIoControl(hdevice, IOCTL_SCSI_MINIPORT,
&srbc, sizeof(srbc), &srbc, sizeof(srbc), &num_out, NULL)) {
long err = GetLastError();
if (ata_debugmode)
pout(" UPDATE DEVICEMAP via IOCTL_SCSI_MINIPORT failed, Error=%ld\n", err);
errno = (err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO);
return -1;
}
if (srbc.ReturnCode) {
if (ata_debugmode)
pout(" UPDATE DEVICEMAP via IOCTL_SCSI_MINIPORT failed, ReturnCode=0x%08x\n", (unsigned)srbc.ReturnCode);
errno = EIO;
return -1;
}
if (ata_debugmode > 1)
pout(" UPDATE DEVICEMAP via IOCTL_SCSI_MINIPORT suceeded\n");
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// Routines for pseudo device /dev/tw_cli/*
// Parses output of 3ware "tw_cli /cx/py show all" or 3DM SMART data window
// Get clipboard data
static int get_clipboard(char * data, int datasize)
{
if (!OpenClipboard(NULL))
return -1;
HANDLE h = GetClipboardData(CF_TEXT);
if (!h) {
CloseClipboard();
return 0;
}
const void * p = GlobalLock(h);
int n = GlobalSize(h);
if (n > datasize)
n = datasize;
memcpy(data, p, n);
GlobalFree(h);
CloseClipboard();
return n;
}
// Run a command, write stdout to dataout
// TODO: Combine with daemon_win32.cpp:daemon_spawn()
static int run_cmd(const char * cmd, char * dataout, int outsize)
{
// Create stdout pipe
SECURITY_ATTRIBUTES sa = {sizeof(sa), 0, TRUE};
HANDLE pipe_out_w, h;
if (!CreatePipe(&h, &pipe_out_w, &sa/*inherit*/, outsize))
return -1;
HANDLE self = GetCurrentProcess();
HANDLE pipe_out_r;
if (!DuplicateHandle(self, h, self, &pipe_out_r,
GENERIC_READ, FALSE/*!inherit*/, DUPLICATE_CLOSE_SOURCE)) {
CloseHandle(pipe_out_w);
return -1;
}
HANDLE pipe_err_w;
if (!DuplicateHandle(self, pipe_out_w, self, &pipe_err_w,
0, TRUE/*inherit*/, DUPLICATE_SAME_ACCESS)) {
CloseHandle(pipe_out_r); CloseHandle(pipe_out_w);
return -1;
}
// Create process
STARTUPINFO si; memset(&si, 0, sizeof(si)); si.cb = sizeof(si);
si.hStdInput = INVALID_HANDLE_VALUE;
si.hStdOutput = pipe_out_w; si.hStdError = pipe_err_w;
si.dwFlags = STARTF_USESTDHANDLES;
PROCESS_INFORMATION pi;
if (!CreateProcess(
NULL, const_cast<char *>(cmd),
NULL, NULL, TRUE/*inherit*/,
CREATE_NO_WINDOW/*do not create a new console window*/,
NULL, NULL, &si, &pi)) {
CloseHandle(pipe_err_w); CloseHandle(pipe_out_r); CloseHandle(pipe_out_w);
return -1;
}
CloseHandle(pi.hThread);
CloseHandle(pipe_err_w); CloseHandle(pipe_out_w);
// Copy stdout to output buffer
int i = 0;
while (i < outsize) {
DWORD num_read;
if (!ReadFile(pipe_out_r, dataout+i, outsize-i, &num_read, NULL) || num_read == 0)
break;
i += num_read;
}
CloseHandle(pipe_out_r);
// Wait for process
WaitForSingleObject(pi.hProcess, INFINITE);
CloseHandle(pi.hProcess);
return i;
}
static const char * findstr(const char * str, const char * sub)
{
const char * s = strstr(str, sub);
return (s ? s+strlen(sub) : "");
}
static void copy_swapped(unsigned char * dest, const char * src, int destsize)
{
int srclen = strcspn(src, "\r\n");
int i;
for (i = 0; i < destsize-1 && i < srclen-1; i+=2) {
dest[i] = src[i+1]; dest[i+1] = src[i];
}
if (i < destsize-1 && i < srclen)
dest[i+1] = src[i];
}
// TODO: This is OS independent
win_tw_cli_device::win_tw_cli_device(smart_interface * intf, const char * dev_name, const char * req_type)
: smart_device(intf, dev_name, "tw_cli", req_type),
m_ident_valid(false), m_smart_valid(false)
{
memset(&m_ident_buf, 0, sizeof(m_ident_buf));
memset(&m_smart_buf, 0, sizeof(m_smart_buf));
}
bool win_tw_cli_device::is_open() const
{
return (m_ident_valid || m_smart_valid);
}
bool win_tw_cli_device::open()
{
m_ident_valid = m_smart_valid = false;
const char * name = skipdev(get_dev_name());
// Read tw_cli or 3DM browser output into buffer
char buffer[4096];
int size = -1, n1 = -1, n2 = -1;
if (!strcmp(name, "tw_cli/clip")) { // read clipboard
size = get_clipboard(buffer, sizeof(buffer));
}
else if (!strcmp(name, "tw_cli/stdin")) { // read stdin
size = fread(buffer, 1, sizeof(buffer), stdin);
}
else if (sscanf(name, "tw_cli/%nc%*u/p%*u%n", &n1, &n2) >= 0 && n2 == (int)strlen(name)) {
// tw_cli/cx/py => read output from "tw_cli /cx/py show all"
char cmd[100];
snprintf(cmd, sizeof(cmd), "tw_cli /%s show all", name+n1);
if (ata_debugmode > 1)
pout("%s: Run: \"%s\"\n", name, cmd);
size = run_cmd(cmd, buffer, sizeof(buffer));
}
else {
return set_err(EINVAL);
}
if (ata_debugmode > 1)
pout("%s: Read %d bytes\n", name, size);
if (size <= 0)
return set_err(ENOENT);
if (size >= (int)sizeof(buffer))
return set_err(EIO);
buffer[size] = 0;
if (ata_debugmode > 1)
pout("[\n%.100s%s\n]\n", buffer, (size>100?"...":""));
// Fake identify sector
ASSERT_SIZEOF(ata_identify_device, 512);
ata_identify_device * id = &m_ident_buf;
memset(id, 0, sizeof(*id));
copy_swapped(id->model , findstr(buffer, " Model = " ), sizeof(id->model));
copy_swapped(id->fw_rev , findstr(buffer, " Firmware Version = "), sizeof(id->fw_rev));
copy_swapped(id->serial_no, findstr(buffer, " Serial = " ), sizeof(id->serial_no));
unsigned long nblocks = 0; // "Capacity = N.N GB (N Blocks)"
sscanf(findstr(buffer, "Capacity = "), "%*[^(\r\n](%lu", &nblocks);
if (nblocks) {
id->words047_079[49-47] = 0x0200; // size valid
id->words047_079[60-47] = (unsigned short)(nblocks ); // secs_16
id->words047_079[61-47] = (unsigned short)(nblocks>>16); // secs_32
}
id->command_set_1 = 0x0001; id->command_set_2 = 0x4000; // SMART supported, words 82,83 valid
id->cfs_enable_1 = 0x0001; id->csf_default = 0x4000; // SMART enabled, words 85,87 valid
// Parse smart data hex dump
const char * s = findstr(buffer, "Drive Smart Data:");
if (!*s)
s = findstr(buffer, "Drive SMART Data:"); // tw_cli from 9.5.x
if (!*s) {
s = findstr(buffer, "S.M.A.R.T. (Controller"); // from 3DM browser window
if (*s) {
const char * s1 = findstr(s, "<td class"); // html version
if (*s1)
s = s1;
s += strcspn(s, "\r\n");
}
else
s = buffer; // try raw hex dump without header
}
unsigned char * sd = (unsigned char *)&m_smart_buf;
int i = 0;
for (;;) {
unsigned x = ~0; int n = -1;
if (!(sscanf(s, "%x %n", &x, &n) == 1 && !(x & ~0xff)))
break;
sd[i] = (unsigned char)x;
if (!(++i < 512 && n > 0))
break;
s += n;
if (*s == '<') // "<br>"
s += strcspn(s, "\r\n");
}
if (i < 512) {
if (!id->model[1]) {
// No useful data found
char * err = strstr(buffer, "Error:");
if (!err)
err = strstr(buffer, "error :");
if (err && (err = strchr(err, ':'))) {
// Show tw_cli error message
err++;
err[strcspn(err, "\r\n")] = 0;
return set_err(EIO, "%s", err);
}
return set_err(EIO);
}
sd = 0;
}
m_ident_valid = true;
m_smart_valid = !!sd;
return true;
}
bool win_tw_cli_device::close()
{
m_ident_valid = m_smart_valid = false;
return true;
}
int win_tw_cli_device::ata_command_interface(smart_command_set command, int /*select*/, char * data)
{
switch (command) {
case IDENTIFY:
if (!m_ident_valid)
break;
memcpy(data, &m_ident_buf, 512);
return 0;
case READ_VALUES:
if (!m_smart_valid)
break;
memcpy(data, &m_smart_buf, 512);
return 0;
case ENABLE:
case STATUS:
case STATUS_CHECK: // Fake "good" SMART status
return 0;
default:
break;
}
// Arrive here for all unsupported commands
set_err(ENOSYS);
return -1;
}
/////////////////////////////////////////////////////////////////////////////
// IOCTL_STORAGE_QUERY_PROPERTY
union STORAGE_DEVICE_DESCRIPTOR_DATA {
STORAGE_DEVICE_DESCRIPTOR desc;
char raw[256];
};
// Get STORAGE_DEVICE_DESCRIPTOR_DATA for device.
// (This works without admin rights)
static int storage_query_property_ioctl(HANDLE hdevice, STORAGE_DEVICE_DESCRIPTOR_DATA * data)
{
STORAGE_PROPERTY_QUERY query = {StorageDeviceProperty, PropertyStandardQuery, {0} };
memset(data, 0, sizeof(*data));
DWORD num_out;
if (!DeviceIoControl(hdevice, IOCTL_STORAGE_QUERY_PROPERTY,
&query, sizeof(query), data, sizeof(*data), &num_out, NULL)) {
if (ata_debugmode > 1 || scsi_debugmode > 1)
pout(" IOCTL_STORAGE_QUERY_PROPERTY failed, Error=%u\n", (unsigned)GetLastError());
errno = ENOSYS;
return -1;
}
if (ata_debugmode > 1 || scsi_debugmode > 1) {
pout(" IOCTL_STORAGE_QUERY_PROPERTY returns:\n"
" Vendor: \"%s\"\n"
" Product: \"%s\"\n"
" Revision: \"%s\"\n"
" Removable: %s\n"
" BusType: 0x%02x\n",
(data->desc.VendorIdOffset ? data->raw+data->desc.VendorIdOffset : "(null)"),
(data->desc.ProductIdOffset ? data->raw+data->desc.ProductIdOffset : "(null)"),
(data->desc.ProductRevisionOffset ? data->raw+data->desc.ProductRevisionOffset : "(null)"),
(data->desc.RemovableMedia? "Yes":"No"), data->desc.BusType
);
}
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// IOCTL_STORAGE_PREDICT_FAILURE
// Call IOCTL_STORAGE_PREDICT_FAILURE, return PredictFailure value
// or -1 on error, opionally return VendorSpecific data.
// (This works without admin rights)
static int storage_predict_failure_ioctl(HANDLE hdevice, char * data = 0)
{
STORAGE_PREDICT_FAILURE pred;
memset(&pred, 0, sizeof(pred));
DWORD num_out;
if (!DeviceIoControl(hdevice, IOCTL_STORAGE_PREDICT_FAILURE,
0, 0, &pred, sizeof(pred), &num_out, NULL)) {
if (ata_debugmode > 1)
pout(" IOCTL_STORAGE_PREDICT_FAILURE failed, Error=%u\n", (unsigned)GetLastError());
errno = ENOSYS;
return -1;
}
if (ata_debugmode > 1) {
pout(" IOCTL_STORAGE_PREDICT_FAILURE returns:\n"
" PredictFailure: 0x%08x\n"
" VendorSpecific: 0x%02x,0x%02x,0x%02x,...,0x%02x\n",
(unsigned)pred.PredictFailure,
pred.VendorSpecific[0], pred.VendorSpecific[1], pred.VendorSpecific[2],
pred.VendorSpecific[sizeof(pred.VendorSpecific)-1]
);
}
if (data)
memcpy(data, pred.VendorSpecific, sizeof(pred.VendorSpecific));
return (!pred.PredictFailure ? 0 : 1);
}
/////////////////////////////////////////////////////////////////////////////
// Return true if Intel ICHxR RAID volume
static bool is_intel_raid_volume(const STORAGE_DEVICE_DESCRIPTOR_DATA * data)
{
if (!(data->desc.VendorIdOffset && data->desc.ProductIdOffset))
return false;
const char * vendor = data->raw + data->desc.VendorIdOffset;
if (!(!strnicmp(vendor, "Intel", 5) && strspn(vendor+5, " ") == strlen(vendor+5)))
return false;
if (strnicmp(data->raw + data->desc.ProductIdOffset, "Raid ", 5))
return false;
return true;
}
// get DEV_* for open handle
static win_dev_type get_controller_type(HANDLE hdevice, bool admin, GETVERSIONINPARAMS_EX * ata_version_ex)
{
// Get BusType from device descriptor
STORAGE_DEVICE_DESCRIPTOR_DATA data;
if (storage_query_property_ioctl(hdevice, &data))
return DEV_UNKNOWN;
// Newer BusType* values are missing in older includes
switch ((int)data.desc.BusType) {
case BusTypeAta:
case 0x0b: // BusTypeSata
if (ata_version_ex)
memset(ata_version_ex, 0, sizeof(*ata_version_ex));
return DEV_ATA;
case BusTypeScsi:
case BusTypeRAID:
// Intel ICHxR RAID volume: reports SMART_GET_VERSION but does not support SMART_*
if (is_intel_raid_volume(&data))
return DEV_SCSI;
// LSI/3ware RAID volume: supports SMART_*
if (admin && smart_get_version(hdevice, ata_version_ex) >= 0)
return DEV_ATA;
return DEV_SCSI;
case 0x09: // BusTypeiScsi
case 0x0a: // BusTypeSas
return DEV_SCSI;
case BusTypeUsb:
return DEV_USB;
default:
return DEV_UNKNOWN;
}
/*NOTREACHED*/
}
// get DEV_* for device path
static win_dev_type get_controller_type(const char * path, GETVERSIONINPARAMS_EX * ata_version_ex = 0)
{
bool admin = true;
HANDLE h = CreateFileA(path, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
if (h == INVALID_HANDLE_VALUE) {
admin = false;
h = CreateFileA(path, 0,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
if (h == INVALID_HANDLE_VALUE)
return DEV_UNKNOWN;
}
if (ata_debugmode > 1 || scsi_debugmode > 1)
pout(" %s: successfully opened%s\n", path, (!admin ? " (without admin rights)" :""));
win_dev_type type = get_controller_type(h, admin, ata_version_ex);
CloseHandle(h);
return type;
}
// get DEV_* for physical drive number
static win_dev_type get_phy_drive_type(int drive, GETVERSIONINPARAMS_EX * ata_version_ex)
{
char path[30];
snprintf(path, sizeof(path)-1, "\\\\.\\PhysicalDrive%d", drive);
return get_controller_type(path, ata_version_ex);
}
static win_dev_type get_phy_drive_type(int drive)
{
return get_phy_drive_type(drive, 0);
}
// get DEV_* for logical drive number
static win_dev_type get_log_drive_type(int drive)
{
char path[30];
snprintf(path, sizeof(path)-1, "\\\\.\\%c:", 'A'+drive);
return get_controller_type(path);
}
// Build IDENTIFY information from STORAGE_DEVICE_DESCRIPTOR
static int get_identify_from_device_property(HANDLE hdevice, ata_identify_device * id)
{
STORAGE_DEVICE_DESCRIPTOR_DATA data;
if (storage_query_property_ioctl(hdevice, &data))
return -1;
memset(id, 0, sizeof(*id));
// Some drivers split ATA model string into VendorId and ProductId,
// others return it as ProductId only.
char model[sizeof(id->model) + 1] = "";
unsigned i = 0;
if (data.desc.VendorIdOffset) {
for ( ;i < sizeof(model)-1 && data.raw[data.desc.VendorIdOffset+i]; i++)
model[i] = data.raw[data.desc.VendorIdOffset+i];
}
if (data.desc.ProductIdOffset) {
while (i > 1 && model[i-2] == ' ') // Keep last blank from VendorId
i--;
// Ignore VendorId "ATA"
if (i <= 4 && !strncmp(model, "ATA", 3) && (i == 3 || model[3] == ' '))
i = 0;
for (unsigned j = 0; i < sizeof(model)-1 && data.raw[data.desc.ProductIdOffset+j]; i++, j++)
model[i] = data.raw[data.desc.ProductIdOffset+j];
}
while (i > 0 && model[i-1] == ' ')
i--;
model[i] = 0;
copy_swapped(id->model, model, sizeof(id->model));
if (data.desc.ProductRevisionOffset)
copy_swapped(id->fw_rev, data.raw+data.desc.ProductRevisionOffset, sizeof(id->fw_rev));
id->command_set_1 = 0x0001; id->command_set_2 = 0x4000; // SMART supported, words 82,83 valid
id->cfs_enable_1 = 0x0001; id->csf_default = 0x4000; // SMART enabled, words 85,87 valid
return 0;
}
// Get Serial Number in IDENTIFY from WMI
static bool get_serial_from_wmi(int drive, ata_identify_device * id)
{
bool debug = (ata_debugmode > 1);
wbem_services ws;
if (!ws.connect()) {
if (debug)
pout("WMI connect failed\n");
return false;
}
wbem_object wo;
if (!ws.query1(wo, "SELECT Model,SerialNumber FROM Win32_DiskDrive WHERE "
"DeviceID=\"\\\\\\\\.\\\\PHYSICALDRIVE%d\"", drive))
return false;
std::string serial = wo.get_str("SerialNumber");
if (debug)
pout(" WMI:PhysicalDrive%d: \"%s\", S/N:\"%s\"\n", drive, wo.get_str("Model").c_str(), serial.c_str());
copy_swapped(id->serial_no, serial.c_str(), sizeof(id->serial_no));
return true;
}
/////////////////////////////////////////////////////////////////////////////
// USB ID detection using WMI
// Get USB ID for a physical drive number
static bool get_usb_id(int drive, unsigned short & vendor_id, unsigned short & product_id)
{
bool debug = (scsi_debugmode > 1);
wbem_services ws;
if (!ws.connect()) {
if (debug)
pout("WMI connect failed\n");
return false;
}
// Get device name
wbem_object wo;
if (!ws.query1(wo, "SELECT Model FROM Win32_DiskDrive WHERE DeviceID=\"\\\\\\\\.\\\\PHYSICALDRIVE%d\"", drive))
return false;
std::string name = wo.get_str("Model");
if (debug)
pout("PhysicalDrive%d, \"%s\":\n", drive, name.c_str());
// Get USB_CONTROLLER -> DEVICE associations
wbem_enumerator we;
if (!ws.query(we, "SELECT Antecedent,Dependent FROM Win32_USBControllerDevice"))
return false;
unsigned short usb_venid = 0, prev_usb_venid = 0;
unsigned short usb_proid = 0, prev_usb_proid = 0;
std::string prev_usb_ant;
std::string prev_ant, ant, dep;
const regular_expression regex("^.*PnPEntity\\.DeviceID=\"([^\"]*)\"", REG_EXTENDED);
while (we.next(wo)) {
prev_ant = ant;
// Find next 'USB_CONTROLLER, DEVICE' pair
ant = wo.get_str("Antecedent");
dep = wo.get_str("Dependent");
if (debug && ant != prev_ant)
pout(" %s:\n", ant.c_str());
// Extract DeviceID
regmatch_t match[2];
if (!(regex.execute(dep.c_str(), 2, match) && match[1].rm_so >= 0)) {
if (debug)
pout(" | (\"%s\")\n", dep.c_str());
continue;
}
std::string devid(dep.c_str()+match[1].rm_so, match[1].rm_eo-match[1].rm_so);
if (str_starts_with(devid, "USB\\\\VID_")) {
// USB bridge entry, save CONTROLLER, ID
int nc = -1;
if (!(sscanf(devid.c_str(), "USB\\\\VID_%4hx&PID_%4hx%n",
&prev_usb_venid, &prev_usb_proid, &nc) == 2 && nc == 9+4+5+4)) {
prev_usb_venid = prev_usb_proid = 0;
}
prev_usb_ant = ant;
if (debug)
pout(" +-> \"%s\" [0x%04x:0x%04x]\n", devid.c_str(), prev_usb_venid, prev_usb_proid);
continue;
}
else if (str_starts_with(devid, "USBSTOR\\\\")) {
// USBSTOR device found
if (debug)
pout(" +--> \"%s\"\n", devid.c_str());
// Retrieve name
wbem_object wo2;
if (!ws.query1(wo2, "SELECT Name FROM Win32_PnPEntity WHERE DeviceID=\"%s\"", devid.c_str()))
continue;
std::string name2 = wo2.get_str("Name");
// Continue if not name of physical disk drive
if (name2 != name) {
if (debug)
pout(" +---> (\"%s\")\n", name2.c_str());
continue;
}
// Fail if previous USB bridge is associated to other controller or ID is unknown
if (!(ant == prev_usb_ant && prev_usb_venid)) {
if (debug)
pout(" +---> \"%s\" (Error: No USB bridge found)\n", name2.c_str());
return false;
}
// Handle multiple devices with same name
if (usb_venid) {
// Fail if multiple devices with same name have different USB bridge types
if (!(usb_venid == prev_usb_venid && usb_proid == prev_usb_proid)) {
if (debug)
pout(" +---> \"%s\" (Error: More than one USB ID found)\n", name2.c_str());
return false;
}
}
// Found
usb_venid = prev_usb_venid;
usb_proid = prev_usb_proid;
if (debug)
pout(" +===> \"%s\" [0x%04x:0x%04x]\n", name2.c_str(), usb_venid, usb_proid);
// Continue to check for duplicate names ...
}
else {
if (debug)
pout(" | \"%s\"\n", devid.c_str());
}
}
if (!usb_venid)
return false;
vendor_id = usb_venid;
product_id = usb_proid;
return true;
}
/////////////////////////////////////////////////////////////////////////////
// Call GetDevicePowerState()
// returns: 1=active, 0=standby, -1=error
// (This would also work for SCSI drives)
static int get_device_power_state(HANDLE hdevice)
{
BOOL state = TRUE;
if (!GetDevicePowerState(hdevice, &state)) {
long err = GetLastError();
if (ata_debugmode)
pout(" GetDevicePowerState() failed, Error=%ld\n", err);
errno = (err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO);
// TODO: This may not work as expected on transient errors,
// because smartd interprets -1 as SLEEP mode regardless of errno.
return -1;
}
if (ata_debugmode > 1)
pout(" GetDevicePowerState() succeeded, state=%d\n", state);
return state;
}
/////////////////////////////////////////////////////////////////////////////
// Get default ATA device options
static const char * ata_get_def_options()
{
return "pasifm"; // GetDevicePowerState(), ATA_, SMART_*, IDE_PASS_THROUGH,
// STORAGE_*, SCSI_MINIPORT_*
}
// Common routines for devices with HANDLEs
win_smart_device::~win_smart_device() throw()
{
if (m_fh != INVALID_HANDLE_VALUE)
::CloseHandle(m_fh);
}
bool win_smart_device::is_open() const
{
return (m_fh != INVALID_HANDLE_VALUE);
}
bool win_smart_device::close()
{
if (m_fh == INVALID_HANDLE_VALUE)
return true;
BOOL rc = ::CloseHandle(m_fh);
m_fh = INVALID_HANDLE_VALUE;
return !!rc;
}
// ATA
win_ata_device::win_ata_device(smart_interface * intf, const char * dev_name, const char * req_type)
: smart_device(intf, dev_name, "ata", req_type),
m_usr_options(false),
m_admin(false),
m_phydrive(-1),
m_id_is_cached(false),
m_is_3ware(false),
m_port(-1),
m_smartver_state(0)
{
}
win_ata_device::~win_ata_device() throw()
{
}
// Open ATA device
bool win_ata_device::open()
{
const char * name = skipdev(get_dev_name()); int len = strlen(name);
// [sh]d[a-z]([a-z])?(:[saicmfp]+)? => Physical drive 0-701, with options
char drive[2+1] = "", options[8+1] = ""; int n1 = -1, n2 = -1;
if ( sscanf(name, "%*[sh]d%2[a-z]%n:%6[saimfp]%n", drive, &n1, options, &n2) >= 1
&& ((n1 == len && !options[0]) || n2 == len) ) {
return open(sdxy_to_phydrive(drive), -1, options, -1);
}
// [sh]d[a-z],N(:[saicmfp3]+)? => Physical drive 0-701, RAID port N, with options
drive[0] = 0; options[0] = 0; n1 = -1; n2 = -1;
unsigned port = ~0;
if ( sscanf(name, "%*[sh]d%2[a-z],%u%n:%7[saimfp3]%n", drive, &port, &n1, options, &n2) >= 2
&& port < 32 && ((n1 == len && !options[0]) || n2 == len) ) {
return open(sdxy_to_phydrive(drive), -1, options, port);
}
// pd<m>,N => Physical drive <m>, RAID port N
int phydrive = -1; port = ~0; n1 = -1; n2 = -1;
if ( sscanf(name, "pd%d%n,%u%n", &phydrive, &n1, &port, &n2) >= 1
&& phydrive >= 0 && ((n1 == len && (int)port < 0) || (n2 == len && port < 32))) {
return open(phydrive, -1, "", (int)port);
}
// [a-zA-Z]: => Physical drive behind logical drive 0-25
int logdrive = drive_letter(name);
if (logdrive >= 0) {
return open(-1, logdrive, "", -1);
}
return set_err(EINVAL);
}
bool win_ata_device::open(int phydrive, int logdrive, const char * options, int port)
{
m_phydrive = -1;
char devpath[30];
if (0 <= phydrive && phydrive <= 255)
snprintf(devpath, sizeof(devpath)-1, "\\\\.\\PhysicalDrive%d", (m_phydrive = phydrive));
else if (0 <= logdrive && logdrive <= 'Z'-'A')
snprintf(devpath, sizeof(devpath)-1, "\\\\.\\%c:", 'A'+logdrive);
else
return set_err(ENOENT);
// Open device
HANDLE h = INVALID_HANDLE_VALUE;
if (!(*options && !options[strspn(options, "fp")])) {
// Open with admin rights
m_admin = true;
h = CreateFileA(devpath, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, 0, 0);
}
if (h == INVALID_HANDLE_VALUE) {
// Open without admin rights
m_admin = false;
h = CreateFileA(devpath, 0,
FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, 0, 0);
}
if (h == INVALID_HANDLE_VALUE) {
long err = GetLastError();
if (err == ERROR_FILE_NOT_FOUND)
set_err(ENOENT, "%s: not found", devpath);
else if (err == ERROR_ACCESS_DENIED)
set_err(EACCES, "%s: access denied", devpath);
else
set_err(EIO, "%s: Error=%ld", devpath, err);
return false;
}
set_fh(h);
// Warn once if admin rights are missing
if (!m_admin) {
static bool noadmin_warning = false;
if (!noadmin_warning) {
pout("Warning: Limited functionality due to missing admin rights\n");
noadmin_warning = true;
}
}
if (ata_debugmode > 1)
pout("%s: successfully opened%s\n", devpath, (!m_admin ? " (without admin rights)" :""));
m_usr_options = false;
if (*options) {
// Save user options
m_options = options; m_usr_options = true;
}
else if (port >= 0)
// RAID: SMART_* and SCSI_MINIPORT
m_options = "s3";
else {
// Set default options according to Windows version
static const char * def_options = ata_get_def_options();
m_options = def_options;
}
// SMART_GET_VERSION may spin up disk, so delay until first real SMART_* call
m_port = port;
if (port < 0)
return true;
// 3ware RAID: Get port map
GETVERSIONINPARAMS_EX vers_ex;
int devmap = smart_get_version(h, &vers_ex);
// 3ware RAID if vendor id present
m_is_3ware = (vers_ex.wIdentifier == SMART_VENDOR_3WARE);
unsigned long portmap = 0;
if (port >= 0 && devmap >= 0) {
// 3ware RAID: check vendor id
if (!m_is_3ware) {
pout("SMART_GET_VERSION returns unknown Identifier = 0x%04x\n"
"This is no 3ware 9000 controller or driver has no SMART support.\n",
vers_ex.wIdentifier);
devmap = -1;
}
else
portmap = vers_ex.dwDeviceMapEx;
}
if (devmap < 0) {
pout("%s: ATA driver has no SMART support\n", devpath);
if (!is_permissive()) {
close();
return set_err(ENOSYS);
}
devmap = 0x0f;
}
m_smartver_state = 1;
{
// 3ware RAID: update devicemap first
if (!update_3ware_devicemap_ioctl(h)) {
if ( smart_get_version(h, &vers_ex) >= 0
&& vers_ex.wIdentifier == SMART_VENDOR_3WARE )
portmap = vers_ex.dwDeviceMapEx;
}
// Check port existence
if (!(portmap & (1L << port))) {
if (!is_permissive()) {
close();
return set_err(ENOENT, "%s: Port %d is empty or does not exist", devpath, port);
}
}
}
return true;
}
/////////////////////////////////////////////////////////////////////////////
// Interface to ATA devices
bool win_ata_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
{
// No multi-sector support for now, see above
// warning about IOCTL_ATA_PASS_THROUGH
if (!ata_cmd_is_supported(in,
ata_device::supports_data_out |
ata_device::supports_output_regs |
ata_device::supports_48bit)
)
return false;
// 3ware RAID: SMART DISABLE without port number disables SMART functions
if ( m_is_3ware && m_port < 0
&& in.in_regs.command == ATA_SMART_CMD
&& in.in_regs.features == ATA_SMART_DISABLE)
return set_err(ENOSYS, "SMART DISABLE requires 3ware port number");
// Determine ioctl functions valid for this ATA cmd
const char * valid_options = 0;
switch (in.in_regs.command) {
case ATA_IDENTIFY_DEVICE:
case ATA_IDENTIFY_PACKET_DEVICE:
// SMART_*, ATA_, IDE_, SCSI_PASS_THROUGH, STORAGE_PREDICT_FAILURE
// and SCSI_MINIPORT_* if requested by user
valid_options = (m_usr_options ? "saimf" : "saif");
break;
case ATA_CHECK_POWER_MODE:
// Try GetDevicePowerState() first, ATA/IDE_PASS_THROUGH may spin up disk
valid_options = "pai3";
break;
case ATA_SMART_CMD:
switch (in.in_regs.features) {
case ATA_SMART_READ_VALUES:
case ATA_SMART_READ_THRESHOLDS:
case ATA_SMART_AUTOSAVE:
case ATA_SMART_ENABLE:
case ATA_SMART_DISABLE:
case ATA_SMART_AUTO_OFFLINE:
// SMART_*, ATA_, IDE_, SCSI_PASS_THROUGH, STORAGE_PREDICT_FAILURE
// and SCSI_MINIPORT_* if requested by user
valid_options = (m_usr_options ? "saimf" : "saif");
break;
case ATA_SMART_IMMEDIATE_OFFLINE:
// SMART_SEND_DRIVE_COMMAND does not support ABORT_SELF_TEST
valid_options = (m_usr_options || in.in_regs.lba_low != 127/*ABORT*/ ?
"saim3" : "aim3");
break;
case ATA_SMART_READ_LOG_SECTOR:
// SMART_RCV_DRIVE_DATA does not support READ_LOG
// Try SCSI_MINIPORT also to skip buggy class driver
// SMART functions do not support multi sector I/O.
if (in.size == 512)
valid_options = (m_usr_options ? "saim3" : "aim3");
else
valid_options = "a";
break;
case ATA_SMART_WRITE_LOG_SECTOR:
// ATA_PASS_THROUGH, SCSI_MINIPORT, others don't support DATA_OUT
// but SCSI_MINIPORT_* only if requested by user and single sector.
valid_options = (in.size == 512 && m_usr_options ? "am" : "a");
break;
case ATA_SMART_STATUS:
valid_options = (m_usr_options ? "saimf" : "saif");
break;
default:
// Unknown SMART command, handle below
break;
}
break;
default:
// Other ATA command, handle below
break;
}
if (!valid_options) {
// No special ATA command found above, select a generic pass through ioctl.
if (!( in.direction == ata_cmd_in::no_data
|| (in.direction == ata_cmd_in::data_in && in.size == 512))
|| in.in_regs.is_48bit_cmd() )
// DATA_OUT, more than one sector, 48-bit command: ATA_PASS_THROUGH only
valid_options = "a";
else
// ATA/IDE_PASS_THROUGH
valid_options = "ai";
}
if (!m_admin) {
// Restrict to IOCTL_STORAGE_*
if (strchr(valid_options, 'f'))
valid_options = "f";
else if (strchr(valid_options, 'p'))
valid_options = "p";
else
return set_err(ENOSYS, "Function requires admin rights");
}
// Set IDEREGS
IDEREGS regs, prev_regs;
{
const ata_in_regs & lo = in.in_regs;
regs.bFeaturesReg = lo.features;
regs.bSectorCountReg = lo.sector_count;
regs.bSectorNumberReg = lo.lba_low;
regs.bCylLowReg = lo.lba_mid;
regs.bCylHighReg = lo.lba_high;
regs.bDriveHeadReg = lo.device;
regs.bCommandReg = lo.command;
regs.bReserved = 0;
}
if (in.in_regs.is_48bit_cmd()) {
const ata_in_regs & hi = in.in_regs.prev;
prev_regs.bFeaturesReg = hi.features;
prev_regs.bSectorCountReg = hi.sector_count;
prev_regs.bSectorNumberReg = hi.lba_low;
prev_regs.bCylLowReg = hi.lba_mid;
prev_regs.bCylHighReg = hi.lba_high;
prev_regs.bDriveHeadReg = hi.device;
prev_regs.bCommandReg = hi.command;
prev_regs.bReserved = 0;
}
// Set data direction
int datasize = 0;
char * data = 0;
switch (in.direction) {
case ata_cmd_in::no_data:
break;
case ata_cmd_in::data_in:
datasize = (int)in.size;
data = (char *)in.buffer;
break;
case ata_cmd_in::data_out:
datasize = -(int)in.size;
data = (char *)in.buffer;
break;
default:
return set_err(EINVAL, "win_ata_device::ata_pass_through: invalid direction=%d",
(int)in.direction);
}
// Try all valid ioctls in the order specified in m_options
bool powered_up = false;
bool out_regs_set = false;
bool id_is_cached = false;
const char * options = m_options.c_str();
for (int i = 0; ; i++) {
char opt = options[i];
if (!opt) {
if (in.in_regs.command == ATA_CHECK_POWER_MODE && powered_up) {
// Power up reported by GetDevicePowerState() and no ioctl available
// to detect the actual mode of the drive => simulate ATA result ACTIVE/IDLE.
regs.bSectorCountReg = 0xff;
out_regs_set = true;
break;
}
// No IOCTL found
return set_err(ENOSYS);
}
if (!strchr(valid_options, opt))
// Invalid for this command
continue;
errno = 0;
assert( datasize == 0 || datasize == 512
|| (datasize == -512 && strchr("am", opt))
|| (datasize > 512 && opt == 'a'));
int rc;
switch (opt) {
default: assert(0);
case 's':
// call SMART_GET_VERSION once for each drive
if (m_smartver_state > 1) {
rc = -1; errno = ENOSYS;
break;
}
if (!m_smartver_state) {
assert(m_port == -1);
GETVERSIONINPARAMS_EX vers_ex;
if (smart_get_version(get_fh(), &vers_ex) < 0) {
if (!failuretest_permissive) {
m_smartver_state = 2;
rc = -1; errno = ENOSYS;
break;
}
failuretest_permissive--;
}
else {
// 3ware RAID if vendor id present
m_is_3ware = (vers_ex.wIdentifier == SMART_VENDOR_3WARE);
}
m_smartver_state = 1;
}
rc = smart_ioctl(get_fh(), ®s, data, datasize, m_port);
out_regs_set = (in.in_regs.features == ATA_SMART_STATUS);
id_is_cached = (m_port < 0); // Not cached by 3ware driver
break;
case 'm':
rc = ata_via_scsi_miniport_smart_ioctl(get_fh(), ®s, data, datasize);
id_is_cached = (m_port < 0);
break;
case 'a':
rc = ata_pass_through_ioctl(get_fh(), ®s,
(in.in_regs.is_48bit_cmd() ? &prev_regs : 0),
data, datasize);
out_regs_set = true;
break;
case 'i':
rc = ide_pass_through_ioctl(get_fh(), ®s, data, datasize);
out_regs_set = true;
break;
case 'f':
if (in.in_regs.command == ATA_IDENTIFY_DEVICE) {
rc = get_identify_from_device_property(get_fh(), (ata_identify_device *)data);
if (rc == 0 && m_phydrive >= 0)
get_serial_from_wmi(m_phydrive, (ata_identify_device *)data);
id_is_cached = true;
}
else if (in.in_regs.command == ATA_SMART_CMD) switch (in.in_regs.features) {
case ATA_SMART_READ_VALUES:
rc = storage_predict_failure_ioctl(get_fh(), data);
if (rc > 0)
rc = 0;
break;
case ATA_SMART_ENABLE:
rc = 0;
break;
case ATA_SMART_STATUS:
rc = storage_predict_failure_ioctl(get_fh());
if (rc == 0) {
// Good SMART status
out.out_regs.lba_high = 0xc2; out.out_regs.lba_mid = 0x4f;
}
else if (rc > 0) {
// Bad SMART status
out.out_regs.lba_high = 0x2c; out.out_regs.lba_mid = 0xf4;
rc = 0;
}
break;
default:
errno = ENOSYS; rc = -1;
}
else {
errno = ENOSYS; rc = -1;
}
break;
case '3':
rc = ata_via_3ware_miniport_ioctl(get_fh(), ®s, data, datasize, m_port);
out_regs_set = true;
break;
case 'p':
assert(in.in_regs.command == ATA_CHECK_POWER_MODE && in.size == 0);
rc = get_device_power_state(get_fh());
if (rc == 0) {
// Power down reported by GetDevicePowerState(), using a passthrough ioctl would
// spin up the drive => simulate ATA result STANDBY.
regs.bSectorCountReg = 0x00;
out_regs_set = true;
}
else if (rc > 0) {
// Power up reported by GetDevicePowerState(), but this reflects the actual mode
// only if it is selected by the device driver => try a passthrough ioctl to get the
// actual mode, if none available simulate ACTIVE/IDLE.
powered_up = true;
rc = -1; errno = ENOSYS;
}
break;
}
if (!rc)
// Working ioctl found
break;
if (errno != ENOSYS)
// Abort on I/O error
return set_err(errno);
out_regs_set = false;
// CAUTION: *_ioctl() MUST NOT change "regs" Parameter in the ENOSYS case
}
// Return IDEREGS if set
if (out_regs_set) {
ata_out_regs & lo = out.out_regs;
lo.error = regs.bFeaturesReg;
lo.sector_count = regs.bSectorCountReg;
lo.lba_low = regs.bSectorNumberReg;
lo.lba_mid = regs.bCylLowReg;
lo.lba_high = regs.bCylHighReg;
lo.device = regs.bDriveHeadReg;
lo.status = regs.bCommandReg;
if (in.in_regs.is_48bit_cmd()) {
ata_out_regs & hi = out.out_regs.prev;
hi.sector_count = prev_regs.bSectorCountReg;
hi.lba_low = prev_regs.bSectorNumberReg;
hi.lba_mid = prev_regs.bCylLowReg;
hi.lba_high = prev_regs.bCylHighReg;
}
}
if ( in.in_regs.command == ATA_IDENTIFY_DEVICE
|| in.in_regs.command == ATA_IDENTIFY_PACKET_DEVICE)
// Update ata_identify_is_cached() result according to ioctl used.
m_id_is_cached = id_is_cached;
return true;
}
// Return true if OS caches the ATA identify sector
bool win_ata_device::ata_identify_is_cached() const
{
return m_id_is_cached;
}
//////////////////////////////////////////////////////////////////////
// csmi_ata_device
bool csmi_device::get_phy_info(CSMI_SAS_PHY_INFO & phy_info)
{
// Get driver info to check CSMI support
CSMI_SAS_DRIVER_INFO_BUFFER driver_info_buf;
memset(&driver_info_buf, 0, sizeof(driver_info_buf));
if (!csmi_ioctl(CC_CSMI_SAS_GET_DRIVER_INFO, &driver_info_buf.IoctlHeader, sizeof(driver_info_buf)))
return false;
if (scsi_debugmode > 1) {
const CSMI_SAS_DRIVER_INFO & driver_info = driver_info_buf.Information;
pout("CSMI_SAS_DRIVER_INFO:\n");
pout(" Name: \"%.81s\"\n", driver_info.szName);
pout(" Description: \"%.81s\"\n", driver_info.szDescription);
pout(" Revision: %d.%d\n", driver_info.usMajorRevision, driver_info.usMinorRevision);
}
// Get Phy info
CSMI_SAS_PHY_INFO_BUFFER phy_info_buf;
memset(&phy_info_buf, 0, sizeof(phy_info_buf));
if (!csmi_ioctl(CC_CSMI_SAS_GET_PHY_INFO, &phy_info_buf.IoctlHeader, sizeof(phy_info_buf)))
return false;
phy_info = phy_info_buf.Information;
if (phy_info.bNumberOfPhys > sizeof(phy_info.Phy)/sizeof(phy_info.Phy[0]))
return set_err(EIO, "CSMI_SAS_PHY_INFO: Bogus NumberOfPhys=%d", phy_info.bNumberOfPhys);
if (scsi_debugmode > 1) {
pout("CSMI_SAS_PHY_INFO: NumberOfPhys=%d\n", phy_info.bNumberOfPhys);
for (int i = 0; i < phy_info.bNumberOfPhys; i++) {
const CSMI_SAS_PHY_ENTITY & pe = phy_info.Phy[i];
const CSMI_SAS_IDENTIFY & id = pe.Identify, & at = pe.Attached;
pout("Phy[%d] Port: 0x%02x\n", i, pe.bPortIdentifier);
pout(" Type: 0x%02x, 0x%02x\n", id.bDeviceType, at.bDeviceType);
pout(" InitProto: 0x%02x, 0x%02x\n", id.bInitiatorPortProtocol, at.bInitiatorPortProtocol);
pout(" TargetProto: 0x%02x, 0x%02x\n", id.bTargetPortProtocol, at.bTargetPortProtocol);
pout(" PhyIdent: 0x%02x, 0x%02x\n", id.bPhyIdentifier, at.bPhyIdentifier);
const unsigned char * b = id.bSASAddress;
pout(" SASAddress: %02x %02x %02x %02x %02x %02x %02x %02x, ",
b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
b = at.bSASAddress;
pout( "%02x %02x %02x %02x %02x %02x %02x %02x\n",
b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
}
}
return true;
}
bool csmi_device::check_phy(const CSMI_SAS_PHY_INFO & phy_info, unsigned phy_no)
{
// Check Phy presence
if (phy_no >= phy_info.bNumberOfPhys)
return set_err(ENOENT, "Port %u does not exist (#ports: %d)", phy_no,
phy_info.bNumberOfPhys);
const CSMI_SAS_PHY_ENTITY & phy_ent = phy_info.Phy[phy_no];
if (phy_ent.Attached.bDeviceType == CSMI_SAS_NO_DEVICE_ATTACHED)
return set_err(ENOENT, "No device on port %u", phy_no);
switch (phy_ent.Attached.bTargetPortProtocol) {
case CSMI_SAS_PROTOCOL_SATA:
case CSMI_SAS_PROTOCOL_STP:
break;
default:
return set_err(ENOENT, "No SATA device on port %u (protocol: %u)",
phy_no, phy_ent.Attached.bTargetPortProtocol);
}
return true;
}
bool csmi_device::select_phy(unsigned phy_no)
{
CSMI_SAS_PHY_INFO phy_info;
if (!get_phy_info(phy_info))
return false;
if (!check_phy(phy_info, phy_no))
return false;
m_phy_ent = phy_info.Phy[phy_no];
return true;
}
bool csmi_ata_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
{
if (!ata_cmd_is_supported(in,
ata_device::supports_data_out |
ata_device::supports_output_regs |
ata_device::supports_multi_sector |
ata_device::supports_48bit,
"CMSI")
)
return false;
// Create buffer with appropriate size
raw_buffer pthru_raw_buf(sizeof(CSMI_SAS_STP_PASSTHRU_BUFFER) + in.size);
CSMI_SAS_STP_PASSTHRU_BUFFER * pthru_buf = (CSMI_SAS_STP_PASSTHRU_BUFFER *)pthru_raw_buf.data();
// Set addresses from Phy info
CSMI_SAS_STP_PASSTHRU & pthru = pthru_buf->Parameters;
const CSMI_SAS_PHY_ENTITY & phy_ent = get_phy_ent();
pthru.bPhyIdentifier = phy_ent.Identify.bPhyIdentifier;
pthru.bPortIdentifier = phy_ent.bPortIdentifier;
memcpy(pthru.bDestinationSASAddress, phy_ent.Attached.bSASAddress,
sizeof(pthru.bDestinationSASAddress));
pthru.bConnectionRate = CSMI_SAS_LINK_RATE_NEGOTIATED;
// Set transfer mode
switch (in.direction) {
case ata_cmd_in::no_data:
pthru.uFlags = CSMI_SAS_STP_PIO | CSMI_SAS_STP_UNSPECIFIED;
break;
case ata_cmd_in::data_in:
pthru.uFlags = CSMI_SAS_STP_PIO | CSMI_SAS_STP_READ;
pthru.uDataLength = in.size;
break;
case ata_cmd_in::data_out:
pthru.uFlags = CSMI_SAS_STP_PIO | CSMI_SAS_STP_WRITE;
pthru.uDataLength = in.size;
memcpy(pthru_buf->bDataBuffer, in.buffer, in.size);
break;
default:
return set_err(EINVAL, "csmi_ata_device::ata_pass_through: invalid direction=%d",
(int)in.direction);
}
// Set host-to-device FIS
{
unsigned char * fis = pthru.bCommandFIS;
const ata_in_regs & lo = in.in_regs;
const ata_in_regs & hi = in.in_regs.prev;
fis[ 0] = 0x27; // Type: host-to-device FIS
fis[ 1] = 0x80; // Bit7: Update command register
fis[ 2] = lo.command;
fis[ 3] = lo.features;
fis[ 4] = lo.lba_low;
fis[ 5] = lo.lba_mid;
fis[ 6] = lo.lba_high;
fis[ 7] = lo.device;
fis[ 8] = hi.lba_low;
fis[ 9] = hi.lba_mid;
fis[10] = hi.lba_high;
fis[11] = hi.features;
fis[12] = lo.sector_count;
fis[13] = hi.sector_count;
}
// Call ioctl
if (!csmi_ioctl(CC_CSMI_SAS_STP_PASSTHRU, &pthru_buf->IoctlHeader, pthru_raw_buf.size())) {
return false;
}
// Get device-to-host FIS
{
const unsigned char * fis = pthru_buf->Status.bStatusFIS;
ata_out_regs & lo = out.out_regs;
lo.status = fis[ 2];
lo.error = fis[ 3];
lo.lba_low = fis[ 4];
lo.lba_mid = fis[ 5];
lo.lba_high = fis[ 6];
lo.device = fis[ 7];
lo.sector_count = fis[12];
if (in.in_regs.is_48bit_cmd()) {
ata_out_regs & hi = out.out_regs.prev;
hi.lba_low = fis[ 8];
hi.lba_mid = fis[ 9];
hi.lba_high = fis[10];
hi.sector_count = fis[13];
}
}
// Get data
if (in.direction == ata_cmd_in::data_in)
// TODO: Check ptru_buf->Status.uDataBytes
memcpy(in.buffer, pthru_buf->bDataBuffer, in.size);
return true;
}
//////////////////////////////////////////////////////////////////////
// win_csmi_device
win_csmi_device::win_csmi_device(smart_interface * intf, const char * dev_name,
const char * req_type)
: smart_device(intf, dev_name, "ata", req_type),
m_fh(INVALID_HANDLE_VALUE), m_phy_no(0)
{
}
win_csmi_device::~win_csmi_device() throw()
{
if (m_fh != INVALID_HANDLE_VALUE)
CloseHandle(m_fh);
}
bool win_csmi_device::is_open() const
{
return (m_fh != INVALID_HANDLE_VALUE);
}
bool win_csmi_device::close()
{
if (m_fh == INVALID_HANDLE_VALUE)
return true;
BOOL rc = CloseHandle(m_fh);
m_fh = INVALID_HANDLE_VALUE;
return !!rc;
}
bool win_csmi_device::open_scsi()
{
// Parse name
unsigned contr_no = ~0, phy_no = ~0; int nc = -1;
const char * name = skipdev(get_dev_name());
if (!( sscanf(name, "csmi%u,%u%n", &contr_no, &phy_no, &nc) >= 0
&& nc == (int)strlen(name) && contr_no <= 9 && phy_no < 32) )
return set_err(EINVAL);
// Open controller handle
char devpath[30];
snprintf(devpath, sizeof(devpath)-1, "\\\\.\\Scsi%u:", contr_no);
HANDLE h = CreateFileA(devpath, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
(SECURITY_ATTRIBUTES *)0, OPEN_EXISTING, 0, 0);
if (h == INVALID_HANDLE_VALUE) {
long err = GetLastError();
if (err == ERROR_FILE_NOT_FOUND)
set_err(ENOENT, "%s: not found", devpath);
else if (err == ERROR_ACCESS_DENIED)
set_err(EACCES, "%s: access denied", devpath);
else
set_err(EIO, "%s: Error=%ld", devpath, err);
return false;
}
if (scsi_debugmode > 1)
pout(" %s: successfully opened\n", devpath);
m_fh = h;
m_phy_no = phy_no;
return true;
}
bool win_csmi_device::open()
{
if (!open_scsi())
return false;
// Get Phy info for this drive
if (!select_phy(m_phy_no)) {
close();
return false;
}
return true;
}
bool win_csmi_device::csmi_ioctl(unsigned code, IOCTL_HEADER * csmi_buffer,
unsigned csmi_bufsiz)
{
// Determine signature
const char * sig;
switch (code) {
case CC_CSMI_SAS_GET_DRIVER_INFO:
sig = CSMI_ALL_SIGNATURE; break;
case CC_CSMI_SAS_GET_PHY_INFO:
case CC_CSMI_SAS_STP_PASSTHRU:
sig = CSMI_SAS_SIGNATURE; break;
default:
return set_err(ENOSYS, "Unknown CSMI code=%u", code);
}
// Set header
csmi_buffer->HeaderLength = sizeof(IOCTL_HEADER);
strncpy((char *)csmi_buffer->Signature, sig, sizeof(csmi_buffer->Signature));
csmi_buffer->Timeout = CSMI_SAS_TIMEOUT;
csmi_buffer->ControlCode = code;
csmi_buffer->ReturnCode = 0;
csmi_buffer->Length = csmi_bufsiz - sizeof(IOCTL_HEADER);
// Call function
DWORD num_out = 0;
if (!DeviceIoControl(m_fh, IOCTL_SCSI_MINIPORT,
csmi_buffer, csmi_bufsiz, csmi_buffer, csmi_bufsiz, &num_out, (OVERLAPPED*)0)) {
long err = GetLastError();
if (scsi_debugmode)
pout(" IOCTL_SCSI_MINIPORT(CC_CSMI_%u) failed, Error=%ld\n", code, err);
if ( err == ERROR_INVALID_FUNCTION
|| err == ERROR_NOT_SUPPORTED
|| err == ERROR_DEV_NOT_EXIST)
return set_err(ENOSYS, "CSMI is not supported (Error=%ld)", err);
else
return set_err(EIO, "CSMI(%u) failed with Error=%ld", code, err);
}
// Check result
if (csmi_buffer->ReturnCode) {
if (scsi_debugmode) {
pout(" IOCTL_SCSI_MINIPORT(CC_CSMI_%u) failed, ReturnCode=%u\n",
code, (unsigned)csmi_buffer->ReturnCode);
}
return set_err(EIO, "CSMI(%u) failed with ReturnCode=%u", code, (unsigned)csmi_buffer->ReturnCode);
}
if (scsi_debugmode > 1)
pout(" IOCTL_SCSI_MINIPORT(CC_CSMI_%u) succeeded, bytes returned: %u\n", code, (unsigned)num_out);
return true;
}
/////////////////////////////////////////////////////////////////////////////
// SPT Interface (for SCSI devices and ATA devices behind SATLs)
// Only supported in NT and later
/////////////////////////////////////////////////////////////////////////////
win_scsi_device::win_scsi_device(smart_interface * intf,
const char * dev_name, const char * req_type)
: smart_device(intf, dev_name, "scsi", req_type)
{
}
bool win_scsi_device::open()
{
const char * name = skipdev(get_dev_name()); int len = strlen(name);
// sd[a-z]([a-z])?,N => Physical drive 0-701, RAID port N
char drive[2+1] = ""; int sub_addr = -1; int n1 = -1; int n2 = -1;
if ( sscanf(name, "sd%2[a-z]%n,%d%n", drive, &n1, &sub_addr, &n2) >= 1
&& ((n1 == len && sub_addr == -1) || (n2 == len && sub_addr >= 0)) ) {
return open(sdxy_to_phydrive(drive), -1, -1, sub_addr);
}
// pd<m>,N => Physical drive <m>, RAID port N
int pd_num = -1; sub_addr = -1; n1 = -1; n2 = -1;
if ( sscanf(name, "pd%d%n,%d%n", &pd_num, &n1, &sub_addr, &n2) >= 1
&& pd_num >= 0 && ((n1 == len && sub_addr == -1) || (n2 == len && sub_addr >= 0))) {
return open(pd_num, -1, -1, sub_addr);
}
// [a-zA-Z]: => Physical drive behind logical drive 0-25
int logdrive = drive_letter(name);
if (logdrive >= 0) {
return open(-1, logdrive, -1, -1);
}
// n?st<m> => tape drive <m> (same names used in Cygwin's /dev emulation)
int tape_num = -1; n1 = -1;
if (sscanf(name, "st%d%n", &tape_num, &n1) == 1 && tape_num >= 0 && n1 == len) {
return open(-1, -1, tape_num, -1);
}
tape_num = -1; n1 = -1;
if (sscanf(name, "nst%d%n", &tape_num, &n1) == 1 && tape_num >= 0 && n1 == len) {
return open(-1, -1, tape_num, -1);
}
// tape<m> => tape drive <m>
tape_num = -1; n1 = -1;
if (sscanf(name, "tape%d%n", &tape_num, &n1) == 1 && tape_num >= 0 && n1 == len) {
return open(-1, -1, tape_num, -1);
}
return set_err(EINVAL);
}
bool win_scsi_device::open(int pd_num, int ld_num, int tape_num, int /*sub_addr*/)
{
char b[128];
b[sizeof(b) - 1] = '\0';
if (pd_num >= 0)
snprintf(b, sizeof(b) - 1, "\\\\.\\PhysicalDrive%d", pd_num);
else if (ld_num >= 0)
snprintf(b, sizeof(b) - 1, "\\\\.\\%c:", 'A' + ld_num);
else if (tape_num >= 0)
snprintf(b, sizeof(b) - 1, "\\\\.\\TAPE%d", tape_num);
else {
set_err(EINVAL);
return false;
}
// Open device
HANDLE h = CreateFileA(b, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL,
OPEN_EXISTING, 0, 0);
if (h == INVALID_HANDLE_VALUE) {
set_err(ENODEV, "%s: Open failed, Error=%u", b, (unsigned)GetLastError());
return false;
}
set_fh(h);
return true;
}
typedef struct {
SCSI_PASS_THROUGH_DIRECT spt;
ULONG Filler;
UCHAR ucSenseBuf[64];
} SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER;
// Issue command via IOCTL_SCSI_PASS_THROUGH instead of *_DIRECT.
// Used if DataTransferLength not supported by *_DIRECT.
static long scsi_pass_through_indirect(HANDLE h,
SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER * sbd)
{
struct SCSI_PASS_THROUGH_WITH_BUFFERS {
SCSI_PASS_THROUGH spt;
ULONG Filler;
UCHAR ucSenseBuf[sizeof(sbd->ucSenseBuf)];
UCHAR ucDataBuf[512];
};
SCSI_PASS_THROUGH_WITH_BUFFERS sb;
memset(&sb, 0, sizeof(sb));
// DATA_OUT not implemented yet
if (!( sbd->spt.DataIn == SCSI_IOCTL_DATA_IN
&& sbd->spt.DataTransferLength <= sizeof(sb.ucDataBuf)))
return ERROR_INVALID_PARAMETER;
sb.spt.Length = sizeof(sb.spt);
sb.spt.CdbLength = sbd->spt.CdbLength;
memcpy(sb.spt.Cdb, sbd->spt.Cdb, sizeof(sb.spt.Cdb));
sb.spt.SenseInfoLength = sizeof(sb.ucSenseBuf);
sb.spt.SenseInfoOffset = offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
sb.spt.DataIn = sbd->spt.DataIn;
sb.spt.DataTransferLength = sbd->spt.DataTransferLength;
sb.spt.DataBufferOffset = offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucDataBuf);
sb.spt.TimeOutValue = sbd->spt.TimeOutValue;
DWORD num_out;
if (!DeviceIoControl(h, IOCTL_SCSI_PASS_THROUGH,
&sb, sizeof(sb), &sb, sizeof(sb), &num_out, 0))
return GetLastError();
sbd->spt.ScsiStatus = sb.spt.ScsiStatus;
if (sb.spt.ScsiStatus & SCSI_STATUS_CHECK_CONDITION)
memcpy(sbd->ucSenseBuf, sb.ucSenseBuf, sizeof(sbd->ucSenseBuf));
sbd->spt.DataTransferLength = sb.spt.DataTransferLength;
if (sbd->spt.DataIn == SCSI_IOCTL_DATA_IN && sb.spt.DataTransferLength > 0)
memcpy(sbd->spt.DataBuffer, sb.ucDataBuf, sb.spt.DataTransferLength);
return 0;
}
// Interface to SPT SCSI devices. See scsicmds.h and os_linux.c
bool win_scsi_device::scsi_pass_through(struct scsi_cmnd_io * iop)
{
int report = scsi_debugmode; // TODO
if (report > 0) {
int k, j;
const unsigned char * ucp = iop->cmnd;
const char * np;
char buff[256];
const int sz = (int)sizeof(buff);
np = scsi_get_opcode_name(ucp[0]);
j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
for (k = 0; k < (int)iop->cmnd_len; ++k)
j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
if ((report > 1) &&
(DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
int trunc = (iop->dxfer_len > 256) ? 1 : 0;
j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
"data, len=%d%s:\n", (int)iop->dxfer_len,
(trunc ? " [only first 256 bytes shown]" : ""));
dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1);
}
else
j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
pout("%s", buff);
}
SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER sb;
if (iop->cmnd_len > (int)sizeof(sb.spt.Cdb)) {
set_err(EINVAL, "cmnd_len too large");
return false;
}
memset(&sb, 0, sizeof(sb));
sb.spt.Length = sizeof(SCSI_PASS_THROUGH_DIRECT);
sb.spt.CdbLength = iop->cmnd_len;
memcpy(sb.spt.Cdb, iop->cmnd, iop->cmnd_len);
sb.spt.SenseInfoLength = sizeof(sb.ucSenseBuf);
sb.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf);
sb.spt.TimeOutValue = (iop->timeout ? iop->timeout : 60);
bool direct = true;
switch (iop->dxfer_dir) {
case DXFER_NONE:
sb.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
break;
case DXFER_FROM_DEVICE:
sb.spt.DataIn = SCSI_IOCTL_DATA_IN;
sb.spt.DataTransferLength = iop->dxfer_len;
sb.spt.DataBuffer = iop->dxferp;
// IOCTL_SCSI_PASS_THROUGH_DIRECT does not support single byte
// transfers (needed for SMART STATUS check of JMicron USB bridges)
if (sb.spt.DataTransferLength == 1)
direct = false;
break;
case DXFER_TO_DEVICE:
sb.spt.DataIn = SCSI_IOCTL_DATA_OUT;
sb.spt.DataTransferLength = iop->dxfer_len;
sb.spt.DataBuffer = iop->dxferp;
break;
default:
set_err(EINVAL, "bad dxfer_dir");
return false;
}
long err = 0;
if (direct) {
DWORD num_out;
if (!DeviceIoControl(get_fh(), IOCTL_SCSI_PASS_THROUGH_DIRECT,
&sb, sizeof(sb), &sb, sizeof(sb), &num_out, 0))
err = GetLastError();
}
else
err = scsi_pass_through_indirect(get_fh(), &sb);
if (err)
return set_err((err == ERROR_INVALID_FUNCTION ? ENOSYS : EIO),
"IOCTL_SCSI_PASS_THROUGH%s failed, Error=%ld",
(direct ? "_DIRECT" : ""), err);
iop->scsi_status = sb.spt.ScsiStatus;
if (SCSI_STATUS_CHECK_CONDITION & iop->scsi_status) {
int slen = sb.ucSenseBuf[7] + 8;
if (slen > (int)sizeof(sb.ucSenseBuf))
slen = sizeof(sb.ucSenseBuf);
if (slen > (int)iop->max_sense_len)
slen = iop->max_sense_len;
memcpy(iop->sensep, sb.ucSenseBuf, slen);
iop->resp_sense_len = slen;
if (report) {
if (report > 1) {
pout(" >>> Sense buffer, len=%d:\n", slen);
dStrHex(iop->sensep, slen , 1);
}
if ((iop->sensep[0] & 0x7f) > 0x71)
pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n",
iop->scsi_status, iop->sensep[1] & 0xf,
iop->sensep[2], iop->sensep[3]);
else
pout(" status=%x: sense_key=%x asc=%x ascq=%x\n",
iop->scsi_status, iop->sensep[2] & 0xf,
iop->sensep[12], iop->sensep[13]);
}
} else
iop->resp_sense_len = 0;
if ((iop->dxfer_len > 0) && (sb.spt.DataTransferLength > 0))
iop->resid = iop->dxfer_len - sb.spt.DataTransferLength;
else
iop->resid = 0;
if ((iop->dxfer_dir == DXFER_FROM_DEVICE) && (report > 1)) {
int trunc = (iop->dxfer_len > 256) ? 1 : 0;
pout(" Incoming data, len=%d%s:\n", (int)iop->dxfer_len,
(trunc ? " [only first 256 bytes shown]" : ""));
dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1);
}
return true;
}
// Interface to SPT SCSI devices. See scsicmds.h and os_linux.c
static long scsi_pass_through_direct(HANDLE fd, UCHAR targetid, struct scsi_cmnd_io * iop)
{
int report = scsi_debugmode; // TODO
if (report > 0) {
int k, j;
const unsigned char * ucp = iop->cmnd;
const char * np;
char buff[256];
const int sz = (int)sizeof(buff);
np = scsi_get_opcode_name(ucp[0]);
j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
for (k = 0; k < (int)iop->cmnd_len; ++k)
j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
if ((report > 1) &&
(DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
int trunc = (iop->dxfer_len > 256) ? 1 : 0;
j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
"data, len=%d%s:\n", (int)iop->dxfer_len,
(trunc ? " [only first 256 bytes shown]" : ""));
dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1);
}
else
j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
pout("%s", buff);
}
SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER sb;
if (iop->cmnd_len > (int)sizeof(sb.spt.Cdb)) {
return EINVAL;
}
memset(&sb, 0, sizeof(sb));
sb.spt.Length = sizeof(SCSI_PASS_THROUGH_DIRECT);
//sb.spt.PathId = 0;
sb.spt.TargetId = targetid;
//sb.spt.Lun = 0;
sb.spt.CdbLength = iop->cmnd_len;
memcpy(sb.spt.Cdb, iop->cmnd, iop->cmnd_len);
sb.spt.SenseInfoLength = sizeof(sb.ucSenseBuf);
sb.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf);
sb.spt.TimeOutValue = (iop->timeout ? iop->timeout : 60);
bool direct = true;
switch (iop->dxfer_dir) {
case DXFER_NONE:
sb.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
break;
case DXFER_FROM_DEVICE:
sb.spt.DataIn = SCSI_IOCTL_DATA_IN;
sb.spt.DataTransferLength = iop->dxfer_len;
sb.spt.DataBuffer = iop->dxferp;
// IOCTL_SCSI_PASS_THROUGH_DIRECT does not support single byte
// transfers (needed for SMART STATUS check of JMicron USB bridges)
if (sb.spt.DataTransferLength == 1)
direct = false;
break;
case DXFER_TO_DEVICE:
sb.spt.DataIn = SCSI_IOCTL_DATA_OUT;
sb.spt.DataTransferLength = iop->dxfer_len;
sb.spt.DataBuffer = iop->dxferp;
break;
default:
return EINVAL;
}
long err = 0;
if (direct) {
DWORD num_out;
if (!DeviceIoControl(fd, IOCTL_SCSI_PASS_THROUGH_DIRECT,
&sb, sizeof(sb), &sb, sizeof(sb), &num_out, 0))
err = GetLastError();
}
else
err = scsi_pass_through_indirect(fd, &sb);
if (err)
{
return err;
}
iop->scsi_status = sb.spt.ScsiStatus;
if (SCSI_STATUS_CHECK_CONDITION & iop->scsi_status) {
int slen = sb.ucSenseBuf[7] + 8;
if (slen > (int)sizeof(sb.ucSenseBuf))
slen = sizeof(sb.ucSenseBuf);
if (slen > (int)iop->max_sense_len)
slen = iop->max_sense_len;
memcpy(iop->sensep, sb.ucSenseBuf, slen);
iop->resp_sense_len = slen;
if (report) {
if (report > 1) {
pout(" >>> Sense buffer, len=%d:\n", slen);
dStrHex(iop->sensep, slen , 1);
}
if ((iop->sensep[0] & 0x7f) > 0x71)
pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n",
iop->scsi_status, iop->sensep[1] & 0xf,
iop->sensep[2], iop->sensep[3]);
else
pout(" status=%x: sense_key=%x asc=%x ascq=%x\n",
iop->scsi_status, iop->sensep[2] & 0xf,
iop->sensep[12], iop->sensep[13]);
}
} else
iop->resp_sense_len = 0;
if ((iop->dxfer_len > 0) && (sb.spt.DataTransferLength > 0))
iop->resid = iop->dxfer_len - sb.spt.DataTransferLength;
else
iop->resid = 0;
if ((iop->dxfer_dir == DXFER_FROM_DEVICE) && (report > 1)) {
int trunc = (iop->dxfer_len > 256) ? 1 : 0;
pout(" Incoming data, len=%d%s:\n", (int)iop->dxfer_len,
(trunc ? " [only first 256 bytes shown]" : ""));
dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1);
}
return 0;
}
// Areca RAID Controller(SAS Device)
win_areca_scsi_device::win_areca_scsi_device(smart_interface * intf, const char * dev_name, int disknum, int encnum)
: smart_device(intf, dev_name, "areca", "areca")
{
set_fh(INVALID_HANDLE_VALUE);
set_disknum(disknum);
set_encnum(encnum);
set_info().info_name = strprintf("%s [areca_disk#%02d_enc#%02d]", dev_name, disknum, encnum);
}
bool win_areca_scsi_device::open()
{
HANDLE hFh;
if( is_open() )
{
return true;
}
hFh = CreateFile( get_dev_name(),
GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
0,
NULL );
if(hFh == INVALID_HANDLE_VALUE)
{
return false;
}
set_fh(hFh);
return true;
}
smart_device * win_areca_scsi_device::autodetect_open()
{
return this;
}
int win_areca_scsi_device::arcmsr_do_scsi_io(struct scsi_cmnd_io * iop)
{
int ioctlreturn = 0;
ioctlreturn = scsi_pass_through_direct(get_fh(), 16, iop);
if ( ioctlreturn || iop->scsi_status )
{
ioctlreturn = scsi_pass_through_direct(get_fh(), 127, iop);
if ( ioctlreturn || iop->scsi_status )
{
// errors found
return -1;
}
}
return ioctlreturn;
}
bool win_areca_scsi_device::arcmsr_lock()
{
#define SYNCOBJNAME "Global\\SynIoctlMutex"
int ctlrnum = -1;
char mutexstr[64];
if (sscanf(get_dev_name(), "\\\\.\\scsi%d:", &ctlrnum) < 1)
return set_err(EINVAL, "unable to parse device name");
snprintf(mutexstr, sizeof(mutexstr), "%s%d", SYNCOBJNAME, ctlrnum);
m_mutex = CreateMutex(NULL, FALSE, mutexstr);
if ( m_mutex == NULL )
{
return set_err(EIO, "CreateMutex failed");
}
// atomic access to driver
WaitForSingleObject(m_mutex, INFINITE);
return true;
}
bool win_areca_scsi_device::arcmsr_unlock()
{
if( m_mutex != NULL)
{
ReleaseMutex(m_mutex);
CloseHandle(m_mutex);
}
return true;
}
// Areca RAID Controller(SATA Disk)
win_areca_ata_device::win_areca_ata_device(smart_interface * intf, const char * dev_name, int disknum, int encnum)
: smart_device(intf, dev_name, "areca", "areca")
{
set_fh(INVALID_HANDLE_VALUE);
set_disknum(disknum);
set_encnum(encnum);
set_info().info_name = strprintf("%s [areca_disk#%02d_enc#%02d]", dev_name, disknum, encnum);
}
bool win_areca_ata_device::open()
{
HANDLE hFh;
if( is_open() )
{
return true;
}
hFh = CreateFile( get_dev_name(),
GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
0,
NULL );
if(hFh == INVALID_HANDLE_VALUE)
{
return false;
}
set_fh(hFh);
return true;
}
smart_device * win_areca_ata_device::autodetect_open()
{
int is_ata = 1;
// autodetect device type
is_ata = arcmsr_get_dev_type();
if(is_ata < 0)
{
set_err(EIO);
return this;
}
if(is_ata == 1)
{
// SATA device
return this;
}
// SAS device
smart_device_auto_ptr newdev(new win_areca_scsi_device(smi(), get_dev_name(), get_disknum(), get_encnum()));
close();
delete this;
newdev->open(); // TODO: Can possibly pass open fd
return newdev.release();
}
int win_areca_ata_device::arcmsr_do_scsi_io(struct scsi_cmnd_io * iop)
{
int ioctlreturn = 0;
ioctlreturn = scsi_pass_through_direct(get_fh(), 16, iop);
if ( ioctlreturn || iop->scsi_status )
{
ioctlreturn = scsi_pass_through_direct(get_fh(), 127, iop);
if ( ioctlreturn || iop->scsi_status )
{
// errors found
return -1;
}
}
return ioctlreturn;
}
bool win_areca_ata_device::arcmsr_lock()
{
#define SYNCOBJNAME "Global\\SynIoctlMutex"
int ctlrnum = -1;
char mutexstr[64];
if (sscanf(get_dev_name(), "\\\\.\\scsi%d:", &ctlrnum) < 1)
return set_err(EINVAL, "unable to parse device name");
snprintf(mutexstr, sizeof(mutexstr), "%s%d", SYNCOBJNAME, ctlrnum);
m_mutex = CreateMutex(NULL, FALSE, mutexstr);
if ( m_mutex == NULL )
{
return set_err(EIO, "CreateMutex failed");
}
// atomic access to driver
WaitForSingleObject(m_mutex, INFINITE);
return true;
}
bool win_areca_ata_device::arcmsr_unlock()
{
if( m_mutex != NULL)
{
ReleaseMutex(m_mutex);
CloseHandle(m_mutex);
}
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace
/////////////////////////////////////////////////////////////////////////////
// Initialize platform interface and register with smi()
void smart_interface::init()
{
{
// Remove "." from DLL search path if supported
// to prevent DLL preloading attacks
BOOL (WINAPI * SetDllDirectoryA_p)(LPCSTR) = (BOOL (WINAPI *)(LPCSTR))
GetProcAddress(GetModuleHandleA("kernel32.dll"), "SetDllDirectoryA");
if (SetDllDirectoryA_p)
SetDllDirectoryA_p("");
}
static os_win32::win_smart_interface the_win_interface;
smart_interface::set(&the_win_interface);
}
#ifndef __CYGWIN__
// Get exe directory
// (prototype in utiliy.h)
std::string get_exe_dir()
{
char path[MAX_PATH];
// Get path of this exe
if (!GetModuleFileNameA(GetModuleHandleA(0), path, sizeof(path)))
throw std::runtime_error("GetModuleFileName() failed");
// Replace backslash by slash
int sl = -1;
for (int i = 0; path[i]; i++)
if (path[i] == '\\') {
path[i] = '/'; sl = i;
}
// Remove filename
if (sl >= 0)
path[sl] = 0;
return path;
}
#endif
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>