Annotation of embedaddon/sqlite3/doc/lemon.html, revision 1.1

1.1     ! misho       1: <html>
        !             2: <head>
        !             3: <title>The Lemon Parser Generator</title>
        !             4: </head>
        !             5: <body bgcolor=white>
        !             6: <h1 align=center>The Lemon Parser Generator</h1>
        !             7: 
        !             8: <p>Lemon is an LALR(1) parser generator for C or C++.  
        !             9: It does the same job as ``bison'' and ``yacc''.
        !            10: But lemon is not another bison or yacc clone.  It
        !            11: uses a different grammar syntax which is designed to
        !            12: reduce the number of coding errors.  Lemon also uses a more
        !            13: sophisticated parsing engine that is faster than yacc and
        !            14: bison and which is both reentrant and thread-safe.
        !            15: Furthermore, Lemon implements features that can be used
        !            16: to eliminate resource leaks, making is suitable for use
        !            17: in long-running programs such as graphical user interfaces
        !            18: or embedded controllers.</p>
        !            19: 
        !            20: <p>This document is an introduction to the Lemon
        !            21: parser generator.</p>
        !            22: 
        !            23: <h2>Theory of Operation</h2>
        !            24: 
        !            25: <p>The main goal of Lemon is to translate a context free grammar (CFG)
        !            26: for a particular language into C code that implements a parser for
        !            27: that language.
        !            28: The program has two inputs:
        !            29: <ul>
        !            30: <li>The grammar specification.
        !            31: <li>A parser template file.
        !            32: </ul>
        !            33: Typically, only the grammar specification is supplied by the programmer.
        !            34: Lemon comes with a default parser template which works fine for most
        !            35: applications.  But the user is free to substitute a different parser
        !            36: template if desired.</p>
        !            37: 
        !            38: <p>Depending on command-line options, Lemon will generate between
        !            39: one and three files of outputs.
        !            40: <ul>
        !            41: <li>C code to implement the parser.
        !            42: <li>A header file defining an integer ID for each terminal symbol.
        !            43: <li>An information file that describes the states of the generated parser
        !            44:     automaton.
        !            45: </ul>
        !            46: By default, all three of these output files are generated.
        !            47: The header file is suppressed if the ``-m'' command-line option is
        !            48: used and the report file is omitted when ``-q'' is selected.</p>
        !            49: 
        !            50: <p>The grammar specification file uses a ``.y'' suffix, by convention.
        !            51: In the examples used in this document, we'll assume the name of the
        !            52: grammar file is ``gram.y''.  A typical use of Lemon would be the
        !            53: following command:
        !            54: <pre>
        !            55:    lemon gram.y
        !            56: </pre>
        !            57: This command will generate three output files named ``gram.c'',
        !            58: ``gram.h'' and ``gram.out''.
        !            59: The first is C code to implement the parser.  The second
        !            60: is the header file that defines numerical values for all
        !            61: terminal symbols, and the last is the report that explains
        !            62: the states used by the parser automaton.</p>
        !            63: 
        !            64: <h3>Command Line Options</h3>
        !            65: 
        !            66: <p>The behavior of Lemon can be modified using command-line options.
        !            67: You can obtain a list of the available command-line options together
        !            68: with a brief explanation of what each does by typing
        !            69: <pre>
        !            70:    lemon -?
        !            71: </pre>
        !            72: As of this writing, the following command-line options are supported:
        !            73: <ul>
        !            74: <li><tt>-b</tt>
        !            75: <li><tt>-c</tt>
        !            76: <li><tt>-g</tt>
        !            77: <li><tt>-m</tt>
        !            78: <li><tt>-q</tt>
        !            79: <li><tt>-s</tt>
        !            80: <li><tt>-x</tt>
        !            81: </ul>
        !            82: The ``-b'' option reduces the amount of text in the report file by
        !            83: printing only the basis of each parser state, rather than the full
        !            84: configuration.
        !            85: The ``-c'' option suppresses action table compression.  Using -c
        !            86: will make the parser a little larger and slower but it will detect
        !            87: syntax errors sooner.
        !            88: The ``-g'' option causes no output files to be generated at all.
        !            89: Instead, the input grammar file is printed on standard output but
        !            90: with all comments, actions and other extraneous text deleted.  This
        !            91: is a useful way to get a quick summary of a grammar.
        !            92: The ``-m'' option causes the output C source file to be compatible
        !            93: with the ``makeheaders'' program.
        !            94: Makeheaders is a program that automatically generates header files
        !            95: from C source code.  When the ``-m'' option is used, the header
        !            96: file is not output since the makeheaders program will take care
        !            97: of generated all header files automatically.
        !            98: The ``-q'' option suppresses the report file.
        !            99: Using ``-s'' causes a brief summary of parser statistics to be
        !           100: printed.  Like this:
        !           101: <pre>
        !           102:    Parser statistics: 74 terminals, 70 nonterminals, 179 rules
        !           103:                       340 states, 2026 parser table entries, 0 conflicts
        !           104: </pre>
        !           105: Finally, the ``-x'' option causes Lemon to print its version number
        !           106: and then stops without attempting to read the grammar or generate a parser.</p>
        !           107: 
        !           108: <h3>The Parser Interface</h3>
        !           109: 
        !           110: <p>Lemon doesn't generate a complete, working program.  It only generates
        !           111: a few subroutines that implement a parser.  This section describes
        !           112: the interface to those subroutines.  It is up to the programmer to
        !           113: call these subroutines in an appropriate way in order to produce a
        !           114: complete system.</p>
        !           115: 
        !           116: <p>Before a program begins using a Lemon-generated parser, the program
        !           117: must first create the parser.
        !           118: A new parser is created as follows:
        !           119: <pre>
        !           120:    void *pParser = ParseAlloc( malloc );
        !           121: </pre>
        !           122: The ParseAlloc() routine allocates and initializes a new parser and
        !           123: returns a pointer to it.
        !           124: The actual data structure used to represent a parser is opaque --
        !           125: its internal structure is not visible or usable by the calling routine.
        !           126: For this reason, the ParseAlloc() routine returns a pointer to void
        !           127: rather than a pointer to some particular structure.
        !           128: The sole argument to the ParseAlloc() routine is a pointer to the
        !           129: subroutine used to allocate memory.  Typically this means ``malloc()''.</p>
        !           130: 
        !           131: <p>After a program is finished using a parser, it can reclaim all
        !           132: memory allocated by that parser by calling
        !           133: <pre>
        !           134:    ParseFree(pParser, free);
        !           135: </pre>
        !           136: The first argument is the same pointer returned by ParseAlloc().  The
        !           137: second argument is a pointer to the function used to release bulk
        !           138: memory back to the system.</p>
        !           139: 
        !           140: <p>After a parser has been allocated using ParseAlloc(), the programmer
        !           141: must supply the parser with a sequence of tokens (terminal symbols) to
        !           142: be parsed.  This is accomplished by calling the following function
        !           143: once for each token:
        !           144: <pre>
        !           145:    Parse(pParser, hTokenID, sTokenData, pArg);
        !           146: </pre>
        !           147: The first argument to the Parse() routine is the pointer returned by
        !           148: ParseAlloc().
        !           149: The second argument is a small positive integer that tells the parse the
        !           150: type of the next token in the data stream.
        !           151: There is one token type for each terminal symbol in the grammar.
        !           152: The gram.h file generated by Lemon contains #define statements that
        !           153: map symbolic terminal symbol names into appropriate integer values.
        !           154: (A value of 0 for the second argument is a special flag to the
        !           155: parser to indicate that the end of input has been reached.)
        !           156: The third argument is the value of the given token.  By default,
        !           157: the type of the third argument is integer, but the grammar will
        !           158: usually redefine this type to be some kind of structure.
        !           159: Typically the second argument will be a broad category of tokens
        !           160: such as ``identifier'' or ``number'' and the third argument will
        !           161: be the name of the identifier or the value of the number.</p>
        !           162: 
        !           163: <p>The Parse() function may have either three or four arguments,
        !           164: depending on the grammar.  If the grammar specification file request
        !           165: it, the Parse() function will have a fourth parameter that can be
        !           166: of any type chosen by the programmer.  The parser doesn't do anything
        !           167: with this argument except to pass it through to action routines.
        !           168: This is a convenient mechanism for passing state information down
        !           169: to the action routines without having to use global variables.</p>
        !           170: 
        !           171: <p>A typical use of a Lemon parser might look something like the
        !           172: following:
        !           173: <pre>
        !           174:    01 ParseTree *ParseFile(const char *zFilename){
        !           175:    02    Tokenizer *pTokenizer;
        !           176:    03    void *pParser;
        !           177:    04    Token sToken;
        !           178:    05    int hTokenId;
        !           179:    06    ParserState sState;
        !           180:    07
        !           181:    08    pTokenizer = TokenizerCreate(zFilename);
        !           182:    09    pParser = ParseAlloc( malloc );
        !           183:    10    InitParserState(&sState);
        !           184:    11    while( GetNextToken(pTokenizer, &hTokenId, &sToken) ){
        !           185:    12       Parse(pParser, hTokenId, sToken, &sState);
        !           186:    13    }
        !           187:    14    Parse(pParser, 0, sToken, &sState);
        !           188:    15    ParseFree(pParser, free );
        !           189:    16    TokenizerFree(pTokenizer);
        !           190:    17    return sState.treeRoot;
        !           191:    18 }
        !           192: </pre>
        !           193: This example shows a user-written routine that parses a file of
        !           194: text and returns a pointer to the parse tree.
        !           195: (We've omitted all error-handling from this example to keep it
        !           196: simple.)
        !           197: We assume the existence of some kind of tokenizer which is created
        !           198: using TokenizerCreate() on line 8 and deleted by TokenizerFree()
        !           199: on line 16.  The GetNextToken() function on line 11 retrieves the
        !           200: next token from the input file and puts its type in the 
        !           201: integer variable hTokenId.  The sToken variable is assumed to be
        !           202: some kind of structure that contains details about each token,
        !           203: such as its complete text, what line it occurs on, etc. </p>
        !           204: 
        !           205: <p>This example also assumes the existence of structure of type
        !           206: ParserState that holds state information about a particular parse.
        !           207: An instance of such a structure is created on line 6 and initialized
        !           208: on line 10.  A pointer to this structure is passed into the Parse()
        !           209: routine as the optional 4th argument.
        !           210: The action routine specified by the grammar for the parser can use
        !           211: the ParserState structure to hold whatever information is useful and
        !           212: appropriate.  In the example, we note that the treeRoot field of
        !           213: the ParserState structure is left pointing to the root of the parse
        !           214: tree.</p>
        !           215: 
        !           216: <p>The core of this example as it relates to Lemon is as follows:
        !           217: <pre>
        !           218:    ParseFile(){
        !           219:       pParser = ParseAlloc( malloc );
        !           220:       while( GetNextToken(pTokenizer,&hTokenId, &sToken) ){
        !           221:          Parse(pParser, hTokenId, sToken);
        !           222:       }
        !           223:       Parse(pParser, 0, sToken);
        !           224:       ParseFree(pParser, free );
        !           225:    }
        !           226: </pre>
        !           227: Basically, what a program has to do to use a Lemon-generated parser
        !           228: is first create the parser, then send it lots of tokens obtained by
        !           229: tokenizing an input source.  When the end of input is reached, the
        !           230: Parse() routine should be called one last time with a token type
        !           231: of 0.  This step is necessary to inform the parser that the end of
        !           232: input has been reached.  Finally, we reclaim memory used by the
        !           233: parser by calling ParseFree().</p>
        !           234: 
        !           235: <p>There is one other interface routine that should be mentioned
        !           236: before we move on.
        !           237: The ParseTrace() function can be used to generate debugging output
        !           238: from the parser.  A prototype for this routine is as follows:
        !           239: <pre>
        !           240:    ParseTrace(FILE *stream, char *zPrefix);
        !           241: </pre>
        !           242: After this routine is called, a short (one-line) message is written
        !           243: to the designated output stream every time the parser changes states
        !           244: or calls an action routine.  Each such message is prefaced using
        !           245: the text given by zPrefix.  This debugging output can be turned off
        !           246: by calling ParseTrace() again with a first argument of NULL (0).</p>
        !           247: 
        !           248: <h3>Differences With YACC and BISON</h3>
        !           249: 
        !           250: <p>Programmers who have previously used the yacc or bison parser
        !           251: generator will notice several important differences between yacc and/or
        !           252: bison and Lemon.
        !           253: <ul>
        !           254: <li>In yacc and bison, the parser calls the tokenizer.  In Lemon,
        !           255:     the tokenizer calls the parser.
        !           256: <li>Lemon uses no global variables.  Yacc and bison use global variables
        !           257:     to pass information between the tokenizer and parser.
        !           258: <li>Lemon allows multiple parsers to be running simultaneously.  Yacc
        !           259:     and bison do not.
        !           260: </ul>
        !           261: These differences may cause some initial confusion for programmers
        !           262: with prior yacc and bison experience.
        !           263: But after years of experience using Lemon, I firmly
        !           264: believe that the Lemon way of doing things is better.</p>
        !           265: 
        !           266: <h2>Input File Syntax</h2>
        !           267: 
        !           268: <p>The main purpose of the grammar specification file for Lemon is
        !           269: to define the grammar for the parser.  But the input file also
        !           270: specifies additional information Lemon requires to do its job.
        !           271: Most of the work in using Lemon is in writing an appropriate
        !           272: grammar file.</p>
        !           273: 
        !           274: <p>The grammar file for lemon is, for the most part, free format.
        !           275: It does not have sections or divisions like yacc or bison.  Any
        !           276: declaration can occur at any point in the file.
        !           277: Lemon ignores whitespace (except where it is needed to separate
        !           278: tokens) and it honors the same commenting conventions as C and C++.</p>
        !           279: 
        !           280: <h3>Terminals and Nonterminals</h3>
        !           281: 
        !           282: <p>A terminal symbol (token) is any string of alphanumeric
        !           283: and underscore characters
        !           284: that begins with an upper case letter.
        !           285: A terminal can contain lowercase letters after the first character,
        !           286: but the usual convention is to make terminals all upper case.
        !           287: A nonterminal, on the other hand, is any string of alphanumeric
        !           288: and underscore characters than begins with a lower case letter.
        !           289: Again, the usual convention is to make nonterminals use all lower
        !           290: case letters.</p>
        !           291: 
        !           292: <p>In Lemon, terminal and nonterminal symbols do not need to 
        !           293: be declared or identified in a separate section of the grammar file.
        !           294: Lemon is able to generate a list of all terminals and nonterminals
        !           295: by examining the grammar rules, and it can always distinguish a
        !           296: terminal from a nonterminal by checking the case of the first
        !           297: character of the name.</p>
        !           298: 
        !           299: <p>Yacc and bison allow terminal symbols to have either alphanumeric
        !           300: names or to be individual characters included in single quotes, like
        !           301: this: ')' or '$'.  Lemon does not allow this alternative form for
        !           302: terminal symbols.  With Lemon, all symbols, terminals and nonterminals,
        !           303: must have alphanumeric names.</p>
        !           304: 
        !           305: <h3>Grammar Rules</h3>
        !           306: 
        !           307: <p>The main component of a Lemon grammar file is a sequence of grammar
        !           308: rules.
        !           309: Each grammar rule consists of a nonterminal symbol followed by
        !           310: the special symbol ``::='' and then a list of terminals and/or nonterminals.
        !           311: The rule is terminated by a period.
        !           312: The list of terminals and nonterminals on the right-hand side of the
        !           313: rule can be empty.
        !           314: Rules can occur in any order, except that the left-hand side of the
        !           315: first rule is assumed to be the start symbol for the grammar (unless
        !           316: specified otherwise using the <tt>%start</tt> directive described below.)
        !           317: A typical sequence of grammar rules might look something like this:
        !           318: <pre>
        !           319:   expr ::= expr PLUS expr.
        !           320:   expr ::= expr TIMES expr.
        !           321:   expr ::= LPAREN expr RPAREN.
        !           322:   expr ::= VALUE.
        !           323: </pre>
        !           324: </p>
        !           325: 
        !           326: <p>There is one non-terminal in this example, ``expr'', and five
        !           327: terminal symbols or tokens: ``PLUS'', ``TIMES'', ``LPAREN'',
        !           328: ``RPAREN'' and ``VALUE''.</p>
        !           329: 
        !           330: <p>Like yacc and bison, Lemon allows the grammar to specify a block
        !           331: of C code that will be executed whenever a grammar rule is reduced
        !           332: by the parser.
        !           333: In Lemon, this action is specified by putting the C code (contained
        !           334: within curly braces <tt>{...}</tt>) immediately after the
        !           335: period that closes the rule.
        !           336: For example:
        !           337: <pre>
        !           338:   expr ::= expr PLUS expr.   { printf("Doing an addition...\n"); }
        !           339: </pre>
        !           340: </p>
        !           341: 
        !           342: <p>In order to be useful, grammar actions must normally be linked to
        !           343: their associated grammar rules.
        !           344: In yacc and bison, this is accomplished by embedding a ``$$'' in the
        !           345: action to stand for the value of the left-hand side of the rule and
        !           346: symbols ``$1'', ``$2'', and so forth to stand for the value of
        !           347: the terminal or nonterminal at position 1, 2 and so forth on the
        !           348: right-hand side of the rule.
        !           349: This idea is very powerful, but it is also very error-prone.  The
        !           350: single most common source of errors in a yacc or bison grammar is
        !           351: to miscount the number of symbols on the right-hand side of a grammar
        !           352: rule and say ``$7'' when you really mean ``$8''.</p>
        !           353: 
        !           354: <p>Lemon avoids the need to count grammar symbols by assigning symbolic
        !           355: names to each symbol in a grammar rule and then using those symbolic
        !           356: names in the action.
        !           357: In yacc or bison, one would write this:
        !           358: <pre>
        !           359:   expr -> expr PLUS expr  { $$ = $1 + $3; };
        !           360: </pre>
        !           361: But in Lemon, the same rule becomes the following:
        !           362: <pre>
        !           363:   expr(A) ::= expr(B) PLUS expr(C).  { A = B+C; }
        !           364: </pre>
        !           365: In the Lemon rule, any symbol in parentheses after a grammar rule
        !           366: symbol becomes a place holder for that symbol in the grammar rule.
        !           367: This place holder can then be used in the associated C action to
        !           368: stand for the value of that symbol.<p>
        !           369: 
        !           370: <p>The Lemon notation for linking a grammar rule with its reduce
        !           371: action is superior to yacc/bison on several counts.
        !           372: First, as mentioned above, the Lemon method avoids the need to
        !           373: count grammar symbols.
        !           374: Secondly, if a terminal or nonterminal in a Lemon grammar rule
        !           375: includes a linking symbol in parentheses but that linking symbol
        !           376: is not actually used in the reduce action, then an error message
        !           377: is generated.
        !           378: For example, the rule
        !           379: <pre>
        !           380:   expr(A) ::= expr(B) PLUS expr(C).  { A = B; }
        !           381: </pre>
        !           382: will generate an error because the linking symbol ``C'' is used
        !           383: in the grammar rule but not in the reduce action.</p>
        !           384: 
        !           385: <p>The Lemon notation for linking grammar rules to reduce actions
        !           386: also facilitates the use of destructors for reclaiming memory
        !           387: allocated by the values of terminals and nonterminals on the
        !           388: right-hand side of a rule.</p>
        !           389: 
        !           390: <h3>Precedence Rules</h3>
        !           391: 
        !           392: <p>Lemon resolves parsing ambiguities in exactly the same way as
        !           393: yacc and bison.  A shift-reduce conflict is resolved in favor
        !           394: of the shift, and a reduce-reduce conflict is resolved by reducing
        !           395: whichever rule comes first in the grammar file.</p>
        !           396: 
        !           397: <p>Just like in
        !           398: yacc and bison, Lemon allows a measure of control 
        !           399: over the resolution of paring conflicts using precedence rules.
        !           400: A precedence value can be assigned to any terminal symbol
        !           401: using the %left, %right or %nonassoc directives.  Terminal symbols
        !           402: mentioned in earlier directives have a lower precedence that
        !           403: terminal symbols mentioned in later directives.  For example:</p>
        !           404: 
        !           405: <p><pre>
        !           406:    %left AND.
        !           407:    %left OR.
        !           408:    %nonassoc EQ NE GT GE LT LE.
        !           409:    %left PLUS MINUS.
        !           410:    %left TIMES DIVIDE MOD.
        !           411:    %right EXP NOT.
        !           412: </pre></p>
        !           413: 
        !           414: <p>In the preceding sequence of directives, the AND operator is
        !           415: defined to have the lowest precedence.  The OR operator is one
        !           416: precedence level higher.  And so forth.  Hence, the grammar would
        !           417: attempt to group the ambiguous expression
        !           418: <pre>
        !           419:      a AND b OR c
        !           420: </pre>
        !           421: like this
        !           422: <pre>
        !           423:      a AND (b OR c).
        !           424: </pre>
        !           425: The associativity (left, right or nonassoc) is used to determine
        !           426: the grouping when the precedence is the same.  AND is left-associative
        !           427: in our example, so
        !           428: <pre>
        !           429:      a AND b AND c
        !           430: </pre>
        !           431: is parsed like this
        !           432: <pre>
        !           433:      (a AND b) AND c.
        !           434: </pre>
        !           435: The EXP operator is right-associative, though, so
        !           436: <pre>
        !           437:      a EXP b EXP c
        !           438: </pre>
        !           439: is parsed like this
        !           440: <pre>
        !           441:      a EXP (b EXP c).
        !           442: </pre>
        !           443: The nonassoc precedence is used for non-associative operators.
        !           444: So
        !           445: <pre>
        !           446:      a EQ b EQ c
        !           447: </pre>
        !           448: is an error.</p>
        !           449: 
        !           450: <p>The precedence of non-terminals is transferred to rules as follows:
        !           451: The precedence of a grammar rule is equal to the precedence of the
        !           452: left-most terminal symbol in the rule for which a precedence is
        !           453: defined.  This is normally what you want, but in those cases where
        !           454: you want to precedence of a grammar rule to be something different,
        !           455: you can specify an alternative precedence symbol by putting the
        !           456: symbol in square braces after the period at the end of the rule and
        !           457: before any C-code.  For example:</p>
        !           458: 
        !           459: <p><pre>
        !           460:    expr = MINUS expr.  [NOT]
        !           461: </pre></p>
        !           462: 
        !           463: <p>This rule has a precedence equal to that of the NOT symbol, not the
        !           464: MINUS symbol as would have been the case by default.</p>
        !           465: 
        !           466: <p>With the knowledge of how precedence is assigned to terminal
        !           467: symbols and individual
        !           468: grammar rules, we can now explain precisely how parsing conflicts
        !           469: are resolved in Lemon.  Shift-reduce conflicts are resolved
        !           470: as follows:
        !           471: <ul>
        !           472: <li> If either the token to be shifted or the rule to be reduced
        !           473:      lacks precedence information, then resolve in favor of the
        !           474:      shift, but report a parsing conflict.
        !           475: <li> If the precedence of the token to be shifted is greater than
        !           476:      the precedence of the rule to reduce, then resolve in favor
        !           477:      of the shift.  No parsing conflict is reported.
        !           478: <li> If the precedence of the token it be shifted is less than the
        !           479:      precedence of the rule to reduce, then resolve in favor of the
        !           480:      reduce action.  No parsing conflict is reported.
        !           481: <li> If the precedences are the same and the shift token is
        !           482:      right-associative, then resolve in favor of the shift.
        !           483:      No parsing conflict is reported.
        !           484: <li> If the precedences are the same the the shift token is
        !           485:      left-associative, then resolve in favor of the reduce.
        !           486:      No parsing conflict is reported.
        !           487: <li> Otherwise, resolve the conflict by doing the shift and
        !           488:      report the parsing conflict.
        !           489: </ul>
        !           490: Reduce-reduce conflicts are resolved this way:
        !           491: <ul>
        !           492: <li> If either reduce rule 
        !           493:      lacks precedence information, then resolve in favor of the
        !           494:      rule that appears first in the grammar and report a parsing
        !           495:      conflict.
        !           496: <li> If both rules have precedence and the precedence is different
        !           497:      then resolve the dispute in favor of the rule with the highest
        !           498:      precedence and do not report a conflict.
        !           499: <li> Otherwise, resolve the conflict by reducing by the rule that
        !           500:      appears first in the grammar and report a parsing conflict.
        !           501: </ul>
        !           502: 
        !           503: <h3>Special Directives</h3>
        !           504: 
        !           505: <p>The input grammar to Lemon consists of grammar rules and special
        !           506: directives.  We've described all the grammar rules, so now we'll
        !           507: talk about the special directives.</p>
        !           508: 
        !           509: <p>Directives in lemon can occur in any order.  You can put them before
        !           510: the grammar rules, or after the grammar rules, or in the mist of the
        !           511: grammar rules.  It doesn't matter.  The relative order of
        !           512: directives used to assign precedence to terminals is important, but
        !           513: other than that, the order of directives in Lemon is arbitrary.</p>
        !           514: 
        !           515: <p>Lemon supports the following special directives:
        !           516: <ul>
        !           517: <li><tt>%code</tt>
        !           518: <li><tt>%default_destructor</tt>
        !           519: <li><tt>%default_type</tt>
        !           520: <li><tt>%destructor</tt>
        !           521: <li><tt>%extra_argument</tt>
        !           522: <li><tt>%include</tt>
        !           523: <li><tt>%left</tt>
        !           524: <li><tt>%name</tt>
        !           525: <li><tt>%nonassoc</tt>
        !           526: <li><tt>%parse_accept</tt>
        !           527: <li><tt>%parse_failure </tt>
        !           528: <li><tt>%right</tt>
        !           529: <li><tt>%stack_overflow</tt>
        !           530: <li><tt>%stack_size</tt>
        !           531: <li><tt>%start_symbol</tt>
        !           532: <li><tt>%syntax_error</tt>
        !           533: <li><tt>%token_destructor</tt>
        !           534: <li><tt>%token_prefix</tt>
        !           535: <li><tt>%token_type</tt>
        !           536: <li><tt>%type</tt>
        !           537: </ul>
        !           538: Each of these directives will be described separately in the
        !           539: following sections:</p>
        !           540: 
        !           541: <h4>The <tt>%code</tt> directive</h4>
        !           542: 
        !           543: <p>The %code directive is used to specify addition C/C++ code that
        !           544: is added to the end of the main output file.  This is similar to
        !           545: the %include directive except that %include is inserted at the
        !           546: beginning of the main output file.</p>
        !           547: 
        !           548: <p>%code is typically used to include some action routines or perhaps
        !           549: a tokenizer as part of the output file.</p>
        !           550: 
        !           551: <h4>The <tt>%default_destructor</tt> directive</h4>
        !           552: 
        !           553: <p>The %default_destructor directive specifies a destructor to 
        !           554: use for non-terminals that do not have their own destructor
        !           555: specified by a separate %destructor directive.  See the documentation
        !           556: on the %destructor directive below for additional information.</p>
        !           557: 
        !           558: <p>In some grammers, many different non-terminal symbols have the
        !           559: same datatype and hence the same destructor.  This directive is
        !           560: a convenience way to specify the same destructor for all those
        !           561: non-terminals using a single statement.</p>
        !           562: 
        !           563: <h4>The <tt>%default_type</tt> directive</h4>
        !           564: 
        !           565: <p>The %default_type directive specifies the datatype of non-terminal
        !           566: symbols that do no have their own datatype defined using a separate
        !           567: %type directive.  See the documentation on %type below for addition
        !           568: information.</p>
        !           569: 
        !           570: <h4>The <tt>%destructor</tt> directive</h4>
        !           571: 
        !           572: <p>The %destructor directive is used to specify a destructor for
        !           573: a non-terminal symbol.
        !           574: (See also the %token_destructor directive which is used to
        !           575: specify a destructor for terminal symbols.)</p>
        !           576: 
        !           577: <p>A non-terminal's destructor is called to dispose of the
        !           578: non-terminal's value whenever the non-terminal is popped from
        !           579: the stack.  This includes all of the following circumstances:
        !           580: <ul>
        !           581: <li> When a rule reduces and the value of a non-terminal on
        !           582:      the right-hand side is not linked to C code.
        !           583: <li> When the stack is popped during error processing.
        !           584: <li> When the ParseFree() function runs.
        !           585: </ul>
        !           586: The destructor can do whatever it wants with the value of
        !           587: the non-terminal, but its design is to deallocate memory
        !           588: or other resources held by that non-terminal.</p>
        !           589: 
        !           590: <p>Consider an example:
        !           591: <pre>
        !           592:    %type nt {void*}
        !           593:    %destructor nt { free($$); }
        !           594:    nt(A) ::= ID NUM.   { A = malloc( 100 ); }
        !           595: </pre>
        !           596: This example is a bit contrived but it serves to illustrate how
        !           597: destructors work.  The example shows a non-terminal named
        !           598: ``nt'' that holds values of type ``void*''.  When the rule for
        !           599: an ``nt'' reduces, it sets the value of the non-terminal to
        !           600: space obtained from malloc().  Later, when the nt non-terminal
        !           601: is popped from the stack, the destructor will fire and call
        !           602: free() on this malloced space, thus avoiding a memory leak.
        !           603: (Note that the symbol ``$$'' in the destructor code is replaced
        !           604: by the value of the non-terminal.)</p>
        !           605: 
        !           606: <p>It is important to note that the value of a non-terminal is passed
        !           607: to the destructor whenever the non-terminal is removed from the
        !           608: stack, unless the non-terminal is used in a C-code action.  If
        !           609: the non-terminal is used by C-code, then it is assumed that the
        !           610: C-code will take care of destroying it if it should really
        !           611: be destroyed.  More commonly, the value is used to build some
        !           612: larger structure and we don't want to destroy it, which is why
        !           613: the destructor is not called in this circumstance.</p>
        !           614: 
        !           615: <p>By appropriate use of destructors, it is possible to
        !           616: build a parser using Lemon that can be used within a long-running
        !           617: program, such as a GUI, that will not leak memory or other resources.
        !           618: To do the same using yacc or bison is much more difficult.</p>
        !           619: 
        !           620: <h4>The <tt>%extra_argument</tt> directive</h4>
        !           621: 
        !           622: The %extra_argument directive instructs Lemon to add a 4th parameter
        !           623: to the parameter list of the Parse() function it generates.  Lemon
        !           624: doesn't do anything itself with this extra argument, but it does
        !           625: make the argument available to C-code action routines, destructors,
        !           626: and so forth.  For example, if the grammar file contains:</p>
        !           627: 
        !           628: <p><pre>
        !           629:     %extra_argument { MyStruct *pAbc }
        !           630: </pre></p>
        !           631: 
        !           632: <p>Then the Parse() function generated will have an 4th parameter
        !           633: of type ``MyStruct*'' and all action routines will have access to
        !           634: a variable named ``pAbc'' that is the value of the 4th parameter
        !           635: in the most recent call to Parse().</p>
        !           636: 
        !           637: <h4>The <tt>%include</tt> directive</h4>
        !           638: 
        !           639: <p>The %include directive specifies C code that is included at the
        !           640: top of the generated parser.  You can include any text you want --
        !           641: the Lemon parser generator copies it blindly.  If you have multiple
        !           642: %include directives in your grammar file the value of the last
        !           643: %include directive overwrites all the others.</p.
        !           644: 
        !           645: <p>The %include directive is very handy for getting some extra #include
        !           646: preprocessor statements at the beginning of the generated parser.
        !           647: For example:</p>
        !           648: 
        !           649: <p><pre>
        !           650:    %include {#include &lt;unistd.h&gt;}
        !           651: </pre></p>
        !           652: 
        !           653: <p>This might be needed, for example, if some of the C actions in the
        !           654: grammar call functions that are prototyed in unistd.h.</p>
        !           655: 
        !           656: <h4>The <tt>%left</tt> directive</h4>
        !           657: 
        !           658: The %left directive is used (along with the %right and
        !           659: %nonassoc directives) to declare precedences of terminal
        !           660: symbols.  Every terminal symbol whose name appears after
        !           661: a %left directive but before the next period (``.'') is
        !           662: given the same left-associative precedence value.  Subsequent
        !           663: %left directives have higher precedence.  For example:</p>
        !           664: 
        !           665: <p><pre>
        !           666:    %left AND.
        !           667:    %left OR.
        !           668:    %nonassoc EQ NE GT GE LT LE.
        !           669:    %left PLUS MINUS.
        !           670:    %left TIMES DIVIDE MOD.
        !           671:    %right EXP NOT.
        !           672: </pre></p>
        !           673: 
        !           674: <p>Note the period that terminates each %left, %right or %nonassoc
        !           675: directive.</p>
        !           676: 
        !           677: <p>LALR(1) grammars can get into a situation where they require
        !           678: a large amount of stack space if you make heavy use or right-associative
        !           679: operators.  For this reason, it is recommended that you use %left
        !           680: rather than %right whenever possible.</p>
        !           681: 
        !           682: <h4>The <tt>%name</tt> directive</h4>
        !           683: 
        !           684: <p>By default, the functions generated by Lemon all begin with the
        !           685: five-character string ``Parse''.  You can change this string to something
        !           686: different using the %name directive.  For instance:</p>
        !           687: 
        !           688: <p><pre>
        !           689:    %name Abcde
        !           690: </pre></p>
        !           691: 
        !           692: <p>Putting this directive in the grammar file will cause Lemon to generate
        !           693: functions named
        !           694: <ul>
        !           695: <li> AbcdeAlloc(),
        !           696: <li> AbcdeFree(),
        !           697: <li> AbcdeTrace(), and
        !           698: <li> Abcde().
        !           699: </ul>
        !           700: The %name directive allows you to generator two or more different
        !           701: parsers and link them all into the same executable.
        !           702: </p>
        !           703: 
        !           704: <h4>The <tt>%nonassoc</tt> directive</h4>
        !           705: 
        !           706: <p>This directive is used to assign non-associative precedence to
        !           707: one or more terminal symbols.  See the section on precedence rules
        !           708: or on the %left directive for additional information.</p>
        !           709: 
        !           710: <h4>The <tt>%parse_accept</tt> directive</h4>
        !           711: 
        !           712: <p>The %parse_accept directive specifies a block of C code that is
        !           713: executed whenever the parser accepts its input string.  To ``accept''
        !           714: an input string means that the parser was able to process all tokens
        !           715: without error.</p>
        !           716: 
        !           717: <p>For example:</p>
        !           718: 
        !           719: <p><pre>
        !           720:    %parse_accept {
        !           721:       printf("parsing complete!\n");
        !           722:    }
        !           723: </pre></p>
        !           724: 
        !           725: 
        !           726: <h4>The <tt>%parse_failure</tt> directive</h4>
        !           727: 
        !           728: <p>The %parse_failure directive specifies a block of C code that
        !           729: is executed whenever the parser fails complete.  This code is not
        !           730: executed until the parser has tried and failed to resolve an input
        !           731: error using is usual error recovery strategy.  The routine is
        !           732: only invoked when parsing is unable to continue.</p>
        !           733: 
        !           734: <p><pre>
        !           735:    %parse_failure {
        !           736:      fprintf(stderr,"Giving up.  Parser is hopelessly lost...\n");
        !           737:    }
        !           738: </pre></p>
        !           739: 
        !           740: <h4>The <tt>%right</tt> directive</h4>
        !           741: 
        !           742: <p>This directive is used to assign right-associative precedence to
        !           743: one or more terminal symbols.  See the section on precedence rules
        !           744: or on the %left directive for additional information.</p>
        !           745: 
        !           746: <h4>The <tt>%stack_overflow</tt> directive</h4>
        !           747: 
        !           748: <p>The %stack_overflow directive specifies a block of C code that
        !           749: is executed if the parser's internal stack ever overflows.  Typically
        !           750: this just prints an error message.  After a stack overflow, the parser
        !           751: will be unable to continue and must be reset.</p>
        !           752: 
        !           753: <p><pre>
        !           754:    %stack_overflow {
        !           755:      fprintf(stderr,"Giving up.  Parser stack overflow\n");
        !           756:    }
        !           757: </pre></p>
        !           758: 
        !           759: <p>You can help prevent parser stack overflows by avoiding the use
        !           760: of right recursion and right-precedence operators in your grammar.
        !           761: Use left recursion and and left-precedence operators instead, to
        !           762: encourage rules to reduce sooner and keep the stack size down.
        !           763: For example, do rules like this:
        !           764: <pre>
        !           765:    list ::= list element.      // left-recursion.  Good!
        !           766:    list ::= .
        !           767: </pre>
        !           768: Not like this:
        !           769: <pre>
        !           770:    list ::= element list.      // right-recursion.  Bad!
        !           771:    list ::= .
        !           772: </pre>
        !           773: 
        !           774: <h4>The <tt>%stack_size</tt> directive</h4>
        !           775: 
        !           776: <p>If stack overflow is a problem and you can't resolve the trouble
        !           777: by using left-recursion, then you might want to increase the size
        !           778: of the parser's stack using this directive.  Put an positive integer
        !           779: after the %stack_size directive and Lemon will generate a parse
        !           780: with a stack of the requested size.  The default value is 100.</p>
        !           781: 
        !           782: <p><pre>
        !           783:    %stack_size 2000
        !           784: </pre></p>
        !           785: 
        !           786: <h4>The <tt>%start_symbol</tt> directive</h4>
        !           787: 
        !           788: <p>By default, the start-symbol for the grammar that Lemon generates
        !           789: is the first non-terminal that appears in the grammar file.  But you
        !           790: can choose a different start-symbol using the %start_symbol directive.</p>
        !           791: 
        !           792: <p><pre>
        !           793:    %start_symbol  prog
        !           794: </pre></p>
        !           795: 
        !           796: <h4>The <tt>%token_destructor</tt> directive</h4>
        !           797: 
        !           798: <p>The %destructor directive assigns a destructor to a non-terminal
        !           799: symbol.  (See the description of the %destructor directive above.)
        !           800: This directive does the same thing for all terminal symbols.</p>
        !           801: 
        !           802: <p>Unlike non-terminal symbols which may each have a different data type
        !           803: for their values, terminals all use the same data type (defined by
        !           804: the %token_type directive) and so they use a common destructor.  Other
        !           805: than that, the token destructor works just like the non-terminal
        !           806: destructors.</p>
        !           807: 
        !           808: <h4>The <tt>%token_prefix</tt> directive</h4>
        !           809: 
        !           810: <p>Lemon generates #defines that assign small integer constants
        !           811: to each terminal symbol in the grammar.  If desired, Lemon will
        !           812: add a prefix specified by this directive
        !           813: to each of the #defines it generates.
        !           814: So if the default output of Lemon looked like this:
        !           815: <pre>
        !           816:     #define AND              1
        !           817:     #define MINUS            2
        !           818:     #define OR               3
        !           819:     #define PLUS             4
        !           820: </pre>
        !           821: You can insert a statement into the grammar like this:
        !           822: <pre>
        !           823:     %token_prefix    TOKEN_
        !           824: </pre>
        !           825: to cause Lemon to produce these symbols instead:
        !           826: <pre>
        !           827:     #define TOKEN_AND        1
        !           828:     #define TOKEN_MINUS      2
        !           829:     #define TOKEN_OR         3
        !           830:     #define TOKEN_PLUS       4
        !           831: </pre>
        !           832: 
        !           833: <h4>The <tt>%token_type</tt> and <tt>%type</tt> directives</h4>
        !           834: 
        !           835: <p>These directives are used to specify the data types for values
        !           836: on the parser's stack associated with terminal and non-terminal
        !           837: symbols.  The values of all terminal symbols must be of the same
        !           838: type.  This turns out to be the same data type as the 3rd parameter
        !           839: to the Parse() function generated by Lemon.  Typically, you will
        !           840: make the value of a terminal symbol by a pointer to some kind of
        !           841: token structure.  Like this:</p>
        !           842: 
        !           843: <p><pre>
        !           844:    %token_type    {Token*}
        !           845: </pre></p>
        !           846: 
        !           847: <p>If the data type of terminals is not specified, the default value
        !           848: is ``int''.</p>
        !           849: 
        !           850: <p>Non-terminal symbols can each have their own data types.  Typically
        !           851: the data type  of a non-terminal is a pointer to the root of a parse-tree
        !           852: structure that contains all information about that non-terminal.
        !           853: For example:</p>
        !           854: 
        !           855: <p><pre>
        !           856:    %type   expr  {Expr*}
        !           857: </pre></p>
        !           858: 
        !           859: <p>Each entry on the parser's stack is actually a union containing
        !           860: instances of all data types for every non-terminal and terminal symbol.
        !           861: Lemon will automatically use the correct element of this union depending
        !           862: on what the corresponding non-terminal or terminal symbol is.  But
        !           863: the grammar designer should keep in mind that the size of the union
        !           864: will be the size of its largest element.  So if you have a single
        !           865: non-terminal whose data type requires 1K of storage, then your 100
        !           866: entry parser stack will require 100K of heap space.  If you are willing
        !           867: and able to pay that price, fine.  You just need to know.</p>
        !           868: 
        !           869: <h3>Error Processing</h3>
        !           870: 
        !           871: <p>After extensive experimentation over several years, it has been
        !           872: discovered that the error recovery strategy used by yacc is about
        !           873: as good as it gets.  And so that is what Lemon uses.</p>
        !           874: 
        !           875: <p>When a Lemon-generated parser encounters a syntax error, it
        !           876: first invokes the code specified by the %syntax_error directive, if
        !           877: any.  It then enters its error recovery strategy.  The error recovery
        !           878: strategy is to begin popping the parsers stack until it enters a
        !           879: state where it is permitted to shift a special non-terminal symbol
        !           880: named ``error''.  It then shifts this non-terminal and continues
        !           881: parsing.  But the %syntax_error routine will not be called again
        !           882: until at least three new tokens have been successfully shifted.</p>
        !           883: 
        !           884: <p>If the parser pops its stack until the stack is empty, and it still
        !           885: is unable to shift the error symbol, then the %parse_failed routine
        !           886: is invoked and the parser resets itself to its start state, ready
        !           887: to begin parsing a new file.  This is what will happen at the very
        !           888: first syntax error, of course, if there are no instances of the 
        !           889: ``error'' non-terminal in your grammar.</p>
        !           890: 
        !           891: </body>
        !           892: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>