File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / ext / async / sqlite3async.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 10 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2005 December 14
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: **
   13: ** $Id: sqlite3async.c,v 1.1.1.1 2012/02/21 17:04:17 misho Exp $
   14: **
   15: ** This file contains the implementation of an asynchronous IO backend 
   16: ** for SQLite.
   17: */
   18: 
   19: #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO)
   20: 
   21: #include "sqlite3async.h"
   22: #include "sqlite3.h"
   23: #include <stdarg.h>
   24: #include <string.h>
   25: #include <assert.h>
   26: 
   27: /* Useful macros used in several places */
   28: #define MIN(x,y) ((x)<(y)?(x):(y))
   29: #define MAX(x,y) ((x)>(y)?(x):(y))
   30: 
   31: #ifndef SQLITE_AMALGAMATION
   32: /* Macro to mark parameters as unused and silence compiler warnings. */
   33: #define UNUSED_PARAMETER(x) (void)(x)
   34: #endif
   35: 
   36: /* Forward references */
   37: typedef struct AsyncWrite AsyncWrite;
   38: typedef struct AsyncFile AsyncFile;
   39: typedef struct AsyncFileData AsyncFileData;
   40: typedef struct AsyncFileLock AsyncFileLock;
   41: typedef struct AsyncLock AsyncLock;
   42: 
   43: /* Enable for debugging */
   44: #ifndef NDEBUG
   45: #include <stdio.h>
   46: static int sqlite3async_trace = 0;
   47: # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
   48: static void asyncTrace(const char *zFormat, ...){
   49:   char *z;
   50:   va_list ap;
   51:   va_start(ap, zFormat);
   52:   z = sqlite3_vmprintf(zFormat, ap);
   53:   va_end(ap);
   54:   fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z);
   55:   sqlite3_free(z);
   56: }
   57: #else
   58: # define ASYNC_TRACE(X)
   59: #endif
   60: 
   61: /*
   62: ** THREAD SAFETY NOTES
   63: **
   64: ** Basic rules:
   65: **
   66: **     * Both read and write access to the global write-op queue must be 
   67: **       protected by the async.queueMutex. As are the async.ioError and
   68: **       async.nFile variables.
   69: **
   70: **     * The async.pLock list and all AsyncLock and AsyncFileLock
   71: **       structures must be protected by the async.lockMutex mutex.
   72: **
   73: **     * The file handles from the underlying system are not assumed to 
   74: **       be thread safe.
   75: **
   76: **     * See the last two paragraphs under "The Writer Thread" for
   77: **       an assumption to do with file-handle synchronization by the Os.
   78: **
   79: ** Deadlock prevention:
   80: **
   81: **     There are three mutex used by the system: the "writer" mutex, 
   82: **     the "queue" mutex and the "lock" mutex. Rules are:
   83: **
   84: **     * It is illegal to block on the writer mutex when any other mutex
   85: **       are held, and 
   86: **
   87: **     * It is illegal to block on the queue mutex when the lock mutex
   88: **       is held.
   89: **
   90: **     i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
   91: **
   92: ** File system operations (invoked by SQLite thread):
   93: **
   94: **     xOpen
   95: **     xDelete
   96: **     xFileExists
   97: **
   98: ** File handle operations (invoked by SQLite thread):
   99: **
  100: **         asyncWrite, asyncClose, asyncTruncate, asyncSync 
  101: **    
  102: **     The operations above add an entry to the global write-op list. They
  103: **     prepare the entry, acquire the async.queueMutex momentarily while
  104: **     list pointers are  manipulated to insert the new entry, then release
  105: **     the mutex and signal the writer thread to wake up in case it happens
  106: **     to be asleep.
  107: **
  108: **    
  109: **         asyncRead, asyncFileSize.
  110: **
  111: **     Read operations. Both of these read from both the underlying file
  112: **     first then adjust their result based on pending writes in the 
  113: **     write-op queue.   So async.queueMutex is held for the duration
  114: **     of these operations to prevent other threads from changing the
  115: **     queue in mid operation.
  116: **    
  117: **
  118: **         asyncLock, asyncUnlock, asyncCheckReservedLock
  119: **    
  120: **     These primitives implement in-process locking using a hash table
  121: **     on the file name.  Files are locked correctly for connections coming
  122: **     from the same process.  But other processes cannot see these locks
  123: **     and will therefore not honor them.
  124: **
  125: **
  126: ** The writer thread:
  127: **
  128: **     The async.writerMutex is used to make sure only there is only
  129: **     a single writer thread running at a time.
  130: **
  131: **     Inside the writer thread is a loop that works like this:
  132: **
  133: **         WHILE (write-op list is not empty)
  134: **             Do IO operation at head of write-op list
  135: **             Remove entry from head of write-op list
  136: **         END WHILE
  137: **
  138: **     The async.queueMutex is always held during the <write-op list is 
  139: **     not empty> test, and when the entry is removed from the head
  140: **     of the write-op list. Sometimes it is held for the interim
  141: **     period (while the IO is performed), and sometimes it is
  142: **     relinquished. It is relinquished if (a) the IO op is an
  143: **     ASYNC_CLOSE or (b) when the file handle was opened, two of
  144: **     the underlying systems handles were opened on the same
  145: **     file-system entry.
  146: **
  147: **     If condition (b) above is true, then one file-handle 
  148: **     (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
  149: **     file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() 
  150: **     threads to perform write() operations. This means that read 
  151: **     operations are not blocked by asynchronous writes (although 
  152: **     asynchronous writes may still be blocked by reads).
  153: **
  154: **     This assumes that the OS keeps two handles open on the same file
  155: **     properly in sync. That is, any read operation that starts after a
  156: **     write operation on the same file system entry has completed returns
  157: **     data consistent with the write. We also assume that if one thread 
  158: **     reads a file while another is writing it all bytes other than the
  159: **     ones actually being written contain valid data.
  160: **
  161: **     If the above assumptions are not true, set the preprocessor symbol
  162: **     SQLITE_ASYNC_TWO_FILEHANDLES to 0.
  163: */
  164: 
  165: 
  166: #ifndef NDEBUG
  167: # define TESTONLY( X ) X
  168: #else
  169: # define TESTONLY( X )
  170: #endif
  171: 
  172: /*
  173: ** PORTING FUNCTIONS
  174: **
  175: ** There are two definitions of the following functions. One for pthreads
  176: ** compatible systems and one for Win32. These functions isolate the OS
  177: ** specific code required by each platform.
  178: **
  179: ** The system uses three mutexes and a single condition variable. To
  180: ** block on a mutex, async_mutex_enter() is called. The parameter passed
  181: ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK,
  182: ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three
  183: ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is
  184: ** called with a parameter identifying the mutex being unlocked. Mutexes
  185: ** are not recursive - it is an error to call async_mutex_enter() to
  186: ** lock a mutex that is already locked, or to call async_mutex_leave()
  187: ** to unlock a mutex that is not currently locked.
  188: **
  189: ** The async_cond_wait() and async_cond_signal() functions are modelled
  190: ** on the pthreads functions with similar names. The first parameter to
  191: ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait()
  192: ** is called the mutex identified by the second parameter must be held.
  193: ** The mutex is unlocked, and the calling thread simultaneously begins 
  194: ** waiting for the condition variable to be signalled by another thread.
  195: ** After another thread signals the condition variable, the calling
  196: ** thread stops waiting, locks mutex eMutex and returns. The 
  197: ** async_cond_signal() function is used to signal the condition variable. 
  198: ** It is assumed that the mutex used by the thread calling async_cond_wait() 
  199: ** is held by the caller of async_cond_signal() (otherwise there would be 
  200: ** a race condition).
  201: **
  202: ** It is guaranteed that no other thread will call async_cond_wait() when
  203: ** there is already a thread waiting on the condition variable.
  204: **
  205: ** The async_sched_yield() function is called to suggest to the operating
  206: ** system that it would be a good time to shift the current thread off the
  207: ** CPU. The system will still work if this function is not implemented
  208: ** (it is not currently implemented for win32), but it might be marginally
  209: ** more efficient if it is.
  210: */
  211: static void async_mutex_enter(int eMutex);
  212: static void async_mutex_leave(int eMutex);
  213: static void async_cond_wait(int eCond, int eMutex);
  214: static void async_cond_signal(int eCond);
  215: static void async_sched_yield(void);
  216: 
  217: /*
  218: ** There are also two definitions of the following. async_os_initialize()
  219: ** is called when the asynchronous VFS is first installed, and os_shutdown()
  220: ** is called when it is uninstalled (from within sqlite3async_shutdown()).
  221: **
  222: ** For pthreads builds, both of these functions are no-ops. For win32,
  223: ** they provide an opportunity to initialize and finalize the required
  224: ** mutex and condition variables.
  225: **
  226: ** If async_os_initialize() returns other than zero, then the initialization
  227: ** fails and SQLITE_ERROR is returned to the user.
  228: */
  229: static int async_os_initialize(void);
  230: static void async_os_shutdown(void);
  231: 
  232: /* Values for use as the 'eMutex' argument of the above functions. The
  233: ** integer values assigned to these constants are important for assert()
  234: ** statements that verify that mutexes are locked in the correct order.
  235: ** Specifically, it is unsafe to try to lock mutex N while holding a lock 
  236: ** on mutex M if (M<=N).
  237: */
  238: #define ASYNC_MUTEX_LOCK    0
  239: #define ASYNC_MUTEX_QUEUE   1
  240: #define ASYNC_MUTEX_WRITER  2
  241: 
  242: /* Values for use as the 'eCond' argument of the above functions. */
  243: #define ASYNC_COND_QUEUE    0
  244: 
  245: /*************************************************************************
  246: ** Start of OS specific code.
  247: */
  248: #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
  249: 
  250: #include <windows.h>
  251: 
  252: /* The following block contains the win32 specific code. */
  253: 
  254: #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X])
  255: 
  256: static struct AsyncPrimitives {
  257:   int isInit;
  258:   DWORD aHolder[3];
  259:   CRITICAL_SECTION aMutex[3];
  260:   HANDLE aCond[1];
  261: } primitives = { 0 };
  262: 
  263: static int async_os_initialize(void){
  264:   if( !primitives.isInit ){
  265:     primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0);
  266:     if( primitives.aCond[0]==NULL ){
  267:       return 1;
  268:     }
  269:     InitializeCriticalSection(&primitives.aMutex[0]);
  270:     InitializeCriticalSection(&primitives.aMutex[1]);
  271:     InitializeCriticalSection(&primitives.aMutex[2]);
  272:     primitives.isInit = 1;
  273:   }
  274:   return 0;
  275: }
  276: static void async_os_shutdown(void){
  277:   if( primitives.isInit ){
  278:     DeleteCriticalSection(&primitives.aMutex[0]);
  279:     DeleteCriticalSection(&primitives.aMutex[1]);
  280:     DeleteCriticalSection(&primitives.aMutex[2]);
  281:     CloseHandle(primitives.aCond[0]);
  282:     primitives.isInit = 0;
  283:   }
  284: }
  285: 
  286: /* The following block contains the Win32 specific code. */
  287: static void async_mutex_enter(int eMutex){
  288:   assert( eMutex==0 || eMutex==1 || eMutex==2 );
  289:   assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
  290:   assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
  291:   assert( eMutex!=0 || (!mutex_held(0)) );
  292:   EnterCriticalSection(&primitives.aMutex[eMutex]);
  293:   TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); )
  294: }
  295: static void async_mutex_leave(int eMutex){
  296:   assert( eMutex==0 || eMutex==1 || eMutex==2 );
  297:   assert( mutex_held(eMutex) );
  298:   TESTONLY( primitives.aHolder[eMutex] = 0; )
  299:   LeaveCriticalSection(&primitives.aMutex[eMutex]);
  300: }
  301: static void async_cond_wait(int eCond, int eMutex){
  302:   ResetEvent(primitives.aCond[eCond]);
  303:   async_mutex_leave(eMutex);
  304:   WaitForSingleObject(primitives.aCond[eCond], INFINITE);
  305:   async_mutex_enter(eMutex);
  306: }
  307: static void async_cond_signal(int eCond){
  308:   assert( mutex_held(ASYNC_MUTEX_QUEUE) );
  309:   SetEvent(primitives.aCond[eCond]);
  310: }
  311: static void async_sched_yield(void){
  312:   Sleep(0);
  313: }
  314: #else
  315: 
  316: /* The following block contains the pthreads specific code. */
  317: #include <pthread.h>
  318: #include <sched.h>
  319: 
  320: #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self())
  321: 
  322: static int  async_os_initialize(void) {return 0;}
  323: static void async_os_shutdown(void) {}
  324: 
  325: static struct AsyncPrimitives {
  326:   pthread_mutex_t aMutex[3];
  327:   pthread_cond_t aCond[1];
  328:   pthread_t aHolder[3];
  329: } primitives = {
  330:   { PTHREAD_MUTEX_INITIALIZER, 
  331:     PTHREAD_MUTEX_INITIALIZER, 
  332:     PTHREAD_MUTEX_INITIALIZER
  333:   } , {
  334:     PTHREAD_COND_INITIALIZER
  335:   } , { 0, 0, 0 }
  336: };
  337: 
  338: static void async_mutex_enter(int eMutex){
  339:   assert( eMutex==0 || eMutex==1 || eMutex==2 );
  340:   assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
  341:   assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
  342:   assert( eMutex!=0 || (!mutex_held(0)) );
  343:   pthread_mutex_lock(&primitives.aMutex[eMutex]);
  344:   TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
  345: }
  346: static void async_mutex_leave(int eMutex){
  347:   assert( eMutex==0 || eMutex==1 || eMutex==2 );
  348:   assert( mutex_held(eMutex) );
  349:   TESTONLY( primitives.aHolder[eMutex] = 0; )
  350:   pthread_mutex_unlock(&primitives.aMutex[eMutex]);
  351: }
  352: static void async_cond_wait(int eCond, int eMutex){
  353:   assert( eMutex==0 || eMutex==1 || eMutex==2 );
  354:   assert( mutex_held(eMutex) );
  355:   TESTONLY( primitives.aHolder[eMutex] = 0; )
  356:   pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]);
  357:   TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
  358: }
  359: static void async_cond_signal(int eCond){
  360:   assert( mutex_held(ASYNC_MUTEX_QUEUE) );
  361:   pthread_cond_signal(&primitives.aCond[eCond]);
  362: }
  363: static void async_sched_yield(void){
  364:   sched_yield();
  365: }
  366: #endif
  367: /*
  368: ** End of OS specific code.
  369: *************************************************************************/
  370: 
  371: #define assert_mutex_is_held(X) assert( mutex_held(X) )
  372: 
  373: 
  374: #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
  375: /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
  376: #define SQLITE_ASYNC_TWO_FILEHANDLES 1
  377: #endif
  378: 
  379: /*
  380: ** State information is held in the static variable "async" defined
  381: ** as the following structure.
  382: **
  383: ** Both async.ioError and async.nFile are protected by async.queueMutex.
  384: */
  385: static struct TestAsyncStaticData {
  386:   AsyncWrite *pQueueFirst;     /* Next write operation to be processed */
  387:   AsyncWrite *pQueueLast;      /* Last write operation on the list */
  388:   AsyncLock *pLock;            /* Linked list of all AsyncLock structures */
  389:   volatile int ioDelay;        /* Extra delay between write operations */
  390:   volatile int eHalt;          /* One of the SQLITEASYNC_HALT_XXX values */
  391:   volatile int bLockFiles;     /* Current value of "lockfiles" parameter */
  392:   int ioError;                 /* True if an IO error has occurred */
  393:   int nFile;                   /* Number of open files (from sqlite pov) */
  394: } async = { 0,0,0,0,0,1,0,0 };
  395: 
  396: /* Possible values of AsyncWrite.op */
  397: #define ASYNC_NOOP          0
  398: #define ASYNC_WRITE         1
  399: #define ASYNC_SYNC          2
  400: #define ASYNC_TRUNCATE      3
  401: #define ASYNC_CLOSE         4
  402: #define ASYNC_DELETE        5
  403: #define ASYNC_OPENEXCLUSIVE 6
  404: #define ASYNC_UNLOCK        7
  405: 
  406: /* Names of opcodes.  Used for debugging only.
  407: ** Make sure these stay in sync with the macros above!
  408: */
  409: static const char *azOpcodeName[] = {
  410:   "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
  411: };
  412: 
  413: /*
  414: ** Entries on the write-op queue are instances of the AsyncWrite
  415: ** structure, defined here.
  416: **
  417: ** The interpretation of the iOffset and nByte variables varies depending 
  418: ** on the value of AsyncWrite.op:
  419: **
  420: ** ASYNC_NOOP:
  421: **     No values used.
  422: **
  423: ** ASYNC_WRITE:
  424: **     iOffset -> Offset in file to write to.
  425: **     nByte   -> Number of bytes of data to write (pointed to by zBuf).
  426: **
  427: ** ASYNC_SYNC:
  428: **     nByte   -> flags to pass to sqlite3OsSync().
  429: **
  430: ** ASYNC_TRUNCATE:
  431: **     iOffset -> Size to truncate file to.
  432: **     nByte   -> Unused.
  433: **
  434: ** ASYNC_CLOSE:
  435: **     iOffset -> Unused.
  436: **     nByte   -> Unused.
  437: **
  438: ** ASYNC_DELETE:
  439: **     iOffset -> Contains the "syncDir" flag.
  440: **     nByte   -> Number of bytes of zBuf points to (file name).
  441: **
  442: ** ASYNC_OPENEXCLUSIVE:
  443: **     iOffset -> Value of "delflag".
  444: **     nByte   -> Number of bytes of zBuf points to (file name).
  445: **
  446: ** ASYNC_UNLOCK:
  447: **     nByte   -> Argument to sqlite3OsUnlock().
  448: **
  449: **
  450: ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. 
  451: ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
  452: ** single blob, so is deleted when sqlite3_free() is called on the parent 
  453: ** structure.
  454: */
  455: struct AsyncWrite {
  456:   AsyncFileData *pFileData;    /* File to write data to or sync */
  457:   int op;                      /* One of ASYNC_xxx etc. */
  458:   sqlite_int64 iOffset;        /* See above */
  459:   int nByte;          /* See above */
  460:   char *zBuf;         /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
  461:   AsyncWrite *pNext;  /* Next write operation (to any file) */
  462: };
  463: 
  464: /*
  465: ** An instance of this structure is created for each distinct open file 
  466: ** (i.e. if two handles are opened on the one file, only one of these
  467: ** structures is allocated) and stored in the async.aLock hash table. The
  468: ** keys for async.aLock are the full pathnames of the opened files.
  469: **
  470: ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
  471: ** structures, one for each handle currently open on the file.
  472: **
  473: ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
  474: ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is 
  475: ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. 
  476: ** Otherwise, pFile is a file handle opened on the file in question and 
  477: ** used to obtain the file-system locks required by database connections 
  478: ** within this process.
  479: **
  480: ** See comments above the asyncLock() function for more details on 
  481: ** the implementation of database locking used by this backend.
  482: */
  483: struct AsyncLock {
  484:   char *zFile;
  485:   int nFile;
  486:   sqlite3_file *pFile;
  487:   int eLock;
  488:   AsyncFileLock *pList;
  489:   AsyncLock *pNext;           /* Next in linked list headed by async.pLock */
  490: };
  491: 
  492: /*
  493: ** An instance of the following structure is allocated along with each
  494: ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
  495: ** file was opened with the SQLITE_OPEN_MAIN_DB.
  496: */
  497: struct AsyncFileLock {
  498:   int eLock;                /* Internally visible lock state (sqlite pov) */
  499:   int eAsyncLock;           /* Lock-state with write-queue unlock */
  500:   AsyncFileLock *pNext;
  501: };
  502: 
  503: /* 
  504: ** The AsyncFile structure is a subclass of sqlite3_file used for 
  505: ** asynchronous IO. 
  506: **
  507: ** All of the actual data for the structure is stored in the structure
  508: ** pointed to by AsyncFile.pData, which is allocated as part of the
  509: ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
  510: ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
  511: ** is called, but the data in AsyncFileData may be required by the
  512: ** writer thread after that point.
  513: */
  514: struct AsyncFile {
  515:   sqlite3_io_methods *pMethod;
  516:   AsyncFileData *pData;
  517: };
  518: struct AsyncFileData {
  519:   char *zName;               /* Underlying OS filename - used for debugging */
  520:   int nName;                 /* Number of characters in zName */
  521:   sqlite3_file *pBaseRead;   /* Read handle to the underlying Os file */
  522:   sqlite3_file *pBaseWrite;  /* Write handle to the underlying Os file */
  523:   AsyncFileLock lock;        /* Lock state for this handle */
  524:   AsyncLock *pLock;          /* AsyncLock object for this file system entry */
  525:   AsyncWrite closeOp;        /* Preallocated close operation */
  526: };
  527: 
  528: /*
  529: ** Add an entry to the end of the global write-op list. pWrite should point 
  530: ** to an AsyncWrite structure allocated using sqlite3_malloc().  The writer
  531: ** thread will call sqlite3_free() to free the structure after the specified
  532: ** operation has been completed.
  533: **
  534: ** Once an AsyncWrite structure has been added to the list, it becomes the
  535: ** property of the writer thread and must not be read or modified by the
  536: ** caller.  
  537: */
  538: static void addAsyncWrite(AsyncWrite *pWrite){
  539:   /* We must hold the queue mutex in order to modify the queue pointers */
  540:   if( pWrite->op!=ASYNC_UNLOCK ){
  541:     async_mutex_enter(ASYNC_MUTEX_QUEUE);
  542:   }
  543: 
  544:   /* Add the record to the end of the write-op queue */
  545:   assert( !pWrite->pNext );
  546:   if( async.pQueueLast ){
  547:     assert( async.pQueueFirst );
  548:     async.pQueueLast->pNext = pWrite;
  549:   }else{
  550:     async.pQueueFirst = pWrite;
  551:   }
  552:   async.pQueueLast = pWrite;
  553:   ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
  554:          pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
  555: 
  556:   if( pWrite->op==ASYNC_CLOSE ){
  557:     async.nFile--;
  558:   }
  559: 
  560:   /* The writer thread might have been idle because there was nothing
  561:   ** on the write-op queue for it to do.  So wake it up. */
  562:   async_cond_signal(ASYNC_COND_QUEUE);
  563: 
  564:   /* Drop the queue mutex */
  565:   if( pWrite->op!=ASYNC_UNLOCK ){
  566:     async_mutex_leave(ASYNC_MUTEX_QUEUE);
  567:   }
  568: }
  569: 
  570: /*
  571: ** Increment async.nFile in a thread-safe manner.
  572: */
  573: static void incrOpenFileCount(void){
  574:   /* We must hold the queue mutex in order to modify async.nFile */
  575:   async_mutex_enter(ASYNC_MUTEX_QUEUE);
  576:   if( async.nFile==0 ){
  577:     async.ioError = SQLITE_OK;
  578:   }
  579:   async.nFile++;
  580:   async_mutex_leave(ASYNC_MUTEX_QUEUE);
  581: }
  582: 
  583: /*
  584: ** This is a utility function to allocate and populate a new AsyncWrite
  585: ** structure and insert it (via addAsyncWrite() ) into the global list.
  586: */
  587: static int addNewAsyncWrite(
  588:   AsyncFileData *pFileData, 
  589:   int op, 
  590:   sqlite3_int64 iOffset, 
  591:   int nByte,
  592:   const char *zByte
  593: ){
  594:   AsyncWrite *p;
  595:   if( op!=ASYNC_CLOSE && async.ioError ){
  596:     return async.ioError;
  597:   }
  598:   p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
  599:   if( !p ){
  600:     /* The upper layer does not expect operations like OsWrite() to
  601:     ** return SQLITE_NOMEM. This is partly because under normal conditions
  602:     ** SQLite is required to do rollback without calling malloc(). So
  603:     ** if malloc() fails here, treat it as an I/O error. The above
  604:     ** layer knows how to handle that.
  605:     */
  606:     return SQLITE_IOERR;
  607:   }
  608:   p->op = op;
  609:   p->iOffset = iOffset;
  610:   p->nByte = nByte;
  611:   p->pFileData = pFileData;
  612:   p->pNext = 0;
  613:   if( zByte ){
  614:     p->zBuf = (char *)&p[1];
  615:     memcpy(p->zBuf, zByte, nByte);
  616:   }else{
  617:     p->zBuf = 0;
  618:   }
  619:   addAsyncWrite(p);
  620:   return SQLITE_OK;
  621: }
  622: 
  623: /*
  624: ** Close the file. This just adds an entry to the write-op list, the file is
  625: ** not actually closed.
  626: */
  627: static int asyncClose(sqlite3_file *pFile){
  628:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  629: 
  630:   /* Unlock the file, if it is locked */
  631:   async_mutex_enter(ASYNC_MUTEX_LOCK);
  632:   p->lock.eLock = 0;
  633:   async_mutex_leave(ASYNC_MUTEX_LOCK);
  634: 
  635:   addAsyncWrite(&p->closeOp);
  636:   return SQLITE_OK;
  637: }
  638: 
  639: /*
  640: ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of 
  641: ** writing to the underlying file, this function adds an entry to the end of
  642: ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
  643: ** returned.
  644: */
  645: static int asyncWrite(
  646:   sqlite3_file *pFile, 
  647:   const void *pBuf, 
  648:   int amt, 
  649:   sqlite3_int64 iOff
  650: ){
  651:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  652:   return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
  653: }
  654: 
  655: /*
  656: ** Read data from the file. First we read from the filesystem, then adjust 
  657: ** the contents of the buffer based on ASYNC_WRITE operations in the 
  658: ** write-op queue.
  659: **
  660: ** This method holds the mutex from start to finish.
  661: */
  662: static int asyncRead(
  663:   sqlite3_file *pFile, 
  664:   void *zOut, 
  665:   int iAmt, 
  666:   sqlite3_int64 iOffset
  667: ){
  668:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  669:   int rc = SQLITE_OK;
  670:   sqlite3_int64 filesize = 0;
  671:   sqlite3_file *pBase = p->pBaseRead;
  672:   sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt;
  673: 
  674:   /* Grab the write queue mutex for the duration of the call */
  675:   async_mutex_enter(ASYNC_MUTEX_QUEUE);
  676: 
  677:   /* If an I/O error has previously occurred in this virtual file 
  678:   ** system, then all subsequent operations fail.
  679:   */
  680:   if( async.ioError!=SQLITE_OK ){
  681:     rc = async.ioError;
  682:     goto asyncread_out;
  683:   }
  684: 
  685:   if( pBase->pMethods ){
  686:     sqlite3_int64 nRead;
  687:     rc = pBase->pMethods->xFileSize(pBase, &filesize);
  688:     if( rc!=SQLITE_OK ){
  689:       goto asyncread_out;
  690:     }
  691:     nRead = MIN(filesize - iOffset, iAmt64);
  692:     if( nRead>0 ){
  693:       rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset);
  694:       ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
  695:     }
  696:   }
  697: 
  698:   if( rc==SQLITE_OK ){
  699:     AsyncWrite *pWrite;
  700:     char *zName = p->zName;
  701: 
  702:     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
  703:       if( pWrite->op==ASYNC_WRITE && (
  704:         (pWrite->pFileData==p) ||
  705:         (zName && pWrite->pFileData->zName==zName)
  706:       )){
  707:         sqlite3_int64 nCopy;
  708:         sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte;
  709: 
  710:         /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from
  711:         ** which data should be copied. Set iBeginOut to the offset within
  712:         ** the output buffer to which data should be copied. If either of
  713:         ** these offsets is a negative number, set them to 0.
  714:         */
  715:         sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset);
  716:         sqlite3_int64 iBeginIn = -iBeginOut;
  717:         if( iBeginIn<0 ) iBeginIn = 0;
  718:         if( iBeginOut<0 ) iBeginOut = 0;
  719: 
  720:         filesize = MAX(filesize, pWrite->iOffset+nByte64);
  721: 
  722:         nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut);
  723:         if( nCopy>0 ){
  724:           memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nCopy);
  725:           ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
  726:         }
  727:       }
  728:     }
  729:   }
  730: 
  731: asyncread_out:
  732:   async_mutex_leave(ASYNC_MUTEX_QUEUE);
  733:   if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){
  734:     rc = SQLITE_IOERR_SHORT_READ;
  735:   }
  736:   return rc;
  737: }
  738: 
  739: /*
  740: ** Truncate the file to nByte bytes in length. This just adds an entry to 
  741: ** the write-op list, no IO actually takes place.
  742: */
  743: static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
  744:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  745:   return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
  746: }
  747: 
  748: /*
  749: ** Sync the file. This just adds an entry to the write-op list, the 
  750: ** sync() is done later by sqlite3_async_flush().
  751: */
  752: static int asyncSync(sqlite3_file *pFile, int flags){
  753:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  754:   return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
  755: }
  756: 
  757: /*
  758: ** Read the size of the file. First we read the size of the file system 
  759: ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations 
  760: ** currently in the write-op list. 
  761: **
  762: ** This method holds the mutex from start to finish.
  763: */
  764: int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
  765:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  766:   int rc = SQLITE_OK;
  767:   sqlite3_int64 s = 0;
  768:   sqlite3_file *pBase;
  769: 
  770:   async_mutex_enter(ASYNC_MUTEX_QUEUE);
  771: 
  772:   /* Read the filesystem size from the base file. If pMethods is NULL, this
  773:   ** means the file hasn't been opened yet. In this case all relevant data 
  774:   ** must be in the write-op queue anyway, so we can omit reading from the
  775:   ** file-system.
  776:   */
  777:   pBase = p->pBaseRead;
  778:   if( pBase->pMethods ){
  779:     rc = pBase->pMethods->xFileSize(pBase, &s);
  780:   }
  781: 
  782:   if( rc==SQLITE_OK ){
  783:     AsyncWrite *pWrite;
  784:     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
  785:       if( pWrite->op==ASYNC_DELETE 
  786:        && p->zName 
  787:        && strcmp(p->zName, pWrite->zBuf)==0 
  788:       ){
  789:         s = 0;
  790:       }else if( pWrite->pFileData && (
  791:           (pWrite->pFileData==p) 
  792:        || (p->zName && pWrite->pFileData->zName==p->zName) 
  793:       )){
  794:         switch( pWrite->op ){
  795:           case ASYNC_WRITE:
  796:             s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
  797:             break;
  798:           case ASYNC_TRUNCATE:
  799:             s = MIN(s, pWrite->iOffset);
  800:             break;
  801:         }
  802:       }
  803:     }
  804:     *piSize = s;
  805:   }
  806:   async_mutex_leave(ASYNC_MUTEX_QUEUE);
  807:   return rc;
  808: }
  809: 
  810: /*
  811: ** Lock or unlock the actual file-system entry.
  812: */
  813: static int getFileLock(AsyncLock *pLock){
  814:   int rc = SQLITE_OK;
  815:   AsyncFileLock *pIter;
  816:   int eRequired = 0;
  817: 
  818:   if( pLock->pFile ){
  819:     for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
  820:       assert(pIter->eAsyncLock>=pIter->eLock);
  821:       if( pIter->eAsyncLock>eRequired ){
  822:         eRequired = pIter->eAsyncLock;
  823:         assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
  824:       }
  825:     }
  826: 
  827:     if( eRequired>pLock->eLock ){
  828:       rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
  829:       if( rc==SQLITE_OK ){
  830:         pLock->eLock = eRequired;
  831:       }
  832:     }
  833:     else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
  834:       rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
  835:       if( rc==SQLITE_OK ){
  836:         pLock->eLock = eRequired;
  837:       }
  838:     }
  839:   }
  840: 
  841:   return rc;
  842: }
  843: 
  844: /*
  845: ** Return the AsyncLock structure from the global async.pLock list 
  846: ** associated with the file-system entry identified by path zName 
  847: ** (a string of nName bytes). If no such structure exists, return 0.
  848: */
  849: static AsyncLock *findLock(const char *zName, int nName){
  850:   AsyncLock *p = async.pLock;
  851:   while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
  852:     p = p->pNext;
  853:   }
  854:   return p;
  855: }
  856: 
  857: /*
  858: ** The following two methods - asyncLock() and asyncUnlock() - are used
  859: ** to obtain and release locks on database files opened with the
  860: ** asynchronous backend.
  861: */
  862: static int asyncLock(sqlite3_file *pFile, int eLock){
  863:   int rc = SQLITE_OK;
  864:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  865: 
  866:   if( p->zName ){
  867:     async_mutex_enter(ASYNC_MUTEX_LOCK);
  868:     if( p->lock.eLock<eLock ){
  869:       AsyncLock *pLock = p->pLock;
  870:       AsyncFileLock *pIter;
  871:       assert(pLock && pLock->pList);
  872:       for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
  873:         if( pIter!=&p->lock && (
  874:           (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
  875:           (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
  876:           (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
  877:           (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
  878:         )){
  879:           rc = SQLITE_BUSY;
  880:         }
  881:       }
  882:       if( rc==SQLITE_OK ){
  883:         p->lock.eLock = eLock;
  884:         p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
  885:       }
  886:       assert(p->lock.eAsyncLock>=p->lock.eLock);
  887:       if( rc==SQLITE_OK ){
  888:         rc = getFileLock(pLock);
  889:       }
  890:     }
  891:     async_mutex_leave(ASYNC_MUTEX_LOCK);
  892:   }
  893: 
  894:   ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
  895:   return rc;
  896: }
  897: static int asyncUnlock(sqlite3_file *pFile, int eLock){
  898:   int rc = SQLITE_OK;
  899:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  900:   if( p->zName ){
  901:     AsyncFileLock *pLock = &p->lock;
  902:     async_mutex_enter(ASYNC_MUTEX_QUEUE);
  903:     async_mutex_enter(ASYNC_MUTEX_LOCK);
  904:     pLock->eLock = MIN(pLock->eLock, eLock);
  905:     rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
  906:     async_mutex_leave(ASYNC_MUTEX_LOCK);
  907:     async_mutex_leave(ASYNC_MUTEX_QUEUE);
  908:   }
  909:   return rc;
  910: }
  911: 
  912: /*
  913: ** This function is called when the pager layer first opens a database file
  914: ** and is checking for a hot-journal.
  915: */
  916: static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
  917:   int ret = 0;
  918:   AsyncFileLock *pIter;
  919:   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
  920: 
  921:   async_mutex_enter(ASYNC_MUTEX_LOCK);
  922:   for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
  923:     if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
  924:       ret = 1;
  925:       break;
  926:     }
  927:   }
  928:   async_mutex_leave(ASYNC_MUTEX_LOCK);
  929: 
  930:   ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
  931:   *pResOut = ret;
  932:   return SQLITE_OK;
  933: }
  934: 
  935: /* 
  936: ** sqlite3_file_control() implementation.
  937: */
  938: static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
  939:   switch( op ){
  940:     case SQLITE_FCNTL_LOCKSTATE: {
  941:       async_mutex_enter(ASYNC_MUTEX_LOCK);
  942:       *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
  943:       async_mutex_leave(ASYNC_MUTEX_LOCK);
  944:       return SQLITE_OK;
  945:     }
  946:   }
  947:   return SQLITE_ERROR;
  948: }
  949: 
  950: /* 
  951: ** Return the device characteristics and sector-size of the device. It
  952: ** is tricky to implement these correctly, as this backend might 
  953: ** not have an open file handle at this point.
  954: */
  955: static int asyncSectorSize(sqlite3_file *pFile){
  956:   UNUSED_PARAMETER(pFile);
  957:   return 512;
  958: }
  959: static int asyncDeviceCharacteristics(sqlite3_file *pFile){
  960:   UNUSED_PARAMETER(pFile);
  961:   return 0;
  962: }
  963: 
  964: static int unlinkAsyncFile(AsyncFileData *pData){
  965:   AsyncFileLock **ppIter;
  966:   int rc = SQLITE_OK;
  967: 
  968:   if( pData->zName ){
  969:     AsyncLock *pLock = pData->pLock;
  970:     for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
  971:       if( (*ppIter)==&pData->lock ){
  972:         *ppIter = pData->lock.pNext;
  973:         break;
  974:       }
  975:     }
  976:     if( !pLock->pList ){
  977:       AsyncLock **pp;
  978:       if( pLock->pFile ){
  979:         pLock->pFile->pMethods->xClose(pLock->pFile);
  980:       }
  981:       for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
  982:       *pp = pLock->pNext;
  983:       sqlite3_free(pLock);
  984:     }else{
  985:       rc = getFileLock(pLock);
  986:     }
  987:   }
  988: 
  989:   return rc;
  990: }
  991: 
  992: /*
  993: ** The parameter passed to this function is a copy of a 'flags' parameter
  994: ** passed to this modules xOpen() method. This function returns true
  995: ** if the file should be opened asynchronously, or false if it should
  996: ** be opened immediately.
  997: **
  998: ** If the file is to be opened asynchronously, then asyncOpen() will add
  999: ** an entry to the event queue and the file will not actually be opened
 1000: ** until the event is processed. Otherwise, the file is opened directly
 1001: ** by the caller.
 1002: */
 1003: static int doAsynchronousOpen(int flags){
 1004:   return (flags&SQLITE_OPEN_CREATE) && (
 1005:       (flags&SQLITE_OPEN_MAIN_JOURNAL) ||
 1006:       (flags&SQLITE_OPEN_TEMP_JOURNAL) ||
 1007:       (flags&SQLITE_OPEN_DELETEONCLOSE)
 1008:   );
 1009: }
 1010: 
 1011: /*
 1012: ** Open a file.
 1013: */
 1014: static int asyncOpen(
 1015:   sqlite3_vfs *pAsyncVfs,
 1016:   const char *zName,
 1017:   sqlite3_file *pFile,
 1018:   int flags,
 1019:   int *pOutFlags
 1020: ){
 1021:   static sqlite3_io_methods async_methods = {
 1022:     1,                               /* iVersion */
 1023:     asyncClose,                      /* xClose */
 1024:     asyncRead,                       /* xRead */
 1025:     asyncWrite,                      /* xWrite */
 1026:     asyncTruncate,                   /* xTruncate */
 1027:     asyncSync,                       /* xSync */
 1028:     asyncFileSize,                   /* xFileSize */
 1029:     asyncLock,                       /* xLock */
 1030:     asyncUnlock,                     /* xUnlock */
 1031:     asyncCheckReservedLock,          /* xCheckReservedLock */
 1032:     asyncFileControl,                /* xFileControl */
 1033:     asyncSectorSize,                 /* xSectorSize */
 1034:     asyncDeviceCharacteristics       /* xDeviceCharacteristics */
 1035:   };
 1036: 
 1037:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1038:   AsyncFile *p = (AsyncFile *)pFile;
 1039:   int nName = 0;
 1040:   int rc = SQLITE_OK;
 1041:   int nByte;
 1042:   AsyncFileData *pData;
 1043:   AsyncLock *pLock = 0;
 1044:   char *z;
 1045:   int isAsyncOpen = doAsynchronousOpen(flags);
 1046: 
 1047:   /* If zName is NULL, then the upper layer is requesting an anonymous file */
 1048:   if( zName ){
 1049:     nName = (int)strlen(zName)+1;
 1050:   }
 1051: 
 1052:   nByte = (
 1053:     sizeof(AsyncFileData) +        /* AsyncFileData structure */
 1054:     2 * pVfs->szOsFile +           /* AsyncFileData.pBaseRead and pBaseWrite */
 1055:     nName                          /* AsyncFileData.zName */
 1056:   ); 
 1057:   z = sqlite3_malloc(nByte);
 1058:   if( !z ){
 1059:     return SQLITE_NOMEM;
 1060:   }
 1061:   memset(z, 0, nByte);
 1062:   pData = (AsyncFileData*)z;
 1063:   z += sizeof(pData[0]);
 1064:   pData->pBaseRead = (sqlite3_file*)z;
 1065:   z += pVfs->szOsFile;
 1066:   pData->pBaseWrite = (sqlite3_file*)z;
 1067:   pData->closeOp.pFileData = pData;
 1068:   pData->closeOp.op = ASYNC_CLOSE;
 1069: 
 1070:   if( zName ){
 1071:     z += pVfs->szOsFile;
 1072:     pData->zName = z;
 1073:     pData->nName = nName;
 1074:     memcpy(pData->zName, zName, nName);
 1075:   }
 1076: 
 1077:   if( !isAsyncOpen ){
 1078:     int flagsout;
 1079:     rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout);
 1080:     if( rc==SQLITE_OK 
 1081:      && (flagsout&SQLITE_OPEN_READWRITE) 
 1082:      && (flags&SQLITE_OPEN_EXCLUSIVE)==0
 1083:     ){
 1084:       rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0);
 1085:     }
 1086:     if( pOutFlags ){
 1087:       *pOutFlags = flagsout;
 1088:     }
 1089:   }
 1090: 
 1091:   async_mutex_enter(ASYNC_MUTEX_LOCK);
 1092: 
 1093:   if( zName && rc==SQLITE_OK ){
 1094:     pLock = findLock(pData->zName, pData->nName);
 1095:     if( !pLock ){
 1096:       int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; 
 1097:       pLock = (AsyncLock *)sqlite3_malloc(nByte);
 1098:       if( pLock ){
 1099:         memset(pLock, 0, nByte);
 1100:         if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){
 1101:           pLock->pFile = (sqlite3_file *)&pLock[1];
 1102:           rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0);
 1103:           if( rc!=SQLITE_OK ){
 1104:             sqlite3_free(pLock);
 1105:             pLock = 0;
 1106:           }
 1107:         }
 1108:         if( pLock ){
 1109:           pLock->nFile = pData->nName;
 1110:           pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
 1111:           memcpy(pLock->zFile, pData->zName, pLock->nFile);
 1112:           pLock->pNext = async.pLock;
 1113:           async.pLock = pLock;
 1114:         }
 1115:       }else{
 1116:         rc = SQLITE_NOMEM;
 1117:       }
 1118:     }
 1119:   }
 1120: 
 1121:   if( rc==SQLITE_OK ){
 1122:     p->pMethod = &async_methods;
 1123:     p->pData = pData;
 1124: 
 1125:     /* Link AsyncFileData.lock into the linked list of 
 1126:     ** AsyncFileLock structures for this file.
 1127:     */
 1128:     if( zName ){
 1129:       pData->lock.pNext = pLock->pList;
 1130:       pLock->pList = &pData->lock;
 1131:       pData->zName = pLock->zFile;
 1132:     }
 1133:   }else{
 1134:     if( pData->pBaseRead->pMethods ){
 1135:       pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
 1136:     }
 1137:     if( pData->pBaseWrite->pMethods ){
 1138:       pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
 1139:     }
 1140:     sqlite3_free(pData);
 1141:   }
 1142: 
 1143:   async_mutex_leave(ASYNC_MUTEX_LOCK);
 1144: 
 1145:   if( rc==SQLITE_OK ){
 1146:     pData->pLock = pLock;
 1147:   }
 1148: 
 1149:   if( rc==SQLITE_OK && isAsyncOpen ){
 1150:     rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
 1151:     if( rc==SQLITE_OK ){
 1152:       if( pOutFlags ) *pOutFlags = flags;
 1153:     }else{
 1154:       async_mutex_enter(ASYNC_MUTEX_LOCK);
 1155:       unlinkAsyncFile(pData);
 1156:       async_mutex_leave(ASYNC_MUTEX_LOCK);
 1157:       sqlite3_free(pData);
 1158:     }
 1159:   }
 1160:   if( rc!=SQLITE_OK ){
 1161:     p->pMethod = 0;
 1162:   }else{
 1163:     incrOpenFileCount();
 1164:   }
 1165: 
 1166:   return rc;
 1167: }
 1168: 
 1169: /*
 1170: ** Implementation of sqlite3OsDelete. Add an entry to the end of the 
 1171: ** write-op queue to perform the delete.
 1172: */
 1173: static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
 1174:   UNUSED_PARAMETER(pAsyncVfs);
 1175:   return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z);
 1176: }
 1177: 
 1178: /*
 1179: ** Implementation of sqlite3OsAccess. This method holds the mutex from
 1180: ** start to finish.
 1181: */
 1182: static int asyncAccess(
 1183:   sqlite3_vfs *pAsyncVfs, 
 1184:   const char *zName, 
 1185:   int flags,
 1186:   int *pResOut
 1187: ){
 1188:   int rc;
 1189:   int ret;
 1190:   AsyncWrite *p;
 1191:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1192: 
 1193:   assert(flags==SQLITE_ACCESS_READWRITE 
 1194:       || flags==SQLITE_ACCESS_READ 
 1195:       || flags==SQLITE_ACCESS_EXISTS 
 1196:   );
 1197: 
 1198:   async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1199:   rc = pVfs->xAccess(pVfs, zName, flags, &ret);
 1200:   if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
 1201:     for(p=async.pQueueFirst; p; p = p->pNext){
 1202:       if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
 1203:         ret = 0;
 1204:       }else if( p->op==ASYNC_OPENEXCLUSIVE 
 1205:              && p->pFileData->zName
 1206:              && 0==strcmp(p->pFileData->zName, zName) 
 1207:       ){
 1208:         ret = 1;
 1209:       }
 1210:     }
 1211:   }
 1212:   ASYNC_TRACE(("ACCESS(%s): %s = %d\n", 
 1213:     flags==SQLITE_ACCESS_READWRITE?"read-write":
 1214:     flags==SQLITE_ACCESS_READ?"read":"exists"
 1215:     , zName, ret)
 1216:   );
 1217:   async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1218:   *pResOut = ret;
 1219:   return rc;
 1220: }
 1221: 
 1222: /*
 1223: ** Fill in zPathOut with the full path to the file identified by zPath.
 1224: */
 1225: static int asyncFullPathname(
 1226:   sqlite3_vfs *pAsyncVfs, 
 1227:   const char *zPath, 
 1228:   int nPathOut,
 1229:   char *zPathOut
 1230: ){
 1231:   int rc;
 1232:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1233:   rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
 1234: 
 1235:   /* Because of the way intra-process file locking works, this backend
 1236:   ** needs to return a canonical path. The following block assumes the
 1237:   ** file-system uses unix style paths. 
 1238:   */
 1239:   if( rc==SQLITE_OK ){
 1240:     int i, j;
 1241:     char *z = zPathOut;
 1242:     int n = (int)strlen(z);
 1243:     while( n>1 && z[n-1]=='/' ){ n--; }
 1244:     for(i=j=0; i<n; i++){
 1245:       if( z[i]=='/' ){
 1246:         if( z[i+1]=='/' ) continue;
 1247:         if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
 1248:           i += 1;
 1249:           continue;
 1250:         }
 1251:         if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
 1252:           while( j>0 && z[j-1]!='/' ){ j--; }
 1253:           if( j>0 ){ j--; }
 1254:           i += 2;
 1255:           continue;
 1256:         }
 1257:       }
 1258:       z[j++] = z[i];
 1259:     }
 1260:     z[j] = 0;
 1261:   }
 1262: 
 1263:   return rc;
 1264: }
 1265: static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
 1266:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1267:   return pVfs->xDlOpen(pVfs, zPath);
 1268: }
 1269: static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
 1270:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1271:   pVfs->xDlError(pVfs, nByte, zErrMsg);
 1272: }
 1273: static void (*asyncDlSym(
 1274:   sqlite3_vfs *pAsyncVfs, 
 1275:   void *pHandle, 
 1276:   const char *zSymbol
 1277: ))(void){
 1278:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1279:   return pVfs->xDlSym(pVfs, pHandle, zSymbol);
 1280: }
 1281: static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
 1282:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1283:   pVfs->xDlClose(pVfs, pHandle);
 1284: }
 1285: static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
 1286:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1287:   return pVfs->xRandomness(pVfs, nByte, zBufOut);
 1288: }
 1289: static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
 1290:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1291:   return pVfs->xSleep(pVfs, nMicro);
 1292: }
 1293: static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
 1294:   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
 1295:   return pVfs->xCurrentTime(pVfs, pTimeOut);
 1296: }
 1297: 
 1298: static sqlite3_vfs async_vfs = {
 1299:   1,                    /* iVersion */
 1300:   sizeof(AsyncFile),    /* szOsFile */
 1301:   0,                    /* mxPathname */
 1302:   0,                    /* pNext */
 1303:   SQLITEASYNC_VFSNAME,  /* zName */
 1304:   0,                    /* pAppData */
 1305:   asyncOpen,            /* xOpen */
 1306:   asyncDelete,          /* xDelete */
 1307:   asyncAccess,          /* xAccess */
 1308:   asyncFullPathname,    /* xFullPathname */
 1309:   asyncDlOpen,          /* xDlOpen */
 1310:   asyncDlError,         /* xDlError */
 1311:   asyncDlSym,           /* xDlSym */
 1312:   asyncDlClose,         /* xDlClose */
 1313:   asyncRandomness,      /* xDlError */
 1314:   asyncSleep,           /* xDlSym */
 1315:   asyncCurrentTime      /* xDlClose */
 1316: };
 1317: 
 1318: /* 
 1319: ** This procedure runs in a separate thread, reading messages off of the
 1320: ** write queue and processing them one by one.  
 1321: **
 1322: ** If async.writerHaltNow is true, then this procedure exits
 1323: ** after processing a single message.
 1324: **
 1325: ** If async.writerHaltWhenIdle is true, then this procedure exits when
 1326: ** the write queue is empty.
 1327: **
 1328: ** If both of the above variables are false, this procedure runs
 1329: ** indefinately, waiting for operations to be added to the write queue
 1330: ** and processing them in the order in which they arrive.
 1331: **
 1332: ** An artifical delay of async.ioDelay milliseconds is inserted before
 1333: ** each write operation in order to simulate the effect of a slow disk.
 1334: **
 1335: ** Only one instance of this procedure may be running at a time.
 1336: */
 1337: static void asyncWriterThread(void){
 1338:   sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
 1339:   AsyncWrite *p = 0;
 1340:   int rc = SQLITE_OK;
 1341:   int holdingMutex = 0;
 1342: 
 1343:   async_mutex_enter(ASYNC_MUTEX_WRITER);
 1344: 
 1345:   while( async.eHalt!=SQLITEASYNC_HALT_NOW ){
 1346:     int doNotFree = 0;
 1347:     sqlite3_file *pBase = 0;
 1348: 
 1349:     if( !holdingMutex ){
 1350:       async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1351:     }
 1352:     while( (p = async.pQueueFirst)==0 ){
 1353:       if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){
 1354:         async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1355:         break;
 1356:       }else{
 1357:         ASYNC_TRACE(("IDLE\n"));
 1358:         async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE);
 1359:         ASYNC_TRACE(("WAKEUP\n"));
 1360:       }
 1361:     }
 1362:     if( p==0 ) break;
 1363:     holdingMutex = 1;
 1364: 
 1365:     /* Right now this thread is holding the mutex on the write-op queue.
 1366:     ** Variable 'p' points to the first entry in the write-op queue. In
 1367:     ** the general case, we hold on to the mutex for the entire body of
 1368:     ** the loop. 
 1369:     **
 1370:     ** However in the cases enumerated below, we relinquish the mutex,
 1371:     ** perform the IO, and then re-request the mutex before removing 'p' from
 1372:     ** the head of the write-op queue. The idea is to increase concurrency with
 1373:     ** sqlite threads.
 1374:     **
 1375:     **     * An ASYNC_CLOSE operation.
 1376:     **     * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish 
 1377:     **       the mutex, call the underlying xOpenExclusive() function, then
 1378:     **       re-aquire the mutex before seting the AsyncFile.pBaseRead 
 1379:     **       variable.
 1380:     **     * ASYNC_SYNC and ASYNC_WRITE operations, if 
 1381:     **       SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
 1382:     **       file-handles are open for the particular file being "synced".
 1383:     */
 1384:     if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
 1385:       p->op = ASYNC_NOOP;
 1386:     }
 1387:     if( p->pFileData ){
 1388:       pBase = p->pFileData->pBaseWrite;
 1389:       if( 
 1390:         p->op==ASYNC_CLOSE || 
 1391:         p->op==ASYNC_OPENEXCLUSIVE ||
 1392:         (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) 
 1393:       ){
 1394:         async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1395:         holdingMutex = 0;
 1396:       }
 1397:       if( !pBase->pMethods ){
 1398:         pBase = p->pFileData->pBaseRead;
 1399:       }
 1400:     }
 1401: 
 1402:     switch( p->op ){
 1403:       case ASYNC_NOOP:
 1404:         break;
 1405: 
 1406:       case ASYNC_WRITE:
 1407:         assert( pBase );
 1408:         ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
 1409:                 p->pFileData->zName, p->nByte, p->iOffset));
 1410:         rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
 1411:         break;
 1412: 
 1413:       case ASYNC_SYNC:
 1414:         assert( pBase );
 1415:         ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
 1416:         rc = pBase->pMethods->xSync(pBase, p->nByte);
 1417:         break;
 1418: 
 1419:       case ASYNC_TRUNCATE:
 1420:         assert( pBase );
 1421:         ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", 
 1422:                 p->pFileData->zName, p->iOffset));
 1423:         rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
 1424:         break;
 1425: 
 1426:       case ASYNC_CLOSE: {
 1427:         AsyncFileData *pData = p->pFileData;
 1428:         ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
 1429:         if( pData->pBaseWrite->pMethods ){
 1430:           pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
 1431:         }
 1432:         if( pData->pBaseRead->pMethods ){
 1433:           pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
 1434:         }
 1435: 
 1436:         /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock 
 1437:         ** structures for this file. Obtain the async.lockMutex mutex 
 1438:         ** before doing so.
 1439:         */
 1440:         async_mutex_enter(ASYNC_MUTEX_LOCK);
 1441:         rc = unlinkAsyncFile(pData);
 1442:         async_mutex_leave(ASYNC_MUTEX_LOCK);
 1443: 
 1444:         if( !holdingMutex ){
 1445:           async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1446:           holdingMutex = 1;
 1447:         }
 1448:         assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
 1449:         async.pQueueFirst = p->pNext;
 1450:         sqlite3_free(pData);
 1451:         doNotFree = 1;
 1452:         break;
 1453:       }
 1454: 
 1455:       case ASYNC_UNLOCK: {
 1456:         AsyncWrite *pIter;
 1457:         AsyncFileData *pData = p->pFileData;
 1458:         int eLock = p->nByte;
 1459: 
 1460:         /* When a file is locked by SQLite using the async backend, it is 
 1461:         ** locked within the 'real' file-system synchronously. When it is
 1462:         ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to
 1463:         ** unlock the file asynchronously. The design of the async backend
 1464:         ** requires that the 'real' file-system file be locked from the
 1465:         ** time that SQLite first locks it (and probably reads from it)
 1466:         ** until all asynchronous write events that were scheduled before
 1467:         ** SQLite unlocked the file have been processed.
 1468:         **
 1469:         ** This is more complex if SQLite locks and unlocks the file multiple
 1470:         ** times in quick succession. For example, if SQLite does: 
 1471:         ** 
 1472:         **   lock, write, unlock, lock, write, unlock
 1473:         **
 1474:         ** Each "lock" operation locks the file immediately. Each "write" 
 1475:         ** and "unlock" operation adds an event to the event queue. If the
 1476:         ** second "lock" operation is performed before the first "unlock"
 1477:         ** operation has been processed asynchronously, then the first
 1478:         ** "unlock" cannot be safely processed as is, since this would mean
 1479:         ** the file was unlocked when the second "write" operation is
 1480:         ** processed. To work around this, when processing an ASYNC_UNLOCK
 1481:         ** operation, SQLite:
 1482:         **
 1483:         **   1) Unlocks the file to the minimum of the argument passed to
 1484:         **      the xUnlock() call and the current lock from SQLite's point
 1485:         **      of view, and
 1486:         **
 1487:         **   2) Only unlocks the file at all if this event is the last
 1488:         **      ASYNC_UNLOCK event on this file in the write-queue.
 1489:         */ 
 1490:         assert( holdingMutex==1 );
 1491:         assert( async.pQueueFirst==p );
 1492:         for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){
 1493:           if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break;
 1494:         }
 1495:         if( !pIter ){
 1496:           async_mutex_enter(ASYNC_MUTEX_LOCK);
 1497:           pData->lock.eAsyncLock = MIN(
 1498:               pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
 1499:           );
 1500:           assert(pData->lock.eAsyncLock>=pData->lock.eLock);
 1501:           rc = getFileLock(pData->pLock);
 1502:           async_mutex_leave(ASYNC_MUTEX_LOCK);
 1503:         }
 1504:         break;
 1505:       }
 1506: 
 1507:       case ASYNC_DELETE:
 1508:         ASYNC_TRACE(("DELETE %s\n", p->zBuf));
 1509:         rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
 1510:         break;
 1511: 
 1512:       case ASYNC_OPENEXCLUSIVE: {
 1513:         int flags = (int)p->iOffset;
 1514:         AsyncFileData *pData = p->pFileData;
 1515:         ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
 1516:         assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
 1517:         rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
 1518:         assert( holdingMutex==0 );
 1519:         async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1520:         holdingMutex = 1;
 1521:         break;
 1522:       }
 1523: 
 1524:       default: assert(!"Illegal value for AsyncWrite.op");
 1525:     }
 1526: 
 1527:     /* If we didn't hang on to the mutex during the IO op, obtain it now
 1528:     ** so that the AsyncWrite structure can be safely removed from the 
 1529:     ** global write-op queue.
 1530:     */
 1531:     if( !holdingMutex ){
 1532:       async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1533:       holdingMutex = 1;
 1534:     }
 1535:     /* ASYNC_TRACE(("UNLINK %p\n", p)); */
 1536:     if( p==async.pQueueLast ){
 1537:       async.pQueueLast = 0;
 1538:     }
 1539:     if( !doNotFree ){
 1540:       assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
 1541:       async.pQueueFirst = p->pNext;
 1542:       sqlite3_free(p);
 1543:     }
 1544:     assert( holdingMutex );
 1545: 
 1546:     /* An IO error has occurred. We cannot report the error back to the
 1547:     ** connection that requested the I/O since the error happened 
 1548:     ** asynchronously.  The connection has already moved on.  There 
 1549:     ** really is nobody to report the error to.
 1550:     **
 1551:     ** The file for which the error occurred may have been a database or
 1552:     ** journal file. Regardless, none of the currently queued operations
 1553:     ** associated with the same database should now be performed. Nor should
 1554:     ** any subsequently requested IO on either a database or journal file 
 1555:     ** handle for the same database be accepted until the main database
 1556:     ** file handle has been closed and reopened.
 1557:     **
 1558:     ** Furthermore, no further IO should be queued or performed on any file
 1559:     ** handle associated with a database that may have been part of a 
 1560:     ** multi-file transaction that included the database associated with 
 1561:     ** the IO error (i.e. a database ATTACHed to the same handle at some 
 1562:     ** point in time).
 1563:     */
 1564:     if( rc!=SQLITE_OK ){
 1565:       async.ioError = rc;
 1566:     }
 1567: 
 1568:     if( async.ioError && !async.pQueueFirst ){
 1569:       async_mutex_enter(ASYNC_MUTEX_LOCK);
 1570:       if( 0==async.pLock ){
 1571:         async.ioError = SQLITE_OK;
 1572:       }
 1573:       async_mutex_leave(ASYNC_MUTEX_LOCK);
 1574:     }
 1575: 
 1576:     /* Drop the queue mutex before continuing to the next write operation
 1577:     ** in order to give other threads a chance to work with the write queue.
 1578:     */
 1579:     if( !async.pQueueFirst || !async.ioError ){
 1580:       async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1581:       holdingMutex = 0;
 1582:       if( async.ioDelay>0 ){
 1583:         pVfs->xSleep(pVfs, async.ioDelay*1000);
 1584:       }else{
 1585:         async_sched_yield();
 1586:       }
 1587:     }
 1588:   }
 1589:   
 1590:   async_mutex_leave(ASYNC_MUTEX_WRITER);
 1591:   return;
 1592: }
 1593: 
 1594: /*
 1595: ** Install the asynchronous VFS.
 1596: */ 
 1597: int sqlite3async_initialize(const char *zParent, int isDefault){
 1598:   int rc = SQLITE_OK;
 1599:   if( async_vfs.pAppData==0 ){
 1600:     sqlite3_vfs *pParent = sqlite3_vfs_find(zParent);
 1601:     if( !pParent || async_os_initialize() ){
 1602:       rc = SQLITE_ERROR;
 1603:     }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){
 1604:       async_os_shutdown();
 1605:     }else{
 1606:       async_vfs.pAppData = (void *)pParent;
 1607:       async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
 1608:     }
 1609:   }
 1610:   return rc;
 1611: }
 1612: 
 1613: /*
 1614: ** Uninstall the asynchronous VFS.
 1615: */
 1616: void sqlite3async_shutdown(void){
 1617:   if( async_vfs.pAppData ){
 1618:     async_os_shutdown();
 1619:     sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs);
 1620:     async_vfs.pAppData = 0;
 1621:   }
 1622: }
 1623: 
 1624: /*
 1625: ** Process events on the write-queue.
 1626: */
 1627: void sqlite3async_run(void){
 1628:   asyncWriterThread();
 1629: }
 1630: 
 1631: /*
 1632: ** Control/configure the asynchronous IO system.
 1633: */
 1634: int sqlite3async_control(int op, ...){
 1635:   va_list ap;
 1636:   va_start(ap, op);
 1637:   switch( op ){
 1638:     case SQLITEASYNC_HALT: {
 1639:       int eWhen = va_arg(ap, int);
 1640:       if( eWhen!=SQLITEASYNC_HALT_NEVER
 1641:        && eWhen!=SQLITEASYNC_HALT_NOW
 1642:        && eWhen!=SQLITEASYNC_HALT_IDLE
 1643:       ){
 1644:         return SQLITE_MISUSE;
 1645:       }
 1646:       async.eHalt = eWhen;
 1647:       async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1648:       async_cond_signal(ASYNC_COND_QUEUE);
 1649:       async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1650:       break;
 1651:     }
 1652: 
 1653:     case SQLITEASYNC_DELAY: {
 1654:       int iDelay = va_arg(ap, int);
 1655:       if( iDelay<0 ){
 1656:         return SQLITE_MISUSE;
 1657:       }
 1658:       async.ioDelay = iDelay;
 1659:       break;
 1660:     }
 1661: 
 1662:     case SQLITEASYNC_LOCKFILES: {
 1663:       int bLock = va_arg(ap, int);
 1664:       async_mutex_enter(ASYNC_MUTEX_QUEUE);
 1665:       if( async.nFile || async.pQueueFirst ){
 1666:         async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1667:         return SQLITE_MISUSE;
 1668:       }
 1669:       async.bLockFiles = bLock;
 1670:       async_mutex_leave(ASYNC_MUTEX_QUEUE);
 1671:       break;
 1672:     }
 1673:       
 1674:     case SQLITEASYNC_GET_HALT: {
 1675:       int *peWhen = va_arg(ap, int *);
 1676:       *peWhen = async.eHalt;
 1677:       break;
 1678:     }
 1679:     case SQLITEASYNC_GET_DELAY: {
 1680:       int *piDelay = va_arg(ap, int *);
 1681:       *piDelay = async.ioDelay;
 1682:       break;
 1683:     }
 1684:     case SQLITEASYNC_GET_LOCKFILES: {
 1685:       int *piDelay = va_arg(ap, int *);
 1686:       *piDelay = async.bLockFiles;
 1687:       break;
 1688:     }
 1689: 
 1690:     default:
 1691:       return SQLITE_ERROR;
 1692:   }
 1693:   return SQLITE_OK;
 1694: }
 1695: 
 1696: #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */
 1697: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>