Annotation of embedaddon/sqlite3/src/analyze.c, revision 1.1.1.1
1.1 misho 1: /*
2: ** 2005 July 8
3: **
4: ** The author disclaims copyright to this source code. In place of
5: ** a legal notice, here is a blessing:
6: **
7: ** May you do good and not evil.
8: ** May you find forgiveness for yourself and forgive others.
9: ** May you share freely, never taking more than you give.
10: **
11: *************************************************************************
12: ** This file contains code associated with the ANALYZE command.
13: **
14: ** The ANALYZE command gather statistics about the content of tables
15: ** and indices. These statistics are made available to the query planner
16: ** to help it make better decisions about how to perform queries.
17: **
18: ** The following system tables are or have been supported:
19: **
20: ** CREATE TABLE sqlite_stat1(tbl, idx, stat);
21: ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22: ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23: **
24: ** Additional tables might be added in future releases of SQLite.
25: ** The sqlite_stat2 table is not created or used unless the SQLite version
26: ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
27: ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
28: ** The sqlite_stat2 table is superceded by sqlite_stat3, which is only
29: ** created and used by SQLite versions 3.7.9 and later and with
30: ** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3
31: ** is a superset of sqlite_stat2.
32: **
33: ** Format of sqlite_stat1:
34: **
35: ** There is normally one row per index, with the index identified by the
36: ** name in the idx column. The tbl column is the name of the table to
37: ** which the index belongs. In each such row, the stat column will be
38: ** a string consisting of a list of integers. The first integer in this
39: ** list is the number of rows in the index and in the table. The second
40: ** integer is the average number of rows in the index that have the same
41: ** value in the first column of the index. The third integer is the average
42: ** number of rows in the index that have the same value for the first two
43: ** columns. The N-th integer (for N>1) is the average number of rows in
44: ** the index which have the same value for the first N-1 columns. For
45: ** a K-column index, there will be K+1 integers in the stat column. If
46: ** the index is unique, then the last integer will be 1.
47: **
48: ** The list of integers in the stat column can optionally be followed
49: ** by the keyword "unordered". The "unordered" keyword, if it is present,
50: ** must be separated from the last integer by a single space. If the
51: ** "unordered" keyword is present, then the query planner assumes that
52: ** the index is unordered and will not use the index for a range query.
53: **
54: ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
55: ** column contains a single integer which is the (estimated) number of
56: ** rows in the table identified by sqlite_stat1.tbl.
57: **
58: ** Format of sqlite_stat2:
59: **
60: ** The sqlite_stat2 is only created and is only used if SQLite is compiled
61: ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
62: ** 3.6.18 and 3.7.8. The "stat2" table contains additional information
63: ** about the distribution of keys within an index. The index is identified by
64: ** the "idx" column and the "tbl" column is the name of the table to which
65: ** the index belongs. There are usually 10 rows in the sqlite_stat2
66: ** table for each index.
67: **
68: ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
69: ** inclusive are samples of the left-most key value in the index taken at
70: ** evenly spaced points along the index. Let the number of samples be S
71: ** (10 in the standard build) and let C be the number of rows in the index.
72: ** Then the sampled rows are given by:
73: **
74: ** rownumber = (i*C*2 + C)/(S*2)
75: **
76: ** For i between 0 and S-1. Conceptually, the index space is divided into
77: ** S uniform buckets and the samples are the middle row from each bucket.
78: **
79: ** The format for sqlite_stat2 is recorded here for legacy reference. This
80: ** version of SQLite does not support sqlite_stat2. It neither reads nor
81: ** writes the sqlite_stat2 table. This version of SQLite only supports
82: ** sqlite_stat3.
83: **
84: ** Format for sqlite_stat3:
85: **
86: ** The sqlite_stat3 is an enhancement to sqlite_stat2. A new name is
87: ** used to avoid compatibility problems.
88: **
89: ** The format of the sqlite_stat3 table is similar to the format of
90: ** the sqlite_stat2 table. There are multiple entries for each index.
91: ** The idx column names the index and the tbl column is the table of the
92: ** index. If the idx and tbl columns are the same, then the sample is
93: ** of the INTEGER PRIMARY KEY. The sample column is a value taken from
94: ** the left-most column of the index. The nEq column is the approximate
95: ** number of entires in the index whose left-most column exactly matches
96: ** the sample. nLt is the approximate number of entires whose left-most
97: ** column is less than the sample. The nDLt column is the approximate
98: ** number of distinct left-most entries in the index that are less than
99: ** the sample.
100: **
101: ** Future versions of SQLite might change to store a string containing
102: ** multiple integers values in the nDLt column of sqlite_stat3. The first
103: ** integer will be the number of prior index entires that are distinct in
104: ** the left-most column. The second integer will be the number of prior index
105: ** entries that are distinct in the first two columns. The third integer
106: ** will be the number of prior index entries that are distinct in the first
107: ** three columns. And so forth. With that extension, the nDLt field is
108: ** similar in function to the sqlite_stat1.stat field.
109: **
110: ** There can be an arbitrary number of sqlite_stat3 entries per index.
111: ** The ANALYZE command will typically generate sqlite_stat3 tables
112: ** that contain between 10 and 40 samples which are distributed across
113: ** the key space, though not uniformly, and which include samples with
114: ** largest possible nEq values.
115: */
116: #ifndef SQLITE_OMIT_ANALYZE
117: #include "sqliteInt.h"
118:
119: /*
120: ** This routine generates code that opens the sqlite_stat1 table for
121: ** writing with cursor iStatCur. If the library was built with the
122: ** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
123: ** opened for writing using cursor (iStatCur+1)
124: **
125: ** If the sqlite_stat1 tables does not previously exist, it is created.
126: ** Similarly, if the sqlite_stat3 table does not exist and the library
127: ** is compiled with SQLITE_ENABLE_STAT3 defined, it is created.
128: **
129: ** Argument zWhere may be a pointer to a buffer containing a table name,
130: ** or it may be a NULL pointer. If it is not NULL, then all entries in
131: ** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
132: ** with the named table are deleted. If zWhere==0, then code is generated
133: ** to delete all stat table entries.
134: */
135: static void openStatTable(
136: Parse *pParse, /* Parsing context */
137: int iDb, /* The database we are looking in */
138: int iStatCur, /* Open the sqlite_stat1 table on this cursor */
139: const char *zWhere, /* Delete entries for this table or index */
140: const char *zWhereType /* Either "tbl" or "idx" */
141: ){
142: static const struct {
143: const char *zName;
144: const char *zCols;
145: } aTable[] = {
146: { "sqlite_stat1", "tbl,idx,stat" },
147: #ifdef SQLITE_ENABLE_STAT3
148: { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
149: #endif
150: };
151:
152: int aRoot[] = {0, 0};
153: u8 aCreateTbl[] = {0, 0};
154:
155: int i;
156: sqlite3 *db = pParse->db;
157: Db *pDb;
158: Vdbe *v = sqlite3GetVdbe(pParse);
159: if( v==0 ) return;
160: assert( sqlite3BtreeHoldsAllMutexes(db) );
161: assert( sqlite3VdbeDb(v)==db );
162: pDb = &db->aDb[iDb];
163:
164: /* Create new statistic tables if they do not exist, or clear them
165: ** if they do already exist.
166: */
167: for(i=0; i<ArraySize(aTable); i++){
168: const char *zTab = aTable[i].zName;
169: Table *pStat;
170: if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
171: /* The sqlite_stat[12] table does not exist. Create it. Note that a
172: ** side-effect of the CREATE TABLE statement is to leave the rootpage
173: ** of the new table in register pParse->regRoot. This is important
174: ** because the OpenWrite opcode below will be needing it. */
175: sqlite3NestedParse(pParse,
176: "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
177: );
178: aRoot[i] = pParse->regRoot;
179: aCreateTbl[i] = 1;
180: }else{
181: /* The table already exists. If zWhere is not NULL, delete all entries
182: ** associated with the table zWhere. If zWhere is NULL, delete the
183: ** entire contents of the table. */
184: aRoot[i] = pStat->tnum;
185: sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
186: if( zWhere ){
187: sqlite3NestedParse(pParse,
188: "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
189: );
190: }else{
191: /* The sqlite_stat[12] table already exists. Delete all rows. */
192: sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
193: }
194: }
195: }
196:
197: /* Open the sqlite_stat[13] tables for writing. */
198: for(i=0; i<ArraySize(aTable); i++){
199: sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
200: sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
201: sqlite3VdbeChangeP5(v, aCreateTbl[i]);
202: }
203: }
204:
205: /*
206: ** Recommended number of samples for sqlite_stat3
207: */
208: #ifndef SQLITE_STAT3_SAMPLES
209: # define SQLITE_STAT3_SAMPLES 24
210: #endif
211:
212: /*
213: ** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
214: ** share an instance of the following structure to hold their state
215: ** information.
216: */
217: typedef struct Stat3Accum Stat3Accum;
218: struct Stat3Accum {
219: tRowcnt nRow; /* Number of rows in the entire table */
220: tRowcnt nPSample; /* How often to do a periodic sample */
221: int iMin; /* Index of entry with minimum nEq and hash */
222: int mxSample; /* Maximum number of samples to accumulate */
223: int nSample; /* Current number of samples */
224: u32 iPrn; /* Pseudo-random number used for sampling */
225: struct Stat3Sample {
226: i64 iRowid; /* Rowid in main table of the key */
227: tRowcnt nEq; /* sqlite_stat3.nEq */
228: tRowcnt nLt; /* sqlite_stat3.nLt */
229: tRowcnt nDLt; /* sqlite_stat3.nDLt */
230: u8 isPSample; /* True if a periodic sample */
231: u32 iHash; /* Tiebreaker hash */
232: } *a; /* An array of samples */
233: };
234:
235: #ifdef SQLITE_ENABLE_STAT3
236: /*
237: ** Implementation of the stat3_init(C,S) SQL function. The two parameters
238: ** are the number of rows in the table or index (C) and the number of samples
239: ** to accumulate (S).
240: **
241: ** This routine allocates the Stat3Accum object.
242: **
243: ** The return value is the Stat3Accum object (P).
244: */
245: static void stat3Init(
246: sqlite3_context *context,
247: int argc,
248: sqlite3_value **argv
249: ){
250: Stat3Accum *p;
251: tRowcnt nRow;
252: int mxSample;
253: int n;
254:
255: UNUSED_PARAMETER(argc);
256: nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
257: mxSample = sqlite3_value_int(argv[1]);
258: n = sizeof(*p) + sizeof(p->a[0])*mxSample;
259: p = sqlite3_malloc( n );
260: if( p==0 ){
261: sqlite3_result_error_nomem(context);
262: return;
263: }
264: memset(p, 0, n);
265: p->a = (struct Stat3Sample*)&p[1];
266: p->nRow = nRow;
267: p->mxSample = mxSample;
268: p->nPSample = p->nRow/(mxSample/3+1) + 1;
269: sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
270: sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
271: }
272: static const FuncDef stat3InitFuncdef = {
273: 2, /* nArg */
274: SQLITE_UTF8, /* iPrefEnc */
275: 0, /* flags */
276: 0, /* pUserData */
277: 0, /* pNext */
278: stat3Init, /* xFunc */
279: 0, /* xStep */
280: 0, /* xFinalize */
281: "stat3_init", /* zName */
282: 0, /* pHash */
283: 0 /* pDestructor */
284: };
285:
286:
287: /*
288: ** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function. The
289: ** arguments describe a single key instance. This routine makes the
290: ** decision about whether or not to retain this key for the sqlite_stat3
291: ** table.
292: **
293: ** The return value is NULL.
294: */
295: static void stat3Push(
296: sqlite3_context *context,
297: int argc,
298: sqlite3_value **argv
299: ){
300: Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
301: tRowcnt nEq = sqlite3_value_int64(argv[0]);
302: tRowcnt nLt = sqlite3_value_int64(argv[1]);
303: tRowcnt nDLt = sqlite3_value_int64(argv[2]);
304: i64 rowid = sqlite3_value_int64(argv[3]);
305: u8 isPSample = 0;
306: u8 doInsert = 0;
307: int iMin = p->iMin;
308: struct Stat3Sample *pSample;
309: int i;
310: u32 h;
311:
312: UNUSED_PARAMETER(context);
313: UNUSED_PARAMETER(argc);
314: if( nEq==0 ) return;
315: h = p->iPrn = p->iPrn*1103515245 + 12345;
316: if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
317: doInsert = isPSample = 1;
318: }else if( p->nSample<p->mxSample ){
319: doInsert = 1;
320: }else{
321: if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
322: doInsert = 1;
323: }
324: }
325: if( !doInsert ) return;
326: if( p->nSample==p->mxSample ){
327: assert( p->nSample - iMin - 1 >= 0 );
328: memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
329: pSample = &p->a[p->nSample-1];
330: }else{
331: pSample = &p->a[p->nSample++];
332: }
333: pSample->iRowid = rowid;
334: pSample->nEq = nEq;
335: pSample->nLt = nLt;
336: pSample->nDLt = nDLt;
337: pSample->iHash = h;
338: pSample->isPSample = isPSample;
339:
340: /* Find the new minimum */
341: if( p->nSample==p->mxSample ){
342: pSample = p->a;
343: i = 0;
344: while( pSample->isPSample ){
345: i++;
346: pSample++;
347: assert( i<p->nSample );
348: }
349: nEq = pSample->nEq;
350: h = pSample->iHash;
351: iMin = i;
352: for(i++, pSample++; i<p->nSample; i++, pSample++){
353: if( pSample->isPSample ) continue;
354: if( pSample->nEq<nEq
355: || (pSample->nEq==nEq && pSample->iHash<h)
356: ){
357: iMin = i;
358: nEq = pSample->nEq;
359: h = pSample->iHash;
360: }
361: }
362: p->iMin = iMin;
363: }
364: }
365: static const FuncDef stat3PushFuncdef = {
366: 5, /* nArg */
367: SQLITE_UTF8, /* iPrefEnc */
368: 0, /* flags */
369: 0, /* pUserData */
370: 0, /* pNext */
371: stat3Push, /* xFunc */
372: 0, /* xStep */
373: 0, /* xFinalize */
374: "stat3_push", /* zName */
375: 0, /* pHash */
376: 0 /* pDestructor */
377: };
378:
379: /*
380: ** Implementation of the stat3_get(P,N,...) SQL function. This routine is
381: ** used to query the results. Content is returned for the Nth sqlite_stat3
382: ** row where N is between 0 and S-1 and S is the number of samples. The
383: ** value returned depends on the number of arguments.
384: **
385: ** argc==2 result: rowid
386: ** argc==3 result: nEq
387: ** argc==4 result: nLt
388: ** argc==5 result: nDLt
389: */
390: static void stat3Get(
391: sqlite3_context *context,
392: int argc,
393: sqlite3_value **argv
394: ){
395: int n = sqlite3_value_int(argv[1]);
396: Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);
397:
398: assert( p!=0 );
399: if( p->nSample<=n ) return;
400: switch( argc ){
401: case 2: sqlite3_result_int64(context, p->a[n].iRowid); break;
402: case 3: sqlite3_result_int64(context, p->a[n].nEq); break;
403: case 4: sqlite3_result_int64(context, p->a[n].nLt); break;
404: default: sqlite3_result_int64(context, p->a[n].nDLt); break;
405: }
406: }
407: static const FuncDef stat3GetFuncdef = {
408: -1, /* nArg */
409: SQLITE_UTF8, /* iPrefEnc */
410: 0, /* flags */
411: 0, /* pUserData */
412: 0, /* pNext */
413: stat3Get, /* xFunc */
414: 0, /* xStep */
415: 0, /* xFinalize */
416: "stat3_get", /* zName */
417: 0, /* pHash */
418: 0 /* pDestructor */
419: };
420: #endif /* SQLITE_ENABLE_STAT3 */
421:
422:
423:
424:
425: /*
426: ** Generate code to do an analysis of all indices associated with
427: ** a single table.
428: */
429: static void analyzeOneTable(
430: Parse *pParse, /* Parser context */
431: Table *pTab, /* Table whose indices are to be analyzed */
432: Index *pOnlyIdx, /* If not NULL, only analyze this one index */
433: int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
434: int iMem /* Available memory locations begin here */
435: ){
436: sqlite3 *db = pParse->db; /* Database handle */
437: Index *pIdx; /* An index to being analyzed */
438: int iIdxCur; /* Cursor open on index being analyzed */
439: Vdbe *v; /* The virtual machine being built up */
440: int i; /* Loop counter */
441: int topOfLoop; /* The top of the loop */
442: int endOfLoop; /* The end of the loop */
443: int jZeroRows = -1; /* Jump from here if number of rows is zero */
444: int iDb; /* Index of database containing pTab */
445: int regTabname = iMem++; /* Register containing table name */
446: int regIdxname = iMem++; /* Register containing index name */
447: int regStat1 = iMem++; /* The stat column of sqlite_stat1 */
448: #ifdef SQLITE_ENABLE_STAT3
449: int regNumEq = regStat1; /* Number of instances. Same as regStat1 */
450: int regNumLt = iMem++; /* Number of keys less than regSample */
451: int regNumDLt = iMem++; /* Number of distinct keys less than regSample */
452: int regSample = iMem++; /* The next sample value */
453: int regRowid = regSample; /* Rowid of a sample */
454: int regAccum = iMem++; /* Register to hold Stat3Accum object */
455: int regLoop = iMem++; /* Loop counter */
456: int regCount = iMem++; /* Number of rows in the table or index */
457: int regTemp1 = iMem++; /* Intermediate register */
458: int regTemp2 = iMem++; /* Intermediate register */
459: int once = 1; /* One-time initialization */
460: int shortJump = 0; /* Instruction address */
461: int iTabCur = pParse->nTab++; /* Table cursor */
462: #endif
463: int regCol = iMem++; /* Content of a column in analyzed table */
464: int regRec = iMem++; /* Register holding completed record */
465: int regTemp = iMem++; /* Temporary use register */
466: int regNewRowid = iMem++; /* Rowid for the inserted record */
467:
468:
469: v = sqlite3GetVdbe(pParse);
470: if( v==0 || NEVER(pTab==0) ){
471: return;
472: }
473: if( pTab->tnum==0 ){
474: /* Do not gather statistics on views or virtual tables */
475: return;
476: }
477: if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
478: /* Do not gather statistics on system tables */
479: return;
480: }
481: assert( sqlite3BtreeHoldsAllMutexes(db) );
482: iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
483: assert( iDb>=0 );
484: assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
485: #ifndef SQLITE_OMIT_AUTHORIZATION
486: if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
487: db->aDb[iDb].zName ) ){
488: return;
489: }
490: #endif
491:
492: /* Establish a read-lock on the table at the shared-cache level. */
493: sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
494:
495: iIdxCur = pParse->nTab++;
496: sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
497: for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
498: int nCol;
499: KeyInfo *pKey;
500: int addrIfNot = 0; /* address of OP_IfNot */
501: int *aChngAddr; /* Array of jump instruction addresses */
502:
503: if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
504: VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
505: nCol = pIdx->nColumn;
506: aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
507: if( aChngAddr==0 ) continue;
508: pKey = sqlite3IndexKeyinfo(pParse, pIdx);
509: if( iMem+1+(nCol*2)>pParse->nMem ){
510: pParse->nMem = iMem+1+(nCol*2);
511: }
512:
513: /* Open a cursor to the index to be analyzed. */
514: assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
515: sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
516: (char *)pKey, P4_KEYINFO_HANDOFF);
517: VdbeComment((v, "%s", pIdx->zName));
518:
519: /* Populate the register containing the index name. */
520: sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
521:
522: #ifdef SQLITE_ENABLE_STAT3
523: if( once ){
524: once = 0;
525: sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
526: }
527: sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
528: sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
529: sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
530: sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
531: sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
532: sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
533: sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
534: (char*)&stat3InitFuncdef, P4_FUNCDEF);
535: sqlite3VdbeChangeP5(v, 2);
536: #endif /* SQLITE_ENABLE_STAT3 */
537:
538: /* The block of memory cells initialized here is used as follows.
539: **
540: ** iMem:
541: ** The total number of rows in the table.
542: **
543: ** iMem+1 .. iMem+nCol:
544: ** Number of distinct entries in index considering the
545: ** left-most N columns only, where N is between 1 and nCol,
546: ** inclusive.
547: **
548: ** iMem+nCol+1 .. Mem+2*nCol:
549: ** Previous value of indexed columns, from left to right.
550: **
551: ** Cells iMem through iMem+nCol are initialized to 0. The others are
552: ** initialized to contain an SQL NULL.
553: */
554: for(i=0; i<=nCol; i++){
555: sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
556: }
557: for(i=0; i<nCol; i++){
558: sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
559: }
560:
561: /* Start the analysis loop. This loop runs through all the entries in
562: ** the index b-tree. */
563: endOfLoop = sqlite3VdbeMakeLabel(v);
564: sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
565: topOfLoop = sqlite3VdbeCurrentAddr(v);
566: sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); /* Increment row counter */
567:
568: for(i=0; i<nCol; i++){
569: CollSeq *pColl;
570: sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
571: if( i==0 ){
572: /* Always record the very first row */
573: addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
574: }
575: assert( pIdx->azColl!=0 );
576: assert( pIdx->azColl[i]!=0 );
577: pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
578: aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
579: (char*)pColl, P4_COLLSEQ);
580: sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
581: VdbeComment((v, "jump if column %d changed", i));
582: #ifdef SQLITE_ENABLE_STAT3
583: if( i==0 ){
584: sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
585: VdbeComment((v, "incr repeat count"));
586: }
587: #endif
588: }
589: sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
590: for(i=0; i<nCol; i++){
591: sqlite3VdbeJumpHere(v, aChngAddr[i]); /* Set jump dest for the OP_Ne */
592: if( i==0 ){
593: sqlite3VdbeJumpHere(v, addrIfNot); /* Jump dest for OP_IfNot */
594: #ifdef SQLITE_ENABLE_STAT3
595: sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
596: (char*)&stat3PushFuncdef, P4_FUNCDEF);
597: sqlite3VdbeChangeP5(v, 5);
598: sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
599: sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
600: sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
601: sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
602: #endif
603: }
604: sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
605: sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
606: }
607: sqlite3DbFree(db, aChngAddr);
608:
609: /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
610: sqlite3VdbeResolveLabel(v, endOfLoop);
611:
612: sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
613: sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
614: #ifdef SQLITE_ENABLE_STAT3
615: sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
616: (char*)&stat3PushFuncdef, P4_FUNCDEF);
617: sqlite3VdbeChangeP5(v, 5);
618: sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
619: shortJump =
620: sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
621: sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
622: (char*)&stat3GetFuncdef, P4_FUNCDEF);
623: sqlite3VdbeChangeP5(v, 2);
624: sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
625: sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
626: sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
627: sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
628: sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
629: (char*)&stat3GetFuncdef, P4_FUNCDEF);
630: sqlite3VdbeChangeP5(v, 3);
631: sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
632: (char*)&stat3GetFuncdef, P4_FUNCDEF);
633: sqlite3VdbeChangeP5(v, 4);
634: sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
635: (char*)&stat3GetFuncdef, P4_FUNCDEF);
636: sqlite3VdbeChangeP5(v, 5);
637: sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
638: sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
639: sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
640: sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
641: sqlite3VdbeJumpHere(v, shortJump+2);
642: #endif
643:
644: /* Store the results in sqlite_stat1.
645: **
646: ** The result is a single row of the sqlite_stat1 table. The first
647: ** two columns are the names of the table and index. The third column
648: ** is a string composed of a list of integer statistics about the
649: ** index. The first integer in the list is the total number of entries
650: ** in the index. There is one additional integer in the list for each
651: ** column of the table. This additional integer is a guess of how many
652: ** rows of the table the index will select. If D is the count of distinct
653: ** values and K is the total number of rows, then the integer is computed
654: ** as:
655: **
656: ** I = (K+D-1)/D
657: **
658: ** If K==0 then no entry is made into the sqlite_stat1 table.
659: ** If K>0 then it is always the case the D>0 so division by zero
660: ** is never possible.
661: */
662: sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
663: if( jZeroRows<0 ){
664: jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
665: }
666: for(i=0; i<nCol; i++){
667: sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
668: sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
669: sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
670: sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
671: sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
672: sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
673: sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
674: }
675: sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
676: sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
677: sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
678: sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
679: }
680:
681: /* If the table has no indices, create a single sqlite_stat1 entry
682: ** containing NULL as the index name and the row count as the content.
683: */
684: if( pTab->pIndex==0 ){
685: sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
686: VdbeComment((v, "%s", pTab->zName));
687: sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
688: sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
689: jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
690: }else{
691: sqlite3VdbeJumpHere(v, jZeroRows);
692: jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
693: }
694: sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
695: sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
696: sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
697: sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
698: sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
699: if( pParse->nMem<regRec ) pParse->nMem = regRec;
700: sqlite3VdbeJumpHere(v, jZeroRows);
701: }
702:
703:
704: /*
705: ** Generate code that will cause the most recent index analysis to
706: ** be loaded into internal hash tables where is can be used.
707: */
708: static void loadAnalysis(Parse *pParse, int iDb){
709: Vdbe *v = sqlite3GetVdbe(pParse);
710: if( v ){
711: sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
712: }
713: }
714:
715: /*
716: ** Generate code that will do an analysis of an entire database
717: */
718: static void analyzeDatabase(Parse *pParse, int iDb){
719: sqlite3 *db = pParse->db;
720: Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
721: HashElem *k;
722: int iStatCur;
723: int iMem;
724:
725: sqlite3BeginWriteOperation(pParse, 0, iDb);
726: iStatCur = pParse->nTab;
727: pParse->nTab += 3;
728: openStatTable(pParse, iDb, iStatCur, 0, 0);
729: iMem = pParse->nMem+1;
730: assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
731: for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
732: Table *pTab = (Table*)sqliteHashData(k);
733: analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
734: }
735: loadAnalysis(pParse, iDb);
736: }
737:
738: /*
739: ** Generate code that will do an analysis of a single table in
740: ** a database. If pOnlyIdx is not NULL then it is a single index
741: ** in pTab that should be analyzed.
742: */
743: static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
744: int iDb;
745: int iStatCur;
746:
747: assert( pTab!=0 );
748: assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
749: iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
750: sqlite3BeginWriteOperation(pParse, 0, iDb);
751: iStatCur = pParse->nTab;
752: pParse->nTab += 3;
753: if( pOnlyIdx ){
754: openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
755: }else{
756: openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
757: }
758: analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
759: loadAnalysis(pParse, iDb);
760: }
761:
762: /*
763: ** Generate code for the ANALYZE command. The parser calls this routine
764: ** when it recognizes an ANALYZE command.
765: **
766: ** ANALYZE -- 1
767: ** ANALYZE <database> -- 2
768: ** ANALYZE ?<database>.?<tablename> -- 3
769: **
770: ** Form 1 causes all indices in all attached databases to be analyzed.
771: ** Form 2 analyzes all indices the single database named.
772: ** Form 3 analyzes all indices associated with the named table.
773: */
774: void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
775: sqlite3 *db = pParse->db;
776: int iDb;
777: int i;
778: char *z, *zDb;
779: Table *pTab;
780: Index *pIdx;
781: Token *pTableName;
782:
783: /* Read the database schema. If an error occurs, leave an error message
784: ** and code in pParse and return NULL. */
785: assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
786: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
787: return;
788: }
789:
790: assert( pName2!=0 || pName1==0 );
791: if( pName1==0 ){
792: /* Form 1: Analyze everything */
793: for(i=0; i<db->nDb; i++){
794: if( i==1 ) continue; /* Do not analyze the TEMP database */
795: analyzeDatabase(pParse, i);
796: }
797: }else if( pName2->n==0 ){
798: /* Form 2: Analyze the database or table named */
799: iDb = sqlite3FindDb(db, pName1);
800: if( iDb>=0 ){
801: analyzeDatabase(pParse, iDb);
802: }else{
803: z = sqlite3NameFromToken(db, pName1);
804: if( z ){
805: if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
806: analyzeTable(pParse, pIdx->pTable, pIdx);
807: }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
808: analyzeTable(pParse, pTab, 0);
809: }
810: sqlite3DbFree(db, z);
811: }
812: }
813: }else{
814: /* Form 3: Analyze the fully qualified table name */
815: iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
816: if( iDb>=0 ){
817: zDb = db->aDb[iDb].zName;
818: z = sqlite3NameFromToken(db, pTableName);
819: if( z ){
820: if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
821: analyzeTable(pParse, pIdx->pTable, pIdx);
822: }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
823: analyzeTable(pParse, pTab, 0);
824: }
825: sqlite3DbFree(db, z);
826: }
827: }
828: }
829: }
830:
831: /*
832: ** Used to pass information from the analyzer reader through to the
833: ** callback routine.
834: */
835: typedef struct analysisInfo analysisInfo;
836: struct analysisInfo {
837: sqlite3 *db;
838: const char *zDatabase;
839: };
840:
841: /*
842: ** This callback is invoked once for each index when reading the
843: ** sqlite_stat1 table.
844: **
845: ** argv[0] = name of the table
846: ** argv[1] = name of the index (might be NULL)
847: ** argv[2] = results of analysis - on integer for each column
848: **
849: ** Entries for which argv[1]==NULL simply record the number of rows in
850: ** the table.
851: */
852: static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
853: analysisInfo *pInfo = (analysisInfo*)pData;
854: Index *pIndex;
855: Table *pTable;
856: int i, c, n;
857: tRowcnt v;
858: const char *z;
859:
860: assert( argc==3 );
861: UNUSED_PARAMETER2(NotUsed, argc);
862:
863: if( argv==0 || argv[0]==0 || argv[2]==0 ){
864: return 0;
865: }
866: pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
867: if( pTable==0 ){
868: return 0;
869: }
870: if( argv[1] ){
871: pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
872: }else{
873: pIndex = 0;
874: }
875: n = pIndex ? pIndex->nColumn : 0;
876: z = argv[2];
877: for(i=0; *z && i<=n; i++){
878: v = 0;
879: while( (c=z[0])>='0' && c<='9' ){
880: v = v*10 + c - '0';
881: z++;
882: }
883: if( i==0 ) pTable->nRowEst = v;
884: if( pIndex==0 ) break;
885: pIndex->aiRowEst[i] = v;
886: if( *z==' ' ) z++;
887: if( memcmp(z, "unordered", 10)==0 ){
888: pIndex->bUnordered = 1;
889: break;
890: }
891: }
892: return 0;
893: }
894:
895: /*
896: ** If the Index.aSample variable is not NULL, delete the aSample[] array
897: ** and its contents.
898: */
899: void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
900: #ifdef SQLITE_ENABLE_STAT3
901: if( pIdx->aSample ){
902: int j;
903: for(j=0; j<pIdx->nSample; j++){
904: IndexSample *p = &pIdx->aSample[j];
905: if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
906: sqlite3DbFree(db, p->u.z);
907: }
908: }
909: sqlite3DbFree(db, pIdx->aSample);
910: }
911: if( db && db->pnBytesFreed==0 ){
912: pIdx->nSample = 0;
913: pIdx->aSample = 0;
914: }
915: #else
916: UNUSED_PARAMETER(db);
917: UNUSED_PARAMETER(pIdx);
918: #endif
919: }
920:
921: #ifdef SQLITE_ENABLE_STAT3
922: /*
923: ** Load content from the sqlite_stat3 table into the Index.aSample[]
924: ** arrays of all indices.
925: */
926: static int loadStat3(sqlite3 *db, const char *zDb){
927: int rc; /* Result codes from subroutines */
928: sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
929: char *zSql; /* Text of the SQL statement */
930: Index *pPrevIdx = 0; /* Previous index in the loop */
931: int idx = 0; /* slot in pIdx->aSample[] for next sample */
932: int eType; /* Datatype of a sample */
933: IndexSample *pSample; /* A slot in pIdx->aSample[] */
934:
935: if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
936: return SQLITE_OK;
937: }
938:
939: zSql = sqlite3MPrintf(db,
940: "SELECT idx,count(*) FROM %Q.sqlite_stat3"
941: " GROUP BY idx", zDb);
942: if( !zSql ){
943: return SQLITE_NOMEM;
944: }
945: rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
946: sqlite3DbFree(db, zSql);
947: if( rc ) return rc;
948:
949: while( sqlite3_step(pStmt)==SQLITE_ROW ){
950: char *zIndex; /* Index name */
951: Index *pIdx; /* Pointer to the index object */
952: int nSample; /* Number of samples */
953:
954: zIndex = (char *)sqlite3_column_text(pStmt, 0);
955: if( zIndex==0 ) continue;
956: nSample = sqlite3_column_int(pStmt, 1);
957: pIdx = sqlite3FindIndex(db, zIndex, zDb);
958: if( pIdx==0 ) continue;
959: assert( pIdx->nSample==0 );
960: pIdx->nSample = nSample;
961: pIdx->aSample = sqlite3MallocZero( nSample*sizeof(IndexSample) );
962: pIdx->avgEq = pIdx->aiRowEst[1];
963: if( pIdx->aSample==0 ){
964: db->mallocFailed = 1;
965: sqlite3_finalize(pStmt);
966: return SQLITE_NOMEM;
967: }
968: }
969: rc = sqlite3_finalize(pStmt);
970: if( rc ) return rc;
971:
972: zSql = sqlite3MPrintf(db,
973: "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
974: if( !zSql ){
975: return SQLITE_NOMEM;
976: }
977: rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
978: sqlite3DbFree(db, zSql);
979: if( rc ) return rc;
980:
981: while( sqlite3_step(pStmt)==SQLITE_ROW ){
982: char *zIndex; /* Index name */
983: Index *pIdx; /* Pointer to the index object */
984: int i; /* Loop counter */
985: tRowcnt sumEq; /* Sum of the nEq values */
986:
987: zIndex = (char *)sqlite3_column_text(pStmt, 0);
988: if( zIndex==0 ) continue;
989: pIdx = sqlite3FindIndex(db, zIndex, zDb);
990: if( pIdx==0 ) continue;
991: if( pIdx==pPrevIdx ){
992: idx++;
993: }else{
994: pPrevIdx = pIdx;
995: idx = 0;
996: }
997: assert( idx<pIdx->nSample );
998: pSample = &pIdx->aSample[idx];
999: pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
1000: pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
1001: pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
1002: if( idx==pIdx->nSample-1 ){
1003: if( pSample->nDLt>0 ){
1004: for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
1005: pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
1006: }
1007: if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
1008: }
1009: eType = sqlite3_column_type(pStmt, 4);
1010: pSample->eType = (u8)eType;
1011: switch( eType ){
1012: case SQLITE_INTEGER: {
1013: pSample->u.i = sqlite3_column_int64(pStmt, 4);
1014: break;
1015: }
1016: case SQLITE_FLOAT: {
1017: pSample->u.r = sqlite3_column_double(pStmt, 4);
1018: break;
1019: }
1020: case SQLITE_NULL: {
1021: break;
1022: }
1023: default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
1024: const char *z = (const char *)(
1025: (eType==SQLITE_BLOB) ?
1026: sqlite3_column_blob(pStmt, 4):
1027: sqlite3_column_text(pStmt, 4)
1028: );
1029: int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
1030: pSample->nByte = n;
1031: if( n < 1){
1032: pSample->u.z = 0;
1033: }else{
1034: pSample->u.z = sqlite3Malloc(n);
1035: if( pSample->u.z==0 ){
1036: db->mallocFailed = 1;
1037: sqlite3_finalize(pStmt);
1038: return SQLITE_NOMEM;
1039: }
1040: memcpy(pSample->u.z, z, n);
1041: }
1042: }
1043: }
1044: }
1045: return sqlite3_finalize(pStmt);
1046: }
1047: #endif /* SQLITE_ENABLE_STAT3 */
1048:
1049: /*
1050: ** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
1051: ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1052: ** arrays. The contents of sqlite_stat3 are used to populate the
1053: ** Index.aSample[] arrays.
1054: **
1055: ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1056: ** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined
1057: ** during compilation and the sqlite_stat3 table is present, no data is
1058: ** read from it.
1059: **
1060: ** If SQLITE_ENABLE_STAT3 was defined during compilation and the
1061: ** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
1062: ** returned. However, in this case, data is read from the sqlite_stat1
1063: ** table (if it is present) before returning.
1064: **
1065: ** If an OOM error occurs, this function always sets db->mallocFailed.
1066: ** This means if the caller does not care about other errors, the return
1067: ** code may be ignored.
1068: */
1069: int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1070: analysisInfo sInfo;
1071: HashElem *i;
1072: char *zSql;
1073: int rc;
1074:
1075: assert( iDb>=0 && iDb<db->nDb );
1076: assert( db->aDb[iDb].pBt!=0 );
1077:
1078: /* Clear any prior statistics */
1079: assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1080: for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
1081: Index *pIdx = sqliteHashData(i);
1082: sqlite3DefaultRowEst(pIdx);
1083: #ifdef SQLITE_ENABLE_STAT3
1084: sqlite3DeleteIndexSamples(db, pIdx);
1085: pIdx->aSample = 0;
1086: #endif
1087: }
1088:
1089: /* Check to make sure the sqlite_stat1 table exists */
1090: sInfo.db = db;
1091: sInfo.zDatabase = db->aDb[iDb].zName;
1092: if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
1093: return SQLITE_ERROR;
1094: }
1095:
1096: /* Load new statistics out of the sqlite_stat1 table */
1097: zSql = sqlite3MPrintf(db,
1098: "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1099: if( zSql==0 ){
1100: rc = SQLITE_NOMEM;
1101: }else{
1102: rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1103: sqlite3DbFree(db, zSql);
1104: }
1105:
1106:
1107: /* Load the statistics from the sqlite_stat3 table. */
1108: #ifdef SQLITE_ENABLE_STAT3
1109: if( rc==SQLITE_OK ){
1110: rc = loadStat3(db, sInfo.zDatabase);
1111: }
1112: #endif
1113:
1114: if( rc==SQLITE_NOMEM ){
1115: db->mallocFailed = 1;
1116: }
1117: return rc;
1118: }
1119:
1120:
1121: #endif /* SQLITE_OMIT_ANALYZE */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>