Annotation of embedaddon/sqlite3/src/analyze.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2005 July 8
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file contains code associated with the ANALYZE command.
                     13: **
                     14: ** The ANALYZE command gather statistics about the content of tables
                     15: ** and indices.  These statistics are made available to the query planner
                     16: ** to help it make better decisions about how to perform queries.
                     17: **
                     18: ** The following system tables are or have been supported:
                     19: **
                     20: **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
                     21: **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
                     22: **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
                     23: **
                     24: ** Additional tables might be added in future releases of SQLite.
                     25: ** The sqlite_stat2 table is not created or used unless the SQLite version
                     26: ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
                     27: ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
                     28: ** The sqlite_stat2 table is superceded by sqlite_stat3, which is only
                     29: ** created and used by SQLite versions 3.7.9 and later and with
                     30: ** SQLITE_ENABLE_STAT3 defined.  The fucntionality of sqlite_stat3
                     31: ** is a superset of sqlite_stat2.  
                     32: **
                     33: ** Format of sqlite_stat1:
                     34: **
                     35: ** There is normally one row per index, with the index identified by the
                     36: ** name in the idx column.  The tbl column is the name of the table to
                     37: ** which the index belongs.  In each such row, the stat column will be
                     38: ** a string consisting of a list of integers.  The first integer in this
                     39: ** list is the number of rows in the index and in the table.  The second
                     40: ** integer is the average number of rows in the index that have the same
                     41: ** value in the first column of the index.  The third integer is the average
                     42: ** number of rows in the index that have the same value for the first two
                     43: ** columns.  The N-th integer (for N>1) is the average number of rows in 
                     44: ** the index which have the same value for the first N-1 columns.  For
                     45: ** a K-column index, there will be K+1 integers in the stat column.  If
                     46: ** the index is unique, then the last integer will be 1.
                     47: **
                     48: ** The list of integers in the stat column can optionally be followed
                     49: ** by the keyword "unordered".  The "unordered" keyword, if it is present,
                     50: ** must be separated from the last integer by a single space.  If the
                     51: ** "unordered" keyword is present, then the query planner assumes that
                     52: ** the index is unordered and will not use the index for a range query.
                     53: ** 
                     54: ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
                     55: ** column contains a single integer which is the (estimated) number of
                     56: ** rows in the table identified by sqlite_stat1.tbl.
                     57: **
                     58: ** Format of sqlite_stat2:
                     59: **
                     60: ** The sqlite_stat2 is only created and is only used if SQLite is compiled
                     61: ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
                     62: ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
                     63: ** about the distribution of keys within an index.  The index is identified by
                     64: ** the "idx" column and the "tbl" column is the name of the table to which
                     65: ** the index belongs.  There are usually 10 rows in the sqlite_stat2
                     66: ** table for each index.
                     67: **
                     68: ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
                     69: ** inclusive are samples of the left-most key value in the index taken at
                     70: ** evenly spaced points along the index.  Let the number of samples be S
                     71: ** (10 in the standard build) and let C be the number of rows in the index.
                     72: ** Then the sampled rows are given by:
                     73: **
                     74: **     rownumber = (i*C*2 + C)/(S*2)
                     75: **
                     76: ** For i between 0 and S-1.  Conceptually, the index space is divided into
                     77: ** S uniform buckets and the samples are the middle row from each bucket.
                     78: **
                     79: ** The format for sqlite_stat2 is recorded here for legacy reference.  This
                     80: ** version of SQLite does not support sqlite_stat2.  It neither reads nor
                     81: ** writes the sqlite_stat2 table.  This version of SQLite only supports
                     82: ** sqlite_stat3.
                     83: **
                     84: ** Format for sqlite_stat3:
                     85: **
                     86: ** The sqlite_stat3 is an enhancement to sqlite_stat2.  A new name is
                     87: ** used to avoid compatibility problems.  
                     88: **
                     89: ** The format of the sqlite_stat3 table is similar to the format of
                     90: ** the sqlite_stat2 table.  There are multiple entries for each index.
                     91: ** The idx column names the index and the tbl column is the table of the
                     92: ** index.  If the idx and tbl columns are the same, then the sample is
                     93: ** of the INTEGER PRIMARY KEY.  The sample column is a value taken from
                     94: ** the left-most column of the index.  The nEq column is the approximate
                     95: ** number of entires in the index whose left-most column exactly matches
                     96: ** the sample.  nLt is the approximate number of entires whose left-most
                     97: ** column is less than the sample.  The nDLt column is the approximate
                     98: ** number of distinct left-most entries in the index that are less than
                     99: ** the sample.
                    100: **
                    101: ** Future versions of SQLite might change to store a string containing
                    102: ** multiple integers values in the nDLt column of sqlite_stat3.  The first
                    103: ** integer will be the number of prior index entires that are distinct in
                    104: ** the left-most column.  The second integer will be the number of prior index
                    105: ** entries that are distinct in the first two columns.  The third integer
                    106: ** will be the number of prior index entries that are distinct in the first
                    107: ** three columns.  And so forth.  With that extension, the nDLt field is
                    108: ** similar in function to the sqlite_stat1.stat field.
                    109: **
                    110: ** There can be an arbitrary number of sqlite_stat3 entries per index.
                    111: ** The ANALYZE command will typically generate sqlite_stat3 tables
                    112: ** that contain between 10 and 40 samples which are distributed across
                    113: ** the key space, though not uniformly, and which include samples with
                    114: ** largest possible nEq values.
                    115: */
                    116: #ifndef SQLITE_OMIT_ANALYZE
                    117: #include "sqliteInt.h"
                    118: 
                    119: /*
                    120: ** This routine generates code that opens the sqlite_stat1 table for
                    121: ** writing with cursor iStatCur. If the library was built with the
                    122: ** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
                    123: ** opened for writing using cursor (iStatCur+1)
                    124: **
                    125: ** If the sqlite_stat1 tables does not previously exist, it is created.
                    126: ** Similarly, if the sqlite_stat3 table does not exist and the library
                    127: ** is compiled with SQLITE_ENABLE_STAT3 defined, it is created. 
                    128: **
                    129: ** Argument zWhere may be a pointer to a buffer containing a table name,
                    130: ** or it may be a NULL pointer. If it is not NULL, then all entries in
                    131: ** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
                    132: ** with the named table are deleted. If zWhere==0, then code is generated
                    133: ** to delete all stat table entries.
                    134: */
                    135: static void openStatTable(
                    136:   Parse *pParse,          /* Parsing context */
                    137:   int iDb,                /* The database we are looking in */
                    138:   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
                    139:   const char *zWhere,     /* Delete entries for this table or index */
                    140:   const char *zWhereType  /* Either "tbl" or "idx" */
                    141: ){
                    142:   static const struct {
                    143:     const char *zName;
                    144:     const char *zCols;
                    145:   } aTable[] = {
                    146:     { "sqlite_stat1", "tbl,idx,stat" },
                    147: #ifdef SQLITE_ENABLE_STAT3
                    148:     { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
                    149: #endif
                    150:   };
                    151: 
                    152:   int aRoot[] = {0, 0};
                    153:   u8 aCreateTbl[] = {0, 0};
                    154: 
                    155:   int i;
                    156:   sqlite3 *db = pParse->db;
                    157:   Db *pDb;
                    158:   Vdbe *v = sqlite3GetVdbe(pParse);
                    159:   if( v==0 ) return;
                    160:   assert( sqlite3BtreeHoldsAllMutexes(db) );
                    161:   assert( sqlite3VdbeDb(v)==db );
                    162:   pDb = &db->aDb[iDb];
                    163: 
                    164:   /* Create new statistic tables if they do not exist, or clear them
                    165:   ** if they do already exist.
                    166:   */
                    167:   for(i=0; i<ArraySize(aTable); i++){
                    168:     const char *zTab = aTable[i].zName;
                    169:     Table *pStat;
                    170:     if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
                    171:       /* The sqlite_stat[12] table does not exist. Create it. Note that a 
                    172:       ** side-effect of the CREATE TABLE statement is to leave the rootpage 
                    173:       ** of the new table in register pParse->regRoot. This is important 
                    174:       ** because the OpenWrite opcode below will be needing it. */
                    175:       sqlite3NestedParse(pParse,
                    176:           "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
                    177:       );
                    178:       aRoot[i] = pParse->regRoot;
                    179:       aCreateTbl[i] = 1;
                    180:     }else{
                    181:       /* The table already exists. If zWhere is not NULL, delete all entries 
                    182:       ** associated with the table zWhere. If zWhere is NULL, delete the
                    183:       ** entire contents of the table. */
                    184:       aRoot[i] = pStat->tnum;
                    185:       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
                    186:       if( zWhere ){
                    187:         sqlite3NestedParse(pParse,
                    188:            "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
                    189:         );
                    190:       }else{
                    191:         /* The sqlite_stat[12] table already exists.  Delete all rows. */
                    192:         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
                    193:       }
                    194:     }
                    195:   }
                    196: 
                    197:   /* Open the sqlite_stat[13] tables for writing. */
                    198:   for(i=0; i<ArraySize(aTable); i++){
                    199:     sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
                    200:     sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
                    201:     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
                    202:   }
                    203: }
                    204: 
                    205: /*
                    206: ** Recommended number of samples for sqlite_stat3
                    207: */
                    208: #ifndef SQLITE_STAT3_SAMPLES
                    209: # define SQLITE_STAT3_SAMPLES 24
                    210: #endif
                    211: 
                    212: /*
                    213: ** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
                    214: ** share an instance of the following structure to hold their state
                    215: ** information.
                    216: */
                    217: typedef struct Stat3Accum Stat3Accum;
                    218: struct Stat3Accum {
                    219:   tRowcnt nRow;             /* Number of rows in the entire table */
                    220:   tRowcnt nPSample;         /* How often to do a periodic sample */
                    221:   int iMin;                 /* Index of entry with minimum nEq and hash */
                    222:   int mxSample;             /* Maximum number of samples to accumulate */
                    223:   int nSample;              /* Current number of samples */
                    224:   u32 iPrn;                 /* Pseudo-random number used for sampling */
                    225:   struct Stat3Sample {
                    226:     i64 iRowid;                /* Rowid in main table of the key */
                    227:     tRowcnt nEq;               /* sqlite_stat3.nEq */
                    228:     tRowcnt nLt;               /* sqlite_stat3.nLt */
                    229:     tRowcnt nDLt;              /* sqlite_stat3.nDLt */
                    230:     u8 isPSample;              /* True if a periodic sample */
                    231:     u32 iHash;                 /* Tiebreaker hash */
                    232:   } *a;                     /* An array of samples */
                    233: };
                    234: 
                    235: #ifdef SQLITE_ENABLE_STAT3
                    236: /*
                    237: ** Implementation of the stat3_init(C,S) SQL function.  The two parameters
                    238: ** are the number of rows in the table or index (C) and the number of samples
                    239: ** to accumulate (S).
                    240: **
                    241: ** This routine allocates the Stat3Accum object.
                    242: **
                    243: ** The return value is the Stat3Accum object (P).
                    244: */
                    245: static void stat3Init(
                    246:   sqlite3_context *context,
                    247:   int argc,
                    248:   sqlite3_value **argv
                    249: ){
                    250:   Stat3Accum *p;
                    251:   tRowcnt nRow;
                    252:   int mxSample;
                    253:   int n;
                    254: 
                    255:   UNUSED_PARAMETER(argc);
                    256:   nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
                    257:   mxSample = sqlite3_value_int(argv[1]);
                    258:   n = sizeof(*p) + sizeof(p->a[0])*mxSample;
                    259:   p = sqlite3_malloc( n );
                    260:   if( p==0 ){
                    261:     sqlite3_result_error_nomem(context);
                    262:     return;
                    263:   }
                    264:   memset(p, 0, n);
                    265:   p->a = (struct Stat3Sample*)&p[1];
                    266:   p->nRow = nRow;
                    267:   p->mxSample = mxSample;
                    268:   p->nPSample = p->nRow/(mxSample/3+1) + 1;
                    269:   sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
                    270:   sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
                    271: }
                    272: static const FuncDef stat3InitFuncdef = {
                    273:   2,                /* nArg */
                    274:   SQLITE_UTF8,      /* iPrefEnc */
                    275:   0,                /* flags */
                    276:   0,                /* pUserData */
                    277:   0,                /* pNext */
                    278:   stat3Init,        /* xFunc */
                    279:   0,                /* xStep */
                    280:   0,                /* xFinalize */
                    281:   "stat3_init",     /* zName */
                    282:   0,                /* pHash */
                    283:   0                 /* pDestructor */
                    284: };
                    285: 
                    286: 
                    287: /*
                    288: ** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function.  The
                    289: ** arguments describe a single key instance.  This routine makes the 
                    290: ** decision about whether or not to retain this key for the sqlite_stat3
                    291: ** table.
                    292: **
                    293: ** The return value is NULL.
                    294: */
                    295: static void stat3Push(
                    296:   sqlite3_context *context,
                    297:   int argc,
                    298:   sqlite3_value **argv
                    299: ){
                    300:   Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
                    301:   tRowcnt nEq = sqlite3_value_int64(argv[0]);
                    302:   tRowcnt nLt = sqlite3_value_int64(argv[1]);
                    303:   tRowcnt nDLt = sqlite3_value_int64(argv[2]);
                    304:   i64 rowid = sqlite3_value_int64(argv[3]);
                    305:   u8 isPSample = 0;
                    306:   u8 doInsert = 0;
                    307:   int iMin = p->iMin;
                    308:   struct Stat3Sample *pSample;
                    309:   int i;
                    310:   u32 h;
                    311: 
                    312:   UNUSED_PARAMETER(context);
                    313:   UNUSED_PARAMETER(argc);
                    314:   if( nEq==0 ) return;
                    315:   h = p->iPrn = p->iPrn*1103515245 + 12345;
                    316:   if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
                    317:     doInsert = isPSample = 1;
                    318:   }else if( p->nSample<p->mxSample ){
                    319:     doInsert = 1;
                    320:   }else{
                    321:     if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
                    322:       doInsert = 1;
                    323:     }
                    324:   }
                    325:   if( !doInsert ) return;
                    326:   if( p->nSample==p->mxSample ){
                    327:     assert( p->nSample - iMin - 1 >= 0 );
                    328:     memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
                    329:     pSample = &p->a[p->nSample-1];
                    330:   }else{
                    331:     pSample = &p->a[p->nSample++];
                    332:   }
                    333:   pSample->iRowid = rowid;
                    334:   pSample->nEq = nEq;
                    335:   pSample->nLt = nLt;
                    336:   pSample->nDLt = nDLt;
                    337:   pSample->iHash = h;
                    338:   pSample->isPSample = isPSample;
                    339: 
                    340:   /* Find the new minimum */
                    341:   if( p->nSample==p->mxSample ){
                    342:     pSample = p->a;
                    343:     i = 0;
                    344:     while( pSample->isPSample ){
                    345:       i++;
                    346:       pSample++;
                    347:       assert( i<p->nSample );
                    348:     }
                    349:     nEq = pSample->nEq;
                    350:     h = pSample->iHash;
                    351:     iMin = i;
                    352:     for(i++, pSample++; i<p->nSample; i++, pSample++){
                    353:       if( pSample->isPSample ) continue;
                    354:       if( pSample->nEq<nEq
                    355:        || (pSample->nEq==nEq && pSample->iHash<h)
                    356:       ){
                    357:         iMin = i;
                    358:         nEq = pSample->nEq;
                    359:         h = pSample->iHash;
                    360:       }
                    361:     }
                    362:     p->iMin = iMin;
                    363:   }
                    364: }
                    365: static const FuncDef stat3PushFuncdef = {
                    366:   5,                /* nArg */
                    367:   SQLITE_UTF8,      /* iPrefEnc */
                    368:   0,                /* flags */
                    369:   0,                /* pUserData */
                    370:   0,                /* pNext */
                    371:   stat3Push,        /* xFunc */
                    372:   0,                /* xStep */
                    373:   0,                /* xFinalize */
                    374:   "stat3_push",     /* zName */
                    375:   0,                /* pHash */
                    376:   0                 /* pDestructor */
                    377: };
                    378: 
                    379: /*
                    380: ** Implementation of the stat3_get(P,N,...) SQL function.  This routine is
                    381: ** used to query the results.  Content is returned for the Nth sqlite_stat3
                    382: ** row where N is between 0 and S-1 and S is the number of samples.  The
                    383: ** value returned depends on the number of arguments.
                    384: **
                    385: **   argc==2    result:  rowid
                    386: **   argc==3    result:  nEq
                    387: **   argc==4    result:  nLt
                    388: **   argc==5    result:  nDLt
                    389: */
                    390: static void stat3Get(
                    391:   sqlite3_context *context,
                    392:   int argc,
                    393:   sqlite3_value **argv
                    394: ){
                    395:   int n = sqlite3_value_int(argv[1]);
                    396:   Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);
                    397: 
                    398:   assert( p!=0 );
                    399:   if( p->nSample<=n ) return;
                    400:   switch( argc ){
                    401:     case 2:  sqlite3_result_int64(context, p->a[n].iRowid); break;
                    402:     case 3:  sqlite3_result_int64(context, p->a[n].nEq);    break;
                    403:     case 4:  sqlite3_result_int64(context, p->a[n].nLt);    break;
                    404:     default: sqlite3_result_int64(context, p->a[n].nDLt);   break;
                    405:   }
                    406: }
                    407: static const FuncDef stat3GetFuncdef = {
                    408:   -1,               /* nArg */
                    409:   SQLITE_UTF8,      /* iPrefEnc */
                    410:   0,                /* flags */
                    411:   0,                /* pUserData */
                    412:   0,                /* pNext */
                    413:   stat3Get,         /* xFunc */
                    414:   0,                /* xStep */
                    415:   0,                /* xFinalize */
                    416:   "stat3_get",     /* zName */
                    417:   0,                /* pHash */
                    418:   0                 /* pDestructor */
                    419: };
                    420: #endif /* SQLITE_ENABLE_STAT3 */
                    421: 
                    422: 
                    423: 
                    424: 
                    425: /*
                    426: ** Generate code to do an analysis of all indices associated with
                    427: ** a single table.
                    428: */
                    429: static void analyzeOneTable(
                    430:   Parse *pParse,   /* Parser context */
                    431:   Table *pTab,     /* Table whose indices are to be analyzed */
                    432:   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
                    433:   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
                    434:   int iMem         /* Available memory locations begin here */
                    435: ){
                    436:   sqlite3 *db = pParse->db;    /* Database handle */
                    437:   Index *pIdx;                 /* An index to being analyzed */
                    438:   int iIdxCur;                 /* Cursor open on index being analyzed */
                    439:   Vdbe *v;                     /* The virtual machine being built up */
                    440:   int i;                       /* Loop counter */
                    441:   int topOfLoop;               /* The top of the loop */
                    442:   int endOfLoop;               /* The end of the loop */
                    443:   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
                    444:   int iDb;                     /* Index of database containing pTab */
                    445:   int regTabname = iMem++;     /* Register containing table name */
                    446:   int regIdxname = iMem++;     /* Register containing index name */
                    447:   int regStat1 = iMem++;       /* The stat column of sqlite_stat1 */
                    448: #ifdef SQLITE_ENABLE_STAT3
                    449:   int regNumEq = regStat1;     /* Number of instances.  Same as regStat1 */
                    450:   int regNumLt = iMem++;       /* Number of keys less than regSample */
                    451:   int regNumDLt = iMem++;      /* Number of distinct keys less than regSample */
                    452:   int regSample = iMem++;      /* The next sample value */
                    453:   int regRowid = regSample;    /* Rowid of a sample */
                    454:   int regAccum = iMem++;       /* Register to hold Stat3Accum object */
                    455:   int regLoop = iMem++;        /* Loop counter */
                    456:   int regCount = iMem++;       /* Number of rows in the table or index */
                    457:   int regTemp1 = iMem++;       /* Intermediate register */
                    458:   int regTemp2 = iMem++;       /* Intermediate register */
                    459:   int once = 1;                /* One-time initialization */
                    460:   int shortJump = 0;           /* Instruction address */
                    461:   int iTabCur = pParse->nTab++; /* Table cursor */
                    462: #endif
                    463:   int regCol = iMem++;         /* Content of a column in analyzed table */
                    464:   int regRec = iMem++;         /* Register holding completed record */
                    465:   int regTemp = iMem++;        /* Temporary use register */
                    466:   int regNewRowid = iMem++;    /* Rowid for the inserted record */
                    467: 
                    468: 
                    469:   v = sqlite3GetVdbe(pParse);
                    470:   if( v==0 || NEVER(pTab==0) ){
                    471:     return;
                    472:   }
                    473:   if( pTab->tnum==0 ){
                    474:     /* Do not gather statistics on views or virtual tables */
                    475:     return;
                    476:   }
                    477:   if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
                    478:     /* Do not gather statistics on system tables */
                    479:     return;
                    480:   }
                    481:   assert( sqlite3BtreeHoldsAllMutexes(db) );
                    482:   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
                    483:   assert( iDb>=0 );
                    484:   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
                    485: #ifndef SQLITE_OMIT_AUTHORIZATION
                    486:   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
                    487:       db->aDb[iDb].zName ) ){
                    488:     return;
                    489:   }
                    490: #endif
                    491: 
                    492:   /* Establish a read-lock on the table at the shared-cache level. */
                    493:   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
                    494: 
                    495:   iIdxCur = pParse->nTab++;
                    496:   sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
                    497:   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
                    498:     int nCol;
                    499:     KeyInfo *pKey;
                    500:     int addrIfNot = 0;           /* address of OP_IfNot */
                    501:     int *aChngAddr;              /* Array of jump instruction addresses */
                    502: 
                    503:     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
                    504:     VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
                    505:     nCol = pIdx->nColumn;
                    506:     aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
                    507:     if( aChngAddr==0 ) continue;
                    508:     pKey = sqlite3IndexKeyinfo(pParse, pIdx);
                    509:     if( iMem+1+(nCol*2)>pParse->nMem ){
                    510:       pParse->nMem = iMem+1+(nCol*2);
                    511:     }
                    512: 
                    513:     /* Open a cursor to the index to be analyzed. */
                    514:     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
                    515:     sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
                    516:         (char *)pKey, P4_KEYINFO_HANDOFF);
                    517:     VdbeComment((v, "%s", pIdx->zName));
                    518: 
                    519:     /* Populate the register containing the index name. */
                    520:     sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
                    521: 
                    522: #ifdef SQLITE_ENABLE_STAT3
                    523:     if( once ){
                    524:       once = 0;
                    525:       sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
                    526:     }
                    527:     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
                    528:     sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
                    529:     sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
                    530:     sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
                    531:     sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
                    532:     sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
                    533:     sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
                    534:                       (char*)&stat3InitFuncdef, P4_FUNCDEF);
                    535:     sqlite3VdbeChangeP5(v, 2);
                    536: #endif /* SQLITE_ENABLE_STAT3 */
                    537: 
                    538:     /* The block of memory cells initialized here is used as follows.
                    539:     **
                    540:     **    iMem:                
                    541:     **        The total number of rows in the table.
                    542:     **
                    543:     **    iMem+1 .. iMem+nCol: 
                    544:     **        Number of distinct entries in index considering the 
                    545:     **        left-most N columns only, where N is between 1 and nCol, 
                    546:     **        inclusive.
                    547:     **
                    548:     **    iMem+nCol+1 .. Mem+2*nCol:  
                    549:     **        Previous value of indexed columns, from left to right.
                    550:     **
                    551:     ** Cells iMem through iMem+nCol are initialized to 0. The others are 
                    552:     ** initialized to contain an SQL NULL.
                    553:     */
                    554:     for(i=0; i<=nCol; i++){
                    555:       sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
                    556:     }
                    557:     for(i=0; i<nCol; i++){
                    558:       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
                    559:     }
                    560: 
                    561:     /* Start the analysis loop. This loop runs through all the entries in
                    562:     ** the index b-tree.  */
                    563:     endOfLoop = sqlite3VdbeMakeLabel(v);
                    564:     sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
                    565:     topOfLoop = sqlite3VdbeCurrentAddr(v);
                    566:     sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);  /* Increment row counter */
                    567: 
                    568:     for(i=0; i<nCol; i++){
                    569:       CollSeq *pColl;
                    570:       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
                    571:       if( i==0 ){
                    572:         /* Always record the very first row */
                    573:         addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
                    574:       }
                    575:       assert( pIdx->azColl!=0 );
                    576:       assert( pIdx->azColl[i]!=0 );
                    577:       pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
                    578:       aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                    579:                                       (char*)pColl, P4_COLLSEQ);
                    580:       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
                    581:       VdbeComment((v, "jump if column %d changed", i));
                    582: #ifdef SQLITE_ENABLE_STAT3
                    583:       if( i==0 ){
                    584:         sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
                    585:         VdbeComment((v, "incr repeat count"));
                    586:       }
                    587: #endif
                    588:     }
                    589:     sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
                    590:     for(i=0; i<nCol; i++){
                    591:       sqlite3VdbeJumpHere(v, aChngAddr[i]);  /* Set jump dest for the OP_Ne */
                    592:       if( i==0 ){
                    593:         sqlite3VdbeJumpHere(v, addrIfNot);   /* Jump dest for OP_IfNot */
                    594: #ifdef SQLITE_ENABLE_STAT3
                    595:         sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                    596:                           (char*)&stat3PushFuncdef, P4_FUNCDEF);
                    597:         sqlite3VdbeChangeP5(v, 5);
                    598:         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
                    599:         sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
                    600:         sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
                    601:         sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
                    602: #endif        
                    603:       }
                    604:       sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
                    605:       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
                    606:     }
                    607:     sqlite3DbFree(db, aChngAddr);
                    608: 
                    609:     /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
                    610:     sqlite3VdbeResolveLabel(v, endOfLoop);
                    611: 
                    612:     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
                    613:     sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
                    614: #ifdef SQLITE_ENABLE_STAT3
                    615:     sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                    616:                       (char*)&stat3PushFuncdef, P4_FUNCDEF);
                    617:     sqlite3VdbeChangeP5(v, 5);
                    618:     sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
                    619:     shortJump = 
                    620:     sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
                    621:     sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
                    622:                       (char*)&stat3GetFuncdef, P4_FUNCDEF);
                    623:     sqlite3VdbeChangeP5(v, 2);
                    624:     sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
                    625:     sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
                    626:     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
                    627:     sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
                    628:     sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
                    629:                       (char*)&stat3GetFuncdef, P4_FUNCDEF);
                    630:     sqlite3VdbeChangeP5(v, 3);
                    631:     sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
                    632:                       (char*)&stat3GetFuncdef, P4_FUNCDEF);
                    633:     sqlite3VdbeChangeP5(v, 4);
                    634:     sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
                    635:                       (char*)&stat3GetFuncdef, P4_FUNCDEF);
                    636:     sqlite3VdbeChangeP5(v, 5);
                    637:     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
                    638:     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
                    639:     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
                    640:     sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
                    641:     sqlite3VdbeJumpHere(v, shortJump+2);
                    642: #endif        
                    643: 
                    644:     /* Store the results in sqlite_stat1.
                    645:     **
                    646:     ** The result is a single row of the sqlite_stat1 table.  The first
                    647:     ** two columns are the names of the table and index.  The third column
                    648:     ** is a string composed of a list of integer statistics about the
                    649:     ** index.  The first integer in the list is the total number of entries
                    650:     ** in the index.  There is one additional integer in the list for each
                    651:     ** column of the table.  This additional integer is a guess of how many
                    652:     ** rows of the table the index will select.  If D is the count of distinct
                    653:     ** values and K is the total number of rows, then the integer is computed
                    654:     ** as:
                    655:     **
                    656:     **        I = (K+D-1)/D
                    657:     **
                    658:     ** If K==0 then no entry is made into the sqlite_stat1 table.  
                    659:     ** If K>0 then it is always the case the D>0 so division by zero
                    660:     ** is never possible.
                    661:     */
                    662:     sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
                    663:     if( jZeroRows<0 ){
                    664:       jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
                    665:     }
                    666:     for(i=0; i<nCol; i++){
                    667:       sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
                    668:       sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
                    669:       sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
                    670:       sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
                    671:       sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
                    672:       sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
                    673:       sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
                    674:     }
                    675:     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
                    676:     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
                    677:     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
                    678:     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
                    679:   }
                    680: 
                    681:   /* If the table has no indices, create a single sqlite_stat1 entry
                    682:   ** containing NULL as the index name and the row count as the content.
                    683:   */
                    684:   if( pTab->pIndex==0 ){
                    685:     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
                    686:     VdbeComment((v, "%s", pTab->zName));
                    687:     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
                    688:     sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
                    689:     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
                    690:   }else{
                    691:     sqlite3VdbeJumpHere(v, jZeroRows);
                    692:     jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
                    693:   }
                    694:   sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
                    695:   sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
                    696:   sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
                    697:   sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
                    698:   sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
                    699:   if( pParse->nMem<regRec ) pParse->nMem = regRec;
                    700:   sqlite3VdbeJumpHere(v, jZeroRows);
                    701: }
                    702: 
                    703: 
                    704: /*
                    705: ** Generate code that will cause the most recent index analysis to
                    706: ** be loaded into internal hash tables where is can be used.
                    707: */
                    708: static void loadAnalysis(Parse *pParse, int iDb){
                    709:   Vdbe *v = sqlite3GetVdbe(pParse);
                    710:   if( v ){
                    711:     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
                    712:   }
                    713: }
                    714: 
                    715: /*
                    716: ** Generate code that will do an analysis of an entire database
                    717: */
                    718: static void analyzeDatabase(Parse *pParse, int iDb){
                    719:   sqlite3 *db = pParse->db;
                    720:   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
                    721:   HashElem *k;
                    722:   int iStatCur;
                    723:   int iMem;
                    724: 
                    725:   sqlite3BeginWriteOperation(pParse, 0, iDb);
                    726:   iStatCur = pParse->nTab;
                    727:   pParse->nTab += 3;
                    728:   openStatTable(pParse, iDb, iStatCur, 0, 0);
                    729:   iMem = pParse->nMem+1;
                    730:   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
                    731:   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
                    732:     Table *pTab = (Table*)sqliteHashData(k);
                    733:     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
                    734:   }
                    735:   loadAnalysis(pParse, iDb);
                    736: }
                    737: 
                    738: /*
                    739: ** Generate code that will do an analysis of a single table in
                    740: ** a database.  If pOnlyIdx is not NULL then it is a single index
                    741: ** in pTab that should be analyzed.
                    742: */
                    743: static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
                    744:   int iDb;
                    745:   int iStatCur;
                    746: 
                    747:   assert( pTab!=0 );
                    748:   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
                    749:   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
                    750:   sqlite3BeginWriteOperation(pParse, 0, iDb);
                    751:   iStatCur = pParse->nTab;
                    752:   pParse->nTab += 3;
                    753:   if( pOnlyIdx ){
                    754:     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
                    755:   }else{
                    756:     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
                    757:   }
                    758:   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
                    759:   loadAnalysis(pParse, iDb);
                    760: }
                    761: 
                    762: /*
                    763: ** Generate code for the ANALYZE command.  The parser calls this routine
                    764: ** when it recognizes an ANALYZE command.
                    765: **
                    766: **        ANALYZE                            -- 1
                    767: **        ANALYZE  <database>                -- 2
                    768: **        ANALYZE  ?<database>.?<tablename>  -- 3
                    769: **
                    770: ** Form 1 causes all indices in all attached databases to be analyzed.
                    771: ** Form 2 analyzes all indices the single database named.
                    772: ** Form 3 analyzes all indices associated with the named table.
                    773: */
                    774: void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
                    775:   sqlite3 *db = pParse->db;
                    776:   int iDb;
                    777:   int i;
                    778:   char *z, *zDb;
                    779:   Table *pTab;
                    780:   Index *pIdx;
                    781:   Token *pTableName;
                    782: 
                    783:   /* Read the database schema. If an error occurs, leave an error message
                    784:   ** and code in pParse and return NULL. */
                    785:   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
                    786:   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
                    787:     return;
                    788:   }
                    789: 
                    790:   assert( pName2!=0 || pName1==0 );
                    791:   if( pName1==0 ){
                    792:     /* Form 1:  Analyze everything */
                    793:     for(i=0; i<db->nDb; i++){
                    794:       if( i==1 ) continue;  /* Do not analyze the TEMP database */
                    795:       analyzeDatabase(pParse, i);
                    796:     }
                    797:   }else if( pName2->n==0 ){
                    798:     /* Form 2:  Analyze the database or table named */
                    799:     iDb = sqlite3FindDb(db, pName1);
                    800:     if( iDb>=0 ){
                    801:       analyzeDatabase(pParse, iDb);
                    802:     }else{
                    803:       z = sqlite3NameFromToken(db, pName1);
                    804:       if( z ){
                    805:         if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
                    806:           analyzeTable(pParse, pIdx->pTable, pIdx);
                    807:         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
                    808:           analyzeTable(pParse, pTab, 0);
                    809:         }
                    810:         sqlite3DbFree(db, z);
                    811:       }
                    812:     }
                    813:   }else{
                    814:     /* Form 3: Analyze the fully qualified table name */
                    815:     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
                    816:     if( iDb>=0 ){
                    817:       zDb = db->aDb[iDb].zName;
                    818:       z = sqlite3NameFromToken(db, pTableName);
                    819:       if( z ){
                    820:         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
                    821:           analyzeTable(pParse, pIdx->pTable, pIdx);
                    822:         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
                    823:           analyzeTable(pParse, pTab, 0);
                    824:         }
                    825:         sqlite3DbFree(db, z);
                    826:       }
                    827:     }   
                    828:   }
                    829: }
                    830: 
                    831: /*
                    832: ** Used to pass information from the analyzer reader through to the
                    833: ** callback routine.
                    834: */
                    835: typedef struct analysisInfo analysisInfo;
                    836: struct analysisInfo {
                    837:   sqlite3 *db;
                    838:   const char *zDatabase;
                    839: };
                    840: 
                    841: /*
                    842: ** This callback is invoked once for each index when reading the
                    843: ** sqlite_stat1 table.  
                    844: **
                    845: **     argv[0] = name of the table
                    846: **     argv[1] = name of the index (might be NULL)
                    847: **     argv[2] = results of analysis - on integer for each column
                    848: **
                    849: ** Entries for which argv[1]==NULL simply record the number of rows in
                    850: ** the table.
                    851: */
                    852: static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
                    853:   analysisInfo *pInfo = (analysisInfo*)pData;
                    854:   Index *pIndex;
                    855:   Table *pTable;
                    856:   int i, c, n;
                    857:   tRowcnt v;
                    858:   const char *z;
                    859: 
                    860:   assert( argc==3 );
                    861:   UNUSED_PARAMETER2(NotUsed, argc);
                    862: 
                    863:   if( argv==0 || argv[0]==0 || argv[2]==0 ){
                    864:     return 0;
                    865:   }
                    866:   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
                    867:   if( pTable==0 ){
                    868:     return 0;
                    869:   }
                    870:   if( argv[1] ){
                    871:     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
                    872:   }else{
                    873:     pIndex = 0;
                    874:   }
                    875:   n = pIndex ? pIndex->nColumn : 0;
                    876:   z = argv[2];
                    877:   for(i=0; *z && i<=n; i++){
                    878:     v = 0;
                    879:     while( (c=z[0])>='0' && c<='9' ){
                    880:       v = v*10 + c - '0';
                    881:       z++;
                    882:     }
                    883:     if( i==0 ) pTable->nRowEst = v;
                    884:     if( pIndex==0 ) break;
                    885:     pIndex->aiRowEst[i] = v;
                    886:     if( *z==' ' ) z++;
                    887:     if( memcmp(z, "unordered", 10)==0 ){
                    888:       pIndex->bUnordered = 1;
                    889:       break;
                    890:     }
                    891:   }
                    892:   return 0;
                    893: }
                    894: 
                    895: /*
                    896: ** If the Index.aSample variable is not NULL, delete the aSample[] array
                    897: ** and its contents.
                    898: */
                    899: void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
                    900: #ifdef SQLITE_ENABLE_STAT3
                    901:   if( pIdx->aSample ){
                    902:     int j;
                    903:     for(j=0; j<pIdx->nSample; j++){
                    904:       IndexSample *p = &pIdx->aSample[j];
                    905:       if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
                    906:         sqlite3DbFree(db, p->u.z);
                    907:       }
                    908:     }
                    909:     sqlite3DbFree(db, pIdx->aSample);
                    910:   }
                    911:   if( db && db->pnBytesFreed==0 ){
                    912:     pIdx->nSample = 0;
                    913:     pIdx->aSample = 0;
                    914:   }
                    915: #else
                    916:   UNUSED_PARAMETER(db);
                    917:   UNUSED_PARAMETER(pIdx);
                    918: #endif
                    919: }
                    920: 
                    921: #ifdef SQLITE_ENABLE_STAT3
                    922: /*
                    923: ** Load content from the sqlite_stat3 table into the Index.aSample[]
                    924: ** arrays of all indices.
                    925: */
                    926: static int loadStat3(sqlite3 *db, const char *zDb){
                    927:   int rc;                       /* Result codes from subroutines */
                    928:   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
                    929:   char *zSql;                   /* Text of the SQL statement */
                    930:   Index *pPrevIdx = 0;          /* Previous index in the loop */
                    931:   int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
                    932:   int eType;                    /* Datatype of a sample */
                    933:   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
                    934: 
                    935:   if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
                    936:     return SQLITE_OK;
                    937:   }
                    938: 
                    939:   zSql = sqlite3MPrintf(db, 
                    940:       "SELECT idx,count(*) FROM %Q.sqlite_stat3"
                    941:       " GROUP BY idx", zDb);
                    942:   if( !zSql ){
                    943:     return SQLITE_NOMEM;
                    944:   }
                    945:   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
                    946:   sqlite3DbFree(db, zSql);
                    947:   if( rc ) return rc;
                    948: 
                    949:   while( sqlite3_step(pStmt)==SQLITE_ROW ){
                    950:     char *zIndex;   /* Index name */
                    951:     Index *pIdx;    /* Pointer to the index object */
                    952:     int nSample;    /* Number of samples */
                    953: 
                    954:     zIndex = (char *)sqlite3_column_text(pStmt, 0);
                    955:     if( zIndex==0 ) continue;
                    956:     nSample = sqlite3_column_int(pStmt, 1);
                    957:     pIdx = sqlite3FindIndex(db, zIndex, zDb);
                    958:     if( pIdx==0 ) continue;
                    959:     assert( pIdx->nSample==0 );
                    960:     pIdx->nSample = nSample;
                    961:     pIdx->aSample = sqlite3MallocZero( nSample*sizeof(IndexSample) );
                    962:     pIdx->avgEq = pIdx->aiRowEst[1];
                    963:     if( pIdx->aSample==0 ){
                    964:       db->mallocFailed = 1;
                    965:       sqlite3_finalize(pStmt);
                    966:       return SQLITE_NOMEM;
                    967:     }
                    968:   }
                    969:   rc = sqlite3_finalize(pStmt);
                    970:   if( rc ) return rc;
                    971: 
                    972:   zSql = sqlite3MPrintf(db, 
                    973:       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
                    974:   if( !zSql ){
                    975:     return SQLITE_NOMEM;
                    976:   }
                    977:   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
                    978:   sqlite3DbFree(db, zSql);
                    979:   if( rc ) return rc;
                    980: 
                    981:   while( sqlite3_step(pStmt)==SQLITE_ROW ){
                    982:     char *zIndex;   /* Index name */
                    983:     Index *pIdx;    /* Pointer to the index object */
                    984:     int i;          /* Loop counter */
                    985:     tRowcnt sumEq;  /* Sum of the nEq values */
                    986: 
                    987:     zIndex = (char *)sqlite3_column_text(pStmt, 0);
                    988:     if( zIndex==0 ) continue;
                    989:     pIdx = sqlite3FindIndex(db, zIndex, zDb);
                    990:     if( pIdx==0 ) continue;
                    991:     if( pIdx==pPrevIdx ){
                    992:       idx++;
                    993:     }else{
                    994:       pPrevIdx = pIdx;
                    995:       idx = 0;
                    996:     }
                    997:     assert( idx<pIdx->nSample );
                    998:     pSample = &pIdx->aSample[idx];
                    999:     pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
                   1000:     pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
                   1001:     pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
                   1002:     if( idx==pIdx->nSample-1 ){
                   1003:       if( pSample->nDLt>0 ){
                   1004:         for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
                   1005:         pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
                   1006:       }
                   1007:       if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
                   1008:     }
                   1009:     eType = sqlite3_column_type(pStmt, 4);
                   1010:     pSample->eType = (u8)eType;
                   1011:     switch( eType ){
                   1012:       case SQLITE_INTEGER: {
                   1013:         pSample->u.i = sqlite3_column_int64(pStmt, 4);
                   1014:         break;
                   1015:       }
                   1016:       case SQLITE_FLOAT: {
                   1017:         pSample->u.r = sqlite3_column_double(pStmt, 4);
                   1018:         break;
                   1019:       }
                   1020:       case SQLITE_NULL: {
                   1021:         break;
                   1022:       }
                   1023:       default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
                   1024:         const char *z = (const char *)(
                   1025:               (eType==SQLITE_BLOB) ?
                   1026:               sqlite3_column_blob(pStmt, 4):
                   1027:               sqlite3_column_text(pStmt, 4)
                   1028:            );
                   1029:         int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
                   1030:         pSample->nByte = n;
                   1031:         if( n < 1){
                   1032:           pSample->u.z = 0;
                   1033:         }else{
                   1034:           pSample->u.z = sqlite3Malloc(n);
                   1035:           if( pSample->u.z==0 ){
                   1036:             db->mallocFailed = 1;
                   1037:             sqlite3_finalize(pStmt);
                   1038:             return SQLITE_NOMEM;
                   1039:           }
                   1040:           memcpy(pSample->u.z, z, n);
                   1041:         }
                   1042:       }
                   1043:     }
                   1044:   }
                   1045:   return sqlite3_finalize(pStmt);
                   1046: }
                   1047: #endif /* SQLITE_ENABLE_STAT3 */
                   1048: 
                   1049: /*
                   1050: ** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
                   1051: ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
                   1052: ** arrays. The contents of sqlite_stat3 are used to populate the
                   1053: ** Index.aSample[] arrays.
                   1054: **
                   1055: ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
                   1056: ** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined 
                   1057: ** during compilation and the sqlite_stat3 table is present, no data is 
                   1058: ** read from it.
                   1059: **
                   1060: ** If SQLITE_ENABLE_STAT3 was defined during compilation and the 
                   1061: ** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
                   1062: ** returned. However, in this case, data is read from the sqlite_stat1
                   1063: ** table (if it is present) before returning.
                   1064: **
                   1065: ** If an OOM error occurs, this function always sets db->mallocFailed.
                   1066: ** This means if the caller does not care about other errors, the return
                   1067: ** code may be ignored.
                   1068: */
                   1069: int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
                   1070:   analysisInfo sInfo;
                   1071:   HashElem *i;
                   1072:   char *zSql;
                   1073:   int rc;
                   1074: 
                   1075:   assert( iDb>=0 && iDb<db->nDb );
                   1076:   assert( db->aDb[iDb].pBt!=0 );
                   1077: 
                   1078:   /* Clear any prior statistics */
                   1079:   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
                   1080:   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
                   1081:     Index *pIdx = sqliteHashData(i);
                   1082:     sqlite3DefaultRowEst(pIdx);
                   1083: #ifdef SQLITE_ENABLE_STAT3
                   1084:     sqlite3DeleteIndexSamples(db, pIdx);
                   1085:     pIdx->aSample = 0;
                   1086: #endif
                   1087:   }
                   1088: 
                   1089:   /* Check to make sure the sqlite_stat1 table exists */
                   1090:   sInfo.db = db;
                   1091:   sInfo.zDatabase = db->aDb[iDb].zName;
                   1092:   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
                   1093:     return SQLITE_ERROR;
                   1094:   }
                   1095: 
                   1096:   /* Load new statistics out of the sqlite_stat1 table */
                   1097:   zSql = sqlite3MPrintf(db, 
                   1098:       "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
                   1099:   if( zSql==0 ){
                   1100:     rc = SQLITE_NOMEM;
                   1101:   }else{
                   1102:     rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
                   1103:     sqlite3DbFree(db, zSql);
                   1104:   }
                   1105: 
                   1106: 
                   1107:   /* Load the statistics from the sqlite_stat3 table. */
                   1108: #ifdef SQLITE_ENABLE_STAT3
                   1109:   if( rc==SQLITE_OK ){
                   1110:     rc = loadStat3(db, sInfo.zDatabase);
                   1111:   }
                   1112: #endif
                   1113: 
                   1114:   if( rc==SQLITE_NOMEM ){
                   1115:     db->mallocFailed = 1;
                   1116:   }
                   1117:   return rc;
                   1118: }
                   1119: 
                   1120: 
                   1121: #endif /* SQLITE_OMIT_ANALYZE */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>