Annotation of embedaddon/sqlite3/src/bitvec.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2008 February 16
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file implements an object that represents a fixed-length
                     13: ** bitmap.  Bits are numbered starting with 1.
                     14: **
                     15: ** A bitmap is used to record which pages of a database file have been
                     16: ** journalled during a transaction, or which pages have the "dont-write"
                     17: ** property.  Usually only a few pages are meet either condition.
                     18: ** So the bitmap is usually sparse and has low cardinality.
                     19: ** But sometimes (for example when during a DROP of a large table) most
                     20: ** or all of the pages in a database can get journalled.  In those cases, 
                     21: ** the bitmap becomes dense with high cardinality.  The algorithm needs 
                     22: ** to handle both cases well.
                     23: **
                     24: ** The size of the bitmap is fixed when the object is created.
                     25: **
                     26: ** All bits are clear when the bitmap is created.  Individual bits
                     27: ** may be set or cleared one at a time.
                     28: **
                     29: ** Test operations are about 100 times more common that set operations.
                     30: ** Clear operations are exceedingly rare.  There are usually between
                     31: ** 5 and 500 set operations per Bitvec object, though the number of sets can
                     32: ** sometimes grow into tens of thousands or larger.  The size of the
                     33: ** Bitvec object is the number of pages in the database file at the
                     34: ** start of a transaction, and is thus usually less than a few thousand,
                     35: ** but can be as large as 2 billion for a really big database.
                     36: */
                     37: #include "sqliteInt.h"
                     38: 
                     39: /* Size of the Bitvec structure in bytes. */
                     40: #define BITVEC_SZ        512
                     41: 
                     42: /* Round the union size down to the nearest pointer boundary, since that's how 
                     43: ** it will be aligned within the Bitvec struct. */
                     44: #define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
                     45: 
                     46: /* Type of the array "element" for the bitmap representation. 
                     47: ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 
                     48: ** Setting this to the "natural word" size of your CPU may improve
                     49: ** performance. */
                     50: #define BITVEC_TELEM     u8
                     51: /* Size, in bits, of the bitmap element. */
                     52: #define BITVEC_SZELEM    8
                     53: /* Number of elements in a bitmap array. */
                     54: #define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
                     55: /* Number of bits in the bitmap array. */
                     56: #define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
                     57: 
                     58: /* Number of u32 values in hash table. */
                     59: #define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
                     60: /* Maximum number of entries in hash table before 
                     61: ** sub-dividing and re-hashing. */
                     62: #define BITVEC_MXHASH    (BITVEC_NINT/2)
                     63: /* Hashing function for the aHash representation.
                     64: ** Empirical testing showed that the *37 multiplier 
                     65: ** (an arbitrary prime)in the hash function provided 
                     66: ** no fewer collisions than the no-op *1. */
                     67: #define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
                     68: 
                     69: #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
                     70: 
                     71: 
                     72: /*
                     73: ** A bitmap is an instance of the following structure.
                     74: **
                     75: ** This bitmap records the existance of zero or more bits
                     76: ** with values between 1 and iSize, inclusive.
                     77: **
                     78: ** There are three possible representations of the bitmap.
                     79: ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
                     80: ** bitmap.  The least significant bit is bit 1.
                     81: **
                     82: ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
                     83: ** a hash table that will hold up to BITVEC_MXHASH distinct values.
                     84: **
                     85: ** Otherwise, the value i is redirected into one of BITVEC_NPTR
                     86: ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
                     87: ** handles up to iDivisor separate values of i.  apSub[0] holds
                     88: ** values between 1 and iDivisor.  apSub[1] holds values between
                     89: ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
                     90: ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
                     91: ** to hold deal with values between 1 and iDivisor.
                     92: */
                     93: struct Bitvec {
                     94:   u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
                     95:   u32 nSet;       /* Number of bits that are set - only valid for aHash
                     96:                   ** element.  Max is BITVEC_NINT.  For BITVEC_SZ of 512,
                     97:                   ** this would be 125. */
                     98:   u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
                     99:                   /* Should >=0 for apSub element. */
                    100:                   /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
                    101:                   /* For a BITVEC_SZ of 512, this would be 34,359,739. */
                    102:   union {
                    103:     BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
                    104:     u32 aHash[BITVEC_NINT];      /* Hash table representation */
                    105:     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
                    106:   } u;
                    107: };
                    108: 
                    109: /*
                    110: ** Create a new bitmap object able to handle bits between 0 and iSize,
                    111: ** inclusive.  Return a pointer to the new object.  Return NULL if 
                    112: ** malloc fails.
                    113: */
                    114: Bitvec *sqlite3BitvecCreate(u32 iSize){
                    115:   Bitvec *p;
                    116:   assert( sizeof(*p)==BITVEC_SZ );
                    117:   p = sqlite3MallocZero( sizeof(*p) );
                    118:   if( p ){
                    119:     p->iSize = iSize;
                    120:   }
                    121:   return p;
                    122: }
                    123: 
                    124: /*
                    125: ** Check to see if the i-th bit is set.  Return true or false.
                    126: ** If p is NULL (if the bitmap has not been created) or if
                    127: ** i is out of range, then return false.
                    128: */
                    129: int sqlite3BitvecTest(Bitvec *p, u32 i){
                    130:   if( p==0 ) return 0;
                    131:   if( i>p->iSize || i==0 ) return 0;
                    132:   i--;
                    133:   while( p->iDivisor ){
                    134:     u32 bin = i/p->iDivisor;
                    135:     i = i%p->iDivisor;
                    136:     p = p->u.apSub[bin];
                    137:     if (!p) {
                    138:       return 0;
                    139:     }
                    140:   }
                    141:   if( p->iSize<=BITVEC_NBIT ){
                    142:     return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
                    143:   } else{
                    144:     u32 h = BITVEC_HASH(i++);
                    145:     while( p->u.aHash[h] ){
                    146:       if( p->u.aHash[h]==i ) return 1;
                    147:       h = (h+1) % BITVEC_NINT;
                    148:     }
                    149:     return 0;
                    150:   }
                    151: }
                    152: 
                    153: /*
                    154: ** Set the i-th bit.  Return 0 on success and an error code if
                    155: ** anything goes wrong.
                    156: **
                    157: ** This routine might cause sub-bitmaps to be allocated.  Failing
                    158: ** to get the memory needed to hold the sub-bitmap is the only
                    159: ** that can go wrong with an insert, assuming p and i are valid.
                    160: **
                    161: ** The calling function must ensure that p is a valid Bitvec object
                    162: ** and that the value for "i" is within range of the Bitvec object.
                    163: ** Otherwise the behavior is undefined.
                    164: */
                    165: int sqlite3BitvecSet(Bitvec *p, u32 i){
                    166:   u32 h;
                    167:   if( p==0 ) return SQLITE_OK;
                    168:   assert( i>0 );
                    169:   assert( i<=p->iSize );
                    170:   i--;
                    171:   while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
                    172:     u32 bin = i/p->iDivisor;
                    173:     i = i%p->iDivisor;
                    174:     if( p->u.apSub[bin]==0 ){
                    175:       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
                    176:       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
                    177:     }
                    178:     p = p->u.apSub[bin];
                    179:   }
                    180:   if( p->iSize<=BITVEC_NBIT ){
                    181:     p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
                    182:     return SQLITE_OK;
                    183:   }
                    184:   h = BITVEC_HASH(i++);
                    185:   /* if there wasn't a hash collision, and this doesn't */
                    186:   /* completely fill the hash, then just add it without */
                    187:   /* worring about sub-dividing and re-hashing. */
                    188:   if( !p->u.aHash[h] ){
                    189:     if (p->nSet<(BITVEC_NINT-1)) {
                    190:       goto bitvec_set_end;
                    191:     } else {
                    192:       goto bitvec_set_rehash;
                    193:     }
                    194:   }
                    195:   /* there was a collision, check to see if it's already */
                    196:   /* in hash, if not, try to find a spot for it */
                    197:   do {
                    198:     if( p->u.aHash[h]==i ) return SQLITE_OK;
                    199:     h++;
                    200:     if( h>=BITVEC_NINT ) h = 0;
                    201:   } while( p->u.aHash[h] );
                    202:   /* we didn't find it in the hash.  h points to the first */
                    203:   /* available free spot. check to see if this is going to */
                    204:   /* make our hash too "full".  */
                    205: bitvec_set_rehash:
                    206:   if( p->nSet>=BITVEC_MXHASH ){
                    207:     unsigned int j;
                    208:     int rc;
                    209:     u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
                    210:     if( aiValues==0 ){
                    211:       return SQLITE_NOMEM;
                    212:     }else{
                    213:       memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
                    214:       memset(p->u.apSub, 0, sizeof(p->u.apSub));
                    215:       p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
                    216:       rc = sqlite3BitvecSet(p, i);
                    217:       for(j=0; j<BITVEC_NINT; j++){
                    218:         if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
                    219:       }
                    220:       sqlite3StackFree(0, aiValues);
                    221:       return rc;
                    222:     }
                    223:   }
                    224: bitvec_set_end:
                    225:   p->nSet++;
                    226:   p->u.aHash[h] = i;
                    227:   return SQLITE_OK;
                    228: }
                    229: 
                    230: /*
                    231: ** Clear the i-th bit.
                    232: **
                    233: ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
                    234: ** that BitvecClear can use to rebuilt its hash table.
                    235: */
                    236: void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
                    237:   if( p==0 ) return;
                    238:   assert( i>0 );
                    239:   i--;
                    240:   while( p->iDivisor ){
                    241:     u32 bin = i/p->iDivisor;
                    242:     i = i%p->iDivisor;
                    243:     p = p->u.apSub[bin];
                    244:     if (!p) {
                    245:       return;
                    246:     }
                    247:   }
                    248:   if( p->iSize<=BITVEC_NBIT ){
                    249:     p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
                    250:   }else{
                    251:     unsigned int j;
                    252:     u32 *aiValues = pBuf;
                    253:     memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
                    254:     memset(p->u.aHash, 0, sizeof(p->u.aHash));
                    255:     p->nSet = 0;
                    256:     for(j=0; j<BITVEC_NINT; j++){
                    257:       if( aiValues[j] && aiValues[j]!=(i+1) ){
                    258:         u32 h = BITVEC_HASH(aiValues[j]-1);
                    259:         p->nSet++;
                    260:         while( p->u.aHash[h] ){
                    261:           h++;
                    262:           if( h>=BITVEC_NINT ) h = 0;
                    263:         }
                    264:         p->u.aHash[h] = aiValues[j];
                    265:       }
                    266:     }
                    267:   }
                    268: }
                    269: 
                    270: /*
                    271: ** Destroy a bitmap object.  Reclaim all memory used.
                    272: */
                    273: void sqlite3BitvecDestroy(Bitvec *p){
                    274:   if( p==0 ) return;
                    275:   if( p->iDivisor ){
                    276:     unsigned int i;
                    277:     for(i=0; i<BITVEC_NPTR; i++){
                    278:       sqlite3BitvecDestroy(p->u.apSub[i]);
                    279:     }
                    280:   }
                    281:   sqlite3_free(p);
                    282: }
                    283: 
                    284: /*
                    285: ** Return the value of the iSize parameter specified when Bitvec *p
                    286: ** was created.
                    287: */
                    288: u32 sqlite3BitvecSize(Bitvec *p){
                    289:   return p->iSize;
                    290: }
                    291: 
                    292: #ifndef SQLITE_OMIT_BUILTIN_TEST
                    293: /*
                    294: ** Let V[] be an array of unsigned characters sufficient to hold
                    295: ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
                    296: ** Then the following macros can be used to set, clear, or test
                    297: ** individual bits within V.
                    298: */
                    299: #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
                    300: #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
                    301: #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
                    302: 
                    303: /*
                    304: ** This routine runs an extensive test of the Bitvec code.
                    305: **
                    306: ** The input is an array of integers that acts as a program
                    307: ** to test the Bitvec.  The integers are opcodes followed
                    308: ** by 0, 1, or 3 operands, depending on the opcode.  Another
                    309: ** opcode follows immediately after the last operand.
                    310: **
                    311: ** There are 6 opcodes numbered from 0 through 5.  0 is the
                    312: ** "halt" opcode and causes the test to end.
                    313: **
                    314: **    0          Halt and return the number of errors
                    315: **    1 N S X    Set N bits beginning with S and incrementing by X
                    316: **    2 N S X    Clear N bits beginning with S and incrementing by X
                    317: **    3 N        Set N randomly chosen bits
                    318: **    4 N        Clear N randomly chosen bits
                    319: **    5 N S X    Set N bits from S increment X in array only, not in bitvec
                    320: **
                    321: ** The opcodes 1 through 4 perform set and clear operations are performed
                    322: ** on both a Bitvec object and on a linear array of bits obtained from malloc.
                    323: ** Opcode 5 works on the linear array only, not on the Bitvec.
                    324: ** Opcode 5 is used to deliberately induce a fault in order to
                    325: ** confirm that error detection works.
                    326: **
                    327: ** At the conclusion of the test the linear array is compared
                    328: ** against the Bitvec object.  If there are any differences,
                    329: ** an error is returned.  If they are the same, zero is returned.
                    330: **
                    331: ** If a memory allocation error occurs, return -1.
                    332: */
                    333: int sqlite3BitvecBuiltinTest(int sz, int *aOp){
                    334:   Bitvec *pBitvec = 0;
                    335:   unsigned char *pV = 0;
                    336:   int rc = -1;
                    337:   int i, nx, pc, op;
                    338:   void *pTmpSpace;
                    339: 
                    340:   /* Allocate the Bitvec to be tested and a linear array of
                    341:   ** bits to act as the reference */
                    342:   pBitvec = sqlite3BitvecCreate( sz );
                    343:   pV = sqlite3_malloc( (sz+7)/8 + 1 );
                    344:   pTmpSpace = sqlite3_malloc(BITVEC_SZ);
                    345:   if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;
                    346:   memset(pV, 0, (sz+7)/8 + 1);
                    347: 
                    348:   /* NULL pBitvec tests */
                    349:   sqlite3BitvecSet(0, 1);
                    350:   sqlite3BitvecClear(0, 1, pTmpSpace);
                    351: 
                    352:   /* Run the program */
                    353:   pc = 0;
                    354:   while( (op = aOp[pc])!=0 ){
                    355:     switch( op ){
                    356:       case 1:
                    357:       case 2:
                    358:       case 5: {
                    359:         nx = 4;
                    360:         i = aOp[pc+2] - 1;
                    361:         aOp[pc+2] += aOp[pc+3];
                    362:         break;
                    363:       }
                    364:       case 3:
                    365:       case 4: 
                    366:       default: {
                    367:         nx = 2;
                    368:         sqlite3_randomness(sizeof(i), &i);
                    369:         break;
                    370:       }
                    371:     }
                    372:     if( (--aOp[pc+1]) > 0 ) nx = 0;
                    373:     pc += nx;
                    374:     i = (i & 0x7fffffff)%sz;
                    375:     if( (op & 1)!=0 ){
                    376:       SETBIT(pV, (i+1));
                    377:       if( op!=5 ){
                    378:         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
                    379:       }
                    380:     }else{
                    381:       CLEARBIT(pV, (i+1));
                    382:       sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
                    383:     }
                    384:   }
                    385: 
                    386:   /* Test to make sure the linear array exactly matches the
                    387:   ** Bitvec object.  Start with the assumption that they do
                    388:   ** match (rc==0).  Change rc to non-zero if a discrepancy
                    389:   ** is found.
                    390:   */
                    391:   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
                    392:           + sqlite3BitvecTest(pBitvec, 0)
                    393:           + (sqlite3BitvecSize(pBitvec) - sz);
                    394:   for(i=1; i<=sz; i++){
                    395:     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
                    396:       rc = i;
                    397:       break;
                    398:     }
                    399:   }
                    400: 
                    401:   /* Free allocated structure */
                    402: bitvec_end:
                    403:   sqlite3_free(pTmpSpace);
                    404:   sqlite3_free(pV);
                    405:   sqlite3BitvecDestroy(pBitvec);
                    406:   return rc;
                    407: }
                    408: #endif /* SQLITE_OMIT_BUILTIN_TEST */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>