Annotation of embedaddon/sqlite3/src/btmutex.c, revision 1.1.1.1
1.1 misho 1: /*
2: ** 2007 August 27
3: **
4: ** The author disclaims copyright to this source code. In place of
5: ** a legal notice, here is a blessing:
6: **
7: ** May you do good and not evil.
8: ** May you find forgiveness for yourself and forgive others.
9: ** May you share freely, never taking more than you give.
10: **
11: *************************************************************************
12: **
13: ** This file contains code used to implement mutexes on Btree objects.
14: ** This code really belongs in btree.c. But btree.c is getting too
15: ** big and we want to break it down some. This packaged seemed like
16: ** a good breakout.
17: */
18: #include "btreeInt.h"
19: #ifndef SQLITE_OMIT_SHARED_CACHE
20: #if SQLITE_THREADSAFE
21:
22: /*
23: ** Obtain the BtShared mutex associated with B-Tree handle p. Also,
24: ** set BtShared.db to the database handle associated with p and the
25: ** p->locked boolean to true.
26: */
27: static void lockBtreeMutex(Btree *p){
28: assert( p->locked==0 );
29: assert( sqlite3_mutex_notheld(p->pBt->mutex) );
30: assert( sqlite3_mutex_held(p->db->mutex) );
31:
32: sqlite3_mutex_enter(p->pBt->mutex);
33: p->pBt->db = p->db;
34: p->locked = 1;
35: }
36:
37: /*
38: ** Release the BtShared mutex associated with B-Tree handle p and
39: ** clear the p->locked boolean.
40: */
41: static void unlockBtreeMutex(Btree *p){
42: BtShared *pBt = p->pBt;
43: assert( p->locked==1 );
44: assert( sqlite3_mutex_held(pBt->mutex) );
45: assert( sqlite3_mutex_held(p->db->mutex) );
46: assert( p->db==pBt->db );
47:
48: sqlite3_mutex_leave(pBt->mutex);
49: p->locked = 0;
50: }
51:
52: /*
53: ** Enter a mutex on the given BTree object.
54: **
55: ** If the object is not sharable, then no mutex is ever required
56: ** and this routine is a no-op. The underlying mutex is non-recursive.
57: ** But we keep a reference count in Btree.wantToLock so the behavior
58: ** of this interface is recursive.
59: **
60: ** To avoid deadlocks, multiple Btrees are locked in the same order
61: ** by all database connections. The p->pNext is a list of other
62: ** Btrees belonging to the same database connection as the p Btree
63: ** which need to be locked after p. If we cannot get a lock on
64: ** p, then first unlock all of the others on p->pNext, then wait
65: ** for the lock to become available on p, then relock all of the
66: ** subsequent Btrees that desire a lock.
67: */
68: void sqlite3BtreeEnter(Btree *p){
69: Btree *pLater;
70:
71: /* Some basic sanity checking on the Btree. The list of Btrees
72: ** connected by pNext and pPrev should be in sorted order by
73: ** Btree.pBt value. All elements of the list should belong to
74: ** the same connection. Only shared Btrees are on the list. */
75: assert( p->pNext==0 || p->pNext->pBt>p->pBt );
76: assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
77: assert( p->pNext==0 || p->pNext->db==p->db );
78: assert( p->pPrev==0 || p->pPrev->db==p->db );
79: assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
80:
81: /* Check for locking consistency */
82: assert( !p->locked || p->wantToLock>0 );
83: assert( p->sharable || p->wantToLock==0 );
84:
85: /* We should already hold a lock on the database connection */
86: assert( sqlite3_mutex_held(p->db->mutex) );
87:
88: /* Unless the database is sharable and unlocked, then BtShared.db
89: ** should already be set correctly. */
90: assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
91:
92: if( !p->sharable ) return;
93: p->wantToLock++;
94: if( p->locked ) return;
95:
96: /* In most cases, we should be able to acquire the lock we
97: ** want without having to go throught the ascending lock
98: ** procedure that follows. Just be sure not to block.
99: */
100: if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
101: p->pBt->db = p->db;
102: p->locked = 1;
103: return;
104: }
105:
106: /* To avoid deadlock, first release all locks with a larger
107: ** BtShared address. Then acquire our lock. Then reacquire
108: ** the other BtShared locks that we used to hold in ascending
109: ** order.
110: */
111: for(pLater=p->pNext; pLater; pLater=pLater->pNext){
112: assert( pLater->sharable );
113: assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
114: assert( !pLater->locked || pLater->wantToLock>0 );
115: if( pLater->locked ){
116: unlockBtreeMutex(pLater);
117: }
118: }
119: lockBtreeMutex(p);
120: for(pLater=p->pNext; pLater; pLater=pLater->pNext){
121: if( pLater->wantToLock ){
122: lockBtreeMutex(pLater);
123: }
124: }
125: }
126:
127: /*
128: ** Exit the recursive mutex on a Btree.
129: */
130: void sqlite3BtreeLeave(Btree *p){
131: if( p->sharable ){
132: assert( p->wantToLock>0 );
133: p->wantToLock--;
134: if( p->wantToLock==0 ){
135: unlockBtreeMutex(p);
136: }
137: }
138: }
139:
140: #ifndef NDEBUG
141: /*
142: ** Return true if the BtShared mutex is held on the btree, or if the
143: ** B-Tree is not marked as sharable.
144: **
145: ** This routine is used only from within assert() statements.
146: */
147: int sqlite3BtreeHoldsMutex(Btree *p){
148: assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
149: assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
150: assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
151: assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
152:
153: return (p->sharable==0 || p->locked);
154: }
155: #endif
156:
157:
158: #ifndef SQLITE_OMIT_INCRBLOB
159: /*
160: ** Enter and leave a mutex on a Btree given a cursor owned by that
161: ** Btree. These entry points are used by incremental I/O and can be
162: ** omitted if that module is not used.
163: */
164: void sqlite3BtreeEnterCursor(BtCursor *pCur){
165: sqlite3BtreeEnter(pCur->pBtree);
166: }
167: void sqlite3BtreeLeaveCursor(BtCursor *pCur){
168: sqlite3BtreeLeave(pCur->pBtree);
169: }
170: #endif /* SQLITE_OMIT_INCRBLOB */
171:
172:
173: /*
174: ** Enter the mutex on every Btree associated with a database
175: ** connection. This is needed (for example) prior to parsing
176: ** a statement since we will be comparing table and column names
177: ** against all schemas and we do not want those schemas being
178: ** reset out from under us.
179: **
180: ** There is a corresponding leave-all procedures.
181: **
182: ** Enter the mutexes in accending order by BtShared pointer address
183: ** to avoid the possibility of deadlock when two threads with
184: ** two or more btrees in common both try to lock all their btrees
185: ** at the same instant.
186: */
187: void sqlite3BtreeEnterAll(sqlite3 *db){
188: int i;
189: Btree *p;
190: assert( sqlite3_mutex_held(db->mutex) );
191: for(i=0; i<db->nDb; i++){
192: p = db->aDb[i].pBt;
193: if( p ) sqlite3BtreeEnter(p);
194: }
195: }
196: void sqlite3BtreeLeaveAll(sqlite3 *db){
197: int i;
198: Btree *p;
199: assert( sqlite3_mutex_held(db->mutex) );
200: for(i=0; i<db->nDb; i++){
201: p = db->aDb[i].pBt;
202: if( p ) sqlite3BtreeLeave(p);
203: }
204: }
205:
206: /*
207: ** Return true if a particular Btree requires a lock. Return FALSE if
208: ** no lock is ever required since it is not sharable.
209: */
210: int sqlite3BtreeSharable(Btree *p){
211: return p->sharable;
212: }
213:
214: #ifndef NDEBUG
215: /*
216: ** Return true if the current thread holds the database connection
217: ** mutex and all required BtShared mutexes.
218: **
219: ** This routine is used inside assert() statements only.
220: */
221: int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
222: int i;
223: if( !sqlite3_mutex_held(db->mutex) ){
224: return 0;
225: }
226: for(i=0; i<db->nDb; i++){
227: Btree *p;
228: p = db->aDb[i].pBt;
229: if( p && p->sharable &&
230: (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
231: return 0;
232: }
233: }
234: return 1;
235: }
236: #endif /* NDEBUG */
237:
238: #ifndef NDEBUG
239: /*
240: ** Return true if the correct mutexes are held for accessing the
241: ** db->aDb[iDb].pSchema structure. The mutexes required for schema
242: ** access are:
243: **
244: ** (1) The mutex on db
245: ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
246: **
247: ** If pSchema is not NULL, then iDb is computed from pSchema and
248: ** db using sqlite3SchemaToIndex().
249: */
250: int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
251: Btree *p;
252: assert( db!=0 );
253: if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
254: assert( iDb>=0 && iDb<db->nDb );
255: if( !sqlite3_mutex_held(db->mutex) ) return 0;
256: if( iDb==1 ) return 1;
257: p = db->aDb[iDb].pBt;
258: assert( p!=0 );
259: return p->sharable==0 || p->locked==1;
260: }
261: #endif /* NDEBUG */
262:
263: #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
264: /*
265: ** The following are special cases for mutex enter routines for use
266: ** in single threaded applications that use shared cache. Except for
267: ** these two routines, all mutex operations are no-ops in that case and
268: ** are null #defines in btree.h.
269: **
270: ** If shared cache is disabled, then all btree mutex routines, including
271: ** the ones below, are no-ops and are null #defines in btree.h.
272: */
273:
274: void sqlite3BtreeEnter(Btree *p){
275: p->pBt->db = p->db;
276: }
277: void sqlite3BtreeEnterAll(sqlite3 *db){
278: int i;
279: for(i=0; i<db->nDb; i++){
280: Btree *p = db->aDb[i].pBt;
281: if( p ){
282: p->pBt->db = p->db;
283: }
284: }
285: }
286: #endif /* if SQLITE_THREADSAFE */
287: #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>