Annotation of embedaddon/sqlite3/src/btreeInt.h, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2004 April 6
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file implements a external (disk-based) database using BTrees.
                     13: ** For a detailed discussion of BTrees, refer to
                     14: **
                     15: **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
                     16: **     "Sorting And Searching", pages 473-480. Addison-Wesley
                     17: **     Publishing Company, Reading, Massachusetts.
                     18: **
                     19: ** The basic idea is that each page of the file contains N database
                     20: ** entries and N+1 pointers to subpages.
                     21: **
                     22: **   ----------------------------------------------------------------
                     23: **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
                     24: **   ----------------------------------------------------------------
                     25: **
                     26: ** All of the keys on the page that Ptr(0) points to have values less
                     27: ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
                     28: ** values greater than Key(0) and less than Key(1).  All of the keys
                     29: ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
                     30: ** so forth.
                     31: **
                     32: ** Finding a particular key requires reading O(log(M)) pages from the 
                     33: ** disk where M is the number of entries in the tree.
                     34: **
                     35: ** In this implementation, a single file can hold one or more separate 
                     36: ** BTrees.  Each BTree is identified by the index of its root page.  The
                     37: ** key and data for any entry are combined to form the "payload".  A
                     38: ** fixed amount of payload can be carried directly on the database
                     39: ** page.  If the payload is larger than the preset amount then surplus
                     40: ** bytes are stored on overflow pages.  The payload for an entry
                     41: ** and the preceding pointer are combined to form a "Cell".  Each 
                     42: ** page has a small header which contains the Ptr(N) pointer and other
                     43: ** information such as the size of key and data.
                     44: **
                     45: ** FORMAT DETAILS
                     46: **
                     47: ** The file is divided into pages.  The first page is called page 1,
                     48: ** the second is page 2, and so forth.  A page number of zero indicates
                     49: ** "no such page".  The page size can be any power of 2 between 512 and 65536.
                     50: ** Each page can be either a btree page, a freelist page, an overflow
                     51: ** page, or a pointer-map page.
                     52: **
                     53: ** The first page is always a btree page.  The first 100 bytes of the first
                     54: ** page contain a special header (the "file header") that describes the file.
                     55: ** The format of the file header is as follows:
                     56: **
                     57: **   OFFSET   SIZE    DESCRIPTION
                     58: **      0      16     Header string: "SQLite format 3\000"
                     59: **     16       2     Page size in bytes.  
                     60: **     18       1     File format write version
                     61: **     19       1     File format read version
                     62: **     20       1     Bytes of unused space at the end of each page
                     63: **     21       1     Max embedded payload fraction
                     64: **     22       1     Min embedded payload fraction
                     65: **     23       1     Min leaf payload fraction
                     66: **     24       4     File change counter
                     67: **     28       4     Reserved for future use
                     68: **     32       4     First freelist page
                     69: **     36       4     Number of freelist pages in the file
                     70: **     40      60     15 4-byte meta values passed to higher layers
                     71: **
                     72: **     40       4     Schema cookie
                     73: **     44       4     File format of schema layer
                     74: **     48       4     Size of page cache
                     75: **     52       4     Largest root-page (auto/incr_vacuum)
                     76: **     56       4     1=UTF-8 2=UTF16le 3=UTF16be
                     77: **     60       4     User version
                     78: **     64       4     Incremental vacuum mode
                     79: **     68       4     unused
                     80: **     72       4     unused
                     81: **     76       4     unused
                     82: **
                     83: ** All of the integer values are big-endian (most significant byte first).
                     84: **
                     85: ** The file change counter is incremented when the database is changed
                     86: ** This counter allows other processes to know when the file has changed
                     87: ** and thus when they need to flush their cache.
                     88: **
                     89: ** The max embedded payload fraction is the amount of the total usable
                     90: ** space in a page that can be consumed by a single cell for standard
                     91: ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
                     92: ** is to limit the maximum cell size so that at least 4 cells will fit
                     93: ** on one page.  Thus the default max embedded payload fraction is 64.
                     94: **
                     95: ** If the payload for a cell is larger than the max payload, then extra
                     96: ** payload is spilled to overflow pages.  Once an overflow page is allocated,
                     97: ** as many bytes as possible are moved into the overflow pages without letting
                     98: ** the cell size drop below the min embedded payload fraction.
                     99: **
                    100: ** The min leaf payload fraction is like the min embedded payload fraction
                    101: ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
                    102: ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
                    103: ** not specified in the header.
                    104: **
                    105: ** Each btree pages is divided into three sections:  The header, the
                    106: ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
                    107: ** file header that occurs before the page header.
                    108: **
                    109: **      |----------------|
                    110: **      | file header    |   100 bytes.  Page 1 only.
                    111: **      |----------------|
                    112: **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
                    113: **      |----------------|
                    114: **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
                    115: **      | array          |   |  Grows downward
                    116: **      |                |   v
                    117: **      |----------------|
                    118: **      | unallocated    |
                    119: **      | space          |
                    120: **      |----------------|   ^  Grows upwards
                    121: **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
                    122: **      | area           |   |  and free space fragments.
                    123: **      |----------------|
                    124: **
                    125: ** The page headers looks like this:
                    126: **
                    127: **   OFFSET   SIZE     DESCRIPTION
                    128: **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
                    129: **      1       2      byte offset to the first freeblock
                    130: **      3       2      number of cells on this page
                    131: **      5       2      first byte of the cell content area
                    132: **      7       1      number of fragmented free bytes
                    133: **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
                    134: **
                    135: ** The flags define the format of this btree page.  The leaf flag means that
                    136: ** this page has no children.  The zerodata flag means that this page carries
                    137: ** only keys and no data.  The intkey flag means that the key is a integer
                    138: ** which is stored in the key size entry of the cell header rather than in
                    139: ** the payload area.
                    140: **
                    141: ** The cell pointer array begins on the first byte after the page header.
                    142: ** The cell pointer array contains zero or more 2-byte numbers which are
                    143: ** offsets from the beginning of the page to the cell content in the cell
                    144: ** content area.  The cell pointers occur in sorted order.  The system strives
                    145: ** to keep free space after the last cell pointer so that new cells can
                    146: ** be easily added without having to defragment the page.
                    147: **
                    148: ** Cell content is stored at the very end of the page and grows toward the
                    149: ** beginning of the page.
                    150: **
                    151: ** Unused space within the cell content area is collected into a linked list of
                    152: ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
                    153: ** to the first freeblock is given in the header.  Freeblocks occur in
                    154: ** increasing order.  Because a freeblock must be at least 4 bytes in size,
                    155: ** any group of 3 or fewer unused bytes in the cell content area cannot
                    156: ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
                    157: ** a fragment.  The total number of bytes in all fragments is recorded.
                    158: ** in the page header at offset 7.
                    159: **
                    160: **    SIZE    DESCRIPTION
                    161: **      2     Byte offset of the next freeblock
                    162: **      2     Bytes in this freeblock
                    163: **
                    164: ** Cells are of variable length.  Cells are stored in the cell content area at
                    165: ** the end of the page.  Pointers to the cells are in the cell pointer array
                    166: ** that immediately follows the page header.  Cells is not necessarily
                    167: ** contiguous or in order, but cell pointers are contiguous and in order.
                    168: **
                    169: ** Cell content makes use of variable length integers.  A variable
                    170: ** length integer is 1 to 9 bytes where the lower 7 bits of each 
                    171: ** byte are used.  The integer consists of all bytes that have bit 8 set and
                    172: ** the first byte with bit 8 clear.  The most significant byte of the integer
                    173: ** appears first.  A variable-length integer may not be more than 9 bytes long.
                    174: ** As a special case, all 8 bytes of the 9th byte are used as data.  This
                    175: ** allows a 64-bit integer to be encoded in 9 bytes.
                    176: **
                    177: **    0x00                      becomes  0x00000000
                    178: **    0x7f                      becomes  0x0000007f
                    179: **    0x81 0x00                 becomes  0x00000080
                    180: **    0x82 0x00                 becomes  0x00000100
                    181: **    0x80 0x7f                 becomes  0x0000007f
                    182: **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
                    183: **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
                    184: **
                    185: ** Variable length integers are used for rowids and to hold the number of
                    186: ** bytes of key and data in a btree cell.
                    187: **
                    188: ** The content of a cell looks like this:
                    189: **
                    190: **    SIZE    DESCRIPTION
                    191: **      4     Page number of the left child. Omitted if leaf flag is set.
                    192: **     var    Number of bytes of data. Omitted if the zerodata flag is set.
                    193: **     var    Number of bytes of key. Or the key itself if intkey flag is set.
                    194: **      *     Payload
                    195: **      4     First page of the overflow chain.  Omitted if no overflow
                    196: **
                    197: ** Overflow pages form a linked list.  Each page except the last is completely
                    198: ** filled with data (pagesize - 4 bytes).  The last page can have as little
                    199: ** as 1 byte of data.
                    200: **
                    201: **    SIZE    DESCRIPTION
                    202: **      4     Page number of next overflow page
                    203: **      *     Data
                    204: **
                    205: ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
                    206: ** file header points to the first in a linked list of trunk page.  Each trunk
                    207: ** page points to multiple leaf pages.  The content of a leaf page is
                    208: ** unspecified.  A trunk page looks like this:
                    209: **
                    210: **    SIZE    DESCRIPTION
                    211: **      4     Page number of next trunk page
                    212: **      4     Number of leaf pointers on this page
                    213: **      *     zero or more pages numbers of leaves
                    214: */
                    215: #include "sqliteInt.h"
                    216: 
                    217: 
                    218: /* The following value is the maximum cell size assuming a maximum page
                    219: ** size give above.
                    220: */
                    221: #define MX_CELL_SIZE(pBt)  ((int)(pBt->pageSize-8))
                    222: 
                    223: /* The maximum number of cells on a single page of the database.  This
                    224: ** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
                    225: ** plus 2 bytes for the index to the cell in the page header).  Such
                    226: ** small cells will be rare, but they are possible.
                    227: */
                    228: #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
                    229: 
                    230: /* Forward declarations */
                    231: typedef struct MemPage MemPage;
                    232: typedef struct BtLock BtLock;
                    233: 
                    234: /*
                    235: ** This is a magic string that appears at the beginning of every
                    236: ** SQLite database in order to identify the file as a real database.
                    237: **
                    238: ** You can change this value at compile-time by specifying a
                    239: ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
                    240: ** header must be exactly 16 bytes including the zero-terminator so
                    241: ** the string itself should be 15 characters long.  If you change
                    242: ** the header, then your custom library will not be able to read 
                    243: ** databases generated by the standard tools and the standard tools
                    244: ** will not be able to read databases created by your custom library.
                    245: */
                    246: #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
                    247: #  define SQLITE_FILE_HEADER "SQLite format 3"
                    248: #endif
                    249: 
                    250: /*
                    251: ** Page type flags.  An ORed combination of these flags appear as the
                    252: ** first byte of on-disk image of every BTree page.
                    253: */
                    254: #define PTF_INTKEY    0x01
                    255: #define PTF_ZERODATA  0x02
                    256: #define PTF_LEAFDATA  0x04
                    257: #define PTF_LEAF      0x08
                    258: 
                    259: /*
                    260: ** As each page of the file is loaded into memory, an instance of the following
                    261: ** structure is appended and initialized to zero.  This structure stores
                    262: ** information about the page that is decoded from the raw file page.
                    263: **
                    264: ** The pParent field points back to the parent page.  This allows us to
                    265: ** walk up the BTree from any leaf to the root.  Care must be taken to
                    266: ** unref() the parent page pointer when this page is no longer referenced.
                    267: ** The pageDestructor() routine handles that chore.
                    268: **
                    269: ** Access to all fields of this structure is controlled by the mutex
                    270: ** stored in MemPage.pBt->mutex.
                    271: */
                    272: struct MemPage {
                    273:   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
                    274:   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
                    275:   u8 intKey;           /* True if intkey flag is set */
                    276:   u8 leaf;             /* True if leaf flag is set */
                    277:   u8 hasData;          /* True if this page stores data */
                    278:   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
                    279:   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
                    280:   u8 max1bytePayload;  /* min(maxLocal,127) */
                    281:   u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
                    282:   u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
                    283:   u16 cellOffset;      /* Index in aData of first cell pointer */
                    284:   u16 nFree;           /* Number of free bytes on the page */
                    285:   u16 nCell;           /* Number of cells on this page, local and ovfl */
                    286:   u16 maskPage;        /* Mask for page offset */
                    287:   struct _OvflCell {   /* Cells that will not fit on aData[] */
                    288:     u8 *pCell;          /* Pointers to the body of the overflow cell */
                    289:     u16 idx;            /* Insert this cell before idx-th non-overflow cell */
                    290:   } aOvfl[5];
                    291:   BtShared *pBt;       /* Pointer to BtShared that this page is part of */
                    292:   u8 *aData;           /* Pointer to disk image of the page data */
                    293:   u8 *aDataEnd;        /* One byte past the end of usable data */
                    294:   u8 *aCellIdx;        /* The cell index area */
                    295:   DbPage *pDbPage;     /* Pager page handle */
                    296:   Pgno pgno;           /* Page number for this page */
                    297: };
                    298: 
                    299: /*
                    300: ** The in-memory image of a disk page has the auxiliary information appended
                    301: ** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
                    302: ** that extra information.
                    303: */
                    304: #define EXTRA_SIZE sizeof(MemPage)
                    305: 
                    306: /*
                    307: ** A linked list of the following structures is stored at BtShared.pLock.
                    308: ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor 
                    309: ** is opened on the table with root page BtShared.iTable. Locks are removed
                    310: ** from this list when a transaction is committed or rolled back, or when
                    311: ** a btree handle is closed.
                    312: */
                    313: struct BtLock {
                    314:   Btree *pBtree;        /* Btree handle holding this lock */
                    315:   Pgno iTable;          /* Root page of table */
                    316:   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
                    317:   BtLock *pNext;        /* Next in BtShared.pLock list */
                    318: };
                    319: 
                    320: /* Candidate values for BtLock.eLock */
                    321: #define READ_LOCK     1
                    322: #define WRITE_LOCK    2
                    323: 
                    324: /* A Btree handle
                    325: **
                    326: ** A database connection contains a pointer to an instance of
                    327: ** this object for every database file that it has open.  This structure
                    328: ** is opaque to the database connection.  The database connection cannot
                    329: ** see the internals of this structure and only deals with pointers to
                    330: ** this structure.
                    331: **
                    332: ** For some database files, the same underlying database cache might be 
                    333: ** shared between multiple connections.  In that case, each connection
                    334: ** has it own instance of this object.  But each instance of this object
                    335: ** points to the same BtShared object.  The database cache and the
                    336: ** schema associated with the database file are all contained within
                    337: ** the BtShared object.
                    338: **
                    339: ** All fields in this structure are accessed under sqlite3.mutex.
                    340: ** The pBt pointer itself may not be changed while there exists cursors 
                    341: ** in the referenced BtShared that point back to this Btree since those
                    342: ** cursors have to go through this Btree to find their BtShared and
                    343: ** they often do so without holding sqlite3.mutex.
                    344: */
                    345: struct Btree {
                    346:   sqlite3 *db;       /* The database connection holding this btree */
                    347:   BtShared *pBt;     /* Sharable content of this btree */
                    348:   u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
                    349:   u8 sharable;       /* True if we can share pBt with another db */
                    350:   u8 locked;         /* True if db currently has pBt locked */
                    351:   int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
                    352:   int nBackup;       /* Number of backup operations reading this btree */
                    353:   Btree *pNext;      /* List of other sharable Btrees from the same db */
                    354:   Btree *pPrev;      /* Back pointer of the same list */
                    355: #ifndef SQLITE_OMIT_SHARED_CACHE
                    356:   BtLock lock;       /* Object used to lock page 1 */
                    357: #endif
                    358: };
                    359: 
                    360: /*
                    361: ** Btree.inTrans may take one of the following values.
                    362: **
                    363: ** If the shared-data extension is enabled, there may be multiple users
                    364: ** of the Btree structure. At most one of these may open a write transaction,
                    365: ** but any number may have active read transactions.
                    366: */
                    367: #define TRANS_NONE  0
                    368: #define TRANS_READ  1
                    369: #define TRANS_WRITE 2
                    370: 
                    371: /*
                    372: ** An instance of this object represents a single database file.
                    373: ** 
                    374: ** A single database file can be in use at the same time by two
                    375: ** or more database connections.  When two or more connections are
                    376: ** sharing the same database file, each connection has it own
                    377: ** private Btree object for the file and each of those Btrees points
                    378: ** to this one BtShared object.  BtShared.nRef is the number of
                    379: ** connections currently sharing this database file.
                    380: **
                    381: ** Fields in this structure are accessed under the BtShared.mutex
                    382: ** mutex, except for nRef and pNext which are accessed under the
                    383: ** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
                    384: ** may not be modified once it is initially set as long as nRef>0.
                    385: ** The pSchema field may be set once under BtShared.mutex and
                    386: ** thereafter is unchanged as long as nRef>0.
                    387: **
                    388: ** isPending:
                    389: **
                    390: **   If a BtShared client fails to obtain a write-lock on a database
                    391: **   table (because there exists one or more read-locks on the table),
                    392: **   the shared-cache enters 'pending-lock' state and isPending is
                    393: **   set to true.
                    394: **
                    395: **   The shared-cache leaves the 'pending lock' state when either of
                    396: **   the following occur:
                    397: **
                    398: **     1) The current writer (BtShared.pWriter) concludes its transaction, OR
                    399: **     2) The number of locks held by other connections drops to zero.
                    400: **
                    401: **   while in the 'pending-lock' state, no connection may start a new
                    402: **   transaction.
                    403: **
                    404: **   This feature is included to help prevent writer-starvation.
                    405: */
                    406: struct BtShared {
                    407:   Pager *pPager;        /* The page cache */
                    408:   sqlite3 *db;          /* Database connection currently using this Btree */
                    409:   BtCursor *pCursor;    /* A list of all open cursors */
                    410:   MemPage *pPage1;      /* First page of the database */
                    411:   u8 openFlags;         /* Flags to sqlite3BtreeOpen() */
                    412: #ifndef SQLITE_OMIT_AUTOVACUUM
                    413:   u8 autoVacuum;        /* True if auto-vacuum is enabled */
                    414:   u8 incrVacuum;        /* True if incr-vacuum is enabled */
                    415: #endif
                    416:   u8 inTransaction;     /* Transaction state */
                    417:   u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
                    418:   u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
                    419:   u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
                    420:   u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
                    421:   u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
                    422:   u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
                    423:   u32 pageSize;         /* Total number of bytes on a page */
                    424:   u32 usableSize;       /* Number of usable bytes on each page */
                    425:   int nTransaction;     /* Number of open transactions (read + write) */
                    426:   u32 nPage;            /* Number of pages in the database */
                    427:   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
                    428:   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
                    429:   sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
                    430:   Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
                    431: #ifndef SQLITE_OMIT_SHARED_CACHE
                    432:   int nRef;             /* Number of references to this structure */
                    433:   BtShared *pNext;      /* Next on a list of sharable BtShared structs */
                    434:   BtLock *pLock;        /* List of locks held on this shared-btree struct */
                    435:   Btree *pWriter;       /* Btree with currently open write transaction */
                    436: #endif
                    437:   u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
                    438: };
                    439: 
                    440: /*
                    441: ** Allowed values for BtShared.btsFlags
                    442: */
                    443: #define BTS_READ_ONLY        0x0001   /* Underlying file is readonly */
                    444: #define BTS_PAGESIZE_FIXED   0x0002   /* Page size can no longer be changed */
                    445: #define BTS_SECURE_DELETE    0x0004   /* PRAGMA secure_delete is enabled */
                    446: #define BTS_INITIALLY_EMPTY  0x0008   /* Database was empty at trans start */
                    447: #define BTS_NO_WAL           0x0010   /* Do not open write-ahead-log files */
                    448: #define BTS_EXCLUSIVE        0x0020   /* pWriter has an exclusive lock */
                    449: #define BTS_PENDING          0x0040   /* Waiting for read-locks to clear */
                    450: 
                    451: /*
                    452: ** An instance of the following structure is used to hold information
                    453: ** about a cell.  The parseCellPtr() function fills in this structure
                    454: ** based on information extract from the raw disk page.
                    455: */
                    456: typedef struct CellInfo CellInfo;
                    457: struct CellInfo {
                    458:   i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
                    459:   u8 *pCell;     /* Pointer to the start of cell content */
                    460:   u32 nData;     /* Number of bytes of data */
                    461:   u32 nPayload;  /* Total amount of payload */
                    462:   u16 nHeader;   /* Size of the cell content header in bytes */
                    463:   u16 nLocal;    /* Amount of payload held locally */
                    464:   u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
                    465:   u16 nSize;     /* Size of the cell content on the main b-tree page */
                    466: };
                    467: 
                    468: /*
                    469: ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
                    470: ** this will be declared corrupt. This value is calculated based on a
                    471: ** maximum database size of 2^31 pages a minimum fanout of 2 for a
                    472: ** root-node and 3 for all other internal nodes.
                    473: **
                    474: ** If a tree that appears to be taller than this is encountered, it is
                    475: ** assumed that the database is corrupt.
                    476: */
                    477: #define BTCURSOR_MAX_DEPTH 20
                    478: 
                    479: /*
                    480: ** A cursor is a pointer to a particular entry within a particular
                    481: ** b-tree within a database file.
                    482: **
                    483: ** The entry is identified by its MemPage and the index in
                    484: ** MemPage.aCell[] of the entry.
                    485: **
                    486: ** A single database file can be shared by two more database connections,
                    487: ** but cursors cannot be shared.  Each cursor is associated with a
                    488: ** particular database connection identified BtCursor.pBtree.db.
                    489: **
                    490: ** Fields in this structure are accessed under the BtShared.mutex
                    491: ** found at self->pBt->mutex. 
                    492: */
                    493: struct BtCursor {
                    494:   Btree *pBtree;            /* The Btree to which this cursor belongs */
                    495:   BtShared *pBt;            /* The BtShared this cursor points to */
                    496:   BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
                    497:   struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
                    498:   Pgno pgnoRoot;            /* The root page of this tree */
                    499:   sqlite3_int64 cachedRowid; /* Next rowid cache.  0 means not valid */
                    500:   CellInfo info;            /* A parse of the cell we are pointing at */
                    501:   i64 nKey;        /* Size of pKey, or last integer key */
                    502:   void *pKey;      /* Saved key that was cursor's last known position */
                    503:   int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */
                    504:   u8 wrFlag;                /* True if writable */
                    505:   u8 atLast;                /* Cursor pointing to the last entry */
                    506:   u8 validNKey;             /* True if info.nKey is valid */
                    507:   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
                    508: #ifndef SQLITE_OMIT_INCRBLOB
                    509:   Pgno *aOverflow;          /* Cache of overflow page locations */
                    510:   u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
                    511: #endif
                    512:   i16 iPage;                            /* Index of current page in apPage */
                    513:   u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
                    514:   MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
                    515: };
                    516: 
                    517: /*
                    518: ** Potential values for BtCursor.eState.
                    519: **
                    520: ** CURSOR_VALID:
                    521: **   Cursor points to a valid entry. getPayload() etc. may be called.
                    522: **
                    523: ** CURSOR_INVALID:
                    524: **   Cursor does not point to a valid entry. This can happen (for example) 
                    525: **   because the table is empty or because BtreeCursorFirst() has not been
                    526: **   called.
                    527: **
                    528: ** CURSOR_REQUIRESEEK:
                    529: **   The table that this cursor was opened on still exists, but has been 
                    530: **   modified since the cursor was last used. The cursor position is saved
                    531: **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
                    532: **   this state, restoreCursorPosition() can be called to attempt to
                    533: **   seek the cursor to the saved position.
                    534: **
                    535: ** CURSOR_FAULT:
                    536: **   A unrecoverable error (an I/O error or a malloc failure) has occurred
                    537: **   on a different connection that shares the BtShared cache with this
                    538: **   cursor.  The error has left the cache in an inconsistent state.
                    539: **   Do nothing else with this cursor.  Any attempt to use the cursor
                    540: **   should return the error code stored in BtCursor.skip
                    541: */
                    542: #define CURSOR_INVALID           0
                    543: #define CURSOR_VALID             1
                    544: #define CURSOR_REQUIRESEEK       2
                    545: #define CURSOR_FAULT             3
                    546: 
                    547: /* 
                    548: ** The database page the PENDING_BYTE occupies. This page is never used.
                    549: */
                    550: # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
                    551: 
                    552: /*
                    553: ** These macros define the location of the pointer-map entry for a 
                    554: ** database page. The first argument to each is the number of usable
                    555: ** bytes on each page of the database (often 1024). The second is the
                    556: ** page number to look up in the pointer map.
                    557: **
                    558: ** PTRMAP_PAGENO returns the database page number of the pointer-map
                    559: ** page that stores the required pointer. PTRMAP_PTROFFSET returns
                    560: ** the offset of the requested map entry.
                    561: **
                    562: ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
                    563: ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
                    564: ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
                    565: ** this test.
                    566: */
                    567: #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
                    568: #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
                    569: #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
                    570: 
                    571: /*
                    572: ** The pointer map is a lookup table that identifies the parent page for
                    573: ** each child page in the database file.  The parent page is the page that
                    574: ** contains a pointer to the child.  Every page in the database contains
                    575: ** 0 or 1 parent pages.  (In this context 'database page' refers
                    576: ** to any page that is not part of the pointer map itself.)  Each pointer map
                    577: ** entry consists of a single byte 'type' and a 4 byte parent page number.
                    578: ** The PTRMAP_XXX identifiers below are the valid types.
                    579: **
                    580: ** The purpose of the pointer map is to facility moving pages from one
                    581: ** position in the file to another as part of autovacuum.  When a page
                    582: ** is moved, the pointer in its parent must be updated to point to the
                    583: ** new location.  The pointer map is used to locate the parent page quickly.
                    584: **
                    585: ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
                    586: **                  used in this case.
                    587: **
                    588: ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number 
                    589: **                  is not used in this case.
                    590: **
                    591: ** PTRMAP_OVERFLOW1: The database page is the first page in a list of 
                    592: **                   overflow pages. The page number identifies the page that
                    593: **                   contains the cell with a pointer to this overflow page.
                    594: **
                    595: ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
                    596: **                   overflow pages. The page-number identifies the previous
                    597: **                   page in the overflow page list.
                    598: **
                    599: ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
                    600: **               identifies the parent page in the btree.
                    601: */
                    602: #define PTRMAP_ROOTPAGE 1
                    603: #define PTRMAP_FREEPAGE 2
                    604: #define PTRMAP_OVERFLOW1 3
                    605: #define PTRMAP_OVERFLOW2 4
                    606: #define PTRMAP_BTREE 5
                    607: 
                    608: /* A bunch of assert() statements to check the transaction state variables
                    609: ** of handle p (type Btree*) are internally consistent.
                    610: */
                    611: #define btreeIntegrity(p) \
                    612:   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
                    613:   assert( p->pBt->inTransaction>=p->inTrans ); 
                    614: 
                    615: 
                    616: /*
                    617: ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
                    618: ** if the database supports auto-vacuum or not. Because it is used
                    619: ** within an expression that is an argument to another macro 
                    620: ** (sqliteMallocRaw), it is not possible to use conditional compilation.
                    621: ** So, this macro is defined instead.
                    622: */
                    623: #ifndef SQLITE_OMIT_AUTOVACUUM
                    624: #define ISAUTOVACUUM (pBt->autoVacuum)
                    625: #else
                    626: #define ISAUTOVACUUM 0
                    627: #endif
                    628: 
                    629: 
                    630: /*
                    631: ** This structure is passed around through all the sanity checking routines
                    632: ** in order to keep track of some global state information.
                    633: */
                    634: typedef struct IntegrityCk IntegrityCk;
                    635: struct IntegrityCk {
                    636:   BtShared *pBt;    /* The tree being checked out */
                    637:   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
                    638:   Pgno nPage;       /* Number of pages in the database */
                    639:   int *anRef;       /* Number of times each page is referenced */
                    640:   int mxErr;        /* Stop accumulating errors when this reaches zero */
                    641:   int nErr;         /* Number of messages written to zErrMsg so far */
                    642:   int mallocFailed; /* A memory allocation error has occurred */
                    643:   StrAccum errMsg;  /* Accumulate the error message text here */
                    644: };
                    645: 
                    646: /*
                    647: ** Routines to read or write a two- and four-byte big-endian integer values.
                    648: */
                    649: #define get2byte(x)   ((x)[0]<<8 | (x)[1])
                    650: #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
                    651: #define get4byte sqlite3Get4byte
                    652: #define put4byte sqlite3Put4byte

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>