Annotation of embedaddon/sqlite3/src/date.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2003 October 31
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file contains the C functions that implement date and time
                     13: ** functions for SQLite.  
                     14: **
                     15: ** There is only one exported symbol in this file - the function
                     16: ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
                     17: ** All other code has file scope.
                     18: **
                     19: ** SQLite processes all times and dates as Julian Day numbers.  The
                     20: ** dates and times are stored as the number of days since noon
                     21: ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
                     22: ** calendar system. 
                     23: **
                     24: ** 1970-01-01 00:00:00 is JD 2440587.5
                     25: ** 2000-01-01 00:00:00 is JD 2451544.5
                     26: **
                     27: ** This implemention requires years to be expressed as a 4-digit number
                     28: ** which means that only dates between 0000-01-01 and 9999-12-31 can
                     29: ** be represented, even though julian day numbers allow a much wider
                     30: ** range of dates.
                     31: **
                     32: ** The Gregorian calendar system is used for all dates and times,
                     33: ** even those that predate the Gregorian calendar.  Historians usually
                     34: ** use the Julian calendar for dates prior to 1582-10-15 and for some
                     35: ** dates afterwards, depending on locale.  Beware of this difference.
                     36: **
                     37: ** The conversion algorithms are implemented based on descriptions
                     38: ** in the following text:
                     39: **
                     40: **      Jean Meeus
                     41: **      Astronomical Algorithms, 2nd Edition, 1998
                     42: **      ISBM 0-943396-61-1
                     43: **      Willmann-Bell, Inc
                     44: **      Richmond, Virginia (USA)
                     45: */
                     46: #include "sqliteInt.h"
                     47: #include <stdlib.h>
                     48: #include <assert.h>
                     49: #include <time.h>
                     50: 
                     51: #ifndef SQLITE_OMIT_DATETIME_FUNCS
                     52: 
                     53: 
                     54: /*
                     55: ** A structure for holding a single date and time.
                     56: */
                     57: typedef struct DateTime DateTime;
                     58: struct DateTime {
                     59:   sqlite3_int64 iJD; /* The julian day number times 86400000 */
                     60:   int Y, M, D;       /* Year, month, and day */
                     61:   int h, m;          /* Hour and minutes */
                     62:   int tz;            /* Timezone offset in minutes */
                     63:   double s;          /* Seconds */
                     64:   char validYMD;     /* True (1) if Y,M,D are valid */
                     65:   char validHMS;     /* True (1) if h,m,s are valid */
                     66:   char validJD;      /* True (1) if iJD is valid */
                     67:   char validTZ;      /* True (1) if tz is valid */
                     68: };
                     69: 
                     70: 
                     71: /*
                     72: ** Convert zDate into one or more integers.  Additional arguments
                     73: ** come in groups of 5 as follows:
                     74: **
                     75: **       N       number of digits in the integer
                     76: **       min     minimum allowed value of the integer
                     77: **       max     maximum allowed value of the integer
                     78: **       nextC   first character after the integer
                     79: **       pVal    where to write the integers value.
                     80: **
                     81: ** Conversions continue until one with nextC==0 is encountered.
                     82: ** The function returns the number of successful conversions.
                     83: */
                     84: static int getDigits(const char *zDate, ...){
                     85:   va_list ap;
                     86:   int val;
                     87:   int N;
                     88:   int min;
                     89:   int max;
                     90:   int nextC;
                     91:   int *pVal;
                     92:   int cnt = 0;
                     93:   va_start(ap, zDate);
                     94:   do{
                     95:     N = va_arg(ap, int);
                     96:     min = va_arg(ap, int);
                     97:     max = va_arg(ap, int);
                     98:     nextC = va_arg(ap, int);
                     99:     pVal = va_arg(ap, int*);
                    100:     val = 0;
                    101:     while( N-- ){
                    102:       if( !sqlite3Isdigit(*zDate) ){
                    103:         goto end_getDigits;
                    104:       }
                    105:       val = val*10 + *zDate - '0';
                    106:       zDate++;
                    107:     }
                    108:     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
                    109:       goto end_getDigits;
                    110:     }
                    111:     *pVal = val;
                    112:     zDate++;
                    113:     cnt++;
                    114:   }while( nextC );
                    115: end_getDigits:
                    116:   va_end(ap);
                    117:   return cnt;
                    118: }
                    119: 
                    120: /*
                    121: ** Parse a timezone extension on the end of a date-time.
                    122: ** The extension is of the form:
                    123: **
                    124: **        (+/-)HH:MM
                    125: **
                    126: ** Or the "zulu" notation:
                    127: **
                    128: **        Z
                    129: **
                    130: ** If the parse is successful, write the number of minutes
                    131: ** of change in p->tz and return 0.  If a parser error occurs,
                    132: ** return non-zero.
                    133: **
                    134: ** A missing specifier is not considered an error.
                    135: */
                    136: static int parseTimezone(const char *zDate, DateTime *p){
                    137:   int sgn = 0;
                    138:   int nHr, nMn;
                    139:   int c;
                    140:   while( sqlite3Isspace(*zDate) ){ zDate++; }
                    141:   p->tz = 0;
                    142:   c = *zDate;
                    143:   if( c=='-' ){
                    144:     sgn = -1;
                    145:   }else if( c=='+' ){
                    146:     sgn = +1;
                    147:   }else if( c=='Z' || c=='z' ){
                    148:     zDate++;
                    149:     goto zulu_time;
                    150:   }else{
                    151:     return c!=0;
                    152:   }
                    153:   zDate++;
                    154:   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
                    155:     return 1;
                    156:   }
                    157:   zDate += 5;
                    158:   p->tz = sgn*(nMn + nHr*60);
                    159: zulu_time:
                    160:   while( sqlite3Isspace(*zDate) ){ zDate++; }
                    161:   return *zDate!=0;
                    162: }
                    163: 
                    164: /*
                    165: ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
                    166: ** The HH, MM, and SS must each be exactly 2 digits.  The
                    167: ** fractional seconds FFFF can be one or more digits.
                    168: **
                    169: ** Return 1 if there is a parsing error and 0 on success.
                    170: */
                    171: static int parseHhMmSs(const char *zDate, DateTime *p){
                    172:   int h, m, s;
                    173:   double ms = 0.0;
                    174:   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
                    175:     return 1;
                    176:   }
                    177:   zDate += 5;
                    178:   if( *zDate==':' ){
                    179:     zDate++;
                    180:     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
                    181:       return 1;
                    182:     }
                    183:     zDate += 2;
                    184:     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
                    185:       double rScale = 1.0;
                    186:       zDate++;
                    187:       while( sqlite3Isdigit(*zDate) ){
                    188:         ms = ms*10.0 + *zDate - '0';
                    189:         rScale *= 10.0;
                    190:         zDate++;
                    191:       }
                    192:       ms /= rScale;
                    193:     }
                    194:   }else{
                    195:     s = 0;
                    196:   }
                    197:   p->validJD = 0;
                    198:   p->validHMS = 1;
                    199:   p->h = h;
                    200:   p->m = m;
                    201:   p->s = s + ms;
                    202:   if( parseTimezone(zDate, p) ) return 1;
                    203:   p->validTZ = (p->tz!=0)?1:0;
                    204:   return 0;
                    205: }
                    206: 
                    207: /*
                    208: ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
                    209: ** that the YYYY-MM-DD is according to the Gregorian calendar.
                    210: **
                    211: ** Reference:  Meeus page 61
                    212: */
                    213: static void computeJD(DateTime *p){
                    214:   int Y, M, D, A, B, X1, X2;
                    215: 
                    216:   if( p->validJD ) return;
                    217:   if( p->validYMD ){
                    218:     Y = p->Y;
                    219:     M = p->M;
                    220:     D = p->D;
                    221:   }else{
                    222:     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
                    223:     M = 1;
                    224:     D = 1;
                    225:   }
                    226:   if( M<=2 ){
                    227:     Y--;
                    228:     M += 12;
                    229:   }
                    230:   A = Y/100;
                    231:   B = 2 - A + (A/4);
                    232:   X1 = 36525*(Y+4716)/100;
                    233:   X2 = 306001*(M+1)/10000;
                    234:   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
                    235:   p->validJD = 1;
                    236:   if( p->validHMS ){
                    237:     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
                    238:     if( p->validTZ ){
                    239:       p->iJD -= p->tz*60000;
                    240:       p->validYMD = 0;
                    241:       p->validHMS = 0;
                    242:       p->validTZ = 0;
                    243:     }
                    244:   }
                    245: }
                    246: 
                    247: /*
                    248: ** Parse dates of the form
                    249: **
                    250: **     YYYY-MM-DD HH:MM:SS.FFF
                    251: **     YYYY-MM-DD HH:MM:SS
                    252: **     YYYY-MM-DD HH:MM
                    253: **     YYYY-MM-DD
                    254: **
                    255: ** Write the result into the DateTime structure and return 0
                    256: ** on success and 1 if the input string is not a well-formed
                    257: ** date.
                    258: */
                    259: static int parseYyyyMmDd(const char *zDate, DateTime *p){
                    260:   int Y, M, D, neg;
                    261: 
                    262:   if( zDate[0]=='-' ){
                    263:     zDate++;
                    264:     neg = 1;
                    265:   }else{
                    266:     neg = 0;
                    267:   }
                    268:   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
                    269:     return 1;
                    270:   }
                    271:   zDate += 10;
                    272:   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
                    273:   if( parseHhMmSs(zDate, p)==0 ){
                    274:     /* We got the time */
                    275:   }else if( *zDate==0 ){
                    276:     p->validHMS = 0;
                    277:   }else{
                    278:     return 1;
                    279:   }
                    280:   p->validJD = 0;
                    281:   p->validYMD = 1;
                    282:   p->Y = neg ? -Y : Y;
                    283:   p->M = M;
                    284:   p->D = D;
                    285:   if( p->validTZ ){
                    286:     computeJD(p);
                    287:   }
                    288:   return 0;
                    289: }
                    290: 
                    291: /*
                    292: ** Set the time to the current time reported by the VFS.
                    293: **
                    294: ** Return the number of errors.
                    295: */
                    296: static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
                    297:   sqlite3 *db = sqlite3_context_db_handle(context);
                    298:   if( sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD)==SQLITE_OK ){
                    299:     p->validJD = 1;
                    300:     return 0;
                    301:   }else{
                    302:     return 1;
                    303:   }
                    304: }
                    305: 
                    306: /*
                    307: ** Attempt to parse the given string into a Julian Day Number.  Return
                    308: ** the number of errors.
                    309: **
                    310: ** The following are acceptable forms for the input string:
                    311: **
                    312: **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
                    313: **      DDDD.DD 
                    314: **      now
                    315: **
                    316: ** In the first form, the +/-HH:MM is always optional.  The fractional
                    317: ** seconds extension (the ".FFF") is optional.  The seconds portion
                    318: ** (":SS.FFF") is option.  The year and date can be omitted as long
                    319: ** as there is a time string.  The time string can be omitted as long
                    320: ** as there is a year and date.
                    321: */
                    322: static int parseDateOrTime(
                    323:   sqlite3_context *context, 
                    324:   const char *zDate, 
                    325:   DateTime *p
                    326: ){
                    327:   double r;
                    328:   if( parseYyyyMmDd(zDate,p)==0 ){
                    329:     return 0;
                    330:   }else if( parseHhMmSs(zDate, p)==0 ){
                    331:     return 0;
                    332:   }else if( sqlite3StrICmp(zDate,"now")==0){
                    333:     return setDateTimeToCurrent(context, p);
                    334:   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
                    335:     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
                    336:     p->validJD = 1;
                    337:     return 0;
                    338:   }
                    339:   return 1;
                    340: }
                    341: 
                    342: /*
                    343: ** Compute the Year, Month, and Day from the julian day number.
                    344: */
                    345: static void computeYMD(DateTime *p){
                    346:   int Z, A, B, C, D, E, X1;
                    347:   if( p->validYMD ) return;
                    348:   if( !p->validJD ){
                    349:     p->Y = 2000;
                    350:     p->M = 1;
                    351:     p->D = 1;
                    352:   }else{
                    353:     Z = (int)((p->iJD + 43200000)/86400000);
                    354:     A = (int)((Z - 1867216.25)/36524.25);
                    355:     A = Z + 1 + A - (A/4);
                    356:     B = A + 1524;
                    357:     C = (int)((B - 122.1)/365.25);
                    358:     D = (36525*C)/100;
                    359:     E = (int)((B-D)/30.6001);
                    360:     X1 = (int)(30.6001*E);
                    361:     p->D = B - D - X1;
                    362:     p->M = E<14 ? E-1 : E-13;
                    363:     p->Y = p->M>2 ? C - 4716 : C - 4715;
                    364:   }
                    365:   p->validYMD = 1;
                    366: }
                    367: 
                    368: /*
                    369: ** Compute the Hour, Minute, and Seconds from the julian day number.
                    370: */
                    371: static void computeHMS(DateTime *p){
                    372:   int s;
                    373:   if( p->validHMS ) return;
                    374:   computeJD(p);
                    375:   s = (int)((p->iJD + 43200000) % 86400000);
                    376:   p->s = s/1000.0;
                    377:   s = (int)p->s;
                    378:   p->s -= s;
                    379:   p->h = s/3600;
                    380:   s -= p->h*3600;
                    381:   p->m = s/60;
                    382:   p->s += s - p->m*60;
                    383:   p->validHMS = 1;
                    384: }
                    385: 
                    386: /*
                    387: ** Compute both YMD and HMS
                    388: */
                    389: static void computeYMD_HMS(DateTime *p){
                    390:   computeYMD(p);
                    391:   computeHMS(p);
                    392: }
                    393: 
                    394: /*
                    395: ** Clear the YMD and HMS and the TZ
                    396: */
                    397: static void clearYMD_HMS_TZ(DateTime *p){
                    398:   p->validYMD = 0;
                    399:   p->validHMS = 0;
                    400:   p->validTZ = 0;
                    401: }
                    402: 
                    403: /*
                    404: ** On recent Windows platforms, the localtime_s() function is available
                    405: ** as part of the "Secure CRT". It is essentially equivalent to 
                    406: ** localtime_r() available under most POSIX platforms, except that the 
                    407: ** order of the parameters is reversed.
                    408: **
                    409: ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
                    410: **
                    411: ** If the user has not indicated to use localtime_r() or localtime_s()
                    412: ** already, check for an MSVC build environment that provides 
                    413: ** localtime_s().
                    414: */
                    415: #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
                    416:      defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
                    417: #define HAVE_LOCALTIME_S 1
                    418: #endif
                    419: 
                    420: #ifndef SQLITE_OMIT_LOCALTIME
                    421: /*
                    422: ** The following routine implements the rough equivalent of localtime_r()
                    423: ** using whatever operating-system specific localtime facility that
                    424: ** is available.  This routine returns 0 on success and
                    425: ** non-zero on any kind of error.
                    426: **
                    427: ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
                    428: ** routine will always fail.
                    429: */
                    430: static int osLocaltime(time_t *t, struct tm *pTm){
                    431:   int rc;
                    432: #if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \
                    433:       && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S)
                    434:   struct tm *pX;
                    435: #if SQLITE_THREADSAFE>0
                    436:   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
                    437: #endif
                    438:   sqlite3_mutex_enter(mutex);
                    439:   pX = localtime(t);
                    440: #ifndef SQLITE_OMIT_BUILTIN_TEST
                    441:   if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
                    442: #endif
                    443:   if( pX ) *pTm = *pX;
                    444:   sqlite3_mutex_leave(mutex);
                    445:   rc = pX==0;
                    446: #else
                    447: #ifndef SQLITE_OMIT_BUILTIN_TEST
                    448:   if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
                    449: #endif
                    450: #if defined(HAVE_LOCALTIME_R) && HAVE_LOCALTIME_R
                    451:   rc = localtime_r(t, pTm)==0;
                    452: #else
                    453:   rc = localtime_s(pTm, t);
                    454: #endif /* HAVE_LOCALTIME_R */
                    455: #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
                    456:   return rc;
                    457: }
                    458: #endif /* SQLITE_OMIT_LOCALTIME */
                    459: 
                    460: 
                    461: #ifndef SQLITE_OMIT_LOCALTIME
                    462: /*
                    463: ** Compute the difference (in milliseconds) between localtime and UTC
                    464: ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
                    465: ** return this value and set *pRc to SQLITE_OK. 
                    466: **
                    467: ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
                    468: ** is undefined in this case.
                    469: */
                    470: static sqlite3_int64 localtimeOffset(
                    471:   DateTime *p,                    /* Date at which to calculate offset */
                    472:   sqlite3_context *pCtx,          /* Write error here if one occurs */
                    473:   int *pRc                        /* OUT: Error code. SQLITE_OK or ERROR */
                    474: ){
                    475:   DateTime x, y;
                    476:   time_t t;
                    477:   struct tm sLocal;
                    478: 
                    479:   /* Initialize the contents of sLocal to avoid a compiler warning. */
                    480:   memset(&sLocal, 0, sizeof(sLocal));
                    481: 
                    482:   x = *p;
                    483:   computeYMD_HMS(&x);
                    484:   if( x.Y<1971 || x.Y>=2038 ){
                    485:     x.Y = 2000;
                    486:     x.M = 1;
                    487:     x.D = 1;
                    488:     x.h = 0;
                    489:     x.m = 0;
                    490:     x.s = 0.0;
                    491:   } else {
                    492:     int s = (int)(x.s + 0.5);
                    493:     x.s = s;
                    494:   }
                    495:   x.tz = 0;
                    496:   x.validJD = 0;
                    497:   computeJD(&x);
                    498:   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
                    499:   if( osLocaltime(&t, &sLocal) ){
                    500:     sqlite3_result_error(pCtx, "local time unavailable", -1);
                    501:     *pRc = SQLITE_ERROR;
                    502:     return 0;
                    503:   }
                    504:   y.Y = sLocal.tm_year + 1900;
                    505:   y.M = sLocal.tm_mon + 1;
                    506:   y.D = sLocal.tm_mday;
                    507:   y.h = sLocal.tm_hour;
                    508:   y.m = sLocal.tm_min;
                    509:   y.s = sLocal.tm_sec;
                    510:   y.validYMD = 1;
                    511:   y.validHMS = 1;
                    512:   y.validJD = 0;
                    513:   y.validTZ = 0;
                    514:   computeJD(&y);
                    515:   *pRc = SQLITE_OK;
                    516:   return y.iJD - x.iJD;
                    517: }
                    518: #endif /* SQLITE_OMIT_LOCALTIME */
                    519: 
                    520: /*
                    521: ** Process a modifier to a date-time stamp.  The modifiers are
                    522: ** as follows:
                    523: **
                    524: **     NNN days
                    525: **     NNN hours
                    526: **     NNN minutes
                    527: **     NNN.NNNN seconds
                    528: **     NNN months
                    529: **     NNN years
                    530: **     start of month
                    531: **     start of year
                    532: **     start of week
                    533: **     start of day
                    534: **     weekday N
                    535: **     unixepoch
                    536: **     localtime
                    537: **     utc
                    538: **
                    539: ** Return 0 on success and 1 if there is any kind of error. If the error
                    540: ** is in a system call (i.e. localtime()), then an error message is written
                    541: ** to context pCtx. If the error is an unrecognized modifier, no error is
                    542: ** written to pCtx.
                    543: */
                    544: static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){
                    545:   int rc = 1;
                    546:   int n;
                    547:   double r;
                    548:   char *z, zBuf[30];
                    549:   z = zBuf;
                    550:   for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
                    551:     z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
                    552:   }
                    553:   z[n] = 0;
                    554:   switch( z[0] ){
                    555: #ifndef SQLITE_OMIT_LOCALTIME
                    556:     case 'l': {
                    557:       /*    localtime
                    558:       **
                    559:       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
                    560:       ** show local time.
                    561:       */
                    562:       if( strcmp(z, "localtime")==0 ){
                    563:         computeJD(p);
                    564:         p->iJD += localtimeOffset(p, pCtx, &rc);
                    565:         clearYMD_HMS_TZ(p);
                    566:       }
                    567:       break;
                    568:     }
                    569: #endif
                    570:     case 'u': {
                    571:       /*
                    572:       **    unixepoch
                    573:       **
                    574:       ** Treat the current value of p->iJD as the number of
                    575:       ** seconds since 1970.  Convert to a real julian day number.
                    576:       */
                    577:       if( strcmp(z, "unixepoch")==0 && p->validJD ){
                    578:         p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
                    579:         clearYMD_HMS_TZ(p);
                    580:         rc = 0;
                    581:       }
                    582: #ifndef SQLITE_OMIT_LOCALTIME
                    583:       else if( strcmp(z, "utc")==0 ){
                    584:         sqlite3_int64 c1;
                    585:         computeJD(p);
                    586:         c1 = localtimeOffset(p, pCtx, &rc);
                    587:         if( rc==SQLITE_OK ){
                    588:           p->iJD -= c1;
                    589:           clearYMD_HMS_TZ(p);
                    590:           p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
                    591:         }
                    592:       }
                    593: #endif
                    594:       break;
                    595:     }
                    596:     case 'w': {
                    597:       /*
                    598:       **    weekday N
                    599:       **
                    600:       ** Move the date to the same time on the next occurrence of
                    601:       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
                    602:       ** date is already on the appropriate weekday, this is a no-op.
                    603:       */
                    604:       if( strncmp(z, "weekday ", 8)==0
                    605:                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
                    606:                && (n=(int)r)==r && n>=0 && r<7 ){
                    607:         sqlite3_int64 Z;
                    608:         computeYMD_HMS(p);
                    609:         p->validTZ = 0;
                    610:         p->validJD = 0;
                    611:         computeJD(p);
                    612:         Z = ((p->iJD + 129600000)/86400000) % 7;
                    613:         if( Z>n ) Z -= 7;
                    614:         p->iJD += (n - Z)*86400000;
                    615:         clearYMD_HMS_TZ(p);
                    616:         rc = 0;
                    617:       }
                    618:       break;
                    619:     }
                    620:     case 's': {
                    621:       /*
                    622:       **    start of TTTTT
                    623:       **
                    624:       ** Move the date backwards to the beginning of the current day,
                    625:       ** or month or year.
                    626:       */
                    627:       if( strncmp(z, "start of ", 9)!=0 ) break;
                    628:       z += 9;
                    629:       computeYMD(p);
                    630:       p->validHMS = 1;
                    631:       p->h = p->m = 0;
                    632:       p->s = 0.0;
                    633:       p->validTZ = 0;
                    634:       p->validJD = 0;
                    635:       if( strcmp(z,"month")==0 ){
                    636:         p->D = 1;
                    637:         rc = 0;
                    638:       }else if( strcmp(z,"year")==0 ){
                    639:         computeYMD(p);
                    640:         p->M = 1;
                    641:         p->D = 1;
                    642:         rc = 0;
                    643:       }else if( strcmp(z,"day")==0 ){
                    644:         rc = 0;
                    645:       }
                    646:       break;
                    647:     }
                    648:     case '+':
                    649:     case '-':
                    650:     case '0':
                    651:     case '1':
                    652:     case '2':
                    653:     case '3':
                    654:     case '4':
                    655:     case '5':
                    656:     case '6':
                    657:     case '7':
                    658:     case '8':
                    659:     case '9': {
                    660:       double rRounder;
                    661:       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
                    662:       if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
                    663:         rc = 1;
                    664:         break;
                    665:       }
                    666:       if( z[n]==':' ){
                    667:         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
                    668:         ** specified number of hours, minutes, seconds, and fractional seconds
                    669:         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
                    670:         ** omitted.
                    671:         */
                    672:         const char *z2 = z;
                    673:         DateTime tx;
                    674:         sqlite3_int64 day;
                    675:         if( !sqlite3Isdigit(*z2) ) z2++;
                    676:         memset(&tx, 0, sizeof(tx));
                    677:         if( parseHhMmSs(z2, &tx) ) break;
                    678:         computeJD(&tx);
                    679:         tx.iJD -= 43200000;
                    680:         day = tx.iJD/86400000;
                    681:         tx.iJD -= day*86400000;
                    682:         if( z[0]=='-' ) tx.iJD = -tx.iJD;
                    683:         computeJD(p);
                    684:         clearYMD_HMS_TZ(p);
                    685:         p->iJD += tx.iJD;
                    686:         rc = 0;
                    687:         break;
                    688:       }
                    689:       z += n;
                    690:       while( sqlite3Isspace(*z) ) z++;
                    691:       n = sqlite3Strlen30(z);
                    692:       if( n>10 || n<3 ) break;
                    693:       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
                    694:       computeJD(p);
                    695:       rc = 0;
                    696:       rRounder = r<0 ? -0.5 : +0.5;
                    697:       if( n==3 && strcmp(z,"day")==0 ){
                    698:         p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
                    699:       }else if( n==4 && strcmp(z,"hour")==0 ){
                    700:         p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
                    701:       }else if( n==6 && strcmp(z,"minute")==0 ){
                    702:         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
                    703:       }else if( n==6 && strcmp(z,"second")==0 ){
                    704:         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
                    705:       }else if( n==5 && strcmp(z,"month")==0 ){
                    706:         int x, y;
                    707:         computeYMD_HMS(p);
                    708:         p->M += (int)r;
                    709:         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
                    710:         p->Y += x;
                    711:         p->M -= x*12;
                    712:         p->validJD = 0;
                    713:         computeJD(p);
                    714:         y = (int)r;
                    715:         if( y!=r ){
                    716:           p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
                    717:         }
                    718:       }else if( n==4 && strcmp(z,"year")==0 ){
                    719:         int y = (int)r;
                    720:         computeYMD_HMS(p);
                    721:         p->Y += y;
                    722:         p->validJD = 0;
                    723:         computeJD(p);
                    724:         if( y!=r ){
                    725:           p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
                    726:         }
                    727:       }else{
                    728:         rc = 1;
                    729:       }
                    730:       clearYMD_HMS_TZ(p);
                    731:       break;
                    732:     }
                    733:     default: {
                    734:       break;
                    735:     }
                    736:   }
                    737:   return rc;
                    738: }
                    739: 
                    740: /*
                    741: ** Process time function arguments.  argv[0] is a date-time stamp.
                    742: ** argv[1] and following are modifiers.  Parse them all and write
                    743: ** the resulting time into the DateTime structure p.  Return 0
                    744: ** on success and 1 if there are any errors.
                    745: **
                    746: ** If there are zero parameters (if even argv[0] is undefined)
                    747: ** then assume a default value of "now" for argv[0].
                    748: */
                    749: static int isDate(
                    750:   sqlite3_context *context, 
                    751:   int argc, 
                    752:   sqlite3_value **argv, 
                    753:   DateTime *p
                    754: ){
                    755:   int i;
                    756:   const unsigned char *z;
                    757:   int eType;
                    758:   memset(p, 0, sizeof(*p));
                    759:   if( argc==0 ){
                    760:     return setDateTimeToCurrent(context, p);
                    761:   }
                    762:   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
                    763:                    || eType==SQLITE_INTEGER ){
                    764:     p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
                    765:     p->validJD = 1;
                    766:   }else{
                    767:     z = sqlite3_value_text(argv[0]);
                    768:     if( !z || parseDateOrTime(context, (char*)z, p) ){
                    769:       return 1;
                    770:     }
                    771:   }
                    772:   for(i=1; i<argc; i++){
                    773:     z = sqlite3_value_text(argv[i]);
                    774:     if( z==0 || parseModifier(context, (char*)z, p) ) return 1;
                    775:   }
                    776:   return 0;
                    777: }
                    778: 
                    779: 
                    780: /*
                    781: ** The following routines implement the various date and time functions
                    782: ** of SQLite.
                    783: */
                    784: 
                    785: /*
                    786: **    julianday( TIMESTRING, MOD, MOD, ...)
                    787: **
                    788: ** Return the julian day number of the date specified in the arguments
                    789: */
                    790: static void juliandayFunc(
                    791:   sqlite3_context *context,
                    792:   int argc,
                    793:   sqlite3_value **argv
                    794: ){
                    795:   DateTime x;
                    796:   if( isDate(context, argc, argv, &x)==0 ){
                    797:     computeJD(&x);
                    798:     sqlite3_result_double(context, x.iJD/86400000.0);
                    799:   }
                    800: }
                    801: 
                    802: /*
                    803: **    datetime( TIMESTRING, MOD, MOD, ...)
                    804: **
                    805: ** Return YYYY-MM-DD HH:MM:SS
                    806: */
                    807: static void datetimeFunc(
                    808:   sqlite3_context *context,
                    809:   int argc,
                    810:   sqlite3_value **argv
                    811: ){
                    812:   DateTime x;
                    813:   if( isDate(context, argc, argv, &x)==0 ){
                    814:     char zBuf[100];
                    815:     computeYMD_HMS(&x);
                    816:     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
                    817:                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
                    818:     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
                    819:   }
                    820: }
                    821: 
                    822: /*
                    823: **    time( TIMESTRING, MOD, MOD, ...)
                    824: **
                    825: ** Return HH:MM:SS
                    826: */
                    827: static void timeFunc(
                    828:   sqlite3_context *context,
                    829:   int argc,
                    830:   sqlite3_value **argv
                    831: ){
                    832:   DateTime x;
                    833:   if( isDate(context, argc, argv, &x)==0 ){
                    834:     char zBuf[100];
                    835:     computeHMS(&x);
                    836:     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
                    837:     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
                    838:   }
                    839: }
                    840: 
                    841: /*
                    842: **    date( TIMESTRING, MOD, MOD, ...)
                    843: **
                    844: ** Return YYYY-MM-DD
                    845: */
                    846: static void dateFunc(
                    847:   sqlite3_context *context,
                    848:   int argc,
                    849:   sqlite3_value **argv
                    850: ){
                    851:   DateTime x;
                    852:   if( isDate(context, argc, argv, &x)==0 ){
                    853:     char zBuf[100];
                    854:     computeYMD(&x);
                    855:     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
                    856:     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
                    857:   }
                    858: }
                    859: 
                    860: /*
                    861: **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
                    862: **
                    863: ** Return a string described by FORMAT.  Conversions as follows:
                    864: **
                    865: **   %d  day of month
                    866: **   %f  ** fractional seconds  SS.SSS
                    867: **   %H  hour 00-24
                    868: **   %j  day of year 000-366
                    869: **   %J  ** Julian day number
                    870: **   %m  month 01-12
                    871: **   %M  minute 00-59
                    872: **   %s  seconds since 1970-01-01
                    873: **   %S  seconds 00-59
                    874: **   %w  day of week 0-6  sunday==0
                    875: **   %W  week of year 00-53
                    876: **   %Y  year 0000-9999
                    877: **   %%  %
                    878: */
                    879: static void strftimeFunc(
                    880:   sqlite3_context *context,
                    881:   int argc,
                    882:   sqlite3_value **argv
                    883: ){
                    884:   DateTime x;
                    885:   u64 n;
                    886:   size_t i,j;
                    887:   char *z;
                    888:   sqlite3 *db;
                    889:   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
                    890:   char zBuf[100];
                    891:   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
                    892:   db = sqlite3_context_db_handle(context);
                    893:   for(i=0, n=1; zFmt[i]; i++, n++){
                    894:     if( zFmt[i]=='%' ){
                    895:       switch( zFmt[i+1] ){
                    896:         case 'd':
                    897:         case 'H':
                    898:         case 'm':
                    899:         case 'M':
                    900:         case 'S':
                    901:         case 'W':
                    902:           n++;
                    903:           /* fall thru */
                    904:         case 'w':
                    905:         case '%':
                    906:           break;
                    907:         case 'f':
                    908:           n += 8;
                    909:           break;
                    910:         case 'j':
                    911:           n += 3;
                    912:           break;
                    913:         case 'Y':
                    914:           n += 8;
                    915:           break;
                    916:         case 's':
                    917:         case 'J':
                    918:           n += 50;
                    919:           break;
                    920:         default:
                    921:           return;  /* ERROR.  return a NULL */
                    922:       }
                    923:       i++;
                    924:     }
                    925:   }
                    926:   testcase( n==sizeof(zBuf)-1 );
                    927:   testcase( n==sizeof(zBuf) );
                    928:   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
                    929:   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
                    930:   if( n<sizeof(zBuf) ){
                    931:     z = zBuf;
                    932:   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
                    933:     sqlite3_result_error_toobig(context);
                    934:     return;
                    935:   }else{
                    936:     z = sqlite3DbMallocRaw(db, (int)n);
                    937:     if( z==0 ){
                    938:       sqlite3_result_error_nomem(context);
                    939:       return;
                    940:     }
                    941:   }
                    942:   computeJD(&x);
                    943:   computeYMD_HMS(&x);
                    944:   for(i=j=0; zFmt[i]; i++){
                    945:     if( zFmt[i]!='%' ){
                    946:       z[j++] = zFmt[i];
                    947:     }else{
                    948:       i++;
                    949:       switch( zFmt[i] ){
                    950:         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
                    951:         case 'f': {
                    952:           double s = x.s;
                    953:           if( s>59.999 ) s = 59.999;
                    954:           sqlite3_snprintf(7, &z[j],"%06.3f", s);
                    955:           j += sqlite3Strlen30(&z[j]);
                    956:           break;
                    957:         }
                    958:         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
                    959:         case 'W': /* Fall thru */
                    960:         case 'j': {
                    961:           int nDay;             /* Number of days since 1st day of year */
                    962:           DateTime y = x;
                    963:           y.validJD = 0;
                    964:           y.M = 1;
                    965:           y.D = 1;
                    966:           computeJD(&y);
                    967:           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
                    968:           if( zFmt[i]=='W' ){
                    969:             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
                    970:             wd = (int)(((x.iJD+43200000)/86400000)%7);
                    971:             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
                    972:             j += 2;
                    973:           }else{
                    974:             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
                    975:             j += 3;
                    976:           }
                    977:           break;
                    978:         }
                    979:         case 'J': {
                    980:           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
                    981:           j+=sqlite3Strlen30(&z[j]);
                    982:           break;
                    983:         }
                    984:         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
                    985:         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
                    986:         case 's': {
                    987:           sqlite3_snprintf(30,&z[j],"%lld",
                    988:                            (i64)(x.iJD/1000 - 21086676*(i64)10000));
                    989:           j += sqlite3Strlen30(&z[j]);
                    990:           break;
                    991:         }
                    992:         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
                    993:         case 'w': {
                    994:           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
                    995:           break;
                    996:         }
                    997:         case 'Y': {
                    998:           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
                    999:           break;
                   1000:         }
                   1001:         default:   z[j++] = '%'; break;
                   1002:       }
                   1003:     }
                   1004:   }
                   1005:   z[j] = 0;
                   1006:   sqlite3_result_text(context, z, -1,
                   1007:                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
                   1008: }
                   1009: 
                   1010: /*
                   1011: ** current_time()
                   1012: **
                   1013: ** This function returns the same value as time('now').
                   1014: */
                   1015: static void ctimeFunc(
                   1016:   sqlite3_context *context,
                   1017:   int NotUsed,
                   1018:   sqlite3_value **NotUsed2
                   1019: ){
                   1020:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
                   1021:   timeFunc(context, 0, 0);
                   1022: }
                   1023: 
                   1024: /*
                   1025: ** current_date()
                   1026: **
                   1027: ** This function returns the same value as date('now').
                   1028: */
                   1029: static void cdateFunc(
                   1030:   sqlite3_context *context,
                   1031:   int NotUsed,
                   1032:   sqlite3_value **NotUsed2
                   1033: ){
                   1034:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
                   1035:   dateFunc(context, 0, 0);
                   1036: }
                   1037: 
                   1038: /*
                   1039: ** current_timestamp()
                   1040: **
                   1041: ** This function returns the same value as datetime('now').
                   1042: */
                   1043: static void ctimestampFunc(
                   1044:   sqlite3_context *context,
                   1045:   int NotUsed,
                   1046:   sqlite3_value **NotUsed2
                   1047: ){
                   1048:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
                   1049:   datetimeFunc(context, 0, 0);
                   1050: }
                   1051: #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
                   1052: 
                   1053: #ifdef SQLITE_OMIT_DATETIME_FUNCS
                   1054: /*
                   1055: ** If the library is compiled to omit the full-scale date and time
                   1056: ** handling (to get a smaller binary), the following minimal version
                   1057: ** of the functions current_time(), current_date() and current_timestamp()
                   1058: ** are included instead. This is to support column declarations that
                   1059: ** include "DEFAULT CURRENT_TIME" etc.
                   1060: **
                   1061: ** This function uses the C-library functions time(), gmtime()
                   1062: ** and strftime(). The format string to pass to strftime() is supplied
                   1063: ** as the user-data for the function.
                   1064: */
                   1065: static void currentTimeFunc(
                   1066:   sqlite3_context *context,
                   1067:   int argc,
                   1068:   sqlite3_value **argv
                   1069: ){
                   1070:   time_t t;
                   1071:   char *zFormat = (char *)sqlite3_user_data(context);
                   1072:   sqlite3 *db;
                   1073:   sqlite3_int64 iT;
                   1074:   struct tm *pTm;
                   1075:   struct tm sNow;
                   1076:   char zBuf[20];
                   1077: 
                   1078:   UNUSED_PARAMETER(argc);
                   1079:   UNUSED_PARAMETER(argv);
                   1080: 
                   1081:   db = sqlite3_context_db_handle(context);
                   1082:   if( sqlite3OsCurrentTimeInt64(db->pVfs, &iT) ) return;
                   1083:   t = iT/1000 - 10000*(sqlite3_int64)21086676;
                   1084: #ifdef HAVE_GMTIME_R
                   1085:   pTm = gmtime_r(&t, &sNow);
                   1086: #else
                   1087:   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
                   1088:   pTm = gmtime(&t);
                   1089:   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
                   1090:   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
                   1091: #endif
                   1092:   if( pTm ){
                   1093:     strftime(zBuf, 20, zFormat, &sNow);
                   1094:     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
                   1095:   }
                   1096: }
                   1097: #endif
                   1098: 
                   1099: /*
                   1100: ** This function registered all of the above C functions as SQL
                   1101: ** functions.  This should be the only routine in this file with
                   1102: ** external linkage.
                   1103: */
                   1104: void sqlite3RegisterDateTimeFunctions(void){
                   1105:   static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
                   1106: #ifndef SQLITE_OMIT_DATETIME_FUNCS
                   1107:     FUNCTION(julianday,        -1, 0, 0, juliandayFunc ),
                   1108:     FUNCTION(date,             -1, 0, 0, dateFunc      ),
                   1109:     FUNCTION(time,             -1, 0, 0, timeFunc      ),
                   1110:     FUNCTION(datetime,         -1, 0, 0, datetimeFunc  ),
                   1111:     FUNCTION(strftime,         -1, 0, 0, strftimeFunc  ),
                   1112:     FUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
                   1113:     FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
                   1114:     FUNCTION(current_date,      0, 0, 0, cdateFunc     ),
                   1115: #else
                   1116:     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
                   1117:     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
                   1118:     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
                   1119: #endif
                   1120:   };
                   1121:   int i;
                   1122:   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
                   1123:   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
                   1124: 
                   1125:   for(i=0; i<ArraySize(aDateTimeFuncs); i++){
                   1126:     sqlite3FuncDefInsert(pHash, &aFunc[i]);
                   1127:   }
                   1128: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>