File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / expr.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2001 September 15
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains routines used for analyzing expressions and
   13: ** for generating VDBE code that evaluates expressions in SQLite.
   14: */
   15: #include "sqliteInt.h"
   16: 
   17: /*
   18: ** Return the 'affinity' of the expression pExpr if any.
   19: **
   20: ** If pExpr is a column, a reference to a column via an 'AS' alias,
   21: ** or a sub-select with a column as the return value, then the 
   22: ** affinity of that column is returned. Otherwise, 0x00 is returned,
   23: ** indicating no affinity for the expression.
   24: **
   25: ** i.e. the WHERE clause expresssions in the following statements all
   26: ** have an affinity:
   27: **
   28: ** CREATE TABLE t1(a);
   29: ** SELECT * FROM t1 WHERE a;
   30: ** SELECT a AS b FROM t1 WHERE b;
   31: ** SELECT * FROM t1 WHERE (select a from t1);
   32: */
   33: char sqlite3ExprAffinity(Expr *pExpr){
   34:   int op = pExpr->op;
   35:   if( op==TK_SELECT ){
   36:     assert( pExpr->flags&EP_xIsSelect );
   37:     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
   38:   }
   39: #ifndef SQLITE_OMIT_CAST
   40:   if( op==TK_CAST ){
   41:     assert( !ExprHasProperty(pExpr, EP_IntValue) );
   42:     return sqlite3AffinityType(pExpr->u.zToken);
   43:   }
   44: #endif
   45:   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 
   46:    && pExpr->pTab!=0
   47:   ){
   48:     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
   49:     ** a TK_COLUMN but was previously evaluated and cached in a register */
   50:     int j = pExpr->iColumn;
   51:     if( j<0 ) return SQLITE_AFF_INTEGER;
   52:     assert( pExpr->pTab && j<pExpr->pTab->nCol );
   53:     return pExpr->pTab->aCol[j].affinity;
   54:   }
   55:   return pExpr->affinity;
   56: }
   57: 
   58: /*
   59: ** Set the explicit collating sequence for an expression to the
   60: ** collating sequence supplied in the second argument.
   61: */
   62: Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
   63:   if( pExpr && pColl ){
   64:     pExpr->pColl = pColl;
   65:     pExpr->flags |= EP_ExpCollate;
   66:   }
   67:   return pExpr;
   68: }
   69: 
   70: /*
   71: ** Set the collating sequence for expression pExpr to be the collating
   72: ** sequence named by pToken.   Return a pointer to the revised expression.
   73: ** The collating sequence is marked as "explicit" using the EP_ExpCollate
   74: ** flag.  An explicit collating sequence will override implicit
   75: ** collating sequences.
   76: */
   77: Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
   78:   char *zColl = 0;            /* Dequoted name of collation sequence */
   79:   CollSeq *pColl;
   80:   sqlite3 *db = pParse->db;
   81:   zColl = sqlite3NameFromToken(db, pCollName);
   82:   pColl = sqlite3LocateCollSeq(pParse, zColl);
   83:   sqlite3ExprSetColl(pExpr, pColl);
   84:   sqlite3DbFree(db, zColl);
   85:   return pExpr;
   86: }
   87: 
   88: /*
   89: ** Return the default collation sequence for the expression pExpr. If
   90: ** there is no default collation type, return 0.
   91: */
   92: CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
   93:   CollSeq *pColl = 0;
   94:   Expr *p = pExpr;
   95:   while( p ){
   96:     int op;
   97:     pColl = p->pColl;
   98:     if( pColl ) break;
   99:     op = p->op;
  100:     if( p->pTab!=0 && (
  101:         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
  102:     )){
  103:       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
  104:       ** a TK_COLUMN but was previously evaluated and cached in a register */
  105:       const char *zColl;
  106:       int j = p->iColumn;
  107:       if( j>=0 ){
  108:         sqlite3 *db = pParse->db;
  109:         zColl = p->pTab->aCol[j].zColl;
  110:         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
  111:         pExpr->pColl = pColl;
  112:       }
  113:       break;
  114:     }
  115:     if( op!=TK_CAST && op!=TK_UPLUS ){
  116:       break;
  117:     }
  118:     p = p->pLeft;
  119:   }
  120:   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
  121:     pColl = 0;
  122:   }
  123:   return pColl;
  124: }
  125: 
  126: /*
  127: ** pExpr is an operand of a comparison operator.  aff2 is the
  128: ** type affinity of the other operand.  This routine returns the
  129: ** type affinity that should be used for the comparison operator.
  130: */
  131: char sqlite3CompareAffinity(Expr *pExpr, char aff2){
  132:   char aff1 = sqlite3ExprAffinity(pExpr);
  133:   if( aff1 && aff2 ){
  134:     /* Both sides of the comparison are columns. If one has numeric
  135:     ** affinity, use that. Otherwise use no affinity.
  136:     */
  137:     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
  138:       return SQLITE_AFF_NUMERIC;
  139:     }else{
  140:       return SQLITE_AFF_NONE;
  141:     }
  142:   }else if( !aff1 && !aff2 ){
  143:     /* Neither side of the comparison is a column.  Compare the
  144:     ** results directly.
  145:     */
  146:     return SQLITE_AFF_NONE;
  147:   }else{
  148:     /* One side is a column, the other is not. Use the columns affinity. */
  149:     assert( aff1==0 || aff2==0 );
  150:     return (aff1 + aff2);
  151:   }
  152: }
  153: 
  154: /*
  155: ** pExpr is a comparison operator.  Return the type affinity that should
  156: ** be applied to both operands prior to doing the comparison.
  157: */
  158: static char comparisonAffinity(Expr *pExpr){
  159:   char aff;
  160:   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
  161:           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
  162:           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
  163:   assert( pExpr->pLeft );
  164:   aff = sqlite3ExprAffinity(pExpr->pLeft);
  165:   if( pExpr->pRight ){
  166:     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
  167:   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
  168:     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
  169:   }else if( !aff ){
  170:     aff = SQLITE_AFF_NONE;
  171:   }
  172:   return aff;
  173: }
  174: 
  175: /*
  176: ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
  177: ** idx_affinity is the affinity of an indexed column. Return true
  178: ** if the index with affinity idx_affinity may be used to implement
  179: ** the comparison in pExpr.
  180: */
  181: int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
  182:   char aff = comparisonAffinity(pExpr);
  183:   switch( aff ){
  184:     case SQLITE_AFF_NONE:
  185:       return 1;
  186:     case SQLITE_AFF_TEXT:
  187:       return idx_affinity==SQLITE_AFF_TEXT;
  188:     default:
  189:       return sqlite3IsNumericAffinity(idx_affinity);
  190:   }
  191: }
  192: 
  193: /*
  194: ** Return the P5 value that should be used for a binary comparison
  195: ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
  196: */
  197: static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
  198:   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
  199:   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
  200:   return aff;
  201: }
  202: 
  203: /*
  204: ** Return a pointer to the collation sequence that should be used by
  205: ** a binary comparison operator comparing pLeft and pRight.
  206: **
  207: ** If the left hand expression has a collating sequence type, then it is
  208: ** used. Otherwise the collation sequence for the right hand expression
  209: ** is used, or the default (BINARY) if neither expression has a collating
  210: ** type.
  211: **
  212: ** Argument pRight (but not pLeft) may be a null pointer. In this case,
  213: ** it is not considered.
  214: */
  215: CollSeq *sqlite3BinaryCompareCollSeq(
  216:   Parse *pParse, 
  217:   Expr *pLeft, 
  218:   Expr *pRight
  219: ){
  220:   CollSeq *pColl;
  221:   assert( pLeft );
  222:   if( pLeft->flags & EP_ExpCollate ){
  223:     assert( pLeft->pColl );
  224:     pColl = pLeft->pColl;
  225:   }else if( pRight && pRight->flags & EP_ExpCollate ){
  226:     assert( pRight->pColl );
  227:     pColl = pRight->pColl;
  228:   }else{
  229:     pColl = sqlite3ExprCollSeq(pParse, pLeft);
  230:     if( !pColl ){
  231:       pColl = sqlite3ExprCollSeq(pParse, pRight);
  232:     }
  233:   }
  234:   return pColl;
  235: }
  236: 
  237: /*
  238: ** Generate code for a comparison operator.
  239: */
  240: static int codeCompare(
  241:   Parse *pParse,    /* The parsing (and code generating) context */
  242:   Expr *pLeft,      /* The left operand */
  243:   Expr *pRight,     /* The right operand */
  244:   int opcode,       /* The comparison opcode */
  245:   int in1, int in2, /* Register holding operands */
  246:   int dest,         /* Jump here if true.  */
  247:   int jumpIfNull    /* If true, jump if either operand is NULL */
  248: ){
  249:   int p5;
  250:   int addr;
  251:   CollSeq *p4;
  252: 
  253:   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
  254:   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
  255:   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
  256:                            (void*)p4, P4_COLLSEQ);
  257:   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
  258:   return addr;
  259: }
  260: 
  261: #if SQLITE_MAX_EXPR_DEPTH>0
  262: /*
  263: ** Check that argument nHeight is less than or equal to the maximum
  264: ** expression depth allowed. If it is not, leave an error message in
  265: ** pParse.
  266: */
  267: int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
  268:   int rc = SQLITE_OK;
  269:   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
  270:   if( nHeight>mxHeight ){
  271:     sqlite3ErrorMsg(pParse, 
  272:        "Expression tree is too large (maximum depth %d)", mxHeight
  273:     );
  274:     rc = SQLITE_ERROR;
  275:   }
  276:   return rc;
  277: }
  278: 
  279: /* The following three functions, heightOfExpr(), heightOfExprList()
  280: ** and heightOfSelect(), are used to determine the maximum height
  281: ** of any expression tree referenced by the structure passed as the
  282: ** first argument.
  283: **
  284: ** If this maximum height is greater than the current value pointed
  285: ** to by pnHeight, the second parameter, then set *pnHeight to that
  286: ** value.
  287: */
  288: static void heightOfExpr(Expr *p, int *pnHeight){
  289:   if( p ){
  290:     if( p->nHeight>*pnHeight ){
  291:       *pnHeight = p->nHeight;
  292:     }
  293:   }
  294: }
  295: static void heightOfExprList(ExprList *p, int *pnHeight){
  296:   if( p ){
  297:     int i;
  298:     for(i=0; i<p->nExpr; i++){
  299:       heightOfExpr(p->a[i].pExpr, pnHeight);
  300:     }
  301:   }
  302: }
  303: static void heightOfSelect(Select *p, int *pnHeight){
  304:   if( p ){
  305:     heightOfExpr(p->pWhere, pnHeight);
  306:     heightOfExpr(p->pHaving, pnHeight);
  307:     heightOfExpr(p->pLimit, pnHeight);
  308:     heightOfExpr(p->pOffset, pnHeight);
  309:     heightOfExprList(p->pEList, pnHeight);
  310:     heightOfExprList(p->pGroupBy, pnHeight);
  311:     heightOfExprList(p->pOrderBy, pnHeight);
  312:     heightOfSelect(p->pPrior, pnHeight);
  313:   }
  314: }
  315: 
  316: /*
  317: ** Set the Expr.nHeight variable in the structure passed as an 
  318: ** argument. An expression with no children, Expr.pList or 
  319: ** Expr.pSelect member has a height of 1. Any other expression
  320: ** has a height equal to the maximum height of any other 
  321: ** referenced Expr plus one.
  322: */
  323: static void exprSetHeight(Expr *p){
  324:   int nHeight = 0;
  325:   heightOfExpr(p->pLeft, &nHeight);
  326:   heightOfExpr(p->pRight, &nHeight);
  327:   if( ExprHasProperty(p, EP_xIsSelect) ){
  328:     heightOfSelect(p->x.pSelect, &nHeight);
  329:   }else{
  330:     heightOfExprList(p->x.pList, &nHeight);
  331:   }
  332:   p->nHeight = nHeight + 1;
  333: }
  334: 
  335: /*
  336: ** Set the Expr.nHeight variable using the exprSetHeight() function. If
  337: ** the height is greater than the maximum allowed expression depth,
  338: ** leave an error in pParse.
  339: */
  340: void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
  341:   exprSetHeight(p);
  342:   sqlite3ExprCheckHeight(pParse, p->nHeight);
  343: }
  344: 
  345: /*
  346: ** Return the maximum height of any expression tree referenced
  347: ** by the select statement passed as an argument.
  348: */
  349: int sqlite3SelectExprHeight(Select *p){
  350:   int nHeight = 0;
  351:   heightOfSelect(p, &nHeight);
  352:   return nHeight;
  353: }
  354: #else
  355:   #define exprSetHeight(y)
  356: #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
  357: 
  358: /*
  359: ** This routine is the core allocator for Expr nodes.
  360: **
  361: ** Construct a new expression node and return a pointer to it.  Memory
  362: ** for this node and for the pToken argument is a single allocation
  363: ** obtained from sqlite3DbMalloc().  The calling function
  364: ** is responsible for making sure the node eventually gets freed.
  365: **
  366: ** If dequote is true, then the token (if it exists) is dequoted.
  367: ** If dequote is false, no dequoting is performance.  The deQuote
  368: ** parameter is ignored if pToken is NULL or if the token does not
  369: ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
  370: ** then the EP_DblQuoted flag is set on the expression node.
  371: **
  372: ** Special case:  If op==TK_INTEGER and pToken points to a string that
  373: ** can be translated into a 32-bit integer, then the token is not
  374: ** stored in u.zToken.  Instead, the integer values is written
  375: ** into u.iValue and the EP_IntValue flag is set.  No extra storage
  376: ** is allocated to hold the integer text and the dequote flag is ignored.
  377: */
  378: Expr *sqlite3ExprAlloc(
  379:   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
  380:   int op,                 /* Expression opcode */
  381:   const Token *pToken,    /* Token argument.  Might be NULL */
  382:   int dequote             /* True to dequote */
  383: ){
  384:   Expr *pNew;
  385:   int nExtra = 0;
  386:   int iValue = 0;
  387: 
  388:   if( pToken ){
  389:     if( op!=TK_INTEGER || pToken->z==0
  390:           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
  391:       nExtra = pToken->n+1;
  392:       assert( iValue>=0 );
  393:     }
  394:   }
  395:   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
  396:   if( pNew ){
  397:     pNew->op = (u8)op;
  398:     pNew->iAgg = -1;
  399:     if( pToken ){
  400:       if( nExtra==0 ){
  401:         pNew->flags |= EP_IntValue;
  402:         pNew->u.iValue = iValue;
  403:       }else{
  404:         int c;
  405:         pNew->u.zToken = (char*)&pNew[1];
  406:         assert( pToken->z!=0 || pToken->n==0 );
  407:         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
  408:         pNew->u.zToken[pToken->n] = 0;
  409:         if( dequote && nExtra>=3 
  410:              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
  411:           sqlite3Dequote(pNew->u.zToken);
  412:           if( c=='"' ) pNew->flags |= EP_DblQuoted;
  413:         }
  414:       }
  415:     }
  416: #if SQLITE_MAX_EXPR_DEPTH>0
  417:     pNew->nHeight = 1;
  418: #endif  
  419:   }
  420:   return pNew;
  421: }
  422: 
  423: /*
  424: ** Allocate a new expression node from a zero-terminated token that has
  425: ** already been dequoted.
  426: */
  427: Expr *sqlite3Expr(
  428:   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
  429:   int op,                 /* Expression opcode */
  430:   const char *zToken      /* Token argument.  Might be NULL */
  431: ){
  432:   Token x;
  433:   x.z = zToken;
  434:   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
  435:   return sqlite3ExprAlloc(db, op, &x, 0);
  436: }
  437: 
  438: /*
  439: ** Attach subtrees pLeft and pRight to the Expr node pRoot.
  440: **
  441: ** If pRoot==NULL that means that a memory allocation error has occurred.
  442: ** In that case, delete the subtrees pLeft and pRight.
  443: */
  444: void sqlite3ExprAttachSubtrees(
  445:   sqlite3 *db,
  446:   Expr *pRoot,
  447:   Expr *pLeft,
  448:   Expr *pRight
  449: ){
  450:   if( pRoot==0 ){
  451:     assert( db->mallocFailed );
  452:     sqlite3ExprDelete(db, pLeft);
  453:     sqlite3ExprDelete(db, pRight);
  454:   }else{
  455:     if( pRight ){
  456:       pRoot->pRight = pRight;
  457:       if( pRight->flags & EP_ExpCollate ){
  458:         pRoot->flags |= EP_ExpCollate;
  459:         pRoot->pColl = pRight->pColl;
  460:       }
  461:     }
  462:     if( pLeft ){
  463:       pRoot->pLeft = pLeft;
  464:       if( pLeft->flags & EP_ExpCollate ){
  465:         pRoot->flags |= EP_ExpCollate;
  466:         pRoot->pColl = pLeft->pColl;
  467:       }
  468:     }
  469:     exprSetHeight(pRoot);
  470:   }
  471: }
  472: 
  473: /*
  474: ** Allocate a Expr node which joins as many as two subtrees.
  475: **
  476: ** One or both of the subtrees can be NULL.  Return a pointer to the new
  477: ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
  478: ** free the subtrees and return NULL.
  479: */
  480: Expr *sqlite3PExpr(
  481:   Parse *pParse,          /* Parsing context */
  482:   int op,                 /* Expression opcode */
  483:   Expr *pLeft,            /* Left operand */
  484:   Expr *pRight,           /* Right operand */
  485:   const Token *pToken     /* Argument token */
  486: ){
  487:   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
  488:   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
  489:   if( p ) {
  490:     sqlite3ExprCheckHeight(pParse, p->nHeight);
  491:   }
  492:   return p;
  493: }
  494: 
  495: /*
  496: ** Join two expressions using an AND operator.  If either expression is
  497: ** NULL, then just return the other expression.
  498: */
  499: Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
  500:   if( pLeft==0 ){
  501:     return pRight;
  502:   }else if( pRight==0 ){
  503:     return pLeft;
  504:   }else{
  505:     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
  506:     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
  507:     return pNew;
  508:   }
  509: }
  510: 
  511: /*
  512: ** Construct a new expression node for a function with multiple
  513: ** arguments.
  514: */
  515: Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
  516:   Expr *pNew;
  517:   sqlite3 *db = pParse->db;
  518:   assert( pToken );
  519:   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
  520:   if( pNew==0 ){
  521:     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
  522:     return 0;
  523:   }
  524:   pNew->x.pList = pList;
  525:   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
  526:   sqlite3ExprSetHeight(pParse, pNew);
  527:   return pNew;
  528: }
  529: 
  530: /*
  531: ** Assign a variable number to an expression that encodes a wildcard
  532: ** in the original SQL statement.  
  533: **
  534: ** Wildcards consisting of a single "?" are assigned the next sequential
  535: ** variable number.
  536: **
  537: ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
  538: ** sure "nnn" is not too be to avoid a denial of service attack when
  539: ** the SQL statement comes from an external source.
  540: **
  541: ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
  542: ** as the previous instance of the same wildcard.  Or if this is the first
  543: ** instance of the wildcard, the next sequenial variable number is
  544: ** assigned.
  545: */
  546: void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
  547:   sqlite3 *db = pParse->db;
  548:   const char *z;
  549: 
  550:   if( pExpr==0 ) return;
  551:   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  552:   z = pExpr->u.zToken;
  553:   assert( z!=0 );
  554:   assert( z[0]!=0 );
  555:   if( z[1]==0 ){
  556:     /* Wildcard of the form "?".  Assign the next variable number */
  557:     assert( z[0]=='?' );
  558:     pExpr->iColumn = (ynVar)(++pParse->nVar);
  559:   }else{
  560:     ynVar x = 0;
  561:     u32 n = sqlite3Strlen30(z);
  562:     if( z[0]=='?' ){
  563:       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
  564:       ** use it as the variable number */
  565:       i64 i;
  566:       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
  567:       pExpr->iColumn = x = (ynVar)i;
  568:       testcase( i==0 );
  569:       testcase( i==1 );
  570:       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
  571:       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
  572:       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
  573:         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
  574:             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
  575:         x = 0;
  576:       }
  577:       if( i>pParse->nVar ){
  578:         pParse->nVar = (int)i;
  579:       }
  580:     }else{
  581:       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
  582:       ** number as the prior appearance of the same name, or if the name
  583:       ** has never appeared before, reuse the same variable number
  584:       */
  585:       ynVar i;
  586:       for(i=0; i<pParse->nzVar; i++){
  587:         if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){
  588:           pExpr->iColumn = x = (ynVar)i+1;
  589:           break;
  590:         }
  591:       }
  592:       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
  593:     }
  594:     if( x>0 ){
  595:       if( x>pParse->nzVar ){
  596:         char **a;
  597:         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
  598:         if( a==0 ) return;  /* Error reported through db->mallocFailed */
  599:         pParse->azVar = a;
  600:         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
  601:         pParse->nzVar = x;
  602:       }
  603:       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
  604:         sqlite3DbFree(db, pParse->azVar[x-1]);
  605:         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
  606:       }
  607:     }
  608:   } 
  609:   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
  610:     sqlite3ErrorMsg(pParse, "too many SQL variables");
  611:   }
  612: }
  613: 
  614: /*
  615: ** Recursively delete an expression tree.
  616: */
  617: void sqlite3ExprDelete(sqlite3 *db, Expr *p){
  618:   if( p==0 ) return;
  619:   /* Sanity check: Assert that the IntValue is non-negative if it exists */
  620:   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
  621:   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
  622:     sqlite3ExprDelete(db, p->pLeft);
  623:     sqlite3ExprDelete(db, p->pRight);
  624:     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
  625:       sqlite3DbFree(db, p->u.zToken);
  626:     }
  627:     if( ExprHasProperty(p, EP_xIsSelect) ){
  628:       sqlite3SelectDelete(db, p->x.pSelect);
  629:     }else{
  630:       sqlite3ExprListDelete(db, p->x.pList);
  631:     }
  632:   }
  633:   if( !ExprHasProperty(p, EP_Static) ){
  634:     sqlite3DbFree(db, p);
  635:   }
  636: }
  637: 
  638: /*
  639: ** Return the number of bytes allocated for the expression structure 
  640: ** passed as the first argument. This is always one of EXPR_FULLSIZE,
  641: ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
  642: */
  643: static int exprStructSize(Expr *p){
  644:   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
  645:   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
  646:   return EXPR_FULLSIZE;
  647: }
  648: 
  649: /*
  650: ** The dupedExpr*Size() routines each return the number of bytes required
  651: ** to store a copy of an expression or expression tree.  They differ in
  652: ** how much of the tree is measured.
  653: **
  654: **     dupedExprStructSize()     Size of only the Expr structure 
  655: **     dupedExprNodeSize()       Size of Expr + space for token
  656: **     dupedExprSize()           Expr + token + subtree components
  657: **
  658: ***************************************************************************
  659: **
  660: ** The dupedExprStructSize() function returns two values OR-ed together:  
  661: ** (1) the space required for a copy of the Expr structure only and 
  662: ** (2) the EP_xxx flags that indicate what the structure size should be.
  663: ** The return values is always one of:
  664: **
  665: **      EXPR_FULLSIZE
  666: **      EXPR_REDUCEDSIZE   | EP_Reduced
  667: **      EXPR_TOKENONLYSIZE | EP_TokenOnly
  668: **
  669: ** The size of the structure can be found by masking the return value
  670: ** of this routine with 0xfff.  The flags can be found by masking the
  671: ** return value with EP_Reduced|EP_TokenOnly.
  672: **
  673: ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
  674: ** (unreduced) Expr objects as they or originally constructed by the parser.
  675: ** During expression analysis, extra information is computed and moved into
  676: ** later parts of teh Expr object and that extra information might get chopped
  677: ** off if the expression is reduced.  Note also that it does not work to
  678: ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
  679: ** to reduce a pristine expression tree from the parser.  The implementation
  680: ** of dupedExprStructSize() contain multiple assert() statements that attempt
  681: ** to enforce this constraint.
  682: */
  683: static int dupedExprStructSize(Expr *p, int flags){
  684:   int nSize;
  685:   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
  686:   if( 0==(flags&EXPRDUP_REDUCE) ){
  687:     nSize = EXPR_FULLSIZE;
  688:   }else{
  689:     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
  690:     assert( !ExprHasProperty(p, EP_FromJoin) ); 
  691:     assert( (p->flags2 & EP2_MallocedToken)==0 );
  692:     assert( (p->flags2 & EP2_Irreducible)==0 );
  693:     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
  694:       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
  695:     }else{
  696:       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
  697:     }
  698:   }
  699:   return nSize;
  700: }
  701: 
  702: /*
  703: ** This function returns the space in bytes required to store the copy 
  704: ** of the Expr structure and a copy of the Expr.u.zToken string (if that
  705: ** string is defined.)
  706: */
  707: static int dupedExprNodeSize(Expr *p, int flags){
  708:   int nByte = dupedExprStructSize(p, flags) & 0xfff;
  709:   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
  710:     nByte += sqlite3Strlen30(p->u.zToken)+1;
  711:   }
  712:   return ROUND8(nByte);
  713: }
  714: 
  715: /*
  716: ** Return the number of bytes required to create a duplicate of the 
  717: ** expression passed as the first argument. The second argument is a
  718: ** mask containing EXPRDUP_XXX flags.
  719: **
  720: ** The value returned includes space to create a copy of the Expr struct
  721: ** itself and the buffer referred to by Expr.u.zToken, if any.
  722: **
  723: ** If the EXPRDUP_REDUCE flag is set, then the return value includes 
  724: ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 
  725: ** and Expr.pRight variables (but not for any structures pointed to or 
  726: ** descended from the Expr.x.pList or Expr.x.pSelect variables).
  727: */
  728: static int dupedExprSize(Expr *p, int flags){
  729:   int nByte = 0;
  730:   if( p ){
  731:     nByte = dupedExprNodeSize(p, flags);
  732:     if( flags&EXPRDUP_REDUCE ){
  733:       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
  734:     }
  735:   }
  736:   return nByte;
  737: }
  738: 
  739: /*
  740: ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 
  741: ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 
  742: ** to store the copy of expression p, the copies of p->u.zToken
  743: ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
  744: ** if any. Before returning, *pzBuffer is set to the first byte passed the
  745: ** portion of the buffer copied into by this function.
  746: */
  747: static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  748:   Expr *pNew = 0;                      /* Value to return */
  749:   if( p ){
  750:     const int isReduced = (flags&EXPRDUP_REDUCE);
  751:     u8 *zAlloc;
  752:     u32 staticFlag = 0;
  753: 
  754:     assert( pzBuffer==0 || isReduced );
  755: 
  756:     /* Figure out where to write the new Expr structure. */
  757:     if( pzBuffer ){
  758:       zAlloc = *pzBuffer;
  759:       staticFlag = EP_Static;
  760:     }else{
  761:       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
  762:     }
  763:     pNew = (Expr *)zAlloc;
  764: 
  765:     if( pNew ){
  766:       /* Set nNewSize to the size allocated for the structure pointed to
  767:       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
  768:       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
  769:       ** by the copy of the p->u.zToken string (if any).
  770:       */
  771:       const unsigned nStructSize = dupedExprStructSize(p, flags);
  772:       const int nNewSize = nStructSize & 0xfff;
  773:       int nToken;
  774:       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
  775:         nToken = sqlite3Strlen30(p->u.zToken) + 1;
  776:       }else{
  777:         nToken = 0;
  778:       }
  779:       if( isReduced ){
  780:         assert( ExprHasProperty(p, EP_Reduced)==0 );
  781:         memcpy(zAlloc, p, nNewSize);
  782:       }else{
  783:         int nSize = exprStructSize(p);
  784:         memcpy(zAlloc, p, nSize);
  785:         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
  786:       }
  787: 
  788:       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
  789:       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
  790:       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
  791:       pNew->flags |= staticFlag;
  792: 
  793:       /* Copy the p->u.zToken string, if any. */
  794:       if( nToken ){
  795:         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
  796:         memcpy(zToken, p->u.zToken, nToken);
  797:       }
  798: 
  799:       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
  800:         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
  801:         if( ExprHasProperty(p, EP_xIsSelect) ){
  802:           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
  803:         }else{
  804:           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
  805:         }
  806:       }
  807: 
  808:       /* Fill in pNew->pLeft and pNew->pRight. */
  809:       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
  810:         zAlloc += dupedExprNodeSize(p, flags);
  811:         if( ExprHasProperty(pNew, EP_Reduced) ){
  812:           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
  813:           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
  814:         }
  815:         if( pzBuffer ){
  816:           *pzBuffer = zAlloc;
  817:         }
  818:       }else{
  819:         pNew->flags2 = 0;
  820:         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
  821:           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
  822:           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
  823:         }
  824:       }
  825: 
  826:     }
  827:   }
  828:   return pNew;
  829: }
  830: 
  831: /*
  832: ** The following group of routines make deep copies of expressions,
  833: ** expression lists, ID lists, and select statements.  The copies can
  834: ** be deleted (by being passed to their respective ...Delete() routines)
  835: ** without effecting the originals.
  836: **
  837: ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
  838: ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
  839: ** by subsequent calls to sqlite*ListAppend() routines.
  840: **
  841: ** Any tables that the SrcList might point to are not duplicated.
  842: **
  843: ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
  844: ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
  845: ** truncated version of the usual Expr structure that will be stored as
  846: ** part of the in-memory representation of the database schema.
  847: */
  848: Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
  849:   return exprDup(db, p, flags, 0);
  850: }
  851: ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  852:   ExprList *pNew;
  853:   struct ExprList_item *pItem, *pOldItem;
  854:   int i;
  855:   if( p==0 ) return 0;
  856:   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  857:   if( pNew==0 ) return 0;
  858:   pNew->iECursor = 0;
  859:   pNew->nExpr = pNew->nAlloc = p->nExpr;
  860:   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
  861:   if( pItem==0 ){
  862:     sqlite3DbFree(db, pNew);
  863:     return 0;
  864:   } 
  865:   pOldItem = p->a;
  866:   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
  867:     Expr *pOldExpr = pOldItem->pExpr;
  868:     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
  869:     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
  870:     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
  871:     pItem->sortOrder = pOldItem->sortOrder;
  872:     pItem->done = 0;
  873:     pItem->iOrderByCol = pOldItem->iOrderByCol;
  874:     pItem->iAlias = pOldItem->iAlias;
  875:   }
  876:   return pNew;
  877: }
  878: 
  879: /*
  880: ** If cursors, triggers, views and subqueries are all omitted from
  881: ** the build, then none of the following routines, except for 
  882: ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
  883: ** called with a NULL argument.
  884: */
  885: #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
  886:  || !defined(SQLITE_OMIT_SUBQUERY)
  887: SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
  888:   SrcList *pNew;
  889:   int i;
  890:   int nByte;
  891:   if( p==0 ) return 0;
  892:   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
  893:   pNew = sqlite3DbMallocRaw(db, nByte );
  894:   if( pNew==0 ) return 0;
  895:   pNew->nSrc = pNew->nAlloc = p->nSrc;
  896:   for(i=0; i<p->nSrc; i++){
  897:     struct SrcList_item *pNewItem = &pNew->a[i];
  898:     struct SrcList_item *pOldItem = &p->a[i];
  899:     Table *pTab;
  900:     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
  901:     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
  902:     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
  903:     pNewItem->jointype = pOldItem->jointype;
  904:     pNewItem->iCursor = pOldItem->iCursor;
  905:     pNewItem->addrFillSub = pOldItem->addrFillSub;
  906:     pNewItem->regReturn = pOldItem->regReturn;
  907:     pNewItem->isCorrelated = pOldItem->isCorrelated;
  908:     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
  909:     pNewItem->notIndexed = pOldItem->notIndexed;
  910:     pNewItem->pIndex = pOldItem->pIndex;
  911:     pTab = pNewItem->pTab = pOldItem->pTab;
  912:     if( pTab ){
  913:       pTab->nRef++;
  914:     }
  915:     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
  916:     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
  917:     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
  918:     pNewItem->colUsed = pOldItem->colUsed;
  919:   }
  920:   return pNew;
  921: }
  922: IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
  923:   IdList *pNew;
  924:   int i;
  925:   if( p==0 ) return 0;
  926:   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  927:   if( pNew==0 ) return 0;
  928:   pNew->nId = pNew->nAlloc = p->nId;
  929:   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
  930:   if( pNew->a==0 ){
  931:     sqlite3DbFree(db, pNew);
  932:     return 0;
  933:   }
  934:   for(i=0; i<p->nId; i++){
  935:     struct IdList_item *pNewItem = &pNew->a[i];
  936:     struct IdList_item *pOldItem = &p->a[i];
  937:     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
  938:     pNewItem->idx = pOldItem->idx;
  939:   }
  940:   return pNew;
  941: }
  942: Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  943:   Select *pNew, *pPrior;
  944:   if( p==0 ) return 0;
  945:   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
  946:   if( pNew==0 ) return 0;
  947:   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
  948:   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
  949:   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
  950:   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
  951:   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
  952:   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
  953:   pNew->op = p->op;
  954:   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
  955:   if( pPrior ) pPrior->pNext = pNew;
  956:   pNew->pNext = 0;
  957:   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
  958:   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
  959:   pNew->iLimit = 0;
  960:   pNew->iOffset = 0;
  961:   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  962:   pNew->pRightmost = 0;
  963:   pNew->addrOpenEphm[0] = -1;
  964:   pNew->addrOpenEphm[1] = -1;
  965:   pNew->addrOpenEphm[2] = -1;
  966:   return pNew;
  967: }
  968: #else
  969: Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  970:   assert( p==0 );
  971:   return 0;
  972: }
  973: #endif
  974: 
  975: 
  976: /*
  977: ** Add a new element to the end of an expression list.  If pList is
  978: ** initially NULL, then create a new expression list.
  979: **
  980: ** If a memory allocation error occurs, the entire list is freed and
  981: ** NULL is returned.  If non-NULL is returned, then it is guaranteed
  982: ** that the new entry was successfully appended.
  983: */
  984: ExprList *sqlite3ExprListAppend(
  985:   Parse *pParse,          /* Parsing context */
  986:   ExprList *pList,        /* List to which to append. Might be NULL */
  987:   Expr *pExpr             /* Expression to be appended. Might be NULL */
  988: ){
  989:   sqlite3 *db = pParse->db;
  990:   if( pList==0 ){
  991:     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
  992:     if( pList==0 ){
  993:       goto no_mem;
  994:     }
  995:     assert( pList->nAlloc==0 );
  996:   }
  997:   if( pList->nAlloc<=pList->nExpr ){
  998:     struct ExprList_item *a;
  999:     int n = pList->nAlloc*2 + 4;
 1000:     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
 1001:     if( a==0 ){
 1002:       goto no_mem;
 1003:     }
 1004:     pList->a = a;
 1005:     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
 1006:   }
 1007:   assert( pList->a!=0 );
 1008:   if( 1 ){
 1009:     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
 1010:     memset(pItem, 0, sizeof(*pItem));
 1011:     pItem->pExpr = pExpr;
 1012:   }
 1013:   return pList;
 1014: 
 1015: no_mem:     
 1016:   /* Avoid leaking memory if malloc has failed. */
 1017:   sqlite3ExprDelete(db, pExpr);
 1018:   sqlite3ExprListDelete(db, pList);
 1019:   return 0;
 1020: }
 1021: 
 1022: /*
 1023: ** Set the ExprList.a[].zName element of the most recently added item
 1024: ** on the expression list.
 1025: **
 1026: ** pList might be NULL following an OOM error.  But pName should never be
 1027: ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
 1028: ** is set.
 1029: */
 1030: void sqlite3ExprListSetName(
 1031:   Parse *pParse,          /* Parsing context */
 1032:   ExprList *pList,        /* List to which to add the span. */
 1033:   Token *pName,           /* Name to be added */
 1034:   int dequote             /* True to cause the name to be dequoted */
 1035: ){
 1036:   assert( pList!=0 || pParse->db->mallocFailed!=0 );
 1037:   if( pList ){
 1038:     struct ExprList_item *pItem;
 1039:     assert( pList->nExpr>0 );
 1040:     pItem = &pList->a[pList->nExpr-1];
 1041:     assert( pItem->zName==0 );
 1042:     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
 1043:     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
 1044:   }
 1045: }
 1046: 
 1047: /*
 1048: ** Set the ExprList.a[].zSpan element of the most recently added item
 1049: ** on the expression list.
 1050: **
 1051: ** pList might be NULL following an OOM error.  But pSpan should never be
 1052: ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
 1053: ** is set.
 1054: */
 1055: void sqlite3ExprListSetSpan(
 1056:   Parse *pParse,          /* Parsing context */
 1057:   ExprList *pList,        /* List to which to add the span. */
 1058:   ExprSpan *pSpan         /* The span to be added */
 1059: ){
 1060:   sqlite3 *db = pParse->db;
 1061:   assert( pList!=0 || db->mallocFailed!=0 );
 1062:   if( pList ){
 1063:     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
 1064:     assert( pList->nExpr>0 );
 1065:     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
 1066:     sqlite3DbFree(db, pItem->zSpan);
 1067:     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
 1068:                                     (int)(pSpan->zEnd - pSpan->zStart));
 1069:   }
 1070: }
 1071: 
 1072: /*
 1073: ** If the expression list pEList contains more than iLimit elements,
 1074: ** leave an error message in pParse.
 1075: */
 1076: void sqlite3ExprListCheckLength(
 1077:   Parse *pParse,
 1078:   ExprList *pEList,
 1079:   const char *zObject
 1080: ){
 1081:   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
 1082:   testcase( pEList && pEList->nExpr==mx );
 1083:   testcase( pEList && pEList->nExpr==mx+1 );
 1084:   if( pEList && pEList->nExpr>mx ){
 1085:     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
 1086:   }
 1087: }
 1088: 
 1089: /*
 1090: ** Delete an entire expression list.
 1091: */
 1092: void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
 1093:   int i;
 1094:   struct ExprList_item *pItem;
 1095:   if( pList==0 ) return;
 1096:   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
 1097:   assert( pList->nExpr<=pList->nAlloc );
 1098:   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
 1099:     sqlite3ExprDelete(db, pItem->pExpr);
 1100:     sqlite3DbFree(db, pItem->zName);
 1101:     sqlite3DbFree(db, pItem->zSpan);
 1102:   }
 1103:   sqlite3DbFree(db, pList->a);
 1104:   sqlite3DbFree(db, pList);
 1105: }
 1106: 
 1107: /*
 1108: ** These routines are Walker callbacks.  Walker.u.pi is a pointer
 1109: ** to an integer.  These routines are checking an expression to see
 1110: ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
 1111: ** not constant.
 1112: **
 1113: ** These callback routines are used to implement the following:
 1114: **
 1115: **     sqlite3ExprIsConstant()
 1116: **     sqlite3ExprIsConstantNotJoin()
 1117: **     sqlite3ExprIsConstantOrFunction()
 1118: **
 1119: */
 1120: static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
 1121: 
 1122:   /* If pWalker->u.i is 3 then any term of the expression that comes from
 1123:   ** the ON or USING clauses of a join disqualifies the expression
 1124:   ** from being considered constant. */
 1125:   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
 1126:     pWalker->u.i = 0;
 1127:     return WRC_Abort;
 1128:   }
 1129: 
 1130:   switch( pExpr->op ){
 1131:     /* Consider functions to be constant if all their arguments are constant
 1132:     ** and pWalker->u.i==2 */
 1133:     case TK_FUNCTION:
 1134:       if( pWalker->u.i==2 ) return 0;
 1135:       /* Fall through */
 1136:     case TK_ID:
 1137:     case TK_COLUMN:
 1138:     case TK_AGG_FUNCTION:
 1139:     case TK_AGG_COLUMN:
 1140:       testcase( pExpr->op==TK_ID );
 1141:       testcase( pExpr->op==TK_COLUMN );
 1142:       testcase( pExpr->op==TK_AGG_FUNCTION );
 1143:       testcase( pExpr->op==TK_AGG_COLUMN );
 1144:       pWalker->u.i = 0;
 1145:       return WRC_Abort;
 1146:     default:
 1147:       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
 1148:       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
 1149:       return WRC_Continue;
 1150:   }
 1151: }
 1152: static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
 1153:   UNUSED_PARAMETER(NotUsed);
 1154:   pWalker->u.i = 0;
 1155:   return WRC_Abort;
 1156: }
 1157: static int exprIsConst(Expr *p, int initFlag){
 1158:   Walker w;
 1159:   w.u.i = initFlag;
 1160:   w.xExprCallback = exprNodeIsConstant;
 1161:   w.xSelectCallback = selectNodeIsConstant;
 1162:   sqlite3WalkExpr(&w, p);
 1163:   return w.u.i;
 1164: }
 1165: 
 1166: /*
 1167: ** Walk an expression tree.  Return 1 if the expression is constant
 1168: ** and 0 if it involves variables or function calls.
 1169: **
 1170: ** For the purposes of this function, a double-quoted string (ex: "abc")
 1171: ** is considered a variable but a single-quoted string (ex: 'abc') is
 1172: ** a constant.
 1173: */
 1174: int sqlite3ExprIsConstant(Expr *p){
 1175:   return exprIsConst(p, 1);
 1176: }
 1177: 
 1178: /*
 1179: ** Walk an expression tree.  Return 1 if the expression is constant
 1180: ** that does no originate from the ON or USING clauses of a join.
 1181: ** Return 0 if it involves variables or function calls or terms from
 1182: ** an ON or USING clause.
 1183: */
 1184: int sqlite3ExprIsConstantNotJoin(Expr *p){
 1185:   return exprIsConst(p, 3);
 1186: }
 1187: 
 1188: /*
 1189: ** Walk an expression tree.  Return 1 if the expression is constant
 1190: ** or a function call with constant arguments.  Return and 0 if there
 1191: ** are any variables.
 1192: **
 1193: ** For the purposes of this function, a double-quoted string (ex: "abc")
 1194: ** is considered a variable but a single-quoted string (ex: 'abc') is
 1195: ** a constant.
 1196: */
 1197: int sqlite3ExprIsConstantOrFunction(Expr *p){
 1198:   return exprIsConst(p, 2);
 1199: }
 1200: 
 1201: /*
 1202: ** If the expression p codes a constant integer that is small enough
 1203: ** to fit in a 32-bit integer, return 1 and put the value of the integer
 1204: ** in *pValue.  If the expression is not an integer or if it is too big
 1205: ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
 1206: */
 1207: int sqlite3ExprIsInteger(Expr *p, int *pValue){
 1208:   int rc = 0;
 1209: 
 1210:   /* If an expression is an integer literal that fits in a signed 32-bit
 1211:   ** integer, then the EP_IntValue flag will have already been set */
 1212:   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
 1213:            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
 1214: 
 1215:   if( p->flags & EP_IntValue ){
 1216:     *pValue = p->u.iValue;
 1217:     return 1;
 1218:   }
 1219:   switch( p->op ){
 1220:     case TK_UPLUS: {
 1221:       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
 1222:       break;
 1223:     }
 1224:     case TK_UMINUS: {
 1225:       int v;
 1226:       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
 1227:         *pValue = -v;
 1228:         rc = 1;
 1229:       }
 1230:       break;
 1231:     }
 1232:     default: break;
 1233:   }
 1234:   return rc;
 1235: }
 1236: 
 1237: /*
 1238: ** Return FALSE if there is no chance that the expression can be NULL.
 1239: **
 1240: ** If the expression might be NULL or if the expression is too complex
 1241: ** to tell return TRUE.  
 1242: **
 1243: ** This routine is used as an optimization, to skip OP_IsNull opcodes
 1244: ** when we know that a value cannot be NULL.  Hence, a false positive
 1245: ** (returning TRUE when in fact the expression can never be NULL) might
 1246: ** be a small performance hit but is otherwise harmless.  On the other
 1247: ** hand, a false negative (returning FALSE when the result could be NULL)
 1248: ** will likely result in an incorrect answer.  So when in doubt, return
 1249: ** TRUE.
 1250: */
 1251: int sqlite3ExprCanBeNull(const Expr *p){
 1252:   u8 op;
 1253:   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
 1254:   op = p->op;
 1255:   if( op==TK_REGISTER ) op = p->op2;
 1256:   switch( op ){
 1257:     case TK_INTEGER:
 1258:     case TK_STRING:
 1259:     case TK_FLOAT:
 1260:     case TK_BLOB:
 1261:       return 0;
 1262:     default:
 1263:       return 1;
 1264:   }
 1265: }
 1266: 
 1267: /*
 1268: ** Generate an OP_IsNull instruction that tests register iReg and jumps
 1269: ** to location iDest if the value in iReg is NULL.  The value in iReg 
 1270: ** was computed by pExpr.  If we can look at pExpr at compile-time and
 1271: ** determine that it can never generate a NULL, then the OP_IsNull operation
 1272: ** can be omitted.
 1273: */
 1274: void sqlite3ExprCodeIsNullJump(
 1275:   Vdbe *v,            /* The VDBE under construction */
 1276:   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
 1277:   int iReg,           /* Test the value in this register for NULL */
 1278:   int iDest           /* Jump here if the value is null */
 1279: ){
 1280:   if( sqlite3ExprCanBeNull(pExpr) ){
 1281:     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
 1282:   }
 1283: }
 1284: 
 1285: /*
 1286: ** Return TRUE if the given expression is a constant which would be
 1287: ** unchanged by OP_Affinity with the affinity given in the second
 1288: ** argument.
 1289: **
 1290: ** This routine is used to determine if the OP_Affinity operation
 1291: ** can be omitted.  When in doubt return FALSE.  A false negative
 1292: ** is harmless.  A false positive, however, can result in the wrong
 1293: ** answer.
 1294: */
 1295: int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
 1296:   u8 op;
 1297:   if( aff==SQLITE_AFF_NONE ) return 1;
 1298:   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
 1299:   op = p->op;
 1300:   if( op==TK_REGISTER ) op = p->op2;
 1301:   switch( op ){
 1302:     case TK_INTEGER: {
 1303:       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
 1304:     }
 1305:     case TK_FLOAT: {
 1306:       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
 1307:     }
 1308:     case TK_STRING: {
 1309:       return aff==SQLITE_AFF_TEXT;
 1310:     }
 1311:     case TK_BLOB: {
 1312:       return 1;
 1313:     }
 1314:     case TK_COLUMN: {
 1315:       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
 1316:       return p->iColumn<0
 1317:           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
 1318:     }
 1319:     default: {
 1320:       return 0;
 1321:     }
 1322:   }
 1323: }
 1324: 
 1325: /*
 1326: ** Return TRUE if the given string is a row-id column name.
 1327: */
 1328: int sqlite3IsRowid(const char *z){
 1329:   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
 1330:   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
 1331:   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
 1332:   return 0;
 1333: }
 1334: 
 1335: /*
 1336: ** Return true if we are able to the IN operator optimization on a
 1337: ** query of the form
 1338: **
 1339: **       x IN (SELECT ...)
 1340: **
 1341: ** Where the SELECT... clause is as specified by the parameter to this
 1342: ** routine.
 1343: **
 1344: ** The Select object passed in has already been preprocessed and no
 1345: ** errors have been found.
 1346: */
 1347: #ifndef SQLITE_OMIT_SUBQUERY
 1348: static int isCandidateForInOpt(Select *p){
 1349:   SrcList *pSrc;
 1350:   ExprList *pEList;
 1351:   Table *pTab;
 1352:   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
 1353:   if( p->pPrior ) return 0;              /* Not a compound SELECT */
 1354:   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
 1355:     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
 1356:     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
 1357:     return 0; /* No DISTINCT keyword and no aggregate functions */
 1358:   }
 1359:   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
 1360:   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
 1361:   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
 1362:   if( p->pWhere ) return 0;              /* Has no WHERE clause */
 1363:   pSrc = p->pSrc;
 1364:   assert( pSrc!=0 );
 1365:   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
 1366:   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
 1367:   pTab = pSrc->a[0].pTab;
 1368:   if( NEVER(pTab==0) ) return 0;
 1369:   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
 1370:   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
 1371:   pEList = p->pEList;
 1372:   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
 1373:   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
 1374:   return 1;
 1375: }
 1376: #endif /* SQLITE_OMIT_SUBQUERY */
 1377: 
 1378: /*
 1379: ** Code an OP_Once instruction and allocate space for its flag. Return the 
 1380: ** address of the new instruction.
 1381: */
 1382: int sqlite3CodeOnce(Parse *pParse){
 1383:   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
 1384:   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
 1385: }
 1386: 
 1387: /*
 1388: ** This function is used by the implementation of the IN (...) operator.
 1389: ** It's job is to find or create a b-tree structure that may be used
 1390: ** either to test for membership of the (...) set or to iterate through
 1391: ** its members, skipping duplicates.
 1392: **
 1393: ** The index of the cursor opened on the b-tree (database table, database index 
 1394: ** or ephermal table) is stored in pX->iTable before this function returns.
 1395: ** The returned value of this function indicates the b-tree type, as follows:
 1396: **
 1397: **   IN_INDEX_ROWID - The cursor was opened on a database table.
 1398: **   IN_INDEX_INDEX - The cursor was opened on a database index.
 1399: **   IN_INDEX_EPH -   The cursor was opened on a specially created and
 1400: **                    populated epheremal table.
 1401: **
 1402: ** An existing b-tree may only be used if the SELECT is of the simple
 1403: ** form:
 1404: **
 1405: **     SELECT <column> FROM <table>
 1406: **
 1407: ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
 1408: ** through the set members, skipping any duplicates. In this case an
 1409: ** epheremal table must be used unless the selected <column> is guaranteed
 1410: ** to be unique - either because it is an INTEGER PRIMARY KEY or it
 1411: ** has a UNIQUE constraint or UNIQUE index.
 1412: **
 1413: ** If the prNotFound parameter is not 0, then the b-tree will be used 
 1414: ** for fast set membership tests. In this case an epheremal table must 
 1415: ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
 1416: ** be found with <column> as its left-most column.
 1417: **
 1418: ** When the b-tree is being used for membership tests, the calling function
 1419: ** needs to know whether or not the structure contains an SQL NULL 
 1420: ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
 1421: ** If there is any chance that the (...) might contain a NULL value at
 1422: ** runtime, then a register is allocated and the register number written
 1423: ** to *prNotFound. If there is no chance that the (...) contains a
 1424: ** NULL value, then *prNotFound is left unchanged.
 1425: **
 1426: ** If a register is allocated and its location stored in *prNotFound, then
 1427: ** its initial value is NULL.  If the (...) does not remain constant
 1428: ** for the duration of the query (i.e. the SELECT within the (...)
 1429: ** is a correlated subquery) then the value of the allocated register is
 1430: ** reset to NULL each time the subquery is rerun. This allows the
 1431: ** caller to use vdbe code equivalent to the following:
 1432: **
 1433: **   if( register==NULL ){
 1434: **     has_null = <test if data structure contains null>
 1435: **     register = 1
 1436: **   }
 1437: **
 1438: ** in order to avoid running the <test if data structure contains null>
 1439: ** test more often than is necessary.
 1440: */
 1441: #ifndef SQLITE_OMIT_SUBQUERY
 1442: int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
 1443:   Select *p;                            /* SELECT to the right of IN operator */
 1444:   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
 1445:   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
 1446:   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
 1447:   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
 1448: 
 1449:   assert( pX->op==TK_IN );
 1450: 
 1451:   /* Check to see if an existing table or index can be used to
 1452:   ** satisfy the query.  This is preferable to generating a new 
 1453:   ** ephemeral table.
 1454:   */
 1455:   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
 1456:   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
 1457:     sqlite3 *db = pParse->db;              /* Database connection */
 1458:     Table *pTab;                           /* Table <table>. */
 1459:     Expr *pExpr;                           /* Expression <column> */
 1460:     int iCol;                              /* Index of column <column> */
 1461:     int iDb;                               /* Database idx for pTab */
 1462: 
 1463:     assert( p );                        /* Because of isCandidateForInOpt(p) */
 1464:     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
 1465:     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
 1466:     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
 1467:     pTab = p->pSrc->a[0].pTab;
 1468:     pExpr = p->pEList->a[0].pExpr;
 1469:     iCol = pExpr->iColumn;
 1470:    
 1471:     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
 1472:     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 1473:     sqlite3CodeVerifySchema(pParse, iDb);
 1474:     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 1475: 
 1476:     /* This function is only called from two places. In both cases the vdbe
 1477:     ** has already been allocated. So assume sqlite3GetVdbe() is always
 1478:     ** successful here.
 1479:     */
 1480:     assert(v);
 1481:     if( iCol<0 ){
 1482:       int iAddr;
 1483: 
 1484:       iAddr = sqlite3CodeOnce(pParse);
 1485: 
 1486:       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
 1487:       eType = IN_INDEX_ROWID;
 1488: 
 1489:       sqlite3VdbeJumpHere(v, iAddr);
 1490:     }else{
 1491:       Index *pIdx;                         /* Iterator variable */
 1492: 
 1493:       /* The collation sequence used by the comparison. If an index is to
 1494:       ** be used in place of a temp-table, it must be ordered according
 1495:       ** to this collation sequence.  */
 1496:       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
 1497: 
 1498:       /* Check that the affinity that will be used to perform the 
 1499:       ** comparison is the same as the affinity of the column. If
 1500:       ** it is not, it is not possible to use any index.
 1501:       */
 1502:       char aff = comparisonAffinity(pX);
 1503:       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
 1504: 
 1505:       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
 1506:         if( (pIdx->aiColumn[0]==iCol)
 1507:          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
 1508:          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
 1509:         ){
 1510:           int iAddr;
 1511:           char *pKey;
 1512:   
 1513:           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
 1514:           iAddr = sqlite3CodeOnce(pParse);
 1515:   
 1516:           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
 1517:                                pKey,P4_KEYINFO_HANDOFF);
 1518:           VdbeComment((v, "%s", pIdx->zName));
 1519:           eType = IN_INDEX_INDEX;
 1520: 
 1521:           sqlite3VdbeJumpHere(v, iAddr);
 1522:           if( prNotFound && !pTab->aCol[iCol].notNull ){
 1523:             *prNotFound = ++pParse->nMem;
 1524:             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
 1525:           }
 1526:         }
 1527:       }
 1528:     }
 1529:   }
 1530: 
 1531:   if( eType==0 ){
 1532:     /* Could not found an existing table or index to use as the RHS b-tree.
 1533:     ** We will have to generate an ephemeral table to do the job.
 1534:     */
 1535:     double savedNQueryLoop = pParse->nQueryLoop;
 1536:     int rMayHaveNull = 0;
 1537:     eType = IN_INDEX_EPH;
 1538:     if( prNotFound ){
 1539:       *prNotFound = rMayHaveNull = ++pParse->nMem;
 1540:       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
 1541:     }else{
 1542:       testcase( pParse->nQueryLoop>(double)1 );
 1543:       pParse->nQueryLoop = (double)1;
 1544:       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
 1545:         eType = IN_INDEX_ROWID;
 1546:       }
 1547:     }
 1548:     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
 1549:     pParse->nQueryLoop = savedNQueryLoop;
 1550:   }else{
 1551:     pX->iTable = iTab;
 1552:   }
 1553:   return eType;
 1554: }
 1555: #endif
 1556: 
 1557: /*
 1558: ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
 1559: ** or IN operators.  Examples:
 1560: **
 1561: **     (SELECT a FROM b)          -- subquery
 1562: **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
 1563: **     x IN (4,5,11)              -- IN operator with list on right-hand side
 1564: **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
 1565: **
 1566: ** The pExpr parameter describes the expression that contains the IN
 1567: ** operator or subquery.
 1568: **
 1569: ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
 1570: ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
 1571: ** to some integer key column of a table B-Tree. In this case, use an
 1572: ** intkey B-Tree to store the set of IN(...) values instead of the usual
 1573: ** (slower) variable length keys B-Tree.
 1574: **
 1575: ** If rMayHaveNull is non-zero, that means that the operation is an IN
 1576: ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
 1577: ** Furthermore, the IN is in a WHERE clause and that we really want
 1578: ** to iterate over the RHS of the IN operator in order to quickly locate
 1579: ** all corresponding LHS elements.  All this routine does is initialize
 1580: ** the register given by rMayHaveNull to NULL.  Calling routines will take
 1581: ** care of changing this register value to non-NULL if the RHS is NULL-free.
 1582: **
 1583: ** If rMayHaveNull is zero, that means that the subquery is being used
 1584: ** for membership testing only.  There is no need to initialize any
 1585: ** registers to indicate the presense or absence of NULLs on the RHS.
 1586: **
 1587: ** For a SELECT or EXISTS operator, return the register that holds the
 1588: ** result.  For IN operators or if an error occurs, the return value is 0.
 1589: */
 1590: #ifndef SQLITE_OMIT_SUBQUERY
 1591: int sqlite3CodeSubselect(
 1592:   Parse *pParse,          /* Parsing context */
 1593:   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
 1594:   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
 1595:   int isRowid             /* If true, LHS of IN operator is a rowid */
 1596: ){
 1597:   int testAddr = -1;                      /* One-time test address */
 1598:   int rReg = 0;                           /* Register storing resulting */
 1599:   Vdbe *v = sqlite3GetVdbe(pParse);
 1600:   if( NEVER(v==0) ) return 0;
 1601:   sqlite3ExprCachePush(pParse);
 1602: 
 1603:   /* This code must be run in its entirety every time it is encountered
 1604:   ** if any of the following is true:
 1605:   **
 1606:   **    *  The right-hand side is a correlated subquery
 1607:   **    *  The right-hand side is an expression list containing variables
 1608:   **    *  We are inside a trigger
 1609:   **
 1610:   ** If all of the above are false, then we can run this code just once
 1611:   ** save the results, and reuse the same result on subsequent invocations.
 1612:   */
 1613:   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
 1614:     testAddr = sqlite3CodeOnce(pParse);
 1615:   }
 1616: 
 1617: #ifndef SQLITE_OMIT_EXPLAIN
 1618:   if( pParse->explain==2 ){
 1619:     char *zMsg = sqlite3MPrintf(
 1620:         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
 1621:         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
 1622:     );
 1623:     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
 1624:   }
 1625: #endif
 1626: 
 1627:   switch( pExpr->op ){
 1628:     case TK_IN: {
 1629:       char affinity;              /* Affinity of the LHS of the IN */
 1630:       KeyInfo keyInfo;            /* Keyinfo for the generated table */
 1631:       int addr;                   /* Address of OP_OpenEphemeral instruction */
 1632:       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
 1633: 
 1634:       if( rMayHaveNull ){
 1635:         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
 1636:       }
 1637: 
 1638:       affinity = sqlite3ExprAffinity(pLeft);
 1639: 
 1640:       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
 1641:       ** expression it is handled the same way.  An ephemeral table is 
 1642:       ** filled with single-field index keys representing the results
 1643:       ** from the SELECT or the <exprlist>.
 1644:       **
 1645:       ** If the 'x' expression is a column value, or the SELECT...
 1646:       ** statement returns a column value, then the affinity of that
 1647:       ** column is used to build the index keys. If both 'x' and the
 1648:       ** SELECT... statement are columns, then numeric affinity is used
 1649:       ** if either column has NUMERIC or INTEGER affinity. If neither
 1650:       ** 'x' nor the SELECT... statement are columns, then numeric affinity
 1651:       ** is used.
 1652:       */
 1653:       pExpr->iTable = pParse->nTab++;
 1654:       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
 1655:       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
 1656:       memset(&keyInfo, 0, sizeof(keyInfo));
 1657:       keyInfo.nField = 1;
 1658: 
 1659:       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
 1660:         /* Case 1:     expr IN (SELECT ...)
 1661:         **
 1662:         ** Generate code to write the results of the select into the temporary
 1663:         ** table allocated and opened above.
 1664:         */
 1665:         SelectDest dest;
 1666:         ExprList *pEList;
 1667: 
 1668:         assert( !isRowid );
 1669:         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
 1670:         dest.affinity = (u8)affinity;
 1671:         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
 1672:         pExpr->x.pSelect->iLimit = 0;
 1673:         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
 1674:           return 0;
 1675:         }
 1676:         pEList = pExpr->x.pSelect->pEList;
 1677:         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 
 1678:           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
 1679:               pEList->a[0].pExpr);
 1680:         }
 1681:       }else if( ALWAYS(pExpr->x.pList!=0) ){
 1682:         /* Case 2:     expr IN (exprlist)
 1683:         **
 1684:         ** For each expression, build an index key from the evaluation and
 1685:         ** store it in the temporary table. If <expr> is a column, then use
 1686:         ** that columns affinity when building index keys. If <expr> is not
 1687:         ** a column, use numeric affinity.
 1688:         */
 1689:         int i;
 1690:         ExprList *pList = pExpr->x.pList;
 1691:         struct ExprList_item *pItem;
 1692:         int r1, r2, r3;
 1693: 
 1694:         if( !affinity ){
 1695:           affinity = SQLITE_AFF_NONE;
 1696:         }
 1697:         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
 1698: 
 1699:         /* Loop through each expression in <exprlist>. */
 1700:         r1 = sqlite3GetTempReg(pParse);
 1701:         r2 = sqlite3GetTempReg(pParse);
 1702:         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
 1703:         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
 1704:           Expr *pE2 = pItem->pExpr;
 1705:           int iValToIns;
 1706: 
 1707:           /* If the expression is not constant then we will need to
 1708:           ** disable the test that was generated above that makes sure
 1709:           ** this code only executes once.  Because for a non-constant
 1710:           ** expression we need to rerun this code each time.
 1711:           */
 1712:           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
 1713:             sqlite3VdbeChangeToNoop(v, testAddr);
 1714:             testAddr = -1;
 1715:           }
 1716: 
 1717:           /* Evaluate the expression and insert it into the temp table */
 1718:           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
 1719:             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
 1720:           }else{
 1721:             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
 1722:             if( isRowid ){
 1723:               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
 1724:                                 sqlite3VdbeCurrentAddr(v)+2);
 1725:               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
 1726:             }else{
 1727:               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
 1728:               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
 1729:               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
 1730:             }
 1731:           }
 1732:         }
 1733:         sqlite3ReleaseTempReg(pParse, r1);
 1734:         sqlite3ReleaseTempReg(pParse, r2);
 1735:       }
 1736:       if( !isRowid ){
 1737:         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
 1738:       }
 1739:       break;
 1740:     }
 1741: 
 1742:     case TK_EXISTS:
 1743:     case TK_SELECT:
 1744:     default: {
 1745:       /* If this has to be a scalar SELECT.  Generate code to put the
 1746:       ** value of this select in a memory cell and record the number
 1747:       ** of the memory cell in iColumn.  If this is an EXISTS, write
 1748:       ** an integer 0 (not exists) or 1 (exists) into a memory cell
 1749:       ** and record that memory cell in iColumn.
 1750:       */
 1751:       Select *pSel;                         /* SELECT statement to encode */
 1752:       SelectDest dest;                      /* How to deal with SELECt result */
 1753: 
 1754:       testcase( pExpr->op==TK_EXISTS );
 1755:       testcase( pExpr->op==TK_SELECT );
 1756:       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
 1757: 
 1758:       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
 1759:       pSel = pExpr->x.pSelect;
 1760:       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
 1761:       if( pExpr->op==TK_SELECT ){
 1762:         dest.eDest = SRT_Mem;
 1763:         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
 1764:         VdbeComment((v, "Init subquery result"));
 1765:       }else{
 1766:         dest.eDest = SRT_Exists;
 1767:         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
 1768:         VdbeComment((v, "Init EXISTS result"));
 1769:       }
 1770:       sqlite3ExprDelete(pParse->db, pSel->pLimit);
 1771:       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
 1772:                                   &sqlite3IntTokens[1]);
 1773:       pSel->iLimit = 0;
 1774:       if( sqlite3Select(pParse, pSel, &dest) ){
 1775:         return 0;
 1776:       }
 1777:       rReg = dest.iParm;
 1778:       ExprSetIrreducible(pExpr);
 1779:       break;
 1780:     }
 1781:   }
 1782: 
 1783:   if( testAddr>=0 ){
 1784:     sqlite3VdbeJumpHere(v, testAddr);
 1785:   }
 1786:   sqlite3ExprCachePop(pParse, 1);
 1787: 
 1788:   return rReg;
 1789: }
 1790: #endif /* SQLITE_OMIT_SUBQUERY */
 1791: 
 1792: #ifndef SQLITE_OMIT_SUBQUERY
 1793: /*
 1794: ** Generate code for an IN expression.
 1795: **
 1796: **      x IN (SELECT ...)
 1797: **      x IN (value, value, ...)
 1798: **
 1799: ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
 1800: ** is an array of zero or more values.  The expression is true if the LHS is
 1801: ** contained within the RHS.  The value of the expression is unknown (NULL)
 1802: ** if the LHS is NULL or if the LHS is not contained within the RHS and the
 1803: ** RHS contains one or more NULL values.
 1804: **
 1805: ** This routine generates code will jump to destIfFalse if the LHS is not 
 1806: ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
 1807: ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
 1808: ** within the RHS then fall through.
 1809: */
 1810: static void sqlite3ExprCodeIN(
 1811:   Parse *pParse,        /* Parsing and code generating context */
 1812:   Expr *pExpr,          /* The IN expression */
 1813:   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
 1814:   int destIfNull        /* Jump here if the results are unknown due to NULLs */
 1815: ){
 1816:   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
 1817:   char affinity;        /* Comparison affinity to use */
 1818:   int eType;            /* Type of the RHS */
 1819:   int r1;               /* Temporary use register */
 1820:   Vdbe *v;              /* Statement under construction */
 1821: 
 1822:   /* Compute the RHS.   After this step, the table with cursor
 1823:   ** pExpr->iTable will contains the values that make up the RHS.
 1824:   */
 1825:   v = pParse->pVdbe;
 1826:   assert( v!=0 );       /* OOM detected prior to this routine */
 1827:   VdbeNoopComment((v, "begin IN expr"));
 1828:   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
 1829: 
 1830:   /* Figure out the affinity to use to create a key from the results
 1831:   ** of the expression. affinityStr stores a static string suitable for
 1832:   ** P4 of OP_MakeRecord.
 1833:   */
 1834:   affinity = comparisonAffinity(pExpr);
 1835: 
 1836:   /* Code the LHS, the <expr> from "<expr> IN (...)".
 1837:   */
 1838:   sqlite3ExprCachePush(pParse);
 1839:   r1 = sqlite3GetTempReg(pParse);
 1840:   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
 1841: 
 1842:   /* If the LHS is NULL, then the result is either false or NULL depending
 1843:   ** on whether the RHS is empty or not, respectively.
 1844:   */
 1845:   if( destIfNull==destIfFalse ){
 1846:     /* Shortcut for the common case where the false and NULL outcomes are
 1847:     ** the same. */
 1848:     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
 1849:   }else{
 1850:     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
 1851:     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
 1852:     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
 1853:     sqlite3VdbeJumpHere(v, addr1);
 1854:   }
 1855: 
 1856:   if( eType==IN_INDEX_ROWID ){
 1857:     /* In this case, the RHS is the ROWID of table b-tree
 1858:     */
 1859:     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
 1860:     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
 1861:   }else{
 1862:     /* In this case, the RHS is an index b-tree.
 1863:     */
 1864:     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
 1865: 
 1866:     /* If the set membership test fails, then the result of the 
 1867:     ** "x IN (...)" expression must be either 0 or NULL. If the set
 1868:     ** contains no NULL values, then the result is 0. If the set 
 1869:     ** contains one or more NULL values, then the result of the
 1870:     ** expression is also NULL.
 1871:     */
 1872:     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
 1873:       /* This branch runs if it is known at compile time that the RHS
 1874:       ** cannot contain NULL values. This happens as the result
 1875:       ** of a "NOT NULL" constraint in the database schema.
 1876:       **
 1877:       ** Also run this branch if NULL is equivalent to FALSE
 1878:       ** for this particular IN operator.
 1879:       */
 1880:       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
 1881: 
 1882:     }else{
 1883:       /* In this branch, the RHS of the IN might contain a NULL and
 1884:       ** the presence of a NULL on the RHS makes a difference in the
 1885:       ** outcome.
 1886:       */
 1887:       int j1, j2, j3;
 1888: 
 1889:       /* First check to see if the LHS is contained in the RHS.  If so,
 1890:       ** then the presence of NULLs in the RHS does not matter, so jump
 1891:       ** over all of the code that follows.
 1892:       */
 1893:       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
 1894: 
 1895:       /* Here we begin generating code that runs if the LHS is not
 1896:       ** contained within the RHS.  Generate additional code that
 1897:       ** tests the RHS for NULLs.  If the RHS contains a NULL then
 1898:       ** jump to destIfNull.  If there are no NULLs in the RHS then
 1899:       ** jump to destIfFalse.
 1900:       */
 1901:       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
 1902:       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
 1903:       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
 1904:       sqlite3VdbeJumpHere(v, j3);
 1905:       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
 1906:       sqlite3VdbeJumpHere(v, j2);
 1907: 
 1908:       /* Jump to the appropriate target depending on whether or not
 1909:       ** the RHS contains a NULL
 1910:       */
 1911:       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
 1912:       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
 1913: 
 1914:       /* The OP_Found at the top of this branch jumps here when true, 
 1915:       ** causing the overall IN expression evaluation to fall through.
 1916:       */
 1917:       sqlite3VdbeJumpHere(v, j1);
 1918:     }
 1919:   }
 1920:   sqlite3ReleaseTempReg(pParse, r1);
 1921:   sqlite3ExprCachePop(pParse, 1);
 1922:   VdbeComment((v, "end IN expr"));
 1923: }
 1924: #endif /* SQLITE_OMIT_SUBQUERY */
 1925: 
 1926: /*
 1927: ** Duplicate an 8-byte value
 1928: */
 1929: static char *dup8bytes(Vdbe *v, const char *in){
 1930:   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
 1931:   if( out ){
 1932:     memcpy(out, in, 8);
 1933:   }
 1934:   return out;
 1935: }
 1936: 
 1937: #ifndef SQLITE_OMIT_FLOATING_POINT
 1938: /*
 1939: ** Generate an instruction that will put the floating point
 1940: ** value described by z[0..n-1] into register iMem.
 1941: **
 1942: ** The z[] string will probably not be zero-terminated.  But the 
 1943: ** z[n] character is guaranteed to be something that does not look
 1944: ** like the continuation of the number.
 1945: */
 1946: static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
 1947:   if( ALWAYS(z!=0) ){
 1948:     double value;
 1949:     char *zV;
 1950:     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
 1951:     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
 1952:     if( negateFlag ) value = -value;
 1953:     zV = dup8bytes(v, (char*)&value);
 1954:     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
 1955:   }
 1956: }
 1957: #endif
 1958: 
 1959: 
 1960: /*
 1961: ** Generate an instruction that will put the integer describe by
 1962: ** text z[0..n-1] into register iMem.
 1963: **
 1964: ** Expr.u.zToken is always UTF8 and zero-terminated.
 1965: */
 1966: static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
 1967:   Vdbe *v = pParse->pVdbe;
 1968:   if( pExpr->flags & EP_IntValue ){
 1969:     int i = pExpr->u.iValue;
 1970:     assert( i>=0 );
 1971:     if( negFlag ) i = -i;
 1972:     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
 1973:   }else{
 1974:     int c;
 1975:     i64 value;
 1976:     const char *z = pExpr->u.zToken;
 1977:     assert( z!=0 );
 1978:     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
 1979:     if( c==0 || (c==2 && negFlag) ){
 1980:       char *zV;
 1981:       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
 1982:       zV = dup8bytes(v, (char*)&value);
 1983:       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
 1984:     }else{
 1985: #ifdef SQLITE_OMIT_FLOATING_POINT
 1986:       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
 1987: #else
 1988:       codeReal(v, z, negFlag, iMem);
 1989: #endif
 1990:     }
 1991:   }
 1992: }
 1993: 
 1994: /*
 1995: ** Clear a cache entry.
 1996: */
 1997: static void cacheEntryClear(Parse *pParse, struct yColCache *p){
 1998:   if( p->tempReg ){
 1999:     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
 2000:       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
 2001:     }
 2002:     p->tempReg = 0;
 2003:   }
 2004: }
 2005: 
 2006: 
 2007: /*
 2008: ** Record in the column cache that a particular column from a
 2009: ** particular table is stored in a particular register.
 2010: */
 2011: void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
 2012:   int i;
 2013:   int minLru;
 2014:   int idxLru;
 2015:   struct yColCache *p;
 2016: 
 2017:   assert( iReg>0 );  /* Register numbers are always positive */
 2018:   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
 2019: 
 2020:   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
 2021:   ** for testing only - to verify that SQLite always gets the same answer
 2022:   ** with and without the column cache.
 2023:   */
 2024:   if( pParse->db->flags & SQLITE_ColumnCache ) return;
 2025: 
 2026:   /* First replace any existing entry.
 2027:   **
 2028:   ** Actually, the way the column cache is currently used, we are guaranteed
 2029:   ** that the object will never already be in cache.  Verify this guarantee.
 2030:   */
 2031: #ifndef NDEBUG
 2032:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2033: #if 0 /* This code wold remove the entry from the cache if it existed */
 2034:     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
 2035:       cacheEntryClear(pParse, p);
 2036:       p->iLevel = pParse->iCacheLevel;
 2037:       p->iReg = iReg;
 2038:       p->lru = pParse->iCacheCnt++;
 2039:       return;
 2040:     }
 2041: #endif
 2042:     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
 2043:   }
 2044: #endif
 2045: 
 2046:   /* Find an empty slot and replace it */
 2047:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2048:     if( p->iReg==0 ){
 2049:       p->iLevel = pParse->iCacheLevel;
 2050:       p->iTable = iTab;
 2051:       p->iColumn = iCol;
 2052:       p->iReg = iReg;
 2053:       p->tempReg = 0;
 2054:       p->lru = pParse->iCacheCnt++;
 2055:       return;
 2056:     }
 2057:   }
 2058: 
 2059:   /* Replace the last recently used */
 2060:   minLru = 0x7fffffff;
 2061:   idxLru = -1;
 2062:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2063:     if( p->lru<minLru ){
 2064:       idxLru = i;
 2065:       minLru = p->lru;
 2066:     }
 2067:   }
 2068:   if( ALWAYS(idxLru>=0) ){
 2069:     p = &pParse->aColCache[idxLru];
 2070:     p->iLevel = pParse->iCacheLevel;
 2071:     p->iTable = iTab;
 2072:     p->iColumn = iCol;
 2073:     p->iReg = iReg;
 2074:     p->tempReg = 0;
 2075:     p->lru = pParse->iCacheCnt++;
 2076:     return;
 2077:   }
 2078: }
 2079: 
 2080: /*
 2081: ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
 2082: ** Purge the range of registers from the column cache.
 2083: */
 2084: void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
 2085:   int i;
 2086:   int iLast = iReg + nReg - 1;
 2087:   struct yColCache *p;
 2088:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2089:     int r = p->iReg;
 2090:     if( r>=iReg && r<=iLast ){
 2091:       cacheEntryClear(pParse, p);
 2092:       p->iReg = 0;
 2093:     }
 2094:   }
 2095: }
 2096: 
 2097: /*
 2098: ** Remember the current column cache context.  Any new entries added
 2099: ** added to the column cache after this call are removed when the
 2100: ** corresponding pop occurs.
 2101: */
 2102: void sqlite3ExprCachePush(Parse *pParse){
 2103:   pParse->iCacheLevel++;
 2104: }
 2105: 
 2106: /*
 2107: ** Remove from the column cache any entries that were added since the
 2108: ** the previous N Push operations.  In other words, restore the cache
 2109: ** to the state it was in N Pushes ago.
 2110: */
 2111: void sqlite3ExprCachePop(Parse *pParse, int N){
 2112:   int i;
 2113:   struct yColCache *p;
 2114:   assert( N>0 );
 2115:   assert( pParse->iCacheLevel>=N );
 2116:   pParse->iCacheLevel -= N;
 2117:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2118:     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
 2119:       cacheEntryClear(pParse, p);
 2120:       p->iReg = 0;
 2121:     }
 2122:   }
 2123: }
 2124: 
 2125: /*
 2126: ** When a cached column is reused, make sure that its register is
 2127: ** no longer available as a temp register.  ticket #3879:  that same
 2128: ** register might be in the cache in multiple places, so be sure to
 2129: ** get them all.
 2130: */
 2131: static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
 2132:   int i;
 2133:   struct yColCache *p;
 2134:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2135:     if( p->iReg==iReg ){
 2136:       p->tempReg = 0;
 2137:     }
 2138:   }
 2139: }
 2140: 
 2141: /*
 2142: ** Generate code to extract the value of the iCol-th column of a table.
 2143: */
 2144: void sqlite3ExprCodeGetColumnOfTable(
 2145:   Vdbe *v,        /* The VDBE under construction */
 2146:   Table *pTab,    /* The table containing the value */
 2147:   int iTabCur,    /* The cursor for this table */
 2148:   int iCol,       /* Index of the column to extract */
 2149:   int regOut      /* Extract the valud into this register */
 2150: ){
 2151:   if( iCol<0 || iCol==pTab->iPKey ){
 2152:     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
 2153:   }else{
 2154:     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
 2155:     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
 2156:   }
 2157:   if( iCol>=0 ){
 2158:     sqlite3ColumnDefault(v, pTab, iCol, regOut);
 2159:   }
 2160: }
 2161: 
 2162: /*
 2163: ** Generate code that will extract the iColumn-th column from
 2164: ** table pTab and store the column value in a register.  An effort
 2165: ** is made to store the column value in register iReg, but this is
 2166: ** not guaranteed.  The location of the column value is returned.
 2167: **
 2168: ** There must be an open cursor to pTab in iTable when this routine
 2169: ** is called.  If iColumn<0 then code is generated that extracts the rowid.
 2170: */
 2171: int sqlite3ExprCodeGetColumn(
 2172:   Parse *pParse,   /* Parsing and code generating context */
 2173:   Table *pTab,     /* Description of the table we are reading from */
 2174:   int iColumn,     /* Index of the table column */
 2175:   int iTable,      /* The cursor pointing to the table */
 2176:   int iReg         /* Store results here */
 2177: ){
 2178:   Vdbe *v = pParse->pVdbe;
 2179:   int i;
 2180:   struct yColCache *p;
 2181: 
 2182:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2183:     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
 2184:       p->lru = pParse->iCacheCnt++;
 2185:       sqlite3ExprCachePinRegister(pParse, p->iReg);
 2186:       return p->iReg;
 2187:     }
 2188:   }  
 2189:   assert( v!=0 );
 2190:   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
 2191:   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
 2192:   return iReg;
 2193: }
 2194: 
 2195: /*
 2196: ** Clear all column cache entries.
 2197: */
 2198: void sqlite3ExprCacheClear(Parse *pParse){
 2199:   int i;
 2200:   struct yColCache *p;
 2201: 
 2202:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2203:     if( p->iReg ){
 2204:       cacheEntryClear(pParse, p);
 2205:       p->iReg = 0;
 2206:     }
 2207:   }
 2208: }
 2209: 
 2210: /*
 2211: ** Record the fact that an affinity change has occurred on iCount
 2212: ** registers starting with iStart.
 2213: */
 2214: void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
 2215:   sqlite3ExprCacheRemove(pParse, iStart, iCount);
 2216: }
 2217: 
 2218: /*
 2219: ** Generate code to move content from registers iFrom...iFrom+nReg-1
 2220: ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
 2221: */
 2222: void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
 2223:   int i;
 2224:   struct yColCache *p;
 2225:   if( NEVER(iFrom==iTo) ) return;
 2226:   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
 2227:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2228:     int x = p->iReg;
 2229:     if( x>=iFrom && x<iFrom+nReg ){
 2230:       p->iReg += iTo-iFrom;
 2231:     }
 2232:   }
 2233: }
 2234: 
 2235: /*
 2236: ** Generate code to copy content from registers iFrom...iFrom+nReg-1
 2237: ** over to iTo..iTo+nReg-1.
 2238: */
 2239: void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
 2240:   int i;
 2241:   if( NEVER(iFrom==iTo) ) return;
 2242:   for(i=0; i<nReg; i++){
 2243:     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
 2244:   }
 2245: }
 2246: 
 2247: #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
 2248: /*
 2249: ** Return true if any register in the range iFrom..iTo (inclusive)
 2250: ** is used as part of the column cache.
 2251: **
 2252: ** This routine is used within assert() and testcase() macros only
 2253: ** and does not appear in a normal build.
 2254: */
 2255: static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
 2256:   int i;
 2257:   struct yColCache *p;
 2258:   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 2259:     int r = p->iReg;
 2260:     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
 2261:   }
 2262:   return 0;
 2263: }
 2264: #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
 2265: 
 2266: /*
 2267: ** Generate code into the current Vdbe to evaluate the given
 2268: ** expression.  Attempt to store the results in register "target".
 2269: ** Return the register where results are stored.
 2270: **
 2271: ** With this routine, there is no guarantee that results will
 2272: ** be stored in target.  The result might be stored in some other
 2273: ** register if it is convenient to do so.  The calling function
 2274: ** must check the return code and move the results to the desired
 2275: ** register.
 2276: */
 2277: int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
 2278:   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
 2279:   int op;                   /* The opcode being coded */
 2280:   int inReg = target;       /* Results stored in register inReg */
 2281:   int regFree1 = 0;         /* If non-zero free this temporary register */
 2282:   int regFree2 = 0;         /* If non-zero free this temporary register */
 2283:   int r1, r2, r3, r4;       /* Various register numbers */
 2284:   sqlite3 *db = pParse->db; /* The database connection */
 2285: 
 2286:   assert( target>0 && target<=pParse->nMem );
 2287:   if( v==0 ){
 2288:     assert( pParse->db->mallocFailed );
 2289:     return 0;
 2290:   }
 2291: 
 2292:   if( pExpr==0 ){
 2293:     op = TK_NULL;
 2294:   }else{
 2295:     op = pExpr->op;
 2296:   }
 2297:   switch( op ){
 2298:     case TK_AGG_COLUMN: {
 2299:       AggInfo *pAggInfo = pExpr->pAggInfo;
 2300:       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
 2301:       if( !pAggInfo->directMode ){
 2302:         assert( pCol->iMem>0 );
 2303:         inReg = pCol->iMem;
 2304:         break;
 2305:       }else if( pAggInfo->useSortingIdx ){
 2306:         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
 2307:                               pCol->iSorterColumn, target);
 2308:         break;
 2309:       }
 2310:       /* Otherwise, fall thru into the TK_COLUMN case */
 2311:     }
 2312:     case TK_COLUMN: {
 2313:       if( pExpr->iTable<0 ){
 2314:         /* This only happens when coding check constraints */
 2315:         assert( pParse->ckBase>0 );
 2316:         inReg = pExpr->iColumn + pParse->ckBase;
 2317:       }else{
 2318:         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
 2319:                                  pExpr->iColumn, pExpr->iTable, target);
 2320:       }
 2321:       break;
 2322:     }
 2323:     case TK_INTEGER: {
 2324:       codeInteger(pParse, pExpr, 0, target);
 2325:       break;
 2326:     }
 2327: #ifndef SQLITE_OMIT_FLOATING_POINT
 2328:     case TK_FLOAT: {
 2329:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2330:       codeReal(v, pExpr->u.zToken, 0, target);
 2331:       break;
 2332:     }
 2333: #endif
 2334:     case TK_STRING: {
 2335:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2336:       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
 2337:       break;
 2338:     }
 2339:     case TK_NULL: {
 2340:       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
 2341:       break;
 2342:     }
 2343: #ifndef SQLITE_OMIT_BLOB_LITERAL
 2344:     case TK_BLOB: {
 2345:       int n;
 2346:       const char *z;
 2347:       char *zBlob;
 2348:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2349:       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
 2350:       assert( pExpr->u.zToken[1]=='\'' );
 2351:       z = &pExpr->u.zToken[2];
 2352:       n = sqlite3Strlen30(z) - 1;
 2353:       assert( z[n]=='\'' );
 2354:       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
 2355:       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
 2356:       break;
 2357:     }
 2358: #endif
 2359:     case TK_VARIABLE: {
 2360:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2361:       assert( pExpr->u.zToken!=0 );
 2362:       assert( pExpr->u.zToken[0]!=0 );
 2363:       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
 2364:       if( pExpr->u.zToken[1]!=0 ){
 2365:         assert( pExpr->u.zToken[0]=='?' 
 2366:              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
 2367:         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
 2368:       }
 2369:       break;
 2370:     }
 2371:     case TK_REGISTER: {
 2372:       inReg = pExpr->iTable;
 2373:       break;
 2374:     }
 2375:     case TK_AS: {
 2376:       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 2377:       break;
 2378:     }
 2379: #ifndef SQLITE_OMIT_CAST
 2380:     case TK_CAST: {
 2381:       /* Expressions of the form:   CAST(pLeft AS token) */
 2382:       int aff, to_op;
 2383:       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 2384:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2385:       aff = sqlite3AffinityType(pExpr->u.zToken);
 2386:       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
 2387:       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
 2388:       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
 2389:       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
 2390:       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
 2391:       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
 2392:       testcase( to_op==OP_ToText );
 2393:       testcase( to_op==OP_ToBlob );
 2394:       testcase( to_op==OP_ToNumeric );
 2395:       testcase( to_op==OP_ToInt );
 2396:       testcase( to_op==OP_ToReal );
 2397:       if( inReg!=target ){
 2398:         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
 2399:         inReg = target;
 2400:       }
 2401:       sqlite3VdbeAddOp1(v, to_op, inReg);
 2402:       testcase( usedAsColumnCache(pParse, inReg, inReg) );
 2403:       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
 2404:       break;
 2405:     }
 2406: #endif /* SQLITE_OMIT_CAST */
 2407:     case TK_LT:
 2408:     case TK_LE:
 2409:     case TK_GT:
 2410:     case TK_GE:
 2411:     case TK_NE:
 2412:     case TK_EQ: {
 2413:       assert( TK_LT==OP_Lt );
 2414:       assert( TK_LE==OP_Le );
 2415:       assert( TK_GT==OP_Gt );
 2416:       assert( TK_GE==OP_Ge );
 2417:       assert( TK_EQ==OP_Eq );
 2418:       assert( TK_NE==OP_Ne );
 2419:       testcase( op==TK_LT );
 2420:       testcase( op==TK_LE );
 2421:       testcase( op==TK_GT );
 2422:       testcase( op==TK_GE );
 2423:       testcase( op==TK_EQ );
 2424:       testcase( op==TK_NE );
 2425:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 2426:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 2427:       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 2428:                   r1, r2, inReg, SQLITE_STOREP2);
 2429:       testcase( regFree1==0 );
 2430:       testcase( regFree2==0 );
 2431:       break;
 2432:     }
 2433:     case TK_IS:
 2434:     case TK_ISNOT: {
 2435:       testcase( op==TK_IS );
 2436:       testcase( op==TK_ISNOT );
 2437:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 2438:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 2439:       op = (op==TK_IS) ? TK_EQ : TK_NE;
 2440:       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 2441:                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
 2442:       testcase( regFree1==0 );
 2443:       testcase( regFree2==0 );
 2444:       break;
 2445:     }
 2446:     case TK_AND:
 2447:     case TK_OR:
 2448:     case TK_PLUS:
 2449:     case TK_STAR:
 2450:     case TK_MINUS:
 2451:     case TK_REM:
 2452:     case TK_BITAND:
 2453:     case TK_BITOR:
 2454:     case TK_SLASH:
 2455:     case TK_LSHIFT:
 2456:     case TK_RSHIFT: 
 2457:     case TK_CONCAT: {
 2458:       assert( TK_AND==OP_And );
 2459:       assert( TK_OR==OP_Or );
 2460:       assert( TK_PLUS==OP_Add );
 2461:       assert( TK_MINUS==OP_Subtract );
 2462:       assert( TK_REM==OP_Remainder );
 2463:       assert( TK_BITAND==OP_BitAnd );
 2464:       assert( TK_BITOR==OP_BitOr );
 2465:       assert( TK_SLASH==OP_Divide );
 2466:       assert( TK_LSHIFT==OP_ShiftLeft );
 2467:       assert( TK_RSHIFT==OP_ShiftRight );
 2468:       assert( TK_CONCAT==OP_Concat );
 2469:       testcase( op==TK_AND );
 2470:       testcase( op==TK_OR );
 2471:       testcase( op==TK_PLUS );
 2472:       testcase( op==TK_MINUS );
 2473:       testcase( op==TK_REM );
 2474:       testcase( op==TK_BITAND );
 2475:       testcase( op==TK_BITOR );
 2476:       testcase( op==TK_SLASH );
 2477:       testcase( op==TK_LSHIFT );
 2478:       testcase( op==TK_RSHIFT );
 2479:       testcase( op==TK_CONCAT );
 2480:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 2481:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 2482:       sqlite3VdbeAddOp3(v, op, r2, r1, target);
 2483:       testcase( regFree1==0 );
 2484:       testcase( regFree2==0 );
 2485:       break;
 2486:     }
 2487:     case TK_UMINUS: {
 2488:       Expr *pLeft = pExpr->pLeft;
 2489:       assert( pLeft );
 2490:       if( pLeft->op==TK_INTEGER ){
 2491:         codeInteger(pParse, pLeft, 1, target);
 2492: #ifndef SQLITE_OMIT_FLOATING_POINT
 2493:       }else if( pLeft->op==TK_FLOAT ){
 2494:         assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2495:         codeReal(v, pLeft->u.zToken, 1, target);
 2496: #endif
 2497:       }else{
 2498:         regFree1 = r1 = sqlite3GetTempReg(pParse);
 2499:         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
 2500:         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
 2501:         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
 2502:         testcase( regFree2==0 );
 2503:       }
 2504:       inReg = target;
 2505:       break;
 2506:     }
 2507:     case TK_BITNOT:
 2508:     case TK_NOT: {
 2509:       assert( TK_BITNOT==OP_BitNot );
 2510:       assert( TK_NOT==OP_Not );
 2511:       testcase( op==TK_BITNOT );
 2512:       testcase( op==TK_NOT );
 2513:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 2514:       testcase( regFree1==0 );
 2515:       inReg = target;
 2516:       sqlite3VdbeAddOp2(v, op, r1, inReg);
 2517:       break;
 2518:     }
 2519:     case TK_ISNULL:
 2520:     case TK_NOTNULL: {
 2521:       int addr;
 2522:       assert( TK_ISNULL==OP_IsNull );
 2523:       assert( TK_NOTNULL==OP_NotNull );
 2524:       testcase( op==TK_ISNULL );
 2525:       testcase( op==TK_NOTNULL );
 2526:       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
 2527:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 2528:       testcase( regFree1==0 );
 2529:       addr = sqlite3VdbeAddOp1(v, op, r1);
 2530:       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
 2531:       sqlite3VdbeJumpHere(v, addr);
 2532:       break;
 2533:     }
 2534:     case TK_AGG_FUNCTION: {
 2535:       AggInfo *pInfo = pExpr->pAggInfo;
 2536:       if( pInfo==0 ){
 2537:         assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2538:         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
 2539:       }else{
 2540:         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
 2541:       }
 2542:       break;
 2543:     }
 2544:     case TK_CONST_FUNC:
 2545:     case TK_FUNCTION: {
 2546:       ExprList *pFarg;       /* List of function arguments */
 2547:       int nFarg;             /* Number of function arguments */
 2548:       FuncDef *pDef;         /* The function definition object */
 2549:       int nId;               /* Length of the function name in bytes */
 2550:       const char *zId;       /* The function name */
 2551:       int constMask = 0;     /* Mask of function arguments that are constant */
 2552:       int i;                 /* Loop counter */
 2553:       u8 enc = ENC(db);      /* The text encoding used by this database */
 2554:       CollSeq *pColl = 0;    /* A collating sequence */
 2555: 
 2556:       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
 2557:       testcase( op==TK_CONST_FUNC );
 2558:       testcase( op==TK_FUNCTION );
 2559:       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
 2560:         pFarg = 0;
 2561:       }else{
 2562:         pFarg = pExpr->x.pList;
 2563:       }
 2564:       nFarg = pFarg ? pFarg->nExpr : 0;
 2565:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2566:       zId = pExpr->u.zToken;
 2567:       nId = sqlite3Strlen30(zId);
 2568:       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
 2569:       if( pDef==0 ){
 2570:         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
 2571:         break;
 2572:       }
 2573: 
 2574:       /* Attempt a direct implementation of the built-in COALESCE() and
 2575:       ** IFNULL() functions.  This avoids unnecessary evalation of
 2576:       ** arguments past the first non-NULL argument.
 2577:       */
 2578:       if( pDef->flags & SQLITE_FUNC_COALESCE ){
 2579:         int endCoalesce = sqlite3VdbeMakeLabel(v);
 2580:         assert( nFarg>=2 );
 2581:         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
 2582:         for(i=1; i<nFarg; i++){
 2583:           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
 2584:           sqlite3ExprCacheRemove(pParse, target, 1);
 2585:           sqlite3ExprCachePush(pParse);
 2586:           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
 2587:           sqlite3ExprCachePop(pParse, 1);
 2588:         }
 2589:         sqlite3VdbeResolveLabel(v, endCoalesce);
 2590:         break;
 2591:       }
 2592: 
 2593: 
 2594:       if( pFarg ){
 2595:         r1 = sqlite3GetTempRange(pParse, nFarg);
 2596:         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
 2597:         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
 2598:         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
 2599:       }else{
 2600:         r1 = 0;
 2601:       }
 2602: #ifndef SQLITE_OMIT_VIRTUALTABLE
 2603:       /* Possibly overload the function if the first argument is
 2604:       ** a virtual table column.
 2605:       **
 2606:       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
 2607:       ** second argument, not the first, as the argument to test to
 2608:       ** see if it is a column in a virtual table.  This is done because
 2609:       ** the left operand of infix functions (the operand we want to
 2610:       ** control overloading) ends up as the second argument to the
 2611:       ** function.  The expression "A glob B" is equivalent to 
 2612:       ** "glob(B,A).  We want to use the A in "A glob B" to test
 2613:       ** for function overloading.  But we use the B term in "glob(B,A)".
 2614:       */
 2615:       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
 2616:         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
 2617:       }else if( nFarg>0 ){
 2618:         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
 2619:       }
 2620: #endif
 2621:       for(i=0; i<nFarg; i++){
 2622:         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
 2623:           constMask |= (1<<i);
 2624:         }
 2625:         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
 2626:           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
 2627:         }
 2628:       }
 2629:       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
 2630:         if( !pColl ) pColl = db->pDfltColl; 
 2631:         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
 2632:       }
 2633:       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
 2634:                         (char*)pDef, P4_FUNCDEF);
 2635:       sqlite3VdbeChangeP5(v, (u8)nFarg);
 2636:       if( nFarg ){
 2637:         sqlite3ReleaseTempRange(pParse, r1, nFarg);
 2638:       }
 2639:       break;
 2640:     }
 2641: #ifndef SQLITE_OMIT_SUBQUERY
 2642:     case TK_EXISTS:
 2643:     case TK_SELECT: {
 2644:       testcase( op==TK_EXISTS );
 2645:       testcase( op==TK_SELECT );
 2646:       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
 2647:       break;
 2648:     }
 2649:     case TK_IN: {
 2650:       int destIfFalse = sqlite3VdbeMakeLabel(v);
 2651:       int destIfNull = sqlite3VdbeMakeLabel(v);
 2652:       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
 2653:       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
 2654:       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
 2655:       sqlite3VdbeResolveLabel(v, destIfFalse);
 2656:       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
 2657:       sqlite3VdbeResolveLabel(v, destIfNull);
 2658:       break;
 2659:     }
 2660: #endif /* SQLITE_OMIT_SUBQUERY */
 2661: 
 2662: 
 2663:     /*
 2664:     **    x BETWEEN y AND z
 2665:     **
 2666:     ** This is equivalent to
 2667:     **
 2668:     **    x>=y AND x<=z
 2669:     **
 2670:     ** X is stored in pExpr->pLeft.
 2671:     ** Y is stored in pExpr->pList->a[0].pExpr.
 2672:     ** Z is stored in pExpr->pList->a[1].pExpr.
 2673:     */
 2674:     case TK_BETWEEN: {
 2675:       Expr *pLeft = pExpr->pLeft;
 2676:       struct ExprList_item *pLItem = pExpr->x.pList->a;
 2677:       Expr *pRight = pLItem->pExpr;
 2678: 
 2679:       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
 2680:       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
 2681:       testcase( regFree1==0 );
 2682:       testcase( regFree2==0 );
 2683:       r3 = sqlite3GetTempReg(pParse);
 2684:       r4 = sqlite3GetTempReg(pParse);
 2685:       codeCompare(pParse, pLeft, pRight, OP_Ge,
 2686:                   r1, r2, r3, SQLITE_STOREP2);
 2687:       pLItem++;
 2688:       pRight = pLItem->pExpr;
 2689:       sqlite3ReleaseTempReg(pParse, regFree2);
 2690:       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
 2691:       testcase( regFree2==0 );
 2692:       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
 2693:       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
 2694:       sqlite3ReleaseTempReg(pParse, r3);
 2695:       sqlite3ReleaseTempReg(pParse, r4);
 2696:       break;
 2697:     }
 2698:     case TK_UPLUS: {
 2699:       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 2700:       break;
 2701:     }
 2702: 
 2703:     case TK_TRIGGER: {
 2704:       /* If the opcode is TK_TRIGGER, then the expression is a reference
 2705:       ** to a column in the new.* or old.* pseudo-tables available to
 2706:       ** trigger programs. In this case Expr.iTable is set to 1 for the
 2707:       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
 2708:       ** is set to the column of the pseudo-table to read, or to -1 to
 2709:       ** read the rowid field.
 2710:       **
 2711:       ** The expression is implemented using an OP_Param opcode. The p1
 2712:       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
 2713:       ** to reference another column of the old.* pseudo-table, where 
 2714:       ** i is the index of the column. For a new.rowid reference, p1 is
 2715:       ** set to (n+1), where n is the number of columns in each pseudo-table.
 2716:       ** For a reference to any other column in the new.* pseudo-table, p1
 2717:       ** is set to (n+2+i), where n and i are as defined previously. For
 2718:       ** example, if the table on which triggers are being fired is
 2719:       ** declared as:
 2720:       **
 2721:       **   CREATE TABLE t1(a, b);
 2722:       **
 2723:       ** Then p1 is interpreted as follows:
 2724:       **
 2725:       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
 2726:       **   p1==1   ->    old.a         p1==4   ->    new.a
 2727:       **   p1==2   ->    old.b         p1==5   ->    new.b       
 2728:       */
 2729:       Table *pTab = pExpr->pTab;
 2730:       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
 2731: 
 2732:       assert( pExpr->iTable==0 || pExpr->iTable==1 );
 2733:       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
 2734:       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
 2735:       assert( p1>=0 && p1<(pTab->nCol*2+2) );
 2736: 
 2737:       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
 2738:       VdbeComment((v, "%s.%s -> $%d",
 2739:         (pExpr->iTable ? "new" : "old"),
 2740:         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
 2741:         target
 2742:       ));
 2743: 
 2744: #ifndef SQLITE_OMIT_FLOATING_POINT
 2745:       /* If the column has REAL affinity, it may currently be stored as an
 2746:       ** integer. Use OP_RealAffinity to make sure it is really real.  */
 2747:       if( pExpr->iColumn>=0 
 2748:        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
 2749:       ){
 2750:         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
 2751:       }
 2752: #endif
 2753:       break;
 2754:     }
 2755: 
 2756: 
 2757:     /*
 2758:     ** Form A:
 2759:     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
 2760:     **
 2761:     ** Form B:
 2762:     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
 2763:     **
 2764:     ** Form A is can be transformed into the equivalent form B as follows:
 2765:     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
 2766:     **        WHEN x=eN THEN rN ELSE y END
 2767:     **
 2768:     ** X (if it exists) is in pExpr->pLeft.
 2769:     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
 2770:     ** ELSE clause and no other term matches, then the result of the
 2771:     ** exprssion is NULL.
 2772:     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
 2773:     **
 2774:     ** The result of the expression is the Ri for the first matching Ei,
 2775:     ** or if there is no matching Ei, the ELSE term Y, or if there is
 2776:     ** no ELSE term, NULL.
 2777:     */
 2778:     default: assert( op==TK_CASE ); {
 2779:       int endLabel;                     /* GOTO label for end of CASE stmt */
 2780:       int nextCase;                     /* GOTO label for next WHEN clause */
 2781:       int nExpr;                        /* 2x number of WHEN terms */
 2782:       int i;                            /* Loop counter */
 2783:       ExprList *pEList;                 /* List of WHEN terms */
 2784:       struct ExprList_item *aListelem;  /* Array of WHEN terms */
 2785:       Expr opCompare;                   /* The X==Ei expression */
 2786:       Expr cacheX;                      /* Cached expression X */
 2787:       Expr *pX;                         /* The X expression */
 2788:       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
 2789:       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
 2790: 
 2791:       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
 2792:       assert((pExpr->x.pList->nExpr % 2) == 0);
 2793:       assert(pExpr->x.pList->nExpr > 0);
 2794:       pEList = pExpr->x.pList;
 2795:       aListelem = pEList->a;
 2796:       nExpr = pEList->nExpr;
 2797:       endLabel = sqlite3VdbeMakeLabel(v);
 2798:       if( (pX = pExpr->pLeft)!=0 ){
 2799:         cacheX = *pX;
 2800:         testcase( pX->op==TK_COLUMN );
 2801:         testcase( pX->op==TK_REGISTER );
 2802:         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
 2803:         testcase( regFree1==0 );
 2804:         cacheX.op = TK_REGISTER;
 2805:         opCompare.op = TK_EQ;
 2806:         opCompare.pLeft = &cacheX;
 2807:         pTest = &opCompare;
 2808:         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
 2809:         ** The value in regFree1 might get SCopy-ed into the file result.
 2810:         ** So make sure that the regFree1 register is not reused for other
 2811:         ** purposes and possibly overwritten.  */
 2812:         regFree1 = 0;
 2813:       }
 2814:       for(i=0; i<nExpr; i=i+2){
 2815:         sqlite3ExprCachePush(pParse);
 2816:         if( pX ){
 2817:           assert( pTest!=0 );
 2818:           opCompare.pRight = aListelem[i].pExpr;
 2819:         }else{
 2820:           pTest = aListelem[i].pExpr;
 2821:         }
 2822:         nextCase = sqlite3VdbeMakeLabel(v);
 2823:         testcase( pTest->op==TK_COLUMN );
 2824:         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
 2825:         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
 2826:         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
 2827:         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
 2828:         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
 2829:         sqlite3ExprCachePop(pParse, 1);
 2830:         sqlite3VdbeResolveLabel(v, nextCase);
 2831:       }
 2832:       if( pExpr->pRight ){
 2833:         sqlite3ExprCachePush(pParse);
 2834:         sqlite3ExprCode(pParse, pExpr->pRight, target);
 2835:         sqlite3ExprCachePop(pParse, 1);
 2836:       }else{
 2837:         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
 2838:       }
 2839:       assert( db->mallocFailed || pParse->nErr>0 
 2840:            || pParse->iCacheLevel==iCacheLevel );
 2841:       sqlite3VdbeResolveLabel(v, endLabel);
 2842:       break;
 2843:     }
 2844: #ifndef SQLITE_OMIT_TRIGGER
 2845:     case TK_RAISE: {
 2846:       assert( pExpr->affinity==OE_Rollback 
 2847:            || pExpr->affinity==OE_Abort
 2848:            || pExpr->affinity==OE_Fail
 2849:            || pExpr->affinity==OE_Ignore
 2850:       );
 2851:       if( !pParse->pTriggerTab ){
 2852:         sqlite3ErrorMsg(pParse,
 2853:                        "RAISE() may only be used within a trigger-program");
 2854:         return 0;
 2855:       }
 2856:       if( pExpr->affinity==OE_Abort ){
 2857:         sqlite3MayAbort(pParse);
 2858:       }
 2859:       assert( !ExprHasProperty(pExpr, EP_IntValue) );
 2860:       if( pExpr->affinity==OE_Ignore ){
 2861:         sqlite3VdbeAddOp4(
 2862:             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
 2863:       }else{
 2864:         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
 2865:       }
 2866: 
 2867:       break;
 2868:     }
 2869: #endif
 2870:   }
 2871:   sqlite3ReleaseTempReg(pParse, regFree1);
 2872:   sqlite3ReleaseTempReg(pParse, regFree2);
 2873:   return inReg;
 2874: }
 2875: 
 2876: /*
 2877: ** Generate code to evaluate an expression and store the results
 2878: ** into a register.  Return the register number where the results
 2879: ** are stored.
 2880: **
 2881: ** If the register is a temporary register that can be deallocated,
 2882: ** then write its number into *pReg.  If the result register is not
 2883: ** a temporary, then set *pReg to zero.
 2884: */
 2885: int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
 2886:   int r1 = sqlite3GetTempReg(pParse);
 2887:   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
 2888:   if( r2==r1 ){
 2889:     *pReg = r1;
 2890:   }else{
 2891:     sqlite3ReleaseTempReg(pParse, r1);
 2892:     *pReg = 0;
 2893:   }
 2894:   return r2;
 2895: }
 2896: 
 2897: /*
 2898: ** Generate code that will evaluate expression pExpr and store the
 2899: ** results in register target.  The results are guaranteed to appear
 2900: ** in register target.
 2901: */
 2902: int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
 2903:   int inReg;
 2904: 
 2905:   assert( target>0 && target<=pParse->nMem );
 2906:   if( pExpr && pExpr->op==TK_REGISTER ){
 2907:     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
 2908:   }else{
 2909:     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
 2910:     assert( pParse->pVdbe || pParse->db->mallocFailed );
 2911:     if( inReg!=target && pParse->pVdbe ){
 2912:       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
 2913:     }
 2914:   }
 2915:   return target;
 2916: }
 2917: 
 2918: /*
 2919: ** Generate code that evalutes the given expression and puts the result
 2920: ** in register target.
 2921: **
 2922: ** Also make a copy of the expression results into another "cache" register
 2923: ** and modify the expression so that the next time it is evaluated,
 2924: ** the result is a copy of the cache register.
 2925: **
 2926: ** This routine is used for expressions that are used multiple 
 2927: ** times.  They are evaluated once and the results of the expression
 2928: ** are reused.
 2929: */
 2930: int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
 2931:   Vdbe *v = pParse->pVdbe;
 2932:   int inReg;
 2933:   inReg = sqlite3ExprCode(pParse, pExpr, target);
 2934:   assert( target>0 );
 2935:   /* This routine is called for terms to INSERT or UPDATE.  And the only
 2936:   ** other place where expressions can be converted into TK_REGISTER is
 2937:   ** in WHERE clause processing.  So as currently implemented, there is
 2938:   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
 2939:   ** keep the ALWAYS() in case the conditions above change with future
 2940:   ** modifications or enhancements. */
 2941:   if( ALWAYS(pExpr->op!=TK_REGISTER) ){  
 2942:     int iMem;
 2943:     iMem = ++pParse->nMem;
 2944:     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
 2945:     pExpr->iTable = iMem;
 2946:     pExpr->op2 = pExpr->op;
 2947:     pExpr->op = TK_REGISTER;
 2948:   }
 2949:   return inReg;
 2950: }
 2951: 
 2952: #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
 2953: /*
 2954: ** Generate a human-readable explanation of an expression tree.
 2955: */
 2956: void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
 2957:   int op;                   /* The opcode being coded */
 2958:   const char *zBinOp = 0;   /* Binary operator */
 2959:   const char *zUniOp = 0;   /* Unary operator */
 2960:   if( pExpr==0 ){
 2961:     op = TK_NULL;
 2962:   }else{
 2963:     op = pExpr->op;
 2964:   }
 2965:   switch( op ){
 2966:     case TK_AGG_COLUMN: {
 2967:       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
 2968:             pExpr->iTable, pExpr->iColumn);
 2969:       break;
 2970:     }
 2971:     case TK_COLUMN: {
 2972:       if( pExpr->iTable<0 ){
 2973:         /* This only happens when coding check constraints */
 2974:         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
 2975:       }else{
 2976:         sqlite3ExplainPrintf(pOut, "{%d:%d}",
 2977:                              pExpr->iTable, pExpr->iColumn);
 2978:       }
 2979:       break;
 2980:     }
 2981:     case TK_INTEGER: {
 2982:       if( pExpr->flags & EP_IntValue ){
 2983:         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
 2984:       }else{
 2985:         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
 2986:       }
 2987:       break;
 2988:     }
 2989: #ifndef SQLITE_OMIT_FLOATING_POINT
 2990:     case TK_FLOAT: {
 2991:       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
 2992:       break;
 2993:     }
 2994: #endif
 2995:     case TK_STRING: {
 2996:       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
 2997:       break;
 2998:     }
 2999:     case TK_NULL: {
 3000:       sqlite3ExplainPrintf(pOut,"NULL");
 3001:       break;
 3002:     }
 3003: #ifndef SQLITE_OMIT_BLOB_LITERAL
 3004:     case TK_BLOB: {
 3005:       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
 3006:       break;
 3007:     }
 3008: #endif
 3009:     case TK_VARIABLE: {
 3010:       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
 3011:                            pExpr->u.zToken, pExpr->iColumn);
 3012:       break;
 3013:     }
 3014:     case TK_REGISTER: {
 3015:       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
 3016:       break;
 3017:     }
 3018:     case TK_AS: {
 3019:       sqlite3ExplainExpr(pOut, pExpr->pLeft);
 3020:       break;
 3021:     }
 3022: #ifndef SQLITE_OMIT_CAST
 3023:     case TK_CAST: {
 3024:       /* Expressions of the form:   CAST(pLeft AS token) */
 3025:       const char *zAff = "unk";
 3026:       switch( sqlite3AffinityType(pExpr->u.zToken) ){
 3027:         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
 3028:         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
 3029:         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
 3030:         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
 3031:         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
 3032:       }
 3033:       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
 3034:       sqlite3ExplainExpr(pOut, pExpr->pLeft);
 3035:       sqlite3ExplainPrintf(pOut, ")");
 3036:       break;
 3037:     }
 3038: #endif /* SQLITE_OMIT_CAST */
 3039:     case TK_LT:      zBinOp = "LT";     break;
 3040:     case TK_LE:      zBinOp = "LE";     break;
 3041:     case TK_GT:      zBinOp = "GT";     break;
 3042:     case TK_GE:      zBinOp = "GE";     break;
 3043:     case TK_NE:      zBinOp = "NE";     break;
 3044:     case TK_EQ:      zBinOp = "EQ";     break;
 3045:     case TK_IS:      zBinOp = "IS";     break;
 3046:     case TK_ISNOT:   zBinOp = "ISNOT";  break;
 3047:     case TK_AND:     zBinOp = "AND";    break;
 3048:     case TK_OR:      zBinOp = "OR";     break;
 3049:     case TK_PLUS:    zBinOp = "ADD";    break;
 3050:     case TK_STAR:    zBinOp = "MUL";    break;
 3051:     case TK_MINUS:   zBinOp = "SUB";    break;
 3052:     case TK_REM:     zBinOp = "REM";    break;
 3053:     case TK_BITAND:  zBinOp = "BITAND"; break;
 3054:     case TK_BITOR:   zBinOp = "BITOR";  break;
 3055:     case TK_SLASH:   zBinOp = "DIV";    break;
 3056:     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
 3057:     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
 3058:     case TK_CONCAT:  zBinOp = "CONCAT"; break;
 3059: 
 3060:     case TK_UMINUS:  zUniOp = "UMINUS"; break;
 3061:     case TK_UPLUS:   zUniOp = "UPLUS";  break;
 3062:     case TK_BITNOT:  zUniOp = "BITNOT"; break;
 3063:     case TK_NOT:     zUniOp = "NOT";    break;
 3064:     case TK_ISNULL:  zUniOp = "ISNULL"; break;
 3065:     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
 3066: 
 3067:     case TK_AGG_FUNCTION:
 3068:     case TK_CONST_FUNC:
 3069:     case TK_FUNCTION: {
 3070:       ExprList *pFarg;       /* List of function arguments */
 3071:       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
 3072:         pFarg = 0;
 3073:       }else{
 3074:         pFarg = pExpr->x.pList;
 3075:       }
 3076:       sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(",
 3077:                            op==TK_AGG_FUNCTION ? "AGG_" : "",
 3078:                            pExpr->u.zToken);
 3079:       if( pFarg ){
 3080:         sqlite3ExplainExprList(pOut, pFarg);
 3081:       }
 3082:       sqlite3ExplainPrintf(pOut, ")");
 3083:       break;
 3084:     }
 3085: #ifndef SQLITE_OMIT_SUBQUERY
 3086:     case TK_EXISTS: {
 3087:       sqlite3ExplainPrintf(pOut, "EXISTS(");
 3088:       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
 3089:       sqlite3ExplainPrintf(pOut,")");
 3090:       break;
 3091:     }
 3092:     case TK_SELECT: {
 3093:       sqlite3ExplainPrintf(pOut, "(");
 3094:       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
 3095:       sqlite3ExplainPrintf(pOut, ")");
 3096:       break;
 3097:     }
 3098:     case TK_IN: {
 3099:       sqlite3ExplainPrintf(pOut, "IN(");
 3100:       sqlite3ExplainExpr(pOut, pExpr->pLeft);
 3101:       sqlite3ExplainPrintf(pOut, ",");
 3102:       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
 3103:         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
 3104:       }else{
 3105:         sqlite3ExplainExprList(pOut, pExpr->x.pList);
 3106:       }
 3107:       sqlite3ExplainPrintf(pOut, ")");
 3108:       break;
 3109:     }
 3110: #endif /* SQLITE_OMIT_SUBQUERY */
 3111: 
 3112:     /*
 3113:     **    x BETWEEN y AND z
 3114:     **
 3115:     ** This is equivalent to
 3116:     **
 3117:     **    x>=y AND x<=z
 3118:     **
 3119:     ** X is stored in pExpr->pLeft.
 3120:     ** Y is stored in pExpr->pList->a[0].pExpr.
 3121:     ** Z is stored in pExpr->pList->a[1].pExpr.
 3122:     */
 3123:     case TK_BETWEEN: {
 3124:       Expr *pX = pExpr->pLeft;
 3125:       Expr *pY = pExpr->x.pList->a[0].pExpr;
 3126:       Expr *pZ = pExpr->x.pList->a[1].pExpr;
 3127:       sqlite3ExplainPrintf(pOut, "BETWEEN(");
 3128:       sqlite3ExplainExpr(pOut, pX);
 3129:       sqlite3ExplainPrintf(pOut, ",");
 3130:       sqlite3ExplainExpr(pOut, pY);
 3131:       sqlite3ExplainPrintf(pOut, ",");
 3132:       sqlite3ExplainExpr(pOut, pZ);
 3133:       sqlite3ExplainPrintf(pOut, ")");
 3134:       break;
 3135:     }
 3136:     case TK_TRIGGER: {
 3137:       /* If the opcode is TK_TRIGGER, then the expression is a reference
 3138:       ** to a column in the new.* or old.* pseudo-tables available to
 3139:       ** trigger programs. In this case Expr.iTable is set to 1 for the
 3140:       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
 3141:       ** is set to the column of the pseudo-table to read, or to -1 to
 3142:       ** read the rowid field.
 3143:       */
 3144:       sqlite3ExplainPrintf(pOut, "%s(%d)", 
 3145:           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
 3146:       break;
 3147:     }
 3148:     case TK_CASE: {
 3149:       sqlite3ExplainPrintf(pOut, "CASE(");
 3150:       sqlite3ExplainExpr(pOut, pExpr->pLeft);
 3151:       sqlite3ExplainPrintf(pOut, ",");
 3152:       sqlite3ExplainExprList(pOut, pExpr->x.pList);
 3153:       break;
 3154:     }
 3155: #ifndef SQLITE_OMIT_TRIGGER
 3156:     case TK_RAISE: {
 3157:       const char *zType = "unk";
 3158:       switch( pExpr->affinity ){
 3159:         case OE_Rollback:   zType = "rollback";  break;
 3160:         case OE_Abort:      zType = "abort";     break;
 3161:         case OE_Fail:       zType = "fail";      break;
 3162:         case OE_Ignore:     zType = "ignore";    break;
 3163:       }
 3164:       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
 3165:       break;
 3166:     }
 3167: #endif
 3168:   }
 3169:   if( zBinOp ){
 3170:     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
 3171:     sqlite3ExplainExpr(pOut, pExpr->pLeft);
 3172:     sqlite3ExplainPrintf(pOut,",");
 3173:     sqlite3ExplainExpr(pOut, pExpr->pRight);
 3174:     sqlite3ExplainPrintf(pOut,")");
 3175:   }else if( zUniOp ){
 3176:     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
 3177:     sqlite3ExplainExpr(pOut, pExpr->pLeft);
 3178:     sqlite3ExplainPrintf(pOut,")");
 3179:   }
 3180: }
 3181: #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
 3182: 
 3183: #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
 3184: /*
 3185: ** Generate a human-readable explanation of an expression list.
 3186: */
 3187: void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
 3188:   int i;
 3189:   if( pList==0 || pList->nExpr==0 ){
 3190:     sqlite3ExplainPrintf(pOut, "(empty-list)");
 3191:     return;
 3192:   }else if( pList->nExpr==1 ){
 3193:     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
 3194:   }else{
 3195:     sqlite3ExplainPush(pOut);
 3196:     for(i=0; i<pList->nExpr; i++){
 3197:       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
 3198:       sqlite3ExplainPush(pOut);
 3199:       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
 3200:       sqlite3ExplainPop(pOut);
 3201:       if( i<pList->nExpr-1 ){
 3202:         sqlite3ExplainNL(pOut);
 3203:       }
 3204:     }
 3205:     sqlite3ExplainPop(pOut);
 3206:   }
 3207: }
 3208: #endif /* SQLITE_DEBUG */
 3209: 
 3210: /*
 3211: ** Return TRUE if pExpr is an constant expression that is appropriate
 3212: ** for factoring out of a loop.  Appropriate expressions are:
 3213: **
 3214: **    *  Any expression that evaluates to two or more opcodes.
 3215: **
 3216: **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
 3217: **       or OP_Variable that does not need to be placed in a 
 3218: **       specific register.
 3219: **
 3220: ** There is no point in factoring out single-instruction constant
 3221: ** expressions that need to be placed in a particular register.  
 3222: ** We could factor them out, but then we would end up adding an
 3223: ** OP_SCopy instruction to move the value into the correct register
 3224: ** later.  We might as well just use the original instruction and
 3225: ** avoid the OP_SCopy.
 3226: */
 3227: static int isAppropriateForFactoring(Expr *p){
 3228:   if( !sqlite3ExprIsConstantNotJoin(p) ){
 3229:     return 0;  /* Only constant expressions are appropriate for factoring */
 3230:   }
 3231:   if( (p->flags & EP_FixedDest)==0 ){
 3232:     return 1;  /* Any constant without a fixed destination is appropriate */
 3233:   }
 3234:   while( p->op==TK_UPLUS ) p = p->pLeft;
 3235:   switch( p->op ){
 3236: #ifndef SQLITE_OMIT_BLOB_LITERAL
 3237:     case TK_BLOB:
 3238: #endif
 3239:     case TK_VARIABLE:
 3240:     case TK_INTEGER:
 3241:     case TK_FLOAT:
 3242:     case TK_NULL:
 3243:     case TK_STRING: {
 3244:       testcase( p->op==TK_BLOB );
 3245:       testcase( p->op==TK_VARIABLE );
 3246:       testcase( p->op==TK_INTEGER );
 3247:       testcase( p->op==TK_FLOAT );
 3248:       testcase( p->op==TK_NULL );
 3249:       testcase( p->op==TK_STRING );
 3250:       /* Single-instruction constants with a fixed destination are
 3251:       ** better done in-line.  If we factor them, they will just end
 3252:       ** up generating an OP_SCopy to move the value to the destination
 3253:       ** register. */
 3254:       return 0;
 3255:     }
 3256:     case TK_UMINUS: {
 3257:       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
 3258:         return 0;
 3259:       }
 3260:       break;
 3261:     }
 3262:     default: {
 3263:       break;
 3264:     }
 3265:   }
 3266:   return 1;
 3267: }
 3268: 
 3269: /*
 3270: ** If pExpr is a constant expression that is appropriate for
 3271: ** factoring out of a loop, then evaluate the expression
 3272: ** into a register and convert the expression into a TK_REGISTER
 3273: ** expression.
 3274: */
 3275: static int evalConstExpr(Walker *pWalker, Expr *pExpr){
 3276:   Parse *pParse = pWalker->pParse;
 3277:   switch( pExpr->op ){
 3278:     case TK_IN:
 3279:     case TK_REGISTER: {
 3280:       return WRC_Prune;
 3281:     }
 3282:     case TK_FUNCTION:
 3283:     case TK_AGG_FUNCTION:
 3284:     case TK_CONST_FUNC: {
 3285:       /* The arguments to a function have a fixed destination.
 3286:       ** Mark them this way to avoid generated unneeded OP_SCopy
 3287:       ** instructions. 
 3288:       */
 3289:       ExprList *pList = pExpr->x.pList;
 3290:       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
 3291:       if( pList ){
 3292:         int i = pList->nExpr;
 3293:         struct ExprList_item *pItem = pList->a;
 3294:         for(; i>0; i--, pItem++){
 3295:           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
 3296:         }
 3297:       }
 3298:       break;
 3299:     }
 3300:   }
 3301:   if( isAppropriateForFactoring(pExpr) ){
 3302:     int r1 = ++pParse->nMem;
 3303:     int r2;
 3304:     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
 3305:     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
 3306:     pExpr->op2 = pExpr->op;
 3307:     pExpr->op = TK_REGISTER;
 3308:     pExpr->iTable = r2;
 3309:     return WRC_Prune;
 3310:   }
 3311:   return WRC_Continue;
 3312: }
 3313: 
 3314: /*
 3315: ** Preevaluate constant subexpressions within pExpr and store the
 3316: ** results in registers.  Modify pExpr so that the constant subexpresions
 3317: ** are TK_REGISTER opcodes that refer to the precomputed values.
 3318: **
 3319: ** This routine is a no-op if the jump to the cookie-check code has
 3320: ** already occur.  Since the cookie-check jump is generated prior to
 3321: ** any other serious processing, this check ensures that there is no
 3322: ** way to accidently bypass the constant initializations.
 3323: **
 3324: ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
 3325: ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
 3326: ** interface.  This allows test logic to verify that the same answer is
 3327: ** obtained for queries regardless of whether or not constants are
 3328: ** precomputed into registers or if they are inserted in-line.
 3329: */
 3330: void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
 3331:   Walker w;
 3332:   if( pParse->cookieGoto ) return;
 3333:   if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
 3334:   w.xExprCallback = evalConstExpr;
 3335:   w.xSelectCallback = 0;
 3336:   w.pParse = pParse;
 3337:   sqlite3WalkExpr(&w, pExpr);
 3338: }
 3339: 
 3340: 
 3341: /*
 3342: ** Generate code that pushes the value of every element of the given
 3343: ** expression list into a sequence of registers beginning at target.
 3344: **
 3345: ** Return the number of elements evaluated.
 3346: */
 3347: int sqlite3ExprCodeExprList(
 3348:   Parse *pParse,     /* Parsing context */
 3349:   ExprList *pList,   /* The expression list to be coded */
 3350:   int target,        /* Where to write results */
 3351:   int doHardCopy     /* Make a hard copy of every element */
 3352: ){
 3353:   struct ExprList_item *pItem;
 3354:   int i, n;
 3355:   assert( pList!=0 );
 3356:   assert( target>0 );
 3357:   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
 3358:   n = pList->nExpr;
 3359:   for(pItem=pList->a, i=0; i<n; i++, pItem++){
 3360:     Expr *pExpr = pItem->pExpr;
 3361:     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
 3362:     if( inReg!=target+i ){
 3363:       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
 3364:                         inReg, target+i);
 3365:     }
 3366:   }
 3367:   return n;
 3368: }
 3369: 
 3370: /*
 3371: ** Generate code for a BETWEEN operator.
 3372: **
 3373: **    x BETWEEN y AND z
 3374: **
 3375: ** The above is equivalent to 
 3376: **
 3377: **    x>=y AND x<=z
 3378: **
 3379: ** Code it as such, taking care to do the common subexpression
 3380: ** elementation of x.
 3381: */
 3382: static void exprCodeBetween(
 3383:   Parse *pParse,    /* Parsing and code generating context */
 3384:   Expr *pExpr,      /* The BETWEEN expression */
 3385:   int dest,         /* Jump here if the jump is taken */
 3386:   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
 3387:   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
 3388: ){
 3389:   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
 3390:   Expr compLeft;    /* The  x>=y  term */
 3391:   Expr compRight;   /* The  x<=z  term */
 3392:   Expr exprX;       /* The  x  subexpression */
 3393:   int regFree1 = 0; /* Temporary use register */
 3394: 
 3395:   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
 3396:   exprX = *pExpr->pLeft;
 3397:   exprAnd.op = TK_AND;
 3398:   exprAnd.pLeft = &compLeft;
 3399:   exprAnd.pRight = &compRight;
 3400:   compLeft.op = TK_GE;
 3401:   compLeft.pLeft = &exprX;
 3402:   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
 3403:   compRight.op = TK_LE;
 3404:   compRight.pLeft = &exprX;
 3405:   compRight.pRight = pExpr->x.pList->a[1].pExpr;
 3406:   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
 3407:   exprX.op = TK_REGISTER;
 3408:   if( jumpIfTrue ){
 3409:     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
 3410:   }else{
 3411:     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
 3412:   }
 3413:   sqlite3ReleaseTempReg(pParse, regFree1);
 3414: 
 3415:   /* Ensure adequate test coverage */
 3416:   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
 3417:   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
 3418:   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
 3419:   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
 3420:   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
 3421:   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
 3422:   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
 3423:   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
 3424: }
 3425: 
 3426: /*
 3427: ** Generate code for a boolean expression such that a jump is made
 3428: ** to the label "dest" if the expression is true but execution
 3429: ** continues straight thru if the expression is false.
 3430: **
 3431: ** If the expression evaluates to NULL (neither true nor false), then
 3432: ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
 3433: **
 3434: ** This code depends on the fact that certain token values (ex: TK_EQ)
 3435: ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
 3436: ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
 3437: ** the make process cause these values to align.  Assert()s in the code
 3438: ** below verify that the numbers are aligned correctly.
 3439: */
 3440: void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 3441:   Vdbe *v = pParse->pVdbe;
 3442:   int op = 0;
 3443:   int regFree1 = 0;
 3444:   int regFree2 = 0;
 3445:   int r1, r2;
 3446: 
 3447:   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
 3448:   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
 3449:   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
 3450:   op = pExpr->op;
 3451:   switch( op ){
 3452:     case TK_AND: {
 3453:       int d2 = sqlite3VdbeMakeLabel(v);
 3454:       testcase( jumpIfNull==0 );
 3455:       sqlite3ExprCachePush(pParse);
 3456:       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
 3457:       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 3458:       sqlite3VdbeResolveLabel(v, d2);
 3459:       sqlite3ExprCachePop(pParse, 1);
 3460:       break;
 3461:     }
 3462:     case TK_OR: {
 3463:       testcase( jumpIfNull==0 );
 3464:       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 3465:       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 3466:       break;
 3467:     }
 3468:     case TK_NOT: {
 3469:       testcase( jumpIfNull==0 );
 3470:       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 3471:       break;
 3472:     }
 3473:     case TK_LT:
 3474:     case TK_LE:
 3475:     case TK_GT:
 3476:     case TK_GE:
 3477:     case TK_NE:
 3478:     case TK_EQ: {
 3479:       assert( TK_LT==OP_Lt );
 3480:       assert( TK_LE==OP_Le );
 3481:       assert( TK_GT==OP_Gt );
 3482:       assert( TK_GE==OP_Ge );
 3483:       assert( TK_EQ==OP_Eq );
 3484:       assert( TK_NE==OP_Ne );
 3485:       testcase( op==TK_LT );
 3486:       testcase( op==TK_LE );
 3487:       testcase( op==TK_GT );
 3488:       testcase( op==TK_GE );
 3489:       testcase( op==TK_EQ );
 3490:       testcase( op==TK_NE );
 3491:       testcase( jumpIfNull==0 );
 3492:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 3493:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 3494:       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 3495:                   r1, r2, dest, jumpIfNull);
 3496:       testcase( regFree1==0 );
 3497:       testcase( regFree2==0 );
 3498:       break;
 3499:     }
 3500:     case TK_IS:
 3501:     case TK_ISNOT: {
 3502:       testcase( op==TK_IS );
 3503:       testcase( op==TK_ISNOT );
 3504:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 3505:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 3506:       op = (op==TK_IS) ? TK_EQ : TK_NE;
 3507:       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 3508:                   r1, r2, dest, SQLITE_NULLEQ);
 3509:       testcase( regFree1==0 );
 3510:       testcase( regFree2==0 );
 3511:       break;
 3512:     }
 3513:     case TK_ISNULL:
 3514:     case TK_NOTNULL: {
 3515:       assert( TK_ISNULL==OP_IsNull );
 3516:       assert( TK_NOTNULL==OP_NotNull );
 3517:       testcase( op==TK_ISNULL );
 3518:       testcase( op==TK_NOTNULL );
 3519:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 3520:       sqlite3VdbeAddOp2(v, op, r1, dest);
 3521:       testcase( regFree1==0 );
 3522:       break;
 3523:     }
 3524:     case TK_BETWEEN: {
 3525:       testcase( jumpIfNull==0 );
 3526:       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
 3527:       break;
 3528:     }
 3529: #ifndef SQLITE_OMIT_SUBQUERY
 3530:     case TK_IN: {
 3531:       int destIfFalse = sqlite3VdbeMakeLabel(v);
 3532:       int destIfNull = jumpIfNull ? dest : destIfFalse;
 3533:       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
 3534:       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
 3535:       sqlite3VdbeResolveLabel(v, destIfFalse);
 3536:       break;
 3537:     }
 3538: #endif
 3539:     default: {
 3540:       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
 3541:       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
 3542:       testcase( regFree1==0 );
 3543:       testcase( jumpIfNull==0 );
 3544:       break;
 3545:     }
 3546:   }
 3547:   sqlite3ReleaseTempReg(pParse, regFree1);
 3548:   sqlite3ReleaseTempReg(pParse, regFree2);  
 3549: }
 3550: 
 3551: /*
 3552: ** Generate code for a boolean expression such that a jump is made
 3553: ** to the label "dest" if the expression is false but execution
 3554: ** continues straight thru if the expression is true.
 3555: **
 3556: ** If the expression evaluates to NULL (neither true nor false) then
 3557: ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
 3558: ** is 0.
 3559: */
 3560: void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 3561:   Vdbe *v = pParse->pVdbe;
 3562:   int op = 0;
 3563:   int regFree1 = 0;
 3564:   int regFree2 = 0;
 3565:   int r1, r2;
 3566: 
 3567:   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
 3568:   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
 3569:   if( pExpr==0 )    return;
 3570: 
 3571:   /* The value of pExpr->op and op are related as follows:
 3572:   **
 3573:   **       pExpr->op            op
 3574:   **       ---------          ----------
 3575:   **       TK_ISNULL          OP_NotNull
 3576:   **       TK_NOTNULL         OP_IsNull
 3577:   **       TK_NE              OP_Eq
 3578:   **       TK_EQ              OP_Ne
 3579:   **       TK_GT              OP_Le
 3580:   **       TK_LE              OP_Gt
 3581:   **       TK_GE              OP_Lt
 3582:   **       TK_LT              OP_Ge
 3583:   **
 3584:   ** For other values of pExpr->op, op is undefined and unused.
 3585:   ** The value of TK_ and OP_ constants are arranged such that we
 3586:   ** can compute the mapping above using the following expression.
 3587:   ** Assert()s verify that the computation is correct.
 3588:   */
 3589:   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
 3590: 
 3591:   /* Verify correct alignment of TK_ and OP_ constants
 3592:   */
 3593:   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
 3594:   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
 3595:   assert( pExpr->op!=TK_NE || op==OP_Eq );
 3596:   assert( pExpr->op!=TK_EQ || op==OP_Ne );
 3597:   assert( pExpr->op!=TK_LT || op==OP_Ge );
 3598:   assert( pExpr->op!=TK_LE || op==OP_Gt );
 3599:   assert( pExpr->op!=TK_GT || op==OP_Le );
 3600:   assert( pExpr->op!=TK_GE || op==OP_Lt );
 3601: 
 3602:   switch( pExpr->op ){
 3603:     case TK_AND: {
 3604:       testcase( jumpIfNull==0 );
 3605:       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 3606:       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 3607:       break;
 3608:     }
 3609:     case TK_OR: {
 3610:       int d2 = sqlite3VdbeMakeLabel(v);
 3611:       testcase( jumpIfNull==0 );
 3612:       sqlite3ExprCachePush(pParse);
 3613:       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
 3614:       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 3615:       sqlite3VdbeResolveLabel(v, d2);
 3616:       sqlite3ExprCachePop(pParse, 1);
 3617:       break;
 3618:     }
 3619:     case TK_NOT: {
 3620:       testcase( jumpIfNull==0 );
 3621:       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 3622:       break;
 3623:     }
 3624:     case TK_LT:
 3625:     case TK_LE:
 3626:     case TK_GT:
 3627:     case TK_GE:
 3628:     case TK_NE:
 3629:     case TK_EQ: {
 3630:       testcase( op==TK_LT );
 3631:       testcase( op==TK_LE );
 3632:       testcase( op==TK_GT );
 3633:       testcase( op==TK_GE );
 3634:       testcase( op==TK_EQ );
 3635:       testcase( op==TK_NE );
 3636:       testcase( jumpIfNull==0 );
 3637:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 3638:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 3639:       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 3640:                   r1, r2, dest, jumpIfNull);
 3641:       testcase( regFree1==0 );
 3642:       testcase( regFree2==0 );
 3643:       break;
 3644:     }
 3645:     case TK_IS:
 3646:     case TK_ISNOT: {
 3647:       testcase( pExpr->op==TK_IS );
 3648:       testcase( pExpr->op==TK_ISNOT );
 3649:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 3650:       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
 3651:       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
 3652:       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 3653:                   r1, r2, dest, SQLITE_NULLEQ);
 3654:       testcase( regFree1==0 );
 3655:       testcase( regFree2==0 );
 3656:       break;
 3657:     }
 3658:     case TK_ISNULL:
 3659:     case TK_NOTNULL: {
 3660:       testcase( op==TK_ISNULL );
 3661:       testcase( op==TK_NOTNULL );
 3662:       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
 3663:       sqlite3VdbeAddOp2(v, op, r1, dest);
 3664:       testcase( regFree1==0 );
 3665:       break;
 3666:     }
 3667:     case TK_BETWEEN: {
 3668:       testcase( jumpIfNull==0 );
 3669:       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
 3670:       break;
 3671:     }
 3672: #ifndef SQLITE_OMIT_SUBQUERY
 3673:     case TK_IN: {
 3674:       if( jumpIfNull ){
 3675:         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
 3676:       }else{
 3677:         int destIfNull = sqlite3VdbeMakeLabel(v);
 3678:         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
 3679:         sqlite3VdbeResolveLabel(v, destIfNull);
 3680:       }
 3681:       break;
 3682:     }
 3683: #endif
 3684:     default: {
 3685:       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
 3686:       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
 3687:       testcase( regFree1==0 );
 3688:       testcase( jumpIfNull==0 );
 3689:       break;
 3690:     }
 3691:   }
 3692:   sqlite3ReleaseTempReg(pParse, regFree1);
 3693:   sqlite3ReleaseTempReg(pParse, regFree2);
 3694: }
 3695: 
 3696: /*
 3697: ** Do a deep comparison of two expression trees.  Return 0 if the two
 3698: ** expressions are completely identical.  Return 1 if they differ only
 3699: ** by a COLLATE operator at the top level.  Return 2 if there are differences
 3700: ** other than the top-level COLLATE operator.
 3701: **
 3702: ** Sometimes this routine will return 2 even if the two expressions
 3703: ** really are equivalent.  If we cannot prove that the expressions are
 3704: ** identical, we return 2 just to be safe.  So if this routine
 3705: ** returns 2, then you do not really know for certain if the two
 3706: ** expressions are the same.  But if you get a 0 or 1 return, then you
 3707: ** can be sure the expressions are the same.  In the places where
 3708: ** this routine is used, it does not hurt to get an extra 2 - that
 3709: ** just might result in some slightly slower code.  But returning
 3710: ** an incorrect 0 or 1 could lead to a malfunction.
 3711: */
 3712: int sqlite3ExprCompare(Expr *pA, Expr *pB){
 3713:   if( pA==0||pB==0 ){
 3714:     return pB==pA ? 0 : 2;
 3715:   }
 3716:   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
 3717:   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
 3718:   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
 3719:     return 2;
 3720:   }
 3721:   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
 3722:   if( pA->op!=pB->op ) return 2;
 3723:   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
 3724:   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
 3725:   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
 3726:   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
 3727:   if( ExprHasProperty(pA, EP_IntValue) ){
 3728:     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
 3729:       return 2;
 3730:     }
 3731:   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
 3732:     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
 3733:     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
 3734:       return 2;
 3735:     }
 3736:   }
 3737:   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
 3738:   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
 3739:   return 0;
 3740: }
 3741: 
 3742: /*
 3743: ** Compare two ExprList objects.  Return 0 if they are identical and 
 3744: ** non-zero if they differ in any way.
 3745: **
 3746: ** This routine might return non-zero for equivalent ExprLists.  The
 3747: ** only consequence will be disabled optimizations.  But this routine
 3748: ** must never return 0 if the two ExprList objects are different, or
 3749: ** a malfunction will result.
 3750: **
 3751: ** Two NULL pointers are considered to be the same.  But a NULL pointer
 3752: ** always differs from a non-NULL pointer.
 3753: */
 3754: int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
 3755:   int i;
 3756:   if( pA==0 && pB==0 ) return 0;
 3757:   if( pA==0 || pB==0 ) return 1;
 3758:   if( pA->nExpr!=pB->nExpr ) return 1;
 3759:   for(i=0; i<pA->nExpr; i++){
 3760:     Expr *pExprA = pA->a[i].pExpr;
 3761:     Expr *pExprB = pB->a[i].pExpr;
 3762:     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
 3763:     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
 3764:   }
 3765:   return 0;
 3766: }
 3767: 
 3768: /*
 3769: ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
 3770: ** the new element.  Return a negative number if malloc fails.
 3771: */
 3772: static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
 3773:   int i;
 3774:   pInfo->aCol = sqlite3ArrayAllocate(
 3775:        db,
 3776:        pInfo->aCol,
 3777:        sizeof(pInfo->aCol[0]),
 3778:        3,
 3779:        &pInfo->nColumn,
 3780:        &pInfo->nColumnAlloc,
 3781:        &i
 3782:   );
 3783:   return i;
 3784: }    
 3785: 
 3786: /*
 3787: ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
 3788: ** the new element.  Return a negative number if malloc fails.
 3789: */
 3790: static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
 3791:   int i;
 3792:   pInfo->aFunc = sqlite3ArrayAllocate(
 3793:        db, 
 3794:        pInfo->aFunc,
 3795:        sizeof(pInfo->aFunc[0]),
 3796:        3,
 3797:        &pInfo->nFunc,
 3798:        &pInfo->nFuncAlloc,
 3799:        &i
 3800:   );
 3801:   return i;
 3802: }    
 3803: 
 3804: /*
 3805: ** This is the xExprCallback for a tree walker.  It is used to
 3806: ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
 3807: ** for additional information.
 3808: */
 3809: static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
 3810:   int i;
 3811:   NameContext *pNC = pWalker->u.pNC;
 3812:   Parse *pParse = pNC->pParse;
 3813:   SrcList *pSrcList = pNC->pSrcList;
 3814:   AggInfo *pAggInfo = pNC->pAggInfo;
 3815: 
 3816:   switch( pExpr->op ){
 3817:     case TK_AGG_COLUMN:
 3818:     case TK_COLUMN: {
 3819:       testcase( pExpr->op==TK_AGG_COLUMN );
 3820:       testcase( pExpr->op==TK_COLUMN );
 3821:       /* Check to see if the column is in one of the tables in the FROM
 3822:       ** clause of the aggregate query */
 3823:       if( ALWAYS(pSrcList!=0) ){
 3824:         struct SrcList_item *pItem = pSrcList->a;
 3825:         for(i=0; i<pSrcList->nSrc; i++, pItem++){
 3826:           struct AggInfo_col *pCol;
 3827:           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
 3828:           if( pExpr->iTable==pItem->iCursor ){
 3829:             /* If we reach this point, it means that pExpr refers to a table
 3830:             ** that is in the FROM clause of the aggregate query.  
 3831:             **
 3832:             ** Make an entry for the column in pAggInfo->aCol[] if there
 3833:             ** is not an entry there already.
 3834:             */
 3835:             int k;
 3836:             pCol = pAggInfo->aCol;
 3837:             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
 3838:               if( pCol->iTable==pExpr->iTable &&
 3839:                   pCol->iColumn==pExpr->iColumn ){
 3840:                 break;
 3841:               }
 3842:             }
 3843:             if( (k>=pAggInfo->nColumn)
 3844:              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
 3845:             ){
 3846:               pCol = &pAggInfo->aCol[k];
 3847:               pCol->pTab = pExpr->pTab;
 3848:               pCol->iTable = pExpr->iTable;
 3849:               pCol->iColumn = pExpr->iColumn;
 3850:               pCol->iMem = ++pParse->nMem;
 3851:               pCol->iSorterColumn = -1;
 3852:               pCol->pExpr = pExpr;
 3853:               if( pAggInfo->pGroupBy ){
 3854:                 int j, n;
 3855:                 ExprList *pGB = pAggInfo->pGroupBy;
 3856:                 struct ExprList_item *pTerm = pGB->a;
 3857:                 n = pGB->nExpr;
 3858:                 for(j=0; j<n; j++, pTerm++){
 3859:                   Expr *pE = pTerm->pExpr;
 3860:                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
 3861:                       pE->iColumn==pExpr->iColumn ){
 3862:                     pCol->iSorterColumn = j;
 3863:                     break;
 3864:                   }
 3865:                 }
 3866:               }
 3867:               if( pCol->iSorterColumn<0 ){
 3868:                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
 3869:               }
 3870:             }
 3871:             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
 3872:             ** because it was there before or because we just created it).
 3873:             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
 3874:             ** pAggInfo->aCol[] entry.
 3875:             */
 3876:             ExprSetIrreducible(pExpr);
 3877:             pExpr->pAggInfo = pAggInfo;
 3878:             pExpr->op = TK_AGG_COLUMN;
 3879:             pExpr->iAgg = (i16)k;
 3880:             break;
 3881:           } /* endif pExpr->iTable==pItem->iCursor */
 3882:         } /* end loop over pSrcList */
 3883:       }
 3884:       return WRC_Prune;
 3885:     }
 3886:     case TK_AGG_FUNCTION: {
 3887:       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
 3888:       ** to be ignored */
 3889:       if( pNC->nDepth==0 ){
 3890:         /* Check to see if pExpr is a duplicate of another aggregate 
 3891:         ** function that is already in the pAggInfo structure
 3892:         */
 3893:         struct AggInfo_func *pItem = pAggInfo->aFunc;
 3894:         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
 3895:           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
 3896:             break;
 3897:           }
 3898:         }
 3899:         if( i>=pAggInfo->nFunc ){
 3900:           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
 3901:           */
 3902:           u8 enc = ENC(pParse->db);
 3903:           i = addAggInfoFunc(pParse->db, pAggInfo);
 3904:           if( i>=0 ){
 3905:             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
 3906:             pItem = &pAggInfo->aFunc[i];
 3907:             pItem->pExpr = pExpr;
 3908:             pItem->iMem = ++pParse->nMem;
 3909:             assert( !ExprHasProperty(pExpr, EP_IntValue) );
 3910:             pItem->pFunc = sqlite3FindFunction(pParse->db,
 3911:                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
 3912:                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
 3913:             if( pExpr->flags & EP_Distinct ){
 3914:               pItem->iDistinct = pParse->nTab++;
 3915:             }else{
 3916:               pItem->iDistinct = -1;
 3917:             }
 3918:           }
 3919:         }
 3920:         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
 3921:         */
 3922:         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
 3923:         ExprSetIrreducible(pExpr);
 3924:         pExpr->iAgg = (i16)i;
 3925:         pExpr->pAggInfo = pAggInfo;
 3926:         return WRC_Prune;
 3927:       }
 3928:     }
 3929:   }
 3930:   return WRC_Continue;
 3931: }
 3932: static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
 3933:   NameContext *pNC = pWalker->u.pNC;
 3934:   if( pNC->nDepth==0 ){
 3935:     pNC->nDepth++;
 3936:     sqlite3WalkSelect(pWalker, pSelect);
 3937:     pNC->nDepth--;
 3938:     return WRC_Prune;
 3939:   }else{
 3940:     return WRC_Continue;
 3941:   }
 3942: }
 3943: 
 3944: /*
 3945: ** Analyze the given expression looking for aggregate functions and
 3946: ** for variables that need to be added to the pParse->aAgg[] array.
 3947: ** Make additional entries to the pParse->aAgg[] array as necessary.
 3948: **
 3949: ** This routine should only be called after the expression has been
 3950: ** analyzed by sqlite3ResolveExprNames().
 3951: */
 3952: void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
 3953:   Walker w;
 3954:   w.xExprCallback = analyzeAggregate;
 3955:   w.xSelectCallback = analyzeAggregatesInSelect;
 3956:   w.u.pNC = pNC;
 3957:   assert( pNC->pSrcList!=0 );
 3958:   sqlite3WalkExpr(&w, pExpr);
 3959: }
 3960: 
 3961: /*
 3962: ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
 3963: ** expression list.  Return the number of errors.
 3964: **
 3965: ** If an error is found, the analysis is cut short.
 3966: */
 3967: void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
 3968:   struct ExprList_item *pItem;
 3969:   int i;
 3970:   if( pList ){
 3971:     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
 3972:       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
 3973:     }
 3974:   }
 3975: }
 3976: 
 3977: /*
 3978: ** Allocate a single new register for use to hold some intermediate result.
 3979: */
 3980: int sqlite3GetTempReg(Parse *pParse){
 3981:   if( pParse->nTempReg==0 ){
 3982:     return ++pParse->nMem;
 3983:   }
 3984:   return pParse->aTempReg[--pParse->nTempReg];
 3985: }
 3986: 
 3987: /*
 3988: ** Deallocate a register, making available for reuse for some other
 3989: ** purpose.
 3990: **
 3991: ** If a register is currently being used by the column cache, then
 3992: ** the dallocation is deferred until the column cache line that uses
 3993: ** the register becomes stale.
 3994: */
 3995: void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
 3996:   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
 3997:     int i;
 3998:     struct yColCache *p;
 3999:     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
 4000:       if( p->iReg==iReg ){
 4001:         p->tempReg = 1;
 4002:         return;
 4003:       }
 4004:     }
 4005:     pParse->aTempReg[pParse->nTempReg++] = iReg;
 4006:   }
 4007: }
 4008: 
 4009: /*
 4010: ** Allocate or deallocate a block of nReg consecutive registers
 4011: */
 4012: int sqlite3GetTempRange(Parse *pParse, int nReg){
 4013:   int i, n;
 4014:   i = pParse->iRangeReg;
 4015:   n = pParse->nRangeReg;
 4016:   if( nReg<=n ){
 4017:     assert( !usedAsColumnCache(pParse, i, i+n-1) );
 4018:     pParse->iRangeReg += nReg;
 4019:     pParse->nRangeReg -= nReg;
 4020:   }else{
 4021:     i = pParse->nMem+1;
 4022:     pParse->nMem += nReg;
 4023:   }
 4024:   return i;
 4025: }
 4026: void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
 4027:   sqlite3ExprCacheRemove(pParse, iReg, nReg);
 4028:   if( nReg>pParse->nRangeReg ){
 4029:     pParse->nRangeReg = nReg;
 4030:     pParse->iRangeReg = iReg;
 4031:   }
 4032: }
 4033: 
 4034: /*
 4035: ** Mark all temporary registers as being unavailable for reuse.
 4036: */
 4037: void sqlite3ClearTempRegCache(Parse *pParse){
 4038:   pParse->nTempReg = 0;
 4039:   pParse->nRangeReg = 0;
 4040: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>