Annotation of embedaddon/sqlite3/src/fkey.c, revision 1.1
1.1 ! misho 1: /*
! 2: **
! 3: ** The author disclaims copyright to this source code. In place of
! 4: ** a legal notice, here is a blessing:
! 5: **
! 6: ** May you do good and not evil.
! 7: ** May you find forgiveness for yourself and forgive others.
! 8: ** May you share freely, never taking more than you give.
! 9: **
! 10: *************************************************************************
! 11: ** This file contains code used by the compiler to add foreign key
! 12: ** support to compiled SQL statements.
! 13: */
! 14: #include "sqliteInt.h"
! 15:
! 16: #ifndef SQLITE_OMIT_FOREIGN_KEY
! 17: #ifndef SQLITE_OMIT_TRIGGER
! 18:
! 19: /*
! 20: ** Deferred and Immediate FKs
! 21: ** --------------------------
! 22: **
! 23: ** Foreign keys in SQLite come in two flavours: deferred and immediate.
! 24: ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
! 25: ** is returned and the current statement transaction rolled back. If a
! 26: ** deferred foreign key constraint is violated, no action is taken
! 27: ** immediately. However if the application attempts to commit the
! 28: ** transaction before fixing the constraint violation, the attempt fails.
! 29: **
! 30: ** Deferred constraints are implemented using a simple counter associated
! 31: ** with the database handle. The counter is set to zero each time a
! 32: ** database transaction is opened. Each time a statement is executed
! 33: ** that causes a foreign key violation, the counter is incremented. Each
! 34: ** time a statement is executed that removes an existing violation from
! 35: ** the database, the counter is decremented. When the transaction is
! 36: ** committed, the commit fails if the current value of the counter is
! 37: ** greater than zero. This scheme has two big drawbacks:
! 38: **
! 39: ** * When a commit fails due to a deferred foreign key constraint,
! 40: ** there is no way to tell which foreign constraint is not satisfied,
! 41: ** or which row it is not satisfied for.
! 42: **
! 43: ** * If the database contains foreign key violations when the
! 44: ** transaction is opened, this may cause the mechanism to malfunction.
! 45: **
! 46: ** Despite these problems, this approach is adopted as it seems simpler
! 47: ** than the alternatives.
! 48: **
! 49: ** INSERT operations:
! 50: **
! 51: ** I.1) For each FK for which the table is the child table, search
! 52: ** the parent table for a match. If none is found increment the
! 53: ** constraint counter.
! 54: **
! 55: ** I.2) For each FK for which the table is the parent table,
! 56: ** search the child table for rows that correspond to the new
! 57: ** row in the parent table. Decrement the counter for each row
! 58: ** found (as the constraint is now satisfied).
! 59: **
! 60: ** DELETE operations:
! 61: **
! 62: ** D.1) For each FK for which the table is the child table,
! 63: ** search the parent table for a row that corresponds to the
! 64: ** deleted row in the child table. If such a row is not found,
! 65: ** decrement the counter.
! 66: **
! 67: ** D.2) For each FK for which the table is the parent table, search
! 68: ** the child table for rows that correspond to the deleted row
! 69: ** in the parent table. For each found increment the counter.
! 70: **
! 71: ** UPDATE operations:
! 72: **
! 73: ** An UPDATE command requires that all 4 steps above are taken, but only
! 74: ** for FK constraints for which the affected columns are actually
! 75: ** modified (values must be compared at runtime).
! 76: **
! 77: ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
! 78: ** This simplifies the implementation a bit.
! 79: **
! 80: ** For the purposes of immediate FK constraints, the OR REPLACE conflict
! 81: ** resolution is considered to delete rows before the new row is inserted.
! 82: ** If a delete caused by OR REPLACE violates an FK constraint, an exception
! 83: ** is thrown, even if the FK constraint would be satisfied after the new
! 84: ** row is inserted.
! 85: **
! 86: ** Immediate constraints are usually handled similarly. The only difference
! 87: ** is that the counter used is stored as part of each individual statement
! 88: ** object (struct Vdbe). If, after the statement has run, its immediate
! 89: ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
! 90: ** and the statement transaction is rolled back. An exception is an INSERT
! 91: ** statement that inserts a single row only (no triggers). In this case,
! 92: ** instead of using a counter, an exception is thrown immediately if the
! 93: ** INSERT violates a foreign key constraint. This is necessary as such
! 94: ** an INSERT does not open a statement transaction.
! 95: **
! 96: ** TODO: How should dropping a table be handled? How should renaming a
! 97: ** table be handled?
! 98: **
! 99: **
! 100: ** Query API Notes
! 101: ** ---------------
! 102: **
! 103: ** Before coding an UPDATE or DELETE row operation, the code-generator
! 104: ** for those two operations needs to know whether or not the operation
! 105: ** requires any FK processing and, if so, which columns of the original
! 106: ** row are required by the FK processing VDBE code (i.e. if FKs were
! 107: ** implemented using triggers, which of the old.* columns would be
! 108: ** accessed). No information is required by the code-generator before
! 109: ** coding an INSERT operation. The functions used by the UPDATE/DELETE
! 110: ** generation code to query for this information are:
! 111: **
! 112: ** sqlite3FkRequired() - Test to see if FK processing is required.
! 113: ** sqlite3FkOldmask() - Query for the set of required old.* columns.
! 114: **
! 115: **
! 116: ** Externally accessible module functions
! 117: ** --------------------------------------
! 118: **
! 119: ** sqlite3FkCheck() - Check for foreign key violations.
! 120: ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
! 121: ** sqlite3FkDelete() - Delete an FKey structure.
! 122: */
! 123:
! 124: /*
! 125: ** VDBE Calling Convention
! 126: ** -----------------------
! 127: **
! 128: ** Example:
! 129: **
! 130: ** For the following INSERT statement:
! 131: **
! 132: ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
! 133: ** INSERT INTO t1 VALUES(1, 2, 3.1);
! 134: **
! 135: ** Register (x): 2 (type integer)
! 136: ** Register (x+1): 1 (type integer)
! 137: ** Register (x+2): NULL (type NULL)
! 138: ** Register (x+3): 3.1 (type real)
! 139: */
! 140:
! 141: /*
! 142: ** A foreign key constraint requires that the key columns in the parent
! 143: ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
! 144: ** Given that pParent is the parent table for foreign key constraint pFKey,
! 145: ** search the schema a unique index on the parent key columns.
! 146: **
! 147: ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
! 148: ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
! 149: ** is set to point to the unique index.
! 150: **
! 151: ** If the parent key consists of a single column (the foreign key constraint
! 152: ** is not a composite foreign key), output variable *paiCol is set to NULL.
! 153: ** Otherwise, it is set to point to an allocated array of size N, where
! 154: ** N is the number of columns in the parent key. The first element of the
! 155: ** array is the index of the child table column that is mapped by the FK
! 156: ** constraint to the parent table column stored in the left-most column
! 157: ** of index *ppIdx. The second element of the array is the index of the
! 158: ** child table column that corresponds to the second left-most column of
! 159: ** *ppIdx, and so on.
! 160: **
! 161: ** If the required index cannot be found, either because:
! 162: **
! 163: ** 1) The named parent key columns do not exist, or
! 164: **
! 165: ** 2) The named parent key columns do exist, but are not subject to a
! 166: ** UNIQUE or PRIMARY KEY constraint, or
! 167: **
! 168: ** 3) No parent key columns were provided explicitly as part of the
! 169: ** foreign key definition, and the parent table does not have a
! 170: ** PRIMARY KEY, or
! 171: **
! 172: ** 4) No parent key columns were provided explicitly as part of the
! 173: ** foreign key definition, and the PRIMARY KEY of the parent table
! 174: ** consists of a a different number of columns to the child key in
! 175: ** the child table.
! 176: **
! 177: ** then non-zero is returned, and a "foreign key mismatch" error loaded
! 178: ** into pParse. If an OOM error occurs, non-zero is returned and the
! 179: ** pParse->db->mallocFailed flag is set.
! 180: */
! 181: static int locateFkeyIndex(
! 182: Parse *pParse, /* Parse context to store any error in */
! 183: Table *pParent, /* Parent table of FK constraint pFKey */
! 184: FKey *pFKey, /* Foreign key to find index for */
! 185: Index **ppIdx, /* OUT: Unique index on parent table */
! 186: int **paiCol /* OUT: Map of index columns in pFKey */
! 187: ){
! 188: Index *pIdx = 0; /* Value to return via *ppIdx */
! 189: int *aiCol = 0; /* Value to return via *paiCol */
! 190: int nCol = pFKey->nCol; /* Number of columns in parent key */
! 191: char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
! 192:
! 193: /* The caller is responsible for zeroing output parameters. */
! 194: assert( ppIdx && *ppIdx==0 );
! 195: assert( !paiCol || *paiCol==0 );
! 196: assert( pParse );
! 197:
! 198: /* If this is a non-composite (single column) foreign key, check if it
! 199: ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
! 200: ** and *paiCol set to zero and return early.
! 201: **
! 202: ** Otherwise, for a composite foreign key (more than one column), allocate
! 203: ** space for the aiCol array (returned via output parameter *paiCol).
! 204: ** Non-composite foreign keys do not require the aiCol array.
! 205: */
! 206: if( nCol==1 ){
! 207: /* The FK maps to the IPK if any of the following are true:
! 208: **
! 209: ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
! 210: ** mapped to the primary key of table pParent, or
! 211: ** 2) The FK is explicitly mapped to a column declared as INTEGER
! 212: ** PRIMARY KEY.
! 213: */
! 214: if( pParent->iPKey>=0 ){
! 215: if( !zKey ) return 0;
! 216: if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
! 217: }
! 218: }else if( paiCol ){
! 219: assert( nCol>1 );
! 220: aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
! 221: if( !aiCol ) return 1;
! 222: *paiCol = aiCol;
! 223: }
! 224:
! 225: for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
! 226: if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
! 227: /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
! 228: ** of columns. If each indexed column corresponds to a foreign key
! 229: ** column of pFKey, then this index is a winner. */
! 230:
! 231: if( zKey==0 ){
! 232: /* If zKey is NULL, then this foreign key is implicitly mapped to
! 233: ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
! 234: ** identified by the test (Index.autoIndex==2). */
! 235: if( pIdx->autoIndex==2 ){
! 236: if( aiCol ){
! 237: int i;
! 238: for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
! 239: }
! 240: break;
! 241: }
! 242: }else{
! 243: /* If zKey is non-NULL, then this foreign key was declared to
! 244: ** map to an explicit list of columns in table pParent. Check if this
! 245: ** index matches those columns. Also, check that the index uses
! 246: ** the default collation sequences for each column. */
! 247: int i, j;
! 248: for(i=0; i<nCol; i++){
! 249: int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
! 250: char *zDfltColl; /* Def. collation for column */
! 251: char *zIdxCol; /* Name of indexed column */
! 252:
! 253: /* If the index uses a collation sequence that is different from
! 254: ** the default collation sequence for the column, this index is
! 255: ** unusable. Bail out early in this case. */
! 256: zDfltColl = pParent->aCol[iCol].zColl;
! 257: if( !zDfltColl ){
! 258: zDfltColl = "BINARY";
! 259: }
! 260: if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
! 261:
! 262: zIdxCol = pParent->aCol[iCol].zName;
! 263: for(j=0; j<nCol; j++){
! 264: if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
! 265: if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
! 266: break;
! 267: }
! 268: }
! 269: if( j==nCol ) break;
! 270: }
! 271: if( i==nCol ) break; /* pIdx is usable */
! 272: }
! 273: }
! 274: }
! 275:
! 276: if( !pIdx ){
! 277: if( !pParse->disableTriggers ){
! 278: sqlite3ErrorMsg(pParse, "foreign key mismatch");
! 279: }
! 280: sqlite3DbFree(pParse->db, aiCol);
! 281: return 1;
! 282: }
! 283:
! 284: *ppIdx = pIdx;
! 285: return 0;
! 286: }
! 287:
! 288: /*
! 289: ** This function is called when a row is inserted into or deleted from the
! 290: ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
! 291: ** on the child table of pFKey, this function is invoked twice for each row
! 292: ** affected - once to "delete" the old row, and then again to "insert" the
! 293: ** new row.
! 294: **
! 295: ** Each time it is called, this function generates VDBE code to locate the
! 296: ** row in the parent table that corresponds to the row being inserted into
! 297: ** or deleted from the child table. If the parent row can be found, no
! 298: ** special action is taken. Otherwise, if the parent row can *not* be
! 299: ** found in the parent table:
! 300: **
! 301: ** Operation | FK type | Action taken
! 302: ** --------------------------------------------------------------------------
! 303: ** INSERT immediate Increment the "immediate constraint counter".
! 304: **
! 305: ** DELETE immediate Decrement the "immediate constraint counter".
! 306: **
! 307: ** INSERT deferred Increment the "deferred constraint counter".
! 308: **
! 309: ** DELETE deferred Decrement the "deferred constraint counter".
! 310: **
! 311: ** These operations are identified in the comment at the top of this file
! 312: ** (fkey.c) as "I.1" and "D.1".
! 313: */
! 314: static void fkLookupParent(
! 315: Parse *pParse, /* Parse context */
! 316: int iDb, /* Index of database housing pTab */
! 317: Table *pTab, /* Parent table of FK pFKey */
! 318: Index *pIdx, /* Unique index on parent key columns in pTab */
! 319: FKey *pFKey, /* Foreign key constraint */
! 320: int *aiCol, /* Map from parent key columns to child table columns */
! 321: int regData, /* Address of array containing child table row */
! 322: int nIncr, /* Increment constraint counter by this */
! 323: int isIgnore /* If true, pretend pTab contains all NULL values */
! 324: ){
! 325: int i; /* Iterator variable */
! 326: Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
! 327: int iCur = pParse->nTab - 1; /* Cursor number to use */
! 328: int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
! 329:
! 330: /* If nIncr is less than zero, then check at runtime if there are any
! 331: ** outstanding constraints to resolve. If there are not, there is no need
! 332: ** to check if deleting this row resolves any outstanding violations.
! 333: **
! 334: ** Check if any of the key columns in the child table row are NULL. If
! 335: ** any are, then the constraint is considered satisfied. No need to
! 336: ** search for a matching row in the parent table. */
! 337: if( nIncr<0 ){
! 338: sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
! 339: }
! 340: for(i=0; i<pFKey->nCol; i++){
! 341: int iReg = aiCol[i] + regData + 1;
! 342: sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
! 343: }
! 344:
! 345: if( isIgnore==0 ){
! 346: if( pIdx==0 ){
! 347: /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
! 348: ** column of the parent table (table pTab). */
! 349: int iMustBeInt; /* Address of MustBeInt instruction */
! 350: int regTemp = sqlite3GetTempReg(pParse);
! 351:
! 352: /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
! 353: ** apply the affinity of the parent key). If this fails, then there
! 354: ** is no matching parent key. Before using MustBeInt, make a copy of
! 355: ** the value. Otherwise, the value inserted into the child key column
! 356: ** will have INTEGER affinity applied to it, which may not be correct. */
! 357: sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
! 358: iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
! 359:
! 360: /* If the parent table is the same as the child table, and we are about
! 361: ** to increment the constraint-counter (i.e. this is an INSERT operation),
! 362: ** then check if the row being inserted matches itself. If so, do not
! 363: ** increment the constraint-counter. */
! 364: if( pTab==pFKey->pFrom && nIncr==1 ){
! 365: sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
! 366: }
! 367:
! 368: sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
! 369: sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
! 370: sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
! 371: sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
! 372: sqlite3VdbeJumpHere(v, iMustBeInt);
! 373: sqlite3ReleaseTempReg(pParse, regTemp);
! 374: }else{
! 375: int nCol = pFKey->nCol;
! 376: int regTemp = sqlite3GetTempRange(pParse, nCol);
! 377: int regRec = sqlite3GetTempReg(pParse);
! 378: KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
! 379:
! 380: sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
! 381: sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
! 382: for(i=0; i<nCol; i++){
! 383: sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
! 384: }
! 385:
! 386: /* If the parent table is the same as the child table, and we are about
! 387: ** to increment the constraint-counter (i.e. this is an INSERT operation),
! 388: ** then check if the row being inserted matches itself. If so, do not
! 389: ** increment the constraint-counter.
! 390: **
! 391: ** If any of the parent-key values are NULL, then the row cannot match
! 392: ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
! 393: ** of the parent-key values are NULL (at this point it is known that
! 394: ** none of the child key values are).
! 395: */
! 396: if( pTab==pFKey->pFrom && nIncr==1 ){
! 397: int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
! 398: for(i=0; i<nCol; i++){
! 399: int iChild = aiCol[i]+1+regData;
! 400: int iParent = pIdx->aiColumn[i]+1+regData;
! 401: assert( aiCol[i]!=pTab->iPKey );
! 402: if( pIdx->aiColumn[i]==pTab->iPKey ){
! 403: /* The parent key is a composite key that includes the IPK column */
! 404: iParent = regData;
! 405: }
! 406: sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
! 407: sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
! 408: }
! 409: sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
! 410: }
! 411:
! 412: sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
! 413: sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
! 414: sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
! 415:
! 416: sqlite3ReleaseTempReg(pParse, regRec);
! 417: sqlite3ReleaseTempRange(pParse, regTemp, nCol);
! 418: }
! 419: }
! 420:
! 421: if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
! 422: /* Special case: If this is an INSERT statement that will insert exactly
! 423: ** one row into the table, raise a constraint immediately instead of
! 424: ** incrementing a counter. This is necessary as the VM code is being
! 425: ** generated for will not open a statement transaction. */
! 426: assert( nIncr==1 );
! 427: sqlite3HaltConstraint(
! 428: pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
! 429: );
! 430: }else{
! 431: if( nIncr>0 && pFKey->isDeferred==0 ){
! 432: sqlite3ParseToplevel(pParse)->mayAbort = 1;
! 433: }
! 434: sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
! 435: }
! 436:
! 437: sqlite3VdbeResolveLabel(v, iOk);
! 438: sqlite3VdbeAddOp1(v, OP_Close, iCur);
! 439: }
! 440:
! 441: /*
! 442: ** This function is called to generate code executed when a row is deleted
! 443: ** from the parent table of foreign key constraint pFKey and, if pFKey is
! 444: ** deferred, when a row is inserted into the same table. When generating
! 445: ** code for an SQL UPDATE operation, this function may be called twice -
! 446: ** once to "delete" the old row and once to "insert" the new row.
! 447: **
! 448: ** The code generated by this function scans through the rows in the child
! 449: ** table that correspond to the parent table row being deleted or inserted.
! 450: ** For each child row found, one of the following actions is taken:
! 451: **
! 452: ** Operation | FK type | Action taken
! 453: ** --------------------------------------------------------------------------
! 454: ** DELETE immediate Increment the "immediate constraint counter".
! 455: ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
! 456: ** throw a "foreign key constraint failed" exception.
! 457: **
! 458: ** INSERT immediate Decrement the "immediate constraint counter".
! 459: **
! 460: ** DELETE deferred Increment the "deferred constraint counter".
! 461: ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
! 462: ** throw a "foreign key constraint failed" exception.
! 463: **
! 464: ** INSERT deferred Decrement the "deferred constraint counter".
! 465: **
! 466: ** These operations are identified in the comment at the top of this file
! 467: ** (fkey.c) as "I.2" and "D.2".
! 468: */
! 469: static void fkScanChildren(
! 470: Parse *pParse, /* Parse context */
! 471: SrcList *pSrc, /* SrcList containing the table to scan */
! 472: Table *pTab,
! 473: Index *pIdx, /* Foreign key index */
! 474: FKey *pFKey, /* Foreign key relationship */
! 475: int *aiCol, /* Map from pIdx cols to child table cols */
! 476: int regData, /* Referenced table data starts here */
! 477: int nIncr /* Amount to increment deferred counter by */
! 478: ){
! 479: sqlite3 *db = pParse->db; /* Database handle */
! 480: int i; /* Iterator variable */
! 481: Expr *pWhere = 0; /* WHERE clause to scan with */
! 482: NameContext sNameContext; /* Context used to resolve WHERE clause */
! 483: WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
! 484: int iFkIfZero = 0; /* Address of OP_FkIfZero */
! 485: Vdbe *v = sqlite3GetVdbe(pParse);
! 486:
! 487: assert( !pIdx || pIdx->pTable==pTab );
! 488:
! 489: if( nIncr<0 ){
! 490: iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
! 491: }
! 492:
! 493: /* Create an Expr object representing an SQL expression like:
! 494: **
! 495: ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
! 496: **
! 497: ** The collation sequence used for the comparison should be that of
! 498: ** the parent key columns. The affinity of the parent key column should
! 499: ** be applied to each child key value before the comparison takes place.
! 500: */
! 501: for(i=0; i<pFKey->nCol; i++){
! 502: Expr *pLeft; /* Value from parent table row */
! 503: Expr *pRight; /* Column ref to child table */
! 504: Expr *pEq; /* Expression (pLeft = pRight) */
! 505: int iCol; /* Index of column in child table */
! 506: const char *zCol; /* Name of column in child table */
! 507:
! 508: pLeft = sqlite3Expr(db, TK_REGISTER, 0);
! 509: if( pLeft ){
! 510: /* Set the collation sequence and affinity of the LHS of each TK_EQ
! 511: ** expression to the parent key column defaults. */
! 512: if( pIdx ){
! 513: Column *pCol;
! 514: iCol = pIdx->aiColumn[i];
! 515: pCol = &pTab->aCol[iCol];
! 516: if( pTab->iPKey==iCol ) iCol = -1;
! 517: pLeft->iTable = regData+iCol+1;
! 518: pLeft->affinity = pCol->affinity;
! 519: pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
! 520: }else{
! 521: pLeft->iTable = regData;
! 522: pLeft->affinity = SQLITE_AFF_INTEGER;
! 523: }
! 524: }
! 525: iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
! 526: assert( iCol>=0 );
! 527: zCol = pFKey->pFrom->aCol[iCol].zName;
! 528: pRight = sqlite3Expr(db, TK_ID, zCol);
! 529: pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
! 530: pWhere = sqlite3ExprAnd(db, pWhere, pEq);
! 531: }
! 532:
! 533: /* If the child table is the same as the parent table, and this scan
! 534: ** is taking place as part of a DELETE operation (operation D.2), omit the
! 535: ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
! 536: ** clause, where $rowid is the rowid of the row being deleted. */
! 537: if( pTab==pFKey->pFrom && nIncr>0 ){
! 538: Expr *pEq; /* Expression (pLeft = pRight) */
! 539: Expr *pLeft; /* Value from parent table row */
! 540: Expr *pRight; /* Column ref to child table */
! 541: pLeft = sqlite3Expr(db, TK_REGISTER, 0);
! 542: pRight = sqlite3Expr(db, TK_COLUMN, 0);
! 543: if( pLeft && pRight ){
! 544: pLeft->iTable = regData;
! 545: pLeft->affinity = SQLITE_AFF_INTEGER;
! 546: pRight->iTable = pSrc->a[0].iCursor;
! 547: pRight->iColumn = -1;
! 548: }
! 549: pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
! 550: pWhere = sqlite3ExprAnd(db, pWhere, pEq);
! 551: }
! 552:
! 553: /* Resolve the references in the WHERE clause. */
! 554: memset(&sNameContext, 0, sizeof(NameContext));
! 555: sNameContext.pSrcList = pSrc;
! 556: sNameContext.pParse = pParse;
! 557: sqlite3ResolveExprNames(&sNameContext, pWhere);
! 558:
! 559: /* Create VDBE to loop through the entries in pSrc that match the WHERE
! 560: ** clause. If the constraint is not deferred, throw an exception for
! 561: ** each row found. Otherwise, for deferred constraints, increment the
! 562: ** deferred constraint counter by nIncr for each row selected. */
! 563: pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0);
! 564: if( nIncr>0 && pFKey->isDeferred==0 ){
! 565: sqlite3ParseToplevel(pParse)->mayAbort = 1;
! 566: }
! 567: sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
! 568: if( pWInfo ){
! 569: sqlite3WhereEnd(pWInfo);
! 570: }
! 571:
! 572: /* Clean up the WHERE clause constructed above. */
! 573: sqlite3ExprDelete(db, pWhere);
! 574: if( iFkIfZero ){
! 575: sqlite3VdbeJumpHere(v, iFkIfZero);
! 576: }
! 577: }
! 578:
! 579: /*
! 580: ** This function returns a pointer to the head of a linked list of FK
! 581: ** constraints for which table pTab is the parent table. For example,
! 582: ** given the following schema:
! 583: **
! 584: ** CREATE TABLE t1(a PRIMARY KEY);
! 585: ** CREATE TABLE t2(b REFERENCES t1(a);
! 586: **
! 587: ** Calling this function with table "t1" as an argument returns a pointer
! 588: ** to the FKey structure representing the foreign key constraint on table
! 589: ** "t2". Calling this function with "t2" as the argument would return a
! 590: ** NULL pointer (as there are no FK constraints for which t2 is the parent
! 591: ** table).
! 592: */
! 593: FKey *sqlite3FkReferences(Table *pTab){
! 594: int nName = sqlite3Strlen30(pTab->zName);
! 595: return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
! 596: }
! 597:
! 598: /*
! 599: ** The second argument is a Trigger structure allocated by the
! 600: ** fkActionTrigger() routine. This function deletes the Trigger structure
! 601: ** and all of its sub-components.
! 602: **
! 603: ** The Trigger structure or any of its sub-components may be allocated from
! 604: ** the lookaside buffer belonging to database handle dbMem.
! 605: */
! 606: static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
! 607: if( p ){
! 608: TriggerStep *pStep = p->step_list;
! 609: sqlite3ExprDelete(dbMem, pStep->pWhere);
! 610: sqlite3ExprListDelete(dbMem, pStep->pExprList);
! 611: sqlite3SelectDelete(dbMem, pStep->pSelect);
! 612: sqlite3ExprDelete(dbMem, p->pWhen);
! 613: sqlite3DbFree(dbMem, p);
! 614: }
! 615: }
! 616:
! 617: /*
! 618: ** This function is called to generate code that runs when table pTab is
! 619: ** being dropped from the database. The SrcList passed as the second argument
! 620: ** to this function contains a single entry guaranteed to resolve to
! 621: ** table pTab.
! 622: **
! 623: ** Normally, no code is required. However, if either
! 624: **
! 625: ** (a) The table is the parent table of a FK constraint, or
! 626: ** (b) The table is the child table of a deferred FK constraint and it is
! 627: ** determined at runtime that there are outstanding deferred FK
! 628: ** constraint violations in the database,
! 629: **
! 630: ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
! 631: ** the table from the database. Triggers are disabled while running this
! 632: ** DELETE, but foreign key actions are not.
! 633: */
! 634: void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
! 635: sqlite3 *db = pParse->db;
! 636: if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
! 637: int iSkip = 0;
! 638: Vdbe *v = sqlite3GetVdbe(pParse);
! 639:
! 640: assert( v ); /* VDBE has already been allocated */
! 641: if( sqlite3FkReferences(pTab)==0 ){
! 642: /* Search for a deferred foreign key constraint for which this table
! 643: ** is the child table. If one cannot be found, return without
! 644: ** generating any VDBE code. If one can be found, then jump over
! 645: ** the entire DELETE if there are no outstanding deferred constraints
! 646: ** when this statement is run. */
! 647: FKey *p;
! 648: for(p=pTab->pFKey; p; p=p->pNextFrom){
! 649: if( p->isDeferred ) break;
! 650: }
! 651: if( !p ) return;
! 652: iSkip = sqlite3VdbeMakeLabel(v);
! 653: sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
! 654: }
! 655:
! 656: pParse->disableTriggers = 1;
! 657: sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
! 658: pParse->disableTriggers = 0;
! 659:
! 660: /* If the DELETE has generated immediate foreign key constraint
! 661: ** violations, halt the VDBE and return an error at this point, before
! 662: ** any modifications to the schema are made. This is because statement
! 663: ** transactions are not able to rollback schema changes. */
! 664: sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
! 665: sqlite3HaltConstraint(
! 666: pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
! 667: );
! 668:
! 669: if( iSkip ){
! 670: sqlite3VdbeResolveLabel(v, iSkip);
! 671: }
! 672: }
! 673: }
! 674:
! 675: /*
! 676: ** This function is called when inserting, deleting or updating a row of
! 677: ** table pTab to generate VDBE code to perform foreign key constraint
! 678: ** processing for the operation.
! 679: **
! 680: ** For a DELETE operation, parameter regOld is passed the index of the
! 681: ** first register in an array of (pTab->nCol+1) registers containing the
! 682: ** rowid of the row being deleted, followed by each of the column values
! 683: ** of the row being deleted, from left to right. Parameter regNew is passed
! 684: ** zero in this case.
! 685: **
! 686: ** For an INSERT operation, regOld is passed zero and regNew is passed the
! 687: ** first register of an array of (pTab->nCol+1) registers containing the new
! 688: ** row data.
! 689: **
! 690: ** For an UPDATE operation, this function is called twice. Once before
! 691: ** the original record is deleted from the table using the calling convention
! 692: ** described for DELETE. Then again after the original record is deleted
! 693: ** but before the new record is inserted using the INSERT convention.
! 694: */
! 695: void sqlite3FkCheck(
! 696: Parse *pParse, /* Parse context */
! 697: Table *pTab, /* Row is being deleted from this table */
! 698: int regOld, /* Previous row data is stored here */
! 699: int regNew /* New row data is stored here */
! 700: ){
! 701: sqlite3 *db = pParse->db; /* Database handle */
! 702: FKey *pFKey; /* Used to iterate through FKs */
! 703: int iDb; /* Index of database containing pTab */
! 704: const char *zDb; /* Name of database containing pTab */
! 705: int isIgnoreErrors = pParse->disableTriggers;
! 706:
! 707: /* Exactly one of regOld and regNew should be non-zero. */
! 708: assert( (regOld==0)!=(regNew==0) );
! 709:
! 710: /* If foreign-keys are disabled, this function is a no-op. */
! 711: if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
! 712:
! 713: iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
! 714: zDb = db->aDb[iDb].zName;
! 715:
! 716: /* Loop through all the foreign key constraints for which pTab is the
! 717: ** child table (the table that the foreign key definition is part of). */
! 718: for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
! 719: Table *pTo; /* Parent table of foreign key pFKey */
! 720: Index *pIdx = 0; /* Index on key columns in pTo */
! 721: int *aiFree = 0;
! 722: int *aiCol;
! 723: int iCol;
! 724: int i;
! 725: int isIgnore = 0;
! 726:
! 727: /* Find the parent table of this foreign key. Also find a unique index
! 728: ** on the parent key columns in the parent table. If either of these
! 729: ** schema items cannot be located, set an error in pParse and return
! 730: ** early. */
! 731: if( pParse->disableTriggers ){
! 732: pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
! 733: }else{
! 734: pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
! 735: }
! 736: if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
! 737: assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
! 738: if( !isIgnoreErrors || db->mallocFailed ) return;
! 739: if( pTo==0 ){
! 740: /* If isIgnoreErrors is true, then a table is being dropped. In this
! 741: ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
! 742: ** before actually dropping it in order to check FK constraints.
! 743: ** If the parent table of an FK constraint on the current table is
! 744: ** missing, behave as if it is empty. i.e. decrement the relevant
! 745: ** FK counter for each row of the current table with non-NULL keys.
! 746: */
! 747: Vdbe *v = sqlite3GetVdbe(pParse);
! 748: int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
! 749: for(i=0; i<pFKey->nCol; i++){
! 750: int iReg = pFKey->aCol[i].iFrom + regOld + 1;
! 751: sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
! 752: }
! 753: sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
! 754: }
! 755: continue;
! 756: }
! 757: assert( pFKey->nCol==1 || (aiFree && pIdx) );
! 758:
! 759: if( aiFree ){
! 760: aiCol = aiFree;
! 761: }else{
! 762: iCol = pFKey->aCol[0].iFrom;
! 763: aiCol = &iCol;
! 764: }
! 765: for(i=0; i<pFKey->nCol; i++){
! 766: if( aiCol[i]==pTab->iPKey ){
! 767: aiCol[i] = -1;
! 768: }
! 769: #ifndef SQLITE_OMIT_AUTHORIZATION
! 770: /* Request permission to read the parent key columns. If the
! 771: ** authorization callback returns SQLITE_IGNORE, behave as if any
! 772: ** values read from the parent table are NULL. */
! 773: if( db->xAuth ){
! 774: int rcauth;
! 775: char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
! 776: rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
! 777: isIgnore = (rcauth==SQLITE_IGNORE);
! 778: }
! 779: #endif
! 780: }
! 781:
! 782: /* Take a shared-cache advisory read-lock on the parent table. Allocate
! 783: ** a cursor to use to search the unique index on the parent key columns
! 784: ** in the parent table. */
! 785: sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
! 786: pParse->nTab++;
! 787:
! 788: if( regOld!=0 ){
! 789: /* A row is being removed from the child table. Search for the parent.
! 790: ** If the parent does not exist, removing the child row resolves an
! 791: ** outstanding foreign key constraint violation. */
! 792: fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
! 793: }
! 794: if( regNew!=0 ){
! 795: /* A row is being added to the child table. If a parent row cannot
! 796: ** be found, adding the child row has violated the FK constraint. */
! 797: fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
! 798: }
! 799:
! 800: sqlite3DbFree(db, aiFree);
! 801: }
! 802:
! 803: /* Loop through all the foreign key constraints that refer to this table */
! 804: for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
! 805: Index *pIdx = 0; /* Foreign key index for pFKey */
! 806: SrcList *pSrc;
! 807: int *aiCol = 0;
! 808:
! 809: if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
! 810: assert( regOld==0 && regNew!=0 );
! 811: /* Inserting a single row into a parent table cannot cause an immediate
! 812: ** foreign key violation. So do nothing in this case. */
! 813: continue;
! 814: }
! 815:
! 816: if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
! 817: if( !isIgnoreErrors || db->mallocFailed ) return;
! 818: continue;
! 819: }
! 820: assert( aiCol || pFKey->nCol==1 );
! 821:
! 822: /* Create a SrcList structure containing a single table (the table
! 823: ** the foreign key that refers to this table is attached to). This
! 824: ** is required for the sqlite3WhereXXX() interface. */
! 825: pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
! 826: if( pSrc ){
! 827: struct SrcList_item *pItem = pSrc->a;
! 828: pItem->pTab = pFKey->pFrom;
! 829: pItem->zName = pFKey->pFrom->zName;
! 830: pItem->pTab->nRef++;
! 831: pItem->iCursor = pParse->nTab++;
! 832:
! 833: if( regNew!=0 ){
! 834: fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
! 835: }
! 836: if( regOld!=0 ){
! 837: /* If there is a RESTRICT action configured for the current operation
! 838: ** on the parent table of this FK, then throw an exception
! 839: ** immediately if the FK constraint is violated, even if this is a
! 840: ** deferred trigger. That's what RESTRICT means. To defer checking
! 841: ** the constraint, the FK should specify NO ACTION (represented
! 842: ** using OE_None). NO ACTION is the default. */
! 843: fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
! 844: }
! 845: pItem->zName = 0;
! 846: sqlite3SrcListDelete(db, pSrc);
! 847: }
! 848: sqlite3DbFree(db, aiCol);
! 849: }
! 850: }
! 851:
! 852: #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
! 853:
! 854: /*
! 855: ** This function is called before generating code to update or delete a
! 856: ** row contained in table pTab.
! 857: */
! 858: u32 sqlite3FkOldmask(
! 859: Parse *pParse, /* Parse context */
! 860: Table *pTab /* Table being modified */
! 861: ){
! 862: u32 mask = 0;
! 863: if( pParse->db->flags&SQLITE_ForeignKeys ){
! 864: FKey *p;
! 865: int i;
! 866: for(p=pTab->pFKey; p; p=p->pNextFrom){
! 867: for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
! 868: }
! 869: for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
! 870: Index *pIdx = 0;
! 871: locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
! 872: if( pIdx ){
! 873: for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
! 874: }
! 875: }
! 876: }
! 877: return mask;
! 878: }
! 879:
! 880: /*
! 881: ** This function is called before generating code to update or delete a
! 882: ** row contained in table pTab. If the operation is a DELETE, then
! 883: ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
! 884: ** to an array of size N, where N is the number of columns in table pTab.
! 885: ** If the i'th column is not modified by the UPDATE, then the corresponding
! 886: ** entry in the aChange[] array is set to -1. If the column is modified,
! 887: ** the value is 0 or greater. Parameter chngRowid is set to true if the
! 888: ** UPDATE statement modifies the rowid fields of the table.
! 889: **
! 890: ** If any foreign key processing will be required, this function returns
! 891: ** true. If there is no foreign key related processing, this function
! 892: ** returns false.
! 893: */
! 894: int sqlite3FkRequired(
! 895: Parse *pParse, /* Parse context */
! 896: Table *pTab, /* Table being modified */
! 897: int *aChange, /* Non-NULL for UPDATE operations */
! 898: int chngRowid /* True for UPDATE that affects rowid */
! 899: ){
! 900: if( pParse->db->flags&SQLITE_ForeignKeys ){
! 901: if( !aChange ){
! 902: /* A DELETE operation. Foreign key processing is required if the
! 903: ** table in question is either the child or parent table for any
! 904: ** foreign key constraint. */
! 905: return (sqlite3FkReferences(pTab) || pTab->pFKey);
! 906: }else{
! 907: /* This is an UPDATE. Foreign key processing is only required if the
! 908: ** operation modifies one or more child or parent key columns. */
! 909: int i;
! 910: FKey *p;
! 911:
! 912: /* Check if any child key columns are being modified. */
! 913: for(p=pTab->pFKey; p; p=p->pNextFrom){
! 914: for(i=0; i<p->nCol; i++){
! 915: int iChildKey = p->aCol[i].iFrom;
! 916: if( aChange[iChildKey]>=0 ) return 1;
! 917: if( iChildKey==pTab->iPKey && chngRowid ) return 1;
! 918: }
! 919: }
! 920:
! 921: /* Check if any parent key columns are being modified. */
! 922: for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
! 923: for(i=0; i<p->nCol; i++){
! 924: char *zKey = p->aCol[i].zCol;
! 925: int iKey;
! 926: for(iKey=0; iKey<pTab->nCol; iKey++){
! 927: Column *pCol = &pTab->aCol[iKey];
! 928: if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
! 929: if( aChange[iKey]>=0 ) return 1;
! 930: if( iKey==pTab->iPKey && chngRowid ) return 1;
! 931: }
! 932: }
! 933: }
! 934: }
! 935: }
! 936: }
! 937: return 0;
! 938: }
! 939:
! 940: /*
! 941: ** This function is called when an UPDATE or DELETE operation is being
! 942: ** compiled on table pTab, which is the parent table of foreign-key pFKey.
! 943: ** If the current operation is an UPDATE, then the pChanges parameter is
! 944: ** passed a pointer to the list of columns being modified. If it is a
! 945: ** DELETE, pChanges is passed a NULL pointer.
! 946: **
! 947: ** It returns a pointer to a Trigger structure containing a trigger
! 948: ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
! 949: ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
! 950: ** returned (these actions require no special handling by the triggers
! 951: ** sub-system, code for them is created by fkScanChildren()).
! 952: **
! 953: ** For example, if pFKey is the foreign key and pTab is table "p" in
! 954: ** the following schema:
! 955: **
! 956: ** CREATE TABLE p(pk PRIMARY KEY);
! 957: ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
! 958: **
! 959: ** then the returned trigger structure is equivalent to:
! 960: **
! 961: ** CREATE TRIGGER ... DELETE ON p BEGIN
! 962: ** DELETE FROM c WHERE ck = old.pk;
! 963: ** END;
! 964: **
! 965: ** The returned pointer is cached as part of the foreign key object. It
! 966: ** is eventually freed along with the rest of the foreign key object by
! 967: ** sqlite3FkDelete().
! 968: */
! 969: static Trigger *fkActionTrigger(
! 970: Parse *pParse, /* Parse context */
! 971: Table *pTab, /* Table being updated or deleted from */
! 972: FKey *pFKey, /* Foreign key to get action for */
! 973: ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
! 974: ){
! 975: sqlite3 *db = pParse->db; /* Database handle */
! 976: int action; /* One of OE_None, OE_Cascade etc. */
! 977: Trigger *pTrigger; /* Trigger definition to return */
! 978: int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
! 979:
! 980: action = pFKey->aAction[iAction];
! 981: pTrigger = pFKey->apTrigger[iAction];
! 982:
! 983: if( action!=OE_None && !pTrigger ){
! 984: u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
! 985: char const *zFrom; /* Name of child table */
! 986: int nFrom; /* Length in bytes of zFrom */
! 987: Index *pIdx = 0; /* Parent key index for this FK */
! 988: int *aiCol = 0; /* child table cols -> parent key cols */
! 989: TriggerStep *pStep = 0; /* First (only) step of trigger program */
! 990: Expr *pWhere = 0; /* WHERE clause of trigger step */
! 991: ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
! 992: Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
! 993: int i; /* Iterator variable */
! 994: Expr *pWhen = 0; /* WHEN clause for the trigger */
! 995:
! 996: if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
! 997: assert( aiCol || pFKey->nCol==1 );
! 998:
! 999: for(i=0; i<pFKey->nCol; i++){
! 1000: Token tOld = { "old", 3 }; /* Literal "old" token */
! 1001: Token tNew = { "new", 3 }; /* Literal "new" token */
! 1002: Token tFromCol; /* Name of column in child table */
! 1003: Token tToCol; /* Name of column in parent table */
! 1004: int iFromCol; /* Idx of column in child table */
! 1005: Expr *pEq; /* tFromCol = OLD.tToCol */
! 1006:
! 1007: iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
! 1008: assert( iFromCol>=0 );
! 1009: tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
! 1010: tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
! 1011:
! 1012: tToCol.n = sqlite3Strlen30(tToCol.z);
! 1013: tFromCol.n = sqlite3Strlen30(tFromCol.z);
! 1014:
! 1015: /* Create the expression "OLD.zToCol = zFromCol". It is important
! 1016: ** that the "OLD.zToCol" term is on the LHS of the = operator, so
! 1017: ** that the affinity and collation sequence associated with the
! 1018: ** parent table are used for the comparison. */
! 1019: pEq = sqlite3PExpr(pParse, TK_EQ,
! 1020: sqlite3PExpr(pParse, TK_DOT,
! 1021: sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
! 1022: sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
! 1023: , 0),
! 1024: sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
! 1025: , 0);
! 1026: pWhere = sqlite3ExprAnd(db, pWhere, pEq);
! 1027:
! 1028: /* For ON UPDATE, construct the next term of the WHEN clause.
! 1029: ** The final WHEN clause will be like this:
! 1030: **
! 1031: ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
! 1032: */
! 1033: if( pChanges ){
! 1034: pEq = sqlite3PExpr(pParse, TK_IS,
! 1035: sqlite3PExpr(pParse, TK_DOT,
! 1036: sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
! 1037: sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
! 1038: 0),
! 1039: sqlite3PExpr(pParse, TK_DOT,
! 1040: sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
! 1041: sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
! 1042: 0),
! 1043: 0);
! 1044: pWhen = sqlite3ExprAnd(db, pWhen, pEq);
! 1045: }
! 1046:
! 1047: if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
! 1048: Expr *pNew;
! 1049: if( action==OE_Cascade ){
! 1050: pNew = sqlite3PExpr(pParse, TK_DOT,
! 1051: sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
! 1052: sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
! 1053: , 0);
! 1054: }else if( action==OE_SetDflt ){
! 1055: Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
! 1056: if( pDflt ){
! 1057: pNew = sqlite3ExprDup(db, pDflt, 0);
! 1058: }else{
! 1059: pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
! 1060: }
! 1061: }else{
! 1062: pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
! 1063: }
! 1064: pList = sqlite3ExprListAppend(pParse, pList, pNew);
! 1065: sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
! 1066: }
! 1067: }
! 1068: sqlite3DbFree(db, aiCol);
! 1069:
! 1070: zFrom = pFKey->pFrom->zName;
! 1071: nFrom = sqlite3Strlen30(zFrom);
! 1072:
! 1073: if( action==OE_Restrict ){
! 1074: Token tFrom;
! 1075: Expr *pRaise;
! 1076:
! 1077: tFrom.z = zFrom;
! 1078: tFrom.n = nFrom;
! 1079: pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
! 1080: if( pRaise ){
! 1081: pRaise->affinity = OE_Abort;
! 1082: }
! 1083: pSelect = sqlite3SelectNew(pParse,
! 1084: sqlite3ExprListAppend(pParse, 0, pRaise),
! 1085: sqlite3SrcListAppend(db, 0, &tFrom, 0),
! 1086: pWhere,
! 1087: 0, 0, 0, 0, 0, 0
! 1088: );
! 1089: pWhere = 0;
! 1090: }
! 1091:
! 1092: /* Disable lookaside memory allocation */
! 1093: enableLookaside = db->lookaside.bEnabled;
! 1094: db->lookaside.bEnabled = 0;
! 1095:
! 1096: pTrigger = (Trigger *)sqlite3DbMallocZero(db,
! 1097: sizeof(Trigger) + /* struct Trigger */
! 1098: sizeof(TriggerStep) + /* Single step in trigger program */
! 1099: nFrom + 1 /* Space for pStep->target.z */
! 1100: );
! 1101: if( pTrigger ){
! 1102: pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
! 1103: pStep->target.z = (char *)&pStep[1];
! 1104: pStep->target.n = nFrom;
! 1105: memcpy((char *)pStep->target.z, zFrom, nFrom);
! 1106:
! 1107: pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
! 1108: pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
! 1109: pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
! 1110: if( pWhen ){
! 1111: pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
! 1112: pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
! 1113: }
! 1114: }
! 1115:
! 1116: /* Re-enable the lookaside buffer, if it was disabled earlier. */
! 1117: db->lookaside.bEnabled = enableLookaside;
! 1118:
! 1119: sqlite3ExprDelete(db, pWhere);
! 1120: sqlite3ExprDelete(db, pWhen);
! 1121: sqlite3ExprListDelete(db, pList);
! 1122: sqlite3SelectDelete(db, pSelect);
! 1123: if( db->mallocFailed==1 ){
! 1124: fkTriggerDelete(db, pTrigger);
! 1125: return 0;
! 1126: }
! 1127: assert( pStep!=0 );
! 1128:
! 1129: switch( action ){
! 1130: case OE_Restrict:
! 1131: pStep->op = TK_SELECT;
! 1132: break;
! 1133: case OE_Cascade:
! 1134: if( !pChanges ){
! 1135: pStep->op = TK_DELETE;
! 1136: break;
! 1137: }
! 1138: default:
! 1139: pStep->op = TK_UPDATE;
! 1140: }
! 1141: pStep->pTrig = pTrigger;
! 1142: pTrigger->pSchema = pTab->pSchema;
! 1143: pTrigger->pTabSchema = pTab->pSchema;
! 1144: pFKey->apTrigger[iAction] = pTrigger;
! 1145: pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
! 1146: }
! 1147:
! 1148: return pTrigger;
! 1149: }
! 1150:
! 1151: /*
! 1152: ** This function is called when deleting or updating a row to implement
! 1153: ** any required CASCADE, SET NULL or SET DEFAULT actions.
! 1154: */
! 1155: void sqlite3FkActions(
! 1156: Parse *pParse, /* Parse context */
! 1157: Table *pTab, /* Table being updated or deleted from */
! 1158: ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
! 1159: int regOld /* Address of array containing old row */
! 1160: ){
! 1161: /* If foreign-key support is enabled, iterate through all FKs that
! 1162: ** refer to table pTab. If there is an action associated with the FK
! 1163: ** for this operation (either update or delete), invoke the associated
! 1164: ** trigger sub-program. */
! 1165: if( pParse->db->flags&SQLITE_ForeignKeys ){
! 1166: FKey *pFKey; /* Iterator variable */
! 1167: for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
! 1168: Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
! 1169: if( pAction ){
! 1170: sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
! 1171: }
! 1172: }
! 1173: }
! 1174: }
! 1175:
! 1176: #endif /* ifndef SQLITE_OMIT_TRIGGER */
! 1177:
! 1178: /*
! 1179: ** Free all memory associated with foreign key definitions attached to
! 1180: ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
! 1181: ** hash table.
! 1182: */
! 1183: void sqlite3FkDelete(sqlite3 *db, Table *pTab){
! 1184: FKey *pFKey; /* Iterator variable */
! 1185: FKey *pNext; /* Copy of pFKey->pNextFrom */
! 1186:
! 1187: assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
! 1188: for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
! 1189:
! 1190: /* Remove the FK from the fkeyHash hash table. */
! 1191: if( !db || db->pnBytesFreed==0 ){
! 1192: if( pFKey->pPrevTo ){
! 1193: pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
! 1194: }else{
! 1195: void *p = (void *)pFKey->pNextTo;
! 1196: const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
! 1197: sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
! 1198: }
! 1199: if( pFKey->pNextTo ){
! 1200: pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
! 1201: }
! 1202: }
! 1203:
! 1204: /* EV: R-30323-21917 Each foreign key constraint in SQLite is
! 1205: ** classified as either immediate or deferred.
! 1206: */
! 1207: assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
! 1208:
! 1209: /* Delete any triggers created to implement actions for this FK. */
! 1210: #ifndef SQLITE_OMIT_TRIGGER
! 1211: fkTriggerDelete(db, pFKey->apTrigger[0]);
! 1212: fkTriggerDelete(db, pFKey->apTrigger[1]);
! 1213: #endif
! 1214:
! 1215: pNext = pFKey->pNextFrom;
! 1216: sqlite3DbFree(db, pFKey);
! 1217: }
! 1218: }
! 1219: #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>