File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / fkey.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 7 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: **
    3: ** The author disclaims copyright to this source code.  In place of
    4: ** a legal notice, here is a blessing:
    5: **
    6: **    May you do good and not evil.
    7: **    May you find forgiveness for yourself and forgive others.
    8: **    May you share freely, never taking more than you give.
    9: **
   10: *************************************************************************
   11: ** This file contains code used by the compiler to add foreign key
   12: ** support to compiled SQL statements.
   13: */
   14: #include "sqliteInt.h"
   15: 
   16: #ifndef SQLITE_OMIT_FOREIGN_KEY
   17: #ifndef SQLITE_OMIT_TRIGGER
   18: 
   19: /*
   20: ** Deferred and Immediate FKs
   21: ** --------------------------
   22: **
   23: ** Foreign keys in SQLite come in two flavours: deferred and immediate.
   24: ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
   25: ** is returned and the current statement transaction rolled back. If a 
   26: ** deferred foreign key constraint is violated, no action is taken 
   27: ** immediately. However if the application attempts to commit the 
   28: ** transaction before fixing the constraint violation, the attempt fails.
   29: **
   30: ** Deferred constraints are implemented using a simple counter associated
   31: ** with the database handle. The counter is set to zero each time a 
   32: ** database transaction is opened. Each time a statement is executed 
   33: ** that causes a foreign key violation, the counter is incremented. Each
   34: ** time a statement is executed that removes an existing violation from
   35: ** the database, the counter is decremented. When the transaction is
   36: ** committed, the commit fails if the current value of the counter is
   37: ** greater than zero. This scheme has two big drawbacks:
   38: **
   39: **   * When a commit fails due to a deferred foreign key constraint, 
   40: **     there is no way to tell which foreign constraint is not satisfied,
   41: **     or which row it is not satisfied for.
   42: **
   43: **   * If the database contains foreign key violations when the 
   44: **     transaction is opened, this may cause the mechanism to malfunction.
   45: **
   46: ** Despite these problems, this approach is adopted as it seems simpler
   47: ** than the alternatives.
   48: **
   49: ** INSERT operations:
   50: **
   51: **   I.1) For each FK for which the table is the child table, search
   52: **        the parent table for a match. If none is found increment the
   53: **        constraint counter.
   54: **
   55: **   I.2) For each FK for which the table is the parent table, 
   56: **        search the child table for rows that correspond to the new
   57: **        row in the parent table. Decrement the counter for each row
   58: **        found (as the constraint is now satisfied).
   59: **
   60: ** DELETE operations:
   61: **
   62: **   D.1) For each FK for which the table is the child table, 
   63: **        search the parent table for a row that corresponds to the 
   64: **        deleted row in the child table. If such a row is not found, 
   65: **        decrement the counter.
   66: **
   67: **   D.2) For each FK for which the table is the parent table, search 
   68: **        the child table for rows that correspond to the deleted row 
   69: **        in the parent table. For each found increment the counter.
   70: **
   71: ** UPDATE operations:
   72: **
   73: **   An UPDATE command requires that all 4 steps above are taken, but only
   74: **   for FK constraints for which the affected columns are actually 
   75: **   modified (values must be compared at runtime).
   76: **
   77: ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
   78: ** This simplifies the implementation a bit.
   79: **
   80: ** For the purposes of immediate FK constraints, the OR REPLACE conflict
   81: ** resolution is considered to delete rows before the new row is inserted.
   82: ** If a delete caused by OR REPLACE violates an FK constraint, an exception
   83: ** is thrown, even if the FK constraint would be satisfied after the new 
   84: ** row is inserted.
   85: **
   86: ** Immediate constraints are usually handled similarly. The only difference 
   87: ** is that the counter used is stored as part of each individual statement
   88: ** object (struct Vdbe). If, after the statement has run, its immediate
   89: ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
   90: ** and the statement transaction is rolled back. An exception is an INSERT
   91: ** statement that inserts a single row only (no triggers). In this case,
   92: ** instead of using a counter, an exception is thrown immediately if the
   93: ** INSERT violates a foreign key constraint. This is necessary as such
   94: ** an INSERT does not open a statement transaction.
   95: **
   96: ** TODO: How should dropping a table be handled? How should renaming a 
   97: ** table be handled?
   98: **
   99: **
  100: ** Query API Notes
  101: ** ---------------
  102: **
  103: ** Before coding an UPDATE or DELETE row operation, the code-generator
  104: ** for those two operations needs to know whether or not the operation
  105: ** requires any FK processing and, if so, which columns of the original
  106: ** row are required by the FK processing VDBE code (i.e. if FKs were
  107: ** implemented using triggers, which of the old.* columns would be 
  108: ** accessed). No information is required by the code-generator before
  109: ** coding an INSERT operation. The functions used by the UPDATE/DELETE
  110: ** generation code to query for this information are:
  111: **
  112: **   sqlite3FkRequired() - Test to see if FK processing is required.
  113: **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
  114: **
  115: **
  116: ** Externally accessible module functions
  117: ** --------------------------------------
  118: **
  119: **   sqlite3FkCheck()    - Check for foreign key violations.
  120: **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
  121: **   sqlite3FkDelete()   - Delete an FKey structure.
  122: */
  123: 
  124: /*
  125: ** VDBE Calling Convention
  126: ** -----------------------
  127: **
  128: ** Example:
  129: **
  130: **   For the following INSERT statement:
  131: **
  132: **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
  133: **     INSERT INTO t1 VALUES(1, 2, 3.1);
  134: **
  135: **   Register (x):        2    (type integer)
  136: **   Register (x+1):      1    (type integer)
  137: **   Register (x+2):      NULL (type NULL)
  138: **   Register (x+3):      3.1  (type real)
  139: */
  140: 
  141: /*
  142: ** A foreign key constraint requires that the key columns in the parent
  143: ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
  144: ** Given that pParent is the parent table for foreign key constraint pFKey, 
  145: ** search the schema a unique index on the parent key columns. 
  146: **
  147: ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 
  148: ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 
  149: ** is set to point to the unique index. 
  150: ** 
  151: ** If the parent key consists of a single column (the foreign key constraint
  152: ** is not a composite foreign key), output variable *paiCol is set to NULL.
  153: ** Otherwise, it is set to point to an allocated array of size N, where
  154: ** N is the number of columns in the parent key. The first element of the
  155: ** array is the index of the child table column that is mapped by the FK
  156: ** constraint to the parent table column stored in the left-most column
  157: ** of index *ppIdx. The second element of the array is the index of the
  158: ** child table column that corresponds to the second left-most column of
  159: ** *ppIdx, and so on.
  160: **
  161: ** If the required index cannot be found, either because:
  162: **
  163: **   1) The named parent key columns do not exist, or
  164: **
  165: **   2) The named parent key columns do exist, but are not subject to a
  166: **      UNIQUE or PRIMARY KEY constraint, or
  167: **
  168: **   3) No parent key columns were provided explicitly as part of the
  169: **      foreign key definition, and the parent table does not have a
  170: **      PRIMARY KEY, or
  171: **
  172: **   4) No parent key columns were provided explicitly as part of the
  173: **      foreign key definition, and the PRIMARY KEY of the parent table 
  174: **      consists of a a different number of columns to the child key in 
  175: **      the child table.
  176: **
  177: ** then non-zero is returned, and a "foreign key mismatch" error loaded
  178: ** into pParse. If an OOM error occurs, non-zero is returned and the
  179: ** pParse->db->mallocFailed flag is set.
  180: */
  181: static int locateFkeyIndex(
  182:   Parse *pParse,                  /* Parse context to store any error in */
  183:   Table *pParent,                 /* Parent table of FK constraint pFKey */
  184:   FKey *pFKey,                    /* Foreign key to find index for */
  185:   Index **ppIdx,                  /* OUT: Unique index on parent table */
  186:   int **paiCol                    /* OUT: Map of index columns in pFKey */
  187: ){
  188:   Index *pIdx = 0;                    /* Value to return via *ppIdx */
  189:   int *aiCol = 0;                     /* Value to return via *paiCol */
  190:   int nCol = pFKey->nCol;             /* Number of columns in parent key */
  191:   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
  192: 
  193:   /* The caller is responsible for zeroing output parameters. */
  194:   assert( ppIdx && *ppIdx==0 );
  195:   assert( !paiCol || *paiCol==0 );
  196:   assert( pParse );
  197: 
  198:   /* If this is a non-composite (single column) foreign key, check if it 
  199:   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 
  200:   ** and *paiCol set to zero and return early. 
  201:   **
  202:   ** Otherwise, for a composite foreign key (more than one column), allocate
  203:   ** space for the aiCol array (returned via output parameter *paiCol).
  204:   ** Non-composite foreign keys do not require the aiCol array.
  205:   */
  206:   if( nCol==1 ){
  207:     /* The FK maps to the IPK if any of the following are true:
  208:     **
  209:     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 
  210:     **      mapped to the primary key of table pParent, or
  211:     **   2) The FK is explicitly mapped to a column declared as INTEGER
  212:     **      PRIMARY KEY.
  213:     */
  214:     if( pParent->iPKey>=0 ){
  215:       if( !zKey ) return 0;
  216:       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
  217:     }
  218:   }else if( paiCol ){
  219:     assert( nCol>1 );
  220:     aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
  221:     if( !aiCol ) return 1;
  222:     *paiCol = aiCol;
  223:   }
  224: 
  225:   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
  226:     if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ 
  227:       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
  228:       ** of columns. If each indexed column corresponds to a foreign key
  229:       ** column of pFKey, then this index is a winner.  */
  230: 
  231:       if( zKey==0 ){
  232:         /* If zKey is NULL, then this foreign key is implicitly mapped to 
  233:         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 
  234:         ** identified by the test (Index.autoIndex==2).  */
  235:         if( pIdx->autoIndex==2 ){
  236:           if( aiCol ){
  237:             int i;
  238:             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
  239:           }
  240:           break;
  241:         }
  242:       }else{
  243:         /* If zKey is non-NULL, then this foreign key was declared to
  244:         ** map to an explicit list of columns in table pParent. Check if this
  245:         ** index matches those columns. Also, check that the index uses
  246:         ** the default collation sequences for each column. */
  247:         int i, j;
  248:         for(i=0; i<nCol; i++){
  249:           int iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
  250:           char *zDfltColl;                  /* Def. collation for column */
  251:           char *zIdxCol;                    /* Name of indexed column */
  252: 
  253:           /* If the index uses a collation sequence that is different from
  254:           ** the default collation sequence for the column, this index is
  255:           ** unusable. Bail out early in this case.  */
  256:           zDfltColl = pParent->aCol[iCol].zColl;
  257:           if( !zDfltColl ){
  258:             zDfltColl = "BINARY";
  259:           }
  260:           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
  261: 
  262:           zIdxCol = pParent->aCol[iCol].zName;
  263:           for(j=0; j<nCol; j++){
  264:             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
  265:               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
  266:               break;
  267:             }
  268:           }
  269:           if( j==nCol ) break;
  270:         }
  271:         if( i==nCol ) break;      /* pIdx is usable */
  272:       }
  273:     }
  274:   }
  275: 
  276:   if( !pIdx ){
  277:     if( !pParse->disableTriggers ){
  278:       sqlite3ErrorMsg(pParse, "foreign key mismatch");
  279:     }
  280:     sqlite3DbFree(pParse->db, aiCol);
  281:     return 1;
  282:   }
  283: 
  284:   *ppIdx = pIdx;
  285:   return 0;
  286: }
  287: 
  288: /*
  289: ** This function is called when a row is inserted into or deleted from the 
  290: ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 
  291: ** on the child table of pFKey, this function is invoked twice for each row
  292: ** affected - once to "delete" the old row, and then again to "insert" the
  293: ** new row.
  294: **
  295: ** Each time it is called, this function generates VDBE code to locate the
  296: ** row in the parent table that corresponds to the row being inserted into 
  297: ** or deleted from the child table. If the parent row can be found, no 
  298: ** special action is taken. Otherwise, if the parent row can *not* be
  299: ** found in the parent table:
  300: **
  301: **   Operation | FK type   | Action taken
  302: **   --------------------------------------------------------------------------
  303: **   INSERT      immediate   Increment the "immediate constraint counter".
  304: **
  305: **   DELETE      immediate   Decrement the "immediate constraint counter".
  306: **
  307: **   INSERT      deferred    Increment the "deferred constraint counter".
  308: **
  309: **   DELETE      deferred    Decrement the "deferred constraint counter".
  310: **
  311: ** These operations are identified in the comment at the top of this file 
  312: ** (fkey.c) as "I.1" and "D.1".
  313: */
  314: static void fkLookupParent(
  315:   Parse *pParse,        /* Parse context */
  316:   int iDb,              /* Index of database housing pTab */
  317:   Table *pTab,          /* Parent table of FK pFKey */
  318:   Index *pIdx,          /* Unique index on parent key columns in pTab */
  319:   FKey *pFKey,          /* Foreign key constraint */
  320:   int *aiCol,           /* Map from parent key columns to child table columns */
  321:   int regData,          /* Address of array containing child table row */
  322:   int nIncr,            /* Increment constraint counter by this */
  323:   int isIgnore          /* If true, pretend pTab contains all NULL values */
  324: ){
  325:   int i;                                    /* Iterator variable */
  326:   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
  327:   int iCur = pParse->nTab - 1;              /* Cursor number to use */
  328:   int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
  329: 
  330:   /* If nIncr is less than zero, then check at runtime if there are any
  331:   ** outstanding constraints to resolve. If there are not, there is no need
  332:   ** to check if deleting this row resolves any outstanding violations.
  333:   **
  334:   ** Check if any of the key columns in the child table row are NULL. If 
  335:   ** any are, then the constraint is considered satisfied. No need to 
  336:   ** search for a matching row in the parent table.  */
  337:   if( nIncr<0 ){
  338:     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
  339:   }
  340:   for(i=0; i<pFKey->nCol; i++){
  341:     int iReg = aiCol[i] + regData + 1;
  342:     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
  343:   }
  344: 
  345:   if( isIgnore==0 ){
  346:     if( pIdx==0 ){
  347:       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
  348:       ** column of the parent table (table pTab).  */
  349:       int iMustBeInt;               /* Address of MustBeInt instruction */
  350:       int regTemp = sqlite3GetTempReg(pParse);
  351:   
  352:       /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 
  353:       ** apply the affinity of the parent key). If this fails, then there
  354:       ** is no matching parent key. Before using MustBeInt, make a copy of
  355:       ** the value. Otherwise, the value inserted into the child key column
  356:       ** will have INTEGER affinity applied to it, which may not be correct.  */
  357:       sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
  358:       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
  359:   
  360:       /* If the parent table is the same as the child table, and we are about
  361:       ** to increment the constraint-counter (i.e. this is an INSERT operation),
  362:       ** then check if the row being inserted matches itself. If so, do not
  363:       ** increment the constraint-counter.  */
  364:       if( pTab==pFKey->pFrom && nIncr==1 ){
  365:         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
  366:       }
  367:   
  368:       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
  369:       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
  370:       sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
  371:       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
  372:       sqlite3VdbeJumpHere(v, iMustBeInt);
  373:       sqlite3ReleaseTempReg(pParse, regTemp);
  374:     }else{
  375:       int nCol = pFKey->nCol;
  376:       int regTemp = sqlite3GetTempRange(pParse, nCol);
  377:       int regRec = sqlite3GetTempReg(pParse);
  378:       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
  379:   
  380:       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
  381:       sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
  382:       for(i=0; i<nCol; i++){
  383:         sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
  384:       }
  385:   
  386:       /* If the parent table is the same as the child table, and we are about
  387:       ** to increment the constraint-counter (i.e. this is an INSERT operation),
  388:       ** then check if the row being inserted matches itself. If so, do not
  389:       ** increment the constraint-counter. 
  390:       **
  391:       ** If any of the parent-key values are NULL, then the row cannot match 
  392:       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
  393:       ** of the parent-key values are NULL (at this point it is known that
  394:       ** none of the child key values are).
  395:       */
  396:       if( pTab==pFKey->pFrom && nIncr==1 ){
  397:         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
  398:         for(i=0; i<nCol; i++){
  399:           int iChild = aiCol[i]+1+regData;
  400:           int iParent = pIdx->aiColumn[i]+1+regData;
  401:           assert( aiCol[i]!=pTab->iPKey );
  402:           if( pIdx->aiColumn[i]==pTab->iPKey ){
  403:             /* The parent key is a composite key that includes the IPK column */
  404:             iParent = regData;
  405:           }
  406:           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
  407:           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
  408:         }
  409:         sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
  410:       }
  411:   
  412:       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
  413:       sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
  414:       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
  415:   
  416:       sqlite3ReleaseTempReg(pParse, regRec);
  417:       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
  418:     }
  419:   }
  420: 
  421:   if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
  422:     /* Special case: If this is an INSERT statement that will insert exactly
  423:     ** one row into the table, raise a constraint immediately instead of
  424:     ** incrementing a counter. This is necessary as the VM code is being
  425:     ** generated for will not open a statement transaction.  */
  426:     assert( nIncr==1 );
  427:     sqlite3HaltConstraint(
  428:         pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
  429:     );
  430:   }else{
  431:     if( nIncr>0 && pFKey->isDeferred==0 ){
  432:       sqlite3ParseToplevel(pParse)->mayAbort = 1;
  433:     }
  434:     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  435:   }
  436: 
  437:   sqlite3VdbeResolveLabel(v, iOk);
  438:   sqlite3VdbeAddOp1(v, OP_Close, iCur);
  439: }
  440: 
  441: /*
  442: ** This function is called to generate code executed when a row is deleted
  443: ** from the parent table of foreign key constraint pFKey and, if pFKey is 
  444: ** deferred, when a row is inserted into the same table. When generating
  445: ** code for an SQL UPDATE operation, this function may be called twice -
  446: ** once to "delete" the old row and once to "insert" the new row.
  447: **
  448: ** The code generated by this function scans through the rows in the child
  449: ** table that correspond to the parent table row being deleted or inserted.
  450: ** For each child row found, one of the following actions is taken:
  451: **
  452: **   Operation | FK type   | Action taken
  453: **   --------------------------------------------------------------------------
  454: **   DELETE      immediate   Increment the "immediate constraint counter".
  455: **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
  456: **                           throw a "foreign key constraint failed" exception.
  457: **
  458: **   INSERT      immediate   Decrement the "immediate constraint counter".
  459: **
  460: **   DELETE      deferred    Increment the "deferred constraint counter".
  461: **                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
  462: **                           throw a "foreign key constraint failed" exception.
  463: **
  464: **   INSERT      deferred    Decrement the "deferred constraint counter".
  465: **
  466: ** These operations are identified in the comment at the top of this file 
  467: ** (fkey.c) as "I.2" and "D.2".
  468: */
  469: static void fkScanChildren(
  470:   Parse *pParse,                  /* Parse context */
  471:   SrcList *pSrc,                  /* SrcList containing the table to scan */
  472:   Table *pTab,
  473:   Index *pIdx,                    /* Foreign key index */
  474:   FKey *pFKey,                    /* Foreign key relationship */
  475:   int *aiCol,                     /* Map from pIdx cols to child table cols */
  476:   int regData,                    /* Referenced table data starts here */
  477:   int nIncr                       /* Amount to increment deferred counter by */
  478: ){
  479:   sqlite3 *db = pParse->db;       /* Database handle */
  480:   int i;                          /* Iterator variable */
  481:   Expr *pWhere = 0;               /* WHERE clause to scan with */
  482:   NameContext sNameContext;       /* Context used to resolve WHERE clause */
  483:   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
  484:   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
  485:   Vdbe *v = sqlite3GetVdbe(pParse);
  486: 
  487:   assert( !pIdx || pIdx->pTable==pTab );
  488: 
  489:   if( nIncr<0 ){
  490:     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
  491:   }
  492: 
  493:   /* Create an Expr object representing an SQL expression like:
  494:   **
  495:   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
  496:   **
  497:   ** The collation sequence used for the comparison should be that of
  498:   ** the parent key columns. The affinity of the parent key column should
  499:   ** be applied to each child key value before the comparison takes place.
  500:   */
  501:   for(i=0; i<pFKey->nCol; i++){
  502:     Expr *pLeft;                  /* Value from parent table row */
  503:     Expr *pRight;                 /* Column ref to child table */
  504:     Expr *pEq;                    /* Expression (pLeft = pRight) */
  505:     int iCol;                     /* Index of column in child table */ 
  506:     const char *zCol;             /* Name of column in child table */
  507: 
  508:     pLeft = sqlite3Expr(db, TK_REGISTER, 0);
  509:     if( pLeft ){
  510:       /* Set the collation sequence and affinity of the LHS of each TK_EQ
  511:       ** expression to the parent key column defaults.  */
  512:       if( pIdx ){
  513:         Column *pCol;
  514:         iCol = pIdx->aiColumn[i];
  515:         pCol = &pTab->aCol[iCol];
  516:         if( pTab->iPKey==iCol ) iCol = -1;
  517:         pLeft->iTable = regData+iCol+1;
  518:         pLeft->affinity = pCol->affinity;
  519:         pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
  520:       }else{
  521:         pLeft->iTable = regData;
  522:         pLeft->affinity = SQLITE_AFF_INTEGER;
  523:       }
  524:     }
  525:     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
  526:     assert( iCol>=0 );
  527:     zCol = pFKey->pFrom->aCol[iCol].zName;
  528:     pRight = sqlite3Expr(db, TK_ID, zCol);
  529:     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
  530:     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
  531:   }
  532: 
  533:   /* If the child table is the same as the parent table, and this scan
  534:   ** is taking place as part of a DELETE operation (operation D.2), omit the
  535:   ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE 
  536:   ** clause, where $rowid is the rowid of the row being deleted.  */
  537:   if( pTab==pFKey->pFrom && nIncr>0 ){
  538:     Expr *pEq;                    /* Expression (pLeft = pRight) */
  539:     Expr *pLeft;                  /* Value from parent table row */
  540:     Expr *pRight;                 /* Column ref to child table */
  541:     pLeft = sqlite3Expr(db, TK_REGISTER, 0);
  542:     pRight = sqlite3Expr(db, TK_COLUMN, 0);
  543:     if( pLeft && pRight ){
  544:       pLeft->iTable = regData;
  545:       pLeft->affinity = SQLITE_AFF_INTEGER;
  546:       pRight->iTable = pSrc->a[0].iCursor;
  547:       pRight->iColumn = -1;
  548:     }
  549:     pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
  550:     pWhere = sqlite3ExprAnd(db, pWhere, pEq);
  551:   }
  552: 
  553:   /* Resolve the references in the WHERE clause. */
  554:   memset(&sNameContext, 0, sizeof(NameContext));
  555:   sNameContext.pSrcList = pSrc;
  556:   sNameContext.pParse = pParse;
  557:   sqlite3ResolveExprNames(&sNameContext, pWhere);
  558: 
  559:   /* Create VDBE to loop through the entries in pSrc that match the WHERE
  560:   ** clause. If the constraint is not deferred, throw an exception for
  561:   ** each row found. Otherwise, for deferred constraints, increment the
  562:   ** deferred constraint counter by nIncr for each row selected.  */
  563:   pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0);
  564:   if( nIncr>0 && pFKey->isDeferred==0 ){
  565:     sqlite3ParseToplevel(pParse)->mayAbort = 1;
  566:   }
  567:   sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  568:   if( pWInfo ){
  569:     sqlite3WhereEnd(pWInfo);
  570:   }
  571: 
  572:   /* Clean up the WHERE clause constructed above. */
  573:   sqlite3ExprDelete(db, pWhere);
  574:   if( iFkIfZero ){
  575:     sqlite3VdbeJumpHere(v, iFkIfZero);
  576:   }
  577: }
  578: 
  579: /*
  580: ** This function returns a pointer to the head of a linked list of FK
  581: ** constraints for which table pTab is the parent table. For example,
  582: ** given the following schema:
  583: **
  584: **   CREATE TABLE t1(a PRIMARY KEY);
  585: **   CREATE TABLE t2(b REFERENCES t1(a);
  586: **
  587: ** Calling this function with table "t1" as an argument returns a pointer
  588: ** to the FKey structure representing the foreign key constraint on table
  589: ** "t2". Calling this function with "t2" as the argument would return a
  590: ** NULL pointer (as there are no FK constraints for which t2 is the parent
  591: ** table).
  592: */
  593: FKey *sqlite3FkReferences(Table *pTab){
  594:   int nName = sqlite3Strlen30(pTab->zName);
  595:   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
  596: }
  597: 
  598: /*
  599: ** The second argument is a Trigger structure allocated by the 
  600: ** fkActionTrigger() routine. This function deletes the Trigger structure
  601: ** and all of its sub-components.
  602: **
  603: ** The Trigger structure or any of its sub-components may be allocated from
  604: ** the lookaside buffer belonging to database handle dbMem.
  605: */
  606: static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
  607:   if( p ){
  608:     TriggerStep *pStep = p->step_list;
  609:     sqlite3ExprDelete(dbMem, pStep->pWhere);
  610:     sqlite3ExprListDelete(dbMem, pStep->pExprList);
  611:     sqlite3SelectDelete(dbMem, pStep->pSelect);
  612:     sqlite3ExprDelete(dbMem, p->pWhen);
  613:     sqlite3DbFree(dbMem, p);
  614:   }
  615: }
  616: 
  617: /*
  618: ** This function is called to generate code that runs when table pTab is
  619: ** being dropped from the database. The SrcList passed as the second argument
  620: ** to this function contains a single entry guaranteed to resolve to
  621: ** table pTab.
  622: **
  623: ** Normally, no code is required. However, if either
  624: **
  625: **   (a) The table is the parent table of a FK constraint, or
  626: **   (b) The table is the child table of a deferred FK constraint and it is
  627: **       determined at runtime that there are outstanding deferred FK 
  628: **       constraint violations in the database,
  629: **
  630: ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
  631: ** the table from the database. Triggers are disabled while running this
  632: ** DELETE, but foreign key actions are not.
  633: */
  634: void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
  635:   sqlite3 *db = pParse->db;
  636:   if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
  637:     int iSkip = 0;
  638:     Vdbe *v = sqlite3GetVdbe(pParse);
  639: 
  640:     assert( v );                  /* VDBE has already been allocated */
  641:     if( sqlite3FkReferences(pTab)==0 ){
  642:       /* Search for a deferred foreign key constraint for which this table
  643:       ** is the child table. If one cannot be found, return without 
  644:       ** generating any VDBE code. If one can be found, then jump over
  645:       ** the entire DELETE if there are no outstanding deferred constraints
  646:       ** when this statement is run.  */
  647:       FKey *p;
  648:       for(p=pTab->pFKey; p; p=p->pNextFrom){
  649:         if( p->isDeferred ) break;
  650:       }
  651:       if( !p ) return;
  652:       iSkip = sqlite3VdbeMakeLabel(v);
  653:       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
  654:     }
  655: 
  656:     pParse->disableTriggers = 1;
  657:     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
  658:     pParse->disableTriggers = 0;
  659: 
  660:     /* If the DELETE has generated immediate foreign key constraint 
  661:     ** violations, halt the VDBE and return an error at this point, before
  662:     ** any modifications to the schema are made. This is because statement
  663:     ** transactions are not able to rollback schema changes.  */
  664:     sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
  665:     sqlite3HaltConstraint(
  666:         pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
  667:     );
  668: 
  669:     if( iSkip ){
  670:       sqlite3VdbeResolveLabel(v, iSkip);
  671:     }
  672:   }
  673: }
  674: 
  675: /*
  676: ** This function is called when inserting, deleting or updating a row of
  677: ** table pTab to generate VDBE code to perform foreign key constraint 
  678: ** processing for the operation.
  679: **
  680: ** For a DELETE operation, parameter regOld is passed the index of the
  681: ** first register in an array of (pTab->nCol+1) registers containing the
  682: ** rowid of the row being deleted, followed by each of the column values
  683: ** of the row being deleted, from left to right. Parameter regNew is passed
  684: ** zero in this case.
  685: **
  686: ** For an INSERT operation, regOld is passed zero and regNew is passed the
  687: ** first register of an array of (pTab->nCol+1) registers containing the new
  688: ** row data.
  689: **
  690: ** For an UPDATE operation, this function is called twice. Once before
  691: ** the original record is deleted from the table using the calling convention
  692: ** described for DELETE. Then again after the original record is deleted
  693: ** but before the new record is inserted using the INSERT convention. 
  694: */
  695: void sqlite3FkCheck(
  696:   Parse *pParse,                  /* Parse context */
  697:   Table *pTab,                    /* Row is being deleted from this table */ 
  698:   int regOld,                     /* Previous row data is stored here */
  699:   int regNew                      /* New row data is stored here */
  700: ){
  701:   sqlite3 *db = pParse->db;       /* Database handle */
  702:   FKey *pFKey;                    /* Used to iterate through FKs */
  703:   int iDb;                        /* Index of database containing pTab */
  704:   const char *zDb;                /* Name of database containing pTab */
  705:   int isIgnoreErrors = pParse->disableTriggers;
  706: 
  707:   /* Exactly one of regOld and regNew should be non-zero. */
  708:   assert( (regOld==0)!=(regNew==0) );
  709: 
  710:   /* If foreign-keys are disabled, this function is a no-op. */
  711:   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
  712: 
  713:   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  714:   zDb = db->aDb[iDb].zName;
  715: 
  716:   /* Loop through all the foreign key constraints for which pTab is the
  717:   ** child table (the table that the foreign key definition is part of).  */
  718:   for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
  719:     Table *pTo;                   /* Parent table of foreign key pFKey */
  720:     Index *pIdx = 0;              /* Index on key columns in pTo */
  721:     int *aiFree = 0;
  722:     int *aiCol;
  723:     int iCol;
  724:     int i;
  725:     int isIgnore = 0;
  726: 
  727:     /* Find the parent table of this foreign key. Also find a unique index 
  728:     ** on the parent key columns in the parent table. If either of these 
  729:     ** schema items cannot be located, set an error in pParse and return 
  730:     ** early.  */
  731:     if( pParse->disableTriggers ){
  732:       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
  733:     }else{
  734:       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
  735:     }
  736:     if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
  737:       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
  738:       if( !isIgnoreErrors || db->mallocFailed ) return;
  739:       if( pTo==0 ){
  740:         /* If isIgnoreErrors is true, then a table is being dropped. In this
  741:         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
  742:         ** before actually dropping it in order to check FK constraints.
  743:         ** If the parent table of an FK constraint on the current table is
  744:         ** missing, behave as if it is empty. i.e. decrement the relevant
  745:         ** FK counter for each row of the current table with non-NULL keys.
  746:         */
  747:         Vdbe *v = sqlite3GetVdbe(pParse);
  748:         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
  749:         for(i=0; i<pFKey->nCol; i++){
  750:           int iReg = pFKey->aCol[i].iFrom + regOld + 1;
  751:           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
  752:         }
  753:         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
  754:       }
  755:       continue;
  756:     }
  757:     assert( pFKey->nCol==1 || (aiFree && pIdx) );
  758: 
  759:     if( aiFree ){
  760:       aiCol = aiFree;
  761:     }else{
  762:       iCol = pFKey->aCol[0].iFrom;
  763:       aiCol = &iCol;
  764:     }
  765:     for(i=0; i<pFKey->nCol; i++){
  766:       if( aiCol[i]==pTab->iPKey ){
  767:         aiCol[i] = -1;
  768:       }
  769: #ifndef SQLITE_OMIT_AUTHORIZATION
  770:       /* Request permission to read the parent key columns. If the 
  771:       ** authorization callback returns SQLITE_IGNORE, behave as if any
  772:       ** values read from the parent table are NULL. */
  773:       if( db->xAuth ){
  774:         int rcauth;
  775:         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
  776:         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
  777:         isIgnore = (rcauth==SQLITE_IGNORE);
  778:       }
  779: #endif
  780:     }
  781: 
  782:     /* Take a shared-cache advisory read-lock on the parent table. Allocate 
  783:     ** a cursor to use to search the unique index on the parent key columns 
  784:     ** in the parent table.  */
  785:     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
  786:     pParse->nTab++;
  787: 
  788:     if( regOld!=0 ){
  789:       /* A row is being removed from the child table. Search for the parent.
  790:       ** If the parent does not exist, removing the child row resolves an 
  791:       ** outstanding foreign key constraint violation. */
  792:       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
  793:     }
  794:     if( regNew!=0 ){
  795:       /* A row is being added to the child table. If a parent row cannot
  796:       ** be found, adding the child row has violated the FK constraint. */ 
  797:       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
  798:     }
  799: 
  800:     sqlite3DbFree(db, aiFree);
  801:   }
  802: 
  803:   /* Loop through all the foreign key constraints that refer to this table */
  804:   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
  805:     Index *pIdx = 0;              /* Foreign key index for pFKey */
  806:     SrcList *pSrc;
  807:     int *aiCol = 0;
  808: 
  809:     if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
  810:       assert( regOld==0 && regNew!=0 );
  811:       /* Inserting a single row into a parent table cannot cause an immediate
  812:       ** foreign key violation. So do nothing in this case.  */
  813:       continue;
  814:     }
  815: 
  816:     if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
  817:       if( !isIgnoreErrors || db->mallocFailed ) return;
  818:       continue;
  819:     }
  820:     assert( aiCol || pFKey->nCol==1 );
  821: 
  822:     /* Create a SrcList structure containing a single table (the table 
  823:     ** the foreign key that refers to this table is attached to). This
  824:     ** is required for the sqlite3WhereXXX() interface.  */
  825:     pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
  826:     if( pSrc ){
  827:       struct SrcList_item *pItem = pSrc->a;
  828:       pItem->pTab = pFKey->pFrom;
  829:       pItem->zName = pFKey->pFrom->zName;
  830:       pItem->pTab->nRef++;
  831:       pItem->iCursor = pParse->nTab++;
  832:   
  833:       if( regNew!=0 ){
  834:         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
  835:       }
  836:       if( regOld!=0 ){
  837:         /* If there is a RESTRICT action configured for the current operation
  838:         ** on the parent table of this FK, then throw an exception 
  839:         ** immediately if the FK constraint is violated, even if this is a
  840:         ** deferred trigger. That's what RESTRICT means. To defer checking
  841:         ** the constraint, the FK should specify NO ACTION (represented
  842:         ** using OE_None). NO ACTION is the default.  */
  843:         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
  844:       }
  845:       pItem->zName = 0;
  846:       sqlite3SrcListDelete(db, pSrc);
  847:     }
  848:     sqlite3DbFree(db, aiCol);
  849:   }
  850: }
  851: 
  852: #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
  853: 
  854: /*
  855: ** This function is called before generating code to update or delete a 
  856: ** row contained in table pTab.
  857: */
  858: u32 sqlite3FkOldmask(
  859:   Parse *pParse,                  /* Parse context */
  860:   Table *pTab                     /* Table being modified */
  861: ){
  862:   u32 mask = 0;
  863:   if( pParse->db->flags&SQLITE_ForeignKeys ){
  864:     FKey *p;
  865:     int i;
  866:     for(p=pTab->pFKey; p; p=p->pNextFrom){
  867:       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
  868:     }
  869:     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
  870:       Index *pIdx = 0;
  871:       locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
  872:       if( pIdx ){
  873:         for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
  874:       }
  875:     }
  876:   }
  877:   return mask;
  878: }
  879: 
  880: /*
  881: ** This function is called before generating code to update or delete a 
  882: ** row contained in table pTab. If the operation is a DELETE, then
  883: ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
  884: ** to an array of size N, where N is the number of columns in table pTab.
  885: ** If the i'th column is not modified by the UPDATE, then the corresponding 
  886: ** entry in the aChange[] array is set to -1. If the column is modified,
  887: ** the value is 0 or greater. Parameter chngRowid is set to true if the
  888: ** UPDATE statement modifies the rowid fields of the table.
  889: **
  890: ** If any foreign key processing will be required, this function returns
  891: ** true. If there is no foreign key related processing, this function 
  892: ** returns false.
  893: */
  894: int sqlite3FkRequired(
  895:   Parse *pParse,                  /* Parse context */
  896:   Table *pTab,                    /* Table being modified */
  897:   int *aChange,                   /* Non-NULL for UPDATE operations */
  898:   int chngRowid                   /* True for UPDATE that affects rowid */
  899: ){
  900:   if( pParse->db->flags&SQLITE_ForeignKeys ){
  901:     if( !aChange ){
  902:       /* A DELETE operation. Foreign key processing is required if the 
  903:       ** table in question is either the child or parent table for any 
  904:       ** foreign key constraint.  */
  905:       return (sqlite3FkReferences(pTab) || pTab->pFKey);
  906:     }else{
  907:       /* This is an UPDATE. Foreign key processing is only required if the
  908:       ** operation modifies one or more child or parent key columns. */
  909:       int i;
  910:       FKey *p;
  911: 
  912:       /* Check if any child key columns are being modified. */
  913:       for(p=pTab->pFKey; p; p=p->pNextFrom){
  914:         for(i=0; i<p->nCol; i++){
  915:           int iChildKey = p->aCol[i].iFrom;
  916:           if( aChange[iChildKey]>=0 ) return 1;
  917:           if( iChildKey==pTab->iPKey && chngRowid ) return 1;
  918:         }
  919:       }
  920: 
  921:       /* Check if any parent key columns are being modified. */
  922:       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
  923:         for(i=0; i<p->nCol; i++){
  924:           char *zKey = p->aCol[i].zCol;
  925:           int iKey;
  926:           for(iKey=0; iKey<pTab->nCol; iKey++){
  927:             Column *pCol = &pTab->aCol[iKey];
  928:             if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
  929:               if( aChange[iKey]>=0 ) return 1;
  930:               if( iKey==pTab->iPKey && chngRowid ) return 1;
  931:             }
  932:           }
  933:         }
  934:       }
  935:     }
  936:   }
  937:   return 0;
  938: }
  939: 
  940: /*
  941: ** This function is called when an UPDATE or DELETE operation is being 
  942: ** compiled on table pTab, which is the parent table of foreign-key pFKey.
  943: ** If the current operation is an UPDATE, then the pChanges parameter is
  944: ** passed a pointer to the list of columns being modified. If it is a
  945: ** DELETE, pChanges is passed a NULL pointer.
  946: **
  947: ** It returns a pointer to a Trigger structure containing a trigger
  948: ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
  949: ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
  950: ** returned (these actions require no special handling by the triggers
  951: ** sub-system, code for them is created by fkScanChildren()).
  952: **
  953: ** For example, if pFKey is the foreign key and pTab is table "p" in 
  954: ** the following schema:
  955: **
  956: **   CREATE TABLE p(pk PRIMARY KEY);
  957: **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
  958: **
  959: ** then the returned trigger structure is equivalent to:
  960: **
  961: **   CREATE TRIGGER ... DELETE ON p BEGIN
  962: **     DELETE FROM c WHERE ck = old.pk;
  963: **   END;
  964: **
  965: ** The returned pointer is cached as part of the foreign key object. It
  966: ** is eventually freed along with the rest of the foreign key object by 
  967: ** sqlite3FkDelete().
  968: */
  969: static Trigger *fkActionTrigger(
  970:   Parse *pParse,                  /* Parse context */
  971:   Table *pTab,                    /* Table being updated or deleted from */
  972:   FKey *pFKey,                    /* Foreign key to get action for */
  973:   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
  974: ){
  975:   sqlite3 *db = pParse->db;       /* Database handle */
  976:   int action;                     /* One of OE_None, OE_Cascade etc. */
  977:   Trigger *pTrigger;              /* Trigger definition to return */
  978:   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
  979: 
  980:   action = pFKey->aAction[iAction];
  981:   pTrigger = pFKey->apTrigger[iAction];
  982: 
  983:   if( action!=OE_None && !pTrigger ){
  984:     u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
  985:     char const *zFrom;            /* Name of child table */
  986:     int nFrom;                    /* Length in bytes of zFrom */
  987:     Index *pIdx = 0;              /* Parent key index for this FK */
  988:     int *aiCol = 0;               /* child table cols -> parent key cols */
  989:     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
  990:     Expr *pWhere = 0;             /* WHERE clause of trigger step */
  991:     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
  992:     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
  993:     int i;                        /* Iterator variable */
  994:     Expr *pWhen = 0;              /* WHEN clause for the trigger */
  995: 
  996:     if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
  997:     assert( aiCol || pFKey->nCol==1 );
  998: 
  999:     for(i=0; i<pFKey->nCol; i++){
 1000:       Token tOld = { "old", 3 };  /* Literal "old" token */
 1001:       Token tNew = { "new", 3 };  /* Literal "new" token */
 1002:       Token tFromCol;             /* Name of column in child table */
 1003:       Token tToCol;               /* Name of column in parent table */
 1004:       int iFromCol;               /* Idx of column in child table */
 1005:       Expr *pEq;                  /* tFromCol = OLD.tToCol */
 1006: 
 1007:       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
 1008:       assert( iFromCol>=0 );
 1009:       tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
 1010:       tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
 1011: 
 1012:       tToCol.n = sqlite3Strlen30(tToCol.z);
 1013:       tFromCol.n = sqlite3Strlen30(tFromCol.z);
 1014: 
 1015:       /* Create the expression "OLD.zToCol = zFromCol". It is important
 1016:       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
 1017:       ** that the affinity and collation sequence associated with the
 1018:       ** parent table are used for the comparison. */
 1019:       pEq = sqlite3PExpr(pParse, TK_EQ,
 1020:           sqlite3PExpr(pParse, TK_DOT, 
 1021:             sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
 1022:             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
 1023:           , 0),
 1024:           sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
 1025:       , 0);
 1026:       pWhere = sqlite3ExprAnd(db, pWhere, pEq);
 1027: 
 1028:       /* For ON UPDATE, construct the next term of the WHEN clause.
 1029:       ** The final WHEN clause will be like this:
 1030:       **
 1031:       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
 1032:       */
 1033:       if( pChanges ){
 1034:         pEq = sqlite3PExpr(pParse, TK_IS,
 1035:             sqlite3PExpr(pParse, TK_DOT, 
 1036:               sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
 1037:               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
 1038:               0),
 1039:             sqlite3PExpr(pParse, TK_DOT, 
 1040:               sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
 1041:               sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
 1042:               0),
 1043:             0);
 1044:         pWhen = sqlite3ExprAnd(db, pWhen, pEq);
 1045:       }
 1046:   
 1047:       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
 1048:         Expr *pNew;
 1049:         if( action==OE_Cascade ){
 1050:           pNew = sqlite3PExpr(pParse, TK_DOT, 
 1051:             sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
 1052:             sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
 1053:           , 0);
 1054:         }else if( action==OE_SetDflt ){
 1055:           Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
 1056:           if( pDflt ){
 1057:             pNew = sqlite3ExprDup(db, pDflt, 0);
 1058:           }else{
 1059:             pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
 1060:           }
 1061:         }else{
 1062:           pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
 1063:         }
 1064:         pList = sqlite3ExprListAppend(pParse, pList, pNew);
 1065:         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
 1066:       }
 1067:     }
 1068:     sqlite3DbFree(db, aiCol);
 1069: 
 1070:     zFrom = pFKey->pFrom->zName;
 1071:     nFrom = sqlite3Strlen30(zFrom);
 1072: 
 1073:     if( action==OE_Restrict ){
 1074:       Token tFrom;
 1075:       Expr *pRaise; 
 1076: 
 1077:       tFrom.z = zFrom;
 1078:       tFrom.n = nFrom;
 1079:       pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
 1080:       if( pRaise ){
 1081:         pRaise->affinity = OE_Abort;
 1082:       }
 1083:       pSelect = sqlite3SelectNew(pParse, 
 1084:           sqlite3ExprListAppend(pParse, 0, pRaise),
 1085:           sqlite3SrcListAppend(db, 0, &tFrom, 0),
 1086:           pWhere,
 1087:           0, 0, 0, 0, 0, 0
 1088:       );
 1089:       pWhere = 0;
 1090:     }
 1091: 
 1092:     /* Disable lookaside memory allocation */
 1093:     enableLookaside = db->lookaside.bEnabled;
 1094:     db->lookaside.bEnabled = 0;
 1095: 
 1096:     pTrigger = (Trigger *)sqlite3DbMallocZero(db, 
 1097:         sizeof(Trigger) +         /* struct Trigger */
 1098:         sizeof(TriggerStep) +     /* Single step in trigger program */
 1099:         nFrom + 1                 /* Space for pStep->target.z */
 1100:     );
 1101:     if( pTrigger ){
 1102:       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
 1103:       pStep->target.z = (char *)&pStep[1];
 1104:       pStep->target.n = nFrom;
 1105:       memcpy((char *)pStep->target.z, zFrom, nFrom);
 1106:   
 1107:       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
 1108:       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
 1109:       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
 1110:       if( pWhen ){
 1111:         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
 1112:         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
 1113:       }
 1114:     }
 1115: 
 1116:     /* Re-enable the lookaside buffer, if it was disabled earlier. */
 1117:     db->lookaside.bEnabled = enableLookaside;
 1118: 
 1119:     sqlite3ExprDelete(db, pWhere);
 1120:     sqlite3ExprDelete(db, pWhen);
 1121:     sqlite3ExprListDelete(db, pList);
 1122:     sqlite3SelectDelete(db, pSelect);
 1123:     if( db->mallocFailed==1 ){
 1124:       fkTriggerDelete(db, pTrigger);
 1125:       return 0;
 1126:     }
 1127:     assert( pStep!=0 );
 1128: 
 1129:     switch( action ){
 1130:       case OE_Restrict:
 1131:         pStep->op = TK_SELECT; 
 1132:         break;
 1133:       case OE_Cascade: 
 1134:         if( !pChanges ){ 
 1135:           pStep->op = TK_DELETE; 
 1136:           break; 
 1137:         }
 1138:       default:
 1139:         pStep->op = TK_UPDATE;
 1140:     }
 1141:     pStep->pTrig = pTrigger;
 1142:     pTrigger->pSchema = pTab->pSchema;
 1143:     pTrigger->pTabSchema = pTab->pSchema;
 1144:     pFKey->apTrigger[iAction] = pTrigger;
 1145:     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
 1146:   }
 1147: 
 1148:   return pTrigger;
 1149: }
 1150: 
 1151: /*
 1152: ** This function is called when deleting or updating a row to implement
 1153: ** any required CASCADE, SET NULL or SET DEFAULT actions.
 1154: */
 1155: void sqlite3FkActions(
 1156:   Parse *pParse,                  /* Parse context */
 1157:   Table *pTab,                    /* Table being updated or deleted from */
 1158:   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
 1159:   int regOld                      /* Address of array containing old row */
 1160: ){
 1161:   /* If foreign-key support is enabled, iterate through all FKs that 
 1162:   ** refer to table pTab. If there is an action associated with the FK 
 1163:   ** for this operation (either update or delete), invoke the associated 
 1164:   ** trigger sub-program.  */
 1165:   if( pParse->db->flags&SQLITE_ForeignKeys ){
 1166:     FKey *pFKey;                  /* Iterator variable */
 1167:     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
 1168:       Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
 1169:       if( pAction ){
 1170:         sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
 1171:       }
 1172:     }
 1173:   }
 1174: }
 1175: 
 1176: #endif /* ifndef SQLITE_OMIT_TRIGGER */
 1177: 
 1178: /*
 1179: ** Free all memory associated with foreign key definitions attached to
 1180: ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
 1181: ** hash table.
 1182: */
 1183: void sqlite3FkDelete(sqlite3 *db, Table *pTab){
 1184:   FKey *pFKey;                    /* Iterator variable */
 1185:   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
 1186: 
 1187:   assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
 1188:   for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
 1189: 
 1190:     /* Remove the FK from the fkeyHash hash table. */
 1191:     if( !db || db->pnBytesFreed==0 ){
 1192:       if( pFKey->pPrevTo ){
 1193:         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
 1194:       }else{
 1195:         void *p = (void *)pFKey->pNextTo;
 1196:         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
 1197:         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
 1198:       }
 1199:       if( pFKey->pNextTo ){
 1200:         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
 1201:       }
 1202:     }
 1203: 
 1204:     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
 1205:     ** classified as either immediate or deferred.
 1206:     */
 1207:     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
 1208: 
 1209:     /* Delete any triggers created to implement actions for this FK. */
 1210: #ifndef SQLITE_OMIT_TRIGGER
 1211:     fkTriggerDelete(db, pFKey->apTrigger[0]);
 1212:     fkTriggerDelete(db, pFKey->apTrigger[1]);
 1213: #endif
 1214: 
 1215:     pNext = pFKey->pNextFrom;
 1216:     sqlite3DbFree(db, pFKey);
 1217:   }
 1218: }
 1219: #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>