File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / func.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2002 February 23
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains the C functions that implement various SQL
   13: ** functions of SQLite.  
   14: **
   15: ** There is only one exported symbol in this file - the function
   16: ** sqliteRegisterBuildinFunctions() found at the bottom of the file.
   17: ** All other code has file scope.
   18: */
   19: #include "sqliteInt.h"
   20: #include <stdlib.h>
   21: #include <assert.h>
   22: #include "vdbeInt.h"
   23: 
   24: /*
   25: ** Return the collating function associated with a function.
   26: */
   27: static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
   28:   return context->pColl;
   29: }
   30: 
   31: /*
   32: ** Implementation of the non-aggregate min() and max() functions
   33: */
   34: static void minmaxFunc(
   35:   sqlite3_context *context,
   36:   int argc,
   37:   sqlite3_value **argv
   38: ){
   39:   int i;
   40:   int mask;    /* 0 for min() or 0xffffffff for max() */
   41:   int iBest;
   42:   CollSeq *pColl;
   43: 
   44:   assert( argc>1 );
   45:   mask = sqlite3_user_data(context)==0 ? 0 : -1;
   46:   pColl = sqlite3GetFuncCollSeq(context);
   47:   assert( pColl );
   48:   assert( mask==-1 || mask==0 );
   49:   iBest = 0;
   50:   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
   51:   for(i=1; i<argc; i++){
   52:     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
   53:     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
   54:       testcase( mask==0 );
   55:       iBest = i;
   56:     }
   57:   }
   58:   sqlite3_result_value(context, argv[iBest]);
   59: }
   60: 
   61: /*
   62: ** Return the type of the argument.
   63: */
   64: static void typeofFunc(
   65:   sqlite3_context *context,
   66:   int NotUsed,
   67:   sqlite3_value **argv
   68: ){
   69:   const char *z = 0;
   70:   UNUSED_PARAMETER(NotUsed);
   71:   switch( sqlite3_value_type(argv[0]) ){
   72:     case SQLITE_INTEGER: z = "integer"; break;
   73:     case SQLITE_TEXT:    z = "text";    break;
   74:     case SQLITE_FLOAT:   z = "real";    break;
   75:     case SQLITE_BLOB:    z = "blob";    break;
   76:     default:             z = "null";    break;
   77:   }
   78:   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
   79: }
   80: 
   81: 
   82: /*
   83: ** Implementation of the length() function
   84: */
   85: static void lengthFunc(
   86:   sqlite3_context *context,
   87:   int argc,
   88:   sqlite3_value **argv
   89: ){
   90:   int len;
   91: 
   92:   assert( argc==1 );
   93:   UNUSED_PARAMETER(argc);
   94:   switch( sqlite3_value_type(argv[0]) ){
   95:     case SQLITE_BLOB:
   96:     case SQLITE_INTEGER:
   97:     case SQLITE_FLOAT: {
   98:       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
   99:       break;
  100:     }
  101:     case SQLITE_TEXT: {
  102:       const unsigned char *z = sqlite3_value_text(argv[0]);
  103:       if( z==0 ) return;
  104:       len = 0;
  105:       while( *z ){
  106:         len++;
  107:         SQLITE_SKIP_UTF8(z);
  108:       }
  109:       sqlite3_result_int(context, len);
  110:       break;
  111:     }
  112:     default: {
  113:       sqlite3_result_null(context);
  114:       break;
  115:     }
  116:   }
  117: }
  118: 
  119: /*
  120: ** Implementation of the abs() function.
  121: **
  122: ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
  123: ** the numeric argument X. 
  124: */
  125: static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  126:   assert( argc==1 );
  127:   UNUSED_PARAMETER(argc);
  128:   switch( sqlite3_value_type(argv[0]) ){
  129:     case SQLITE_INTEGER: {
  130:       i64 iVal = sqlite3_value_int64(argv[0]);
  131:       if( iVal<0 ){
  132:         if( (iVal<<1)==0 ){
  133:           /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then
  134:           ** abs(X) throws an integer overflow error since there is no
  135:           ** equivalent positive 64-bit two complement value. */
  136:           sqlite3_result_error(context, "integer overflow", -1);
  137:           return;
  138:         }
  139:         iVal = -iVal;
  140:       } 
  141:       sqlite3_result_int64(context, iVal);
  142:       break;
  143:     }
  144:     case SQLITE_NULL: {
  145:       /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
  146:       sqlite3_result_null(context);
  147:       break;
  148:     }
  149:     default: {
  150:       /* Because sqlite3_value_double() returns 0.0 if the argument is not
  151:       ** something that can be converted into a number, we have:
  152:       ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
  153:       ** cannot be converted to a numeric value. 
  154:       */
  155:       double rVal = sqlite3_value_double(argv[0]);
  156:       if( rVal<0 ) rVal = -rVal;
  157:       sqlite3_result_double(context, rVal);
  158:       break;
  159:     }
  160:   }
  161: }
  162: 
  163: /*
  164: ** Implementation of the substr() function.
  165: **
  166: ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
  167: ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
  168: ** of x.  If x is text, then we actually count UTF-8 characters.
  169: ** If x is a blob, then we count bytes.
  170: **
  171: ** If p1 is negative, then we begin abs(p1) from the end of x[].
  172: **
  173: ** If p2 is negative, return the p2 characters preceeding p1.
  174: */
  175: static void substrFunc(
  176:   sqlite3_context *context,
  177:   int argc,
  178:   sqlite3_value **argv
  179: ){
  180:   const unsigned char *z;
  181:   const unsigned char *z2;
  182:   int len;
  183:   int p0type;
  184:   i64 p1, p2;
  185:   int negP2 = 0;
  186: 
  187:   assert( argc==3 || argc==2 );
  188:   if( sqlite3_value_type(argv[1])==SQLITE_NULL
  189:    || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
  190:   ){
  191:     return;
  192:   }
  193:   p0type = sqlite3_value_type(argv[0]);
  194:   p1 = sqlite3_value_int(argv[1]);
  195:   if( p0type==SQLITE_BLOB ){
  196:     len = sqlite3_value_bytes(argv[0]);
  197:     z = sqlite3_value_blob(argv[0]);
  198:     if( z==0 ) return;
  199:     assert( len==sqlite3_value_bytes(argv[0]) );
  200:   }else{
  201:     z = sqlite3_value_text(argv[0]);
  202:     if( z==0 ) return;
  203:     len = 0;
  204:     if( p1<0 ){
  205:       for(z2=z; *z2; len++){
  206:         SQLITE_SKIP_UTF8(z2);
  207:       }
  208:     }
  209:   }
  210:   if( argc==3 ){
  211:     p2 = sqlite3_value_int(argv[2]);
  212:     if( p2<0 ){
  213:       p2 = -p2;
  214:       negP2 = 1;
  215:     }
  216:   }else{
  217:     p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
  218:   }
  219:   if( p1<0 ){
  220:     p1 += len;
  221:     if( p1<0 ){
  222:       p2 += p1;
  223:       if( p2<0 ) p2 = 0;
  224:       p1 = 0;
  225:     }
  226:   }else if( p1>0 ){
  227:     p1--;
  228:   }else if( p2>0 ){
  229:     p2--;
  230:   }
  231:   if( negP2 ){
  232:     p1 -= p2;
  233:     if( p1<0 ){
  234:       p2 += p1;
  235:       p1 = 0;
  236:     }
  237:   }
  238:   assert( p1>=0 && p2>=0 );
  239:   if( p0type!=SQLITE_BLOB ){
  240:     while( *z && p1 ){
  241:       SQLITE_SKIP_UTF8(z);
  242:       p1--;
  243:     }
  244:     for(z2=z; *z2 && p2; p2--){
  245:       SQLITE_SKIP_UTF8(z2);
  246:     }
  247:     sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
  248:   }else{
  249:     if( p1+p2>len ){
  250:       p2 = len-p1;
  251:       if( p2<0 ) p2 = 0;
  252:     }
  253:     sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
  254:   }
  255: }
  256: 
  257: /*
  258: ** Implementation of the round() function
  259: */
  260: #ifndef SQLITE_OMIT_FLOATING_POINT
  261: static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  262:   int n = 0;
  263:   double r;
  264:   char *zBuf;
  265:   assert( argc==1 || argc==2 );
  266:   if( argc==2 ){
  267:     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
  268:     n = sqlite3_value_int(argv[1]);
  269:     if( n>30 ) n = 30;
  270:     if( n<0 ) n = 0;
  271:   }
  272:   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  273:   r = sqlite3_value_double(argv[0]);
  274:   /* If Y==0 and X will fit in a 64-bit int,
  275:   ** handle the rounding directly,
  276:   ** otherwise use printf.
  277:   */
  278:   if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
  279:     r = (double)((sqlite_int64)(r+0.5));
  280:   }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
  281:     r = -(double)((sqlite_int64)((-r)+0.5));
  282:   }else{
  283:     zBuf = sqlite3_mprintf("%.*f",n,r);
  284:     if( zBuf==0 ){
  285:       sqlite3_result_error_nomem(context);
  286:       return;
  287:     }
  288:     sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
  289:     sqlite3_free(zBuf);
  290:   }
  291:   sqlite3_result_double(context, r);
  292: }
  293: #endif
  294: 
  295: /*
  296: ** Allocate nByte bytes of space using sqlite3_malloc(). If the
  297: ** allocation fails, call sqlite3_result_error_nomem() to notify
  298: ** the database handle that malloc() has failed and return NULL.
  299: ** If nByte is larger than the maximum string or blob length, then
  300: ** raise an SQLITE_TOOBIG exception and return NULL.
  301: */
  302: static void *contextMalloc(sqlite3_context *context, i64 nByte){
  303:   char *z;
  304:   sqlite3 *db = sqlite3_context_db_handle(context);
  305:   assert( nByte>0 );
  306:   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
  307:   testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
  308:   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  309:     sqlite3_result_error_toobig(context);
  310:     z = 0;
  311:   }else{
  312:     z = sqlite3Malloc((int)nByte);
  313:     if( !z ){
  314:       sqlite3_result_error_nomem(context);
  315:     }
  316:   }
  317:   return z;
  318: }
  319: 
  320: /*
  321: ** Implementation of the upper() and lower() SQL functions.
  322: */
  323: static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  324:   char *z1;
  325:   const char *z2;
  326:   int i, n;
  327:   UNUSED_PARAMETER(argc);
  328:   z2 = (char*)sqlite3_value_text(argv[0]);
  329:   n = sqlite3_value_bytes(argv[0]);
  330:   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
  331:   assert( z2==(char*)sqlite3_value_text(argv[0]) );
  332:   if( z2 ){
  333:     z1 = contextMalloc(context, ((i64)n)+1);
  334:     if( z1 ){
  335:       for(i=0; i<n; i++){
  336:         z1[i] = (char)sqlite3Toupper(z2[i]);
  337:       }
  338:       sqlite3_result_text(context, z1, n, sqlite3_free);
  339:     }
  340:   }
  341: }
  342: static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  343:   char *z1;
  344:   const char *z2;
  345:   int i, n;
  346:   UNUSED_PARAMETER(argc);
  347:   z2 = (char*)sqlite3_value_text(argv[0]);
  348:   n = sqlite3_value_bytes(argv[0]);
  349:   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
  350:   assert( z2==(char*)sqlite3_value_text(argv[0]) );
  351:   if( z2 ){
  352:     z1 = contextMalloc(context, ((i64)n)+1);
  353:     if( z1 ){
  354:       for(i=0; i<n; i++){
  355:         z1[i] = sqlite3Tolower(z2[i]);
  356:       }
  357:       sqlite3_result_text(context, z1, n, sqlite3_free);
  358:     }
  359:   }
  360: }
  361: 
  362: 
  363: #if 0  /* This function is never used. */
  364: /*
  365: ** The COALESCE() and IFNULL() functions used to be implemented as shown
  366: ** here.  But now they are implemented as VDBE code so that unused arguments
  367: ** do not have to be computed.  This legacy implementation is retained as
  368: ** comment.
  369: */
  370: /*
  371: ** Implementation of the IFNULL(), NVL(), and COALESCE() functions.  
  372: ** All three do the same thing.  They return the first non-NULL
  373: ** argument.
  374: */
  375: static void ifnullFunc(
  376:   sqlite3_context *context,
  377:   int argc,
  378:   sqlite3_value **argv
  379: ){
  380:   int i;
  381:   for(i=0; i<argc; i++){
  382:     if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
  383:       sqlite3_result_value(context, argv[i]);
  384:       break;
  385:     }
  386:   }
  387: }
  388: #endif /* NOT USED */
  389: #define ifnullFunc versionFunc   /* Substitute function - never called */
  390: 
  391: /*
  392: ** Implementation of random().  Return a random integer.  
  393: */
  394: static void randomFunc(
  395:   sqlite3_context *context,
  396:   int NotUsed,
  397:   sqlite3_value **NotUsed2
  398: ){
  399:   sqlite_int64 r;
  400:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
  401:   sqlite3_randomness(sizeof(r), &r);
  402:   if( r<0 ){
  403:     /* We need to prevent a random number of 0x8000000000000000 
  404:     ** (or -9223372036854775808) since when you do abs() of that
  405:     ** number of you get the same value back again.  To do this
  406:     ** in a way that is testable, mask the sign bit off of negative
  407:     ** values, resulting in a positive value.  Then take the 
  408:     ** 2s complement of that positive value.  The end result can
  409:     ** therefore be no less than -9223372036854775807.
  410:     */
  411:     r = -(r ^ (((sqlite3_int64)1)<<63));
  412:   }
  413:   sqlite3_result_int64(context, r);
  414: }
  415: 
  416: /*
  417: ** Implementation of randomblob(N).  Return a random blob
  418: ** that is N bytes long.
  419: */
  420: static void randomBlob(
  421:   sqlite3_context *context,
  422:   int argc,
  423:   sqlite3_value **argv
  424: ){
  425:   int n;
  426:   unsigned char *p;
  427:   assert( argc==1 );
  428:   UNUSED_PARAMETER(argc);
  429:   n = sqlite3_value_int(argv[0]);
  430:   if( n<1 ){
  431:     n = 1;
  432:   }
  433:   p = contextMalloc(context, n);
  434:   if( p ){
  435:     sqlite3_randomness(n, p);
  436:     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
  437:   }
  438: }
  439: 
  440: /*
  441: ** Implementation of the last_insert_rowid() SQL function.  The return
  442: ** value is the same as the sqlite3_last_insert_rowid() API function.
  443: */
  444: static void last_insert_rowid(
  445:   sqlite3_context *context, 
  446:   int NotUsed, 
  447:   sqlite3_value **NotUsed2
  448: ){
  449:   sqlite3 *db = sqlite3_context_db_handle(context);
  450:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
  451:   /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
  452:   ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
  453:   ** function. */
  454:   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
  455: }
  456: 
  457: /*
  458: ** Implementation of the changes() SQL function.
  459: **
  460: ** IMP: R-62073-11209 The changes() SQL function is a wrapper
  461: ** around the sqlite3_changes() C/C++ function and hence follows the same
  462: ** rules for counting changes.
  463: */
  464: static void changes(
  465:   sqlite3_context *context,
  466:   int NotUsed,
  467:   sqlite3_value **NotUsed2
  468: ){
  469:   sqlite3 *db = sqlite3_context_db_handle(context);
  470:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
  471:   sqlite3_result_int(context, sqlite3_changes(db));
  472: }
  473: 
  474: /*
  475: ** Implementation of the total_changes() SQL function.  The return value is
  476: ** the same as the sqlite3_total_changes() API function.
  477: */
  478: static void total_changes(
  479:   sqlite3_context *context,
  480:   int NotUsed,
  481:   sqlite3_value **NotUsed2
  482: ){
  483:   sqlite3 *db = sqlite3_context_db_handle(context);
  484:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
  485:   /* IMP: R-52756-41993 This function is a wrapper around the
  486:   ** sqlite3_total_changes() C/C++ interface. */
  487:   sqlite3_result_int(context, sqlite3_total_changes(db));
  488: }
  489: 
  490: /*
  491: ** A structure defining how to do GLOB-style comparisons.
  492: */
  493: struct compareInfo {
  494:   u8 matchAll;
  495:   u8 matchOne;
  496:   u8 matchSet;
  497:   u8 noCase;
  498: };
  499: 
  500: /*
  501: ** For LIKE and GLOB matching on EBCDIC machines, assume that every
  502: ** character is exactly one byte in size.  Also, all characters are
  503: ** able to participate in upper-case-to-lower-case mappings in EBCDIC
  504: ** whereas only characters less than 0x80 do in ASCII.
  505: */
  506: #if defined(SQLITE_EBCDIC)
  507: # define sqlite3Utf8Read(A,C)  (*(A++))
  508: # define GlogUpperToLower(A)   A = sqlite3UpperToLower[A]
  509: #else
  510: # define GlogUpperToLower(A)   if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; }
  511: #endif
  512: 
  513: static const struct compareInfo globInfo = { '*', '?', '[', 0 };
  514: /* The correct SQL-92 behavior is for the LIKE operator to ignore
  515: ** case.  Thus  'a' LIKE 'A' would be true. */
  516: static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
  517: /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
  518: ** is case sensitive causing 'a' LIKE 'A' to be false */
  519: static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
  520: 
  521: /*
  522: ** Compare two UTF-8 strings for equality where the first string can
  523: ** potentially be a "glob" expression.  Return true (1) if they
  524: ** are the same and false (0) if they are different.
  525: **
  526: ** Globbing rules:
  527: **
  528: **      '*'       Matches any sequence of zero or more characters.
  529: **
  530: **      '?'       Matches exactly one character.
  531: **
  532: **     [...]      Matches one character from the enclosed list of
  533: **                characters.
  534: **
  535: **     [^...]     Matches one character not in the enclosed list.
  536: **
  537: ** With the [...] and [^...] matching, a ']' character can be included
  538: ** in the list by making it the first character after '[' or '^'.  A
  539: ** range of characters can be specified using '-'.  Example:
  540: ** "[a-z]" matches any single lower-case letter.  To match a '-', make
  541: ** it the last character in the list.
  542: **
  543: ** This routine is usually quick, but can be N**2 in the worst case.
  544: **
  545: ** Hints: to match '*' or '?', put them in "[]".  Like this:
  546: **
  547: **         abc[*]xyz        Matches "abc*xyz" only
  548: */
  549: static int patternCompare(
  550:   const u8 *zPattern,              /* The glob pattern */
  551:   const u8 *zString,               /* The string to compare against the glob */
  552:   const struct compareInfo *pInfo, /* Information about how to do the compare */
  553:   u32 esc                          /* The escape character */
  554: ){
  555:   u32 c, c2;
  556:   int invert;
  557:   int seen;
  558:   u8 matchOne = pInfo->matchOne;
  559:   u8 matchAll = pInfo->matchAll;
  560:   u8 matchSet = pInfo->matchSet;
  561:   u8 noCase = pInfo->noCase; 
  562:   int prevEscape = 0;     /* True if the previous character was 'escape' */
  563: 
  564:   while( (c = sqlite3Utf8Read(zPattern,&zPattern))!=0 ){
  565:     if( !prevEscape && c==matchAll ){
  566:       while( (c=sqlite3Utf8Read(zPattern,&zPattern)) == matchAll
  567:                || c == matchOne ){
  568:         if( c==matchOne && sqlite3Utf8Read(zString, &zString)==0 ){
  569:           return 0;
  570:         }
  571:       }
  572:       if( c==0 ){
  573:         return 1;
  574:       }else if( c==esc ){
  575:         c = sqlite3Utf8Read(zPattern, &zPattern);
  576:         if( c==0 ){
  577:           return 0;
  578:         }
  579:       }else if( c==matchSet ){
  580:         assert( esc==0 );         /* This is GLOB, not LIKE */
  581:         assert( matchSet<0x80 );  /* '[' is a single-byte character */
  582:         while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
  583:           SQLITE_SKIP_UTF8(zString);
  584:         }
  585:         return *zString!=0;
  586:       }
  587:       while( (c2 = sqlite3Utf8Read(zString,&zString))!=0 ){
  588:         if( noCase ){
  589:           GlogUpperToLower(c2);
  590:           GlogUpperToLower(c);
  591:           while( c2 != 0 && c2 != c ){
  592:             c2 = sqlite3Utf8Read(zString, &zString);
  593:             GlogUpperToLower(c2);
  594:           }
  595:         }else{
  596:           while( c2 != 0 && c2 != c ){
  597:             c2 = sqlite3Utf8Read(zString, &zString);
  598:           }
  599:         }
  600:         if( c2==0 ) return 0;
  601:         if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
  602:       }
  603:       return 0;
  604:     }else if( !prevEscape && c==matchOne ){
  605:       if( sqlite3Utf8Read(zString, &zString)==0 ){
  606:         return 0;
  607:       }
  608:     }else if( c==matchSet ){
  609:       u32 prior_c = 0;
  610:       assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
  611:       seen = 0;
  612:       invert = 0;
  613:       c = sqlite3Utf8Read(zString, &zString);
  614:       if( c==0 ) return 0;
  615:       c2 = sqlite3Utf8Read(zPattern, &zPattern);
  616:       if( c2=='^' ){
  617:         invert = 1;
  618:         c2 = sqlite3Utf8Read(zPattern, &zPattern);
  619:       }
  620:       if( c2==']' ){
  621:         if( c==']' ) seen = 1;
  622:         c2 = sqlite3Utf8Read(zPattern, &zPattern);
  623:       }
  624:       while( c2 && c2!=']' ){
  625:         if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
  626:           c2 = sqlite3Utf8Read(zPattern, &zPattern);
  627:           if( c>=prior_c && c<=c2 ) seen = 1;
  628:           prior_c = 0;
  629:         }else{
  630:           if( c==c2 ){
  631:             seen = 1;
  632:           }
  633:           prior_c = c2;
  634:         }
  635:         c2 = sqlite3Utf8Read(zPattern, &zPattern);
  636:       }
  637:       if( c2==0 || (seen ^ invert)==0 ){
  638:         return 0;
  639:       }
  640:     }else if( esc==c && !prevEscape ){
  641:       prevEscape = 1;
  642:     }else{
  643:       c2 = sqlite3Utf8Read(zString, &zString);
  644:       if( noCase ){
  645:         GlogUpperToLower(c);
  646:         GlogUpperToLower(c2);
  647:       }
  648:       if( c!=c2 ){
  649:         return 0;
  650:       }
  651:       prevEscape = 0;
  652:     }
  653:   }
  654:   return *zString==0;
  655: }
  656: 
  657: /*
  658: ** Count the number of times that the LIKE operator (or GLOB which is
  659: ** just a variation of LIKE) gets called.  This is used for testing
  660: ** only.
  661: */
  662: #ifdef SQLITE_TEST
  663: int sqlite3_like_count = 0;
  664: #endif
  665: 
  666: 
  667: /*
  668: ** Implementation of the like() SQL function.  This function implements
  669: ** the build-in LIKE operator.  The first argument to the function is the
  670: ** pattern and the second argument is the string.  So, the SQL statements:
  671: **
  672: **       A LIKE B
  673: **
  674: ** is implemented as like(B,A).
  675: **
  676: ** This same function (with a different compareInfo structure) computes
  677: ** the GLOB operator.
  678: */
  679: static void likeFunc(
  680:   sqlite3_context *context, 
  681:   int argc, 
  682:   sqlite3_value **argv
  683: ){
  684:   const unsigned char *zA, *zB;
  685:   u32 escape = 0;
  686:   int nPat;
  687:   sqlite3 *db = sqlite3_context_db_handle(context);
  688: 
  689:   zB = sqlite3_value_text(argv[0]);
  690:   zA = sqlite3_value_text(argv[1]);
  691: 
  692:   /* Limit the length of the LIKE or GLOB pattern to avoid problems
  693:   ** of deep recursion and N*N behavior in patternCompare().
  694:   */
  695:   nPat = sqlite3_value_bytes(argv[0]);
  696:   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
  697:   testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
  698:   if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
  699:     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
  700:     return;
  701:   }
  702:   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
  703: 
  704:   if( argc==3 ){
  705:     /* The escape character string must consist of a single UTF-8 character.
  706:     ** Otherwise, return an error.
  707:     */
  708:     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
  709:     if( zEsc==0 ) return;
  710:     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
  711:       sqlite3_result_error(context, 
  712:           "ESCAPE expression must be a single character", -1);
  713:       return;
  714:     }
  715:     escape = sqlite3Utf8Read(zEsc, &zEsc);
  716:   }
  717:   if( zA && zB ){
  718:     struct compareInfo *pInfo = sqlite3_user_data(context);
  719: #ifdef SQLITE_TEST
  720:     sqlite3_like_count++;
  721: #endif
  722:     
  723:     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
  724:   }
  725: }
  726: 
  727: /*
  728: ** Implementation of the NULLIF(x,y) function.  The result is the first
  729: ** argument if the arguments are different.  The result is NULL if the
  730: ** arguments are equal to each other.
  731: */
  732: static void nullifFunc(
  733:   sqlite3_context *context,
  734:   int NotUsed,
  735:   sqlite3_value **argv
  736: ){
  737:   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
  738:   UNUSED_PARAMETER(NotUsed);
  739:   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
  740:     sqlite3_result_value(context, argv[0]);
  741:   }
  742: }
  743: 
  744: /*
  745: ** Implementation of the sqlite_version() function.  The result is the version
  746: ** of the SQLite library that is running.
  747: */
  748: static void versionFunc(
  749:   sqlite3_context *context,
  750:   int NotUsed,
  751:   sqlite3_value **NotUsed2
  752: ){
  753:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
  754:   /* IMP: R-48699-48617 This function is an SQL wrapper around the
  755:   ** sqlite3_libversion() C-interface. */
  756:   sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
  757: }
  758: 
  759: /*
  760: ** Implementation of the sqlite_source_id() function. The result is a string
  761: ** that identifies the particular version of the source code used to build
  762: ** SQLite.
  763: */
  764: static void sourceidFunc(
  765:   sqlite3_context *context,
  766:   int NotUsed,
  767:   sqlite3_value **NotUsed2
  768: ){
  769:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
  770:   /* IMP: R-24470-31136 This function is an SQL wrapper around the
  771:   ** sqlite3_sourceid() C interface. */
  772:   sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
  773: }
  774: 
  775: /*
  776: ** Implementation of the sqlite_log() function.  This is a wrapper around
  777: ** sqlite3_log().  The return value is NULL.  The function exists purely for
  778: ** its side-effects.
  779: */
  780: static void errlogFunc(
  781:   sqlite3_context *context,
  782:   int argc,
  783:   sqlite3_value **argv
  784: ){
  785:   UNUSED_PARAMETER(argc);
  786:   UNUSED_PARAMETER(context);
  787:   sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
  788: }
  789: 
  790: /*
  791: ** Implementation of the sqlite_compileoption_used() function.
  792: ** The result is an integer that identifies if the compiler option
  793: ** was used to build SQLite.
  794: */
  795: #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
  796: static void compileoptionusedFunc(
  797:   sqlite3_context *context,
  798:   int argc,
  799:   sqlite3_value **argv
  800: ){
  801:   const char *zOptName;
  802:   assert( argc==1 );
  803:   UNUSED_PARAMETER(argc);
  804:   /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
  805:   ** function is a wrapper around the sqlite3_compileoption_used() C/C++
  806:   ** function.
  807:   */
  808:   if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
  809:     sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
  810:   }
  811: }
  812: #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
  813: 
  814: /*
  815: ** Implementation of the sqlite_compileoption_get() function. 
  816: ** The result is a string that identifies the compiler options 
  817: ** used to build SQLite.
  818: */
  819: #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
  820: static void compileoptiongetFunc(
  821:   sqlite3_context *context,
  822:   int argc,
  823:   sqlite3_value **argv
  824: ){
  825:   int n;
  826:   assert( argc==1 );
  827:   UNUSED_PARAMETER(argc);
  828:   /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
  829:   ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
  830:   */
  831:   n = sqlite3_value_int(argv[0]);
  832:   sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
  833: }
  834: #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
  835: 
  836: /* Array for converting from half-bytes (nybbles) into ASCII hex
  837: ** digits. */
  838: static const char hexdigits[] = {
  839:   '0', '1', '2', '3', '4', '5', '6', '7',
  840:   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 
  841: };
  842: 
  843: /*
  844: ** EXPERIMENTAL - This is not an official function.  The interface may
  845: ** change.  This function may disappear.  Do not write code that depends
  846: ** on this function.
  847: **
  848: ** Implementation of the QUOTE() function.  This function takes a single
  849: ** argument.  If the argument is numeric, the return value is the same as
  850: ** the argument.  If the argument is NULL, the return value is the string
  851: ** "NULL".  Otherwise, the argument is enclosed in single quotes with
  852: ** single-quote escapes.
  853: */
  854: static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  855:   assert( argc==1 );
  856:   UNUSED_PARAMETER(argc);
  857:   switch( sqlite3_value_type(argv[0]) ){
  858:     case SQLITE_INTEGER:
  859:     case SQLITE_FLOAT: {
  860:       sqlite3_result_value(context, argv[0]);
  861:       break;
  862:     }
  863:     case SQLITE_BLOB: {
  864:       char *zText = 0;
  865:       char const *zBlob = sqlite3_value_blob(argv[0]);
  866:       int nBlob = sqlite3_value_bytes(argv[0]);
  867:       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
  868:       zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); 
  869:       if( zText ){
  870:         int i;
  871:         for(i=0; i<nBlob; i++){
  872:           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
  873:           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
  874:         }
  875:         zText[(nBlob*2)+2] = '\'';
  876:         zText[(nBlob*2)+3] = '\0';
  877:         zText[0] = 'X';
  878:         zText[1] = '\'';
  879:         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
  880:         sqlite3_free(zText);
  881:       }
  882:       break;
  883:     }
  884:     case SQLITE_TEXT: {
  885:       int i,j;
  886:       u64 n;
  887:       const unsigned char *zArg = sqlite3_value_text(argv[0]);
  888:       char *z;
  889: 
  890:       if( zArg==0 ) return;
  891:       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
  892:       z = contextMalloc(context, ((i64)i)+((i64)n)+3);
  893:       if( z ){
  894:         z[0] = '\'';
  895:         for(i=0, j=1; zArg[i]; i++){
  896:           z[j++] = zArg[i];
  897:           if( zArg[i]=='\'' ){
  898:             z[j++] = '\'';
  899:           }
  900:         }
  901:         z[j++] = '\'';
  902:         z[j] = 0;
  903:         sqlite3_result_text(context, z, j, sqlite3_free);
  904:       }
  905:       break;
  906:     }
  907:     default: {
  908:       assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
  909:       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
  910:       break;
  911:     }
  912:   }
  913: }
  914: 
  915: /*
  916: ** The hex() function.  Interpret the argument as a blob.  Return
  917: ** a hexadecimal rendering as text.
  918: */
  919: static void hexFunc(
  920:   sqlite3_context *context,
  921:   int argc,
  922:   sqlite3_value **argv
  923: ){
  924:   int i, n;
  925:   const unsigned char *pBlob;
  926:   char *zHex, *z;
  927:   assert( argc==1 );
  928:   UNUSED_PARAMETER(argc);
  929:   pBlob = sqlite3_value_blob(argv[0]);
  930:   n = sqlite3_value_bytes(argv[0]);
  931:   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
  932:   z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
  933:   if( zHex ){
  934:     for(i=0; i<n; i++, pBlob++){
  935:       unsigned char c = *pBlob;
  936:       *(z++) = hexdigits[(c>>4)&0xf];
  937:       *(z++) = hexdigits[c&0xf];
  938:     }
  939:     *z = 0;
  940:     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
  941:   }
  942: }
  943: 
  944: /*
  945: ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
  946: */
  947: static void zeroblobFunc(
  948:   sqlite3_context *context,
  949:   int argc,
  950:   sqlite3_value **argv
  951: ){
  952:   i64 n;
  953:   sqlite3 *db = sqlite3_context_db_handle(context);
  954:   assert( argc==1 );
  955:   UNUSED_PARAMETER(argc);
  956:   n = sqlite3_value_int64(argv[0]);
  957:   testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] );
  958:   testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
  959:   if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  960:     sqlite3_result_error_toobig(context);
  961:   }else{
  962:     sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */
  963:   }
  964: }
  965: 
  966: /*
  967: ** The replace() function.  Three arguments are all strings: call
  968: ** them A, B, and C. The result is also a string which is derived
  969: ** from A by replacing every occurance of B with C.  The match
  970: ** must be exact.  Collating sequences are not used.
  971: */
  972: static void replaceFunc(
  973:   sqlite3_context *context,
  974:   int argc,
  975:   sqlite3_value **argv
  976: ){
  977:   const unsigned char *zStr;        /* The input string A */
  978:   const unsigned char *zPattern;    /* The pattern string B */
  979:   const unsigned char *zRep;        /* The replacement string C */
  980:   unsigned char *zOut;              /* The output */
  981:   int nStr;                /* Size of zStr */
  982:   int nPattern;            /* Size of zPattern */
  983:   int nRep;                /* Size of zRep */
  984:   i64 nOut;                /* Maximum size of zOut */
  985:   int loopLimit;           /* Last zStr[] that might match zPattern[] */
  986:   int i, j;                /* Loop counters */
  987: 
  988:   assert( argc==3 );
  989:   UNUSED_PARAMETER(argc);
  990:   zStr = sqlite3_value_text(argv[0]);
  991:   if( zStr==0 ) return;
  992:   nStr = sqlite3_value_bytes(argv[0]);
  993:   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
  994:   zPattern = sqlite3_value_text(argv[1]);
  995:   if( zPattern==0 ){
  996:     assert( sqlite3_value_type(argv[1])==SQLITE_NULL
  997:             || sqlite3_context_db_handle(context)->mallocFailed );
  998:     return;
  999:   }
 1000:   if( zPattern[0]==0 ){
 1001:     assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
 1002:     sqlite3_result_value(context, argv[0]);
 1003:     return;
 1004:   }
 1005:   nPattern = sqlite3_value_bytes(argv[1]);
 1006:   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
 1007:   zRep = sqlite3_value_text(argv[2]);
 1008:   if( zRep==0 ) return;
 1009:   nRep = sqlite3_value_bytes(argv[2]);
 1010:   assert( zRep==sqlite3_value_text(argv[2]) );
 1011:   nOut = nStr + 1;
 1012:   assert( nOut<SQLITE_MAX_LENGTH );
 1013:   zOut = contextMalloc(context, (i64)nOut);
 1014:   if( zOut==0 ){
 1015:     return;
 1016:   }
 1017:   loopLimit = nStr - nPattern;  
 1018:   for(i=j=0; i<=loopLimit; i++){
 1019:     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
 1020:       zOut[j++] = zStr[i];
 1021:     }else{
 1022:       u8 *zOld;
 1023:       sqlite3 *db = sqlite3_context_db_handle(context);
 1024:       nOut += nRep - nPattern;
 1025:       testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
 1026:       testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
 1027:       if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
 1028:         sqlite3_result_error_toobig(context);
 1029:         sqlite3_free(zOut);
 1030:         return;
 1031:       }
 1032:       zOld = zOut;
 1033:       zOut = sqlite3_realloc(zOut, (int)nOut);
 1034:       if( zOut==0 ){
 1035:         sqlite3_result_error_nomem(context);
 1036:         sqlite3_free(zOld);
 1037:         return;
 1038:       }
 1039:       memcpy(&zOut[j], zRep, nRep);
 1040:       j += nRep;
 1041:       i += nPattern-1;
 1042:     }
 1043:   }
 1044:   assert( j+nStr-i+1==nOut );
 1045:   memcpy(&zOut[j], &zStr[i], nStr-i);
 1046:   j += nStr - i;
 1047:   assert( j<=nOut );
 1048:   zOut[j] = 0;
 1049:   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
 1050: }
 1051: 
 1052: /*
 1053: ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
 1054: ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
 1055: */
 1056: static void trimFunc(
 1057:   sqlite3_context *context,
 1058:   int argc,
 1059:   sqlite3_value **argv
 1060: ){
 1061:   const unsigned char *zIn;         /* Input string */
 1062:   const unsigned char *zCharSet;    /* Set of characters to trim */
 1063:   int nIn;                          /* Number of bytes in input */
 1064:   int flags;                        /* 1: trimleft  2: trimright  3: trim */
 1065:   int i;                            /* Loop counter */
 1066:   unsigned char *aLen = 0;          /* Length of each character in zCharSet */
 1067:   unsigned char **azChar = 0;       /* Individual characters in zCharSet */
 1068:   int nChar;                        /* Number of characters in zCharSet */
 1069: 
 1070:   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
 1071:     return;
 1072:   }
 1073:   zIn = sqlite3_value_text(argv[0]);
 1074:   if( zIn==0 ) return;
 1075:   nIn = sqlite3_value_bytes(argv[0]);
 1076:   assert( zIn==sqlite3_value_text(argv[0]) );
 1077:   if( argc==1 ){
 1078:     static const unsigned char lenOne[] = { 1 };
 1079:     static unsigned char * const azOne[] = { (u8*)" " };
 1080:     nChar = 1;
 1081:     aLen = (u8*)lenOne;
 1082:     azChar = (unsigned char **)azOne;
 1083:     zCharSet = 0;
 1084:   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
 1085:     return;
 1086:   }else{
 1087:     const unsigned char *z;
 1088:     for(z=zCharSet, nChar=0; *z; nChar++){
 1089:       SQLITE_SKIP_UTF8(z);
 1090:     }
 1091:     if( nChar>0 ){
 1092:       azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
 1093:       if( azChar==0 ){
 1094:         return;
 1095:       }
 1096:       aLen = (unsigned char*)&azChar[nChar];
 1097:       for(z=zCharSet, nChar=0; *z; nChar++){
 1098:         azChar[nChar] = (unsigned char *)z;
 1099:         SQLITE_SKIP_UTF8(z);
 1100:         aLen[nChar] = (u8)(z - azChar[nChar]);
 1101:       }
 1102:     }
 1103:   }
 1104:   if( nChar>0 ){
 1105:     flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
 1106:     if( flags & 1 ){
 1107:       while( nIn>0 ){
 1108:         int len = 0;
 1109:         for(i=0; i<nChar; i++){
 1110:           len = aLen[i];
 1111:           if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
 1112:         }
 1113:         if( i>=nChar ) break;
 1114:         zIn += len;
 1115:         nIn -= len;
 1116:       }
 1117:     }
 1118:     if( flags & 2 ){
 1119:       while( nIn>0 ){
 1120:         int len = 0;
 1121:         for(i=0; i<nChar; i++){
 1122:           len = aLen[i];
 1123:           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
 1124:         }
 1125:         if( i>=nChar ) break;
 1126:         nIn -= len;
 1127:       }
 1128:     }
 1129:     if( zCharSet ){
 1130:       sqlite3_free(azChar);
 1131:     }
 1132:   }
 1133:   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
 1134: }
 1135: 
 1136: 
 1137: /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
 1138: ** is only available if the SQLITE_SOUNDEX compile-time option is used
 1139: ** when SQLite is built.
 1140: */
 1141: #ifdef SQLITE_SOUNDEX
 1142: /*
 1143: ** Compute the soundex encoding of a word.
 1144: **
 1145: ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
 1146: ** soundex encoding of the string X. 
 1147: */
 1148: static void soundexFunc(
 1149:   sqlite3_context *context,
 1150:   int argc,
 1151:   sqlite3_value **argv
 1152: ){
 1153:   char zResult[8];
 1154:   const u8 *zIn;
 1155:   int i, j;
 1156:   static const unsigned char iCode[] = {
 1157:     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1158:     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1159:     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1160:     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 1161:     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
 1162:     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
 1163:     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
 1164:     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
 1165:   };
 1166:   assert( argc==1 );
 1167:   zIn = (u8*)sqlite3_value_text(argv[0]);
 1168:   if( zIn==0 ) zIn = (u8*)"";
 1169:   for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
 1170:   if( zIn[i] ){
 1171:     u8 prevcode = iCode[zIn[i]&0x7f];
 1172:     zResult[0] = sqlite3Toupper(zIn[i]);
 1173:     for(j=1; j<4 && zIn[i]; i++){
 1174:       int code = iCode[zIn[i]&0x7f];
 1175:       if( code>0 ){
 1176:         if( code!=prevcode ){
 1177:           prevcode = code;
 1178:           zResult[j++] = code + '0';
 1179:         }
 1180:       }else{
 1181:         prevcode = 0;
 1182:       }
 1183:     }
 1184:     while( j<4 ){
 1185:       zResult[j++] = '0';
 1186:     }
 1187:     zResult[j] = 0;
 1188:     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
 1189:   }else{
 1190:     /* IMP: R-64894-50321 The string "?000" is returned if the argument
 1191:     ** is NULL or contains no ASCII alphabetic characters. */
 1192:     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
 1193:   }
 1194: }
 1195: #endif /* SQLITE_SOUNDEX */
 1196: 
 1197: #ifndef SQLITE_OMIT_LOAD_EXTENSION
 1198: /*
 1199: ** A function that loads a shared-library extension then returns NULL.
 1200: */
 1201: static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
 1202:   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
 1203:   const char *zProc;
 1204:   sqlite3 *db = sqlite3_context_db_handle(context);
 1205:   char *zErrMsg = 0;
 1206: 
 1207:   if( argc==2 ){
 1208:     zProc = (const char *)sqlite3_value_text(argv[1]);
 1209:   }else{
 1210:     zProc = 0;
 1211:   }
 1212:   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
 1213:     sqlite3_result_error(context, zErrMsg, -1);
 1214:     sqlite3_free(zErrMsg);
 1215:   }
 1216: }
 1217: #endif
 1218: 
 1219: 
 1220: /*
 1221: ** An instance of the following structure holds the context of a
 1222: ** sum() or avg() aggregate computation.
 1223: */
 1224: typedef struct SumCtx SumCtx;
 1225: struct SumCtx {
 1226:   double rSum;      /* Floating point sum */
 1227:   i64 iSum;         /* Integer sum */   
 1228:   i64 cnt;          /* Number of elements summed */
 1229:   u8 overflow;      /* True if integer overflow seen */
 1230:   u8 approx;        /* True if non-integer value was input to the sum */
 1231: };
 1232: 
 1233: /*
 1234: ** Routines used to compute the sum, average, and total.
 1235: **
 1236: ** The SUM() function follows the (broken) SQL standard which means
 1237: ** that it returns NULL if it sums over no inputs.  TOTAL returns
 1238: ** 0.0 in that case.  In addition, TOTAL always returns a float where
 1239: ** SUM might return an integer if it never encounters a floating point
 1240: ** value.  TOTAL never fails, but SUM might through an exception if
 1241: ** it overflows an integer.
 1242: */
 1243: static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 1244:   SumCtx *p;
 1245:   int type;
 1246:   assert( argc==1 );
 1247:   UNUSED_PARAMETER(argc);
 1248:   p = sqlite3_aggregate_context(context, sizeof(*p));
 1249:   type = sqlite3_value_numeric_type(argv[0]);
 1250:   if( p && type!=SQLITE_NULL ){
 1251:     p->cnt++;
 1252:     if( type==SQLITE_INTEGER ){
 1253:       i64 v = sqlite3_value_int64(argv[0]);
 1254:       p->rSum += v;
 1255:       if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
 1256:         p->overflow = 1;
 1257:       }
 1258:     }else{
 1259:       p->rSum += sqlite3_value_double(argv[0]);
 1260:       p->approx = 1;
 1261:     }
 1262:   }
 1263: }
 1264: static void sumFinalize(sqlite3_context *context){
 1265:   SumCtx *p;
 1266:   p = sqlite3_aggregate_context(context, 0);
 1267:   if( p && p->cnt>0 ){
 1268:     if( p->overflow ){
 1269:       sqlite3_result_error(context,"integer overflow",-1);
 1270:     }else if( p->approx ){
 1271:       sqlite3_result_double(context, p->rSum);
 1272:     }else{
 1273:       sqlite3_result_int64(context, p->iSum);
 1274:     }
 1275:   }
 1276: }
 1277: static void avgFinalize(sqlite3_context *context){
 1278:   SumCtx *p;
 1279:   p = sqlite3_aggregate_context(context, 0);
 1280:   if( p && p->cnt>0 ){
 1281:     sqlite3_result_double(context, p->rSum/(double)p->cnt);
 1282:   }
 1283: }
 1284: static void totalFinalize(sqlite3_context *context){
 1285:   SumCtx *p;
 1286:   p = sqlite3_aggregate_context(context, 0);
 1287:   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
 1288:   sqlite3_result_double(context, p ? p->rSum : (double)0);
 1289: }
 1290: 
 1291: /*
 1292: ** The following structure keeps track of state information for the
 1293: ** count() aggregate function.
 1294: */
 1295: typedef struct CountCtx CountCtx;
 1296: struct CountCtx {
 1297:   i64 n;
 1298: };
 1299: 
 1300: /*
 1301: ** Routines to implement the count() aggregate function.
 1302: */
 1303: static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 1304:   CountCtx *p;
 1305:   p = sqlite3_aggregate_context(context, sizeof(*p));
 1306:   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
 1307:     p->n++;
 1308:   }
 1309: 
 1310: #ifndef SQLITE_OMIT_DEPRECATED
 1311:   /* The sqlite3_aggregate_count() function is deprecated.  But just to make
 1312:   ** sure it still operates correctly, verify that its count agrees with our 
 1313:   ** internal count when using count(*) and when the total count can be
 1314:   ** expressed as a 32-bit integer. */
 1315:   assert( argc==1 || p==0 || p->n>0x7fffffff
 1316:           || p->n==sqlite3_aggregate_count(context) );
 1317: #endif
 1318: }   
 1319: static void countFinalize(sqlite3_context *context){
 1320:   CountCtx *p;
 1321:   p = sqlite3_aggregate_context(context, 0);
 1322:   sqlite3_result_int64(context, p ? p->n : 0);
 1323: }
 1324: 
 1325: /*
 1326: ** Routines to implement min() and max() aggregate functions.
 1327: */
 1328: static void minmaxStep(
 1329:   sqlite3_context *context, 
 1330:   int NotUsed, 
 1331:   sqlite3_value **argv
 1332: ){
 1333:   Mem *pArg  = (Mem *)argv[0];
 1334:   Mem *pBest;
 1335:   UNUSED_PARAMETER(NotUsed);
 1336: 
 1337:   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 1338:   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
 1339:   if( !pBest ) return;
 1340: 
 1341:   if( pBest->flags ){
 1342:     int max;
 1343:     int cmp;
 1344:     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
 1345:     /* This step function is used for both the min() and max() aggregates,
 1346:     ** the only difference between the two being that the sense of the
 1347:     ** comparison is inverted. For the max() aggregate, the
 1348:     ** sqlite3_user_data() function returns (void *)-1. For min() it
 1349:     ** returns (void *)db, where db is the sqlite3* database pointer.
 1350:     ** Therefore the next statement sets variable 'max' to 1 for the max()
 1351:     ** aggregate, or 0 for min().
 1352:     */
 1353:     max = sqlite3_user_data(context)!=0;
 1354:     cmp = sqlite3MemCompare(pBest, pArg, pColl);
 1355:     if( (max && cmp<0) || (!max && cmp>0) ){
 1356:       sqlite3VdbeMemCopy(pBest, pArg);
 1357:     }
 1358:   }else{
 1359:     sqlite3VdbeMemCopy(pBest, pArg);
 1360:   }
 1361: }
 1362: static void minMaxFinalize(sqlite3_context *context){
 1363:   sqlite3_value *pRes;
 1364:   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
 1365:   if( pRes ){
 1366:     if( ALWAYS(pRes->flags) ){
 1367:       sqlite3_result_value(context, pRes);
 1368:     }
 1369:     sqlite3VdbeMemRelease(pRes);
 1370:   }
 1371: }
 1372: 
 1373: /*
 1374: ** group_concat(EXPR, ?SEPARATOR?)
 1375: */
 1376: static void groupConcatStep(
 1377:   sqlite3_context *context,
 1378:   int argc,
 1379:   sqlite3_value **argv
 1380: ){
 1381:   const char *zVal;
 1382:   StrAccum *pAccum;
 1383:   const char *zSep;
 1384:   int nVal, nSep;
 1385:   assert( argc==1 || argc==2 );
 1386:   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 1387:   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
 1388: 
 1389:   if( pAccum ){
 1390:     sqlite3 *db = sqlite3_context_db_handle(context);
 1391:     int firstTerm = pAccum->useMalloc==0;
 1392:     pAccum->useMalloc = 2;
 1393:     pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
 1394:     if( !firstTerm ){
 1395:       if( argc==2 ){
 1396:         zSep = (char*)sqlite3_value_text(argv[1]);
 1397:         nSep = sqlite3_value_bytes(argv[1]);
 1398:       }else{
 1399:         zSep = ",";
 1400:         nSep = 1;
 1401:       }
 1402:       sqlite3StrAccumAppend(pAccum, zSep, nSep);
 1403:     }
 1404:     zVal = (char*)sqlite3_value_text(argv[0]);
 1405:     nVal = sqlite3_value_bytes(argv[0]);
 1406:     sqlite3StrAccumAppend(pAccum, zVal, nVal);
 1407:   }
 1408: }
 1409: static void groupConcatFinalize(sqlite3_context *context){
 1410:   StrAccum *pAccum;
 1411:   pAccum = sqlite3_aggregate_context(context, 0);
 1412:   if( pAccum ){
 1413:     if( pAccum->tooBig ){
 1414:       sqlite3_result_error_toobig(context);
 1415:     }else if( pAccum->mallocFailed ){
 1416:       sqlite3_result_error_nomem(context);
 1417:     }else{    
 1418:       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
 1419:                           sqlite3_free);
 1420:     }
 1421:   }
 1422: }
 1423: 
 1424: /*
 1425: ** This routine does per-connection function registration.  Most
 1426: ** of the built-in functions above are part of the global function set.
 1427: ** This routine only deals with those that are not global.
 1428: */
 1429: void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
 1430:   int rc = sqlite3_overload_function(db, "MATCH", 2);
 1431:   assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
 1432:   if( rc==SQLITE_NOMEM ){
 1433:     db->mallocFailed = 1;
 1434:   }
 1435: }
 1436: 
 1437: /*
 1438: ** Set the LIKEOPT flag on the 2-argument function with the given name.
 1439: */
 1440: static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
 1441:   FuncDef *pDef;
 1442:   pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
 1443:                              2, SQLITE_UTF8, 0);
 1444:   if( ALWAYS(pDef) ){
 1445:     pDef->flags = flagVal;
 1446:   }
 1447: }
 1448: 
 1449: /*
 1450: ** Register the built-in LIKE and GLOB functions.  The caseSensitive
 1451: ** parameter determines whether or not the LIKE operator is case
 1452: ** sensitive.  GLOB is always case sensitive.
 1453: */
 1454: void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
 1455:   struct compareInfo *pInfo;
 1456:   if( caseSensitive ){
 1457:     pInfo = (struct compareInfo*)&likeInfoAlt;
 1458:   }else{
 1459:     pInfo = (struct compareInfo*)&likeInfoNorm;
 1460:   }
 1461:   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
 1462:   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
 1463:   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, 
 1464:       (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
 1465:   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
 1466:   setLikeOptFlag(db, "like", 
 1467:       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
 1468: }
 1469: 
 1470: /*
 1471: ** pExpr points to an expression which implements a function.  If
 1472: ** it is appropriate to apply the LIKE optimization to that function
 1473: ** then set aWc[0] through aWc[2] to the wildcard characters and
 1474: ** return TRUE.  If the function is not a LIKE-style function then
 1475: ** return FALSE.
 1476: */
 1477: int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
 1478:   FuncDef *pDef;
 1479:   if( pExpr->op!=TK_FUNCTION 
 1480:    || !pExpr->x.pList 
 1481:    || pExpr->x.pList->nExpr!=2
 1482:   ){
 1483:     return 0;
 1484:   }
 1485:   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
 1486:   pDef = sqlite3FindFunction(db, pExpr->u.zToken, 
 1487:                              sqlite3Strlen30(pExpr->u.zToken),
 1488:                              2, SQLITE_UTF8, 0);
 1489:   if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
 1490:     return 0;
 1491:   }
 1492: 
 1493:   /* The memcpy() statement assumes that the wildcard characters are
 1494:   ** the first three statements in the compareInfo structure.  The
 1495:   ** asserts() that follow verify that assumption
 1496:   */
 1497:   memcpy(aWc, pDef->pUserData, 3);
 1498:   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
 1499:   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
 1500:   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
 1501:   *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
 1502:   return 1;
 1503: }
 1504: 
 1505: /*
 1506: ** All all of the FuncDef structures in the aBuiltinFunc[] array above
 1507: ** to the global function hash table.  This occurs at start-time (as
 1508: ** a consequence of calling sqlite3_initialize()).
 1509: **
 1510: ** After this routine runs
 1511: */
 1512: void sqlite3RegisterGlobalFunctions(void){
 1513:   /*
 1514:   ** The following array holds FuncDef structures for all of the functions
 1515:   ** defined in this file.
 1516:   **
 1517:   ** The array cannot be constant since changes are made to the
 1518:   ** FuncDef.pHash elements at start-time.  The elements of this array
 1519:   ** are read-only after initialization is complete.
 1520:   */
 1521:   static SQLITE_WSD FuncDef aBuiltinFunc[] = {
 1522:     FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
 1523:     FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
 1524:     FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
 1525:     FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
 1526:     FUNCTION(trim,               1, 3, 0, trimFunc         ),
 1527:     FUNCTION(trim,               2, 3, 0, trimFunc         ),
 1528:     FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
 1529:     FUNCTION(min,                0, 0, 1, 0                ),
 1530:     AGGREGATE(min,               1, 0, 1, minmaxStep,      minMaxFinalize ),
 1531:     FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
 1532:     FUNCTION(max,                0, 1, 1, 0                ),
 1533:     AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),
 1534:     FUNCTION(typeof,             1, 0, 0, typeofFunc       ),
 1535:     FUNCTION(length,             1, 0, 0, lengthFunc       ),
 1536:     FUNCTION(substr,             2, 0, 0, substrFunc       ),
 1537:     FUNCTION(substr,             3, 0, 0, substrFunc       ),
 1538:     FUNCTION(abs,                1, 0, 0, absFunc          ),
 1539: #ifndef SQLITE_OMIT_FLOATING_POINT
 1540:     FUNCTION(round,              1, 0, 0, roundFunc        ),
 1541:     FUNCTION(round,              2, 0, 0, roundFunc        ),
 1542: #endif
 1543:     FUNCTION(upper,              1, 0, 0, upperFunc        ),
 1544:     FUNCTION(lower,              1, 0, 0, lowerFunc        ),
 1545:     FUNCTION(coalesce,           1, 0, 0, 0                ),
 1546:     FUNCTION(coalesce,           0, 0, 0, 0                ),
 1547: /*  FUNCTION(coalesce,          -1, 0, 0, ifnullFunc       ), */
 1548:     {-1,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"coalesce",0,0},
 1549:     FUNCTION(hex,                1, 0, 0, hexFunc          ),
 1550: /*  FUNCTION(ifnull,             2, 0, 0, ifnullFunc       ), */
 1551:     {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0,0},
 1552:     FUNCTION(random,             0, 0, 0, randomFunc       ),
 1553:     FUNCTION(randomblob,         1, 0, 0, randomBlob       ),
 1554:     FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
 1555:     FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),
 1556:     FUNCTION(sqlite_source_id,   0, 0, 0, sourceidFunc     ),
 1557:     FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
 1558: #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
 1559:     FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
 1560:     FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
 1561: #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
 1562:     FUNCTION(quote,              1, 0, 0, quoteFunc        ),
 1563:     FUNCTION(last_insert_rowid,  0, 0, 0, last_insert_rowid),
 1564:     FUNCTION(changes,            0, 0, 0, changes          ),
 1565:     FUNCTION(total_changes,      0, 0, 0, total_changes    ),
 1566:     FUNCTION(replace,            3, 0, 0, replaceFunc      ),
 1567:     FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
 1568:   #ifdef SQLITE_SOUNDEX
 1569:     FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
 1570:   #endif
 1571:   #ifndef SQLITE_OMIT_LOAD_EXTENSION
 1572:     FUNCTION(load_extension,     1, 0, 0, loadExt          ),
 1573:     FUNCTION(load_extension,     2, 0, 0, loadExt          ),
 1574:   #endif
 1575:     AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
 1576:     AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
 1577:     AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
 1578:  /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */
 1579:     {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
 1580:     AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
 1581:     AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
 1582:     AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
 1583:   
 1584:     LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
 1585:   #ifdef SQLITE_CASE_SENSITIVE_LIKE
 1586:     LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
 1587:     LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
 1588:   #else
 1589:     LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
 1590:     LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
 1591:   #endif
 1592:   };
 1593: 
 1594:   int i;
 1595:   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
 1596:   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
 1597: 
 1598:   for(i=0; i<ArraySize(aBuiltinFunc); i++){
 1599:     sqlite3FuncDefInsert(pHash, &aFunc[i]);
 1600:   }
 1601:   sqlite3RegisterDateTimeFunctions();
 1602: #ifndef SQLITE_OMIT_ALTERTABLE
 1603:   sqlite3AlterFunctions();
 1604: #endif
 1605: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>