Annotation of embedaddon/sqlite3/src/insert.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2001 September 15
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file contains C code routines that are called by the parser
                     13: ** to handle INSERT statements in SQLite.
                     14: */
                     15: #include "sqliteInt.h"
                     16: 
                     17: /*
                     18: ** Generate code that will open a table for reading.
                     19: */
                     20: void sqlite3OpenTable(
                     21:   Parse *p,       /* Generate code into this VDBE */
                     22:   int iCur,       /* The cursor number of the table */
                     23:   int iDb,        /* The database index in sqlite3.aDb[] */
                     24:   Table *pTab,    /* The table to be opened */
                     25:   int opcode      /* OP_OpenRead or OP_OpenWrite */
                     26: ){
                     27:   Vdbe *v;
                     28:   if( IsVirtual(pTab) ) return;
                     29:   v = sqlite3GetVdbe(p);
                     30:   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
                     31:   sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
                     32:   sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
                     33:   sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
                     34:   VdbeComment((v, "%s", pTab->zName));
                     35: }
                     36: 
                     37: /*
                     38: ** Return a pointer to the column affinity string associated with index
                     39: ** pIdx. A column affinity string has one character for each column in 
                     40: ** the table, according to the affinity of the column:
                     41: **
                     42: **  Character      Column affinity
                     43: **  ------------------------------
                     44: **  'a'            TEXT
                     45: **  'b'            NONE
                     46: **  'c'            NUMERIC
                     47: **  'd'            INTEGER
                     48: **  'e'            REAL
                     49: **
                     50: ** An extra 'd' is appended to the end of the string to cover the
                     51: ** rowid that appears as the last column in every index.
                     52: **
                     53: ** Memory for the buffer containing the column index affinity string
                     54: ** is managed along with the rest of the Index structure. It will be
                     55: ** released when sqlite3DeleteIndex() is called.
                     56: */
                     57: const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
                     58:   if( !pIdx->zColAff ){
                     59:     /* The first time a column affinity string for a particular index is
                     60:     ** required, it is allocated and populated here. It is then stored as
                     61:     ** a member of the Index structure for subsequent use.
                     62:     **
                     63:     ** The column affinity string will eventually be deleted by
                     64:     ** sqliteDeleteIndex() when the Index structure itself is cleaned
                     65:     ** up.
                     66:     */
                     67:     int n;
                     68:     Table *pTab = pIdx->pTable;
                     69:     sqlite3 *db = sqlite3VdbeDb(v);
                     70:     pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2);
                     71:     if( !pIdx->zColAff ){
                     72:       db->mallocFailed = 1;
                     73:       return 0;
                     74:     }
                     75:     for(n=0; n<pIdx->nColumn; n++){
                     76:       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
                     77:     }
                     78:     pIdx->zColAff[n++] = SQLITE_AFF_INTEGER;
                     79:     pIdx->zColAff[n] = 0;
                     80:   }
                     81:  
                     82:   return pIdx->zColAff;
                     83: }
                     84: 
                     85: /*
                     86: ** Set P4 of the most recently inserted opcode to a column affinity
                     87: ** string for table pTab. A column affinity string has one character
                     88: ** for each column indexed by the index, according to the affinity of the
                     89: ** column:
                     90: **
                     91: **  Character      Column affinity
                     92: **  ------------------------------
                     93: **  'a'            TEXT
                     94: **  'b'            NONE
                     95: **  'c'            NUMERIC
                     96: **  'd'            INTEGER
                     97: **  'e'            REAL
                     98: */
                     99: void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
                    100:   /* The first time a column affinity string for a particular table
                    101:   ** is required, it is allocated and populated here. It is then 
                    102:   ** stored as a member of the Table structure for subsequent use.
                    103:   **
                    104:   ** The column affinity string will eventually be deleted by
                    105:   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
                    106:   */
                    107:   if( !pTab->zColAff ){
                    108:     char *zColAff;
                    109:     int i;
                    110:     sqlite3 *db = sqlite3VdbeDb(v);
                    111: 
                    112:     zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
                    113:     if( !zColAff ){
                    114:       db->mallocFailed = 1;
                    115:       return;
                    116:     }
                    117: 
                    118:     for(i=0; i<pTab->nCol; i++){
                    119:       zColAff[i] = pTab->aCol[i].affinity;
                    120:     }
                    121:     zColAff[pTab->nCol] = '\0';
                    122: 
                    123:     pTab->zColAff = zColAff;
                    124:   }
                    125: 
                    126:   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
                    127: }
                    128: 
                    129: /*
                    130: ** Return non-zero if the table pTab in database iDb or any of its indices
                    131: ** have been opened at any point in the VDBE program beginning at location
                    132: ** iStartAddr throught the end of the program.  This is used to see if 
                    133: ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 
                    134: ** run without using temporary table for the results of the SELECT. 
                    135: */
                    136: static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
                    137:   Vdbe *v = sqlite3GetVdbe(p);
                    138:   int i;
                    139:   int iEnd = sqlite3VdbeCurrentAddr(v);
                    140: #ifndef SQLITE_OMIT_VIRTUALTABLE
                    141:   VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
                    142: #endif
                    143: 
                    144:   for(i=iStartAddr; i<iEnd; i++){
                    145:     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
                    146:     assert( pOp!=0 );
                    147:     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
                    148:       Index *pIndex;
                    149:       int tnum = pOp->p2;
                    150:       if( tnum==pTab->tnum ){
                    151:         return 1;
                    152:       }
                    153:       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
                    154:         if( tnum==pIndex->tnum ){
                    155:           return 1;
                    156:         }
                    157:       }
                    158:     }
                    159: #ifndef SQLITE_OMIT_VIRTUALTABLE
                    160:     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
                    161:       assert( pOp->p4.pVtab!=0 );
                    162:       assert( pOp->p4type==P4_VTAB );
                    163:       return 1;
                    164:     }
                    165: #endif
                    166:   }
                    167:   return 0;
                    168: }
                    169: 
                    170: #ifndef SQLITE_OMIT_AUTOINCREMENT
                    171: /*
                    172: ** Locate or create an AutoincInfo structure associated with table pTab
                    173: ** which is in database iDb.  Return the register number for the register
                    174: ** that holds the maximum rowid.
                    175: **
                    176: ** There is at most one AutoincInfo structure per table even if the
                    177: ** same table is autoincremented multiple times due to inserts within
                    178: ** triggers.  A new AutoincInfo structure is created if this is the
                    179: ** first use of table pTab.  On 2nd and subsequent uses, the original
                    180: ** AutoincInfo structure is used.
                    181: **
                    182: ** Three memory locations are allocated:
                    183: **
                    184: **   (1)  Register to hold the name of the pTab table.
                    185: **   (2)  Register to hold the maximum ROWID of pTab.
                    186: **   (3)  Register to hold the rowid in sqlite_sequence of pTab
                    187: **
                    188: ** The 2nd register is the one that is returned.  That is all the
                    189: ** insert routine needs to know about.
                    190: */
                    191: static int autoIncBegin(
                    192:   Parse *pParse,      /* Parsing context */
                    193:   int iDb,            /* Index of the database holding pTab */
                    194:   Table *pTab         /* The table we are writing to */
                    195: ){
                    196:   int memId = 0;      /* Register holding maximum rowid */
                    197:   if( pTab->tabFlags & TF_Autoincrement ){
                    198:     Parse *pToplevel = sqlite3ParseToplevel(pParse);
                    199:     AutoincInfo *pInfo;
                    200: 
                    201:     pInfo = pToplevel->pAinc;
                    202:     while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
                    203:     if( pInfo==0 ){
                    204:       pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
                    205:       if( pInfo==0 ) return 0;
                    206:       pInfo->pNext = pToplevel->pAinc;
                    207:       pToplevel->pAinc = pInfo;
                    208:       pInfo->pTab = pTab;
                    209:       pInfo->iDb = iDb;
                    210:       pToplevel->nMem++;                  /* Register to hold name of table */
                    211:       pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */
                    212:       pToplevel->nMem++;                  /* Rowid in sqlite_sequence */
                    213:     }
                    214:     memId = pInfo->regCtr;
                    215:   }
                    216:   return memId;
                    217: }
                    218: 
                    219: /*
                    220: ** This routine generates code that will initialize all of the
                    221: ** register used by the autoincrement tracker.  
                    222: */
                    223: void sqlite3AutoincrementBegin(Parse *pParse){
                    224:   AutoincInfo *p;            /* Information about an AUTOINCREMENT */
                    225:   sqlite3 *db = pParse->db;  /* The database connection */
                    226:   Db *pDb;                   /* Database only autoinc table */
                    227:   int memId;                 /* Register holding max rowid */
                    228:   int addr;                  /* A VDBE address */
                    229:   Vdbe *v = pParse->pVdbe;   /* VDBE under construction */
                    230: 
                    231:   /* This routine is never called during trigger-generation.  It is
                    232:   ** only called from the top-level */
                    233:   assert( pParse->pTriggerTab==0 );
                    234:   assert( pParse==sqlite3ParseToplevel(pParse) );
                    235: 
                    236:   assert( v );   /* We failed long ago if this is not so */
                    237:   for(p = pParse->pAinc; p; p = p->pNext){
                    238:     pDb = &db->aDb[p->iDb];
                    239:     memId = p->regCtr;
                    240:     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
                    241:     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
                    242:     sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
                    243:     addr = sqlite3VdbeCurrentAddr(v);
                    244:     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
                    245:     sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
                    246:     sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
                    247:     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
                    248:     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
                    249:     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
                    250:     sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
                    251:     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
                    252:     sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
                    253:     sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
                    254:     sqlite3VdbeAddOp0(v, OP_Close);
                    255:   }
                    256: }
                    257: 
                    258: /*
                    259: ** Update the maximum rowid for an autoincrement calculation.
                    260: **
                    261: ** This routine should be called when the top of the stack holds a
                    262: ** new rowid that is about to be inserted.  If that new rowid is
                    263: ** larger than the maximum rowid in the memId memory cell, then the
                    264: ** memory cell is updated.  The stack is unchanged.
                    265: */
                    266: static void autoIncStep(Parse *pParse, int memId, int regRowid){
                    267:   if( memId>0 ){
                    268:     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
                    269:   }
                    270: }
                    271: 
                    272: /*
                    273: ** This routine generates the code needed to write autoincrement
                    274: ** maximum rowid values back into the sqlite_sequence register.
                    275: ** Every statement that might do an INSERT into an autoincrement
                    276: ** table (either directly or through triggers) needs to call this
                    277: ** routine just before the "exit" code.
                    278: */
                    279: void sqlite3AutoincrementEnd(Parse *pParse){
                    280:   AutoincInfo *p;
                    281:   Vdbe *v = pParse->pVdbe;
                    282:   sqlite3 *db = pParse->db;
                    283: 
                    284:   assert( v );
                    285:   for(p = pParse->pAinc; p; p = p->pNext){
                    286:     Db *pDb = &db->aDb[p->iDb];
                    287:     int j1, j2, j3, j4, j5;
                    288:     int iRec;
                    289:     int memId = p->regCtr;
                    290: 
                    291:     iRec = sqlite3GetTempReg(pParse);
                    292:     assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
                    293:     sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
                    294:     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
                    295:     j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
                    296:     j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
                    297:     j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
                    298:     sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
                    299:     sqlite3VdbeJumpHere(v, j2);
                    300:     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
                    301:     j5 = sqlite3VdbeAddOp0(v, OP_Goto);
                    302:     sqlite3VdbeJumpHere(v, j4);
                    303:     sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
                    304:     sqlite3VdbeJumpHere(v, j1);
                    305:     sqlite3VdbeJumpHere(v, j5);
                    306:     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
                    307:     sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
                    308:     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
                    309:     sqlite3VdbeAddOp0(v, OP_Close);
                    310:     sqlite3ReleaseTempReg(pParse, iRec);
                    311:   }
                    312: }
                    313: #else
                    314: /*
                    315: ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
                    316: ** above are all no-ops
                    317: */
                    318: # define autoIncBegin(A,B,C) (0)
                    319: # define autoIncStep(A,B,C)
                    320: #endif /* SQLITE_OMIT_AUTOINCREMENT */
                    321: 
                    322: 
                    323: /* Forward declaration */
                    324: static int xferOptimization(
                    325:   Parse *pParse,        /* Parser context */
                    326:   Table *pDest,         /* The table we are inserting into */
                    327:   Select *pSelect,      /* A SELECT statement to use as the data source */
                    328:   int onError,          /* How to handle constraint errors */
                    329:   int iDbDest           /* The database of pDest */
                    330: );
                    331: 
                    332: /*
                    333: ** This routine is call to handle SQL of the following forms:
                    334: **
                    335: **    insert into TABLE (IDLIST) values(EXPRLIST)
                    336: **    insert into TABLE (IDLIST) select
                    337: **
                    338: ** The IDLIST following the table name is always optional.  If omitted,
                    339: ** then a list of all columns for the table is substituted.  The IDLIST
                    340: ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
                    341: **
                    342: ** The pList parameter holds EXPRLIST in the first form of the INSERT
                    343: ** statement above, and pSelect is NULL.  For the second form, pList is
                    344: ** NULL and pSelect is a pointer to the select statement used to generate
                    345: ** data for the insert.
                    346: **
                    347: ** The code generated follows one of four templates.  For a simple
                    348: ** select with data coming from a VALUES clause, the code executes
                    349: ** once straight down through.  Pseudo-code follows (we call this
                    350: ** the "1st template"):
                    351: **
                    352: **         open write cursor to <table> and its indices
                    353: **         puts VALUES clause expressions onto the stack
                    354: **         write the resulting record into <table>
                    355: **         cleanup
                    356: **
                    357: ** The three remaining templates assume the statement is of the form
                    358: **
                    359: **   INSERT INTO <table> SELECT ...
                    360: **
                    361: ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
                    362: ** in other words if the SELECT pulls all columns from a single table
                    363: ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
                    364: ** if <table2> and <table1> are distinct tables but have identical
                    365: ** schemas, including all the same indices, then a special optimization
                    366: ** is invoked that copies raw records from <table2> over to <table1>.
                    367: ** See the xferOptimization() function for the implementation of this
                    368: ** template.  This is the 2nd template.
                    369: **
                    370: **         open a write cursor to <table>
                    371: **         open read cursor on <table2>
                    372: **         transfer all records in <table2> over to <table>
                    373: **         close cursors
                    374: **         foreach index on <table>
                    375: **           open a write cursor on the <table> index
                    376: **           open a read cursor on the corresponding <table2> index
                    377: **           transfer all records from the read to the write cursors
                    378: **           close cursors
                    379: **         end foreach
                    380: **
                    381: ** The 3rd template is for when the second template does not apply
                    382: ** and the SELECT clause does not read from <table> at any time.
                    383: ** The generated code follows this template:
                    384: **
                    385: **         EOF <- 0
                    386: **         X <- A
                    387: **         goto B
                    388: **      A: setup for the SELECT
                    389: **         loop over the rows in the SELECT
                    390: **           load values into registers R..R+n
                    391: **           yield X
                    392: **         end loop
                    393: **         cleanup after the SELECT
                    394: **         EOF <- 1
                    395: **         yield X
                    396: **         goto A
                    397: **      B: open write cursor to <table> and its indices
                    398: **      C: yield X
                    399: **         if EOF goto D
                    400: **         insert the select result into <table> from R..R+n
                    401: **         goto C
                    402: **      D: cleanup
                    403: **
                    404: ** The 4th template is used if the insert statement takes its
                    405: ** values from a SELECT but the data is being inserted into a table
                    406: ** that is also read as part of the SELECT.  In the third form,
                    407: ** we have to use a intermediate table to store the results of
                    408: ** the select.  The template is like this:
                    409: **
                    410: **         EOF <- 0
                    411: **         X <- A
                    412: **         goto B
                    413: **      A: setup for the SELECT
                    414: **         loop over the tables in the SELECT
                    415: **           load value into register R..R+n
                    416: **           yield X
                    417: **         end loop
                    418: **         cleanup after the SELECT
                    419: **         EOF <- 1
                    420: **         yield X
                    421: **         halt-error
                    422: **      B: open temp table
                    423: **      L: yield X
                    424: **         if EOF goto M
                    425: **         insert row from R..R+n into temp table
                    426: **         goto L
                    427: **      M: open write cursor to <table> and its indices
                    428: **         rewind temp table
                    429: **      C: loop over rows of intermediate table
                    430: **           transfer values form intermediate table into <table>
                    431: **         end loop
                    432: **      D: cleanup
                    433: */
                    434: void sqlite3Insert(
                    435:   Parse *pParse,        /* Parser context */
                    436:   SrcList *pTabList,    /* Name of table into which we are inserting */
                    437:   ExprList *pList,      /* List of values to be inserted */
                    438:   Select *pSelect,      /* A SELECT statement to use as the data source */
                    439:   IdList *pColumn,      /* Column names corresponding to IDLIST. */
                    440:   int onError           /* How to handle constraint errors */
                    441: ){
                    442:   sqlite3 *db;          /* The main database structure */
                    443:   Table *pTab;          /* The table to insert into.  aka TABLE */
                    444:   char *zTab;           /* Name of the table into which we are inserting */
                    445:   const char *zDb;      /* Name of the database holding this table */
                    446:   int i, j, idx;        /* Loop counters */
                    447:   Vdbe *v;              /* Generate code into this virtual machine */
                    448:   Index *pIdx;          /* For looping over indices of the table */
                    449:   int nColumn;          /* Number of columns in the data */
                    450:   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
                    451:   int baseCur = 0;      /* VDBE Cursor number for pTab */
                    452:   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
                    453:   int endOfLoop;        /* Label for the end of the insertion loop */
                    454:   int useTempTable = 0; /* Store SELECT results in intermediate table */
                    455:   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
                    456:   int addrInsTop = 0;   /* Jump to label "D" */
                    457:   int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */
                    458:   int addrSelect = 0;   /* Address of coroutine that implements the SELECT */
                    459:   SelectDest dest;      /* Destination for SELECT on rhs of INSERT */
                    460:   int iDb;              /* Index of database holding TABLE */
                    461:   Db *pDb;              /* The database containing table being inserted into */
                    462:   int appendFlag = 0;   /* True if the insert is likely to be an append */
                    463: 
                    464:   /* Register allocations */
                    465:   int regFromSelect = 0;/* Base register for data coming from SELECT */
                    466:   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
                    467:   int regRowCount = 0;  /* Memory cell used for the row counter */
                    468:   int regIns;           /* Block of regs holding rowid+data being inserted */
                    469:   int regRowid;         /* registers holding insert rowid */
                    470:   int regData;          /* register holding first column to insert */
                    471:   int regEof = 0;       /* Register recording end of SELECT data */
                    472:   int *aRegIdx = 0;     /* One register allocated to each index */
                    473: 
                    474: #ifndef SQLITE_OMIT_TRIGGER
                    475:   int isView;                 /* True if attempting to insert into a view */
                    476:   Trigger *pTrigger;          /* List of triggers on pTab, if required */
                    477:   int tmask;                  /* Mask of trigger times */
                    478: #endif
                    479: 
                    480:   db = pParse->db;
                    481:   memset(&dest, 0, sizeof(dest));
                    482:   if( pParse->nErr || db->mallocFailed ){
                    483:     goto insert_cleanup;
                    484:   }
                    485: 
                    486:   /* Locate the table into which we will be inserting new information.
                    487:   */
                    488:   assert( pTabList->nSrc==1 );
                    489:   zTab = pTabList->a[0].zName;
                    490:   if( NEVER(zTab==0) ) goto insert_cleanup;
                    491:   pTab = sqlite3SrcListLookup(pParse, pTabList);
                    492:   if( pTab==0 ){
                    493:     goto insert_cleanup;
                    494:   }
                    495:   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
                    496:   assert( iDb<db->nDb );
                    497:   pDb = &db->aDb[iDb];
                    498:   zDb = pDb->zName;
                    499:   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
                    500:     goto insert_cleanup;
                    501:   }
                    502: 
                    503:   /* Figure out if we have any triggers and if the table being
                    504:   ** inserted into is a view
                    505:   */
                    506: #ifndef SQLITE_OMIT_TRIGGER
                    507:   pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
                    508:   isView = pTab->pSelect!=0;
                    509: #else
                    510: # define pTrigger 0
                    511: # define tmask 0
                    512: # define isView 0
                    513: #endif
                    514: #ifdef SQLITE_OMIT_VIEW
                    515: # undef isView
                    516: # define isView 0
                    517: #endif
                    518:   assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
                    519: 
                    520:   /* If pTab is really a view, make sure it has been initialized.
                    521:   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 
                    522:   ** module table).
                    523:   */
                    524:   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
                    525:     goto insert_cleanup;
                    526:   }
                    527: 
                    528:   /* Ensure that:
                    529:   *  (a) the table is not read-only, 
                    530:   *  (b) that if it is a view then ON INSERT triggers exist
                    531:   */
                    532:   if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
                    533:     goto insert_cleanup;
                    534:   }
                    535: 
                    536:   /* Allocate a VDBE
                    537:   */
                    538:   v = sqlite3GetVdbe(pParse);
                    539:   if( v==0 ) goto insert_cleanup;
                    540:   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
                    541:   sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
                    542: 
                    543: #ifndef SQLITE_OMIT_XFER_OPT
                    544:   /* If the statement is of the form
                    545:   **
                    546:   **       INSERT INTO <table1> SELECT * FROM <table2>;
                    547:   **
                    548:   ** Then special optimizations can be applied that make the transfer
                    549:   ** very fast and which reduce fragmentation of indices.
                    550:   **
                    551:   ** This is the 2nd template.
                    552:   */
                    553:   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
                    554:     assert( !pTrigger );
                    555:     assert( pList==0 );
                    556:     goto insert_end;
                    557:   }
                    558: #endif /* SQLITE_OMIT_XFER_OPT */
                    559: 
                    560:   /* If this is an AUTOINCREMENT table, look up the sequence number in the
                    561:   ** sqlite_sequence table and store it in memory cell regAutoinc.
                    562:   */
                    563:   regAutoinc = autoIncBegin(pParse, iDb, pTab);
                    564: 
                    565:   /* Figure out how many columns of data are supplied.  If the data
                    566:   ** is coming from a SELECT statement, then generate a co-routine that
                    567:   ** produces a single row of the SELECT on each invocation.  The
                    568:   ** co-routine is the common header to the 3rd and 4th templates.
                    569:   */
                    570:   if( pSelect ){
                    571:     /* Data is coming from a SELECT.  Generate code to implement that SELECT
                    572:     ** as a co-routine.  The code is common to both the 3rd and 4th
                    573:     ** templates:
                    574:     **
                    575:     **         EOF <- 0
                    576:     **         X <- A
                    577:     **         goto B
                    578:     **      A: setup for the SELECT
                    579:     **         loop over the tables in the SELECT
                    580:     **           load value into register R..R+n
                    581:     **           yield X
                    582:     **         end loop
                    583:     **         cleanup after the SELECT
                    584:     **         EOF <- 1
                    585:     **         yield X
                    586:     **         halt-error
                    587:     **
                    588:     ** On each invocation of the co-routine, it puts a single row of the
                    589:     ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
                    590:     ** (These output registers are allocated by sqlite3Select().)  When
                    591:     ** the SELECT completes, it sets the EOF flag stored in regEof.
                    592:     */
                    593:     int rc, j1;
                    594: 
                    595:     regEof = ++pParse->nMem;
                    596:     sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
                    597:     VdbeComment((v, "SELECT eof flag"));
                    598:     sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
                    599:     addrSelect = sqlite3VdbeCurrentAddr(v)+2;
                    600:     sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
                    601:     j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
                    602:     VdbeComment((v, "Jump over SELECT coroutine"));
                    603: 
                    604:     /* Resolve the expressions in the SELECT statement and execute it. */
                    605:     rc = sqlite3Select(pParse, pSelect, &dest);
                    606:     assert( pParse->nErr==0 || rc );
                    607:     if( rc || NEVER(pParse->nErr) || db->mallocFailed ){
                    608:       goto insert_cleanup;
                    609:     }
                    610:     sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
                    611:     sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
                    612:     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
                    613:     VdbeComment((v, "End of SELECT coroutine"));
                    614:     sqlite3VdbeJumpHere(v, j1);                          /* label B: */
                    615: 
                    616:     regFromSelect = dest.iMem;
                    617:     assert( pSelect->pEList );
                    618:     nColumn = pSelect->pEList->nExpr;
                    619:     assert( dest.nMem==nColumn );
                    620: 
                    621:     /* Set useTempTable to TRUE if the result of the SELECT statement
                    622:     ** should be written into a temporary table (template 4).  Set to
                    623:     ** FALSE if each* row of the SELECT can be written directly into
                    624:     ** the destination table (template 3).
                    625:     **
                    626:     ** A temp table must be used if the table being updated is also one
                    627:     ** of the tables being read by the SELECT statement.  Also use a 
                    628:     ** temp table in the case of row triggers.
                    629:     */
                    630:     if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
                    631:       useTempTable = 1;
                    632:     }
                    633: 
                    634:     if( useTempTable ){
                    635:       /* Invoke the coroutine to extract information from the SELECT
                    636:       ** and add it to a transient table srcTab.  The code generated
                    637:       ** here is from the 4th template:
                    638:       **
                    639:       **      B: open temp table
                    640:       **      L: yield X
                    641:       **         if EOF goto M
                    642:       **         insert row from R..R+n into temp table
                    643:       **         goto L
                    644:       **      M: ...
                    645:       */
                    646:       int regRec;          /* Register to hold packed record */
                    647:       int regTempRowid;    /* Register to hold temp table ROWID */
                    648:       int addrTop;         /* Label "L" */
                    649:       int addrIf;          /* Address of jump to M */
                    650: 
                    651:       srcTab = pParse->nTab++;
                    652:       regRec = sqlite3GetTempReg(pParse);
                    653:       regTempRowid = sqlite3GetTempReg(pParse);
                    654:       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
                    655:       addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
                    656:       addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
                    657:       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
                    658:       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
                    659:       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
                    660:       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
                    661:       sqlite3VdbeJumpHere(v, addrIf);
                    662:       sqlite3ReleaseTempReg(pParse, regRec);
                    663:       sqlite3ReleaseTempReg(pParse, regTempRowid);
                    664:     }
                    665:   }else{
                    666:     /* This is the case if the data for the INSERT is coming from a VALUES
                    667:     ** clause
                    668:     */
                    669:     NameContext sNC;
                    670:     memset(&sNC, 0, sizeof(sNC));
                    671:     sNC.pParse = pParse;
                    672:     srcTab = -1;
                    673:     assert( useTempTable==0 );
                    674:     nColumn = pList ? pList->nExpr : 0;
                    675:     for(i=0; i<nColumn; i++){
                    676:       if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
                    677:         goto insert_cleanup;
                    678:       }
                    679:     }
                    680:   }
                    681: 
                    682:   /* Make sure the number of columns in the source data matches the number
                    683:   ** of columns to be inserted into the table.
                    684:   */
                    685:   if( IsVirtual(pTab) ){
                    686:     for(i=0; i<pTab->nCol; i++){
                    687:       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
                    688:     }
                    689:   }
                    690:   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
                    691:     sqlite3ErrorMsg(pParse, 
                    692:        "table %S has %d columns but %d values were supplied",
                    693:        pTabList, 0, pTab->nCol-nHidden, nColumn);
                    694:     goto insert_cleanup;
                    695:   }
                    696:   if( pColumn!=0 && nColumn!=pColumn->nId ){
                    697:     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
                    698:     goto insert_cleanup;
                    699:   }
                    700: 
                    701:   /* If the INSERT statement included an IDLIST term, then make sure
                    702:   ** all elements of the IDLIST really are columns of the table and 
                    703:   ** remember the column indices.
                    704:   **
                    705:   ** If the table has an INTEGER PRIMARY KEY column and that column
                    706:   ** is named in the IDLIST, then record in the keyColumn variable
                    707:   ** the index into IDLIST of the primary key column.  keyColumn is
                    708:   ** the index of the primary key as it appears in IDLIST, not as
                    709:   ** is appears in the original table.  (The index of the primary
                    710:   ** key in the original table is pTab->iPKey.)
                    711:   */
                    712:   if( pColumn ){
                    713:     for(i=0; i<pColumn->nId; i++){
                    714:       pColumn->a[i].idx = -1;
                    715:     }
                    716:     for(i=0; i<pColumn->nId; i++){
                    717:       for(j=0; j<pTab->nCol; j++){
                    718:         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
                    719:           pColumn->a[i].idx = j;
                    720:           if( j==pTab->iPKey ){
                    721:             keyColumn = i;
                    722:           }
                    723:           break;
                    724:         }
                    725:       }
                    726:       if( j>=pTab->nCol ){
                    727:         if( sqlite3IsRowid(pColumn->a[i].zName) ){
                    728:           keyColumn = i;
                    729:         }else{
                    730:           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
                    731:               pTabList, 0, pColumn->a[i].zName);
                    732:           pParse->checkSchema = 1;
                    733:           goto insert_cleanup;
                    734:         }
                    735:       }
                    736:     }
                    737:   }
                    738: 
                    739:   /* If there is no IDLIST term but the table has an integer primary
                    740:   ** key, the set the keyColumn variable to the primary key column index
                    741:   ** in the original table definition.
                    742:   */
                    743:   if( pColumn==0 && nColumn>0 ){
                    744:     keyColumn = pTab->iPKey;
                    745:   }
                    746:     
                    747:   /* Initialize the count of rows to be inserted
                    748:   */
                    749:   if( db->flags & SQLITE_CountRows ){
                    750:     regRowCount = ++pParse->nMem;
                    751:     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
                    752:   }
                    753: 
                    754:   /* If this is not a view, open the table and and all indices */
                    755:   if( !isView ){
                    756:     int nIdx;
                    757: 
                    758:     baseCur = pParse->nTab;
                    759:     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
                    760:     aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
                    761:     if( aRegIdx==0 ){
                    762:       goto insert_cleanup;
                    763:     }
                    764:     for(i=0; i<nIdx; i++){
                    765:       aRegIdx[i] = ++pParse->nMem;
                    766:     }
                    767:   }
                    768: 
                    769:   /* This is the top of the main insertion loop */
                    770:   if( useTempTable ){
                    771:     /* This block codes the top of loop only.  The complete loop is the
                    772:     ** following pseudocode (template 4):
                    773:     **
                    774:     **         rewind temp table
                    775:     **      C: loop over rows of intermediate table
                    776:     **           transfer values form intermediate table into <table>
                    777:     **         end loop
                    778:     **      D: ...
                    779:     */
                    780:     addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
                    781:     addrCont = sqlite3VdbeCurrentAddr(v);
                    782:   }else if( pSelect ){
                    783:     /* This block codes the top of loop only.  The complete loop is the
                    784:     ** following pseudocode (template 3):
                    785:     **
                    786:     **      C: yield X
                    787:     **         if EOF goto D
                    788:     **         insert the select result into <table> from R..R+n
                    789:     **         goto C
                    790:     **      D: ...
                    791:     */
                    792:     addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
                    793:     addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
                    794:   }
                    795: 
                    796:   /* Allocate registers for holding the rowid of the new row,
                    797:   ** the content of the new row, and the assemblied row record.
                    798:   */
                    799:   regRowid = regIns = pParse->nMem+1;
                    800:   pParse->nMem += pTab->nCol + 1;
                    801:   if( IsVirtual(pTab) ){
                    802:     regRowid++;
                    803:     pParse->nMem++;
                    804:   }
                    805:   regData = regRowid+1;
                    806: 
                    807:   /* Run the BEFORE and INSTEAD OF triggers, if there are any
                    808:   */
                    809:   endOfLoop = sqlite3VdbeMakeLabel(v);
                    810:   if( tmask & TRIGGER_BEFORE ){
                    811:     int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
                    812: 
                    813:     /* build the NEW.* reference row.  Note that if there is an INTEGER
                    814:     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
                    815:     ** translated into a unique ID for the row.  But on a BEFORE trigger,
                    816:     ** we do not know what the unique ID will be (because the insert has
                    817:     ** not happened yet) so we substitute a rowid of -1
                    818:     */
                    819:     if( keyColumn<0 ){
                    820:       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
                    821:     }else{
                    822:       int j1;
                    823:       if( useTempTable ){
                    824:         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols);
                    825:       }else{
                    826:         assert( pSelect==0 );  /* Otherwise useTempTable is true */
                    827:         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols);
                    828:       }
                    829:       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
                    830:       sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
                    831:       sqlite3VdbeJumpHere(v, j1);
                    832:       sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
                    833:     }
                    834: 
                    835:     /* Cannot have triggers on a virtual table. If it were possible,
                    836:     ** this block would have to account for hidden column.
                    837:     */
                    838:     assert( !IsVirtual(pTab) );
                    839: 
                    840:     /* Create the new column data
                    841:     */
                    842:     for(i=0; i<pTab->nCol; i++){
                    843:       if( pColumn==0 ){
                    844:         j = i;
                    845:       }else{
                    846:         for(j=0; j<pColumn->nId; j++){
                    847:           if( pColumn->a[j].idx==i ) break;
                    848:         }
                    849:       }
                    850:       if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
                    851:         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
                    852:       }else if( useTempTable ){
                    853:         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 
                    854:       }else{
                    855:         assert( pSelect==0 ); /* Otherwise useTempTable is true */
                    856:         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
                    857:       }
                    858:     }
                    859: 
                    860:     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
                    861:     ** do not attempt any conversions before assembling the record.
                    862:     ** If this is a real table, attempt conversions as required by the
                    863:     ** table column affinities.
                    864:     */
                    865:     if( !isView ){
                    866:       sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
                    867:       sqlite3TableAffinityStr(v, pTab);
                    868:     }
                    869: 
                    870:     /* Fire BEFORE or INSTEAD OF triggers */
                    871:     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 
                    872:         pTab, regCols-pTab->nCol-1, onError, endOfLoop);
                    873: 
                    874:     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
                    875:   }
                    876: 
                    877:   /* Push the record number for the new entry onto the stack.  The
                    878:   ** record number is a randomly generate integer created by NewRowid
                    879:   ** except when the table has an INTEGER PRIMARY KEY column, in which
                    880:   ** case the record number is the same as that column. 
                    881:   */
                    882:   if( !isView ){
                    883:     if( IsVirtual(pTab) ){
                    884:       /* The row that the VUpdate opcode will delete: none */
                    885:       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
                    886:     }
                    887:     if( keyColumn>=0 ){
                    888:       if( useTempTable ){
                    889:         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
                    890:       }else if( pSelect ){
                    891:         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
                    892:       }else{
                    893:         VdbeOp *pOp;
                    894:         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
                    895:         pOp = sqlite3VdbeGetOp(v, -1);
                    896:         if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
                    897:           appendFlag = 1;
                    898:           pOp->opcode = OP_NewRowid;
                    899:           pOp->p1 = baseCur;
                    900:           pOp->p2 = regRowid;
                    901:           pOp->p3 = regAutoinc;
                    902:         }
                    903:       }
                    904:       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
                    905:       ** to generate a unique primary key value.
                    906:       */
                    907:       if( !appendFlag ){
                    908:         int j1;
                    909:         if( !IsVirtual(pTab) ){
                    910:           j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
                    911:           sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
                    912:           sqlite3VdbeJumpHere(v, j1);
                    913:         }else{
                    914:           j1 = sqlite3VdbeCurrentAddr(v);
                    915:           sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
                    916:         }
                    917:         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
                    918:       }
                    919:     }else if( IsVirtual(pTab) ){
                    920:       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
                    921:     }else{
                    922:       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
                    923:       appendFlag = 1;
                    924:     }
                    925:     autoIncStep(pParse, regAutoinc, regRowid);
                    926: 
                    927:     /* Push onto the stack, data for all columns of the new entry, beginning
                    928:     ** with the first column.
                    929:     */
                    930:     nHidden = 0;
                    931:     for(i=0; i<pTab->nCol; i++){
                    932:       int iRegStore = regRowid+1+i;
                    933:       if( i==pTab->iPKey ){
                    934:         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
                    935:         ** Whenever this column is read, the record number will be substituted
                    936:         ** in its place.  So will fill this column with a NULL to avoid
                    937:         ** taking up data space with information that will never be used. */
                    938:         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
                    939:         continue;
                    940:       }
                    941:       if( pColumn==0 ){
                    942:         if( IsHiddenColumn(&pTab->aCol[i]) ){
                    943:           assert( IsVirtual(pTab) );
                    944:           j = -1;
                    945:           nHidden++;
                    946:         }else{
                    947:           j = i - nHidden;
                    948:         }
                    949:       }else{
                    950:         for(j=0; j<pColumn->nId; j++){
                    951:           if( pColumn->a[j].idx==i ) break;
                    952:         }
                    953:       }
                    954:       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
                    955:         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
                    956:       }else if( useTempTable ){
                    957:         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 
                    958:       }else if( pSelect ){
                    959:         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
                    960:       }else{
                    961:         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
                    962:       }
                    963:     }
                    964: 
                    965:     /* Generate code to check constraints and generate index keys and
                    966:     ** do the insertion.
                    967:     */
                    968: #ifndef SQLITE_OMIT_VIRTUALTABLE
                    969:     if( IsVirtual(pTab) ){
                    970:       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
                    971:       sqlite3VtabMakeWritable(pParse, pTab);
                    972:       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
                    973:       sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
                    974:       sqlite3MayAbort(pParse);
                    975:     }else
                    976: #endif
                    977:     {
                    978:       int isReplace;    /* Set to true if constraints may cause a replace */
                    979:       sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
                    980:           keyColumn>=0, 0, onError, endOfLoop, &isReplace
                    981:       );
                    982:       sqlite3FkCheck(pParse, pTab, 0, regIns);
                    983:       sqlite3CompleteInsertion(
                    984:           pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0
                    985:       );
                    986:     }
                    987:   }
                    988: 
                    989:   /* Update the count of rows that are inserted
                    990:   */
                    991:   if( (db->flags & SQLITE_CountRows)!=0 ){
                    992:     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
                    993:   }
                    994: 
                    995:   if( pTrigger ){
                    996:     /* Code AFTER triggers */
                    997:     sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 
                    998:         pTab, regData-2-pTab->nCol, onError, endOfLoop);
                    999:   }
                   1000: 
                   1001:   /* The bottom of the main insertion loop, if the data source
                   1002:   ** is a SELECT statement.
                   1003:   */
                   1004:   sqlite3VdbeResolveLabel(v, endOfLoop);
                   1005:   if( useTempTable ){
                   1006:     sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
                   1007:     sqlite3VdbeJumpHere(v, addrInsTop);
                   1008:     sqlite3VdbeAddOp1(v, OP_Close, srcTab);
                   1009:   }else if( pSelect ){
                   1010:     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
                   1011:     sqlite3VdbeJumpHere(v, addrInsTop);
                   1012:   }
                   1013: 
                   1014:   if( !IsVirtual(pTab) && !isView ){
                   1015:     /* Close all tables opened */
                   1016:     sqlite3VdbeAddOp1(v, OP_Close, baseCur);
                   1017:     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
                   1018:       sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
                   1019:     }
                   1020:   }
                   1021: 
                   1022: insert_end:
                   1023:   /* Update the sqlite_sequence table by storing the content of the
                   1024:   ** maximum rowid counter values recorded while inserting into
                   1025:   ** autoincrement tables.
                   1026:   */
                   1027:   if( pParse->nested==0 && pParse->pTriggerTab==0 ){
                   1028:     sqlite3AutoincrementEnd(pParse);
                   1029:   }
                   1030: 
                   1031:   /*
                   1032:   ** Return the number of rows inserted. If this routine is 
                   1033:   ** generating code because of a call to sqlite3NestedParse(), do not
                   1034:   ** invoke the callback function.
                   1035:   */
                   1036:   if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
                   1037:     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
                   1038:     sqlite3VdbeSetNumCols(v, 1);
                   1039:     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
                   1040:   }
                   1041: 
                   1042: insert_cleanup:
                   1043:   sqlite3SrcListDelete(db, pTabList);
                   1044:   sqlite3ExprListDelete(db, pList);
                   1045:   sqlite3SelectDelete(db, pSelect);
                   1046:   sqlite3IdListDelete(db, pColumn);
                   1047:   sqlite3DbFree(db, aRegIdx);
                   1048: }
                   1049: 
                   1050: /* Make sure "isView" and other macros defined above are undefined. Otherwise
                   1051: ** thely may interfere with compilation of other functions in this file
                   1052: ** (or in another file, if this file becomes part of the amalgamation).  */
                   1053: #ifdef isView
                   1054:  #undef isView
                   1055: #endif
                   1056: #ifdef pTrigger
                   1057:  #undef pTrigger
                   1058: #endif
                   1059: #ifdef tmask
                   1060:  #undef tmask
                   1061: #endif
                   1062: 
                   1063: 
                   1064: /*
                   1065: ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
                   1066: **
                   1067: ** The input is a range of consecutive registers as follows:
                   1068: **
                   1069: **    1.  The rowid of the row after the update.
                   1070: **
                   1071: **    2.  The data in the first column of the entry after the update.
                   1072: **
                   1073: **    i.  Data from middle columns...
                   1074: **
                   1075: **    N.  The data in the last column of the entry after the update.
                   1076: **
                   1077: ** The regRowid parameter is the index of the register containing (1).
                   1078: **
                   1079: ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains
                   1080: ** the address of a register containing the rowid before the update takes
                   1081: ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate
                   1082: ** is false, indicating an INSERT statement, then a non-zero rowidChng 
                   1083: ** indicates that the rowid was explicitly specified as part of the
                   1084: ** INSERT statement. If rowidChng is false, it means that  the rowid is
                   1085: ** computed automatically in an insert or that the rowid value is not 
                   1086: ** modified by an update.
                   1087: **
                   1088: ** The code generated by this routine store new index entries into
                   1089: ** registers identified by aRegIdx[].  No index entry is created for
                   1090: ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
                   1091: ** the same as the order of indices on the linked list of indices
                   1092: ** attached to the table.
                   1093: **
                   1094: ** This routine also generates code to check constraints.  NOT NULL,
                   1095: ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
                   1096: ** then the appropriate action is performed.  There are five possible
                   1097: ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
                   1098: **
                   1099: **  Constraint type  Action       What Happens
                   1100: **  ---------------  ----------   ----------------------------------------
                   1101: **  any              ROLLBACK     The current transaction is rolled back and
                   1102: **                                sqlite3_exec() returns immediately with a
                   1103: **                                return code of SQLITE_CONSTRAINT.
                   1104: **
                   1105: **  any              ABORT        Back out changes from the current command
                   1106: **                                only (do not do a complete rollback) then
                   1107: **                                cause sqlite3_exec() to return immediately
                   1108: **                                with SQLITE_CONSTRAINT.
                   1109: **
                   1110: **  any              FAIL         Sqlite3_exec() returns immediately with a
                   1111: **                                return code of SQLITE_CONSTRAINT.  The
                   1112: **                                transaction is not rolled back and any
                   1113: **                                prior changes are retained.
                   1114: **
                   1115: **  any              IGNORE       The record number and data is popped from
                   1116: **                                the stack and there is an immediate jump
                   1117: **                                to label ignoreDest.
                   1118: **
                   1119: **  NOT NULL         REPLACE      The NULL value is replace by the default
                   1120: **                                value for that column.  If the default value
                   1121: **                                is NULL, the action is the same as ABORT.
                   1122: **
                   1123: **  UNIQUE           REPLACE      The other row that conflicts with the row
                   1124: **                                being inserted is removed.
                   1125: **
                   1126: **  CHECK            REPLACE      Illegal.  The results in an exception.
                   1127: **
                   1128: ** Which action to take is determined by the overrideError parameter.
                   1129: ** Or if overrideError==OE_Default, then the pParse->onError parameter
                   1130: ** is used.  Or if pParse->onError==OE_Default then the onError value
                   1131: ** for the constraint is used.
                   1132: **
                   1133: ** The calling routine must open a read/write cursor for pTab with
                   1134: ** cursor number "baseCur".  All indices of pTab must also have open
                   1135: ** read/write cursors with cursor number baseCur+i for the i-th cursor.
                   1136: ** Except, if there is no possibility of a REPLACE action then
                   1137: ** cursors do not need to be open for indices where aRegIdx[i]==0.
                   1138: */
                   1139: void sqlite3GenerateConstraintChecks(
                   1140:   Parse *pParse,      /* The parser context */
                   1141:   Table *pTab,        /* the table into which we are inserting */
                   1142:   int baseCur,        /* Index of a read/write cursor pointing at pTab */
                   1143:   int regRowid,       /* Index of the range of input registers */
                   1144:   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
                   1145:   int rowidChng,      /* True if the rowid might collide with existing entry */
                   1146:   int isUpdate,       /* True for UPDATE, False for INSERT */
                   1147:   int overrideError,  /* Override onError to this if not OE_Default */
                   1148:   int ignoreDest,     /* Jump to this label on an OE_Ignore resolution */
                   1149:   int *pbMayReplace   /* OUT: Set to true if constraint may cause a replace */
                   1150: ){
                   1151:   int i;              /* loop counter */
                   1152:   Vdbe *v;            /* VDBE under constrution */
                   1153:   int nCol;           /* Number of columns */
                   1154:   int onError;        /* Conflict resolution strategy */
                   1155:   int j1;             /* Addresss of jump instruction */
                   1156:   int j2 = 0, j3;     /* Addresses of jump instructions */
                   1157:   int regData;        /* Register containing first data column */
                   1158:   int iCur;           /* Table cursor number */
                   1159:   Index *pIdx;         /* Pointer to one of the indices */
                   1160:   int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
                   1161:   int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid;
                   1162: 
                   1163:   v = sqlite3GetVdbe(pParse);
                   1164:   assert( v!=0 );
                   1165:   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
                   1166:   nCol = pTab->nCol;
                   1167:   regData = regRowid + 1;
                   1168: 
                   1169:   /* Test all NOT NULL constraints.
                   1170:   */
                   1171:   for(i=0; i<nCol; i++){
                   1172:     if( i==pTab->iPKey ){
                   1173:       continue;
                   1174:     }
                   1175:     onError = pTab->aCol[i].notNull;
                   1176:     if( onError==OE_None ) continue;
                   1177:     if( overrideError!=OE_Default ){
                   1178:       onError = overrideError;
                   1179:     }else if( onError==OE_Default ){
                   1180:       onError = OE_Abort;
                   1181:     }
                   1182:     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
                   1183:       onError = OE_Abort;
                   1184:     }
                   1185:     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
                   1186:         || onError==OE_Ignore || onError==OE_Replace );
                   1187:     switch( onError ){
                   1188:       case OE_Abort:
                   1189:         sqlite3MayAbort(pParse);
                   1190:       case OE_Rollback:
                   1191:       case OE_Fail: {
                   1192:         char *zMsg;
                   1193:         sqlite3VdbeAddOp3(v, OP_HaltIfNull,
                   1194:                                   SQLITE_CONSTRAINT, onError, regData+i);
                   1195:         zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
                   1196:                               pTab->zName, pTab->aCol[i].zName);
                   1197:         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
                   1198:         break;
                   1199:       }
                   1200:       case OE_Ignore: {
                   1201:         sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
                   1202:         break;
                   1203:       }
                   1204:       default: {
                   1205:         assert( onError==OE_Replace );
                   1206:         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
                   1207:         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
                   1208:         sqlite3VdbeJumpHere(v, j1);
                   1209:         break;
                   1210:       }
                   1211:     }
                   1212:   }
                   1213: 
                   1214:   /* Test all CHECK constraints
                   1215:   */
                   1216: #ifndef SQLITE_OMIT_CHECK
                   1217:   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
                   1218:     int allOk = sqlite3VdbeMakeLabel(v);
                   1219:     pParse->ckBase = regData;
                   1220:     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
                   1221:     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
                   1222:     if( onError==OE_Ignore ){
                   1223:       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
                   1224:     }else{
                   1225:       if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
                   1226:       sqlite3HaltConstraint(pParse, onError, 0, 0);
                   1227:     }
                   1228:     sqlite3VdbeResolveLabel(v, allOk);
                   1229:   }
                   1230: #endif /* !defined(SQLITE_OMIT_CHECK) */
                   1231: 
                   1232:   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
                   1233:   ** of the new record does not previously exist.  Except, if this
                   1234:   ** is an UPDATE and the primary key is not changing, that is OK.
                   1235:   */
                   1236:   if( rowidChng ){
                   1237:     onError = pTab->keyConf;
                   1238:     if( overrideError!=OE_Default ){
                   1239:       onError = overrideError;
                   1240:     }else if( onError==OE_Default ){
                   1241:       onError = OE_Abort;
                   1242:     }
                   1243:     
                   1244:     if( isUpdate ){
                   1245:       j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng);
                   1246:     }
                   1247:     j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
                   1248:     switch( onError ){
                   1249:       default: {
                   1250:         onError = OE_Abort;
                   1251:         /* Fall thru into the next case */
                   1252:       }
                   1253:       case OE_Rollback:
                   1254:       case OE_Abort:
                   1255:       case OE_Fail: {
                   1256:         sqlite3HaltConstraint(
                   1257:           pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
                   1258:         break;
                   1259:       }
                   1260:       case OE_Replace: {
                   1261:         /* If there are DELETE triggers on this table and the
                   1262:         ** recursive-triggers flag is set, call GenerateRowDelete() to
                   1263:         ** remove the conflicting row from the the table. This will fire
                   1264:         ** the triggers and remove both the table and index b-tree entries.
                   1265:         **
                   1266:         ** Otherwise, if there are no triggers or the recursive-triggers
                   1267:         ** flag is not set, but the table has one or more indexes, call 
                   1268:         ** GenerateRowIndexDelete(). This removes the index b-tree entries 
                   1269:         ** only. The table b-tree entry will be replaced by the new entry 
                   1270:         ** when it is inserted.  
                   1271:         **
                   1272:         ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
                   1273:         ** also invoke MultiWrite() to indicate that this VDBE may require
                   1274:         ** statement rollback (if the statement is aborted after the delete
                   1275:         ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
                   1276:         ** but being more selective here allows statements like:
                   1277:         **
                   1278:         **   REPLACE INTO t(rowid) VALUES($newrowid)
                   1279:         **
                   1280:         ** to run without a statement journal if there are no indexes on the
                   1281:         ** table.
                   1282:         */
                   1283:         Trigger *pTrigger = 0;
                   1284:         if( pParse->db->flags&SQLITE_RecTriggers ){
                   1285:           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
                   1286:         }
                   1287:         if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
                   1288:           sqlite3MultiWrite(pParse);
                   1289:           sqlite3GenerateRowDelete(
                   1290:               pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace
                   1291:           );
                   1292:         }else if( pTab->pIndex ){
                   1293:           sqlite3MultiWrite(pParse);
                   1294:           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
                   1295:         }
                   1296:         seenReplace = 1;
                   1297:         break;
                   1298:       }
                   1299:       case OE_Ignore: {
                   1300:         assert( seenReplace==0 );
                   1301:         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
                   1302:         break;
                   1303:       }
                   1304:     }
                   1305:     sqlite3VdbeJumpHere(v, j3);
                   1306:     if( isUpdate ){
                   1307:       sqlite3VdbeJumpHere(v, j2);
                   1308:     }
                   1309:   }
                   1310: 
                   1311:   /* Test all UNIQUE constraints by creating entries for each UNIQUE
                   1312:   ** index and making sure that duplicate entries do not already exist.
                   1313:   ** Add the new records to the indices as we go.
                   1314:   */
                   1315:   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
                   1316:     int regIdx;
                   1317:     int regR;
                   1318: 
                   1319:     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
                   1320: 
                   1321:     /* Create a key for accessing the index entry */
                   1322:     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
                   1323:     for(i=0; i<pIdx->nColumn; i++){
                   1324:       int idx = pIdx->aiColumn[i];
                   1325:       if( idx==pTab->iPKey ){
                   1326:         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
                   1327:       }else{
                   1328:         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
                   1329:       }
                   1330:     }
                   1331:     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
                   1332:     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
                   1333:     sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
                   1334:     sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
                   1335: 
                   1336:     /* Find out what action to take in case there is an indexing conflict */
                   1337:     onError = pIdx->onError;
                   1338:     if( onError==OE_None ){ 
                   1339:       sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
                   1340:       continue;  /* pIdx is not a UNIQUE index */
                   1341:     }
                   1342:     if( overrideError!=OE_Default ){
                   1343:       onError = overrideError;
                   1344:     }else if( onError==OE_Default ){
                   1345:       onError = OE_Abort;
                   1346:     }
                   1347:     if( seenReplace ){
                   1348:       if( onError==OE_Ignore ) onError = OE_Replace;
                   1349:       else if( onError==OE_Fail ) onError = OE_Abort;
                   1350:     }
                   1351:     
                   1352:     /* Check to see if the new index entry will be unique */
                   1353:     regR = sqlite3GetTempReg(pParse);
                   1354:     sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR);
                   1355:     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
                   1356:                            regR, SQLITE_INT_TO_PTR(regIdx),
                   1357:                            P4_INT32);
                   1358:     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
                   1359: 
                   1360:     /* Generate code that executes if the new index entry is not unique */
                   1361:     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
                   1362:         || onError==OE_Ignore || onError==OE_Replace );
                   1363:     switch( onError ){
                   1364:       case OE_Rollback:
                   1365:       case OE_Abort:
                   1366:       case OE_Fail: {
                   1367:         int j;
                   1368:         StrAccum errMsg;
                   1369:         const char *zSep;
                   1370:         char *zErr;
                   1371: 
                   1372:         sqlite3StrAccumInit(&errMsg, 0, 0, 200);
                   1373:         errMsg.db = pParse->db;
                   1374:         zSep = pIdx->nColumn>1 ? "columns " : "column ";
                   1375:         for(j=0; j<pIdx->nColumn; j++){
                   1376:           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
                   1377:           sqlite3StrAccumAppend(&errMsg, zSep, -1);
                   1378:           zSep = ", ";
                   1379:           sqlite3StrAccumAppend(&errMsg, zCol, -1);
                   1380:         }
                   1381:         sqlite3StrAccumAppend(&errMsg,
                   1382:             pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
                   1383:         zErr = sqlite3StrAccumFinish(&errMsg);
                   1384:         sqlite3HaltConstraint(pParse, onError, zErr, 0);
                   1385:         sqlite3DbFree(errMsg.db, zErr);
                   1386:         break;
                   1387:       }
                   1388:       case OE_Ignore: {
                   1389:         assert( seenReplace==0 );
                   1390:         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
                   1391:         break;
                   1392:       }
                   1393:       default: {
                   1394:         Trigger *pTrigger = 0;
                   1395:         assert( onError==OE_Replace );
                   1396:         sqlite3MultiWrite(pParse);
                   1397:         if( pParse->db->flags&SQLITE_RecTriggers ){
                   1398:           pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
                   1399:         }
                   1400:         sqlite3GenerateRowDelete(
                   1401:             pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
                   1402:         );
                   1403:         seenReplace = 1;
                   1404:         break;
                   1405:       }
                   1406:     }
                   1407:     sqlite3VdbeJumpHere(v, j3);
                   1408:     sqlite3ReleaseTempReg(pParse, regR);
                   1409:   }
                   1410:   
                   1411:   if( pbMayReplace ){
                   1412:     *pbMayReplace = seenReplace;
                   1413:   }
                   1414: }
                   1415: 
                   1416: /*
                   1417: ** This routine generates code to finish the INSERT or UPDATE operation
                   1418: ** that was started by a prior call to sqlite3GenerateConstraintChecks.
                   1419: ** A consecutive range of registers starting at regRowid contains the
                   1420: ** rowid and the content to be inserted.
                   1421: **
                   1422: ** The arguments to this routine should be the same as the first six
                   1423: ** arguments to sqlite3GenerateConstraintChecks.
                   1424: */
                   1425: void sqlite3CompleteInsertion(
                   1426:   Parse *pParse,      /* The parser context */
                   1427:   Table *pTab,        /* the table into which we are inserting */
                   1428:   int baseCur,        /* Index of a read/write cursor pointing at pTab */
                   1429:   int regRowid,       /* Range of content */
                   1430:   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
                   1431:   int isUpdate,       /* True for UPDATE, False for INSERT */
                   1432:   int appendBias,     /* True if this is likely to be an append */
                   1433:   int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
                   1434: ){
                   1435:   int i;
                   1436:   Vdbe *v;
                   1437:   int nIdx;
                   1438:   Index *pIdx;
                   1439:   u8 pik_flags;
                   1440:   int regData;
                   1441:   int regRec;
                   1442: 
                   1443:   v = sqlite3GetVdbe(pParse);
                   1444:   assert( v!=0 );
                   1445:   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
                   1446:   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
                   1447:   for(i=nIdx-1; i>=0; i--){
                   1448:     if( aRegIdx[i]==0 ) continue;
                   1449:     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
                   1450:     if( useSeekResult ){
                   1451:       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
                   1452:     }
                   1453:   }
                   1454:   regData = regRowid + 1;
                   1455:   regRec = sqlite3GetTempReg(pParse);
                   1456:   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
                   1457:   sqlite3TableAffinityStr(v, pTab);
                   1458:   sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
                   1459:   if( pParse->nested ){
                   1460:     pik_flags = 0;
                   1461:   }else{
                   1462:     pik_flags = OPFLAG_NCHANGE;
                   1463:     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
                   1464:   }
                   1465:   if( appendBias ){
                   1466:     pik_flags |= OPFLAG_APPEND;
                   1467:   }
                   1468:   if( useSeekResult ){
                   1469:     pik_flags |= OPFLAG_USESEEKRESULT;
                   1470:   }
                   1471:   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
                   1472:   if( !pParse->nested ){
                   1473:     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
                   1474:   }
                   1475:   sqlite3VdbeChangeP5(v, pik_flags);
                   1476: }
                   1477: 
                   1478: /*
                   1479: ** Generate code that will open cursors for a table and for all
                   1480: ** indices of that table.  The "baseCur" parameter is the cursor number used
                   1481: ** for the table.  Indices are opened on subsequent cursors.
                   1482: **
                   1483: ** Return the number of indices on the table.
                   1484: */
                   1485: int sqlite3OpenTableAndIndices(
                   1486:   Parse *pParse,   /* Parsing context */
                   1487:   Table *pTab,     /* Table to be opened */
                   1488:   int baseCur,     /* Cursor number assigned to the table */
                   1489:   int op           /* OP_OpenRead or OP_OpenWrite */
                   1490: ){
                   1491:   int i;
                   1492:   int iDb;
                   1493:   Index *pIdx;
                   1494:   Vdbe *v;
                   1495: 
                   1496:   if( IsVirtual(pTab) ) return 0;
                   1497:   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
                   1498:   v = sqlite3GetVdbe(pParse);
                   1499:   assert( v!=0 );
                   1500:   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
                   1501:   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
                   1502:     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
                   1503:     assert( pIdx->pSchema==pTab->pSchema );
                   1504:     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
                   1505:                       (char*)pKey, P4_KEYINFO_HANDOFF);
                   1506:     VdbeComment((v, "%s", pIdx->zName));
                   1507:   }
                   1508:   if( pParse->nTab<baseCur+i ){
                   1509:     pParse->nTab = baseCur+i;
                   1510:   }
                   1511:   return i-1;
                   1512: }
                   1513: 
                   1514: 
                   1515: #ifdef SQLITE_TEST
                   1516: /*
                   1517: ** The following global variable is incremented whenever the
                   1518: ** transfer optimization is used.  This is used for testing
                   1519: ** purposes only - to make sure the transfer optimization really
                   1520: ** is happening when it is suppose to.
                   1521: */
                   1522: int sqlite3_xferopt_count;
                   1523: #endif /* SQLITE_TEST */
                   1524: 
                   1525: 
                   1526: #ifndef SQLITE_OMIT_XFER_OPT
                   1527: /*
                   1528: ** Check to collation names to see if they are compatible.
                   1529: */
                   1530: static int xferCompatibleCollation(const char *z1, const char *z2){
                   1531:   if( z1==0 ){
                   1532:     return z2==0;
                   1533:   }
                   1534:   if( z2==0 ){
                   1535:     return 0;
                   1536:   }
                   1537:   return sqlite3StrICmp(z1, z2)==0;
                   1538: }
                   1539: 
                   1540: 
                   1541: /*
                   1542: ** Check to see if index pSrc is compatible as a source of data
                   1543: ** for index pDest in an insert transfer optimization.  The rules
                   1544: ** for a compatible index:
                   1545: **
                   1546: **    *   The index is over the same set of columns
                   1547: **    *   The same DESC and ASC markings occurs on all columns
                   1548: **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
                   1549: **    *   The same collating sequence on each column
                   1550: */
                   1551: static int xferCompatibleIndex(Index *pDest, Index *pSrc){
                   1552:   int i;
                   1553:   assert( pDest && pSrc );
                   1554:   assert( pDest->pTable!=pSrc->pTable );
                   1555:   if( pDest->nColumn!=pSrc->nColumn ){
                   1556:     return 0;   /* Different number of columns */
                   1557:   }
                   1558:   if( pDest->onError!=pSrc->onError ){
                   1559:     return 0;   /* Different conflict resolution strategies */
                   1560:   }
                   1561:   for(i=0; i<pSrc->nColumn; i++){
                   1562:     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
                   1563:       return 0;   /* Different columns indexed */
                   1564:     }
                   1565:     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
                   1566:       return 0;   /* Different sort orders */
                   1567:     }
                   1568:     if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
                   1569:       return 0;   /* Different collating sequences */
                   1570:     }
                   1571:   }
                   1572: 
                   1573:   /* If no test above fails then the indices must be compatible */
                   1574:   return 1;
                   1575: }
                   1576: 
                   1577: /*
                   1578: ** Attempt the transfer optimization on INSERTs of the form
                   1579: **
                   1580: **     INSERT INTO tab1 SELECT * FROM tab2;
                   1581: **
                   1582: ** The xfer optimization transfers raw records from tab2 over to tab1.  
                   1583: ** Columns are not decoded and reassemblied, which greatly improves
                   1584: ** performance.  Raw index records are transferred in the same way.
                   1585: **
                   1586: ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
                   1587: ** There are lots of rules for determining compatibility - see comments
                   1588: ** embedded in the code for details.
                   1589: **
                   1590: ** This routine returns TRUE if the optimization is guaranteed to be used.
                   1591: ** Sometimes the xfer optimization will only work if the destination table
                   1592: ** is empty - a factor that can only be determined at run-time.  In that
                   1593: ** case, this routine generates code for the xfer optimization but also
                   1594: ** does a test to see if the destination table is empty and jumps over the
                   1595: ** xfer optimization code if the test fails.  In that case, this routine
                   1596: ** returns FALSE so that the caller will know to go ahead and generate
                   1597: ** an unoptimized transfer.  This routine also returns FALSE if there
                   1598: ** is no chance that the xfer optimization can be applied.
                   1599: **
                   1600: ** This optimization is particularly useful at making VACUUM run faster.
                   1601: */
                   1602: static int xferOptimization(
                   1603:   Parse *pParse,        /* Parser context */
                   1604:   Table *pDest,         /* The table we are inserting into */
                   1605:   Select *pSelect,      /* A SELECT statement to use as the data source */
                   1606:   int onError,          /* How to handle constraint errors */
                   1607:   int iDbDest           /* The database of pDest */
                   1608: ){
                   1609:   ExprList *pEList;                /* The result set of the SELECT */
                   1610:   Table *pSrc;                     /* The table in the FROM clause of SELECT */
                   1611:   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
                   1612:   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
                   1613:   int i;                           /* Loop counter */
                   1614:   int iDbSrc;                      /* The database of pSrc */
                   1615:   int iSrc, iDest;                 /* Cursors from source and destination */
                   1616:   int addr1, addr2;                /* Loop addresses */
                   1617:   int emptyDestTest;               /* Address of test for empty pDest */
                   1618:   int emptySrcTest;                /* Address of test for empty pSrc */
                   1619:   Vdbe *v;                         /* The VDBE we are building */
                   1620:   KeyInfo *pKey;                   /* Key information for an index */
                   1621:   int regAutoinc;                  /* Memory register used by AUTOINC */
                   1622:   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
                   1623:   int regData, regRowid;           /* Registers holding data and rowid */
                   1624: 
                   1625:   if( pSelect==0 ){
                   1626:     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
                   1627:   }
                   1628:   if( sqlite3TriggerList(pParse, pDest) ){
                   1629:     return 0;   /* tab1 must not have triggers */
                   1630:   }
                   1631: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   1632:   if( pDest->tabFlags & TF_Virtual ){
                   1633:     return 0;   /* tab1 must not be a virtual table */
                   1634:   }
                   1635: #endif
                   1636:   if( onError==OE_Default ){
                   1637:     if( pDest->iPKey>=0 ) onError = pDest->keyConf;
                   1638:     if( onError==OE_Default ) onError = OE_Abort;
                   1639:   }
                   1640:   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
                   1641:   if( pSelect->pSrc->nSrc!=1 ){
                   1642:     return 0;   /* FROM clause must have exactly one term */
                   1643:   }
                   1644:   if( pSelect->pSrc->a[0].pSelect ){
                   1645:     return 0;   /* FROM clause cannot contain a subquery */
                   1646:   }
                   1647:   if( pSelect->pWhere ){
                   1648:     return 0;   /* SELECT may not have a WHERE clause */
                   1649:   }
                   1650:   if( pSelect->pOrderBy ){
                   1651:     return 0;   /* SELECT may not have an ORDER BY clause */
                   1652:   }
                   1653:   /* Do not need to test for a HAVING clause.  If HAVING is present but
                   1654:   ** there is no ORDER BY, we will get an error. */
                   1655:   if( pSelect->pGroupBy ){
                   1656:     return 0;   /* SELECT may not have a GROUP BY clause */
                   1657:   }
                   1658:   if( pSelect->pLimit ){
                   1659:     return 0;   /* SELECT may not have a LIMIT clause */
                   1660:   }
                   1661:   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
                   1662:   if( pSelect->pPrior ){
                   1663:     return 0;   /* SELECT may not be a compound query */
                   1664:   }
                   1665:   if( pSelect->selFlags & SF_Distinct ){
                   1666:     return 0;   /* SELECT may not be DISTINCT */
                   1667:   }
                   1668:   pEList = pSelect->pEList;
                   1669:   assert( pEList!=0 );
                   1670:   if( pEList->nExpr!=1 ){
                   1671:     return 0;   /* The result set must have exactly one column */
                   1672:   }
                   1673:   assert( pEList->a[0].pExpr );
                   1674:   if( pEList->a[0].pExpr->op!=TK_ALL ){
                   1675:     return 0;   /* The result set must be the special operator "*" */
                   1676:   }
                   1677: 
                   1678:   /* At this point we have established that the statement is of the
                   1679:   ** correct syntactic form to participate in this optimization.  Now
                   1680:   ** we have to check the semantics.
                   1681:   */
                   1682:   pItem = pSelect->pSrc->a;
                   1683:   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
                   1684:   if( pSrc==0 ){
                   1685:     return 0;   /* FROM clause does not contain a real table */
                   1686:   }
                   1687:   if( pSrc==pDest ){
                   1688:     return 0;   /* tab1 and tab2 may not be the same table */
                   1689:   }
                   1690: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   1691:   if( pSrc->tabFlags & TF_Virtual ){
                   1692:     return 0;   /* tab2 must not be a virtual table */
                   1693:   }
                   1694: #endif
                   1695:   if( pSrc->pSelect ){
                   1696:     return 0;   /* tab2 may not be a view */
                   1697:   }
                   1698:   if( pDest->nCol!=pSrc->nCol ){
                   1699:     return 0;   /* Number of columns must be the same in tab1 and tab2 */
                   1700:   }
                   1701:   if( pDest->iPKey!=pSrc->iPKey ){
                   1702:     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
                   1703:   }
                   1704:   for(i=0; i<pDest->nCol; i++){
                   1705:     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
                   1706:       return 0;    /* Affinity must be the same on all columns */
                   1707:     }
                   1708:     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
                   1709:       return 0;    /* Collating sequence must be the same on all columns */
                   1710:     }
                   1711:     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
                   1712:       return 0;    /* tab2 must be NOT NULL if tab1 is */
                   1713:     }
                   1714:   }
                   1715:   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
                   1716:     if( pDestIdx->onError!=OE_None ){
                   1717:       destHasUniqueIdx = 1;
                   1718:     }
                   1719:     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
                   1720:       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
                   1721:     }
                   1722:     if( pSrcIdx==0 ){
                   1723:       return 0;    /* pDestIdx has no corresponding index in pSrc */
                   1724:     }
                   1725:   }
                   1726: #ifndef SQLITE_OMIT_CHECK
                   1727:   if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
                   1728:     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
                   1729:   }
                   1730: #endif
                   1731: #ifndef SQLITE_OMIT_FOREIGN_KEY
                   1732:   /* Disallow the transfer optimization if the destination table constains
                   1733:   ** any foreign key constraints.  This is more restrictive than necessary.
                   1734:   ** But the main beneficiary of the transfer optimization is the VACUUM 
                   1735:   ** command, and the VACUUM command disables foreign key constraints.  So
                   1736:   ** the extra complication to make this rule less restrictive is probably
                   1737:   ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
                   1738:   */
                   1739:   if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
                   1740:     return 0;
                   1741:   }
                   1742: #endif
                   1743:   if( (pParse->db->flags & SQLITE_CountRows)!=0 ){
                   1744:     return 0;  /* xfer opt does not play well with PRAGMA count_changes */
                   1745:   }
                   1746: 
                   1747:   /* If we get this far, it means that the xfer optimization is at
                   1748:   ** least a possibility, though it might only work if the destination
                   1749:   ** table (tab1) is initially empty.
                   1750:   */
                   1751: #ifdef SQLITE_TEST
                   1752:   sqlite3_xferopt_count++;
                   1753: #endif
                   1754:   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
                   1755:   v = sqlite3GetVdbe(pParse);
                   1756:   sqlite3CodeVerifySchema(pParse, iDbSrc);
                   1757:   iSrc = pParse->nTab++;
                   1758:   iDest = pParse->nTab++;
                   1759:   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
                   1760:   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
                   1761:   if( (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */
                   1762:    || destHasUniqueIdx                              /* (2) */
                   1763:    || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */
                   1764:   ){
                   1765:     /* In some circumstances, we are able to run the xfer optimization
                   1766:     ** only if the destination table is initially empty.  This code makes
                   1767:     ** that determination.  Conditions under which the destination must
                   1768:     ** be empty:
                   1769:     **
                   1770:     ** (1) There is no INTEGER PRIMARY KEY but there are indices.
                   1771:     **     (If the destination is not initially empty, the rowid fields
                   1772:     **     of index entries might need to change.)
                   1773:     **
                   1774:     ** (2) The destination has a unique index.  (The xfer optimization 
                   1775:     **     is unable to test uniqueness.)
                   1776:     **
                   1777:     ** (3) onError is something other than OE_Abort and OE_Rollback.
                   1778:     */
                   1779:     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
                   1780:     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
                   1781:     sqlite3VdbeJumpHere(v, addr1);
                   1782:   }else{
                   1783:     emptyDestTest = 0;
                   1784:   }
                   1785:   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
                   1786:   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
                   1787:   regData = sqlite3GetTempReg(pParse);
                   1788:   regRowid = sqlite3GetTempReg(pParse);
                   1789:   if( pDest->iPKey>=0 ){
                   1790:     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
                   1791:     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
                   1792:     sqlite3HaltConstraint(
                   1793:         pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
                   1794:     sqlite3VdbeJumpHere(v, addr2);
                   1795:     autoIncStep(pParse, regAutoinc, regRowid);
                   1796:   }else if( pDest->pIndex==0 ){
                   1797:     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
                   1798:   }else{
                   1799:     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
                   1800:     assert( (pDest->tabFlags & TF_Autoincrement)==0 );
                   1801:   }
                   1802:   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
                   1803:   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
                   1804:   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
                   1805:   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
                   1806:   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
                   1807:   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
                   1808:     for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
                   1809:       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
                   1810:     }
                   1811:     assert( pSrcIdx );
                   1812:     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
                   1813:     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
                   1814:     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
                   1815:     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
                   1816:                       (char*)pKey, P4_KEYINFO_HANDOFF);
                   1817:     VdbeComment((v, "%s", pSrcIdx->zName));
                   1818:     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
                   1819:     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
                   1820:                       (char*)pKey, P4_KEYINFO_HANDOFF);
                   1821:     VdbeComment((v, "%s", pDestIdx->zName));
                   1822:     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
                   1823:     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
                   1824:     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
                   1825:     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
                   1826:     sqlite3VdbeJumpHere(v, addr1);
                   1827:   }
                   1828:   sqlite3VdbeJumpHere(v, emptySrcTest);
                   1829:   sqlite3ReleaseTempReg(pParse, regRowid);
                   1830:   sqlite3ReleaseTempReg(pParse, regData);
                   1831:   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
                   1832:   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
                   1833:   if( emptyDestTest ){
                   1834:     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
                   1835:     sqlite3VdbeJumpHere(v, emptyDestTest);
                   1836:     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
                   1837:     return 0;
                   1838:   }else{
                   1839:     return 1;
                   1840:   }
                   1841: }
                   1842: #endif /* SQLITE_OMIT_XFER_OPT */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>