Annotation of embedaddon/sqlite3/src/mem3.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2007 October 14
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file contains the C functions that implement a memory
                     13: ** allocation subsystem for use by SQLite. 
                     14: **
                     15: ** This version of the memory allocation subsystem omits all
                     16: ** use of malloc(). The SQLite user supplies a block of memory
                     17: ** before calling sqlite3_initialize() from which allocations
                     18: ** are made and returned by the xMalloc() and xRealloc() 
                     19: ** implementations. Once sqlite3_initialize() has been called,
                     20: ** the amount of memory available to SQLite is fixed and cannot
                     21: ** be changed.
                     22: **
                     23: ** This version of the memory allocation subsystem is included
                     24: ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
                     25: */
                     26: #include "sqliteInt.h"
                     27: 
                     28: /*
                     29: ** This version of the memory allocator is only built into the library
                     30: ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
                     31: ** mean that the library will use a memory-pool by default, just that
                     32: ** it is available. The mempool allocator is activated by calling
                     33: ** sqlite3_config().
                     34: */
                     35: #ifdef SQLITE_ENABLE_MEMSYS3
                     36: 
                     37: /*
                     38: ** Maximum size (in Mem3Blocks) of a "small" chunk.
                     39: */
                     40: #define MX_SMALL 10
                     41: 
                     42: 
                     43: /*
                     44: ** Number of freelist hash slots
                     45: */
                     46: #define N_HASH  61
                     47: 
                     48: /*
                     49: ** A memory allocation (also called a "chunk") consists of two or 
                     50: ** more blocks where each block is 8 bytes.  The first 8 bytes are 
                     51: ** a header that is not returned to the user.
                     52: **
                     53: ** A chunk is two or more blocks that is either checked out or
                     54: ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
                     55: ** size of the allocation in blocks if the allocation is free.
                     56: ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
                     57: ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
                     58: ** is true if the previous chunk is checked out and false if the
                     59: ** previous chunk is free.  The u.hdr.prevSize field is the size of
                     60: ** the previous chunk in blocks if the previous chunk is on the
                     61: ** freelist. If the previous chunk is checked out, then
                     62: ** u.hdr.prevSize can be part of the data for that chunk and should
                     63: ** not be read or written.
                     64: **
                     65: ** We often identify a chunk by its index in mem3.aPool[].  When
                     66: ** this is done, the chunk index refers to the second block of
                     67: ** the chunk.  In this way, the first chunk has an index of 1.
                     68: ** A chunk index of 0 means "no such chunk" and is the equivalent
                     69: ** of a NULL pointer.
                     70: **
                     71: ** The second block of free chunks is of the form u.list.  The
                     72: ** two fields form a double-linked list of chunks of related sizes.
                     73: ** Pointers to the head of the list are stored in mem3.aiSmall[] 
                     74: ** for smaller chunks and mem3.aiHash[] for larger chunks.
                     75: **
                     76: ** The second block of a chunk is user data if the chunk is checked 
                     77: ** out.  If a chunk is checked out, the user data may extend into
                     78: ** the u.hdr.prevSize value of the following chunk.
                     79: */
                     80: typedef struct Mem3Block Mem3Block;
                     81: struct Mem3Block {
                     82:   union {
                     83:     struct {
                     84:       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
                     85:       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
                     86:     } hdr;
                     87:     struct {
                     88:       u32 next;       /* Index in mem3.aPool[] of next free chunk */
                     89:       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
                     90:     } list;
                     91:   } u;
                     92: };
                     93: 
                     94: /*
                     95: ** All of the static variables used by this module are collected
                     96: ** into a single structure named "mem3".  This is to keep the
                     97: ** static variables organized and to reduce namespace pollution
                     98: ** when this module is combined with other in the amalgamation.
                     99: */
                    100: static SQLITE_WSD struct Mem3Global {
                    101:   /*
                    102:   ** Memory available for allocation. nPool is the size of the array
                    103:   ** (in Mem3Blocks) pointed to by aPool less 2.
                    104:   */
                    105:   u32 nPool;
                    106:   Mem3Block *aPool;
                    107: 
                    108:   /*
                    109:   ** True if we are evaluating an out-of-memory callback.
                    110:   */
                    111:   int alarmBusy;
                    112:   
                    113:   /*
                    114:   ** Mutex to control access to the memory allocation subsystem.
                    115:   */
                    116:   sqlite3_mutex *mutex;
                    117:   
                    118:   /*
                    119:   ** The minimum amount of free space that we have seen.
                    120:   */
                    121:   u32 mnMaster;
                    122: 
                    123:   /*
                    124:   ** iMaster is the index of the master chunk.  Most new allocations
                    125:   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
                    126:   ** of the current master.  iMaster is 0 if there is not master chunk.
                    127:   ** The master chunk is not in either the aiHash[] or aiSmall[].
                    128:   */
                    129:   u32 iMaster;
                    130:   u32 szMaster;
                    131: 
                    132:   /*
                    133:   ** Array of lists of free blocks according to the block size 
                    134:   ** for smaller chunks, or a hash on the block size for larger
                    135:   ** chunks.
                    136:   */
                    137:   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
                    138:   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
                    139: } mem3 = { 97535575 };
                    140: 
                    141: #define mem3 GLOBAL(struct Mem3Global, mem3)
                    142: 
                    143: /*
                    144: ** Unlink the chunk at mem3.aPool[i] from list it is currently
                    145: ** on.  *pRoot is the list that i is a member of.
                    146: */
                    147: static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
                    148:   u32 next = mem3.aPool[i].u.list.next;
                    149:   u32 prev = mem3.aPool[i].u.list.prev;
                    150:   assert( sqlite3_mutex_held(mem3.mutex) );
                    151:   if( prev==0 ){
                    152:     *pRoot = next;
                    153:   }else{
                    154:     mem3.aPool[prev].u.list.next = next;
                    155:   }
                    156:   if( next ){
                    157:     mem3.aPool[next].u.list.prev = prev;
                    158:   }
                    159:   mem3.aPool[i].u.list.next = 0;
                    160:   mem3.aPool[i].u.list.prev = 0;
                    161: }
                    162: 
                    163: /*
                    164: ** Unlink the chunk at index i from 
                    165: ** whatever list is currently a member of.
                    166: */
                    167: static void memsys3Unlink(u32 i){
                    168:   u32 size, hash;
                    169:   assert( sqlite3_mutex_held(mem3.mutex) );
                    170:   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
                    171:   assert( i>=1 );
                    172:   size = mem3.aPool[i-1].u.hdr.size4x/4;
                    173:   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
                    174:   assert( size>=2 );
                    175:   if( size <= MX_SMALL ){
                    176:     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
                    177:   }else{
                    178:     hash = size % N_HASH;
                    179:     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
                    180:   }
                    181: }
                    182: 
                    183: /*
                    184: ** Link the chunk at mem3.aPool[i] so that is on the list rooted
                    185: ** at *pRoot.
                    186: */
                    187: static void memsys3LinkIntoList(u32 i, u32 *pRoot){
                    188:   assert( sqlite3_mutex_held(mem3.mutex) );
                    189:   mem3.aPool[i].u.list.next = *pRoot;
                    190:   mem3.aPool[i].u.list.prev = 0;
                    191:   if( *pRoot ){
                    192:     mem3.aPool[*pRoot].u.list.prev = i;
                    193:   }
                    194:   *pRoot = i;
                    195: }
                    196: 
                    197: /*
                    198: ** Link the chunk at index i into either the appropriate
                    199: ** small chunk list, or into the large chunk hash table.
                    200: */
                    201: static void memsys3Link(u32 i){
                    202:   u32 size, hash;
                    203:   assert( sqlite3_mutex_held(mem3.mutex) );
                    204:   assert( i>=1 );
                    205:   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
                    206:   size = mem3.aPool[i-1].u.hdr.size4x/4;
                    207:   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
                    208:   assert( size>=2 );
                    209:   if( size <= MX_SMALL ){
                    210:     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
                    211:   }else{
                    212:     hash = size % N_HASH;
                    213:     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
                    214:   }
                    215: }
                    216: 
                    217: /*
                    218: ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
                    219: ** will already be held (obtained by code in malloc.c) if
                    220: ** sqlite3GlobalConfig.bMemStat is true.
                    221: */
                    222: static void memsys3Enter(void){
                    223:   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
                    224:     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
                    225:   }
                    226:   sqlite3_mutex_enter(mem3.mutex);
                    227: }
                    228: static void memsys3Leave(void){
                    229:   sqlite3_mutex_leave(mem3.mutex);
                    230: }
                    231: 
                    232: /*
                    233: ** Called when we are unable to satisfy an allocation of nBytes.
                    234: */
                    235: static void memsys3OutOfMemory(int nByte){
                    236:   if( !mem3.alarmBusy ){
                    237:     mem3.alarmBusy = 1;
                    238:     assert( sqlite3_mutex_held(mem3.mutex) );
                    239:     sqlite3_mutex_leave(mem3.mutex);
                    240:     sqlite3_release_memory(nByte);
                    241:     sqlite3_mutex_enter(mem3.mutex);
                    242:     mem3.alarmBusy = 0;
                    243:   }
                    244: }
                    245: 
                    246: 
                    247: /*
                    248: ** Chunk i is a free chunk that has been unlinked.  Adjust its 
                    249: ** size parameters for check-out and return a pointer to the 
                    250: ** user portion of the chunk.
                    251: */
                    252: static void *memsys3Checkout(u32 i, u32 nBlock){
                    253:   u32 x;
                    254:   assert( sqlite3_mutex_held(mem3.mutex) );
                    255:   assert( i>=1 );
                    256:   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
                    257:   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
                    258:   x = mem3.aPool[i-1].u.hdr.size4x;
                    259:   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
                    260:   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
                    261:   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
                    262:   return &mem3.aPool[i];
                    263: }
                    264: 
                    265: /*
                    266: ** Carve a piece off of the end of the mem3.iMaster free chunk.
                    267: ** Return a pointer to the new allocation.  Or, if the master chunk
                    268: ** is not large enough, return 0.
                    269: */
                    270: static void *memsys3FromMaster(u32 nBlock){
                    271:   assert( sqlite3_mutex_held(mem3.mutex) );
                    272:   assert( mem3.szMaster>=nBlock );
                    273:   if( nBlock>=mem3.szMaster-1 ){
                    274:     /* Use the entire master */
                    275:     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
                    276:     mem3.iMaster = 0;
                    277:     mem3.szMaster = 0;
                    278:     mem3.mnMaster = 0;
                    279:     return p;
                    280:   }else{
                    281:     /* Split the master block.  Return the tail. */
                    282:     u32 newi, x;
                    283:     newi = mem3.iMaster + mem3.szMaster - nBlock;
                    284:     assert( newi > mem3.iMaster+1 );
                    285:     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
                    286:     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
                    287:     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
                    288:     mem3.szMaster -= nBlock;
                    289:     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
                    290:     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
                    291:     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
                    292:     if( mem3.szMaster < mem3.mnMaster ){
                    293:       mem3.mnMaster = mem3.szMaster;
                    294:     }
                    295:     return (void*)&mem3.aPool[newi];
                    296:   }
                    297: }
                    298: 
                    299: /*
                    300: ** *pRoot is the head of a list of free chunks of the same size
                    301: ** or same size hash.  In other words, *pRoot is an entry in either
                    302: ** mem3.aiSmall[] or mem3.aiHash[].  
                    303: **
                    304: ** This routine examines all entries on the given list and tries
                    305: ** to coalesce each entries with adjacent free chunks.  
                    306: **
                    307: ** If it sees a chunk that is larger than mem3.iMaster, it replaces 
                    308: ** the current mem3.iMaster with the new larger chunk.  In order for
                    309: ** this mem3.iMaster replacement to work, the master chunk must be
                    310: ** linked into the hash tables.  That is not the normal state of
                    311: ** affairs, of course.  The calling routine must link the master
                    312: ** chunk before invoking this routine, then must unlink the (possibly
                    313: ** changed) master chunk once this routine has finished.
                    314: */
                    315: static void memsys3Merge(u32 *pRoot){
                    316:   u32 iNext, prev, size, i, x;
                    317: 
                    318:   assert( sqlite3_mutex_held(mem3.mutex) );
                    319:   for(i=*pRoot; i>0; i=iNext){
                    320:     iNext = mem3.aPool[i].u.list.next;
                    321:     size = mem3.aPool[i-1].u.hdr.size4x;
                    322:     assert( (size&1)==0 );
                    323:     if( (size&2)==0 ){
                    324:       memsys3UnlinkFromList(i, pRoot);
                    325:       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
                    326:       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
                    327:       if( prev==iNext ){
                    328:         iNext = mem3.aPool[prev].u.list.next;
                    329:       }
                    330:       memsys3Unlink(prev);
                    331:       size = i + size/4 - prev;
                    332:       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
                    333:       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
                    334:       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
                    335:       memsys3Link(prev);
                    336:       i = prev;
                    337:     }else{
                    338:       size /= 4;
                    339:     }
                    340:     if( size>mem3.szMaster ){
                    341:       mem3.iMaster = i;
                    342:       mem3.szMaster = size;
                    343:     }
                    344:   }
                    345: }
                    346: 
                    347: /*
                    348: ** Return a block of memory of at least nBytes in size.
                    349: ** Return NULL if unable.
                    350: **
                    351: ** This function assumes that the necessary mutexes, if any, are
                    352: ** already held by the caller. Hence "Unsafe".
                    353: */
                    354: static void *memsys3MallocUnsafe(int nByte){
                    355:   u32 i;
                    356:   u32 nBlock;
                    357:   u32 toFree;
                    358: 
                    359:   assert( sqlite3_mutex_held(mem3.mutex) );
                    360:   assert( sizeof(Mem3Block)==8 );
                    361:   if( nByte<=12 ){
                    362:     nBlock = 2;
                    363:   }else{
                    364:     nBlock = (nByte + 11)/8;
                    365:   }
                    366:   assert( nBlock>=2 );
                    367: 
                    368:   /* STEP 1:
                    369:   ** Look for an entry of the correct size in either the small
                    370:   ** chunk table or in the large chunk hash table.  This is
                    371:   ** successful most of the time (about 9 times out of 10).
                    372:   */
                    373:   if( nBlock <= MX_SMALL ){
                    374:     i = mem3.aiSmall[nBlock-2];
                    375:     if( i>0 ){
                    376:       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
                    377:       return memsys3Checkout(i, nBlock);
                    378:     }
                    379:   }else{
                    380:     int hash = nBlock % N_HASH;
                    381:     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
                    382:       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
                    383:         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
                    384:         return memsys3Checkout(i, nBlock);
                    385:       }
                    386:     }
                    387:   }
                    388: 
                    389:   /* STEP 2:
                    390:   ** Try to satisfy the allocation by carving a piece off of the end
                    391:   ** of the master chunk.  This step usually works if step 1 fails.
                    392:   */
                    393:   if( mem3.szMaster>=nBlock ){
                    394:     return memsys3FromMaster(nBlock);
                    395:   }
                    396: 
                    397: 
                    398:   /* STEP 3:  
                    399:   ** Loop through the entire memory pool.  Coalesce adjacent free
                    400:   ** chunks.  Recompute the master chunk as the largest free chunk.
                    401:   ** Then try again to satisfy the allocation by carving a piece off
                    402:   ** of the end of the master chunk.  This step happens very
                    403:   ** rarely (we hope!)
                    404:   */
                    405:   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
                    406:     memsys3OutOfMemory(toFree);
                    407:     if( mem3.iMaster ){
                    408:       memsys3Link(mem3.iMaster);
                    409:       mem3.iMaster = 0;
                    410:       mem3.szMaster = 0;
                    411:     }
                    412:     for(i=0; i<N_HASH; i++){
                    413:       memsys3Merge(&mem3.aiHash[i]);
                    414:     }
                    415:     for(i=0; i<MX_SMALL-1; i++){
                    416:       memsys3Merge(&mem3.aiSmall[i]);
                    417:     }
                    418:     if( mem3.szMaster ){
                    419:       memsys3Unlink(mem3.iMaster);
                    420:       if( mem3.szMaster>=nBlock ){
                    421:         return memsys3FromMaster(nBlock);
                    422:       }
                    423:     }
                    424:   }
                    425: 
                    426:   /* If none of the above worked, then we fail. */
                    427:   return 0;
                    428: }
                    429: 
                    430: /*
                    431: ** Free an outstanding memory allocation.
                    432: **
                    433: ** This function assumes that the necessary mutexes, if any, are
                    434: ** already held by the caller. Hence "Unsafe".
                    435: */
                    436: static void memsys3FreeUnsafe(void *pOld){
                    437:   Mem3Block *p = (Mem3Block*)pOld;
                    438:   int i;
                    439:   u32 size, x;
                    440:   assert( sqlite3_mutex_held(mem3.mutex) );
                    441:   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
                    442:   i = p - mem3.aPool;
                    443:   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
                    444:   size = mem3.aPool[i-1].u.hdr.size4x/4;
                    445:   assert( i+size<=mem3.nPool+1 );
                    446:   mem3.aPool[i-1].u.hdr.size4x &= ~1;
                    447:   mem3.aPool[i+size-1].u.hdr.prevSize = size;
                    448:   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
                    449:   memsys3Link(i);
                    450: 
                    451:   /* Try to expand the master using the newly freed chunk */
                    452:   if( mem3.iMaster ){
                    453:     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
                    454:       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
                    455:       mem3.iMaster -= size;
                    456:       mem3.szMaster += size;
                    457:       memsys3Unlink(mem3.iMaster);
                    458:       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
                    459:       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
                    460:       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
                    461:     }
                    462:     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
                    463:     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
                    464:       memsys3Unlink(mem3.iMaster+mem3.szMaster);
                    465:       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
                    466:       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
                    467:       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
                    468:     }
                    469:   }
                    470: }
                    471: 
                    472: /*
                    473: ** Return the size of an outstanding allocation, in bytes.  The
                    474: ** size returned omits the 8-byte header overhead.  This only
                    475: ** works for chunks that are currently checked out.
                    476: */
                    477: static int memsys3Size(void *p){
                    478:   Mem3Block *pBlock;
                    479:   if( p==0 ) return 0;
                    480:   pBlock = (Mem3Block*)p;
                    481:   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
                    482:   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
                    483: }
                    484: 
                    485: /*
                    486: ** Round up a request size to the next valid allocation size.
                    487: */
                    488: static int memsys3Roundup(int n){
                    489:   if( n<=12 ){
                    490:     return 12;
                    491:   }else{
                    492:     return ((n+11)&~7) - 4;
                    493:   }
                    494: }
                    495: 
                    496: /*
                    497: ** Allocate nBytes of memory.
                    498: */
                    499: static void *memsys3Malloc(int nBytes){
                    500:   sqlite3_int64 *p;
                    501:   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
                    502:   memsys3Enter();
                    503:   p = memsys3MallocUnsafe(nBytes);
                    504:   memsys3Leave();
                    505:   return (void*)p; 
                    506: }
                    507: 
                    508: /*
                    509: ** Free memory.
                    510: */
                    511: static void memsys3Free(void *pPrior){
                    512:   assert( pPrior );
                    513:   memsys3Enter();
                    514:   memsys3FreeUnsafe(pPrior);
                    515:   memsys3Leave();
                    516: }
                    517: 
                    518: /*
                    519: ** Change the size of an existing memory allocation
                    520: */
                    521: static void *memsys3Realloc(void *pPrior, int nBytes){
                    522:   int nOld;
                    523:   void *p;
                    524:   if( pPrior==0 ){
                    525:     return sqlite3_malloc(nBytes);
                    526:   }
                    527:   if( nBytes<=0 ){
                    528:     sqlite3_free(pPrior);
                    529:     return 0;
                    530:   }
                    531:   nOld = memsys3Size(pPrior);
                    532:   if( nBytes<=nOld && nBytes>=nOld-128 ){
                    533:     return pPrior;
                    534:   }
                    535:   memsys3Enter();
                    536:   p = memsys3MallocUnsafe(nBytes);
                    537:   if( p ){
                    538:     if( nOld<nBytes ){
                    539:       memcpy(p, pPrior, nOld);
                    540:     }else{
                    541:       memcpy(p, pPrior, nBytes);
                    542:     }
                    543:     memsys3FreeUnsafe(pPrior);
                    544:   }
                    545:   memsys3Leave();
                    546:   return p;
                    547: }
                    548: 
                    549: /*
                    550: ** Initialize this module.
                    551: */
                    552: static int memsys3Init(void *NotUsed){
                    553:   UNUSED_PARAMETER(NotUsed);
                    554:   if( !sqlite3GlobalConfig.pHeap ){
                    555:     return SQLITE_ERROR;
                    556:   }
                    557: 
                    558:   /* Store a pointer to the memory block in global structure mem3. */
                    559:   assert( sizeof(Mem3Block)==8 );
                    560:   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
                    561:   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
                    562: 
                    563:   /* Initialize the master block. */
                    564:   mem3.szMaster = mem3.nPool;
                    565:   mem3.mnMaster = mem3.szMaster;
                    566:   mem3.iMaster = 1;
                    567:   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
                    568:   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
                    569:   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
                    570: 
                    571:   return SQLITE_OK;
                    572: }
                    573: 
                    574: /*
                    575: ** Deinitialize this module.
                    576: */
                    577: static void memsys3Shutdown(void *NotUsed){
                    578:   UNUSED_PARAMETER(NotUsed);
                    579:   mem3.mutex = 0;
                    580:   return;
                    581: }
                    582: 
                    583: 
                    584: 
                    585: /*
                    586: ** Open the file indicated and write a log of all unfreed memory 
                    587: ** allocations into that log.
                    588: */
                    589: void sqlite3Memsys3Dump(const char *zFilename){
                    590: #ifdef SQLITE_DEBUG
                    591:   FILE *out;
                    592:   u32 i, j;
                    593:   u32 size;
                    594:   if( zFilename==0 || zFilename[0]==0 ){
                    595:     out = stdout;
                    596:   }else{
                    597:     out = fopen(zFilename, "w");
                    598:     if( out==0 ){
                    599:       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                    600:                       zFilename);
                    601:       return;
                    602:     }
                    603:   }
                    604:   memsys3Enter();
                    605:   fprintf(out, "CHUNKS:\n");
                    606:   for(i=1; i<=mem3.nPool; i+=size/4){
                    607:     size = mem3.aPool[i-1].u.hdr.size4x;
                    608:     if( size/4<=1 ){
                    609:       fprintf(out, "%p size error\n", &mem3.aPool[i]);
                    610:       assert( 0 );
                    611:       break;
                    612:     }
                    613:     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
                    614:       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
                    615:       assert( 0 );
                    616:       break;
                    617:     }
                    618:     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
                    619:       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
                    620:       assert( 0 );
                    621:       break;
                    622:     }
                    623:     if( size&1 ){
                    624:       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
                    625:     }else{
                    626:       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
                    627:                   i==mem3.iMaster ? " **master**" : "");
                    628:     }
                    629:   }
                    630:   for(i=0; i<MX_SMALL-1; i++){
                    631:     if( mem3.aiSmall[i]==0 ) continue;
                    632:     fprintf(out, "small(%2d):", i);
                    633:     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
                    634:       fprintf(out, " %p(%d)", &mem3.aPool[j],
                    635:               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
                    636:     }
                    637:     fprintf(out, "\n"); 
                    638:   }
                    639:   for(i=0; i<N_HASH; i++){
                    640:     if( mem3.aiHash[i]==0 ) continue;
                    641:     fprintf(out, "hash(%2d):", i);
                    642:     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
                    643:       fprintf(out, " %p(%d)", &mem3.aPool[j],
                    644:               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
                    645:     }
                    646:     fprintf(out, "\n"); 
                    647:   }
                    648:   fprintf(out, "master=%d\n", mem3.iMaster);
                    649:   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
                    650:   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
                    651:   sqlite3_mutex_leave(mem3.mutex);
                    652:   if( out==stdout ){
                    653:     fflush(stdout);
                    654:   }else{
                    655:     fclose(out);
                    656:   }
                    657: #else
                    658:   UNUSED_PARAMETER(zFilename);
                    659: #endif
                    660: }
                    661: 
                    662: /*
                    663: ** This routine is the only routine in this file with external 
                    664: ** linkage.
                    665: **
                    666: ** Populate the low-level memory allocation function pointers in
                    667: ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
                    668: ** arguments specify the block of memory to manage.
                    669: **
                    670: ** This routine is only called by sqlite3_config(), and therefore
                    671: ** is not required to be threadsafe (it is not).
                    672: */
                    673: const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
                    674:   static const sqlite3_mem_methods mempoolMethods = {
                    675:      memsys3Malloc,
                    676:      memsys3Free,
                    677:      memsys3Realloc,
                    678:      memsys3Size,
                    679:      memsys3Roundup,
                    680:      memsys3Init,
                    681:      memsys3Shutdown,
                    682:      0
                    683:   };
                    684:   return &mempoolMethods;
                    685: }
                    686: 
                    687: #endif /* SQLITE_ENABLE_MEMSYS3 */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>