File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / mem3.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2007 October 14
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains the C functions that implement a memory
   13: ** allocation subsystem for use by SQLite. 
   14: **
   15: ** This version of the memory allocation subsystem omits all
   16: ** use of malloc(). The SQLite user supplies a block of memory
   17: ** before calling sqlite3_initialize() from which allocations
   18: ** are made and returned by the xMalloc() and xRealloc() 
   19: ** implementations. Once sqlite3_initialize() has been called,
   20: ** the amount of memory available to SQLite is fixed and cannot
   21: ** be changed.
   22: **
   23: ** This version of the memory allocation subsystem is included
   24: ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
   25: */
   26: #include "sqliteInt.h"
   27: 
   28: /*
   29: ** This version of the memory allocator is only built into the library
   30: ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
   31: ** mean that the library will use a memory-pool by default, just that
   32: ** it is available. The mempool allocator is activated by calling
   33: ** sqlite3_config().
   34: */
   35: #ifdef SQLITE_ENABLE_MEMSYS3
   36: 
   37: /*
   38: ** Maximum size (in Mem3Blocks) of a "small" chunk.
   39: */
   40: #define MX_SMALL 10
   41: 
   42: 
   43: /*
   44: ** Number of freelist hash slots
   45: */
   46: #define N_HASH  61
   47: 
   48: /*
   49: ** A memory allocation (also called a "chunk") consists of two or 
   50: ** more blocks where each block is 8 bytes.  The first 8 bytes are 
   51: ** a header that is not returned to the user.
   52: **
   53: ** A chunk is two or more blocks that is either checked out or
   54: ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
   55: ** size of the allocation in blocks if the allocation is free.
   56: ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
   57: ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
   58: ** is true if the previous chunk is checked out and false if the
   59: ** previous chunk is free.  The u.hdr.prevSize field is the size of
   60: ** the previous chunk in blocks if the previous chunk is on the
   61: ** freelist. If the previous chunk is checked out, then
   62: ** u.hdr.prevSize can be part of the data for that chunk and should
   63: ** not be read or written.
   64: **
   65: ** We often identify a chunk by its index in mem3.aPool[].  When
   66: ** this is done, the chunk index refers to the second block of
   67: ** the chunk.  In this way, the first chunk has an index of 1.
   68: ** A chunk index of 0 means "no such chunk" and is the equivalent
   69: ** of a NULL pointer.
   70: **
   71: ** The second block of free chunks is of the form u.list.  The
   72: ** two fields form a double-linked list of chunks of related sizes.
   73: ** Pointers to the head of the list are stored in mem3.aiSmall[] 
   74: ** for smaller chunks and mem3.aiHash[] for larger chunks.
   75: **
   76: ** The second block of a chunk is user data if the chunk is checked 
   77: ** out.  If a chunk is checked out, the user data may extend into
   78: ** the u.hdr.prevSize value of the following chunk.
   79: */
   80: typedef struct Mem3Block Mem3Block;
   81: struct Mem3Block {
   82:   union {
   83:     struct {
   84:       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
   85:       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
   86:     } hdr;
   87:     struct {
   88:       u32 next;       /* Index in mem3.aPool[] of next free chunk */
   89:       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
   90:     } list;
   91:   } u;
   92: };
   93: 
   94: /*
   95: ** All of the static variables used by this module are collected
   96: ** into a single structure named "mem3".  This is to keep the
   97: ** static variables organized and to reduce namespace pollution
   98: ** when this module is combined with other in the amalgamation.
   99: */
  100: static SQLITE_WSD struct Mem3Global {
  101:   /*
  102:   ** Memory available for allocation. nPool is the size of the array
  103:   ** (in Mem3Blocks) pointed to by aPool less 2.
  104:   */
  105:   u32 nPool;
  106:   Mem3Block *aPool;
  107: 
  108:   /*
  109:   ** True if we are evaluating an out-of-memory callback.
  110:   */
  111:   int alarmBusy;
  112:   
  113:   /*
  114:   ** Mutex to control access to the memory allocation subsystem.
  115:   */
  116:   sqlite3_mutex *mutex;
  117:   
  118:   /*
  119:   ** The minimum amount of free space that we have seen.
  120:   */
  121:   u32 mnMaster;
  122: 
  123:   /*
  124:   ** iMaster is the index of the master chunk.  Most new allocations
  125:   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
  126:   ** of the current master.  iMaster is 0 if there is not master chunk.
  127:   ** The master chunk is not in either the aiHash[] or aiSmall[].
  128:   */
  129:   u32 iMaster;
  130:   u32 szMaster;
  131: 
  132:   /*
  133:   ** Array of lists of free blocks according to the block size 
  134:   ** for smaller chunks, or a hash on the block size for larger
  135:   ** chunks.
  136:   */
  137:   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
  138:   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
  139: } mem3 = { 97535575 };
  140: 
  141: #define mem3 GLOBAL(struct Mem3Global, mem3)
  142: 
  143: /*
  144: ** Unlink the chunk at mem3.aPool[i] from list it is currently
  145: ** on.  *pRoot is the list that i is a member of.
  146: */
  147: static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
  148:   u32 next = mem3.aPool[i].u.list.next;
  149:   u32 prev = mem3.aPool[i].u.list.prev;
  150:   assert( sqlite3_mutex_held(mem3.mutex) );
  151:   if( prev==0 ){
  152:     *pRoot = next;
  153:   }else{
  154:     mem3.aPool[prev].u.list.next = next;
  155:   }
  156:   if( next ){
  157:     mem3.aPool[next].u.list.prev = prev;
  158:   }
  159:   mem3.aPool[i].u.list.next = 0;
  160:   mem3.aPool[i].u.list.prev = 0;
  161: }
  162: 
  163: /*
  164: ** Unlink the chunk at index i from 
  165: ** whatever list is currently a member of.
  166: */
  167: static void memsys3Unlink(u32 i){
  168:   u32 size, hash;
  169:   assert( sqlite3_mutex_held(mem3.mutex) );
  170:   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
  171:   assert( i>=1 );
  172:   size = mem3.aPool[i-1].u.hdr.size4x/4;
  173:   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
  174:   assert( size>=2 );
  175:   if( size <= MX_SMALL ){
  176:     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
  177:   }else{
  178:     hash = size % N_HASH;
  179:     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
  180:   }
  181: }
  182: 
  183: /*
  184: ** Link the chunk at mem3.aPool[i] so that is on the list rooted
  185: ** at *pRoot.
  186: */
  187: static void memsys3LinkIntoList(u32 i, u32 *pRoot){
  188:   assert( sqlite3_mutex_held(mem3.mutex) );
  189:   mem3.aPool[i].u.list.next = *pRoot;
  190:   mem3.aPool[i].u.list.prev = 0;
  191:   if( *pRoot ){
  192:     mem3.aPool[*pRoot].u.list.prev = i;
  193:   }
  194:   *pRoot = i;
  195: }
  196: 
  197: /*
  198: ** Link the chunk at index i into either the appropriate
  199: ** small chunk list, or into the large chunk hash table.
  200: */
  201: static void memsys3Link(u32 i){
  202:   u32 size, hash;
  203:   assert( sqlite3_mutex_held(mem3.mutex) );
  204:   assert( i>=1 );
  205:   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
  206:   size = mem3.aPool[i-1].u.hdr.size4x/4;
  207:   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
  208:   assert( size>=2 );
  209:   if( size <= MX_SMALL ){
  210:     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
  211:   }else{
  212:     hash = size % N_HASH;
  213:     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
  214:   }
  215: }
  216: 
  217: /*
  218: ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
  219: ** will already be held (obtained by code in malloc.c) if
  220: ** sqlite3GlobalConfig.bMemStat is true.
  221: */
  222: static void memsys3Enter(void){
  223:   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
  224:     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  225:   }
  226:   sqlite3_mutex_enter(mem3.mutex);
  227: }
  228: static void memsys3Leave(void){
  229:   sqlite3_mutex_leave(mem3.mutex);
  230: }
  231: 
  232: /*
  233: ** Called when we are unable to satisfy an allocation of nBytes.
  234: */
  235: static void memsys3OutOfMemory(int nByte){
  236:   if( !mem3.alarmBusy ){
  237:     mem3.alarmBusy = 1;
  238:     assert( sqlite3_mutex_held(mem3.mutex) );
  239:     sqlite3_mutex_leave(mem3.mutex);
  240:     sqlite3_release_memory(nByte);
  241:     sqlite3_mutex_enter(mem3.mutex);
  242:     mem3.alarmBusy = 0;
  243:   }
  244: }
  245: 
  246: 
  247: /*
  248: ** Chunk i is a free chunk that has been unlinked.  Adjust its 
  249: ** size parameters for check-out and return a pointer to the 
  250: ** user portion of the chunk.
  251: */
  252: static void *memsys3Checkout(u32 i, u32 nBlock){
  253:   u32 x;
  254:   assert( sqlite3_mutex_held(mem3.mutex) );
  255:   assert( i>=1 );
  256:   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
  257:   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
  258:   x = mem3.aPool[i-1].u.hdr.size4x;
  259:   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
  260:   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
  261:   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
  262:   return &mem3.aPool[i];
  263: }
  264: 
  265: /*
  266: ** Carve a piece off of the end of the mem3.iMaster free chunk.
  267: ** Return a pointer to the new allocation.  Or, if the master chunk
  268: ** is not large enough, return 0.
  269: */
  270: static void *memsys3FromMaster(u32 nBlock){
  271:   assert( sqlite3_mutex_held(mem3.mutex) );
  272:   assert( mem3.szMaster>=nBlock );
  273:   if( nBlock>=mem3.szMaster-1 ){
  274:     /* Use the entire master */
  275:     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
  276:     mem3.iMaster = 0;
  277:     mem3.szMaster = 0;
  278:     mem3.mnMaster = 0;
  279:     return p;
  280:   }else{
  281:     /* Split the master block.  Return the tail. */
  282:     u32 newi, x;
  283:     newi = mem3.iMaster + mem3.szMaster - nBlock;
  284:     assert( newi > mem3.iMaster+1 );
  285:     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
  286:     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
  287:     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
  288:     mem3.szMaster -= nBlock;
  289:     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
  290:     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
  291:     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
  292:     if( mem3.szMaster < mem3.mnMaster ){
  293:       mem3.mnMaster = mem3.szMaster;
  294:     }
  295:     return (void*)&mem3.aPool[newi];
  296:   }
  297: }
  298: 
  299: /*
  300: ** *pRoot is the head of a list of free chunks of the same size
  301: ** or same size hash.  In other words, *pRoot is an entry in either
  302: ** mem3.aiSmall[] or mem3.aiHash[].  
  303: **
  304: ** This routine examines all entries on the given list and tries
  305: ** to coalesce each entries with adjacent free chunks.  
  306: **
  307: ** If it sees a chunk that is larger than mem3.iMaster, it replaces 
  308: ** the current mem3.iMaster with the new larger chunk.  In order for
  309: ** this mem3.iMaster replacement to work, the master chunk must be
  310: ** linked into the hash tables.  That is not the normal state of
  311: ** affairs, of course.  The calling routine must link the master
  312: ** chunk before invoking this routine, then must unlink the (possibly
  313: ** changed) master chunk once this routine has finished.
  314: */
  315: static void memsys3Merge(u32 *pRoot){
  316:   u32 iNext, prev, size, i, x;
  317: 
  318:   assert( sqlite3_mutex_held(mem3.mutex) );
  319:   for(i=*pRoot; i>0; i=iNext){
  320:     iNext = mem3.aPool[i].u.list.next;
  321:     size = mem3.aPool[i-1].u.hdr.size4x;
  322:     assert( (size&1)==0 );
  323:     if( (size&2)==0 ){
  324:       memsys3UnlinkFromList(i, pRoot);
  325:       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
  326:       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
  327:       if( prev==iNext ){
  328:         iNext = mem3.aPool[prev].u.list.next;
  329:       }
  330:       memsys3Unlink(prev);
  331:       size = i + size/4 - prev;
  332:       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
  333:       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
  334:       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
  335:       memsys3Link(prev);
  336:       i = prev;
  337:     }else{
  338:       size /= 4;
  339:     }
  340:     if( size>mem3.szMaster ){
  341:       mem3.iMaster = i;
  342:       mem3.szMaster = size;
  343:     }
  344:   }
  345: }
  346: 
  347: /*
  348: ** Return a block of memory of at least nBytes in size.
  349: ** Return NULL if unable.
  350: **
  351: ** This function assumes that the necessary mutexes, if any, are
  352: ** already held by the caller. Hence "Unsafe".
  353: */
  354: static void *memsys3MallocUnsafe(int nByte){
  355:   u32 i;
  356:   u32 nBlock;
  357:   u32 toFree;
  358: 
  359:   assert( sqlite3_mutex_held(mem3.mutex) );
  360:   assert( sizeof(Mem3Block)==8 );
  361:   if( nByte<=12 ){
  362:     nBlock = 2;
  363:   }else{
  364:     nBlock = (nByte + 11)/8;
  365:   }
  366:   assert( nBlock>=2 );
  367: 
  368:   /* STEP 1:
  369:   ** Look for an entry of the correct size in either the small
  370:   ** chunk table or in the large chunk hash table.  This is
  371:   ** successful most of the time (about 9 times out of 10).
  372:   */
  373:   if( nBlock <= MX_SMALL ){
  374:     i = mem3.aiSmall[nBlock-2];
  375:     if( i>0 ){
  376:       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
  377:       return memsys3Checkout(i, nBlock);
  378:     }
  379:   }else{
  380:     int hash = nBlock % N_HASH;
  381:     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
  382:       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
  383:         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
  384:         return memsys3Checkout(i, nBlock);
  385:       }
  386:     }
  387:   }
  388: 
  389:   /* STEP 2:
  390:   ** Try to satisfy the allocation by carving a piece off of the end
  391:   ** of the master chunk.  This step usually works if step 1 fails.
  392:   */
  393:   if( mem3.szMaster>=nBlock ){
  394:     return memsys3FromMaster(nBlock);
  395:   }
  396: 
  397: 
  398:   /* STEP 3:  
  399:   ** Loop through the entire memory pool.  Coalesce adjacent free
  400:   ** chunks.  Recompute the master chunk as the largest free chunk.
  401:   ** Then try again to satisfy the allocation by carving a piece off
  402:   ** of the end of the master chunk.  This step happens very
  403:   ** rarely (we hope!)
  404:   */
  405:   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
  406:     memsys3OutOfMemory(toFree);
  407:     if( mem3.iMaster ){
  408:       memsys3Link(mem3.iMaster);
  409:       mem3.iMaster = 0;
  410:       mem3.szMaster = 0;
  411:     }
  412:     for(i=0; i<N_HASH; i++){
  413:       memsys3Merge(&mem3.aiHash[i]);
  414:     }
  415:     for(i=0; i<MX_SMALL-1; i++){
  416:       memsys3Merge(&mem3.aiSmall[i]);
  417:     }
  418:     if( mem3.szMaster ){
  419:       memsys3Unlink(mem3.iMaster);
  420:       if( mem3.szMaster>=nBlock ){
  421:         return memsys3FromMaster(nBlock);
  422:       }
  423:     }
  424:   }
  425: 
  426:   /* If none of the above worked, then we fail. */
  427:   return 0;
  428: }
  429: 
  430: /*
  431: ** Free an outstanding memory allocation.
  432: **
  433: ** This function assumes that the necessary mutexes, if any, are
  434: ** already held by the caller. Hence "Unsafe".
  435: */
  436: static void memsys3FreeUnsafe(void *pOld){
  437:   Mem3Block *p = (Mem3Block*)pOld;
  438:   int i;
  439:   u32 size, x;
  440:   assert( sqlite3_mutex_held(mem3.mutex) );
  441:   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
  442:   i = p - mem3.aPool;
  443:   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
  444:   size = mem3.aPool[i-1].u.hdr.size4x/4;
  445:   assert( i+size<=mem3.nPool+1 );
  446:   mem3.aPool[i-1].u.hdr.size4x &= ~1;
  447:   mem3.aPool[i+size-1].u.hdr.prevSize = size;
  448:   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
  449:   memsys3Link(i);
  450: 
  451:   /* Try to expand the master using the newly freed chunk */
  452:   if( mem3.iMaster ){
  453:     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
  454:       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
  455:       mem3.iMaster -= size;
  456:       mem3.szMaster += size;
  457:       memsys3Unlink(mem3.iMaster);
  458:       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
  459:       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
  460:       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
  461:     }
  462:     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
  463:     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
  464:       memsys3Unlink(mem3.iMaster+mem3.szMaster);
  465:       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
  466:       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
  467:       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
  468:     }
  469:   }
  470: }
  471: 
  472: /*
  473: ** Return the size of an outstanding allocation, in bytes.  The
  474: ** size returned omits the 8-byte header overhead.  This only
  475: ** works for chunks that are currently checked out.
  476: */
  477: static int memsys3Size(void *p){
  478:   Mem3Block *pBlock;
  479:   if( p==0 ) return 0;
  480:   pBlock = (Mem3Block*)p;
  481:   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
  482:   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
  483: }
  484: 
  485: /*
  486: ** Round up a request size to the next valid allocation size.
  487: */
  488: static int memsys3Roundup(int n){
  489:   if( n<=12 ){
  490:     return 12;
  491:   }else{
  492:     return ((n+11)&~7) - 4;
  493:   }
  494: }
  495: 
  496: /*
  497: ** Allocate nBytes of memory.
  498: */
  499: static void *memsys3Malloc(int nBytes){
  500:   sqlite3_int64 *p;
  501:   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
  502:   memsys3Enter();
  503:   p = memsys3MallocUnsafe(nBytes);
  504:   memsys3Leave();
  505:   return (void*)p; 
  506: }
  507: 
  508: /*
  509: ** Free memory.
  510: */
  511: static void memsys3Free(void *pPrior){
  512:   assert( pPrior );
  513:   memsys3Enter();
  514:   memsys3FreeUnsafe(pPrior);
  515:   memsys3Leave();
  516: }
  517: 
  518: /*
  519: ** Change the size of an existing memory allocation
  520: */
  521: static void *memsys3Realloc(void *pPrior, int nBytes){
  522:   int nOld;
  523:   void *p;
  524:   if( pPrior==0 ){
  525:     return sqlite3_malloc(nBytes);
  526:   }
  527:   if( nBytes<=0 ){
  528:     sqlite3_free(pPrior);
  529:     return 0;
  530:   }
  531:   nOld = memsys3Size(pPrior);
  532:   if( nBytes<=nOld && nBytes>=nOld-128 ){
  533:     return pPrior;
  534:   }
  535:   memsys3Enter();
  536:   p = memsys3MallocUnsafe(nBytes);
  537:   if( p ){
  538:     if( nOld<nBytes ){
  539:       memcpy(p, pPrior, nOld);
  540:     }else{
  541:       memcpy(p, pPrior, nBytes);
  542:     }
  543:     memsys3FreeUnsafe(pPrior);
  544:   }
  545:   memsys3Leave();
  546:   return p;
  547: }
  548: 
  549: /*
  550: ** Initialize this module.
  551: */
  552: static int memsys3Init(void *NotUsed){
  553:   UNUSED_PARAMETER(NotUsed);
  554:   if( !sqlite3GlobalConfig.pHeap ){
  555:     return SQLITE_ERROR;
  556:   }
  557: 
  558:   /* Store a pointer to the memory block in global structure mem3. */
  559:   assert( sizeof(Mem3Block)==8 );
  560:   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
  561:   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
  562: 
  563:   /* Initialize the master block. */
  564:   mem3.szMaster = mem3.nPool;
  565:   mem3.mnMaster = mem3.szMaster;
  566:   mem3.iMaster = 1;
  567:   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
  568:   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
  569:   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
  570: 
  571:   return SQLITE_OK;
  572: }
  573: 
  574: /*
  575: ** Deinitialize this module.
  576: */
  577: static void memsys3Shutdown(void *NotUsed){
  578:   UNUSED_PARAMETER(NotUsed);
  579:   mem3.mutex = 0;
  580:   return;
  581: }
  582: 
  583: 
  584: 
  585: /*
  586: ** Open the file indicated and write a log of all unfreed memory 
  587: ** allocations into that log.
  588: */
  589: void sqlite3Memsys3Dump(const char *zFilename){
  590: #ifdef SQLITE_DEBUG
  591:   FILE *out;
  592:   u32 i, j;
  593:   u32 size;
  594:   if( zFilename==0 || zFilename[0]==0 ){
  595:     out = stdout;
  596:   }else{
  597:     out = fopen(zFilename, "w");
  598:     if( out==0 ){
  599:       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
  600:                       zFilename);
  601:       return;
  602:     }
  603:   }
  604:   memsys3Enter();
  605:   fprintf(out, "CHUNKS:\n");
  606:   for(i=1; i<=mem3.nPool; i+=size/4){
  607:     size = mem3.aPool[i-1].u.hdr.size4x;
  608:     if( size/4<=1 ){
  609:       fprintf(out, "%p size error\n", &mem3.aPool[i]);
  610:       assert( 0 );
  611:       break;
  612:     }
  613:     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
  614:       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
  615:       assert( 0 );
  616:       break;
  617:     }
  618:     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
  619:       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
  620:       assert( 0 );
  621:       break;
  622:     }
  623:     if( size&1 ){
  624:       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
  625:     }else{
  626:       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
  627:                   i==mem3.iMaster ? " **master**" : "");
  628:     }
  629:   }
  630:   for(i=0; i<MX_SMALL-1; i++){
  631:     if( mem3.aiSmall[i]==0 ) continue;
  632:     fprintf(out, "small(%2d):", i);
  633:     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
  634:       fprintf(out, " %p(%d)", &mem3.aPool[j],
  635:               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
  636:     }
  637:     fprintf(out, "\n"); 
  638:   }
  639:   for(i=0; i<N_HASH; i++){
  640:     if( mem3.aiHash[i]==0 ) continue;
  641:     fprintf(out, "hash(%2d):", i);
  642:     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
  643:       fprintf(out, " %p(%d)", &mem3.aPool[j],
  644:               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
  645:     }
  646:     fprintf(out, "\n"); 
  647:   }
  648:   fprintf(out, "master=%d\n", mem3.iMaster);
  649:   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
  650:   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
  651:   sqlite3_mutex_leave(mem3.mutex);
  652:   if( out==stdout ){
  653:     fflush(stdout);
  654:   }else{
  655:     fclose(out);
  656:   }
  657: #else
  658:   UNUSED_PARAMETER(zFilename);
  659: #endif
  660: }
  661: 
  662: /*
  663: ** This routine is the only routine in this file with external 
  664: ** linkage.
  665: **
  666: ** Populate the low-level memory allocation function pointers in
  667: ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
  668: ** arguments specify the block of memory to manage.
  669: **
  670: ** This routine is only called by sqlite3_config(), and therefore
  671: ** is not required to be threadsafe (it is not).
  672: */
  673: const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
  674:   static const sqlite3_mem_methods mempoolMethods = {
  675:      memsys3Malloc,
  676:      memsys3Free,
  677:      memsys3Realloc,
  678:      memsys3Size,
  679:      memsys3Roundup,
  680:      memsys3Init,
  681:      memsys3Shutdown,
  682:      0
  683:   };
  684:   return &mempoolMethods;
  685: }
  686: 
  687: #endif /* SQLITE_ENABLE_MEMSYS3 */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>