Annotation of embedaddon/sqlite3/src/mem5.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2007 October 14
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file contains the C functions that implement a memory
                     13: ** allocation subsystem for use by SQLite. 
                     14: **
                     15: ** This version of the memory allocation subsystem omits all
                     16: ** use of malloc(). The application gives SQLite a block of memory
                     17: ** before calling sqlite3_initialize() from which allocations
                     18: ** are made and returned by the xMalloc() and xRealloc() 
                     19: ** implementations. Once sqlite3_initialize() has been called,
                     20: ** the amount of memory available to SQLite is fixed and cannot
                     21: ** be changed.
                     22: **
                     23: ** This version of the memory allocation subsystem is included
                     24: ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
                     25: **
                     26: ** This memory allocator uses the following algorithm:
                     27: **
                     28: **   1.  All memory allocations sizes are rounded up to a power of 2.
                     29: **
                     30: **   2.  If two adjacent free blocks are the halves of a larger block,
                     31: **       then the two blocks are coalesed into the single larger block.
                     32: **
                     33: **   3.  New memory is allocated from the first available free block.
                     34: **
                     35: ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
                     36: ** Concerning Dynamic Storage Allocation". Journal of the Association for
                     37: ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
                     38: ** 
                     39: ** Let n be the size of the largest allocation divided by the minimum
                     40: ** allocation size (after rounding all sizes up to a power of 2.)  Let M
                     41: ** be the maximum amount of memory ever outstanding at one time.  Let
                     42: ** N be the total amount of memory available for allocation.  Robson
                     43: ** proved that this memory allocator will never breakdown due to 
                     44: ** fragmentation as long as the following constraint holds:
                     45: **
                     46: **      N >=  M*(1 + log2(n)/2) - n + 1
                     47: **
                     48: ** The sqlite3_status() logic tracks the maximum values of n and M so
                     49: ** that an application can, at any time, verify this constraint.
                     50: */
                     51: #include "sqliteInt.h"
                     52: 
                     53: /*
                     54: ** This version of the memory allocator is used only when 
                     55: ** SQLITE_ENABLE_MEMSYS5 is defined.
                     56: */
                     57: #ifdef SQLITE_ENABLE_MEMSYS5
                     58: 
                     59: /*
                     60: ** A minimum allocation is an instance of the following structure.
                     61: ** Larger allocations are an array of these structures where the
                     62: ** size of the array is a power of 2.
                     63: **
                     64: ** The size of this object must be a power of two.  That fact is
                     65: ** verified in memsys5Init().
                     66: */
                     67: typedef struct Mem5Link Mem5Link;
                     68: struct Mem5Link {
                     69:   int next;       /* Index of next free chunk */
                     70:   int prev;       /* Index of previous free chunk */
                     71: };
                     72: 
                     73: /*
                     74: ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
                     75: ** mem5.szAtom is always at least 8 and 32-bit integers are used,
                     76: ** it is not actually possible to reach this limit.
                     77: */
                     78: #define LOGMAX 30
                     79: 
                     80: /*
                     81: ** Masks used for mem5.aCtrl[] elements.
                     82: */
                     83: #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
                     84: #define CTRL_FREE     0x20    /* True if not checked out */
                     85: 
                     86: /*
                     87: ** All of the static variables used by this module are collected
                     88: ** into a single structure named "mem5".  This is to keep the
                     89: ** static variables organized and to reduce namespace pollution
                     90: ** when this module is combined with other in the amalgamation.
                     91: */
                     92: static SQLITE_WSD struct Mem5Global {
                     93:   /*
                     94:   ** Memory available for allocation
                     95:   */
                     96:   int szAtom;      /* Smallest possible allocation in bytes */
                     97:   int nBlock;      /* Number of szAtom sized blocks in zPool */
                     98:   u8 *zPool;       /* Memory available to be allocated */
                     99:   
                    100:   /*
                    101:   ** Mutex to control access to the memory allocation subsystem.
                    102:   */
                    103:   sqlite3_mutex *mutex;
                    104: 
                    105:   /*
                    106:   ** Performance statistics
                    107:   */
                    108:   u64 nAlloc;         /* Total number of calls to malloc */
                    109:   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
                    110:   u64 totalExcess;    /* Total internal fragmentation */
                    111:   u32 currentOut;     /* Current checkout, including internal fragmentation */
                    112:   u32 currentCount;   /* Current number of distinct checkouts */
                    113:   u32 maxOut;         /* Maximum instantaneous currentOut */
                    114:   u32 maxCount;       /* Maximum instantaneous currentCount */
                    115:   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
                    116:   
                    117:   /*
                    118:   ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
                    119:   ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
                    120:   ** and so forth.
                    121:   */
                    122:   int aiFreelist[LOGMAX+1];
                    123: 
                    124:   /*
                    125:   ** Space for tracking which blocks are checked out and the size
                    126:   ** of each block.  One byte per block.
                    127:   */
                    128:   u8 *aCtrl;
                    129: 
                    130: } mem5;
                    131: 
                    132: /*
                    133: ** Access the static variable through a macro for SQLITE_OMIT_WSD
                    134: */
                    135: #define mem5 GLOBAL(struct Mem5Global, mem5)
                    136: 
                    137: /*
                    138: ** Assuming mem5.zPool is divided up into an array of Mem5Link
                    139: ** structures, return a pointer to the idx-th such lik.
                    140: */
                    141: #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
                    142: 
                    143: /*
                    144: ** Unlink the chunk at mem5.aPool[i] from list it is currently
                    145: ** on.  It should be found on mem5.aiFreelist[iLogsize].
                    146: */
                    147: static void memsys5Unlink(int i, int iLogsize){
                    148:   int next, prev;
                    149:   assert( i>=0 && i<mem5.nBlock );
                    150:   assert( iLogsize>=0 && iLogsize<=LOGMAX );
                    151:   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
                    152: 
                    153:   next = MEM5LINK(i)->next;
                    154:   prev = MEM5LINK(i)->prev;
                    155:   if( prev<0 ){
                    156:     mem5.aiFreelist[iLogsize] = next;
                    157:   }else{
                    158:     MEM5LINK(prev)->next = next;
                    159:   }
                    160:   if( next>=0 ){
                    161:     MEM5LINK(next)->prev = prev;
                    162:   }
                    163: }
                    164: 
                    165: /*
                    166: ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
                    167: ** free list.
                    168: */
                    169: static void memsys5Link(int i, int iLogsize){
                    170:   int x;
                    171:   assert( sqlite3_mutex_held(mem5.mutex) );
                    172:   assert( i>=0 && i<mem5.nBlock );
                    173:   assert( iLogsize>=0 && iLogsize<=LOGMAX );
                    174:   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
                    175: 
                    176:   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
                    177:   MEM5LINK(i)->prev = -1;
                    178:   if( x>=0 ){
                    179:     assert( x<mem5.nBlock );
                    180:     MEM5LINK(x)->prev = i;
                    181:   }
                    182:   mem5.aiFreelist[iLogsize] = i;
                    183: }
                    184: 
                    185: /*
                    186: ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
                    187: ** will already be held (obtained by code in malloc.c) if
                    188: ** sqlite3GlobalConfig.bMemStat is true.
                    189: */
                    190: static void memsys5Enter(void){
                    191:   sqlite3_mutex_enter(mem5.mutex);
                    192: }
                    193: static void memsys5Leave(void){
                    194:   sqlite3_mutex_leave(mem5.mutex);
                    195: }
                    196: 
                    197: /*
                    198: ** Return the size of an outstanding allocation, in bytes.  The
                    199: ** size returned omits the 8-byte header overhead.  This only
                    200: ** works for chunks that are currently checked out.
                    201: */
                    202: static int memsys5Size(void *p){
                    203:   int iSize = 0;
                    204:   if( p ){
                    205:     int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
                    206:     assert( i>=0 && i<mem5.nBlock );
                    207:     iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
                    208:   }
                    209:   return iSize;
                    210: }
                    211: 
                    212: /*
                    213: ** Find the first entry on the freelist iLogsize.  Unlink that
                    214: ** entry and return its index. 
                    215: */
                    216: static int memsys5UnlinkFirst(int iLogsize){
                    217:   int i;
                    218:   int iFirst;
                    219: 
                    220:   assert( iLogsize>=0 && iLogsize<=LOGMAX );
                    221:   i = iFirst = mem5.aiFreelist[iLogsize];
                    222:   assert( iFirst>=0 );
                    223:   while( i>0 ){
                    224:     if( i<iFirst ) iFirst = i;
                    225:     i = MEM5LINK(i)->next;
                    226:   }
                    227:   memsys5Unlink(iFirst, iLogsize);
                    228:   return iFirst;
                    229: }
                    230: 
                    231: /*
                    232: ** Return a block of memory of at least nBytes in size.
                    233: ** Return NULL if unable.  Return NULL if nBytes==0.
                    234: **
                    235: ** The caller guarantees that nByte positive.
                    236: **
                    237: ** The caller has obtained a mutex prior to invoking this
                    238: ** routine so there is never any chance that two or more
                    239: ** threads can be in this routine at the same time.
                    240: */
                    241: static void *memsys5MallocUnsafe(int nByte){
                    242:   int i;           /* Index of a mem5.aPool[] slot */
                    243:   int iBin;        /* Index into mem5.aiFreelist[] */
                    244:   int iFullSz;     /* Size of allocation rounded up to power of 2 */
                    245:   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
                    246: 
                    247:   /* nByte must be a positive */
                    248:   assert( nByte>0 );
                    249: 
                    250:   /* Keep track of the maximum allocation request.  Even unfulfilled
                    251:   ** requests are counted */
                    252:   if( (u32)nByte>mem5.maxRequest ){
                    253:     mem5.maxRequest = nByte;
                    254:   }
                    255: 
                    256:   /* Abort if the requested allocation size is larger than the largest
                    257:   ** power of two that we can represent using 32-bit signed integers.
                    258:   */
                    259:   if( nByte > 0x40000000 ){
                    260:     return 0;
                    261:   }
                    262: 
                    263:   /* Round nByte up to the next valid power of two */
                    264:   for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
                    265: 
                    266:   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
                    267:   ** block.  If not, then split a block of the next larger power of
                    268:   ** two in order to create a new free block of size iLogsize.
                    269:   */
                    270:   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
                    271:   if( iBin>LOGMAX ){
                    272:     testcase( sqlite3GlobalConfig.xLog!=0 );
                    273:     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
                    274:     return 0;
                    275:   }
                    276:   i = memsys5UnlinkFirst(iBin);
                    277:   while( iBin>iLogsize ){
                    278:     int newSize;
                    279: 
                    280:     iBin--;
                    281:     newSize = 1 << iBin;
                    282:     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
                    283:     memsys5Link(i+newSize, iBin);
                    284:   }
                    285:   mem5.aCtrl[i] = iLogsize;
                    286: 
                    287:   /* Update allocator performance statistics. */
                    288:   mem5.nAlloc++;
                    289:   mem5.totalAlloc += iFullSz;
                    290:   mem5.totalExcess += iFullSz - nByte;
                    291:   mem5.currentCount++;
                    292:   mem5.currentOut += iFullSz;
                    293:   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
                    294:   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
                    295: 
                    296:   /* Return a pointer to the allocated memory. */
                    297:   return (void*)&mem5.zPool[i*mem5.szAtom];
                    298: }
                    299: 
                    300: /*
                    301: ** Free an outstanding memory allocation.
                    302: */
                    303: static void memsys5FreeUnsafe(void *pOld){
                    304:   u32 size, iLogsize;
                    305:   int iBlock;
                    306: 
                    307:   /* Set iBlock to the index of the block pointed to by pOld in 
                    308:   ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
                    309:   */
                    310:   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
                    311: 
                    312:   /* Check that the pointer pOld points to a valid, non-free block. */
                    313:   assert( iBlock>=0 && iBlock<mem5.nBlock );
                    314:   assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
                    315:   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
                    316: 
                    317:   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
                    318:   size = 1<<iLogsize;
                    319:   assert( iBlock+size-1<(u32)mem5.nBlock );
                    320: 
                    321:   mem5.aCtrl[iBlock] |= CTRL_FREE;
                    322:   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
                    323:   assert( mem5.currentCount>0 );
                    324:   assert( mem5.currentOut>=(size*mem5.szAtom) );
                    325:   mem5.currentCount--;
                    326:   mem5.currentOut -= size*mem5.szAtom;
                    327:   assert( mem5.currentOut>0 || mem5.currentCount==0 );
                    328:   assert( mem5.currentCount>0 || mem5.currentOut==0 );
                    329: 
                    330:   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
                    331:   while( ALWAYS(iLogsize<LOGMAX) ){
                    332:     int iBuddy;
                    333:     if( (iBlock>>iLogsize) & 1 ){
                    334:       iBuddy = iBlock - size;
                    335:     }else{
                    336:       iBuddy = iBlock + size;
                    337:     }
                    338:     assert( iBuddy>=0 );
                    339:     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
                    340:     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
                    341:     memsys5Unlink(iBuddy, iLogsize);
                    342:     iLogsize++;
                    343:     if( iBuddy<iBlock ){
                    344:       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
                    345:       mem5.aCtrl[iBlock] = 0;
                    346:       iBlock = iBuddy;
                    347:     }else{
                    348:       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
                    349:       mem5.aCtrl[iBuddy] = 0;
                    350:     }
                    351:     size *= 2;
                    352:   }
                    353:   memsys5Link(iBlock, iLogsize);
                    354: }
                    355: 
                    356: /*
                    357: ** Allocate nBytes of memory
                    358: */
                    359: static void *memsys5Malloc(int nBytes){
                    360:   sqlite3_int64 *p = 0;
                    361:   if( nBytes>0 ){
                    362:     memsys5Enter();
                    363:     p = memsys5MallocUnsafe(nBytes);
                    364:     memsys5Leave();
                    365:   }
                    366:   return (void*)p; 
                    367: }
                    368: 
                    369: /*
                    370: ** Free memory.
                    371: **
                    372: ** The outer layer memory allocator prevents this routine from
                    373: ** being called with pPrior==0.
                    374: */
                    375: static void memsys5Free(void *pPrior){
                    376:   assert( pPrior!=0 );
                    377:   memsys5Enter();
                    378:   memsys5FreeUnsafe(pPrior);
                    379:   memsys5Leave();  
                    380: }
                    381: 
                    382: /*
                    383: ** Change the size of an existing memory allocation.
                    384: **
                    385: ** The outer layer memory allocator prevents this routine from
                    386: ** being called with pPrior==0.  
                    387: **
                    388: ** nBytes is always a value obtained from a prior call to
                    389: ** memsys5Round().  Hence nBytes is always a non-negative power
                    390: ** of two.  If nBytes==0 that means that an oversize allocation
                    391: ** (an allocation larger than 0x40000000) was requested and this
                    392: ** routine should return 0 without freeing pPrior.
                    393: */
                    394: static void *memsys5Realloc(void *pPrior, int nBytes){
                    395:   int nOld;
                    396:   void *p;
                    397:   assert( pPrior!=0 );
                    398:   assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
                    399:   assert( nBytes>=0 );
                    400:   if( nBytes==0 ){
                    401:     return 0;
                    402:   }
                    403:   nOld = memsys5Size(pPrior);
                    404:   if( nBytes<=nOld ){
                    405:     return pPrior;
                    406:   }
                    407:   memsys5Enter();
                    408:   p = memsys5MallocUnsafe(nBytes);
                    409:   if( p ){
                    410:     memcpy(p, pPrior, nOld);
                    411:     memsys5FreeUnsafe(pPrior);
                    412:   }
                    413:   memsys5Leave();
                    414:   return p;
                    415: }
                    416: 
                    417: /*
                    418: ** Round up a request size to the next valid allocation size.  If
                    419: ** the allocation is too large to be handled by this allocation system,
                    420: ** return 0.
                    421: **
                    422: ** All allocations must be a power of two and must be expressed by a
                    423: ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
                    424: ** or 1073741824 bytes.
                    425: */
                    426: static int memsys5Roundup(int n){
                    427:   int iFullSz;
                    428:   if( n > 0x40000000 ) return 0;
                    429:   for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
                    430:   return iFullSz;
                    431: }
                    432: 
                    433: /*
                    434: ** Return the ceiling of the logarithm base 2 of iValue.
                    435: **
                    436: ** Examples:   memsys5Log(1) -> 0
                    437: **             memsys5Log(2) -> 1
                    438: **             memsys5Log(4) -> 2
                    439: **             memsys5Log(5) -> 3
                    440: **             memsys5Log(8) -> 3
                    441: **             memsys5Log(9) -> 4
                    442: */
                    443: static int memsys5Log(int iValue){
                    444:   int iLog;
                    445:   for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
                    446:   return iLog;
                    447: }
                    448: 
                    449: /*
                    450: ** Initialize the memory allocator.
                    451: **
                    452: ** This routine is not threadsafe.  The caller must be holding a mutex
                    453: ** to prevent multiple threads from entering at the same time.
                    454: */
                    455: static int memsys5Init(void *NotUsed){
                    456:   int ii;            /* Loop counter */
                    457:   int nByte;         /* Number of bytes of memory available to this allocator */
                    458:   u8 *zByte;         /* Memory usable by this allocator */
                    459:   int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
                    460:   int iOffset;       /* An offset into mem5.aCtrl[] */
                    461: 
                    462:   UNUSED_PARAMETER(NotUsed);
                    463: 
                    464:   /* For the purposes of this routine, disable the mutex */
                    465:   mem5.mutex = 0;
                    466: 
                    467:   /* The size of a Mem5Link object must be a power of two.  Verify that
                    468:   ** this is case.
                    469:   */
                    470:   assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
                    471: 
                    472:   nByte = sqlite3GlobalConfig.nHeap;
                    473:   zByte = (u8*)sqlite3GlobalConfig.pHeap;
                    474:   assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
                    475: 
                    476:   /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
                    477:   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
                    478:   mem5.szAtom = (1<<nMinLog);
                    479:   while( (int)sizeof(Mem5Link)>mem5.szAtom ){
                    480:     mem5.szAtom = mem5.szAtom << 1;
                    481:   }
                    482: 
                    483:   mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
                    484:   mem5.zPool = zByte;
                    485:   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
                    486: 
                    487:   for(ii=0; ii<=LOGMAX; ii++){
                    488:     mem5.aiFreelist[ii] = -1;
                    489:   }
                    490: 
                    491:   iOffset = 0;
                    492:   for(ii=LOGMAX; ii>=0; ii--){
                    493:     int nAlloc = (1<<ii);
                    494:     if( (iOffset+nAlloc)<=mem5.nBlock ){
                    495:       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
                    496:       memsys5Link(iOffset, ii);
                    497:       iOffset += nAlloc;
                    498:     }
                    499:     assert((iOffset+nAlloc)>mem5.nBlock);
                    500:   }
                    501: 
                    502:   /* If a mutex is required for normal operation, allocate one */
                    503:   if( sqlite3GlobalConfig.bMemstat==0 ){
                    504:     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
                    505:   }
                    506: 
                    507:   return SQLITE_OK;
                    508: }
                    509: 
                    510: /*
                    511: ** Deinitialize this module.
                    512: */
                    513: static void memsys5Shutdown(void *NotUsed){
                    514:   UNUSED_PARAMETER(NotUsed);
                    515:   mem5.mutex = 0;
                    516:   return;
                    517: }
                    518: 
                    519: #ifdef SQLITE_TEST
                    520: /*
                    521: ** Open the file indicated and write a log of all unfreed memory 
                    522: ** allocations into that log.
                    523: */
                    524: void sqlite3Memsys5Dump(const char *zFilename){
                    525:   FILE *out;
                    526:   int i, j, n;
                    527:   int nMinLog;
                    528: 
                    529:   if( zFilename==0 || zFilename[0]==0 ){
                    530:     out = stdout;
                    531:   }else{
                    532:     out = fopen(zFilename, "w");
                    533:     if( out==0 ){
                    534:       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                    535:                       zFilename);
                    536:       return;
                    537:     }
                    538:   }
                    539:   memsys5Enter();
                    540:   nMinLog = memsys5Log(mem5.szAtom);
                    541:   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
                    542:     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
                    543:     fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
                    544:   }
                    545:   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
                    546:   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
                    547:   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
                    548:   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
                    549:   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
                    550:   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
                    551:   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
                    552:   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
                    553:   memsys5Leave();
                    554:   if( out==stdout ){
                    555:     fflush(stdout);
                    556:   }else{
                    557:     fclose(out);
                    558:   }
                    559: }
                    560: #endif
                    561: 
                    562: /*
                    563: ** This routine is the only routine in this file with external 
                    564: ** linkage. It returns a pointer to a static sqlite3_mem_methods
                    565: ** struct populated with the memsys5 methods.
                    566: */
                    567: const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
                    568:   static const sqlite3_mem_methods memsys5Methods = {
                    569:      memsys5Malloc,
                    570:      memsys5Free,
                    571:      memsys5Realloc,
                    572:      memsys5Size,
                    573:      memsys5Roundup,
                    574:      memsys5Init,
                    575:      memsys5Shutdown,
                    576:      0
                    577:   };
                    578:   return &memsys5Methods;
                    579: }
                    580: 
                    581: #endif /* SQLITE_ENABLE_MEMSYS5 */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>