File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / mem5.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2007 October 14
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains the C functions that implement a memory
   13: ** allocation subsystem for use by SQLite. 
   14: **
   15: ** This version of the memory allocation subsystem omits all
   16: ** use of malloc(). The application gives SQLite a block of memory
   17: ** before calling sqlite3_initialize() from which allocations
   18: ** are made and returned by the xMalloc() and xRealloc() 
   19: ** implementations. Once sqlite3_initialize() has been called,
   20: ** the amount of memory available to SQLite is fixed and cannot
   21: ** be changed.
   22: **
   23: ** This version of the memory allocation subsystem is included
   24: ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
   25: **
   26: ** This memory allocator uses the following algorithm:
   27: **
   28: **   1.  All memory allocations sizes are rounded up to a power of 2.
   29: **
   30: **   2.  If two adjacent free blocks are the halves of a larger block,
   31: **       then the two blocks are coalesed into the single larger block.
   32: **
   33: **   3.  New memory is allocated from the first available free block.
   34: **
   35: ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
   36: ** Concerning Dynamic Storage Allocation". Journal of the Association for
   37: ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
   38: ** 
   39: ** Let n be the size of the largest allocation divided by the minimum
   40: ** allocation size (after rounding all sizes up to a power of 2.)  Let M
   41: ** be the maximum amount of memory ever outstanding at one time.  Let
   42: ** N be the total amount of memory available for allocation.  Robson
   43: ** proved that this memory allocator will never breakdown due to 
   44: ** fragmentation as long as the following constraint holds:
   45: **
   46: **      N >=  M*(1 + log2(n)/2) - n + 1
   47: **
   48: ** The sqlite3_status() logic tracks the maximum values of n and M so
   49: ** that an application can, at any time, verify this constraint.
   50: */
   51: #include "sqliteInt.h"
   52: 
   53: /*
   54: ** This version of the memory allocator is used only when 
   55: ** SQLITE_ENABLE_MEMSYS5 is defined.
   56: */
   57: #ifdef SQLITE_ENABLE_MEMSYS5
   58: 
   59: /*
   60: ** A minimum allocation is an instance of the following structure.
   61: ** Larger allocations are an array of these structures where the
   62: ** size of the array is a power of 2.
   63: **
   64: ** The size of this object must be a power of two.  That fact is
   65: ** verified in memsys5Init().
   66: */
   67: typedef struct Mem5Link Mem5Link;
   68: struct Mem5Link {
   69:   int next;       /* Index of next free chunk */
   70:   int prev;       /* Index of previous free chunk */
   71: };
   72: 
   73: /*
   74: ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
   75: ** mem5.szAtom is always at least 8 and 32-bit integers are used,
   76: ** it is not actually possible to reach this limit.
   77: */
   78: #define LOGMAX 30
   79: 
   80: /*
   81: ** Masks used for mem5.aCtrl[] elements.
   82: */
   83: #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
   84: #define CTRL_FREE     0x20    /* True if not checked out */
   85: 
   86: /*
   87: ** All of the static variables used by this module are collected
   88: ** into a single structure named "mem5".  This is to keep the
   89: ** static variables organized and to reduce namespace pollution
   90: ** when this module is combined with other in the amalgamation.
   91: */
   92: static SQLITE_WSD struct Mem5Global {
   93:   /*
   94:   ** Memory available for allocation
   95:   */
   96:   int szAtom;      /* Smallest possible allocation in bytes */
   97:   int nBlock;      /* Number of szAtom sized blocks in zPool */
   98:   u8 *zPool;       /* Memory available to be allocated */
   99:   
  100:   /*
  101:   ** Mutex to control access to the memory allocation subsystem.
  102:   */
  103:   sqlite3_mutex *mutex;
  104: 
  105:   /*
  106:   ** Performance statistics
  107:   */
  108:   u64 nAlloc;         /* Total number of calls to malloc */
  109:   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  110:   u64 totalExcess;    /* Total internal fragmentation */
  111:   u32 currentOut;     /* Current checkout, including internal fragmentation */
  112:   u32 currentCount;   /* Current number of distinct checkouts */
  113:   u32 maxOut;         /* Maximum instantaneous currentOut */
  114:   u32 maxCount;       /* Maximum instantaneous currentCount */
  115:   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
  116:   
  117:   /*
  118:   ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  119:   ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  120:   ** and so forth.
  121:   */
  122:   int aiFreelist[LOGMAX+1];
  123: 
  124:   /*
  125:   ** Space for tracking which blocks are checked out and the size
  126:   ** of each block.  One byte per block.
  127:   */
  128:   u8 *aCtrl;
  129: 
  130: } mem5;
  131: 
  132: /*
  133: ** Access the static variable through a macro for SQLITE_OMIT_WSD
  134: */
  135: #define mem5 GLOBAL(struct Mem5Global, mem5)
  136: 
  137: /*
  138: ** Assuming mem5.zPool is divided up into an array of Mem5Link
  139: ** structures, return a pointer to the idx-th such lik.
  140: */
  141: #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
  142: 
  143: /*
  144: ** Unlink the chunk at mem5.aPool[i] from list it is currently
  145: ** on.  It should be found on mem5.aiFreelist[iLogsize].
  146: */
  147: static void memsys5Unlink(int i, int iLogsize){
  148:   int next, prev;
  149:   assert( i>=0 && i<mem5.nBlock );
  150:   assert( iLogsize>=0 && iLogsize<=LOGMAX );
  151:   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
  152: 
  153:   next = MEM5LINK(i)->next;
  154:   prev = MEM5LINK(i)->prev;
  155:   if( prev<0 ){
  156:     mem5.aiFreelist[iLogsize] = next;
  157:   }else{
  158:     MEM5LINK(prev)->next = next;
  159:   }
  160:   if( next>=0 ){
  161:     MEM5LINK(next)->prev = prev;
  162:   }
  163: }
  164: 
  165: /*
  166: ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
  167: ** free list.
  168: */
  169: static void memsys5Link(int i, int iLogsize){
  170:   int x;
  171:   assert( sqlite3_mutex_held(mem5.mutex) );
  172:   assert( i>=0 && i<mem5.nBlock );
  173:   assert( iLogsize>=0 && iLogsize<=LOGMAX );
  174:   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
  175: 
  176:   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
  177:   MEM5LINK(i)->prev = -1;
  178:   if( x>=0 ){
  179:     assert( x<mem5.nBlock );
  180:     MEM5LINK(x)->prev = i;
  181:   }
  182:   mem5.aiFreelist[iLogsize] = i;
  183: }
  184: 
  185: /*
  186: ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
  187: ** will already be held (obtained by code in malloc.c) if
  188: ** sqlite3GlobalConfig.bMemStat is true.
  189: */
  190: static void memsys5Enter(void){
  191:   sqlite3_mutex_enter(mem5.mutex);
  192: }
  193: static void memsys5Leave(void){
  194:   sqlite3_mutex_leave(mem5.mutex);
  195: }
  196: 
  197: /*
  198: ** Return the size of an outstanding allocation, in bytes.  The
  199: ** size returned omits the 8-byte header overhead.  This only
  200: ** works for chunks that are currently checked out.
  201: */
  202: static int memsys5Size(void *p){
  203:   int iSize = 0;
  204:   if( p ){
  205:     int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
  206:     assert( i>=0 && i<mem5.nBlock );
  207:     iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
  208:   }
  209:   return iSize;
  210: }
  211: 
  212: /*
  213: ** Find the first entry on the freelist iLogsize.  Unlink that
  214: ** entry and return its index. 
  215: */
  216: static int memsys5UnlinkFirst(int iLogsize){
  217:   int i;
  218:   int iFirst;
  219: 
  220:   assert( iLogsize>=0 && iLogsize<=LOGMAX );
  221:   i = iFirst = mem5.aiFreelist[iLogsize];
  222:   assert( iFirst>=0 );
  223:   while( i>0 ){
  224:     if( i<iFirst ) iFirst = i;
  225:     i = MEM5LINK(i)->next;
  226:   }
  227:   memsys5Unlink(iFirst, iLogsize);
  228:   return iFirst;
  229: }
  230: 
  231: /*
  232: ** Return a block of memory of at least nBytes in size.
  233: ** Return NULL if unable.  Return NULL if nBytes==0.
  234: **
  235: ** The caller guarantees that nByte positive.
  236: **
  237: ** The caller has obtained a mutex prior to invoking this
  238: ** routine so there is never any chance that two or more
  239: ** threads can be in this routine at the same time.
  240: */
  241: static void *memsys5MallocUnsafe(int nByte){
  242:   int i;           /* Index of a mem5.aPool[] slot */
  243:   int iBin;        /* Index into mem5.aiFreelist[] */
  244:   int iFullSz;     /* Size of allocation rounded up to power of 2 */
  245:   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
  246: 
  247:   /* nByte must be a positive */
  248:   assert( nByte>0 );
  249: 
  250:   /* Keep track of the maximum allocation request.  Even unfulfilled
  251:   ** requests are counted */
  252:   if( (u32)nByte>mem5.maxRequest ){
  253:     mem5.maxRequest = nByte;
  254:   }
  255: 
  256:   /* Abort if the requested allocation size is larger than the largest
  257:   ** power of two that we can represent using 32-bit signed integers.
  258:   */
  259:   if( nByte > 0x40000000 ){
  260:     return 0;
  261:   }
  262: 
  263:   /* Round nByte up to the next valid power of two */
  264:   for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
  265: 
  266:   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  267:   ** block.  If not, then split a block of the next larger power of
  268:   ** two in order to create a new free block of size iLogsize.
  269:   */
  270:   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
  271:   if( iBin>LOGMAX ){
  272:     testcase( sqlite3GlobalConfig.xLog!=0 );
  273:     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
  274:     return 0;
  275:   }
  276:   i = memsys5UnlinkFirst(iBin);
  277:   while( iBin>iLogsize ){
  278:     int newSize;
  279: 
  280:     iBin--;
  281:     newSize = 1 << iBin;
  282:     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
  283:     memsys5Link(i+newSize, iBin);
  284:   }
  285:   mem5.aCtrl[i] = iLogsize;
  286: 
  287:   /* Update allocator performance statistics. */
  288:   mem5.nAlloc++;
  289:   mem5.totalAlloc += iFullSz;
  290:   mem5.totalExcess += iFullSz - nByte;
  291:   mem5.currentCount++;
  292:   mem5.currentOut += iFullSz;
  293:   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  294:   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
  295: 
  296:   /* Return a pointer to the allocated memory. */
  297:   return (void*)&mem5.zPool[i*mem5.szAtom];
  298: }
  299: 
  300: /*
  301: ** Free an outstanding memory allocation.
  302: */
  303: static void memsys5FreeUnsafe(void *pOld){
  304:   u32 size, iLogsize;
  305:   int iBlock;
  306: 
  307:   /* Set iBlock to the index of the block pointed to by pOld in 
  308:   ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
  309:   */
  310:   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
  311: 
  312:   /* Check that the pointer pOld points to a valid, non-free block. */
  313:   assert( iBlock>=0 && iBlock<mem5.nBlock );
  314:   assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
  315:   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
  316: 
  317:   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  318:   size = 1<<iLogsize;
  319:   assert( iBlock+size-1<(u32)mem5.nBlock );
  320: 
  321:   mem5.aCtrl[iBlock] |= CTRL_FREE;
  322:   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
  323:   assert( mem5.currentCount>0 );
  324:   assert( mem5.currentOut>=(size*mem5.szAtom) );
  325:   mem5.currentCount--;
  326:   mem5.currentOut -= size*mem5.szAtom;
  327:   assert( mem5.currentOut>0 || mem5.currentCount==0 );
  328:   assert( mem5.currentCount>0 || mem5.currentOut==0 );
  329: 
  330:   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  331:   while( ALWAYS(iLogsize<LOGMAX) ){
  332:     int iBuddy;
  333:     if( (iBlock>>iLogsize) & 1 ){
  334:       iBuddy = iBlock - size;
  335:     }else{
  336:       iBuddy = iBlock + size;
  337:     }
  338:     assert( iBuddy>=0 );
  339:     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
  340:     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
  341:     memsys5Unlink(iBuddy, iLogsize);
  342:     iLogsize++;
  343:     if( iBuddy<iBlock ){
  344:       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
  345:       mem5.aCtrl[iBlock] = 0;
  346:       iBlock = iBuddy;
  347:     }else{
  348:       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  349:       mem5.aCtrl[iBuddy] = 0;
  350:     }
  351:     size *= 2;
  352:   }
  353:   memsys5Link(iBlock, iLogsize);
  354: }
  355: 
  356: /*
  357: ** Allocate nBytes of memory
  358: */
  359: static void *memsys5Malloc(int nBytes){
  360:   sqlite3_int64 *p = 0;
  361:   if( nBytes>0 ){
  362:     memsys5Enter();
  363:     p = memsys5MallocUnsafe(nBytes);
  364:     memsys5Leave();
  365:   }
  366:   return (void*)p; 
  367: }
  368: 
  369: /*
  370: ** Free memory.
  371: **
  372: ** The outer layer memory allocator prevents this routine from
  373: ** being called with pPrior==0.
  374: */
  375: static void memsys5Free(void *pPrior){
  376:   assert( pPrior!=0 );
  377:   memsys5Enter();
  378:   memsys5FreeUnsafe(pPrior);
  379:   memsys5Leave();  
  380: }
  381: 
  382: /*
  383: ** Change the size of an existing memory allocation.
  384: **
  385: ** The outer layer memory allocator prevents this routine from
  386: ** being called with pPrior==0.  
  387: **
  388: ** nBytes is always a value obtained from a prior call to
  389: ** memsys5Round().  Hence nBytes is always a non-negative power
  390: ** of two.  If nBytes==0 that means that an oversize allocation
  391: ** (an allocation larger than 0x40000000) was requested and this
  392: ** routine should return 0 without freeing pPrior.
  393: */
  394: static void *memsys5Realloc(void *pPrior, int nBytes){
  395:   int nOld;
  396:   void *p;
  397:   assert( pPrior!=0 );
  398:   assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
  399:   assert( nBytes>=0 );
  400:   if( nBytes==0 ){
  401:     return 0;
  402:   }
  403:   nOld = memsys5Size(pPrior);
  404:   if( nBytes<=nOld ){
  405:     return pPrior;
  406:   }
  407:   memsys5Enter();
  408:   p = memsys5MallocUnsafe(nBytes);
  409:   if( p ){
  410:     memcpy(p, pPrior, nOld);
  411:     memsys5FreeUnsafe(pPrior);
  412:   }
  413:   memsys5Leave();
  414:   return p;
  415: }
  416: 
  417: /*
  418: ** Round up a request size to the next valid allocation size.  If
  419: ** the allocation is too large to be handled by this allocation system,
  420: ** return 0.
  421: **
  422: ** All allocations must be a power of two and must be expressed by a
  423: ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
  424: ** or 1073741824 bytes.
  425: */
  426: static int memsys5Roundup(int n){
  427:   int iFullSz;
  428:   if( n > 0x40000000 ) return 0;
  429:   for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
  430:   return iFullSz;
  431: }
  432: 
  433: /*
  434: ** Return the ceiling of the logarithm base 2 of iValue.
  435: **
  436: ** Examples:   memsys5Log(1) -> 0
  437: **             memsys5Log(2) -> 1
  438: **             memsys5Log(4) -> 2
  439: **             memsys5Log(5) -> 3
  440: **             memsys5Log(8) -> 3
  441: **             memsys5Log(9) -> 4
  442: */
  443: static int memsys5Log(int iValue){
  444:   int iLog;
  445:   for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
  446:   return iLog;
  447: }
  448: 
  449: /*
  450: ** Initialize the memory allocator.
  451: **
  452: ** This routine is not threadsafe.  The caller must be holding a mutex
  453: ** to prevent multiple threads from entering at the same time.
  454: */
  455: static int memsys5Init(void *NotUsed){
  456:   int ii;            /* Loop counter */
  457:   int nByte;         /* Number of bytes of memory available to this allocator */
  458:   u8 *zByte;         /* Memory usable by this allocator */
  459:   int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
  460:   int iOffset;       /* An offset into mem5.aCtrl[] */
  461: 
  462:   UNUSED_PARAMETER(NotUsed);
  463: 
  464:   /* For the purposes of this routine, disable the mutex */
  465:   mem5.mutex = 0;
  466: 
  467:   /* The size of a Mem5Link object must be a power of two.  Verify that
  468:   ** this is case.
  469:   */
  470:   assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
  471: 
  472:   nByte = sqlite3GlobalConfig.nHeap;
  473:   zByte = (u8*)sqlite3GlobalConfig.pHeap;
  474:   assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
  475: 
  476:   /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
  477:   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
  478:   mem5.szAtom = (1<<nMinLog);
  479:   while( (int)sizeof(Mem5Link)>mem5.szAtom ){
  480:     mem5.szAtom = mem5.szAtom << 1;
  481:   }
  482: 
  483:   mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
  484:   mem5.zPool = zByte;
  485:   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
  486: 
  487:   for(ii=0; ii<=LOGMAX; ii++){
  488:     mem5.aiFreelist[ii] = -1;
  489:   }
  490: 
  491:   iOffset = 0;
  492:   for(ii=LOGMAX; ii>=0; ii--){
  493:     int nAlloc = (1<<ii);
  494:     if( (iOffset+nAlloc)<=mem5.nBlock ){
  495:       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
  496:       memsys5Link(iOffset, ii);
  497:       iOffset += nAlloc;
  498:     }
  499:     assert((iOffset+nAlloc)>mem5.nBlock);
  500:   }
  501: 
  502:   /* If a mutex is required for normal operation, allocate one */
  503:   if( sqlite3GlobalConfig.bMemstat==0 ){
  504:     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  505:   }
  506: 
  507:   return SQLITE_OK;
  508: }
  509: 
  510: /*
  511: ** Deinitialize this module.
  512: */
  513: static void memsys5Shutdown(void *NotUsed){
  514:   UNUSED_PARAMETER(NotUsed);
  515:   mem5.mutex = 0;
  516:   return;
  517: }
  518: 
  519: #ifdef SQLITE_TEST
  520: /*
  521: ** Open the file indicated and write a log of all unfreed memory 
  522: ** allocations into that log.
  523: */
  524: void sqlite3Memsys5Dump(const char *zFilename){
  525:   FILE *out;
  526:   int i, j, n;
  527:   int nMinLog;
  528: 
  529:   if( zFilename==0 || zFilename[0]==0 ){
  530:     out = stdout;
  531:   }else{
  532:     out = fopen(zFilename, "w");
  533:     if( out==0 ){
  534:       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
  535:                       zFilename);
  536:       return;
  537:     }
  538:   }
  539:   memsys5Enter();
  540:   nMinLog = memsys5Log(mem5.szAtom);
  541:   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
  542:     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
  543:     fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
  544:   }
  545:   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
  546:   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
  547:   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
  548:   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
  549:   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
  550:   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
  551:   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
  552:   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
  553:   memsys5Leave();
  554:   if( out==stdout ){
  555:     fflush(stdout);
  556:   }else{
  557:     fclose(out);
  558:   }
  559: }
  560: #endif
  561: 
  562: /*
  563: ** This routine is the only routine in this file with external 
  564: ** linkage. It returns a pointer to a static sqlite3_mem_methods
  565: ** struct populated with the memsys5 methods.
  566: */
  567: const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
  568:   static const sqlite3_mem_methods memsys5Methods = {
  569:      memsys5Malloc,
  570:      memsys5Free,
  571:      memsys5Realloc,
  572:      memsys5Size,
  573:      memsys5Roundup,
  574:      memsys5Init,
  575:      memsys5Shutdown,
  576:      0
  577:   };
  578:   return &memsys5Methods;
  579: }
  580: 
  581: #endif /* SQLITE_ENABLE_MEMSYS5 */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>