File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / mutex_unix.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 7 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2007 August 28
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains the C functions that implement mutexes for pthreads
   13: */
   14: #include "sqliteInt.h"
   15: 
   16: /*
   17: ** The code in this file is only used if we are compiling threadsafe
   18: ** under unix with pthreads.
   19: **
   20: ** Note that this implementation requires a version of pthreads that
   21: ** supports recursive mutexes.
   22: */
   23: #ifdef SQLITE_MUTEX_PTHREADS
   24: 
   25: #include <pthread.h>
   26: 
   27: /*
   28: ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
   29: ** are necessary under two condidtions:  (1) Debug builds and (2) using
   30: ** home-grown mutexes.  Encapsulate these conditions into a single #define.
   31: */
   32: #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
   33: # define SQLITE_MUTEX_NREF 1
   34: #else
   35: # define SQLITE_MUTEX_NREF 0
   36: #endif
   37: 
   38: /*
   39: ** Each recursive mutex is an instance of the following structure.
   40: */
   41: struct sqlite3_mutex {
   42:   pthread_mutex_t mutex;     /* Mutex controlling the lock */
   43: #if SQLITE_MUTEX_NREF
   44:   int id;                    /* Mutex type */
   45:   volatile int nRef;         /* Number of entrances */
   46:   volatile pthread_t owner;  /* Thread that is within this mutex */
   47:   int trace;                 /* True to trace changes */
   48: #endif
   49: };
   50: #if SQLITE_MUTEX_NREF
   51: #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
   52: #else
   53: #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
   54: #endif
   55: 
   56: /*
   57: ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
   58: ** intended for use only inside assert() statements.  On some platforms,
   59: ** there might be race conditions that can cause these routines to
   60: ** deliver incorrect results.  In particular, if pthread_equal() is
   61: ** not an atomic operation, then these routines might delivery
   62: ** incorrect results.  On most platforms, pthread_equal() is a 
   63: ** comparison of two integers and is therefore atomic.  But we are
   64: ** told that HPUX is not such a platform.  If so, then these routines
   65: ** will not always work correctly on HPUX.
   66: **
   67: ** On those platforms where pthread_equal() is not atomic, SQLite
   68: ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
   69: ** make sure no assert() statements are evaluated and hence these
   70: ** routines are never called.
   71: */
   72: #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
   73: static int pthreadMutexHeld(sqlite3_mutex *p){
   74:   return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
   75: }
   76: static int pthreadMutexNotheld(sqlite3_mutex *p){
   77:   return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
   78: }
   79: #endif
   80: 
   81: /*
   82: ** Initialize and deinitialize the mutex subsystem.
   83: */
   84: static int pthreadMutexInit(void){ return SQLITE_OK; }
   85: static int pthreadMutexEnd(void){ return SQLITE_OK; }
   86: 
   87: /*
   88: ** The sqlite3_mutex_alloc() routine allocates a new
   89: ** mutex and returns a pointer to it.  If it returns NULL
   90: ** that means that a mutex could not be allocated.  SQLite
   91: ** will unwind its stack and return an error.  The argument
   92: ** to sqlite3_mutex_alloc() is one of these integer constants:
   93: **
   94: ** <ul>
   95: ** <li>  SQLITE_MUTEX_FAST
   96: ** <li>  SQLITE_MUTEX_RECURSIVE
   97: ** <li>  SQLITE_MUTEX_STATIC_MASTER
   98: ** <li>  SQLITE_MUTEX_STATIC_MEM
   99: ** <li>  SQLITE_MUTEX_STATIC_MEM2
  100: ** <li>  SQLITE_MUTEX_STATIC_PRNG
  101: ** <li>  SQLITE_MUTEX_STATIC_LRU
  102: ** <li>  SQLITE_MUTEX_STATIC_PMEM
  103: ** </ul>
  104: **
  105: ** The first two constants cause sqlite3_mutex_alloc() to create
  106: ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
  107: ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
  108: ** The mutex implementation does not need to make a distinction
  109: ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
  110: ** not want to.  But SQLite will only request a recursive mutex in
  111: ** cases where it really needs one.  If a faster non-recursive mutex
  112: ** implementation is available on the host platform, the mutex subsystem
  113: ** might return such a mutex in response to SQLITE_MUTEX_FAST.
  114: **
  115: ** The other allowed parameters to sqlite3_mutex_alloc() each return
  116: ** a pointer to a static preexisting mutex.  Six static mutexes are
  117: ** used by the current version of SQLite.  Future versions of SQLite
  118: ** may add additional static mutexes.  Static mutexes are for internal
  119: ** use by SQLite only.  Applications that use SQLite mutexes should
  120: ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
  121: ** SQLITE_MUTEX_RECURSIVE.
  122: **
  123: ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
  124: ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
  125: ** returns a different mutex on every call.  But for the static 
  126: ** mutex types, the same mutex is returned on every call that has
  127: ** the same type number.
  128: */
  129: static sqlite3_mutex *pthreadMutexAlloc(int iType){
  130:   static sqlite3_mutex staticMutexes[] = {
  131:     SQLITE3_MUTEX_INITIALIZER,
  132:     SQLITE3_MUTEX_INITIALIZER,
  133:     SQLITE3_MUTEX_INITIALIZER,
  134:     SQLITE3_MUTEX_INITIALIZER,
  135:     SQLITE3_MUTEX_INITIALIZER,
  136:     SQLITE3_MUTEX_INITIALIZER
  137:   };
  138:   sqlite3_mutex *p;
  139:   switch( iType ){
  140:     case SQLITE_MUTEX_RECURSIVE: {
  141:       p = sqlite3MallocZero( sizeof(*p) );
  142:       if( p ){
  143: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
  144:         /* If recursive mutexes are not available, we will have to
  145:         ** build our own.  See below. */
  146:         pthread_mutex_init(&p->mutex, 0);
  147: #else
  148:         /* Use a recursive mutex if it is available */
  149:         pthread_mutexattr_t recursiveAttr;
  150:         pthread_mutexattr_init(&recursiveAttr);
  151:         pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
  152:         pthread_mutex_init(&p->mutex, &recursiveAttr);
  153:         pthread_mutexattr_destroy(&recursiveAttr);
  154: #endif
  155: #if SQLITE_MUTEX_NREF
  156:         p->id = iType;
  157: #endif
  158:       }
  159:       break;
  160:     }
  161:     case SQLITE_MUTEX_FAST: {
  162:       p = sqlite3MallocZero( sizeof(*p) );
  163:       if( p ){
  164: #if SQLITE_MUTEX_NREF
  165:         p->id = iType;
  166: #endif
  167:         pthread_mutex_init(&p->mutex, 0);
  168:       }
  169:       break;
  170:     }
  171:     default: {
  172:       assert( iType-2 >= 0 );
  173:       assert( iType-2 < ArraySize(staticMutexes) );
  174:       p = &staticMutexes[iType-2];
  175: #if SQLITE_MUTEX_NREF
  176:       p->id = iType;
  177: #endif
  178:       break;
  179:     }
  180:   }
  181:   return p;
  182: }
  183: 
  184: 
  185: /*
  186: ** This routine deallocates a previously
  187: ** allocated mutex.  SQLite is careful to deallocate every
  188: ** mutex that it allocates.
  189: */
  190: static void pthreadMutexFree(sqlite3_mutex *p){
  191:   assert( p->nRef==0 );
  192:   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
  193:   pthread_mutex_destroy(&p->mutex);
  194:   sqlite3_free(p);
  195: }
  196: 
  197: /*
  198: ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
  199: ** to enter a mutex.  If another thread is already within the mutex,
  200: ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
  201: ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
  202: ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
  203: ** be entered multiple times by the same thread.  In such cases the,
  204: ** mutex must be exited an equal number of times before another thread
  205: ** can enter.  If the same thread tries to enter any other kind of mutex
  206: ** more than once, the behavior is undefined.
  207: */
  208: static void pthreadMutexEnter(sqlite3_mutex *p){
  209:   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
  210: 
  211: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
  212:   /* If recursive mutexes are not available, then we have to grow
  213:   ** our own.  This implementation assumes that pthread_equal()
  214:   ** is atomic - that it cannot be deceived into thinking self
  215:   ** and p->owner are equal if p->owner changes between two values
  216:   ** that are not equal to self while the comparison is taking place.
  217:   ** This implementation also assumes a coherent cache - that 
  218:   ** separate processes cannot read different values from the same
  219:   ** address at the same time.  If either of these two conditions
  220:   ** are not met, then the mutexes will fail and problems will result.
  221:   */
  222:   {
  223:     pthread_t self = pthread_self();
  224:     if( p->nRef>0 && pthread_equal(p->owner, self) ){
  225:       p->nRef++;
  226:     }else{
  227:       pthread_mutex_lock(&p->mutex);
  228:       assert( p->nRef==0 );
  229:       p->owner = self;
  230:       p->nRef = 1;
  231:     }
  232:   }
  233: #else
  234:   /* Use the built-in recursive mutexes if they are available.
  235:   */
  236:   pthread_mutex_lock(&p->mutex);
  237: #if SQLITE_MUTEX_NREF
  238:   assert( p->nRef>0 || p->owner==0 );
  239:   p->owner = pthread_self();
  240:   p->nRef++;
  241: #endif
  242: #endif
  243: 
  244: #ifdef SQLITE_DEBUG
  245:   if( p->trace ){
  246:     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  247:   }
  248: #endif
  249: }
  250: static int pthreadMutexTry(sqlite3_mutex *p){
  251:   int rc;
  252:   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
  253: 
  254: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
  255:   /* If recursive mutexes are not available, then we have to grow
  256:   ** our own.  This implementation assumes that pthread_equal()
  257:   ** is atomic - that it cannot be deceived into thinking self
  258:   ** and p->owner are equal if p->owner changes between two values
  259:   ** that are not equal to self while the comparison is taking place.
  260:   ** This implementation also assumes a coherent cache - that 
  261:   ** separate processes cannot read different values from the same
  262:   ** address at the same time.  If either of these two conditions
  263:   ** are not met, then the mutexes will fail and problems will result.
  264:   */
  265:   {
  266:     pthread_t self = pthread_self();
  267:     if( p->nRef>0 && pthread_equal(p->owner, self) ){
  268:       p->nRef++;
  269:       rc = SQLITE_OK;
  270:     }else if( pthread_mutex_trylock(&p->mutex)==0 ){
  271:       assert( p->nRef==0 );
  272:       p->owner = self;
  273:       p->nRef = 1;
  274:       rc = SQLITE_OK;
  275:     }else{
  276:       rc = SQLITE_BUSY;
  277:     }
  278:   }
  279: #else
  280:   /* Use the built-in recursive mutexes if they are available.
  281:   */
  282:   if( pthread_mutex_trylock(&p->mutex)==0 ){
  283: #if SQLITE_MUTEX_NREF
  284:     p->owner = pthread_self();
  285:     p->nRef++;
  286: #endif
  287:     rc = SQLITE_OK;
  288:   }else{
  289:     rc = SQLITE_BUSY;
  290:   }
  291: #endif
  292: 
  293: #ifdef SQLITE_DEBUG
  294:   if( rc==SQLITE_OK && p->trace ){
  295:     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  296:   }
  297: #endif
  298:   return rc;
  299: }
  300: 
  301: /*
  302: ** The sqlite3_mutex_leave() routine exits a mutex that was
  303: ** previously entered by the same thread.  The behavior
  304: ** is undefined if the mutex is not currently entered or
  305: ** is not currently allocated.  SQLite will never do either.
  306: */
  307: static void pthreadMutexLeave(sqlite3_mutex *p){
  308:   assert( pthreadMutexHeld(p) );
  309: #if SQLITE_MUTEX_NREF
  310:   p->nRef--;
  311:   if( p->nRef==0 ) p->owner = 0;
  312: #endif
  313:   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
  314: 
  315: #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
  316:   if( p->nRef==0 ){
  317:     pthread_mutex_unlock(&p->mutex);
  318:   }
  319: #else
  320:   pthread_mutex_unlock(&p->mutex);
  321: #endif
  322: 
  323: #ifdef SQLITE_DEBUG
  324:   if( p->trace ){
  325:     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  326:   }
  327: #endif
  328: }
  329: 
  330: sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
  331:   static const sqlite3_mutex_methods sMutex = {
  332:     pthreadMutexInit,
  333:     pthreadMutexEnd,
  334:     pthreadMutexAlloc,
  335:     pthreadMutexFree,
  336:     pthreadMutexEnter,
  337:     pthreadMutexTry,
  338:     pthreadMutexLeave,
  339: #ifdef SQLITE_DEBUG
  340:     pthreadMutexHeld,
  341:     pthreadMutexNotheld
  342: #else
  343:     0,
  344:     0
  345: #endif
  346:   };
  347: 
  348:   return &sMutex;
  349: }
  350: 
  351: #endif /* SQLITE_MUTEX_PTHREADS */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>