Annotation of embedaddon/sqlite3/src/os_unix.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2004 May 22
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: ******************************************************************************
                     12: **
                     13: ** This file contains the VFS implementation for unix-like operating systems
                     14: ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
                     15: **
                     16: ** There are actually several different VFS implementations in this file.
                     17: ** The differences are in the way that file locking is done.  The default
                     18: ** implementation uses Posix Advisory Locks.  Alternative implementations
                     19: ** use flock(), dot-files, various proprietary locking schemas, or simply
                     20: ** skip locking all together.
                     21: **
                     22: ** This source file is organized into divisions where the logic for various
                     23: ** subfunctions is contained within the appropriate division.  PLEASE
                     24: ** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
                     25: ** in the correct division and should be clearly labeled.
                     26: **
                     27: ** The layout of divisions is as follows:
                     28: **
                     29: **   *  General-purpose declarations and utility functions.
                     30: **   *  Unique file ID logic used by VxWorks.
                     31: **   *  Various locking primitive implementations (all except proxy locking):
                     32: **      + for Posix Advisory Locks
                     33: **      + for no-op locks
                     34: **      + for dot-file locks
                     35: **      + for flock() locking
                     36: **      + for named semaphore locks (VxWorks only)
                     37: **      + for AFP filesystem locks (MacOSX only)
                     38: **   *  sqlite3_file methods not associated with locking.
                     39: **   *  Definitions of sqlite3_io_methods objects for all locking
                     40: **      methods plus "finder" functions for each locking method.
                     41: **   *  sqlite3_vfs method implementations.
                     42: **   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
                     43: **   *  Definitions of sqlite3_vfs objects for all locking methods
                     44: **      plus implementations of sqlite3_os_init() and sqlite3_os_end().
                     45: */
                     46: #include "sqliteInt.h"
                     47: #if SQLITE_OS_UNIX              /* This file is used on unix only */
                     48: 
                     49: /*
                     50: ** There are various methods for file locking used for concurrency
                     51: ** control:
                     52: **
                     53: **   1. POSIX locking (the default),
                     54: **   2. No locking,
                     55: **   3. Dot-file locking,
                     56: **   4. flock() locking,
                     57: **   5. AFP locking (OSX only),
                     58: **   6. Named POSIX semaphores (VXWorks only),
                     59: **   7. proxy locking. (OSX only)
                     60: **
                     61: ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
                     62: ** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
                     63: ** selection of the appropriate locking style based on the filesystem
                     64: ** where the database is located.  
                     65: */
                     66: #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
                     67: #  if defined(__APPLE__)
                     68: #    define SQLITE_ENABLE_LOCKING_STYLE 1
                     69: #  else
                     70: #    define SQLITE_ENABLE_LOCKING_STYLE 0
                     71: #  endif
                     72: #endif
                     73: 
                     74: /*
                     75: ** Define the OS_VXWORKS pre-processor macro to 1 if building on 
                     76: ** vxworks, or 0 otherwise.
                     77: */
                     78: #ifndef OS_VXWORKS
                     79: #  if defined(__RTP__) || defined(_WRS_KERNEL)
                     80: #    define OS_VXWORKS 1
                     81: #  else
                     82: #    define OS_VXWORKS 0
                     83: #  endif
                     84: #endif
                     85: 
                     86: /*
                     87: ** These #defines should enable >2GB file support on Posix if the
                     88: ** underlying operating system supports it.  If the OS lacks
                     89: ** large file support, these should be no-ops.
                     90: **
                     91: ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
                     92: ** on the compiler command line.  This is necessary if you are compiling
                     93: ** on a recent machine (ex: RedHat 7.2) but you want your code to work
                     94: ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
                     95: ** without this option, LFS is enable.  But LFS does not exist in the kernel
                     96: ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
                     97: ** portability you should omit LFS.
                     98: **
                     99: ** The previous paragraph was written in 2005.  (This paragraph is written
                    100: ** on 2008-11-28.) These days, all Linux kernels support large files, so
                    101: ** you should probably leave LFS enabled.  But some embedded platforms might
                    102: ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
                    103: */
                    104: #ifndef SQLITE_DISABLE_LFS
                    105: # define _LARGE_FILE       1
                    106: # ifndef _FILE_OFFSET_BITS
                    107: #   define _FILE_OFFSET_BITS 64
                    108: # endif
                    109: # define _LARGEFILE_SOURCE 1
                    110: #endif
                    111: 
                    112: /*
                    113: ** standard include files.
                    114: */
                    115: #include <sys/types.h>
                    116: #include <sys/stat.h>
                    117: #include <fcntl.h>
                    118: #include <unistd.h>
                    119: #include <time.h>
                    120: #include <sys/time.h>
                    121: #include <errno.h>
                    122: #ifndef SQLITE_OMIT_WAL
                    123: #include <sys/mman.h>
                    124: #endif
                    125: 
                    126: 
                    127: #if SQLITE_ENABLE_LOCKING_STYLE
                    128: # include <sys/ioctl.h>
                    129: # if OS_VXWORKS
                    130: #  include <semaphore.h>
                    131: #  include <limits.h>
                    132: # else
                    133: #  include <sys/file.h>
                    134: #  include <sys/param.h>
                    135: # endif
                    136: #endif /* SQLITE_ENABLE_LOCKING_STYLE */
                    137: 
                    138: #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
                    139: # include <sys/mount.h>
                    140: #endif
                    141: 
                    142: #ifdef HAVE_UTIME
                    143: # include <utime.h>
                    144: #endif
                    145: 
                    146: /*
                    147: ** Allowed values of unixFile.fsFlags
                    148: */
                    149: #define SQLITE_FSFLAGS_IS_MSDOS     0x1
                    150: 
                    151: /*
                    152: ** If we are to be thread-safe, include the pthreads header and define
                    153: ** the SQLITE_UNIX_THREADS macro.
                    154: */
                    155: #if SQLITE_THREADSAFE
                    156: # include <pthread.h>
                    157: # define SQLITE_UNIX_THREADS 1
                    158: #endif
                    159: 
                    160: /*
                    161: ** Default permissions when creating a new file
                    162: */
                    163: #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
                    164: # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
                    165: #endif
                    166: 
                    167: /*
                    168:  ** Default permissions when creating auto proxy dir
                    169:  */
                    170: #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
                    171: # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
                    172: #endif
                    173: 
                    174: /*
                    175: ** Maximum supported path-length.
                    176: */
                    177: #define MAX_PATHNAME 512
                    178: 
                    179: /*
                    180: ** Only set the lastErrno if the error code is a real error and not 
                    181: ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
                    182: */
                    183: #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
                    184: 
                    185: /* Forward references */
                    186: typedef struct unixShm unixShm;               /* Connection shared memory */
                    187: typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
                    188: typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
                    189: typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
                    190: 
                    191: /*
                    192: ** Sometimes, after a file handle is closed by SQLite, the file descriptor
                    193: ** cannot be closed immediately. In these cases, instances of the following
                    194: ** structure are used to store the file descriptor while waiting for an
                    195: ** opportunity to either close or reuse it.
                    196: */
                    197: struct UnixUnusedFd {
                    198:   int fd;                   /* File descriptor to close */
                    199:   int flags;                /* Flags this file descriptor was opened with */
                    200:   UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
                    201: };
                    202: 
                    203: /*
                    204: ** The unixFile structure is subclass of sqlite3_file specific to the unix
                    205: ** VFS implementations.
                    206: */
                    207: typedef struct unixFile unixFile;
                    208: struct unixFile {
                    209:   sqlite3_io_methods const *pMethod;  /* Always the first entry */
                    210:   sqlite3_vfs *pVfs;                  /* The VFS that created this unixFile */
                    211:   unixInodeInfo *pInode;              /* Info about locks on this inode */
                    212:   int h;                              /* The file descriptor */
                    213:   unsigned char eFileLock;            /* The type of lock held on this fd */
                    214:   unsigned char ctrlFlags;            /* Behavioral bits.  UNIXFILE_* flags */
                    215:   int lastErrno;                      /* The unix errno from last I/O error */
                    216:   void *lockingContext;               /* Locking style specific state */
                    217:   UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
                    218:   const char *zPath;                  /* Name of the file */
                    219:   unixShm *pShm;                      /* Shared memory segment information */
                    220:   int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
                    221: #if SQLITE_ENABLE_LOCKING_STYLE
                    222:   int openFlags;                      /* The flags specified at open() */
                    223: #endif
                    224: #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
                    225:   unsigned fsFlags;                   /* cached details from statfs() */
                    226: #endif
                    227: #if OS_VXWORKS
                    228:   struct vxworksFileId *pId;          /* Unique file ID */
                    229: #endif
                    230: #ifndef NDEBUG
                    231:   /* The next group of variables are used to track whether or not the
                    232:   ** transaction counter in bytes 24-27 of database files are updated
                    233:   ** whenever any part of the database changes.  An assertion fault will
                    234:   ** occur if a file is updated without also updating the transaction
                    235:   ** counter.  This test is made to avoid new problems similar to the
                    236:   ** one described by ticket #3584. 
                    237:   */
                    238:   unsigned char transCntrChng;   /* True if the transaction counter changed */
                    239:   unsigned char dbUpdate;        /* True if any part of database file changed */
                    240:   unsigned char inNormalWrite;   /* True if in a normal write operation */
                    241: #endif
                    242: #ifdef SQLITE_TEST
                    243:   /* In test mode, increase the size of this structure a bit so that 
                    244:   ** it is larger than the struct CrashFile defined in test6.c.
                    245:   */
                    246:   char aPadding[32];
                    247: #endif
                    248: };
                    249: 
                    250: /*
                    251: ** Allowed values for the unixFile.ctrlFlags bitmask:
                    252: */
                    253: #define UNIXFILE_EXCL        0x01     /* Connections from one process only */
                    254: #define UNIXFILE_RDONLY      0x02     /* Connection is read only */
                    255: #define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
                    256: #ifndef SQLITE_DISABLE_DIRSYNC
                    257: # define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
                    258: #else
                    259: # define UNIXFILE_DIRSYNC    0x00
                    260: #endif
                    261: #define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
                    262: #define UNIXFILE_DELETE      0x20     /* Delete on close */
                    263: #define UNIXFILE_URI         0x40     /* Filename might have query parameters */
                    264: #define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
                    265: 
                    266: /*
                    267: ** Include code that is common to all os_*.c files
                    268: */
                    269: #include "os_common.h"
                    270: 
                    271: /*
                    272: ** Define various macros that are missing from some systems.
                    273: */
                    274: #ifndef O_LARGEFILE
                    275: # define O_LARGEFILE 0
                    276: #endif
                    277: #ifdef SQLITE_DISABLE_LFS
                    278: # undef O_LARGEFILE
                    279: # define O_LARGEFILE 0
                    280: #endif
                    281: #ifndef O_NOFOLLOW
                    282: # define O_NOFOLLOW 0
                    283: #endif
                    284: #ifndef O_BINARY
                    285: # define O_BINARY 0
                    286: #endif
                    287: 
                    288: /*
                    289: ** The threadid macro resolves to the thread-id or to 0.  Used for
                    290: ** testing and debugging only.
                    291: */
                    292: #if SQLITE_THREADSAFE
                    293: #define threadid pthread_self()
                    294: #else
                    295: #define threadid 0
                    296: #endif
                    297: 
                    298: /*
                    299: ** Different Unix systems declare open() in different ways.  Same use
                    300: ** open(const char*,int,mode_t).  Others use open(const char*,int,...).
                    301: ** The difference is important when using a pointer to the function.
                    302: **
                    303: ** The safest way to deal with the problem is to always use this wrapper
                    304: ** which always has the same well-defined interface.
                    305: */
                    306: static int posixOpen(const char *zFile, int flags, int mode){
                    307:   return open(zFile, flags, mode);
                    308: }
                    309: 
                    310: /* Forward reference */
                    311: static int openDirectory(const char*, int*);
                    312: 
                    313: /*
                    314: ** Many system calls are accessed through pointer-to-functions so that
                    315: ** they may be overridden at runtime to facilitate fault injection during
                    316: ** testing and sandboxing.  The following array holds the names and pointers
                    317: ** to all overrideable system calls.
                    318: */
                    319: static struct unix_syscall {
                    320:   const char *zName;            /* Name of the sytem call */
                    321:   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
                    322:   sqlite3_syscall_ptr pDefault; /* Default value */
                    323: } aSyscall[] = {
                    324:   { "open",         (sqlite3_syscall_ptr)posixOpen,  0  },
                    325: #define osOpen      ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
                    326: 
                    327:   { "close",        (sqlite3_syscall_ptr)close,      0  },
                    328: #define osClose     ((int(*)(int))aSyscall[1].pCurrent)
                    329: 
                    330:   { "access",       (sqlite3_syscall_ptr)access,     0  },
                    331: #define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
                    332: 
                    333:   { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
                    334: #define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
                    335: 
                    336:   { "stat",         (sqlite3_syscall_ptr)stat,       0  },
                    337: #define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
                    338: 
                    339: /*
                    340: ** The DJGPP compiler environment looks mostly like Unix, but it
                    341: ** lacks the fcntl() system call.  So redefine fcntl() to be something
                    342: ** that always succeeds.  This means that locking does not occur under
                    343: ** DJGPP.  But it is DOS - what did you expect?
                    344: */
                    345: #ifdef __DJGPP__
                    346:   { "fstat",        0,                 0  },
                    347: #define osFstat(a,b,c)    0
                    348: #else     
                    349:   { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
                    350: #define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
                    351: #endif
                    352: 
                    353:   { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
                    354: #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
                    355: 
                    356:   { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
                    357: #define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
                    358: 
                    359:   { "read",         (sqlite3_syscall_ptr)read,       0  },
                    360: #define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
                    361: 
                    362: #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
                    363:   { "pread",        (sqlite3_syscall_ptr)pread,      0  },
                    364: #else
                    365:   { "pread",        (sqlite3_syscall_ptr)0,          0  },
                    366: #endif
                    367: #define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
                    368: 
                    369: #if defined(USE_PREAD64)
                    370:   { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
                    371: #else
                    372:   { "pread64",      (sqlite3_syscall_ptr)0,          0  },
                    373: #endif
                    374: #define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
                    375: 
                    376:   { "write",        (sqlite3_syscall_ptr)write,      0  },
                    377: #define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
                    378: 
                    379: #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
                    380:   { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
                    381: #else
                    382:   { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
                    383: #endif
                    384: #define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
                    385:                     aSyscall[12].pCurrent)
                    386: 
                    387: #if defined(USE_PREAD64)
                    388:   { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
                    389: #else
                    390:   { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
                    391: #endif
                    392: #define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    393:                     aSyscall[13].pCurrent)
                    394: 
                    395: #if SQLITE_ENABLE_LOCKING_STYLE
                    396:   { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
                    397: #else
                    398:   { "fchmod",       (sqlite3_syscall_ptr)0,          0  },
                    399: #endif
                    400: #define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
                    401: 
                    402: #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
                    403:   { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
                    404: #else
                    405:   { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
                    406: #endif
                    407: #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
                    408: 
                    409:   { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
                    410: #define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
                    411: 
                    412:   { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
                    413: #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
                    414: 
                    415:   { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
                    416: #define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
                    417: 
                    418:   { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
                    419: #define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)
                    420: 
                    421: }; /* End of the overrideable system calls */
                    422: 
                    423: /*
                    424: ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
                    425: ** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
                    426: ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
                    427: ** system call named zName.
                    428: */
                    429: static int unixSetSystemCall(
                    430:   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
                    431:   const char *zName,            /* Name of system call to override */
                    432:   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
                    433: ){
                    434:   unsigned int i;
                    435:   int rc = SQLITE_NOTFOUND;
                    436: 
                    437:   UNUSED_PARAMETER(pNotUsed);
                    438:   if( zName==0 ){
                    439:     /* If no zName is given, restore all system calls to their default
                    440:     ** settings and return NULL
                    441:     */
                    442:     rc = SQLITE_OK;
                    443:     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
                    444:       if( aSyscall[i].pDefault ){
                    445:         aSyscall[i].pCurrent = aSyscall[i].pDefault;
                    446:       }
                    447:     }
                    448:   }else{
                    449:     /* If zName is specified, operate on only the one system call
                    450:     ** specified.
                    451:     */
                    452:     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
                    453:       if( strcmp(zName, aSyscall[i].zName)==0 ){
                    454:         if( aSyscall[i].pDefault==0 ){
                    455:           aSyscall[i].pDefault = aSyscall[i].pCurrent;
                    456:         }
                    457:         rc = SQLITE_OK;
                    458:         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
                    459:         aSyscall[i].pCurrent = pNewFunc;
                    460:         break;
                    461:       }
                    462:     }
                    463:   }
                    464:   return rc;
                    465: }
                    466: 
                    467: /*
                    468: ** Return the value of a system call.  Return NULL if zName is not a
                    469: ** recognized system call name.  NULL is also returned if the system call
                    470: ** is currently undefined.
                    471: */
                    472: static sqlite3_syscall_ptr unixGetSystemCall(
                    473:   sqlite3_vfs *pNotUsed,
                    474:   const char *zName
                    475: ){
                    476:   unsigned int i;
                    477: 
                    478:   UNUSED_PARAMETER(pNotUsed);
                    479:   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
                    480:     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
                    481:   }
                    482:   return 0;
                    483: }
                    484: 
                    485: /*
                    486: ** Return the name of the first system call after zName.  If zName==NULL
                    487: ** then return the name of the first system call.  Return NULL if zName
                    488: ** is the last system call or if zName is not the name of a valid
                    489: ** system call.
                    490: */
                    491: static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
                    492:   int i = -1;
                    493: 
                    494:   UNUSED_PARAMETER(p);
                    495:   if( zName ){
                    496:     for(i=0; i<ArraySize(aSyscall)-1; i++){
                    497:       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
                    498:     }
                    499:   }
                    500:   for(i++; i<ArraySize(aSyscall); i++){
                    501:     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
                    502:   }
                    503:   return 0;
                    504: }
                    505: 
                    506: /*
                    507: ** Retry open() calls that fail due to EINTR
                    508: */
                    509: static int robust_open(const char *z, int f, int m){
                    510:   int rc;
                    511:   do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
                    512:   return rc;
                    513: }
                    514: 
                    515: /*
                    516: ** Helper functions to obtain and relinquish the global mutex. The
                    517: ** global mutex is used to protect the unixInodeInfo and
                    518: ** vxworksFileId objects used by this file, all of which may be 
                    519: ** shared by multiple threads.
                    520: **
                    521: ** Function unixMutexHeld() is used to assert() that the global mutex 
                    522: ** is held when required. This function is only used as part of assert() 
                    523: ** statements. e.g.
                    524: **
                    525: **   unixEnterMutex()
                    526: **     assert( unixMutexHeld() );
                    527: **   unixEnterLeave()
                    528: */
                    529: static void unixEnterMutex(void){
                    530:   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
                    531: }
                    532: static void unixLeaveMutex(void){
                    533:   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
                    534: }
                    535: #ifdef SQLITE_DEBUG
                    536: static int unixMutexHeld(void) {
                    537:   return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
                    538: }
                    539: #endif
                    540: 
                    541: 
                    542: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
                    543: /*
                    544: ** Helper function for printing out trace information from debugging
                    545: ** binaries. This returns the string represetation of the supplied
                    546: ** integer lock-type.
                    547: */
                    548: static const char *azFileLock(int eFileLock){
                    549:   switch( eFileLock ){
                    550:     case NO_LOCK: return "NONE";
                    551:     case SHARED_LOCK: return "SHARED";
                    552:     case RESERVED_LOCK: return "RESERVED";
                    553:     case PENDING_LOCK: return "PENDING";
                    554:     case EXCLUSIVE_LOCK: return "EXCLUSIVE";
                    555:   }
                    556:   return "ERROR";
                    557: }
                    558: #endif
                    559: 
                    560: #ifdef SQLITE_LOCK_TRACE
                    561: /*
                    562: ** Print out information about all locking operations.
                    563: **
                    564: ** This routine is used for troubleshooting locks on multithreaded
                    565: ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
                    566: ** command-line option on the compiler.  This code is normally
                    567: ** turned off.
                    568: */
                    569: static int lockTrace(int fd, int op, struct flock *p){
                    570:   char *zOpName, *zType;
                    571:   int s;
                    572:   int savedErrno;
                    573:   if( op==F_GETLK ){
                    574:     zOpName = "GETLK";
                    575:   }else if( op==F_SETLK ){
                    576:     zOpName = "SETLK";
                    577:   }else{
                    578:     s = osFcntl(fd, op, p);
                    579:     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
                    580:     return s;
                    581:   }
                    582:   if( p->l_type==F_RDLCK ){
                    583:     zType = "RDLCK";
                    584:   }else if( p->l_type==F_WRLCK ){
                    585:     zType = "WRLCK";
                    586:   }else if( p->l_type==F_UNLCK ){
                    587:     zType = "UNLCK";
                    588:   }else{
                    589:     assert( 0 );
                    590:   }
                    591:   assert( p->l_whence==SEEK_SET );
                    592:   s = osFcntl(fd, op, p);
                    593:   savedErrno = errno;
                    594:   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
                    595:      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
                    596:      (int)p->l_pid, s);
                    597:   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
                    598:     struct flock l2;
                    599:     l2 = *p;
                    600:     osFcntl(fd, F_GETLK, &l2);
                    601:     if( l2.l_type==F_RDLCK ){
                    602:       zType = "RDLCK";
                    603:     }else if( l2.l_type==F_WRLCK ){
                    604:       zType = "WRLCK";
                    605:     }else if( l2.l_type==F_UNLCK ){
                    606:       zType = "UNLCK";
                    607:     }else{
                    608:       assert( 0 );
                    609:     }
                    610:     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
                    611:        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
                    612:   }
                    613:   errno = savedErrno;
                    614:   return s;
                    615: }
                    616: #undef osFcntl
                    617: #define osFcntl lockTrace
                    618: #endif /* SQLITE_LOCK_TRACE */
                    619: 
                    620: /*
                    621: ** Retry ftruncate() calls that fail due to EINTR
                    622: */
                    623: static int robust_ftruncate(int h, sqlite3_int64 sz){
                    624:   int rc;
                    625:   do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
                    626:   return rc;
                    627: }
                    628: 
                    629: /*
                    630: ** This routine translates a standard POSIX errno code into something
                    631: ** useful to the clients of the sqlite3 functions.  Specifically, it is
                    632: ** intended to translate a variety of "try again" errors into SQLITE_BUSY
                    633: ** and a variety of "please close the file descriptor NOW" errors into 
                    634: ** SQLITE_IOERR
                    635: ** 
                    636: ** Errors during initialization of locks, or file system support for locks,
                    637: ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
                    638: */
                    639: static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
                    640:   switch (posixError) {
                    641: #if 0
                    642:   /* At one point this code was not commented out. In theory, this branch
                    643:   ** should never be hit, as this function should only be called after
                    644:   ** a locking-related function (i.e. fcntl()) has returned non-zero with
                    645:   ** the value of errno as the first argument. Since a system call has failed,
                    646:   ** errno should be non-zero.
                    647:   **
                    648:   ** Despite this, if errno really is zero, we still don't want to return
                    649:   ** SQLITE_OK. The system call failed, and *some* SQLite error should be
                    650:   ** propagated back to the caller. Commenting this branch out means errno==0
                    651:   ** will be handled by the "default:" case below.
                    652:   */
                    653:   case 0: 
                    654:     return SQLITE_OK;
                    655: #endif
                    656: 
                    657:   case EAGAIN:
                    658:   case ETIMEDOUT:
                    659:   case EBUSY:
                    660:   case EINTR:
                    661:   case ENOLCK:  
                    662:     /* random NFS retry error, unless during file system support 
                    663:      * introspection, in which it actually means what it says */
                    664:     return SQLITE_BUSY;
                    665:     
                    666:   case EACCES: 
                    667:     /* EACCES is like EAGAIN during locking operations, but not any other time*/
                    668:     if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
                    669:        (sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
                    670:        (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
                    671:        (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
                    672:       return SQLITE_BUSY;
                    673:     }
                    674:     /* else fall through */
                    675:   case EPERM: 
                    676:     return SQLITE_PERM;
                    677:     
                    678:   /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
                    679:   ** this module never makes such a call. And the code in SQLite itself 
                    680:   ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
                    681:   ** this case is also commented out. If the system does set errno to EDEADLK,
                    682:   ** the default SQLITE_IOERR_XXX code will be returned. */
                    683: #if 0
                    684:   case EDEADLK:
                    685:     return SQLITE_IOERR_BLOCKED;
                    686: #endif
                    687:     
                    688: #if EOPNOTSUPP!=ENOTSUP
                    689:   case EOPNOTSUPP: 
                    690:     /* something went terribly awry, unless during file system support 
                    691:      * introspection, in which it actually means what it says */
                    692: #endif
                    693: #ifdef ENOTSUP
                    694:   case ENOTSUP: 
                    695:     /* invalid fd, unless during file system support introspection, in which 
                    696:      * it actually means what it says */
                    697: #endif
                    698:   case EIO:
                    699:   case EBADF:
                    700:   case EINVAL:
                    701:   case ENOTCONN:
                    702:   case ENODEV:
                    703:   case ENXIO:
                    704:   case ENOENT:
                    705: #ifdef ESTALE                     /* ESTALE is not defined on Interix systems */
                    706:   case ESTALE:
                    707: #endif
                    708:   case ENOSYS:
                    709:     /* these should force the client to close the file and reconnect */
                    710:     
                    711:   default: 
                    712:     return sqliteIOErr;
                    713:   }
                    714: }
                    715: 
                    716: 
                    717: 
                    718: /******************************************************************************
                    719: ****************** Begin Unique File ID Utility Used By VxWorks ***************
                    720: **
                    721: ** On most versions of unix, we can get a unique ID for a file by concatenating
                    722: ** the device number and the inode number.  But this does not work on VxWorks.
                    723: ** On VxWorks, a unique file id must be based on the canonical filename.
                    724: **
                    725: ** A pointer to an instance of the following structure can be used as a
                    726: ** unique file ID in VxWorks.  Each instance of this structure contains
                    727: ** a copy of the canonical filename.  There is also a reference count.  
                    728: ** The structure is reclaimed when the number of pointers to it drops to
                    729: ** zero.
                    730: **
                    731: ** There are never very many files open at one time and lookups are not
                    732: ** a performance-critical path, so it is sufficient to put these
                    733: ** structures on a linked list.
                    734: */
                    735: struct vxworksFileId {
                    736:   struct vxworksFileId *pNext;  /* Next in a list of them all */
                    737:   int nRef;                     /* Number of references to this one */
                    738:   int nName;                    /* Length of the zCanonicalName[] string */
                    739:   char *zCanonicalName;         /* Canonical filename */
                    740: };
                    741: 
                    742: #if OS_VXWORKS
                    743: /* 
                    744: ** All unique filenames are held on a linked list headed by this
                    745: ** variable:
                    746: */
                    747: static struct vxworksFileId *vxworksFileList = 0;
                    748: 
                    749: /*
                    750: ** Simplify a filename into its canonical form
                    751: ** by making the following changes:
                    752: **
                    753: **  * removing any trailing and duplicate /
                    754: **  * convert /./ into just /
                    755: **  * convert /A/../ where A is any simple name into just /
                    756: **
                    757: ** Changes are made in-place.  Return the new name length.
                    758: **
                    759: ** The original filename is in z[0..n-1].  Return the number of
                    760: ** characters in the simplified name.
                    761: */
                    762: static int vxworksSimplifyName(char *z, int n){
                    763:   int i, j;
                    764:   while( n>1 && z[n-1]=='/' ){ n--; }
                    765:   for(i=j=0; i<n; i++){
                    766:     if( z[i]=='/' ){
                    767:       if( z[i+1]=='/' ) continue;
                    768:       if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
                    769:         i += 1;
                    770:         continue;
                    771:       }
                    772:       if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
                    773:         while( j>0 && z[j-1]!='/' ){ j--; }
                    774:         if( j>0 ){ j--; }
                    775:         i += 2;
                    776:         continue;
                    777:       }
                    778:     }
                    779:     z[j++] = z[i];
                    780:   }
                    781:   z[j] = 0;
                    782:   return j;
                    783: }
                    784: 
                    785: /*
                    786: ** Find a unique file ID for the given absolute pathname.  Return
                    787: ** a pointer to the vxworksFileId object.  This pointer is the unique
                    788: ** file ID.
                    789: **
                    790: ** The nRef field of the vxworksFileId object is incremented before
                    791: ** the object is returned.  A new vxworksFileId object is created
                    792: ** and added to the global list if necessary.
                    793: **
                    794: ** If a memory allocation error occurs, return NULL.
                    795: */
                    796: static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
                    797:   struct vxworksFileId *pNew;         /* search key and new file ID */
                    798:   struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
                    799:   int n;                              /* Length of zAbsoluteName string */
                    800: 
                    801:   assert( zAbsoluteName[0]=='/' );
                    802:   n = (int)strlen(zAbsoluteName);
                    803:   pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
                    804:   if( pNew==0 ) return 0;
                    805:   pNew->zCanonicalName = (char*)&pNew[1];
                    806:   memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
                    807:   n = vxworksSimplifyName(pNew->zCanonicalName, n);
                    808: 
                    809:   /* Search for an existing entry that matching the canonical name.
                    810:   ** If found, increment the reference count and return a pointer to
                    811:   ** the existing file ID.
                    812:   */
                    813:   unixEnterMutex();
                    814:   for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
                    815:     if( pCandidate->nName==n 
                    816:      && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
                    817:     ){
                    818:        sqlite3_free(pNew);
                    819:        pCandidate->nRef++;
                    820:        unixLeaveMutex();
                    821:        return pCandidate;
                    822:     }
                    823:   }
                    824: 
                    825:   /* No match was found.  We will make a new file ID */
                    826:   pNew->nRef = 1;
                    827:   pNew->nName = n;
                    828:   pNew->pNext = vxworksFileList;
                    829:   vxworksFileList = pNew;
                    830:   unixLeaveMutex();
                    831:   return pNew;
                    832: }
                    833: 
                    834: /*
                    835: ** Decrement the reference count on a vxworksFileId object.  Free
                    836: ** the object when the reference count reaches zero.
                    837: */
                    838: static void vxworksReleaseFileId(struct vxworksFileId *pId){
                    839:   unixEnterMutex();
                    840:   assert( pId->nRef>0 );
                    841:   pId->nRef--;
                    842:   if( pId->nRef==0 ){
                    843:     struct vxworksFileId **pp;
                    844:     for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
                    845:     assert( *pp==pId );
                    846:     *pp = pId->pNext;
                    847:     sqlite3_free(pId);
                    848:   }
                    849:   unixLeaveMutex();
                    850: }
                    851: #endif /* OS_VXWORKS */
                    852: /*************** End of Unique File ID Utility Used By VxWorks ****************
                    853: ******************************************************************************/
                    854: 
                    855: 
                    856: /******************************************************************************
                    857: *************************** Posix Advisory Locking ****************************
                    858: **
                    859: ** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
                    860: ** section 6.5.2.2 lines 483 through 490 specify that when a process
                    861: ** sets or clears a lock, that operation overrides any prior locks set
                    862: ** by the same process.  It does not explicitly say so, but this implies
                    863: ** that it overrides locks set by the same process using a different
                    864: ** file descriptor.  Consider this test case:
                    865: **
                    866: **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
                    867: **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
                    868: **
                    869: ** Suppose ./file1 and ./file2 are really the same file (because
                    870: ** one is a hard or symbolic link to the other) then if you set
                    871: ** an exclusive lock on fd1, then try to get an exclusive lock
                    872: ** on fd2, it works.  I would have expected the second lock to
                    873: ** fail since there was already a lock on the file due to fd1.
                    874: ** But not so.  Since both locks came from the same process, the
                    875: ** second overrides the first, even though they were on different
                    876: ** file descriptors opened on different file names.
                    877: **
                    878: ** This means that we cannot use POSIX locks to synchronize file access
                    879: ** among competing threads of the same process.  POSIX locks will work fine
                    880: ** to synchronize access for threads in separate processes, but not
                    881: ** threads within the same process.
                    882: **
                    883: ** To work around the problem, SQLite has to manage file locks internally
                    884: ** on its own.  Whenever a new database is opened, we have to find the
                    885: ** specific inode of the database file (the inode is determined by the
                    886: ** st_dev and st_ino fields of the stat structure that fstat() fills in)
                    887: ** and check for locks already existing on that inode.  When locks are
                    888: ** created or removed, we have to look at our own internal record of the
                    889: ** locks to see if another thread has previously set a lock on that same
                    890: ** inode.
                    891: **
                    892: ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
                    893: ** For VxWorks, we have to use the alternative unique ID system based on
                    894: ** canonical filename and implemented in the previous division.)
                    895: **
                    896: ** The sqlite3_file structure for POSIX is no longer just an integer file
                    897: ** descriptor.  It is now a structure that holds the integer file
                    898: ** descriptor and a pointer to a structure that describes the internal
                    899: ** locks on the corresponding inode.  There is one locking structure
                    900: ** per inode, so if the same inode is opened twice, both unixFile structures
                    901: ** point to the same locking structure.  The locking structure keeps
                    902: ** a reference count (so we will know when to delete it) and a "cnt"
                    903: ** field that tells us its internal lock status.  cnt==0 means the
                    904: ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
                    905: ** cnt>0 means there are cnt shared locks on the file.
                    906: **
                    907: ** Any attempt to lock or unlock a file first checks the locking
                    908: ** structure.  The fcntl() system call is only invoked to set a 
                    909: ** POSIX lock if the internal lock structure transitions between
                    910: ** a locked and an unlocked state.
                    911: **
                    912: ** But wait:  there are yet more problems with POSIX advisory locks.
                    913: **
                    914: ** If you close a file descriptor that points to a file that has locks,
                    915: ** all locks on that file that are owned by the current process are
                    916: ** released.  To work around this problem, each unixInodeInfo object
                    917: ** maintains a count of the number of pending locks on tha inode.
                    918: ** When an attempt is made to close an unixFile, if there are
                    919: ** other unixFile open on the same inode that are holding locks, the call
                    920: ** to close() the file descriptor is deferred until all of the locks clear.
                    921: ** The unixInodeInfo structure keeps a list of file descriptors that need to
                    922: ** be closed and that list is walked (and cleared) when the last lock
                    923: ** clears.
                    924: **
                    925: ** Yet another problem:  LinuxThreads do not play well with posix locks.
                    926: **
                    927: ** Many older versions of linux use the LinuxThreads library which is
                    928: ** not posix compliant.  Under LinuxThreads, a lock created by thread
                    929: ** A cannot be modified or overridden by a different thread B.
                    930: ** Only thread A can modify the lock.  Locking behavior is correct
                    931: ** if the appliation uses the newer Native Posix Thread Library (NPTL)
                    932: ** on linux - with NPTL a lock created by thread A can override locks
                    933: ** in thread B.  But there is no way to know at compile-time which
                    934: ** threading library is being used.  So there is no way to know at
                    935: ** compile-time whether or not thread A can override locks on thread B.
                    936: ** One has to do a run-time check to discover the behavior of the
                    937: ** current process.
                    938: **
                    939: ** SQLite used to support LinuxThreads.  But support for LinuxThreads
                    940: ** was dropped beginning with version 3.7.0.  SQLite will still work with
                    941: ** LinuxThreads provided that (1) there is no more than one connection 
                    942: ** per database file in the same process and (2) database connections
                    943: ** do not move across threads.
                    944: */
                    945: 
                    946: /*
                    947: ** An instance of the following structure serves as the key used
                    948: ** to locate a particular unixInodeInfo object.
                    949: */
                    950: struct unixFileId {
                    951:   dev_t dev;                  /* Device number */
                    952: #if OS_VXWORKS
                    953:   struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
                    954: #else
                    955:   ino_t ino;                  /* Inode number */
                    956: #endif
                    957: };
                    958: 
                    959: /*
                    960: ** An instance of the following structure is allocated for each open
                    961: ** inode.  Or, on LinuxThreads, there is one of these structures for
                    962: ** each inode opened by each thread.
                    963: **
                    964: ** A single inode can have multiple file descriptors, so each unixFile
                    965: ** structure contains a pointer to an instance of this object and this
                    966: ** object keeps a count of the number of unixFile pointing to it.
                    967: */
                    968: struct unixInodeInfo {
                    969:   struct unixFileId fileId;       /* The lookup key */
                    970:   int nShared;                    /* Number of SHARED locks held */
                    971:   unsigned char eFileLock;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
                    972:   unsigned char bProcessLock;     /* An exclusive process lock is held */
                    973:   int nRef;                       /* Number of pointers to this structure */
                    974:   unixShmNode *pShmNode;          /* Shared memory associated with this inode */
                    975:   int nLock;                      /* Number of outstanding file locks */
                    976:   UnixUnusedFd *pUnused;          /* Unused file descriptors to close */
                    977:   unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
                    978:   unixInodeInfo *pPrev;           /*    .... doubly linked */
                    979: #if SQLITE_ENABLE_LOCKING_STYLE
                    980:   unsigned long long sharedByte;  /* for AFP simulated shared lock */
                    981: #endif
                    982: #if OS_VXWORKS
                    983:   sem_t *pSem;                    /* Named POSIX semaphore */
                    984:   char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
                    985: #endif
                    986: };
                    987: 
                    988: /*
                    989: ** A lists of all unixInodeInfo objects.
                    990: */
                    991: static unixInodeInfo *inodeList = 0;
                    992: 
                    993: /*
                    994: **
                    995: ** This function - unixLogError_x(), is only ever called via the macro
                    996: ** unixLogError().
                    997: **
                    998: ** It is invoked after an error occurs in an OS function and errno has been
                    999: ** set. It logs a message using sqlite3_log() containing the current value of
                   1000: ** errno and, if possible, the human-readable equivalent from strerror() or
                   1001: ** strerror_r().
                   1002: **
                   1003: ** The first argument passed to the macro should be the error code that
                   1004: ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 
                   1005: ** The two subsequent arguments should be the name of the OS function that
                   1006: ** failed (e.g. "unlink", "open") and the the associated file-system path,
                   1007: ** if any.
                   1008: */
                   1009: #define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
                   1010: static int unixLogErrorAtLine(
                   1011:   int errcode,                    /* SQLite error code */
                   1012:   const char *zFunc,              /* Name of OS function that failed */
                   1013:   const char *zPath,              /* File path associated with error */
                   1014:   int iLine                       /* Source line number where error occurred */
                   1015: ){
                   1016:   char *zErr;                     /* Message from strerror() or equivalent */
                   1017:   int iErrno = errno;             /* Saved syscall error number */
                   1018: 
                   1019:   /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
                   1020:   ** the strerror() function to obtain the human-readable error message
                   1021:   ** equivalent to errno. Otherwise, use strerror_r().
                   1022:   */ 
                   1023: #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
                   1024:   char aErr[80];
                   1025:   memset(aErr, 0, sizeof(aErr));
                   1026:   zErr = aErr;
                   1027: 
                   1028:   /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
                   1029:   ** assume that the system provides the the GNU version of strerror_r() that 
                   1030:   ** returns a pointer to a buffer containing the error message. That pointer 
                   1031:   ** may point to aErr[], or it may point to some static storage somewhere. 
                   1032:   ** Otherwise, assume that the system provides the POSIX version of 
                   1033:   ** strerror_r(), which always writes an error message into aErr[].
                   1034:   **
                   1035:   ** If the code incorrectly assumes that it is the POSIX version that is
                   1036:   ** available, the error message will often be an empty string. Not a
                   1037:   ** huge problem. Incorrectly concluding that the GNU version is available 
                   1038:   ** could lead to a segfault though.
                   1039:   */
                   1040: #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
                   1041:   zErr = 
                   1042: # endif
                   1043:   strerror_r(iErrno, aErr, sizeof(aErr)-1);
                   1044: 
                   1045: #elif SQLITE_THREADSAFE
                   1046:   /* This is a threadsafe build, but strerror_r() is not available. */
                   1047:   zErr = "";
                   1048: #else
                   1049:   /* Non-threadsafe build, use strerror(). */
                   1050:   zErr = strerror(iErrno);
                   1051: #endif
                   1052: 
                   1053:   assert( errcode!=SQLITE_OK );
                   1054:   if( zPath==0 ) zPath = "";
                   1055:   sqlite3_log(errcode,
                   1056:       "os_unix.c:%d: (%d) %s(%s) - %s",
                   1057:       iLine, iErrno, zFunc, zPath, zErr
                   1058:   );
                   1059: 
                   1060:   return errcode;
                   1061: }
                   1062: 
                   1063: /*
                   1064: ** Close a file descriptor.
                   1065: **
                   1066: ** We assume that close() almost always works, since it is only in a
                   1067: ** very sick application or on a very sick platform that it might fail.
                   1068: ** If it does fail, simply leak the file descriptor, but do log the
                   1069: ** error.
                   1070: **
                   1071: ** Note that it is not safe to retry close() after EINTR since the
                   1072: ** file descriptor might have already been reused by another thread.
                   1073: ** So we don't even try to recover from an EINTR.  Just log the error
                   1074: ** and move on.
                   1075: */
                   1076: static void robust_close(unixFile *pFile, int h, int lineno){
                   1077:   if( osClose(h) ){
                   1078:     unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
                   1079:                        pFile ? pFile->zPath : 0, lineno);
                   1080:   }
                   1081: }
                   1082: 
                   1083: /*
                   1084: ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
                   1085: */ 
                   1086: static void closePendingFds(unixFile *pFile){
                   1087:   unixInodeInfo *pInode = pFile->pInode;
                   1088:   UnixUnusedFd *p;
                   1089:   UnixUnusedFd *pNext;
                   1090:   for(p=pInode->pUnused; p; p=pNext){
                   1091:     pNext = p->pNext;
                   1092:     robust_close(pFile, p->fd, __LINE__);
                   1093:     sqlite3_free(p);
                   1094:   }
                   1095:   pInode->pUnused = 0;
                   1096: }
                   1097: 
                   1098: /*
                   1099: ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
                   1100: **
                   1101: ** The mutex entered using the unixEnterMutex() function must be held
                   1102: ** when this function is called.
                   1103: */
                   1104: static void releaseInodeInfo(unixFile *pFile){
                   1105:   unixInodeInfo *pInode = pFile->pInode;
                   1106:   assert( unixMutexHeld() );
                   1107:   if( ALWAYS(pInode) ){
                   1108:     pInode->nRef--;
                   1109:     if( pInode->nRef==0 ){
                   1110:       assert( pInode->pShmNode==0 );
                   1111:       closePendingFds(pFile);
                   1112:       if( pInode->pPrev ){
                   1113:         assert( pInode->pPrev->pNext==pInode );
                   1114:         pInode->pPrev->pNext = pInode->pNext;
                   1115:       }else{
                   1116:         assert( inodeList==pInode );
                   1117:         inodeList = pInode->pNext;
                   1118:       }
                   1119:       if( pInode->pNext ){
                   1120:         assert( pInode->pNext->pPrev==pInode );
                   1121:         pInode->pNext->pPrev = pInode->pPrev;
                   1122:       }
                   1123:       sqlite3_free(pInode);
                   1124:     }
                   1125:   }
                   1126: }
                   1127: 
                   1128: /*
                   1129: ** Given a file descriptor, locate the unixInodeInfo object that
                   1130: ** describes that file descriptor.  Create a new one if necessary.  The
                   1131: ** return value might be uninitialized if an error occurs.
                   1132: **
                   1133: ** The mutex entered using the unixEnterMutex() function must be held
                   1134: ** when this function is called.
                   1135: **
                   1136: ** Return an appropriate error code.
                   1137: */
                   1138: static int findInodeInfo(
                   1139:   unixFile *pFile,               /* Unix file with file desc used in the key */
                   1140:   unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
                   1141: ){
                   1142:   int rc;                        /* System call return code */
                   1143:   int fd;                        /* The file descriptor for pFile */
                   1144:   struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
                   1145:   struct stat statbuf;           /* Low-level file information */
                   1146:   unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
                   1147: 
                   1148:   assert( unixMutexHeld() );
                   1149: 
                   1150:   /* Get low-level information about the file that we can used to
                   1151:   ** create a unique name for the file.
                   1152:   */
                   1153:   fd = pFile->h;
                   1154:   rc = osFstat(fd, &statbuf);
                   1155:   if( rc!=0 ){
                   1156:     pFile->lastErrno = errno;
                   1157: #ifdef EOVERFLOW
                   1158:     if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
                   1159: #endif
                   1160:     return SQLITE_IOERR;
                   1161:   }
                   1162: 
                   1163: #ifdef __APPLE__
                   1164:   /* On OS X on an msdos filesystem, the inode number is reported
                   1165:   ** incorrectly for zero-size files.  See ticket #3260.  To work
                   1166:   ** around this problem (we consider it a bug in OS X, not SQLite)
                   1167:   ** we always increase the file size to 1 by writing a single byte
                   1168:   ** prior to accessing the inode number.  The one byte written is
                   1169:   ** an ASCII 'S' character which also happens to be the first byte
                   1170:   ** in the header of every SQLite database.  In this way, if there
                   1171:   ** is a race condition such that another thread has already populated
                   1172:   ** the first page of the database, no damage is done.
                   1173:   */
                   1174:   if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
                   1175:     do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
                   1176:     if( rc!=1 ){
                   1177:       pFile->lastErrno = errno;
                   1178:       return SQLITE_IOERR;
                   1179:     }
                   1180:     rc = osFstat(fd, &statbuf);
                   1181:     if( rc!=0 ){
                   1182:       pFile->lastErrno = errno;
                   1183:       return SQLITE_IOERR;
                   1184:     }
                   1185:   }
                   1186: #endif
                   1187: 
                   1188:   memset(&fileId, 0, sizeof(fileId));
                   1189:   fileId.dev = statbuf.st_dev;
                   1190: #if OS_VXWORKS
                   1191:   fileId.pId = pFile->pId;
                   1192: #else
                   1193:   fileId.ino = statbuf.st_ino;
                   1194: #endif
                   1195:   pInode = inodeList;
                   1196:   while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
                   1197:     pInode = pInode->pNext;
                   1198:   }
                   1199:   if( pInode==0 ){
                   1200:     pInode = sqlite3_malloc( sizeof(*pInode) );
                   1201:     if( pInode==0 ){
                   1202:       return SQLITE_NOMEM;
                   1203:     }
                   1204:     memset(pInode, 0, sizeof(*pInode));
                   1205:     memcpy(&pInode->fileId, &fileId, sizeof(fileId));
                   1206:     pInode->nRef = 1;
                   1207:     pInode->pNext = inodeList;
                   1208:     pInode->pPrev = 0;
                   1209:     if( inodeList ) inodeList->pPrev = pInode;
                   1210:     inodeList = pInode;
                   1211:   }else{
                   1212:     pInode->nRef++;
                   1213:   }
                   1214:   *ppInode = pInode;
                   1215:   return SQLITE_OK;
                   1216: }
                   1217: 
                   1218: 
                   1219: /*
                   1220: ** This routine checks if there is a RESERVED lock held on the specified
                   1221: ** file by this or any other process. If such a lock is held, set *pResOut
                   1222: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
                   1223: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
                   1224: */
                   1225: static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
                   1226:   int rc = SQLITE_OK;
                   1227:   int reserved = 0;
                   1228:   unixFile *pFile = (unixFile*)id;
                   1229: 
                   1230:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
                   1231: 
                   1232:   assert( pFile );
                   1233:   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
                   1234: 
                   1235:   /* Check if a thread in this process holds such a lock */
                   1236:   if( pFile->pInode->eFileLock>SHARED_LOCK ){
                   1237:     reserved = 1;
                   1238:   }
                   1239: 
                   1240:   /* Otherwise see if some other process holds it.
                   1241:   */
                   1242: #ifndef __DJGPP__
                   1243:   if( !reserved && !pFile->pInode->bProcessLock ){
                   1244:     struct flock lock;
                   1245:     lock.l_whence = SEEK_SET;
                   1246:     lock.l_start = RESERVED_BYTE;
                   1247:     lock.l_len = 1;
                   1248:     lock.l_type = F_WRLCK;
                   1249:     if( osFcntl(pFile->h, F_GETLK, &lock) ){
                   1250:       rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
                   1251:       pFile->lastErrno = errno;
                   1252:     } else if( lock.l_type!=F_UNLCK ){
                   1253:       reserved = 1;
                   1254:     }
                   1255:   }
                   1256: #endif
                   1257:   
                   1258:   unixLeaveMutex();
                   1259:   OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
                   1260: 
                   1261:   *pResOut = reserved;
                   1262:   return rc;
                   1263: }
                   1264: 
                   1265: /*
                   1266: ** Attempt to set a system-lock on the file pFile.  The lock is 
                   1267: ** described by pLock.
                   1268: **
                   1269: ** If the pFile was opened read/write from unix-excl, then the only lock
                   1270: ** ever obtained is an exclusive lock, and it is obtained exactly once
                   1271: ** the first time any lock is attempted.  All subsequent system locking
                   1272: ** operations become no-ops.  Locking operations still happen internally,
                   1273: ** in order to coordinate access between separate database connections
                   1274: ** within this process, but all of that is handled in memory and the
                   1275: ** operating system does not participate.
                   1276: **
                   1277: ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
                   1278: ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
                   1279: ** and is read-only.
                   1280: **
                   1281: ** Zero is returned if the call completes successfully, or -1 if a call
                   1282: ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
                   1283: */
                   1284: static int unixFileLock(unixFile *pFile, struct flock *pLock){
                   1285:   int rc;
                   1286:   unixInodeInfo *pInode = pFile->pInode;
                   1287:   assert( unixMutexHeld() );
                   1288:   assert( pInode!=0 );
                   1289:   if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
                   1290:    && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
                   1291:   ){
                   1292:     if( pInode->bProcessLock==0 ){
                   1293:       struct flock lock;
                   1294:       assert( pInode->nLock==0 );
                   1295:       lock.l_whence = SEEK_SET;
                   1296:       lock.l_start = SHARED_FIRST;
                   1297:       lock.l_len = SHARED_SIZE;
                   1298:       lock.l_type = F_WRLCK;
                   1299:       rc = osFcntl(pFile->h, F_SETLK, &lock);
                   1300:       if( rc<0 ) return rc;
                   1301:       pInode->bProcessLock = 1;
                   1302:       pInode->nLock++;
                   1303:     }else{
                   1304:       rc = 0;
                   1305:     }
                   1306:   }else{
                   1307:     rc = osFcntl(pFile->h, F_SETLK, pLock);
                   1308:   }
                   1309:   return rc;
                   1310: }
                   1311: 
                   1312: /*
                   1313: ** Lock the file with the lock specified by parameter eFileLock - one
                   1314: ** of the following:
                   1315: **
                   1316: **     (1) SHARED_LOCK
                   1317: **     (2) RESERVED_LOCK
                   1318: **     (3) PENDING_LOCK
                   1319: **     (4) EXCLUSIVE_LOCK
                   1320: **
                   1321: ** Sometimes when requesting one lock state, additional lock states
                   1322: ** are inserted in between.  The locking might fail on one of the later
                   1323: ** transitions leaving the lock state different from what it started but
                   1324: ** still short of its goal.  The following chart shows the allowed
                   1325: ** transitions and the inserted intermediate states:
                   1326: **
                   1327: **    UNLOCKED -> SHARED
                   1328: **    SHARED -> RESERVED
                   1329: **    SHARED -> (PENDING) -> EXCLUSIVE
                   1330: **    RESERVED -> (PENDING) -> EXCLUSIVE
                   1331: **    PENDING -> EXCLUSIVE
                   1332: **
                   1333: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
                   1334: ** routine to lower a locking level.
                   1335: */
                   1336: static int unixLock(sqlite3_file *id, int eFileLock){
                   1337:   /* The following describes the implementation of the various locks and
                   1338:   ** lock transitions in terms of the POSIX advisory shared and exclusive
                   1339:   ** lock primitives (called read-locks and write-locks below, to avoid
                   1340:   ** confusion with SQLite lock names). The algorithms are complicated
                   1341:   ** slightly in order to be compatible with windows systems simultaneously
                   1342:   ** accessing the same database file, in case that is ever required.
                   1343:   **
                   1344:   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
                   1345:   ** byte', each single bytes at well known offsets, and the 'shared byte
                   1346:   ** range', a range of 510 bytes at a well known offset.
                   1347:   **
                   1348:   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
                   1349:   ** byte'.  If this is successful, a random byte from the 'shared byte
                   1350:   ** range' is read-locked and the lock on the 'pending byte' released.
                   1351:   **
                   1352:   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
                   1353:   ** A RESERVED lock is implemented by grabbing a write-lock on the
                   1354:   ** 'reserved byte'. 
                   1355:   **
                   1356:   ** A process may only obtain a PENDING lock after it has obtained a
                   1357:   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
                   1358:   ** on the 'pending byte'. This ensures that no new SHARED locks can be
                   1359:   ** obtained, but existing SHARED locks are allowed to persist. A process
                   1360:   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
                   1361:   ** This property is used by the algorithm for rolling back a journal file
                   1362:   ** after a crash.
                   1363:   **
                   1364:   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
                   1365:   ** implemented by obtaining a write-lock on the entire 'shared byte
                   1366:   ** range'. Since all other locks require a read-lock on one of the bytes
                   1367:   ** within this range, this ensures that no other locks are held on the
                   1368:   ** database. 
                   1369:   **
                   1370:   ** The reason a single byte cannot be used instead of the 'shared byte
                   1371:   ** range' is that some versions of windows do not support read-locks. By
                   1372:   ** locking a random byte from a range, concurrent SHARED locks may exist
                   1373:   ** even if the locking primitive used is always a write-lock.
                   1374:   */
                   1375:   int rc = SQLITE_OK;
                   1376:   unixFile *pFile = (unixFile*)id;
                   1377:   unixInodeInfo *pInode;
                   1378:   struct flock lock;
                   1379:   int tErrno = 0;
                   1380: 
                   1381:   assert( pFile );
                   1382:   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
                   1383:       azFileLock(eFileLock), azFileLock(pFile->eFileLock),
                   1384:       azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));
                   1385: 
                   1386:   /* If there is already a lock of this type or more restrictive on the
                   1387:   ** unixFile, do nothing. Don't use the end_lock: exit path, as
                   1388:   ** unixEnterMutex() hasn't been called yet.
                   1389:   */
                   1390:   if( pFile->eFileLock>=eFileLock ){
                   1391:     OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
                   1392:             azFileLock(eFileLock)));
                   1393:     return SQLITE_OK;
                   1394:   }
                   1395: 
                   1396:   /* Make sure the locking sequence is correct.
                   1397:   **  (1) We never move from unlocked to anything higher than shared lock.
                   1398:   **  (2) SQLite never explicitly requests a pendig lock.
                   1399:   **  (3) A shared lock is always held when a reserve lock is requested.
                   1400:   */
                   1401:   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
                   1402:   assert( eFileLock!=PENDING_LOCK );
                   1403:   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
                   1404: 
                   1405:   /* This mutex is needed because pFile->pInode is shared across threads
                   1406:   */
                   1407:   unixEnterMutex();
                   1408:   pInode = pFile->pInode;
                   1409: 
                   1410:   /* If some thread using this PID has a lock via a different unixFile*
                   1411:   ** handle that precludes the requested lock, return BUSY.
                   1412:   */
                   1413:   if( (pFile->eFileLock!=pInode->eFileLock && 
                   1414:           (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
                   1415:   ){
                   1416:     rc = SQLITE_BUSY;
                   1417:     goto end_lock;
                   1418:   }
                   1419: 
                   1420:   /* If a SHARED lock is requested, and some thread using this PID already
                   1421:   ** has a SHARED or RESERVED lock, then increment reference counts and
                   1422:   ** return SQLITE_OK.
                   1423:   */
                   1424:   if( eFileLock==SHARED_LOCK && 
                   1425:       (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
                   1426:     assert( eFileLock==SHARED_LOCK );
                   1427:     assert( pFile->eFileLock==0 );
                   1428:     assert( pInode->nShared>0 );
                   1429:     pFile->eFileLock = SHARED_LOCK;
                   1430:     pInode->nShared++;
                   1431:     pInode->nLock++;
                   1432:     goto end_lock;
                   1433:   }
                   1434: 
                   1435: 
                   1436:   /* A PENDING lock is needed before acquiring a SHARED lock and before
                   1437:   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
                   1438:   ** be released.
                   1439:   */
                   1440:   lock.l_len = 1L;
                   1441:   lock.l_whence = SEEK_SET;
                   1442:   if( eFileLock==SHARED_LOCK 
                   1443:       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
                   1444:   ){
                   1445:     lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
                   1446:     lock.l_start = PENDING_BYTE;
                   1447:     if( unixFileLock(pFile, &lock) ){
                   1448:       tErrno = errno;
                   1449:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
                   1450:       if( rc!=SQLITE_BUSY ){
                   1451:         pFile->lastErrno = tErrno;
                   1452:       }
                   1453:       goto end_lock;
                   1454:     }
                   1455:   }
                   1456: 
                   1457: 
                   1458:   /* If control gets to this point, then actually go ahead and make
                   1459:   ** operating system calls for the specified lock.
                   1460:   */
                   1461:   if( eFileLock==SHARED_LOCK ){
                   1462:     assert( pInode->nShared==0 );
                   1463:     assert( pInode->eFileLock==0 );
                   1464:     assert( rc==SQLITE_OK );
                   1465: 
                   1466:     /* Now get the read-lock */
                   1467:     lock.l_start = SHARED_FIRST;
                   1468:     lock.l_len = SHARED_SIZE;
                   1469:     if( unixFileLock(pFile, &lock) ){
                   1470:       tErrno = errno;
                   1471:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
                   1472:     }
                   1473: 
                   1474:     /* Drop the temporary PENDING lock */
                   1475:     lock.l_start = PENDING_BYTE;
                   1476:     lock.l_len = 1L;
                   1477:     lock.l_type = F_UNLCK;
                   1478:     if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
                   1479:       /* This could happen with a network mount */
                   1480:       tErrno = errno;
                   1481:       rc = SQLITE_IOERR_UNLOCK; 
                   1482:     }
                   1483: 
                   1484:     if( rc ){
                   1485:       if( rc!=SQLITE_BUSY ){
                   1486:         pFile->lastErrno = tErrno;
                   1487:       }
                   1488:       goto end_lock;
                   1489:     }else{
                   1490:       pFile->eFileLock = SHARED_LOCK;
                   1491:       pInode->nLock++;
                   1492:       pInode->nShared = 1;
                   1493:     }
                   1494:   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
                   1495:     /* We are trying for an exclusive lock but another thread in this
                   1496:     ** same process is still holding a shared lock. */
                   1497:     rc = SQLITE_BUSY;
                   1498:   }else{
                   1499:     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
                   1500:     ** assumed that there is a SHARED or greater lock on the file
                   1501:     ** already.
                   1502:     */
                   1503:     assert( 0!=pFile->eFileLock );
                   1504:     lock.l_type = F_WRLCK;
                   1505: 
                   1506:     assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
                   1507:     if( eFileLock==RESERVED_LOCK ){
                   1508:       lock.l_start = RESERVED_BYTE;
                   1509:       lock.l_len = 1L;
                   1510:     }else{
                   1511:       lock.l_start = SHARED_FIRST;
                   1512:       lock.l_len = SHARED_SIZE;
                   1513:     }
                   1514: 
                   1515:     if( unixFileLock(pFile, &lock) ){
                   1516:       tErrno = errno;
                   1517:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
                   1518:       if( rc!=SQLITE_BUSY ){
                   1519:         pFile->lastErrno = tErrno;
                   1520:       }
                   1521:     }
                   1522:   }
                   1523:   
                   1524: 
                   1525: #ifndef NDEBUG
                   1526:   /* Set up the transaction-counter change checking flags when
                   1527:   ** transitioning from a SHARED to a RESERVED lock.  The change
                   1528:   ** from SHARED to RESERVED marks the beginning of a normal
                   1529:   ** write operation (not a hot journal rollback).
                   1530:   */
                   1531:   if( rc==SQLITE_OK
                   1532:    && pFile->eFileLock<=SHARED_LOCK
                   1533:    && eFileLock==RESERVED_LOCK
                   1534:   ){
                   1535:     pFile->transCntrChng = 0;
                   1536:     pFile->dbUpdate = 0;
                   1537:     pFile->inNormalWrite = 1;
                   1538:   }
                   1539: #endif
                   1540: 
                   1541: 
                   1542:   if( rc==SQLITE_OK ){
                   1543:     pFile->eFileLock = eFileLock;
                   1544:     pInode->eFileLock = eFileLock;
                   1545:   }else if( eFileLock==EXCLUSIVE_LOCK ){
                   1546:     pFile->eFileLock = PENDING_LOCK;
                   1547:     pInode->eFileLock = PENDING_LOCK;
                   1548:   }
                   1549: 
                   1550: end_lock:
                   1551:   unixLeaveMutex();
                   1552:   OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), 
                   1553:       rc==SQLITE_OK ? "ok" : "failed"));
                   1554:   return rc;
                   1555: }
                   1556: 
                   1557: /*
                   1558: ** Add the file descriptor used by file handle pFile to the corresponding
                   1559: ** pUnused list.
                   1560: */
                   1561: static void setPendingFd(unixFile *pFile){
                   1562:   unixInodeInfo *pInode = pFile->pInode;
                   1563:   UnixUnusedFd *p = pFile->pUnused;
                   1564:   p->pNext = pInode->pUnused;
                   1565:   pInode->pUnused = p;
                   1566:   pFile->h = -1;
                   1567:   pFile->pUnused = 0;
                   1568: }
                   1569: 
                   1570: /*
                   1571: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   1572: ** must be either NO_LOCK or SHARED_LOCK.
                   1573: **
                   1574: ** If the locking level of the file descriptor is already at or below
                   1575: ** the requested locking level, this routine is a no-op.
                   1576: ** 
                   1577: ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
                   1578: ** the byte range is divided into 2 parts and the first part is unlocked then
                   1579: ** set to a read lock, then the other part is simply unlocked.  This works 
                   1580: ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to 
                   1581: ** remove the write lock on a region when a read lock is set.
                   1582: */
                   1583: static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
                   1584:   unixFile *pFile = (unixFile*)id;
                   1585:   unixInodeInfo *pInode;
                   1586:   struct flock lock;
                   1587:   int rc = SQLITE_OK;
                   1588: 
                   1589:   assert( pFile );
                   1590:   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
                   1591:       pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
                   1592:       getpid()));
                   1593: 
                   1594:   assert( eFileLock<=SHARED_LOCK );
                   1595:   if( pFile->eFileLock<=eFileLock ){
                   1596:     return SQLITE_OK;
                   1597:   }
                   1598:   unixEnterMutex();
                   1599:   pInode = pFile->pInode;
                   1600:   assert( pInode->nShared!=0 );
                   1601:   if( pFile->eFileLock>SHARED_LOCK ){
                   1602:     assert( pInode->eFileLock==pFile->eFileLock );
                   1603: 
                   1604: #ifndef NDEBUG
                   1605:     /* When reducing a lock such that other processes can start
                   1606:     ** reading the database file again, make sure that the
                   1607:     ** transaction counter was updated if any part of the database
                   1608:     ** file changed.  If the transaction counter is not updated,
                   1609:     ** other connections to the same file might not realize that
                   1610:     ** the file has changed and hence might not know to flush their
                   1611:     ** cache.  The use of a stale cache can lead to database corruption.
                   1612:     */
                   1613:     pFile->inNormalWrite = 0;
                   1614: #endif
                   1615: 
                   1616:     /* downgrading to a shared lock on NFS involves clearing the write lock
                   1617:     ** before establishing the readlock - to avoid a race condition we downgrade
                   1618:     ** the lock in 2 blocks, so that part of the range will be covered by a 
                   1619:     ** write lock until the rest is covered by a read lock:
                   1620:     **  1:   [WWWWW]
                   1621:     **  2:   [....W]
                   1622:     **  3:   [RRRRW]
                   1623:     **  4:   [RRRR.]
                   1624:     */
                   1625:     if( eFileLock==SHARED_LOCK ){
                   1626: 
                   1627: #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
                   1628:       (void)handleNFSUnlock;
                   1629:       assert( handleNFSUnlock==0 );
                   1630: #endif
                   1631: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   1632:       if( handleNFSUnlock ){
                   1633:         int tErrno;               /* Error code from system call errors */
                   1634:         off_t divSize = SHARED_SIZE - 1;
                   1635:         
                   1636:         lock.l_type = F_UNLCK;
                   1637:         lock.l_whence = SEEK_SET;
                   1638:         lock.l_start = SHARED_FIRST;
                   1639:         lock.l_len = divSize;
                   1640:         if( unixFileLock(pFile, &lock)==(-1) ){
                   1641:           tErrno = errno;
                   1642:           rc = SQLITE_IOERR_UNLOCK;
                   1643:           if( IS_LOCK_ERROR(rc) ){
                   1644:             pFile->lastErrno = tErrno;
                   1645:           }
                   1646:           goto end_unlock;
                   1647:         }
                   1648:         lock.l_type = F_RDLCK;
                   1649:         lock.l_whence = SEEK_SET;
                   1650:         lock.l_start = SHARED_FIRST;
                   1651:         lock.l_len = divSize;
                   1652:         if( unixFileLock(pFile, &lock)==(-1) ){
                   1653:           tErrno = errno;
                   1654:           rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
                   1655:           if( IS_LOCK_ERROR(rc) ){
                   1656:             pFile->lastErrno = tErrno;
                   1657:           }
                   1658:           goto end_unlock;
                   1659:         }
                   1660:         lock.l_type = F_UNLCK;
                   1661:         lock.l_whence = SEEK_SET;
                   1662:         lock.l_start = SHARED_FIRST+divSize;
                   1663:         lock.l_len = SHARED_SIZE-divSize;
                   1664:         if( unixFileLock(pFile, &lock)==(-1) ){
                   1665:           tErrno = errno;
                   1666:           rc = SQLITE_IOERR_UNLOCK;
                   1667:           if( IS_LOCK_ERROR(rc) ){
                   1668:             pFile->lastErrno = tErrno;
                   1669:           }
                   1670:           goto end_unlock;
                   1671:         }
                   1672:       }else
                   1673: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
                   1674:       {
                   1675:         lock.l_type = F_RDLCK;
                   1676:         lock.l_whence = SEEK_SET;
                   1677:         lock.l_start = SHARED_FIRST;
                   1678:         lock.l_len = SHARED_SIZE;
                   1679:         if( unixFileLock(pFile, &lock) ){
                   1680:           /* In theory, the call to unixFileLock() cannot fail because another
                   1681:           ** process is holding an incompatible lock. If it does, this 
                   1682:           ** indicates that the other process is not following the locking
                   1683:           ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
                   1684:           ** SQLITE_BUSY would confuse the upper layer (in practice it causes 
                   1685:           ** an assert to fail). */ 
                   1686:           rc = SQLITE_IOERR_RDLOCK;
                   1687:           pFile->lastErrno = errno;
                   1688:           goto end_unlock;
                   1689:         }
                   1690:       }
                   1691:     }
                   1692:     lock.l_type = F_UNLCK;
                   1693:     lock.l_whence = SEEK_SET;
                   1694:     lock.l_start = PENDING_BYTE;
                   1695:     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
                   1696:     if( unixFileLock(pFile, &lock)==0 ){
                   1697:       pInode->eFileLock = SHARED_LOCK;
                   1698:     }else{
                   1699:       rc = SQLITE_IOERR_UNLOCK;
                   1700:       pFile->lastErrno = errno;
                   1701:       goto end_unlock;
                   1702:     }
                   1703:   }
                   1704:   if( eFileLock==NO_LOCK ){
                   1705:     /* Decrement the shared lock counter.  Release the lock using an
                   1706:     ** OS call only when all threads in this same process have released
                   1707:     ** the lock.
                   1708:     */
                   1709:     pInode->nShared--;
                   1710:     if( pInode->nShared==0 ){
                   1711:       lock.l_type = F_UNLCK;
                   1712:       lock.l_whence = SEEK_SET;
                   1713:       lock.l_start = lock.l_len = 0L;
                   1714:       if( unixFileLock(pFile, &lock)==0 ){
                   1715:         pInode->eFileLock = NO_LOCK;
                   1716:       }else{
                   1717:         rc = SQLITE_IOERR_UNLOCK;
                   1718:        pFile->lastErrno = errno;
                   1719:         pInode->eFileLock = NO_LOCK;
                   1720:         pFile->eFileLock = NO_LOCK;
                   1721:       }
                   1722:     }
                   1723: 
                   1724:     /* Decrement the count of locks against this same file.  When the
                   1725:     ** count reaches zero, close any other file descriptors whose close
                   1726:     ** was deferred because of outstanding locks.
                   1727:     */
                   1728:     pInode->nLock--;
                   1729:     assert( pInode->nLock>=0 );
                   1730:     if( pInode->nLock==0 ){
                   1731:       closePendingFds(pFile);
                   1732:     }
                   1733:   }
                   1734:        
                   1735: end_unlock:
                   1736:   unixLeaveMutex();
                   1737:   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
                   1738:   return rc;
                   1739: }
                   1740: 
                   1741: /*
                   1742: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   1743: ** must be either NO_LOCK or SHARED_LOCK.
                   1744: **
                   1745: ** If the locking level of the file descriptor is already at or below
                   1746: ** the requested locking level, this routine is a no-op.
                   1747: */
                   1748: static int unixUnlock(sqlite3_file *id, int eFileLock){
                   1749:   return posixUnlock(id, eFileLock, 0);
                   1750: }
                   1751: 
                   1752: /*
                   1753: ** This function performs the parts of the "close file" operation 
                   1754: ** common to all locking schemes. It closes the directory and file
                   1755: ** handles, if they are valid, and sets all fields of the unixFile
                   1756: ** structure to 0.
                   1757: **
                   1758: ** It is *not* necessary to hold the mutex when this routine is called,
                   1759: ** even on VxWorks.  A mutex will be acquired on VxWorks by the
                   1760: ** vxworksReleaseFileId() routine.
                   1761: */
                   1762: static int closeUnixFile(sqlite3_file *id){
                   1763:   unixFile *pFile = (unixFile*)id;
                   1764:   if( pFile->h>=0 ){
                   1765:     robust_close(pFile, pFile->h, __LINE__);
                   1766:     pFile->h = -1;
                   1767:   }
                   1768: #if OS_VXWORKS
                   1769:   if( pFile->pId ){
                   1770:     if( pFile->ctrlFlags & UNIXFILE_DELETE ){
                   1771:       osUnlink(pFile->pId->zCanonicalName);
                   1772:     }
                   1773:     vxworksReleaseFileId(pFile->pId);
                   1774:     pFile->pId = 0;
                   1775:   }
                   1776: #endif
                   1777:   OSTRACE(("CLOSE   %-3d\n", pFile->h));
                   1778:   OpenCounter(-1);
                   1779:   sqlite3_free(pFile->pUnused);
                   1780:   memset(pFile, 0, sizeof(unixFile));
                   1781:   return SQLITE_OK;
                   1782: }
                   1783: 
                   1784: /*
                   1785: ** Close a file.
                   1786: */
                   1787: static int unixClose(sqlite3_file *id){
                   1788:   int rc = SQLITE_OK;
                   1789:   unixFile *pFile = (unixFile *)id;
                   1790:   unixUnlock(id, NO_LOCK);
                   1791:   unixEnterMutex();
                   1792: 
                   1793:   /* unixFile.pInode is always valid here. Otherwise, a different close
                   1794:   ** routine (e.g. nolockClose()) would be called instead.
                   1795:   */
                   1796:   assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
                   1797:   if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
                   1798:     /* If there are outstanding locks, do not actually close the file just
                   1799:     ** yet because that would clear those locks.  Instead, add the file
                   1800:     ** descriptor to pInode->pUnused list.  It will be automatically closed 
                   1801:     ** when the last lock is cleared.
                   1802:     */
                   1803:     setPendingFd(pFile);
                   1804:   }
                   1805:   releaseInodeInfo(pFile);
                   1806:   rc = closeUnixFile(id);
                   1807:   unixLeaveMutex();
                   1808:   return rc;
                   1809: }
                   1810: 
                   1811: /************** End of the posix advisory lock implementation *****************
                   1812: ******************************************************************************/
                   1813: 
                   1814: /******************************************************************************
                   1815: ****************************** No-op Locking **********************************
                   1816: **
                   1817: ** Of the various locking implementations available, this is by far the
                   1818: ** simplest:  locking is ignored.  No attempt is made to lock the database
                   1819: ** file for reading or writing.
                   1820: **
                   1821: ** This locking mode is appropriate for use on read-only databases
                   1822: ** (ex: databases that are burned into CD-ROM, for example.)  It can
                   1823: ** also be used if the application employs some external mechanism to
                   1824: ** prevent simultaneous access of the same database by two or more
                   1825: ** database connections.  But there is a serious risk of database
                   1826: ** corruption if this locking mode is used in situations where multiple
                   1827: ** database connections are accessing the same database file at the same
                   1828: ** time and one or more of those connections are writing.
                   1829: */
                   1830: 
                   1831: static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
                   1832:   UNUSED_PARAMETER(NotUsed);
                   1833:   *pResOut = 0;
                   1834:   return SQLITE_OK;
                   1835: }
                   1836: static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
                   1837:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
                   1838:   return SQLITE_OK;
                   1839: }
                   1840: static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
                   1841:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
                   1842:   return SQLITE_OK;
                   1843: }
                   1844: 
                   1845: /*
                   1846: ** Close the file.
                   1847: */
                   1848: static int nolockClose(sqlite3_file *id) {
                   1849:   return closeUnixFile(id);
                   1850: }
                   1851: 
                   1852: /******************* End of the no-op lock implementation *********************
                   1853: ******************************************************************************/
                   1854: 
                   1855: /******************************************************************************
                   1856: ************************* Begin dot-file Locking ******************************
                   1857: **
                   1858: ** The dotfile locking implementation uses the existance of separate lock
                   1859: ** files (really a directory) to control access to the database.  This works
                   1860: ** on just about every filesystem imaginable.  But there are serious downsides:
                   1861: **
                   1862: **    (1)  There is zero concurrency.  A single reader blocks all other
                   1863: **         connections from reading or writing the database.
                   1864: **
                   1865: **    (2)  An application crash or power loss can leave stale lock files
                   1866: **         sitting around that need to be cleared manually.
                   1867: **
                   1868: ** Nevertheless, a dotlock is an appropriate locking mode for use if no
                   1869: ** other locking strategy is available.
                   1870: **
                   1871: ** Dotfile locking works by creating a subdirectory in the same directory as
                   1872: ** the database and with the same name but with a ".lock" extension added.
                   1873: ** The existance of a lock directory implies an EXCLUSIVE lock.  All other
                   1874: ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
                   1875: */
                   1876: 
                   1877: /*
                   1878: ** The file suffix added to the data base filename in order to create the
                   1879: ** lock directory.
                   1880: */
                   1881: #define DOTLOCK_SUFFIX ".lock"
                   1882: 
                   1883: /*
                   1884: ** This routine checks if there is a RESERVED lock held on the specified
                   1885: ** file by this or any other process. If such a lock is held, set *pResOut
                   1886: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
                   1887: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
                   1888: **
                   1889: ** In dotfile locking, either a lock exists or it does not.  So in this
                   1890: ** variation of CheckReservedLock(), *pResOut is set to true if any lock
                   1891: ** is held on the file and false if the file is unlocked.
                   1892: */
                   1893: static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
                   1894:   int rc = SQLITE_OK;
                   1895:   int reserved = 0;
                   1896:   unixFile *pFile = (unixFile*)id;
                   1897: 
                   1898:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
                   1899:   
                   1900:   assert( pFile );
                   1901: 
                   1902:   /* Check if a thread in this process holds such a lock */
                   1903:   if( pFile->eFileLock>SHARED_LOCK ){
                   1904:     /* Either this connection or some other connection in the same process
                   1905:     ** holds a lock on the file.  No need to check further. */
                   1906:     reserved = 1;
                   1907:   }else{
                   1908:     /* The lock is held if and only if the lockfile exists */
                   1909:     const char *zLockFile = (const char*)pFile->lockingContext;
                   1910:     reserved = osAccess(zLockFile, 0)==0;
                   1911:   }
                   1912:   OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
                   1913:   *pResOut = reserved;
                   1914:   return rc;
                   1915: }
                   1916: 
                   1917: /*
                   1918: ** Lock the file with the lock specified by parameter eFileLock - one
                   1919: ** of the following:
                   1920: **
                   1921: **     (1) SHARED_LOCK
                   1922: **     (2) RESERVED_LOCK
                   1923: **     (3) PENDING_LOCK
                   1924: **     (4) EXCLUSIVE_LOCK
                   1925: **
                   1926: ** Sometimes when requesting one lock state, additional lock states
                   1927: ** are inserted in between.  The locking might fail on one of the later
                   1928: ** transitions leaving the lock state different from what it started but
                   1929: ** still short of its goal.  The following chart shows the allowed
                   1930: ** transitions and the inserted intermediate states:
                   1931: **
                   1932: **    UNLOCKED -> SHARED
                   1933: **    SHARED -> RESERVED
                   1934: **    SHARED -> (PENDING) -> EXCLUSIVE
                   1935: **    RESERVED -> (PENDING) -> EXCLUSIVE
                   1936: **    PENDING -> EXCLUSIVE
                   1937: **
                   1938: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
                   1939: ** routine to lower a locking level.
                   1940: **
                   1941: ** With dotfile locking, we really only support state (4): EXCLUSIVE.
                   1942: ** But we track the other locking levels internally.
                   1943: */
                   1944: static int dotlockLock(sqlite3_file *id, int eFileLock) {
                   1945:   unixFile *pFile = (unixFile*)id;
                   1946:   char *zLockFile = (char *)pFile->lockingContext;
                   1947:   int rc = SQLITE_OK;
                   1948: 
                   1949: 
                   1950:   /* If we have any lock, then the lock file already exists.  All we have
                   1951:   ** to do is adjust our internal record of the lock level.
                   1952:   */
                   1953:   if( pFile->eFileLock > NO_LOCK ){
                   1954:     pFile->eFileLock = eFileLock;
                   1955:     /* Always update the timestamp on the old file */
                   1956: #ifdef HAVE_UTIME
                   1957:     utime(zLockFile, NULL);
                   1958: #else
                   1959:     utimes(zLockFile, NULL);
                   1960: #endif
                   1961:     return SQLITE_OK;
                   1962:   }
                   1963:   
                   1964:   /* grab an exclusive lock */
                   1965:   rc = osMkdir(zLockFile, 0777);
                   1966:   if( rc<0 ){
                   1967:     /* failed to open/create the lock directory */
                   1968:     int tErrno = errno;
                   1969:     if( EEXIST == tErrno ){
                   1970:       rc = SQLITE_BUSY;
                   1971:     } else {
                   1972:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
                   1973:       if( IS_LOCK_ERROR(rc) ){
                   1974:         pFile->lastErrno = tErrno;
                   1975:       }
                   1976:     }
                   1977:     return rc;
                   1978:   } 
                   1979:   
                   1980:   /* got it, set the type and return ok */
                   1981:   pFile->eFileLock = eFileLock;
                   1982:   return rc;
                   1983: }
                   1984: 
                   1985: /*
                   1986: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   1987: ** must be either NO_LOCK or SHARED_LOCK.
                   1988: **
                   1989: ** If the locking level of the file descriptor is already at or below
                   1990: ** the requested locking level, this routine is a no-op.
                   1991: **
                   1992: ** When the locking level reaches NO_LOCK, delete the lock file.
                   1993: */
                   1994: static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
                   1995:   unixFile *pFile = (unixFile*)id;
                   1996:   char *zLockFile = (char *)pFile->lockingContext;
                   1997:   int rc;
                   1998: 
                   1999:   assert( pFile );
                   2000:   OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
                   2001:           pFile->eFileLock, getpid()));
                   2002:   assert( eFileLock<=SHARED_LOCK );
                   2003:   
                   2004:   /* no-op if possible */
                   2005:   if( pFile->eFileLock==eFileLock ){
                   2006:     return SQLITE_OK;
                   2007:   }
                   2008: 
                   2009:   /* To downgrade to shared, simply update our internal notion of the
                   2010:   ** lock state.  No need to mess with the file on disk.
                   2011:   */
                   2012:   if( eFileLock==SHARED_LOCK ){
                   2013:     pFile->eFileLock = SHARED_LOCK;
                   2014:     return SQLITE_OK;
                   2015:   }
                   2016:   
                   2017:   /* To fully unlock the database, delete the lock file */
                   2018:   assert( eFileLock==NO_LOCK );
                   2019:   rc = osRmdir(zLockFile);
                   2020:   if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
                   2021:   if( rc<0 ){
                   2022:     int tErrno = errno;
                   2023:     rc = 0;
                   2024:     if( ENOENT != tErrno ){
                   2025:       rc = SQLITE_IOERR_UNLOCK;
                   2026:     }
                   2027:     if( IS_LOCK_ERROR(rc) ){
                   2028:       pFile->lastErrno = tErrno;
                   2029:     }
                   2030:     return rc; 
                   2031:   }
                   2032:   pFile->eFileLock = NO_LOCK;
                   2033:   return SQLITE_OK;
                   2034: }
                   2035: 
                   2036: /*
                   2037: ** Close a file.  Make sure the lock has been released before closing.
                   2038: */
                   2039: static int dotlockClose(sqlite3_file *id) {
                   2040:   int rc;
                   2041:   if( id ){
                   2042:     unixFile *pFile = (unixFile*)id;
                   2043:     dotlockUnlock(id, NO_LOCK);
                   2044:     sqlite3_free(pFile->lockingContext);
                   2045:   }
                   2046:   rc = closeUnixFile(id);
                   2047:   return rc;
                   2048: }
                   2049: /****************** End of the dot-file lock implementation *******************
                   2050: ******************************************************************************/
                   2051: 
                   2052: /******************************************************************************
                   2053: ************************** Begin flock Locking ********************************
                   2054: **
                   2055: ** Use the flock() system call to do file locking.
                   2056: **
                   2057: ** flock() locking is like dot-file locking in that the various
                   2058: ** fine-grain locking levels supported by SQLite are collapsed into
                   2059: ** a single exclusive lock.  In other words, SHARED, RESERVED, and
                   2060: ** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
                   2061: ** still works when you do this, but concurrency is reduced since
                   2062: ** only a single process can be reading the database at a time.
                   2063: **
                   2064: ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
                   2065: ** compiling for VXWORKS.
                   2066: */
                   2067: #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
                   2068: 
                   2069: /*
                   2070: ** Retry flock() calls that fail with EINTR
                   2071: */
                   2072: #ifdef EINTR
                   2073: static int robust_flock(int fd, int op){
                   2074:   int rc;
                   2075:   do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
                   2076:   return rc;
                   2077: }
                   2078: #else
                   2079: # define robust_flock(a,b) flock(a,b)
                   2080: #endif
                   2081:      
                   2082: 
                   2083: /*
                   2084: ** This routine checks if there is a RESERVED lock held on the specified
                   2085: ** file by this or any other process. If such a lock is held, set *pResOut
                   2086: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
                   2087: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
                   2088: */
                   2089: static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
                   2090:   int rc = SQLITE_OK;
                   2091:   int reserved = 0;
                   2092:   unixFile *pFile = (unixFile*)id;
                   2093:   
                   2094:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
                   2095:   
                   2096:   assert( pFile );
                   2097:   
                   2098:   /* Check if a thread in this process holds such a lock */
                   2099:   if( pFile->eFileLock>SHARED_LOCK ){
                   2100:     reserved = 1;
                   2101:   }
                   2102:   
                   2103:   /* Otherwise see if some other process holds it. */
                   2104:   if( !reserved ){
                   2105:     /* attempt to get the lock */
                   2106:     int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
                   2107:     if( !lrc ){
                   2108:       /* got the lock, unlock it */
                   2109:       lrc = robust_flock(pFile->h, LOCK_UN);
                   2110:       if ( lrc ) {
                   2111:         int tErrno = errno;
                   2112:         /* unlock failed with an error */
                   2113:         lrc = SQLITE_IOERR_UNLOCK; 
                   2114:         if( IS_LOCK_ERROR(lrc) ){
                   2115:           pFile->lastErrno = tErrno;
                   2116:           rc = lrc;
                   2117:         }
                   2118:       }
                   2119:     } else {
                   2120:       int tErrno = errno;
                   2121:       reserved = 1;
                   2122:       /* someone else might have it reserved */
                   2123:       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
                   2124:       if( IS_LOCK_ERROR(lrc) ){
                   2125:         pFile->lastErrno = tErrno;
                   2126:         rc = lrc;
                   2127:       }
                   2128:     }
                   2129:   }
                   2130:   OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
                   2131: 
                   2132: #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
                   2133:   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
                   2134:     rc = SQLITE_OK;
                   2135:     reserved=1;
                   2136:   }
                   2137: #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
                   2138:   *pResOut = reserved;
                   2139:   return rc;
                   2140: }
                   2141: 
                   2142: /*
                   2143: ** Lock the file with the lock specified by parameter eFileLock - one
                   2144: ** of the following:
                   2145: **
                   2146: **     (1) SHARED_LOCK
                   2147: **     (2) RESERVED_LOCK
                   2148: **     (3) PENDING_LOCK
                   2149: **     (4) EXCLUSIVE_LOCK
                   2150: **
                   2151: ** Sometimes when requesting one lock state, additional lock states
                   2152: ** are inserted in between.  The locking might fail on one of the later
                   2153: ** transitions leaving the lock state different from what it started but
                   2154: ** still short of its goal.  The following chart shows the allowed
                   2155: ** transitions and the inserted intermediate states:
                   2156: **
                   2157: **    UNLOCKED -> SHARED
                   2158: **    SHARED -> RESERVED
                   2159: **    SHARED -> (PENDING) -> EXCLUSIVE
                   2160: **    RESERVED -> (PENDING) -> EXCLUSIVE
                   2161: **    PENDING -> EXCLUSIVE
                   2162: **
                   2163: ** flock() only really support EXCLUSIVE locks.  We track intermediate
                   2164: ** lock states in the sqlite3_file structure, but all locks SHARED or
                   2165: ** above are really EXCLUSIVE locks and exclude all other processes from
                   2166: ** access the file.
                   2167: **
                   2168: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
                   2169: ** routine to lower a locking level.
                   2170: */
                   2171: static int flockLock(sqlite3_file *id, int eFileLock) {
                   2172:   int rc = SQLITE_OK;
                   2173:   unixFile *pFile = (unixFile*)id;
                   2174: 
                   2175:   assert( pFile );
                   2176: 
                   2177:   /* if we already have a lock, it is exclusive.  
                   2178:   ** Just adjust level and punt on outta here. */
                   2179:   if (pFile->eFileLock > NO_LOCK) {
                   2180:     pFile->eFileLock = eFileLock;
                   2181:     return SQLITE_OK;
                   2182:   }
                   2183:   
                   2184:   /* grab an exclusive lock */
                   2185:   
                   2186:   if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
                   2187:     int tErrno = errno;
                   2188:     /* didn't get, must be busy */
                   2189:     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
                   2190:     if( IS_LOCK_ERROR(rc) ){
                   2191:       pFile->lastErrno = tErrno;
                   2192:     }
                   2193:   } else {
                   2194:     /* got it, set the type and return ok */
                   2195:     pFile->eFileLock = eFileLock;
                   2196:   }
                   2197:   OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), 
                   2198:            rc==SQLITE_OK ? "ok" : "failed"));
                   2199: #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
                   2200:   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
                   2201:     rc = SQLITE_BUSY;
                   2202:   }
                   2203: #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
                   2204:   return rc;
                   2205: }
                   2206: 
                   2207: 
                   2208: /*
                   2209: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   2210: ** must be either NO_LOCK or SHARED_LOCK.
                   2211: **
                   2212: ** If the locking level of the file descriptor is already at or below
                   2213: ** the requested locking level, this routine is a no-op.
                   2214: */
                   2215: static int flockUnlock(sqlite3_file *id, int eFileLock) {
                   2216:   unixFile *pFile = (unixFile*)id;
                   2217:   
                   2218:   assert( pFile );
                   2219:   OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
                   2220:            pFile->eFileLock, getpid()));
                   2221:   assert( eFileLock<=SHARED_LOCK );
                   2222:   
                   2223:   /* no-op if possible */
                   2224:   if( pFile->eFileLock==eFileLock ){
                   2225:     return SQLITE_OK;
                   2226:   }
                   2227:   
                   2228:   /* shared can just be set because we always have an exclusive */
                   2229:   if (eFileLock==SHARED_LOCK) {
                   2230:     pFile->eFileLock = eFileLock;
                   2231:     return SQLITE_OK;
                   2232:   }
                   2233:   
                   2234:   /* no, really, unlock. */
                   2235:   if( robust_flock(pFile->h, LOCK_UN) ){
                   2236: #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
                   2237:     return SQLITE_OK;
                   2238: #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
                   2239:     return SQLITE_IOERR_UNLOCK;
                   2240:   }else{
                   2241:     pFile->eFileLock = NO_LOCK;
                   2242:     return SQLITE_OK;
                   2243:   }
                   2244: }
                   2245: 
                   2246: /*
                   2247: ** Close a file.
                   2248: */
                   2249: static int flockClose(sqlite3_file *id) {
                   2250:   if( id ){
                   2251:     flockUnlock(id, NO_LOCK);
                   2252:   }
                   2253:   return closeUnixFile(id);
                   2254: }
                   2255: 
                   2256: #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
                   2257: 
                   2258: /******************* End of the flock lock implementation *********************
                   2259: ******************************************************************************/
                   2260: 
                   2261: /******************************************************************************
                   2262: ************************ Begin Named Semaphore Locking ************************
                   2263: **
                   2264: ** Named semaphore locking is only supported on VxWorks.
                   2265: **
                   2266: ** Semaphore locking is like dot-lock and flock in that it really only
                   2267: ** supports EXCLUSIVE locking.  Only a single process can read or write
                   2268: ** the database file at a time.  This reduces potential concurrency, but
                   2269: ** makes the lock implementation much easier.
                   2270: */
                   2271: #if OS_VXWORKS
                   2272: 
                   2273: /*
                   2274: ** This routine checks if there is a RESERVED lock held on the specified
                   2275: ** file by this or any other process. If such a lock is held, set *pResOut
                   2276: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
                   2277: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
                   2278: */
                   2279: static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
                   2280:   int rc = SQLITE_OK;
                   2281:   int reserved = 0;
                   2282:   unixFile *pFile = (unixFile*)id;
                   2283: 
                   2284:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
                   2285:   
                   2286:   assert( pFile );
                   2287: 
                   2288:   /* Check if a thread in this process holds such a lock */
                   2289:   if( pFile->eFileLock>SHARED_LOCK ){
                   2290:     reserved = 1;
                   2291:   }
                   2292:   
                   2293:   /* Otherwise see if some other process holds it. */
                   2294:   if( !reserved ){
                   2295:     sem_t *pSem = pFile->pInode->pSem;
                   2296:     struct stat statBuf;
                   2297: 
                   2298:     if( sem_trywait(pSem)==-1 ){
                   2299:       int tErrno = errno;
                   2300:       if( EAGAIN != tErrno ){
                   2301:         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
                   2302:         pFile->lastErrno = tErrno;
                   2303:       } else {
                   2304:         /* someone else has the lock when we are in NO_LOCK */
                   2305:         reserved = (pFile->eFileLock < SHARED_LOCK);
                   2306:       }
                   2307:     }else{
                   2308:       /* we could have it if we want it */
                   2309:       sem_post(pSem);
                   2310:     }
                   2311:   }
                   2312:   OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
                   2313: 
                   2314:   *pResOut = reserved;
                   2315:   return rc;
                   2316: }
                   2317: 
                   2318: /*
                   2319: ** Lock the file with the lock specified by parameter eFileLock - one
                   2320: ** of the following:
                   2321: **
                   2322: **     (1) SHARED_LOCK
                   2323: **     (2) RESERVED_LOCK
                   2324: **     (3) PENDING_LOCK
                   2325: **     (4) EXCLUSIVE_LOCK
                   2326: **
                   2327: ** Sometimes when requesting one lock state, additional lock states
                   2328: ** are inserted in between.  The locking might fail on one of the later
                   2329: ** transitions leaving the lock state different from what it started but
                   2330: ** still short of its goal.  The following chart shows the allowed
                   2331: ** transitions and the inserted intermediate states:
                   2332: **
                   2333: **    UNLOCKED -> SHARED
                   2334: **    SHARED -> RESERVED
                   2335: **    SHARED -> (PENDING) -> EXCLUSIVE
                   2336: **    RESERVED -> (PENDING) -> EXCLUSIVE
                   2337: **    PENDING -> EXCLUSIVE
                   2338: **
                   2339: ** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
                   2340: ** lock states in the sqlite3_file structure, but all locks SHARED or
                   2341: ** above are really EXCLUSIVE locks and exclude all other processes from
                   2342: ** access the file.
                   2343: **
                   2344: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
                   2345: ** routine to lower a locking level.
                   2346: */
                   2347: static int semLock(sqlite3_file *id, int eFileLock) {
                   2348:   unixFile *pFile = (unixFile*)id;
                   2349:   int fd;
                   2350:   sem_t *pSem = pFile->pInode->pSem;
                   2351:   int rc = SQLITE_OK;
                   2352: 
                   2353:   /* if we already have a lock, it is exclusive.  
                   2354:   ** Just adjust level and punt on outta here. */
                   2355:   if (pFile->eFileLock > NO_LOCK) {
                   2356:     pFile->eFileLock = eFileLock;
                   2357:     rc = SQLITE_OK;
                   2358:     goto sem_end_lock;
                   2359:   }
                   2360:   
                   2361:   /* lock semaphore now but bail out when already locked. */
                   2362:   if( sem_trywait(pSem)==-1 ){
                   2363:     rc = SQLITE_BUSY;
                   2364:     goto sem_end_lock;
                   2365:   }
                   2366: 
                   2367:   /* got it, set the type and return ok */
                   2368:   pFile->eFileLock = eFileLock;
                   2369: 
                   2370:  sem_end_lock:
                   2371:   return rc;
                   2372: }
                   2373: 
                   2374: /*
                   2375: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   2376: ** must be either NO_LOCK or SHARED_LOCK.
                   2377: **
                   2378: ** If the locking level of the file descriptor is already at or below
                   2379: ** the requested locking level, this routine is a no-op.
                   2380: */
                   2381: static int semUnlock(sqlite3_file *id, int eFileLock) {
                   2382:   unixFile *pFile = (unixFile*)id;
                   2383:   sem_t *pSem = pFile->pInode->pSem;
                   2384: 
                   2385:   assert( pFile );
                   2386:   assert( pSem );
                   2387:   OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
                   2388:           pFile->eFileLock, getpid()));
                   2389:   assert( eFileLock<=SHARED_LOCK );
                   2390:   
                   2391:   /* no-op if possible */
                   2392:   if( pFile->eFileLock==eFileLock ){
                   2393:     return SQLITE_OK;
                   2394:   }
                   2395:   
                   2396:   /* shared can just be set because we always have an exclusive */
                   2397:   if (eFileLock==SHARED_LOCK) {
                   2398:     pFile->eFileLock = eFileLock;
                   2399:     return SQLITE_OK;
                   2400:   }
                   2401:   
                   2402:   /* no, really unlock. */
                   2403:   if ( sem_post(pSem)==-1 ) {
                   2404:     int rc, tErrno = errno;
                   2405:     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
                   2406:     if( IS_LOCK_ERROR(rc) ){
                   2407:       pFile->lastErrno = tErrno;
                   2408:     }
                   2409:     return rc; 
                   2410:   }
                   2411:   pFile->eFileLock = NO_LOCK;
                   2412:   return SQLITE_OK;
                   2413: }
                   2414: 
                   2415: /*
                   2416:  ** Close a file.
                   2417:  */
                   2418: static int semClose(sqlite3_file *id) {
                   2419:   if( id ){
                   2420:     unixFile *pFile = (unixFile*)id;
                   2421:     semUnlock(id, NO_LOCK);
                   2422:     assert( pFile );
                   2423:     unixEnterMutex();
                   2424:     releaseInodeInfo(pFile);
                   2425:     unixLeaveMutex();
                   2426:     closeUnixFile(id);
                   2427:   }
                   2428:   return SQLITE_OK;
                   2429: }
                   2430: 
                   2431: #endif /* OS_VXWORKS */
                   2432: /*
                   2433: ** Named semaphore locking is only available on VxWorks.
                   2434: **
                   2435: *************** End of the named semaphore lock implementation ****************
                   2436: ******************************************************************************/
                   2437: 
                   2438: 
                   2439: /******************************************************************************
                   2440: *************************** Begin AFP Locking *********************************
                   2441: **
                   2442: ** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
                   2443: ** on Apple Macintosh computers - both OS9 and OSX.
                   2444: **
                   2445: ** Third-party implementations of AFP are available.  But this code here
                   2446: ** only works on OSX.
                   2447: */
                   2448: 
                   2449: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   2450: /*
                   2451: ** The afpLockingContext structure contains all afp lock specific state
                   2452: */
                   2453: typedef struct afpLockingContext afpLockingContext;
                   2454: struct afpLockingContext {
                   2455:   int reserved;
                   2456:   const char *dbPath;             /* Name of the open file */
                   2457: };
                   2458: 
                   2459: struct ByteRangeLockPB2
                   2460: {
                   2461:   unsigned long long offset;        /* offset to first byte to lock */
                   2462:   unsigned long long length;        /* nbr of bytes to lock */
                   2463:   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
                   2464:   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
                   2465:   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
                   2466:   int fd;                           /* file desc to assoc this lock with */
                   2467: };
                   2468: 
                   2469: #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
                   2470: 
                   2471: /*
                   2472: ** This is a utility for setting or clearing a bit-range lock on an
                   2473: ** AFP filesystem.
                   2474: ** 
                   2475: ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
                   2476: */
                   2477: static int afpSetLock(
                   2478:   const char *path,              /* Name of the file to be locked or unlocked */
                   2479:   unixFile *pFile,               /* Open file descriptor on path */
                   2480:   unsigned long long offset,     /* First byte to be locked */
                   2481:   unsigned long long length,     /* Number of bytes to lock */
                   2482:   int setLockFlag                /* True to set lock.  False to clear lock */
                   2483: ){
                   2484:   struct ByteRangeLockPB2 pb;
                   2485:   int err;
                   2486:   
                   2487:   pb.unLockFlag = setLockFlag ? 0 : 1;
                   2488:   pb.startEndFlag = 0;
                   2489:   pb.offset = offset;
                   2490:   pb.length = length; 
                   2491:   pb.fd = pFile->h;
                   2492:   
                   2493:   OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", 
                   2494:     (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
                   2495:     offset, length));
                   2496:   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
                   2497:   if ( err==-1 ) {
                   2498:     int rc;
                   2499:     int tErrno = errno;
                   2500:     OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
                   2501:              path, tErrno, strerror(tErrno)));
                   2502: #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
                   2503:     rc = SQLITE_BUSY;
                   2504: #else
                   2505:     rc = sqliteErrorFromPosixError(tErrno,
                   2506:                     setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
                   2507: #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
                   2508:     if( IS_LOCK_ERROR(rc) ){
                   2509:       pFile->lastErrno = tErrno;
                   2510:     }
                   2511:     return rc;
                   2512:   } else {
                   2513:     return SQLITE_OK;
                   2514:   }
                   2515: }
                   2516: 
                   2517: /*
                   2518: ** This routine checks if there is a RESERVED lock held on the specified
                   2519: ** file by this or any other process. If such a lock is held, set *pResOut
                   2520: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
                   2521: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
                   2522: */
                   2523: static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
                   2524:   int rc = SQLITE_OK;
                   2525:   int reserved = 0;
                   2526:   unixFile *pFile = (unixFile*)id;
                   2527:   afpLockingContext *context;
                   2528:   
                   2529:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
                   2530:   
                   2531:   assert( pFile );
                   2532:   context = (afpLockingContext *) pFile->lockingContext;
                   2533:   if( context->reserved ){
                   2534:     *pResOut = 1;
                   2535:     return SQLITE_OK;
                   2536:   }
                   2537:   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
                   2538:   
                   2539:   /* Check if a thread in this process holds such a lock */
                   2540:   if( pFile->pInode->eFileLock>SHARED_LOCK ){
                   2541:     reserved = 1;
                   2542:   }
                   2543:   
                   2544:   /* Otherwise see if some other process holds it.
                   2545:    */
                   2546:   if( !reserved ){
                   2547:     /* lock the RESERVED byte */
                   2548:     int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);  
                   2549:     if( SQLITE_OK==lrc ){
                   2550:       /* if we succeeded in taking the reserved lock, unlock it to restore
                   2551:       ** the original state */
                   2552:       lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
                   2553:     } else {
                   2554:       /* if we failed to get the lock then someone else must have it */
                   2555:       reserved = 1;
                   2556:     }
                   2557:     if( IS_LOCK_ERROR(lrc) ){
                   2558:       rc=lrc;
                   2559:     }
                   2560:   }
                   2561:   
                   2562:   unixLeaveMutex();
                   2563:   OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
                   2564:   
                   2565:   *pResOut = reserved;
                   2566:   return rc;
                   2567: }
                   2568: 
                   2569: /*
                   2570: ** Lock the file with the lock specified by parameter eFileLock - one
                   2571: ** of the following:
                   2572: **
                   2573: **     (1) SHARED_LOCK
                   2574: **     (2) RESERVED_LOCK
                   2575: **     (3) PENDING_LOCK
                   2576: **     (4) EXCLUSIVE_LOCK
                   2577: **
                   2578: ** Sometimes when requesting one lock state, additional lock states
                   2579: ** are inserted in between.  The locking might fail on one of the later
                   2580: ** transitions leaving the lock state different from what it started but
                   2581: ** still short of its goal.  The following chart shows the allowed
                   2582: ** transitions and the inserted intermediate states:
                   2583: **
                   2584: **    UNLOCKED -> SHARED
                   2585: **    SHARED -> RESERVED
                   2586: **    SHARED -> (PENDING) -> EXCLUSIVE
                   2587: **    RESERVED -> (PENDING) -> EXCLUSIVE
                   2588: **    PENDING -> EXCLUSIVE
                   2589: **
                   2590: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
                   2591: ** routine to lower a locking level.
                   2592: */
                   2593: static int afpLock(sqlite3_file *id, int eFileLock){
                   2594:   int rc = SQLITE_OK;
                   2595:   unixFile *pFile = (unixFile*)id;
                   2596:   unixInodeInfo *pInode = pFile->pInode;
                   2597:   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
                   2598:   
                   2599:   assert( pFile );
                   2600:   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
                   2601:            azFileLock(eFileLock), azFileLock(pFile->eFileLock),
                   2602:            azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
                   2603: 
                   2604:   /* If there is already a lock of this type or more restrictive on the
                   2605:   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
                   2606:   ** unixEnterMutex() hasn't been called yet.
                   2607:   */
                   2608:   if( pFile->eFileLock>=eFileLock ){
                   2609:     OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
                   2610:            azFileLock(eFileLock)));
                   2611:     return SQLITE_OK;
                   2612:   }
                   2613: 
                   2614:   /* Make sure the locking sequence is correct
                   2615:   **  (1) We never move from unlocked to anything higher than shared lock.
                   2616:   **  (2) SQLite never explicitly requests a pendig lock.
                   2617:   **  (3) A shared lock is always held when a reserve lock is requested.
                   2618:   */
                   2619:   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
                   2620:   assert( eFileLock!=PENDING_LOCK );
                   2621:   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
                   2622:   
                   2623:   /* This mutex is needed because pFile->pInode is shared across threads
                   2624:   */
                   2625:   unixEnterMutex();
                   2626:   pInode = pFile->pInode;
                   2627: 
                   2628:   /* If some thread using this PID has a lock via a different unixFile*
                   2629:   ** handle that precludes the requested lock, return BUSY.
                   2630:   */
                   2631:   if( (pFile->eFileLock!=pInode->eFileLock && 
                   2632:        (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
                   2633:      ){
                   2634:     rc = SQLITE_BUSY;
                   2635:     goto afp_end_lock;
                   2636:   }
                   2637:   
                   2638:   /* If a SHARED lock is requested, and some thread using this PID already
                   2639:   ** has a SHARED or RESERVED lock, then increment reference counts and
                   2640:   ** return SQLITE_OK.
                   2641:   */
                   2642:   if( eFileLock==SHARED_LOCK && 
                   2643:      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
                   2644:     assert( eFileLock==SHARED_LOCK );
                   2645:     assert( pFile->eFileLock==0 );
                   2646:     assert( pInode->nShared>0 );
                   2647:     pFile->eFileLock = SHARED_LOCK;
                   2648:     pInode->nShared++;
                   2649:     pInode->nLock++;
                   2650:     goto afp_end_lock;
                   2651:   }
                   2652:     
                   2653:   /* A PENDING lock is needed before acquiring a SHARED lock and before
                   2654:   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
                   2655:   ** be released.
                   2656:   */
                   2657:   if( eFileLock==SHARED_LOCK 
                   2658:       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
                   2659:   ){
                   2660:     int failed;
                   2661:     failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
                   2662:     if (failed) {
                   2663:       rc = failed;
                   2664:       goto afp_end_lock;
                   2665:     }
                   2666:   }
                   2667:   
                   2668:   /* If control gets to this point, then actually go ahead and make
                   2669:   ** operating system calls for the specified lock.
                   2670:   */
                   2671:   if( eFileLock==SHARED_LOCK ){
                   2672:     int lrc1, lrc2, lrc1Errno = 0;
                   2673:     long lk, mask;
                   2674:     
                   2675:     assert( pInode->nShared==0 );
                   2676:     assert( pInode->eFileLock==0 );
                   2677:         
                   2678:     mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
                   2679:     /* Now get the read-lock SHARED_LOCK */
                   2680:     /* note that the quality of the randomness doesn't matter that much */
                   2681:     lk = random(); 
                   2682:     pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
                   2683:     lrc1 = afpSetLock(context->dbPath, pFile, 
                   2684:           SHARED_FIRST+pInode->sharedByte, 1, 1);
                   2685:     if( IS_LOCK_ERROR(lrc1) ){
                   2686:       lrc1Errno = pFile->lastErrno;
                   2687:     }
                   2688:     /* Drop the temporary PENDING lock */
                   2689:     lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
                   2690:     
                   2691:     if( IS_LOCK_ERROR(lrc1) ) {
                   2692:       pFile->lastErrno = lrc1Errno;
                   2693:       rc = lrc1;
                   2694:       goto afp_end_lock;
                   2695:     } else if( IS_LOCK_ERROR(lrc2) ){
                   2696:       rc = lrc2;
                   2697:       goto afp_end_lock;
                   2698:     } else if( lrc1 != SQLITE_OK ) {
                   2699:       rc = lrc1;
                   2700:     } else {
                   2701:       pFile->eFileLock = SHARED_LOCK;
                   2702:       pInode->nLock++;
                   2703:       pInode->nShared = 1;
                   2704:     }
                   2705:   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
                   2706:     /* We are trying for an exclusive lock but another thread in this
                   2707:      ** same process is still holding a shared lock. */
                   2708:     rc = SQLITE_BUSY;
                   2709:   }else{
                   2710:     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
                   2711:     ** assumed that there is a SHARED or greater lock on the file
                   2712:     ** already.
                   2713:     */
                   2714:     int failed = 0;
                   2715:     assert( 0!=pFile->eFileLock );
                   2716:     if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
                   2717:         /* Acquire a RESERVED lock */
                   2718:         failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
                   2719:       if( !failed ){
                   2720:         context->reserved = 1;
                   2721:       }
                   2722:     }
                   2723:     if (!failed && eFileLock == EXCLUSIVE_LOCK) {
                   2724:       /* Acquire an EXCLUSIVE lock */
                   2725:         
                   2726:       /* Remove the shared lock before trying the range.  we'll need to 
                   2727:       ** reestablish the shared lock if we can't get the  afpUnlock
                   2728:       */
                   2729:       if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
                   2730:                          pInode->sharedByte, 1, 0)) ){
                   2731:         int failed2 = SQLITE_OK;
                   2732:         /* now attemmpt to get the exclusive lock range */
                   2733:         failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, 
                   2734:                                SHARED_SIZE, 1);
                   2735:         if( failed && (failed2 = afpSetLock(context->dbPath, pFile, 
                   2736:                        SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
                   2737:           /* Can't reestablish the shared lock.  Sqlite can't deal, this is
                   2738:           ** a critical I/O error
                   2739:           */
                   2740:           rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : 
                   2741:                SQLITE_IOERR_LOCK;
                   2742:           goto afp_end_lock;
                   2743:         } 
                   2744:       }else{
                   2745:         rc = failed; 
                   2746:       }
                   2747:     }
                   2748:     if( failed ){
                   2749:       rc = failed;
                   2750:     }
                   2751:   }
                   2752:   
                   2753:   if( rc==SQLITE_OK ){
                   2754:     pFile->eFileLock = eFileLock;
                   2755:     pInode->eFileLock = eFileLock;
                   2756:   }else if( eFileLock==EXCLUSIVE_LOCK ){
                   2757:     pFile->eFileLock = PENDING_LOCK;
                   2758:     pInode->eFileLock = PENDING_LOCK;
                   2759:   }
                   2760:   
                   2761: afp_end_lock:
                   2762:   unixLeaveMutex();
                   2763:   OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), 
                   2764:          rc==SQLITE_OK ? "ok" : "failed"));
                   2765:   return rc;
                   2766: }
                   2767: 
                   2768: /*
                   2769: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   2770: ** must be either NO_LOCK or SHARED_LOCK.
                   2771: **
                   2772: ** If the locking level of the file descriptor is already at or below
                   2773: ** the requested locking level, this routine is a no-op.
                   2774: */
                   2775: static int afpUnlock(sqlite3_file *id, int eFileLock) {
                   2776:   int rc = SQLITE_OK;
                   2777:   unixFile *pFile = (unixFile*)id;
                   2778:   unixInodeInfo *pInode;
                   2779:   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
                   2780:   int skipShared = 0;
                   2781: #ifdef SQLITE_TEST
                   2782:   int h = pFile->h;
                   2783: #endif
                   2784: 
                   2785:   assert( pFile );
                   2786:   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
                   2787:            pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
                   2788:            getpid()));
                   2789: 
                   2790:   assert( eFileLock<=SHARED_LOCK );
                   2791:   if( pFile->eFileLock<=eFileLock ){
                   2792:     return SQLITE_OK;
                   2793:   }
                   2794:   unixEnterMutex();
                   2795:   pInode = pFile->pInode;
                   2796:   assert( pInode->nShared!=0 );
                   2797:   if( pFile->eFileLock>SHARED_LOCK ){
                   2798:     assert( pInode->eFileLock==pFile->eFileLock );
                   2799:     SimulateIOErrorBenign(1);
                   2800:     SimulateIOError( h=(-1) )
                   2801:     SimulateIOErrorBenign(0);
                   2802:     
                   2803: #ifndef NDEBUG
                   2804:     /* When reducing a lock such that other processes can start
                   2805:     ** reading the database file again, make sure that the
                   2806:     ** transaction counter was updated if any part of the database
                   2807:     ** file changed.  If the transaction counter is not updated,
                   2808:     ** other connections to the same file might not realize that
                   2809:     ** the file has changed and hence might not know to flush their
                   2810:     ** cache.  The use of a stale cache can lead to database corruption.
                   2811:     */
                   2812:     assert( pFile->inNormalWrite==0
                   2813:            || pFile->dbUpdate==0
                   2814:            || pFile->transCntrChng==1 );
                   2815:     pFile->inNormalWrite = 0;
                   2816: #endif
                   2817:     
                   2818:     if( pFile->eFileLock==EXCLUSIVE_LOCK ){
                   2819:       rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
                   2820:       if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
                   2821:         /* only re-establish the shared lock if necessary */
                   2822:         int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
                   2823:         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
                   2824:       } else {
                   2825:         skipShared = 1;
                   2826:       }
                   2827:     }
                   2828:     if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
                   2829:       rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
                   2830:     } 
                   2831:     if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
                   2832:       rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
                   2833:       if( !rc ){ 
                   2834:         context->reserved = 0; 
                   2835:       }
                   2836:     }
                   2837:     if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
                   2838:       pInode->eFileLock = SHARED_LOCK;
                   2839:     }
                   2840:   }
                   2841:   if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
                   2842: 
                   2843:     /* Decrement the shared lock counter.  Release the lock using an
                   2844:     ** OS call only when all threads in this same process have released
                   2845:     ** the lock.
                   2846:     */
                   2847:     unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
                   2848:     pInode->nShared--;
                   2849:     if( pInode->nShared==0 ){
                   2850:       SimulateIOErrorBenign(1);
                   2851:       SimulateIOError( h=(-1) )
                   2852:       SimulateIOErrorBenign(0);
                   2853:       if( !skipShared ){
                   2854:         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
                   2855:       }
                   2856:       if( !rc ){
                   2857:         pInode->eFileLock = NO_LOCK;
                   2858:         pFile->eFileLock = NO_LOCK;
                   2859:       }
                   2860:     }
                   2861:     if( rc==SQLITE_OK ){
                   2862:       pInode->nLock--;
                   2863:       assert( pInode->nLock>=0 );
                   2864:       if( pInode->nLock==0 ){
                   2865:         closePendingFds(pFile);
                   2866:       }
                   2867:     }
                   2868:   }
                   2869:   
                   2870:   unixLeaveMutex();
                   2871:   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
                   2872:   return rc;
                   2873: }
                   2874: 
                   2875: /*
                   2876: ** Close a file & cleanup AFP specific locking context 
                   2877: */
                   2878: static int afpClose(sqlite3_file *id) {
                   2879:   int rc = SQLITE_OK;
                   2880:   if( id ){
                   2881:     unixFile *pFile = (unixFile*)id;
                   2882:     afpUnlock(id, NO_LOCK);
                   2883:     unixEnterMutex();
                   2884:     if( pFile->pInode && pFile->pInode->nLock ){
                   2885:       /* If there are outstanding locks, do not actually close the file just
                   2886:       ** yet because that would clear those locks.  Instead, add the file
                   2887:       ** descriptor to pInode->aPending.  It will be automatically closed when
                   2888:       ** the last lock is cleared.
                   2889:       */
                   2890:       setPendingFd(pFile);
                   2891:     }
                   2892:     releaseInodeInfo(pFile);
                   2893:     sqlite3_free(pFile->lockingContext);
                   2894:     rc = closeUnixFile(id);
                   2895:     unixLeaveMutex();
                   2896:   }
                   2897:   return rc;
                   2898: }
                   2899: 
                   2900: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
                   2901: /*
                   2902: ** The code above is the AFP lock implementation.  The code is specific
                   2903: ** to MacOSX and does not work on other unix platforms.  No alternative
                   2904: ** is available.  If you don't compile for a mac, then the "unix-afp"
                   2905: ** VFS is not available.
                   2906: **
                   2907: ********************* End of the AFP lock implementation **********************
                   2908: ******************************************************************************/
                   2909: 
                   2910: /******************************************************************************
                   2911: *************************** Begin NFS Locking ********************************/
                   2912: 
                   2913: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   2914: /*
                   2915:  ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   2916:  ** must be either NO_LOCK or SHARED_LOCK.
                   2917:  **
                   2918:  ** If the locking level of the file descriptor is already at or below
                   2919:  ** the requested locking level, this routine is a no-op.
                   2920:  */
                   2921: static int nfsUnlock(sqlite3_file *id, int eFileLock){
                   2922:   return posixUnlock(id, eFileLock, 1);
                   2923: }
                   2924: 
                   2925: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
                   2926: /*
                   2927: ** The code above is the NFS lock implementation.  The code is specific
                   2928: ** to MacOSX and does not work on other unix platforms.  No alternative
                   2929: ** is available.  
                   2930: **
                   2931: ********************* End of the NFS lock implementation **********************
                   2932: ******************************************************************************/
                   2933: 
                   2934: /******************************************************************************
                   2935: **************** Non-locking sqlite3_file methods *****************************
                   2936: **
                   2937: ** The next division contains implementations for all methods of the 
                   2938: ** sqlite3_file object other than the locking methods.  The locking
                   2939: ** methods were defined in divisions above (one locking method per
                   2940: ** division).  Those methods that are common to all locking modes
                   2941: ** are gather together into this division.
                   2942: */
                   2943: 
                   2944: /*
                   2945: ** Seek to the offset passed as the second argument, then read cnt 
                   2946: ** bytes into pBuf. Return the number of bytes actually read.
                   2947: **
                   2948: ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
                   2949: ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
                   2950: ** one system to another.  Since SQLite does not define USE_PREAD
                   2951: ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
                   2952: ** See tickets #2741 and #2681.
                   2953: **
                   2954: ** To avoid stomping the errno value on a failed read the lastErrno value
                   2955: ** is set before returning.
                   2956: */
                   2957: static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
                   2958:   int got;
                   2959:   int prior = 0;
                   2960: #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
                   2961:   i64 newOffset;
                   2962: #endif
                   2963:   TIMER_START;
                   2964:   do{
                   2965: #if defined(USE_PREAD)
                   2966:     got = osPread(id->h, pBuf, cnt, offset);
                   2967:     SimulateIOError( got = -1 );
                   2968: #elif defined(USE_PREAD64)
                   2969:     got = osPread64(id->h, pBuf, cnt, offset);
                   2970:     SimulateIOError( got = -1 );
                   2971: #else
                   2972:     newOffset = lseek(id->h, offset, SEEK_SET);
                   2973:     SimulateIOError( newOffset-- );
                   2974:     if( newOffset!=offset ){
                   2975:       if( newOffset == -1 ){
                   2976:         ((unixFile*)id)->lastErrno = errno;
                   2977:       }else{
                   2978:         ((unixFile*)id)->lastErrno = 0;                        
                   2979:       }
                   2980:       return -1;
                   2981:     }
                   2982:     got = osRead(id->h, pBuf, cnt);
                   2983: #endif
                   2984:     if( got==cnt ) break;
                   2985:     if( got<0 ){
                   2986:       if( errno==EINTR ){ got = 1; continue; }
                   2987:       prior = 0;
                   2988:       ((unixFile*)id)->lastErrno = errno;
                   2989:       break;
                   2990:     }else if( got>0 ){
                   2991:       cnt -= got;
                   2992:       offset += got;
                   2993:       prior += got;
                   2994:       pBuf = (void*)(got + (char*)pBuf);
                   2995:     }
                   2996:   }while( got>0 );
                   2997:   TIMER_END;
                   2998:   OSTRACE(("READ    %-3d %5d %7lld %llu\n",
                   2999:             id->h, got+prior, offset-prior, TIMER_ELAPSED));
                   3000:   return got+prior;
                   3001: }
                   3002: 
                   3003: /*
                   3004: ** Read data from a file into a buffer.  Return SQLITE_OK if all
                   3005: ** bytes were read successfully and SQLITE_IOERR if anything goes
                   3006: ** wrong.
                   3007: */
                   3008: static int unixRead(
                   3009:   sqlite3_file *id, 
                   3010:   void *pBuf, 
                   3011:   int amt,
                   3012:   sqlite3_int64 offset
                   3013: ){
                   3014:   unixFile *pFile = (unixFile *)id;
                   3015:   int got;
                   3016:   assert( id );
                   3017: 
                   3018:   /* If this is a database file (not a journal, master-journal or temp
                   3019:   ** file), the bytes in the locking range should never be read or written. */
                   3020: #if 0
                   3021:   assert( pFile->pUnused==0
                   3022:        || offset>=PENDING_BYTE+512
                   3023:        || offset+amt<=PENDING_BYTE 
                   3024:   );
                   3025: #endif
                   3026: 
                   3027:   got = seekAndRead(pFile, offset, pBuf, amt);
                   3028:   if( got==amt ){
                   3029:     return SQLITE_OK;
                   3030:   }else if( got<0 ){
                   3031:     /* lastErrno set by seekAndRead */
                   3032:     return SQLITE_IOERR_READ;
                   3033:   }else{
                   3034:     pFile->lastErrno = 0; /* not a system error */
                   3035:     /* Unread parts of the buffer must be zero-filled */
                   3036:     memset(&((char*)pBuf)[got], 0, amt-got);
                   3037:     return SQLITE_IOERR_SHORT_READ;
                   3038:   }
                   3039: }
                   3040: 
                   3041: /*
                   3042: ** Seek to the offset in id->offset then read cnt bytes into pBuf.
                   3043: ** Return the number of bytes actually read.  Update the offset.
                   3044: **
                   3045: ** To avoid stomping the errno value on a failed write the lastErrno value
                   3046: ** is set before returning.
                   3047: */
                   3048: static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
                   3049:   int got;
                   3050: #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
                   3051:   i64 newOffset;
                   3052: #endif
                   3053:   TIMER_START;
                   3054: #if defined(USE_PREAD)
                   3055:   do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
                   3056: #elif defined(USE_PREAD64)
                   3057:   do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
                   3058: #else
                   3059:   do{
                   3060:     newOffset = lseek(id->h, offset, SEEK_SET);
                   3061:     SimulateIOError( newOffset-- );
                   3062:     if( newOffset!=offset ){
                   3063:       if( newOffset == -1 ){
                   3064:         ((unixFile*)id)->lastErrno = errno;
                   3065:       }else{
                   3066:         ((unixFile*)id)->lastErrno = 0;                        
                   3067:       }
                   3068:       return -1;
                   3069:     }
                   3070:     got = osWrite(id->h, pBuf, cnt);
                   3071:   }while( got<0 && errno==EINTR );
                   3072: #endif
                   3073:   TIMER_END;
                   3074:   if( got<0 ){
                   3075:     ((unixFile*)id)->lastErrno = errno;
                   3076:   }
                   3077: 
                   3078:   OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
                   3079:   return got;
                   3080: }
                   3081: 
                   3082: 
                   3083: /*
                   3084: ** Write data from a buffer into a file.  Return SQLITE_OK on success
                   3085: ** or some other error code on failure.
                   3086: */
                   3087: static int unixWrite(
                   3088:   sqlite3_file *id, 
                   3089:   const void *pBuf, 
                   3090:   int amt,
                   3091:   sqlite3_int64 offset 
                   3092: ){
                   3093:   unixFile *pFile = (unixFile*)id;
                   3094:   int wrote = 0;
                   3095:   assert( id );
                   3096:   assert( amt>0 );
                   3097: 
                   3098:   /* If this is a database file (not a journal, master-journal or temp
                   3099:   ** file), the bytes in the locking range should never be read or written. */
                   3100: #if 0
                   3101:   assert( pFile->pUnused==0
                   3102:        || offset>=PENDING_BYTE+512
                   3103:        || offset+amt<=PENDING_BYTE 
                   3104:   );
                   3105: #endif
                   3106: 
                   3107: #ifndef NDEBUG
                   3108:   /* If we are doing a normal write to a database file (as opposed to
                   3109:   ** doing a hot-journal rollback or a write to some file other than a
                   3110:   ** normal database file) then record the fact that the database
                   3111:   ** has changed.  If the transaction counter is modified, record that
                   3112:   ** fact too.
                   3113:   */
                   3114:   if( pFile->inNormalWrite ){
                   3115:     pFile->dbUpdate = 1;  /* The database has been modified */
                   3116:     if( offset<=24 && offset+amt>=27 ){
                   3117:       int rc;
                   3118:       char oldCntr[4];
                   3119:       SimulateIOErrorBenign(1);
                   3120:       rc = seekAndRead(pFile, 24, oldCntr, 4);
                   3121:       SimulateIOErrorBenign(0);
                   3122:       if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
                   3123:         pFile->transCntrChng = 1;  /* The transaction counter has changed */
                   3124:       }
                   3125:     }
                   3126:   }
                   3127: #endif
                   3128: 
                   3129:   while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
                   3130:     amt -= wrote;
                   3131:     offset += wrote;
                   3132:     pBuf = &((char*)pBuf)[wrote];
                   3133:   }
                   3134:   SimulateIOError(( wrote=(-1), amt=1 ));
                   3135:   SimulateDiskfullError(( wrote=0, amt=1 ));
                   3136: 
                   3137:   if( amt>0 ){
                   3138:     if( wrote<0 && pFile->lastErrno!=ENOSPC ){
                   3139:       /* lastErrno set by seekAndWrite */
                   3140:       return SQLITE_IOERR_WRITE;
                   3141:     }else{
                   3142:       pFile->lastErrno = 0; /* not a system error */
                   3143:       return SQLITE_FULL;
                   3144:     }
                   3145:   }
                   3146: 
                   3147:   return SQLITE_OK;
                   3148: }
                   3149: 
                   3150: #ifdef SQLITE_TEST
                   3151: /*
                   3152: ** Count the number of fullsyncs and normal syncs.  This is used to test
                   3153: ** that syncs and fullsyncs are occurring at the right times.
                   3154: */
                   3155: int sqlite3_sync_count = 0;
                   3156: int sqlite3_fullsync_count = 0;
                   3157: #endif
                   3158: 
                   3159: /*
                   3160: ** We do not trust systems to provide a working fdatasync().  Some do.
                   3161: ** Others do no.  To be safe, we will stick with the (slightly slower)
                   3162: ** fsync(). If you know that your system does support fdatasync() correctly,
                   3163: ** then simply compile with -Dfdatasync=fdatasync
                   3164: */
                   3165: #if !defined(fdatasync)
                   3166: # define fdatasync fsync
                   3167: #endif
                   3168: 
                   3169: /*
                   3170: ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
                   3171: ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
                   3172: ** only available on Mac OS X.  But that could change.
                   3173: */
                   3174: #ifdef F_FULLFSYNC
                   3175: # define HAVE_FULLFSYNC 1
                   3176: #else
                   3177: # define HAVE_FULLFSYNC 0
                   3178: #endif
                   3179: 
                   3180: 
                   3181: /*
                   3182: ** The fsync() system call does not work as advertised on many
                   3183: ** unix systems.  The following procedure is an attempt to make
                   3184: ** it work better.
                   3185: **
                   3186: ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
                   3187: ** for testing when we want to run through the test suite quickly.
                   3188: ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
                   3189: ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
                   3190: ** or power failure will likely corrupt the database file.
                   3191: **
                   3192: ** SQLite sets the dataOnly flag if the size of the file is unchanged.
                   3193: ** The idea behind dataOnly is that it should only write the file content
                   3194: ** to disk, not the inode.  We only set dataOnly if the file size is 
                   3195: ** unchanged since the file size is part of the inode.  However, 
                   3196: ** Ted Ts'o tells us that fdatasync() will also write the inode if the
                   3197: ** file size has changed.  The only real difference between fdatasync()
                   3198: ** and fsync(), Ted tells us, is that fdatasync() will not flush the
                   3199: ** inode if the mtime or owner or other inode attributes have changed.
                   3200: ** We only care about the file size, not the other file attributes, so
                   3201: ** as far as SQLite is concerned, an fdatasync() is always adequate.
                   3202: ** So, we always use fdatasync() if it is available, regardless of
                   3203: ** the value of the dataOnly flag.
                   3204: */
                   3205: static int full_fsync(int fd, int fullSync, int dataOnly){
                   3206:   int rc;
                   3207: 
                   3208:   /* The following "ifdef/elif/else/" block has the same structure as
                   3209:   ** the one below. It is replicated here solely to avoid cluttering 
                   3210:   ** up the real code with the UNUSED_PARAMETER() macros.
                   3211:   */
                   3212: #ifdef SQLITE_NO_SYNC
                   3213:   UNUSED_PARAMETER(fd);
                   3214:   UNUSED_PARAMETER(fullSync);
                   3215:   UNUSED_PARAMETER(dataOnly);
                   3216: #elif HAVE_FULLFSYNC
                   3217:   UNUSED_PARAMETER(dataOnly);
                   3218: #else
                   3219:   UNUSED_PARAMETER(fullSync);
                   3220:   UNUSED_PARAMETER(dataOnly);
                   3221: #endif
                   3222: 
                   3223:   /* Record the number of times that we do a normal fsync() and 
                   3224:   ** FULLSYNC.  This is used during testing to verify that this procedure
                   3225:   ** gets called with the correct arguments.
                   3226:   */
                   3227: #ifdef SQLITE_TEST
                   3228:   if( fullSync ) sqlite3_fullsync_count++;
                   3229:   sqlite3_sync_count++;
                   3230: #endif
                   3231: 
                   3232:   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
                   3233:   ** no-op
                   3234:   */
                   3235: #ifdef SQLITE_NO_SYNC
                   3236:   rc = SQLITE_OK;
                   3237: #elif HAVE_FULLFSYNC
                   3238:   if( fullSync ){
                   3239:     rc = osFcntl(fd, F_FULLFSYNC, 0);
                   3240:   }else{
                   3241:     rc = 1;
                   3242:   }
                   3243:   /* If the FULLFSYNC failed, fall back to attempting an fsync().
                   3244:   ** It shouldn't be possible for fullfsync to fail on the local 
                   3245:   ** file system (on OSX), so failure indicates that FULLFSYNC
                   3246:   ** isn't supported for this file system. So, attempt an fsync 
                   3247:   ** and (for now) ignore the overhead of a superfluous fcntl call.  
                   3248:   ** It'd be better to detect fullfsync support once and avoid 
                   3249:   ** the fcntl call every time sync is called.
                   3250:   */
                   3251:   if( rc ) rc = fsync(fd);
                   3252: 
                   3253: #elif defined(__APPLE__)
                   3254:   /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
                   3255:   ** so currently we default to the macro that redefines fdatasync to fsync
                   3256:   */
                   3257:   rc = fsync(fd);
                   3258: #else 
                   3259:   rc = fdatasync(fd);
                   3260: #if OS_VXWORKS
                   3261:   if( rc==-1 && errno==ENOTSUP ){
                   3262:     rc = fsync(fd);
                   3263:   }
                   3264: #endif /* OS_VXWORKS */
                   3265: #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
                   3266: 
                   3267:   if( OS_VXWORKS && rc!= -1 ){
                   3268:     rc = 0;
                   3269:   }
                   3270:   return rc;
                   3271: }
                   3272: 
                   3273: /*
                   3274: ** Open a file descriptor to the directory containing file zFilename.
                   3275: ** If successful, *pFd is set to the opened file descriptor and
                   3276: ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
                   3277: ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
                   3278: ** value.
                   3279: **
                   3280: ** The directory file descriptor is used for only one thing - to
                   3281: ** fsync() a directory to make sure file creation and deletion events
                   3282: ** are flushed to disk.  Such fsyncs are not needed on newer
                   3283: ** journaling filesystems, but are required on older filesystems.
                   3284: **
                   3285: ** This routine can be overridden using the xSetSysCall interface.
                   3286: ** The ability to override this routine was added in support of the
                   3287: ** chromium sandbox.  Opening a directory is a security risk (we are
                   3288: ** told) so making it overrideable allows the chromium sandbox to
                   3289: ** replace this routine with a harmless no-op.  To make this routine
                   3290: ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
                   3291: ** *pFd set to a negative number.
                   3292: **
                   3293: ** If SQLITE_OK is returned, the caller is responsible for closing
                   3294: ** the file descriptor *pFd using close().
                   3295: */
                   3296: static int openDirectory(const char *zFilename, int *pFd){
                   3297:   int ii;
                   3298:   int fd = -1;
                   3299:   char zDirname[MAX_PATHNAME+1];
                   3300: 
                   3301:   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
                   3302:   for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
                   3303:   if( ii>0 ){
                   3304:     zDirname[ii] = '\0';
                   3305:     fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
                   3306:     if( fd>=0 ){
                   3307: #ifdef FD_CLOEXEC
                   3308:       osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
                   3309: #endif
                   3310:       OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
                   3311:     }
                   3312:   }
                   3313:   *pFd = fd;
                   3314:   return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
                   3315: }
                   3316: 
                   3317: /*
                   3318: ** Make sure all writes to a particular file are committed to disk.
                   3319: **
                   3320: ** If dataOnly==0 then both the file itself and its metadata (file
                   3321: ** size, access time, etc) are synced.  If dataOnly!=0 then only the
                   3322: ** file data is synced.
                   3323: **
                   3324: ** Under Unix, also make sure that the directory entry for the file
                   3325: ** has been created by fsync-ing the directory that contains the file.
                   3326: ** If we do not do this and we encounter a power failure, the directory
                   3327: ** entry for the journal might not exist after we reboot.  The next
                   3328: ** SQLite to access the file will not know that the journal exists (because
                   3329: ** the directory entry for the journal was never created) and the transaction
                   3330: ** will not roll back - possibly leading to database corruption.
                   3331: */
                   3332: static int unixSync(sqlite3_file *id, int flags){
                   3333:   int rc;
                   3334:   unixFile *pFile = (unixFile*)id;
                   3335: 
                   3336:   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
                   3337:   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
                   3338: 
                   3339:   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
                   3340:   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
                   3341:       || (flags&0x0F)==SQLITE_SYNC_FULL
                   3342:   );
                   3343: 
                   3344:   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
                   3345:   ** line is to test that doing so does not cause any problems.
                   3346:   */
                   3347:   SimulateDiskfullError( return SQLITE_FULL );
                   3348: 
                   3349:   assert( pFile );
                   3350:   OSTRACE(("SYNC    %-3d\n", pFile->h));
                   3351:   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
                   3352:   SimulateIOError( rc=1 );
                   3353:   if( rc ){
                   3354:     pFile->lastErrno = errno;
                   3355:     return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
                   3356:   }
                   3357: 
                   3358:   /* Also fsync the directory containing the file if the DIRSYNC flag
                   3359:   ** is set.  This is a one-time occurrance.  Many systems (examples: AIX)
                   3360:   ** are unable to fsync a directory, so ignore errors on the fsync.
                   3361:   */
                   3362:   if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
                   3363:     int dirfd;
                   3364:     OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
                   3365:             HAVE_FULLFSYNC, isFullsync));
                   3366:     rc = osOpenDirectory(pFile->zPath, &dirfd);
                   3367:     if( rc==SQLITE_OK && dirfd>=0 ){
                   3368:       full_fsync(dirfd, 0, 0);
                   3369:       robust_close(pFile, dirfd, __LINE__);
                   3370:     }else if( rc==SQLITE_CANTOPEN ){
                   3371:       rc = SQLITE_OK;
                   3372:     }
                   3373:     pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
                   3374:   }
                   3375:   return rc;
                   3376: }
                   3377: 
                   3378: /*
                   3379: ** Truncate an open file to a specified size
                   3380: */
                   3381: static int unixTruncate(sqlite3_file *id, i64 nByte){
                   3382:   unixFile *pFile = (unixFile *)id;
                   3383:   int rc;
                   3384:   assert( pFile );
                   3385:   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
                   3386: 
                   3387:   /* If the user has configured a chunk-size for this file, truncate the
                   3388:   ** file so that it consists of an integer number of chunks (i.e. the
                   3389:   ** actual file size after the operation may be larger than the requested
                   3390:   ** size).
                   3391:   */
                   3392:   if( pFile->szChunk ){
                   3393:     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
                   3394:   }
                   3395: 
                   3396:   rc = robust_ftruncate(pFile->h, (off_t)nByte);
                   3397:   if( rc ){
                   3398:     pFile->lastErrno = errno;
                   3399:     return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
                   3400:   }else{
                   3401: #ifndef NDEBUG
                   3402:     /* If we are doing a normal write to a database file (as opposed to
                   3403:     ** doing a hot-journal rollback or a write to some file other than a
                   3404:     ** normal database file) and we truncate the file to zero length,
                   3405:     ** that effectively updates the change counter.  This might happen
                   3406:     ** when restoring a database using the backup API from a zero-length
                   3407:     ** source.
                   3408:     */
                   3409:     if( pFile->inNormalWrite && nByte==0 ){
                   3410:       pFile->transCntrChng = 1;
                   3411:     }
                   3412: #endif
                   3413: 
                   3414:     return SQLITE_OK;
                   3415:   }
                   3416: }
                   3417: 
                   3418: /*
                   3419: ** Determine the current size of a file in bytes
                   3420: */
                   3421: static int unixFileSize(sqlite3_file *id, i64 *pSize){
                   3422:   int rc;
                   3423:   struct stat buf;
                   3424:   assert( id );
                   3425:   rc = osFstat(((unixFile*)id)->h, &buf);
                   3426:   SimulateIOError( rc=1 );
                   3427:   if( rc!=0 ){
                   3428:     ((unixFile*)id)->lastErrno = errno;
                   3429:     return SQLITE_IOERR_FSTAT;
                   3430:   }
                   3431:   *pSize = buf.st_size;
                   3432: 
                   3433:   /* When opening a zero-size database, the findInodeInfo() procedure
                   3434:   ** writes a single byte into that file in order to work around a bug
                   3435:   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
                   3436:   ** layers, we need to report this file size as zero even though it is
                   3437:   ** really 1.   Ticket #3260.
                   3438:   */
                   3439:   if( *pSize==1 ) *pSize = 0;
                   3440: 
                   3441: 
                   3442:   return SQLITE_OK;
                   3443: }
                   3444: 
                   3445: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
                   3446: /*
                   3447: ** Handler for proxy-locking file-control verbs.  Defined below in the
                   3448: ** proxying locking division.
                   3449: */
                   3450: static int proxyFileControl(sqlite3_file*,int,void*);
                   3451: #endif
                   3452: 
                   3453: /* 
                   3454: ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT 
                   3455: ** file-control operation.  Enlarge the database to nBytes in size
                   3456: ** (rounded up to the next chunk-size).  If the database is already
                   3457: ** nBytes or larger, this routine is a no-op.
                   3458: */
                   3459: static int fcntlSizeHint(unixFile *pFile, i64 nByte){
                   3460:   if( pFile->szChunk>0 ){
                   3461:     i64 nSize;                    /* Required file size */
                   3462:     struct stat buf;              /* Used to hold return values of fstat() */
                   3463:    
                   3464:     if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
                   3465: 
                   3466:     nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
                   3467:     if( nSize>(i64)buf.st_size ){
                   3468: 
                   3469: #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
                   3470:       /* The code below is handling the return value of osFallocate() 
                   3471:       ** correctly. posix_fallocate() is defined to "returns zero on success, 
                   3472:       ** or an error number on  failure". See the manpage for details. */
                   3473:       int err;
                   3474:       do{
                   3475:         err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
                   3476:       }while( err==EINTR );
                   3477:       if( err ) return SQLITE_IOERR_WRITE;
                   3478: #else
                   3479:       /* If the OS does not have posix_fallocate(), fake it. First use
                   3480:       ** ftruncate() to set the file size, then write a single byte to
                   3481:       ** the last byte in each block within the extended region. This
                   3482:       ** is the same technique used by glibc to implement posix_fallocate()
                   3483:       ** on systems that do not have a real fallocate() system call.
                   3484:       */
                   3485:       int nBlk = buf.st_blksize;  /* File-system block size */
                   3486:       i64 iWrite;                 /* Next offset to write to */
                   3487: 
                   3488:       if( robust_ftruncate(pFile->h, nSize) ){
                   3489:         pFile->lastErrno = errno;
                   3490:         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
                   3491:       }
                   3492:       iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
                   3493:       while( iWrite<nSize ){
                   3494:         int nWrite = seekAndWrite(pFile, iWrite, "", 1);
                   3495:         if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
                   3496:         iWrite += nBlk;
                   3497:       }
                   3498: #endif
                   3499:     }
                   3500:   }
                   3501: 
                   3502:   return SQLITE_OK;
                   3503: }
                   3504: 
                   3505: /*
                   3506: ** If *pArg is inititially negative then this is a query.  Set *pArg to
                   3507: ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
                   3508: **
                   3509: ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
                   3510: */
                   3511: static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
                   3512:   if( *pArg<0 ){
                   3513:     *pArg = (pFile->ctrlFlags & mask)!=0;
                   3514:   }else if( (*pArg)==0 ){
                   3515:     pFile->ctrlFlags &= ~mask;
                   3516:   }else{
                   3517:     pFile->ctrlFlags |= mask;
                   3518:   }
                   3519: }
                   3520: 
                   3521: /*
                   3522: ** Information and control of an open file handle.
                   3523: */
                   3524: static int unixFileControl(sqlite3_file *id, int op, void *pArg){
                   3525:   unixFile *pFile = (unixFile*)id;
                   3526:   switch( op ){
                   3527:     case SQLITE_FCNTL_LOCKSTATE: {
                   3528:       *(int*)pArg = pFile->eFileLock;
                   3529:       return SQLITE_OK;
                   3530:     }
                   3531:     case SQLITE_LAST_ERRNO: {
                   3532:       *(int*)pArg = pFile->lastErrno;
                   3533:       return SQLITE_OK;
                   3534:     }
                   3535:     case SQLITE_FCNTL_CHUNK_SIZE: {
                   3536:       pFile->szChunk = *(int *)pArg;
                   3537:       return SQLITE_OK;
                   3538:     }
                   3539:     case SQLITE_FCNTL_SIZE_HINT: {
                   3540:       int rc;
                   3541:       SimulateIOErrorBenign(1);
                   3542:       rc = fcntlSizeHint(pFile, *(i64 *)pArg);
                   3543:       SimulateIOErrorBenign(0);
                   3544:       return rc;
                   3545:     }
                   3546:     case SQLITE_FCNTL_PERSIST_WAL: {
                   3547:       unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
                   3548:       return SQLITE_OK;
                   3549:     }
                   3550:     case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
                   3551:       unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
                   3552:       return SQLITE_OK;
                   3553:     }
                   3554:     case SQLITE_FCNTL_VFSNAME: {
                   3555:       *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
                   3556:       return SQLITE_OK;
                   3557:     }
                   3558: #ifndef NDEBUG
                   3559:     /* The pager calls this method to signal that it has done
                   3560:     ** a rollback and that the database is therefore unchanged and
                   3561:     ** it hence it is OK for the transaction change counter to be
                   3562:     ** unchanged.
                   3563:     */
                   3564:     case SQLITE_FCNTL_DB_UNCHANGED: {
                   3565:       ((unixFile*)id)->dbUpdate = 0;
                   3566:       return SQLITE_OK;
                   3567:     }
                   3568: #endif
                   3569: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
                   3570:     case SQLITE_SET_LOCKPROXYFILE:
                   3571:     case SQLITE_GET_LOCKPROXYFILE: {
                   3572:       return proxyFileControl(id,op,pArg);
                   3573:     }
                   3574: #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
                   3575:   }
                   3576:   return SQLITE_NOTFOUND;
                   3577: }
                   3578: 
                   3579: /*
                   3580: ** Return the sector size in bytes of the underlying block device for
                   3581: ** the specified file. This is almost always 512 bytes, but may be
                   3582: ** larger for some devices.
                   3583: **
                   3584: ** SQLite code assumes this function cannot fail. It also assumes that
                   3585: ** if two files are created in the same file-system directory (i.e.
                   3586: ** a database and its journal file) that the sector size will be the
                   3587: ** same for both.
                   3588: */
                   3589: static int unixSectorSize(sqlite3_file *pFile){
                   3590:   (void)pFile;
                   3591:   return SQLITE_DEFAULT_SECTOR_SIZE;
                   3592: }
                   3593: 
                   3594: /*
                   3595: ** Return the device characteristics for the file.
                   3596: **
                   3597: ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
                   3598: ** However, that choice is contraversial since technically the underlying
                   3599: ** file system does not always provide powersafe overwrites.  (In other
                   3600: ** words, after a power-loss event, parts of the file that were never
                   3601: ** written might end up being altered.)  However, non-PSOW behavior is very,
                   3602: ** very rare.  And asserting PSOW makes a large reduction in the amount
                   3603: ** of required I/O for journaling, since a lot of padding is eliminated.
                   3604: **  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
                   3605: ** available to turn it off and URI query parameter available to turn it off.
                   3606: */
                   3607: static int unixDeviceCharacteristics(sqlite3_file *id){
                   3608:   unixFile *p = (unixFile*)id;
                   3609:   if( p->ctrlFlags & UNIXFILE_PSOW ){
                   3610:     return SQLITE_IOCAP_POWERSAFE_OVERWRITE;
                   3611:   }else{
                   3612:     return 0;
                   3613:   }
                   3614: }
                   3615: 
                   3616: #ifndef SQLITE_OMIT_WAL
                   3617: 
                   3618: 
                   3619: /*
                   3620: ** Object used to represent an shared memory buffer.  
                   3621: **
                   3622: ** When multiple threads all reference the same wal-index, each thread
                   3623: ** has its own unixShm object, but they all point to a single instance
                   3624: ** of this unixShmNode object.  In other words, each wal-index is opened
                   3625: ** only once per process.
                   3626: **
                   3627: ** Each unixShmNode object is connected to a single unixInodeInfo object.
                   3628: ** We could coalesce this object into unixInodeInfo, but that would mean
                   3629: ** every open file that does not use shared memory (in other words, most
                   3630: ** open files) would have to carry around this extra information.  So
                   3631: ** the unixInodeInfo object contains a pointer to this unixShmNode object
                   3632: ** and the unixShmNode object is created only when needed.
                   3633: **
                   3634: ** unixMutexHeld() must be true when creating or destroying
                   3635: ** this object or while reading or writing the following fields:
                   3636: **
                   3637: **      nRef
                   3638: **
                   3639: ** The following fields are read-only after the object is created:
                   3640: ** 
                   3641: **      fid
                   3642: **      zFilename
                   3643: **
                   3644: ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
                   3645: ** unixMutexHeld() is true when reading or writing any other field
                   3646: ** in this structure.
                   3647: */
                   3648: struct unixShmNode {
                   3649:   unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
                   3650:   sqlite3_mutex *mutex;      /* Mutex to access this object */
                   3651:   char *zFilename;           /* Name of the mmapped file */
                   3652:   int h;                     /* Open file descriptor */
                   3653:   int szRegion;              /* Size of shared-memory regions */
                   3654:   u16 nRegion;               /* Size of array apRegion */
                   3655:   u8 isReadonly;             /* True if read-only */
                   3656:   char **apRegion;           /* Array of mapped shared-memory regions */
                   3657:   int nRef;                  /* Number of unixShm objects pointing to this */
                   3658:   unixShm *pFirst;           /* All unixShm objects pointing to this */
                   3659: #ifdef SQLITE_DEBUG
                   3660:   u8 exclMask;               /* Mask of exclusive locks held */
                   3661:   u8 sharedMask;             /* Mask of shared locks held */
                   3662:   u8 nextShmId;              /* Next available unixShm.id value */
                   3663: #endif
                   3664: };
                   3665: 
                   3666: /*
                   3667: ** Structure used internally by this VFS to record the state of an
                   3668: ** open shared memory connection.
                   3669: **
                   3670: ** The following fields are initialized when this object is created and
                   3671: ** are read-only thereafter:
                   3672: **
                   3673: **    unixShm.pFile
                   3674: **    unixShm.id
                   3675: **
                   3676: ** All other fields are read/write.  The unixShm.pFile->mutex must be held
                   3677: ** while accessing any read/write fields.
                   3678: */
                   3679: struct unixShm {
                   3680:   unixShmNode *pShmNode;     /* The underlying unixShmNode object */
                   3681:   unixShm *pNext;            /* Next unixShm with the same unixShmNode */
                   3682:   u8 hasMutex;               /* True if holding the unixShmNode mutex */
                   3683:   u8 id;                     /* Id of this connection within its unixShmNode */
                   3684:   u16 sharedMask;            /* Mask of shared locks held */
                   3685:   u16 exclMask;              /* Mask of exclusive locks held */
                   3686: };
                   3687: 
                   3688: /*
                   3689: ** Constants used for locking
                   3690: */
                   3691: #define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
                   3692: #define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
                   3693: 
                   3694: /*
                   3695: ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
                   3696: **
                   3697: ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
                   3698: ** otherwise.
                   3699: */
                   3700: static int unixShmSystemLock(
                   3701:   unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
                   3702:   int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
                   3703:   int ofst,              /* First byte of the locking range */
                   3704:   int n                  /* Number of bytes to lock */
                   3705: ){
                   3706:   struct flock f;       /* The posix advisory locking structure */
                   3707:   int rc = SQLITE_OK;   /* Result code form fcntl() */
                   3708: 
                   3709:   /* Access to the unixShmNode object is serialized by the caller */
                   3710:   assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
                   3711: 
                   3712:   /* Shared locks never span more than one byte */
                   3713:   assert( n==1 || lockType!=F_RDLCK );
                   3714: 
                   3715:   /* Locks are within range */
                   3716:   assert( n>=1 && n<SQLITE_SHM_NLOCK );
                   3717: 
                   3718:   if( pShmNode->h>=0 ){
                   3719:     /* Initialize the locking parameters */
                   3720:     memset(&f, 0, sizeof(f));
                   3721:     f.l_type = lockType;
                   3722:     f.l_whence = SEEK_SET;
                   3723:     f.l_start = ofst;
                   3724:     f.l_len = n;
                   3725: 
                   3726:     rc = osFcntl(pShmNode->h, F_SETLK, &f);
                   3727:     rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
                   3728:   }
                   3729: 
                   3730:   /* Update the global lock state and do debug tracing */
                   3731: #ifdef SQLITE_DEBUG
                   3732:   { u16 mask;
                   3733:   OSTRACE(("SHM-LOCK "));
                   3734:   mask = (1<<(ofst+n)) - (1<<ofst);
                   3735:   if( rc==SQLITE_OK ){
                   3736:     if( lockType==F_UNLCK ){
                   3737:       OSTRACE(("unlock %d ok", ofst));
                   3738:       pShmNode->exclMask &= ~mask;
                   3739:       pShmNode->sharedMask &= ~mask;
                   3740:     }else if( lockType==F_RDLCK ){
                   3741:       OSTRACE(("read-lock %d ok", ofst));
                   3742:       pShmNode->exclMask &= ~mask;
                   3743:       pShmNode->sharedMask |= mask;
                   3744:     }else{
                   3745:       assert( lockType==F_WRLCK );
                   3746:       OSTRACE(("write-lock %d ok", ofst));
                   3747:       pShmNode->exclMask |= mask;
                   3748:       pShmNode->sharedMask &= ~mask;
                   3749:     }
                   3750:   }else{
                   3751:     if( lockType==F_UNLCK ){
                   3752:       OSTRACE(("unlock %d failed", ofst));
                   3753:     }else if( lockType==F_RDLCK ){
                   3754:       OSTRACE(("read-lock failed"));
                   3755:     }else{
                   3756:       assert( lockType==F_WRLCK );
                   3757:       OSTRACE(("write-lock %d failed", ofst));
                   3758:     }
                   3759:   }
                   3760:   OSTRACE((" - afterwards %03x,%03x\n",
                   3761:            pShmNode->sharedMask, pShmNode->exclMask));
                   3762:   }
                   3763: #endif
                   3764: 
                   3765:   return rc;        
                   3766: }
                   3767: 
                   3768: 
                   3769: /*
                   3770: ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
                   3771: **
                   3772: ** This is not a VFS shared-memory method; it is a utility function called
                   3773: ** by VFS shared-memory methods.
                   3774: */
                   3775: static void unixShmPurge(unixFile *pFd){
                   3776:   unixShmNode *p = pFd->pInode->pShmNode;
                   3777:   assert( unixMutexHeld() );
                   3778:   if( p && p->nRef==0 ){
                   3779:     int i;
                   3780:     assert( p->pInode==pFd->pInode );
                   3781:     sqlite3_mutex_free(p->mutex);
                   3782:     for(i=0; i<p->nRegion; i++){
                   3783:       if( p->h>=0 ){
                   3784:         munmap(p->apRegion[i], p->szRegion);
                   3785:       }else{
                   3786:         sqlite3_free(p->apRegion[i]);
                   3787:       }
                   3788:     }
                   3789:     sqlite3_free(p->apRegion);
                   3790:     if( p->h>=0 ){
                   3791:       robust_close(pFd, p->h, __LINE__);
                   3792:       p->h = -1;
                   3793:     }
                   3794:     p->pInode->pShmNode = 0;
                   3795:     sqlite3_free(p);
                   3796:   }
                   3797: }
                   3798: 
                   3799: /*
                   3800: ** Open a shared-memory area associated with open database file pDbFd.  
                   3801: ** This particular implementation uses mmapped files.
                   3802: **
                   3803: ** The file used to implement shared-memory is in the same directory
                   3804: ** as the open database file and has the same name as the open database
                   3805: ** file with the "-shm" suffix added.  For example, if the database file
                   3806: ** is "/home/user1/config.db" then the file that is created and mmapped
                   3807: ** for shared memory will be called "/home/user1/config.db-shm".  
                   3808: **
                   3809: ** Another approach to is to use files in /dev/shm or /dev/tmp or an
                   3810: ** some other tmpfs mount. But if a file in a different directory
                   3811: ** from the database file is used, then differing access permissions
                   3812: ** or a chroot() might cause two different processes on the same
                   3813: ** database to end up using different files for shared memory - 
                   3814: ** meaning that their memory would not really be shared - resulting
                   3815: ** in database corruption.  Nevertheless, this tmpfs file usage
                   3816: ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
                   3817: ** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
                   3818: ** option results in an incompatible build of SQLite;  builds of SQLite
                   3819: ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
                   3820: ** same database file at the same time, database corruption will likely
                   3821: ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
                   3822: ** "unsupported" and may go away in a future SQLite release.
                   3823: **
                   3824: ** When opening a new shared-memory file, if no other instances of that
                   3825: ** file are currently open, in this process or in other processes, then
                   3826: ** the file must be truncated to zero length or have its header cleared.
                   3827: **
                   3828: ** If the original database file (pDbFd) is using the "unix-excl" VFS
                   3829: ** that means that an exclusive lock is held on the database file and
                   3830: ** that no other processes are able to read or write the database.  In
                   3831: ** that case, we do not really need shared memory.  No shared memory
                   3832: ** file is created.  The shared memory will be simulated with heap memory.
                   3833: */
                   3834: static int unixOpenSharedMemory(unixFile *pDbFd){
                   3835:   struct unixShm *p = 0;          /* The connection to be opened */
                   3836:   struct unixShmNode *pShmNode;   /* The underlying mmapped file */
                   3837:   int rc;                         /* Result code */
                   3838:   unixInodeInfo *pInode;          /* The inode of fd */
                   3839:   char *zShmFilename;             /* Name of the file used for SHM */
                   3840:   int nShmFilename;               /* Size of the SHM filename in bytes */
                   3841: 
                   3842:   /* Allocate space for the new unixShm object. */
                   3843:   p = sqlite3_malloc( sizeof(*p) );
                   3844:   if( p==0 ) return SQLITE_NOMEM;
                   3845:   memset(p, 0, sizeof(*p));
                   3846:   assert( pDbFd->pShm==0 );
                   3847: 
                   3848:   /* Check to see if a unixShmNode object already exists. Reuse an existing
                   3849:   ** one if present. Create a new one if necessary.
                   3850:   */
                   3851:   unixEnterMutex();
                   3852:   pInode = pDbFd->pInode;
                   3853:   pShmNode = pInode->pShmNode;
                   3854:   if( pShmNode==0 ){
                   3855:     struct stat sStat;                 /* fstat() info for database file */
                   3856: 
                   3857:     /* Call fstat() to figure out the permissions on the database file. If
                   3858:     ** a new *-shm file is created, an attempt will be made to create it
                   3859:     ** with the same permissions. The actual permissions the file is created
                   3860:     ** with are subject to the current umask setting.
                   3861:     */
                   3862:     if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
                   3863:       rc = SQLITE_IOERR_FSTAT;
                   3864:       goto shm_open_err;
                   3865:     }
                   3866: 
                   3867: #ifdef SQLITE_SHM_DIRECTORY
                   3868:     nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
                   3869: #else
                   3870:     nShmFilename = 6 + (int)strlen(pDbFd->zPath);
                   3871: #endif
                   3872:     pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
                   3873:     if( pShmNode==0 ){
                   3874:       rc = SQLITE_NOMEM;
                   3875:       goto shm_open_err;
                   3876:     }
                   3877:     memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
                   3878:     zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
                   3879: #ifdef SQLITE_SHM_DIRECTORY
                   3880:     sqlite3_snprintf(nShmFilename, zShmFilename, 
                   3881:                      SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
                   3882:                      (u32)sStat.st_ino, (u32)sStat.st_dev);
                   3883: #else
                   3884:     sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
                   3885:     sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
                   3886: #endif
                   3887:     pShmNode->h = -1;
                   3888:     pDbFd->pInode->pShmNode = pShmNode;
                   3889:     pShmNode->pInode = pDbFd->pInode;
                   3890:     pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
                   3891:     if( pShmNode->mutex==0 ){
                   3892:       rc = SQLITE_NOMEM;
                   3893:       goto shm_open_err;
                   3894:     }
                   3895: 
                   3896:     if( pInode->bProcessLock==0 ){
                   3897:       int openFlags = O_RDWR | O_CREAT;
                   3898:       if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
                   3899:         openFlags = O_RDONLY;
                   3900:         pShmNode->isReadonly = 1;
                   3901:       }
                   3902:       pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
                   3903:       if( pShmNode->h<0 ){
                   3904:         if( pShmNode->h<0 ){
                   3905:           rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
                   3906:           goto shm_open_err;
                   3907:         }
                   3908:       }
                   3909:   
                   3910:       /* Check to see if another process is holding the dead-man switch.
                   3911:       ** If not, truncate the file to zero length. 
                   3912:       */
                   3913:       rc = SQLITE_OK;
                   3914:       if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
                   3915:         if( robust_ftruncate(pShmNode->h, 0) ){
                   3916:           rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
                   3917:         }
                   3918:       }
                   3919:       if( rc==SQLITE_OK ){
                   3920:         rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
                   3921:       }
                   3922:       if( rc ) goto shm_open_err;
                   3923:     }
                   3924:   }
                   3925: 
                   3926:   /* Make the new connection a child of the unixShmNode */
                   3927:   p->pShmNode = pShmNode;
                   3928: #ifdef SQLITE_DEBUG
                   3929:   p->id = pShmNode->nextShmId++;
                   3930: #endif
                   3931:   pShmNode->nRef++;
                   3932:   pDbFd->pShm = p;
                   3933:   unixLeaveMutex();
                   3934: 
                   3935:   /* The reference count on pShmNode has already been incremented under
                   3936:   ** the cover of the unixEnterMutex() mutex and the pointer from the
                   3937:   ** new (struct unixShm) object to the pShmNode has been set. All that is
                   3938:   ** left to do is to link the new object into the linked list starting
                   3939:   ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex 
                   3940:   ** mutex.
                   3941:   */
                   3942:   sqlite3_mutex_enter(pShmNode->mutex);
                   3943:   p->pNext = pShmNode->pFirst;
                   3944:   pShmNode->pFirst = p;
                   3945:   sqlite3_mutex_leave(pShmNode->mutex);
                   3946:   return SQLITE_OK;
                   3947: 
                   3948:   /* Jump here on any error */
                   3949: shm_open_err:
                   3950:   unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
                   3951:   sqlite3_free(p);
                   3952:   unixLeaveMutex();
                   3953:   return rc;
                   3954: }
                   3955: 
                   3956: /*
                   3957: ** This function is called to obtain a pointer to region iRegion of the 
                   3958: ** shared-memory associated with the database file fd. Shared-memory regions 
                   3959: ** are numbered starting from zero. Each shared-memory region is szRegion 
                   3960: ** bytes in size.
                   3961: **
                   3962: ** If an error occurs, an error code is returned and *pp is set to NULL.
                   3963: **
                   3964: ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
                   3965: ** region has not been allocated (by any client, including one running in a
                   3966: ** separate process), then *pp is set to NULL and SQLITE_OK returned. If 
                   3967: ** bExtend is non-zero and the requested shared-memory region has not yet 
                   3968: ** been allocated, it is allocated by this function.
                   3969: **
                   3970: ** If the shared-memory region has already been allocated or is allocated by
                   3971: ** this call as described above, then it is mapped into this processes 
                   3972: ** address space (if it is not already), *pp is set to point to the mapped 
                   3973: ** memory and SQLITE_OK returned.
                   3974: */
                   3975: static int unixShmMap(
                   3976:   sqlite3_file *fd,               /* Handle open on database file */
                   3977:   int iRegion,                    /* Region to retrieve */
                   3978:   int szRegion,                   /* Size of regions */
                   3979:   int bExtend,                    /* True to extend file if necessary */
                   3980:   void volatile **pp              /* OUT: Mapped memory */
                   3981: ){
                   3982:   unixFile *pDbFd = (unixFile*)fd;
                   3983:   unixShm *p;
                   3984:   unixShmNode *pShmNode;
                   3985:   int rc = SQLITE_OK;
                   3986: 
                   3987:   /* If the shared-memory file has not yet been opened, open it now. */
                   3988:   if( pDbFd->pShm==0 ){
                   3989:     rc = unixOpenSharedMemory(pDbFd);
                   3990:     if( rc!=SQLITE_OK ) return rc;
                   3991:   }
                   3992: 
                   3993:   p = pDbFd->pShm;
                   3994:   pShmNode = p->pShmNode;
                   3995:   sqlite3_mutex_enter(pShmNode->mutex);
                   3996:   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
                   3997:   assert( pShmNode->pInode==pDbFd->pInode );
                   3998:   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
                   3999:   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
                   4000: 
                   4001:   if( pShmNode->nRegion<=iRegion ){
                   4002:     char **apNew;                      /* New apRegion[] array */
                   4003:     int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
                   4004:     struct stat sStat;                 /* Used by fstat() */
                   4005: 
                   4006:     pShmNode->szRegion = szRegion;
                   4007: 
                   4008:     if( pShmNode->h>=0 ){
                   4009:       /* The requested region is not mapped into this processes address space.
                   4010:       ** Check to see if it has been allocated (i.e. if the wal-index file is
                   4011:       ** large enough to contain the requested region).
                   4012:       */
                   4013:       if( osFstat(pShmNode->h, &sStat) ){
                   4014:         rc = SQLITE_IOERR_SHMSIZE;
                   4015:         goto shmpage_out;
                   4016:       }
                   4017:   
                   4018:       if( sStat.st_size<nByte ){
                   4019:         /* The requested memory region does not exist. If bExtend is set to
                   4020:         ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
                   4021:         **
                   4022:         ** Alternatively, if bExtend is true, use ftruncate() to allocate
                   4023:         ** the requested memory region.
                   4024:         */
                   4025:         if( !bExtend ) goto shmpage_out;
                   4026:         if( robust_ftruncate(pShmNode->h, nByte) ){
                   4027:           rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
                   4028:                             pShmNode->zFilename);
                   4029:           goto shmpage_out;
                   4030:         }
                   4031:       }
                   4032:     }
                   4033: 
                   4034:     /* Map the requested memory region into this processes address space. */
                   4035:     apNew = (char **)sqlite3_realloc(
                   4036:         pShmNode->apRegion, (iRegion+1)*sizeof(char *)
                   4037:     );
                   4038:     if( !apNew ){
                   4039:       rc = SQLITE_IOERR_NOMEM;
                   4040:       goto shmpage_out;
                   4041:     }
                   4042:     pShmNode->apRegion = apNew;
                   4043:     while(pShmNode->nRegion<=iRegion){
                   4044:       void *pMem;
                   4045:       if( pShmNode->h>=0 ){
                   4046:         pMem = mmap(0, szRegion,
                   4047:             pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
                   4048:             MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
                   4049:         );
                   4050:         if( pMem==MAP_FAILED ){
                   4051:           rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
                   4052:           goto shmpage_out;
                   4053:         }
                   4054:       }else{
                   4055:         pMem = sqlite3_malloc(szRegion);
                   4056:         if( pMem==0 ){
                   4057:           rc = SQLITE_NOMEM;
                   4058:           goto shmpage_out;
                   4059:         }
                   4060:         memset(pMem, 0, szRegion);
                   4061:       }
                   4062:       pShmNode->apRegion[pShmNode->nRegion] = pMem;
                   4063:       pShmNode->nRegion++;
                   4064:     }
                   4065:   }
                   4066: 
                   4067: shmpage_out:
                   4068:   if( pShmNode->nRegion>iRegion ){
                   4069:     *pp = pShmNode->apRegion[iRegion];
                   4070:   }else{
                   4071:     *pp = 0;
                   4072:   }
                   4073:   if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
                   4074:   sqlite3_mutex_leave(pShmNode->mutex);
                   4075:   return rc;
                   4076: }
                   4077: 
                   4078: /*
                   4079: ** Change the lock state for a shared-memory segment.
                   4080: **
                   4081: ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
                   4082: ** different here than in posix.  In xShmLock(), one can go from unlocked
                   4083: ** to shared and back or from unlocked to exclusive and back.  But one may
                   4084: ** not go from shared to exclusive or from exclusive to shared.
                   4085: */
                   4086: static int unixShmLock(
                   4087:   sqlite3_file *fd,          /* Database file holding the shared memory */
                   4088:   int ofst,                  /* First lock to acquire or release */
                   4089:   int n,                     /* Number of locks to acquire or release */
                   4090:   int flags                  /* What to do with the lock */
                   4091: ){
                   4092:   unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
                   4093:   unixShm *p = pDbFd->pShm;             /* The shared memory being locked */
                   4094:   unixShm *pX;                          /* For looping over all siblings */
                   4095:   unixShmNode *pShmNode = p->pShmNode;  /* The underlying file iNode */
                   4096:   int rc = SQLITE_OK;                   /* Result code */
                   4097:   u16 mask;                             /* Mask of locks to take or release */
                   4098: 
                   4099:   assert( pShmNode==pDbFd->pInode->pShmNode );
                   4100:   assert( pShmNode->pInode==pDbFd->pInode );
                   4101:   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
                   4102:   assert( n>=1 );
                   4103:   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
                   4104:        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
                   4105:        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
                   4106:        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
                   4107:   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
                   4108:   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
                   4109:   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
                   4110: 
                   4111:   mask = (1<<(ofst+n)) - (1<<ofst);
                   4112:   assert( n>1 || mask==(1<<ofst) );
                   4113:   sqlite3_mutex_enter(pShmNode->mutex);
                   4114:   if( flags & SQLITE_SHM_UNLOCK ){
                   4115:     u16 allMask = 0; /* Mask of locks held by siblings */
                   4116: 
                   4117:     /* See if any siblings hold this same lock */
                   4118:     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
                   4119:       if( pX==p ) continue;
                   4120:       assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
                   4121:       allMask |= pX->sharedMask;
                   4122:     }
                   4123: 
                   4124:     /* Unlock the system-level locks */
                   4125:     if( (mask & allMask)==0 ){
                   4126:       rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
                   4127:     }else{
                   4128:       rc = SQLITE_OK;
                   4129:     }
                   4130: 
                   4131:     /* Undo the local locks */
                   4132:     if( rc==SQLITE_OK ){
                   4133:       p->exclMask &= ~mask;
                   4134:       p->sharedMask &= ~mask;
                   4135:     } 
                   4136:   }else if( flags & SQLITE_SHM_SHARED ){
                   4137:     u16 allShared = 0;  /* Union of locks held by connections other than "p" */
                   4138: 
                   4139:     /* Find out which shared locks are already held by sibling connections.
                   4140:     ** If any sibling already holds an exclusive lock, go ahead and return
                   4141:     ** SQLITE_BUSY.
                   4142:     */
                   4143:     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
                   4144:       if( (pX->exclMask & mask)!=0 ){
                   4145:         rc = SQLITE_BUSY;
                   4146:         break;
                   4147:       }
                   4148:       allShared |= pX->sharedMask;
                   4149:     }
                   4150: 
                   4151:     /* Get shared locks at the system level, if necessary */
                   4152:     if( rc==SQLITE_OK ){
                   4153:       if( (allShared & mask)==0 ){
                   4154:         rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
                   4155:       }else{
                   4156:         rc = SQLITE_OK;
                   4157:       }
                   4158:     }
                   4159: 
                   4160:     /* Get the local shared locks */
                   4161:     if( rc==SQLITE_OK ){
                   4162:       p->sharedMask |= mask;
                   4163:     }
                   4164:   }else{
                   4165:     /* Make sure no sibling connections hold locks that will block this
                   4166:     ** lock.  If any do, return SQLITE_BUSY right away.
                   4167:     */
                   4168:     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
                   4169:       if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
                   4170:         rc = SQLITE_BUSY;
                   4171:         break;
                   4172:       }
                   4173:     }
                   4174:   
                   4175:     /* Get the exclusive locks at the system level.  Then if successful
                   4176:     ** also mark the local connection as being locked.
                   4177:     */
                   4178:     if( rc==SQLITE_OK ){
                   4179:       rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
                   4180:       if( rc==SQLITE_OK ){
                   4181:         assert( (p->sharedMask & mask)==0 );
                   4182:         p->exclMask |= mask;
                   4183:       }
                   4184:     }
                   4185:   }
                   4186:   sqlite3_mutex_leave(pShmNode->mutex);
                   4187:   OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
                   4188:            p->id, getpid(), p->sharedMask, p->exclMask));
                   4189:   return rc;
                   4190: }
                   4191: 
                   4192: /*
                   4193: ** Implement a memory barrier or memory fence on shared memory.  
                   4194: **
                   4195: ** All loads and stores begun before the barrier must complete before
                   4196: ** any load or store begun after the barrier.
                   4197: */
                   4198: static void unixShmBarrier(
                   4199:   sqlite3_file *fd                /* Database file holding the shared memory */
                   4200: ){
                   4201:   UNUSED_PARAMETER(fd);
                   4202:   unixEnterMutex();
                   4203:   unixLeaveMutex();
                   4204: }
                   4205: 
                   4206: /*
                   4207: ** Close a connection to shared-memory.  Delete the underlying 
                   4208: ** storage if deleteFlag is true.
                   4209: **
                   4210: ** If there is no shared memory associated with the connection then this
                   4211: ** routine is a harmless no-op.
                   4212: */
                   4213: static int unixShmUnmap(
                   4214:   sqlite3_file *fd,               /* The underlying database file */
                   4215:   int deleteFlag                  /* Delete shared-memory if true */
                   4216: ){
                   4217:   unixShm *p;                     /* The connection to be closed */
                   4218:   unixShmNode *pShmNode;          /* The underlying shared-memory file */
                   4219:   unixShm **pp;                   /* For looping over sibling connections */
                   4220:   unixFile *pDbFd;                /* The underlying database file */
                   4221: 
                   4222:   pDbFd = (unixFile*)fd;
                   4223:   p = pDbFd->pShm;
                   4224:   if( p==0 ) return SQLITE_OK;
                   4225:   pShmNode = p->pShmNode;
                   4226: 
                   4227:   assert( pShmNode==pDbFd->pInode->pShmNode );
                   4228:   assert( pShmNode->pInode==pDbFd->pInode );
                   4229: 
                   4230:   /* Remove connection p from the set of connections associated
                   4231:   ** with pShmNode */
                   4232:   sqlite3_mutex_enter(pShmNode->mutex);
                   4233:   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
                   4234:   *pp = p->pNext;
                   4235: 
                   4236:   /* Free the connection p */
                   4237:   sqlite3_free(p);
                   4238:   pDbFd->pShm = 0;
                   4239:   sqlite3_mutex_leave(pShmNode->mutex);
                   4240: 
                   4241:   /* If pShmNode->nRef has reached 0, then close the underlying
                   4242:   ** shared-memory file, too */
                   4243:   unixEnterMutex();
                   4244:   assert( pShmNode->nRef>0 );
                   4245:   pShmNode->nRef--;
                   4246:   if( pShmNode->nRef==0 ){
                   4247:     if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
                   4248:     unixShmPurge(pDbFd);
                   4249:   }
                   4250:   unixLeaveMutex();
                   4251: 
                   4252:   return SQLITE_OK;
                   4253: }
                   4254: 
                   4255: 
                   4256: #else
                   4257: # define unixShmMap     0
                   4258: # define unixShmLock    0
                   4259: # define unixShmBarrier 0
                   4260: # define unixShmUnmap   0
                   4261: #endif /* #ifndef SQLITE_OMIT_WAL */
                   4262: 
                   4263: /*
                   4264: ** Here ends the implementation of all sqlite3_file methods.
                   4265: **
                   4266: ********************** End sqlite3_file Methods *******************************
                   4267: ******************************************************************************/
                   4268: 
                   4269: /*
                   4270: ** This division contains definitions of sqlite3_io_methods objects that
                   4271: ** implement various file locking strategies.  It also contains definitions
                   4272: ** of "finder" functions.  A finder-function is used to locate the appropriate
                   4273: ** sqlite3_io_methods object for a particular database file.  The pAppData
                   4274: ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
                   4275: ** the correct finder-function for that VFS.
                   4276: **
                   4277: ** Most finder functions return a pointer to a fixed sqlite3_io_methods
                   4278: ** object.  The only interesting finder-function is autolockIoFinder, which
                   4279: ** looks at the filesystem type and tries to guess the best locking
                   4280: ** strategy from that.
                   4281: **
                   4282: ** For finder-funtion F, two objects are created:
                   4283: **
                   4284: **    (1) The real finder-function named "FImpt()".
                   4285: **
                   4286: **    (2) A constant pointer to this function named just "F".
                   4287: **
                   4288: **
                   4289: ** A pointer to the F pointer is used as the pAppData value for VFS
                   4290: ** objects.  We have to do this instead of letting pAppData point
                   4291: ** directly at the finder-function since C90 rules prevent a void*
                   4292: ** from be cast into a function pointer.
                   4293: **
                   4294: **
                   4295: ** Each instance of this macro generates two objects:
                   4296: **
                   4297: **   *  A constant sqlite3_io_methods object call METHOD that has locking
                   4298: **      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
                   4299: **
                   4300: **   *  An I/O method finder function called FINDER that returns a pointer
                   4301: **      to the METHOD object in the previous bullet.
                   4302: */
                   4303: #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK)      \
                   4304: static const sqlite3_io_methods METHOD = {                                   \
                   4305:    VERSION,                    /* iVersion */                                \
                   4306:    CLOSE,                      /* xClose */                                  \
                   4307:    unixRead,                   /* xRead */                                   \
                   4308:    unixWrite,                  /* xWrite */                                  \
                   4309:    unixTruncate,               /* xTruncate */                               \
                   4310:    unixSync,                   /* xSync */                                   \
                   4311:    unixFileSize,               /* xFileSize */                               \
                   4312:    LOCK,                       /* xLock */                                   \
                   4313:    UNLOCK,                     /* xUnlock */                                 \
                   4314:    CKLOCK,                     /* xCheckReservedLock */                      \
                   4315:    unixFileControl,            /* xFileControl */                            \
                   4316:    unixSectorSize,             /* xSectorSize */                             \
                   4317:    unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
                   4318:    unixShmMap,                 /* xShmMap */                                 \
                   4319:    unixShmLock,                /* xShmLock */                                \
                   4320:    unixShmBarrier,             /* xShmBarrier */                             \
                   4321:    unixShmUnmap                /* xShmUnmap */                               \
                   4322: };                                                                           \
                   4323: static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
                   4324:   UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
                   4325:   return &METHOD;                                                            \
                   4326: }                                                                            \
                   4327: static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
                   4328:     = FINDER##Impl;
                   4329: 
                   4330: /*
                   4331: ** Here are all of the sqlite3_io_methods objects for each of the
                   4332: ** locking strategies.  Functions that return pointers to these methods
                   4333: ** are also created.
                   4334: */
                   4335: IOMETHODS(
                   4336:   posixIoFinder,            /* Finder function name */
                   4337:   posixIoMethods,           /* sqlite3_io_methods object name */
                   4338:   2,                        /* shared memory is enabled */
                   4339:   unixClose,                /* xClose method */
                   4340:   unixLock,                 /* xLock method */
                   4341:   unixUnlock,               /* xUnlock method */
                   4342:   unixCheckReservedLock     /* xCheckReservedLock method */
                   4343: )
                   4344: IOMETHODS(
                   4345:   nolockIoFinder,           /* Finder function name */
                   4346:   nolockIoMethods,          /* sqlite3_io_methods object name */
                   4347:   1,                        /* shared memory is disabled */
                   4348:   nolockClose,              /* xClose method */
                   4349:   nolockLock,               /* xLock method */
                   4350:   nolockUnlock,             /* xUnlock method */
                   4351:   nolockCheckReservedLock   /* xCheckReservedLock method */
                   4352: )
                   4353: IOMETHODS(
                   4354:   dotlockIoFinder,          /* Finder function name */
                   4355:   dotlockIoMethods,         /* sqlite3_io_methods object name */
                   4356:   1,                        /* shared memory is disabled */
                   4357:   dotlockClose,             /* xClose method */
                   4358:   dotlockLock,              /* xLock method */
                   4359:   dotlockUnlock,            /* xUnlock method */
                   4360:   dotlockCheckReservedLock  /* xCheckReservedLock method */
                   4361: )
                   4362: 
                   4363: #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
                   4364: IOMETHODS(
                   4365:   flockIoFinder,            /* Finder function name */
                   4366:   flockIoMethods,           /* sqlite3_io_methods object name */
                   4367:   1,                        /* shared memory is disabled */
                   4368:   flockClose,               /* xClose method */
                   4369:   flockLock,                /* xLock method */
                   4370:   flockUnlock,              /* xUnlock method */
                   4371:   flockCheckReservedLock    /* xCheckReservedLock method */
                   4372: )
                   4373: #endif
                   4374: 
                   4375: #if OS_VXWORKS
                   4376: IOMETHODS(
                   4377:   semIoFinder,              /* Finder function name */
                   4378:   semIoMethods,             /* sqlite3_io_methods object name */
                   4379:   1,                        /* shared memory is disabled */
                   4380:   semClose,                 /* xClose method */
                   4381:   semLock,                  /* xLock method */
                   4382:   semUnlock,                /* xUnlock method */
                   4383:   semCheckReservedLock      /* xCheckReservedLock method */
                   4384: )
                   4385: #endif
                   4386: 
                   4387: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   4388: IOMETHODS(
                   4389:   afpIoFinder,              /* Finder function name */
                   4390:   afpIoMethods,             /* sqlite3_io_methods object name */
                   4391:   1,                        /* shared memory is disabled */
                   4392:   afpClose,                 /* xClose method */
                   4393:   afpLock,                  /* xLock method */
                   4394:   afpUnlock,                /* xUnlock method */
                   4395:   afpCheckReservedLock      /* xCheckReservedLock method */
                   4396: )
                   4397: #endif
                   4398: 
                   4399: /*
                   4400: ** The proxy locking method is a "super-method" in the sense that it
                   4401: ** opens secondary file descriptors for the conch and lock files and
                   4402: ** it uses proxy, dot-file, AFP, and flock() locking methods on those
                   4403: ** secondary files.  For this reason, the division that implements
                   4404: ** proxy locking is located much further down in the file.  But we need
                   4405: ** to go ahead and define the sqlite3_io_methods and finder function
                   4406: ** for proxy locking here.  So we forward declare the I/O methods.
                   4407: */
                   4408: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   4409: static int proxyClose(sqlite3_file*);
                   4410: static int proxyLock(sqlite3_file*, int);
                   4411: static int proxyUnlock(sqlite3_file*, int);
                   4412: static int proxyCheckReservedLock(sqlite3_file*, int*);
                   4413: IOMETHODS(
                   4414:   proxyIoFinder,            /* Finder function name */
                   4415:   proxyIoMethods,           /* sqlite3_io_methods object name */
                   4416:   1,                        /* shared memory is disabled */
                   4417:   proxyClose,               /* xClose method */
                   4418:   proxyLock,                /* xLock method */
                   4419:   proxyUnlock,              /* xUnlock method */
                   4420:   proxyCheckReservedLock    /* xCheckReservedLock method */
                   4421: )
                   4422: #endif
                   4423: 
                   4424: /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
                   4425: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   4426: IOMETHODS(
                   4427:   nfsIoFinder,               /* Finder function name */
                   4428:   nfsIoMethods,              /* sqlite3_io_methods object name */
                   4429:   1,                         /* shared memory is disabled */
                   4430:   unixClose,                 /* xClose method */
                   4431:   unixLock,                  /* xLock method */
                   4432:   nfsUnlock,                 /* xUnlock method */
                   4433:   unixCheckReservedLock      /* xCheckReservedLock method */
                   4434: )
                   4435: #endif
                   4436: 
                   4437: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   4438: /* 
                   4439: ** This "finder" function attempts to determine the best locking strategy 
                   4440: ** for the database file "filePath".  It then returns the sqlite3_io_methods
                   4441: ** object that implements that strategy.
                   4442: **
                   4443: ** This is for MacOSX only.
                   4444: */
                   4445: static const sqlite3_io_methods *autolockIoFinderImpl(
                   4446:   const char *filePath,    /* name of the database file */
                   4447:   unixFile *pNew           /* open file object for the database file */
                   4448: ){
                   4449:   static const struct Mapping {
                   4450:     const char *zFilesystem;              /* Filesystem type name */
                   4451:     const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
                   4452:   } aMap[] = {
                   4453:     { "hfs",    &posixIoMethods },
                   4454:     { "ufs",    &posixIoMethods },
                   4455:     { "afpfs",  &afpIoMethods },
                   4456:     { "smbfs",  &afpIoMethods },
                   4457:     { "webdav", &nolockIoMethods },
                   4458:     { 0, 0 }
                   4459:   };
                   4460:   int i;
                   4461:   struct statfs fsInfo;
                   4462:   struct flock lockInfo;
                   4463: 
                   4464:   if( !filePath ){
                   4465:     /* If filePath==NULL that means we are dealing with a transient file
                   4466:     ** that does not need to be locked. */
                   4467:     return &nolockIoMethods;
                   4468:   }
                   4469:   if( statfs(filePath, &fsInfo) != -1 ){
                   4470:     if( fsInfo.f_flags & MNT_RDONLY ){
                   4471:       return &nolockIoMethods;
                   4472:     }
                   4473:     for(i=0; aMap[i].zFilesystem; i++){
                   4474:       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
                   4475:         return aMap[i].pMethods;
                   4476:       }
                   4477:     }
                   4478:   }
                   4479: 
                   4480:   /* Default case. Handles, amongst others, "nfs".
                   4481:   ** Test byte-range lock using fcntl(). If the call succeeds, 
                   4482:   ** assume that the file-system supports POSIX style locks. 
                   4483:   */
                   4484:   lockInfo.l_len = 1;
                   4485:   lockInfo.l_start = 0;
                   4486:   lockInfo.l_whence = SEEK_SET;
                   4487:   lockInfo.l_type = F_RDLCK;
                   4488:   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
                   4489:     if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
                   4490:       return &nfsIoMethods;
                   4491:     } else {
                   4492:       return &posixIoMethods;
                   4493:     }
                   4494:   }else{
                   4495:     return &dotlockIoMethods;
                   4496:   }
                   4497: }
                   4498: static const sqlite3_io_methods 
                   4499:   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
                   4500: 
                   4501: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
                   4502: 
                   4503: #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
                   4504: /* 
                   4505: ** This "finder" function attempts to determine the best locking strategy 
                   4506: ** for the database file "filePath".  It then returns the sqlite3_io_methods
                   4507: ** object that implements that strategy.
                   4508: **
                   4509: ** This is for VXWorks only.
                   4510: */
                   4511: static const sqlite3_io_methods *autolockIoFinderImpl(
                   4512:   const char *filePath,    /* name of the database file */
                   4513:   unixFile *pNew           /* the open file object */
                   4514: ){
                   4515:   struct flock lockInfo;
                   4516: 
                   4517:   if( !filePath ){
                   4518:     /* If filePath==NULL that means we are dealing with a transient file
                   4519:     ** that does not need to be locked. */
                   4520:     return &nolockIoMethods;
                   4521:   }
                   4522: 
                   4523:   /* Test if fcntl() is supported and use POSIX style locks.
                   4524:   ** Otherwise fall back to the named semaphore method.
                   4525:   */
                   4526:   lockInfo.l_len = 1;
                   4527:   lockInfo.l_start = 0;
                   4528:   lockInfo.l_whence = SEEK_SET;
                   4529:   lockInfo.l_type = F_RDLCK;
                   4530:   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
                   4531:     return &posixIoMethods;
                   4532:   }else{
                   4533:     return &semIoMethods;
                   4534:   }
                   4535: }
                   4536: static const sqlite3_io_methods 
                   4537:   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
                   4538: 
                   4539: #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
                   4540: 
                   4541: /*
                   4542: ** An abstract type for a pointer to a IO method finder function:
                   4543: */
                   4544: typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
                   4545: 
                   4546: 
                   4547: /****************************************************************************
                   4548: **************************** sqlite3_vfs methods ****************************
                   4549: **
                   4550: ** This division contains the implementation of methods on the
                   4551: ** sqlite3_vfs object.
                   4552: */
                   4553: 
                   4554: /*
                   4555: ** Initialize the contents of the unixFile structure pointed to by pId.
                   4556: */
                   4557: static int fillInUnixFile(
                   4558:   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
                   4559:   int h,                  /* Open file descriptor of file being opened */
                   4560:   sqlite3_file *pId,      /* Write to the unixFile structure here */
                   4561:   const char *zFilename,  /* Name of the file being opened */
                   4562:   int ctrlFlags           /* Zero or more UNIXFILE_* values */
                   4563: ){
                   4564:   const sqlite3_io_methods *pLockingStyle;
                   4565:   unixFile *pNew = (unixFile *)pId;
                   4566:   int rc = SQLITE_OK;
                   4567: 
                   4568:   assert( pNew->pInode==NULL );
                   4569: 
                   4570:   /* Usually the path zFilename should not be a relative pathname. The
                   4571:   ** exception is when opening the proxy "conch" file in builds that
                   4572:   ** include the special Apple locking styles.
                   4573:   */
                   4574: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   4575:   assert( zFilename==0 || zFilename[0]=='/' 
                   4576:     || pVfs->pAppData==(void*)&autolockIoFinder );
                   4577: #else
                   4578:   assert( zFilename==0 || zFilename[0]=='/' );
                   4579: #endif
                   4580: 
                   4581:   /* No locking occurs in temporary files */
                   4582:   assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
                   4583: 
                   4584:   OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
                   4585:   pNew->h = h;
                   4586:   pNew->pVfs = pVfs;
                   4587:   pNew->zPath = zFilename;
                   4588:   pNew->ctrlFlags = (u8)ctrlFlags;
                   4589:   if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
                   4590:                            "psow", SQLITE_POWERSAFE_OVERWRITE) ){
                   4591:     pNew->ctrlFlags |= UNIXFILE_PSOW;
                   4592:   }
                   4593:   if( memcmp(pVfs->zName,"unix-excl",10)==0 ){
                   4594:     pNew->ctrlFlags |= UNIXFILE_EXCL;
                   4595:   }
                   4596: 
                   4597: #if OS_VXWORKS
                   4598:   pNew->pId = vxworksFindFileId(zFilename);
                   4599:   if( pNew->pId==0 ){
                   4600:     ctrlFlags |= UNIXFILE_NOLOCK;
                   4601:     rc = SQLITE_NOMEM;
                   4602:   }
                   4603: #endif
                   4604: 
                   4605:   if( ctrlFlags & UNIXFILE_NOLOCK ){
                   4606:     pLockingStyle = &nolockIoMethods;
                   4607:   }else{
                   4608:     pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
                   4609: #if SQLITE_ENABLE_LOCKING_STYLE
                   4610:     /* Cache zFilename in the locking context (AFP and dotlock override) for
                   4611:     ** proxyLock activation is possible (remote proxy is based on db name)
                   4612:     ** zFilename remains valid until file is closed, to support */
                   4613:     pNew->lockingContext = (void*)zFilename;
                   4614: #endif
                   4615:   }
                   4616: 
                   4617:   if( pLockingStyle == &posixIoMethods
                   4618: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   4619:     || pLockingStyle == &nfsIoMethods
                   4620: #endif
                   4621:   ){
                   4622:     unixEnterMutex();
                   4623:     rc = findInodeInfo(pNew, &pNew->pInode);
                   4624:     if( rc!=SQLITE_OK ){
                   4625:       /* If an error occured in findInodeInfo(), close the file descriptor
                   4626:       ** immediately, before releasing the mutex. findInodeInfo() may fail
                   4627:       ** in two scenarios:
                   4628:       **
                   4629:       **   (a) A call to fstat() failed.
                   4630:       **   (b) A malloc failed.
                   4631:       **
                   4632:       ** Scenario (b) may only occur if the process is holding no other
                   4633:       ** file descriptors open on the same file. If there were other file
                   4634:       ** descriptors on this file, then no malloc would be required by
                   4635:       ** findInodeInfo(). If this is the case, it is quite safe to close
                   4636:       ** handle h - as it is guaranteed that no posix locks will be released
                   4637:       ** by doing so.
                   4638:       **
                   4639:       ** If scenario (a) caused the error then things are not so safe. The
                   4640:       ** implicit assumption here is that if fstat() fails, things are in
                   4641:       ** such bad shape that dropping a lock or two doesn't matter much.
                   4642:       */
                   4643:       robust_close(pNew, h, __LINE__);
                   4644:       h = -1;
                   4645:     }
                   4646:     unixLeaveMutex();
                   4647:   }
                   4648: 
                   4649: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
                   4650:   else if( pLockingStyle == &afpIoMethods ){
                   4651:     /* AFP locking uses the file path so it needs to be included in
                   4652:     ** the afpLockingContext.
                   4653:     */
                   4654:     afpLockingContext *pCtx;
                   4655:     pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
                   4656:     if( pCtx==0 ){
                   4657:       rc = SQLITE_NOMEM;
                   4658:     }else{
                   4659:       /* NB: zFilename exists and remains valid until the file is closed
                   4660:       ** according to requirement F11141.  So we do not need to make a
                   4661:       ** copy of the filename. */
                   4662:       pCtx->dbPath = zFilename;
                   4663:       pCtx->reserved = 0;
                   4664:       srandomdev();
                   4665:       unixEnterMutex();
                   4666:       rc = findInodeInfo(pNew, &pNew->pInode);
                   4667:       if( rc!=SQLITE_OK ){
                   4668:         sqlite3_free(pNew->lockingContext);
                   4669:         robust_close(pNew, h, __LINE__);
                   4670:         h = -1;
                   4671:       }
                   4672:       unixLeaveMutex();        
                   4673:     }
                   4674:   }
                   4675: #endif
                   4676: 
                   4677:   else if( pLockingStyle == &dotlockIoMethods ){
                   4678:     /* Dotfile locking uses the file path so it needs to be included in
                   4679:     ** the dotlockLockingContext 
                   4680:     */
                   4681:     char *zLockFile;
                   4682:     int nFilename;
                   4683:     assert( zFilename!=0 );
                   4684:     nFilename = (int)strlen(zFilename) + 6;
                   4685:     zLockFile = (char *)sqlite3_malloc(nFilename);
                   4686:     if( zLockFile==0 ){
                   4687:       rc = SQLITE_NOMEM;
                   4688:     }else{
                   4689:       sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
                   4690:     }
                   4691:     pNew->lockingContext = zLockFile;
                   4692:   }
                   4693: 
                   4694: #if OS_VXWORKS
                   4695:   else if( pLockingStyle == &semIoMethods ){
                   4696:     /* Named semaphore locking uses the file path so it needs to be
                   4697:     ** included in the semLockingContext
                   4698:     */
                   4699:     unixEnterMutex();
                   4700:     rc = findInodeInfo(pNew, &pNew->pInode);
                   4701:     if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
                   4702:       char *zSemName = pNew->pInode->aSemName;
                   4703:       int n;
                   4704:       sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
                   4705:                        pNew->pId->zCanonicalName);
                   4706:       for( n=1; zSemName[n]; n++ )
                   4707:         if( zSemName[n]=='/' ) zSemName[n] = '_';
                   4708:       pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
                   4709:       if( pNew->pInode->pSem == SEM_FAILED ){
                   4710:         rc = SQLITE_NOMEM;
                   4711:         pNew->pInode->aSemName[0] = '\0';
                   4712:       }
                   4713:     }
                   4714:     unixLeaveMutex();
                   4715:   }
                   4716: #endif
                   4717:   
                   4718:   pNew->lastErrno = 0;
                   4719: #if OS_VXWORKS
                   4720:   if( rc!=SQLITE_OK ){
                   4721:     if( h>=0 ) robust_close(pNew, h, __LINE__);
                   4722:     h = -1;
                   4723:     osUnlink(zFilename);
                   4724:     isDelete = 0;
                   4725:   }
                   4726:   if( isDelete ) pNew->ctrlFlags |= UNIXFILE_DELETE;
                   4727: #endif
                   4728:   if( rc!=SQLITE_OK ){
                   4729:     if( h>=0 ) robust_close(pNew, h, __LINE__);
                   4730:   }else{
                   4731:     pNew->pMethod = pLockingStyle;
                   4732:     OpenCounter(+1);
                   4733:   }
                   4734:   return rc;
                   4735: }
                   4736: 
                   4737: /*
                   4738: ** Return the name of a directory in which to put temporary files.
                   4739: ** If no suitable temporary file directory can be found, return NULL.
                   4740: */
                   4741: static const char *unixTempFileDir(void){
                   4742:   static const char *azDirs[] = {
                   4743:      0,
                   4744:      0,
                   4745:      "/var/tmp",
                   4746:      "/usr/tmp",
                   4747:      "/tmp",
                   4748:      0        /* List terminator */
                   4749:   };
                   4750:   unsigned int i;
                   4751:   struct stat buf;
                   4752:   const char *zDir = 0;
                   4753: 
                   4754:   azDirs[0] = sqlite3_temp_directory;
                   4755:   if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
                   4756:   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
                   4757:     if( zDir==0 ) continue;
                   4758:     if( osStat(zDir, &buf) ) continue;
                   4759:     if( !S_ISDIR(buf.st_mode) ) continue;
                   4760:     if( osAccess(zDir, 07) ) continue;
                   4761:     break;
                   4762:   }
                   4763:   return zDir;
                   4764: }
                   4765: 
                   4766: /*
                   4767: ** Create a temporary file name in zBuf.  zBuf must be allocated
                   4768: ** by the calling process and must be big enough to hold at least
                   4769: ** pVfs->mxPathname bytes.
                   4770: */
                   4771: static int unixGetTempname(int nBuf, char *zBuf){
                   4772:   static const unsigned char zChars[] =
                   4773:     "abcdefghijklmnopqrstuvwxyz"
                   4774:     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                   4775:     "0123456789";
                   4776:   unsigned int i, j;
                   4777:   const char *zDir;
                   4778: 
                   4779:   /* It's odd to simulate an io-error here, but really this is just
                   4780:   ** using the io-error infrastructure to test that SQLite handles this
                   4781:   ** function failing. 
                   4782:   */
                   4783:   SimulateIOError( return SQLITE_IOERR );
                   4784: 
                   4785:   zDir = unixTempFileDir();
                   4786:   if( zDir==0 ) zDir = ".";
                   4787: 
                   4788:   /* Check that the output buffer is large enough for the temporary file 
                   4789:   ** name. If it is not, return SQLITE_ERROR.
                   4790:   */
                   4791:   if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){
                   4792:     return SQLITE_ERROR;
                   4793:   }
                   4794: 
                   4795:   do{
                   4796:     sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
                   4797:     j = (int)strlen(zBuf);
                   4798:     sqlite3_randomness(15, &zBuf[j]);
                   4799:     for(i=0; i<15; i++, j++){
                   4800:       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
                   4801:     }
                   4802:     zBuf[j] = 0;
                   4803:     zBuf[j+1] = 0;
                   4804:   }while( osAccess(zBuf,0)==0 );
                   4805:   return SQLITE_OK;
                   4806: }
                   4807: 
                   4808: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
                   4809: /*
                   4810: ** Routine to transform a unixFile into a proxy-locking unixFile.
                   4811: ** Implementation in the proxy-lock division, but used by unixOpen()
                   4812: ** if SQLITE_PREFER_PROXY_LOCKING is defined.
                   4813: */
                   4814: static int proxyTransformUnixFile(unixFile*, const char*);
                   4815: #endif
                   4816: 
                   4817: /*
                   4818: ** Search for an unused file descriptor that was opened on the database 
                   4819: ** file (not a journal or master-journal file) identified by pathname
                   4820: ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
                   4821: ** argument to this function.
                   4822: **
                   4823: ** Such a file descriptor may exist if a database connection was closed
                   4824: ** but the associated file descriptor could not be closed because some
                   4825: ** other file descriptor open on the same file is holding a file-lock.
                   4826: ** Refer to comments in the unixClose() function and the lengthy comment
                   4827: ** describing "Posix Advisory Locking" at the start of this file for 
                   4828: ** further details. Also, ticket #4018.
                   4829: **
                   4830: ** If a suitable file descriptor is found, then it is returned. If no
                   4831: ** such file descriptor is located, -1 is returned.
                   4832: */
                   4833: static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
                   4834:   UnixUnusedFd *pUnused = 0;
                   4835: 
                   4836:   /* Do not search for an unused file descriptor on vxworks. Not because
                   4837:   ** vxworks would not benefit from the change (it might, we're not sure),
                   4838:   ** but because no way to test it is currently available. It is better 
                   4839:   ** not to risk breaking vxworks support for the sake of such an obscure 
                   4840:   ** feature.  */
                   4841: #if !OS_VXWORKS
                   4842:   struct stat sStat;                   /* Results of stat() call */
                   4843: 
                   4844:   /* A stat() call may fail for various reasons. If this happens, it is
                   4845:   ** almost certain that an open() call on the same path will also fail.
                   4846:   ** For this reason, if an error occurs in the stat() call here, it is
                   4847:   ** ignored and -1 is returned. The caller will try to open a new file
                   4848:   ** descriptor on the same path, fail, and return an error to SQLite.
                   4849:   **
                   4850:   ** Even if a subsequent open() call does succeed, the consequences of
                   4851:   ** not searching for a resusable file descriptor are not dire.  */
                   4852:   if( 0==osStat(zPath, &sStat) ){
                   4853:     unixInodeInfo *pInode;
                   4854: 
                   4855:     unixEnterMutex();
                   4856:     pInode = inodeList;
                   4857:     while( pInode && (pInode->fileId.dev!=sStat.st_dev
                   4858:                      || pInode->fileId.ino!=sStat.st_ino) ){
                   4859:        pInode = pInode->pNext;
                   4860:     }
                   4861:     if( pInode ){
                   4862:       UnixUnusedFd **pp;
                   4863:       for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
                   4864:       pUnused = *pp;
                   4865:       if( pUnused ){
                   4866:         *pp = pUnused->pNext;
                   4867:       }
                   4868:     }
                   4869:     unixLeaveMutex();
                   4870:   }
                   4871: #endif    /* if !OS_VXWORKS */
                   4872:   return pUnused;
                   4873: }
                   4874: 
                   4875: /*
                   4876: ** This function is called by unixOpen() to determine the unix permissions
                   4877: ** to create new files with. If no error occurs, then SQLITE_OK is returned
                   4878: ** and a value suitable for passing as the third argument to open(2) is
                   4879: ** written to *pMode. If an IO error occurs, an SQLite error code is 
                   4880: ** returned and the value of *pMode is not modified.
                   4881: **
                   4882: ** If the file being opened is a temporary file, it is always created with
                   4883: ** the octal permissions 0600 (read/writable by owner only). If the file
                   4884: ** is a database or master journal file, it is created with the permissions 
                   4885: ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
                   4886: **
                   4887: ** Finally, if the file being opened is a WAL or regular journal file, then 
                   4888: ** this function queries the file-system for the permissions on the 
                   4889: ** corresponding database file and sets *pMode to this value. Whenever 
                   4890: ** possible, WAL and journal files are created using the same permissions 
                   4891: ** as the associated database file.
                   4892: **
                   4893: ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
                   4894: ** original filename is unavailable.  But 8_3_NAMES is only used for
                   4895: ** FAT filesystems and permissions do not matter there, so just use
                   4896: ** the default permissions.
                   4897: */
                   4898: static int findCreateFileMode(
                   4899:   const char *zPath,              /* Path of file (possibly) being created */
                   4900:   int flags,                      /* Flags passed as 4th argument to xOpen() */
                   4901:   mode_t *pMode                   /* OUT: Permissions to open file with */
                   4902: ){
                   4903:   int rc = SQLITE_OK;             /* Return Code */
                   4904:   *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
                   4905:   if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
                   4906:     char zDb[MAX_PATHNAME+1];     /* Database file path */
                   4907:     int nDb;                      /* Number of valid bytes in zDb */
                   4908:     struct stat sStat;            /* Output of stat() on database file */
                   4909: 
                   4910:     /* zPath is a path to a WAL or journal file. The following block derives
                   4911:     ** the path to the associated database file from zPath. This block handles
                   4912:     ** the following naming conventions:
                   4913:     **
                   4914:     **   "<path to db>-journal"
                   4915:     **   "<path to db>-wal"
                   4916:     **   "<path to db>-journalNN"
                   4917:     **   "<path to db>-walNN"
                   4918:     **
                   4919:     ** where NN is a decimal number. The NN naming schemes are 
                   4920:     ** used by the test_multiplex.c module.
                   4921:     */
                   4922:     nDb = sqlite3Strlen30(zPath) - 1; 
                   4923: #ifdef SQLITE_ENABLE_8_3_NAMES
                   4924:     while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--;
                   4925:     if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
                   4926: #else
                   4927:     while( zPath[nDb]!='-' ){
                   4928:       assert( nDb>0 );
                   4929:       assert( zPath[nDb]!='\n' );
                   4930:       nDb--;
                   4931:     }
                   4932: #endif
                   4933:     memcpy(zDb, zPath, nDb);
                   4934:     zDb[nDb] = '\0';
                   4935: 
                   4936:     if( 0==osStat(zDb, &sStat) ){
                   4937:       *pMode = sStat.st_mode & 0777;
                   4938:     }else{
                   4939:       rc = SQLITE_IOERR_FSTAT;
                   4940:     }
                   4941:   }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
                   4942:     *pMode = 0600;
                   4943:   }
                   4944:   return rc;
                   4945: }
                   4946: 
                   4947: /*
                   4948: ** Open the file zPath.
                   4949: ** 
                   4950: ** Previously, the SQLite OS layer used three functions in place of this
                   4951: ** one:
                   4952: **
                   4953: **     sqlite3OsOpenReadWrite();
                   4954: **     sqlite3OsOpenReadOnly();
                   4955: **     sqlite3OsOpenExclusive();
                   4956: **
                   4957: ** These calls correspond to the following combinations of flags:
                   4958: **
                   4959: **     ReadWrite() ->     (READWRITE | CREATE)
                   4960: **     ReadOnly()  ->     (READONLY) 
                   4961: **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
                   4962: **
                   4963: ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
                   4964: ** true, the file was configured to be automatically deleted when the
                   4965: ** file handle closed. To achieve the same effect using this new 
                   4966: ** interface, add the DELETEONCLOSE flag to those specified above for 
                   4967: ** OpenExclusive().
                   4968: */
                   4969: static int unixOpen(
                   4970:   sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
                   4971:   const char *zPath,           /* Pathname of file to be opened */
                   4972:   sqlite3_file *pFile,         /* The file descriptor to be filled in */
                   4973:   int flags,                   /* Input flags to control the opening */
                   4974:   int *pOutFlags               /* Output flags returned to SQLite core */
                   4975: ){
                   4976:   unixFile *p = (unixFile *)pFile;
                   4977:   int fd = -1;                   /* File descriptor returned by open() */
                   4978:   int openFlags = 0;             /* Flags to pass to open() */
                   4979:   int eType = flags&0xFFFFFF00;  /* Type of file to open */
                   4980:   int noLock;                    /* True to omit locking primitives */
                   4981:   int rc = SQLITE_OK;            /* Function Return Code */
                   4982:   int ctrlFlags = 0;             /* UNIXFILE_* flags */
                   4983: 
                   4984:   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
                   4985:   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
                   4986:   int isCreate     = (flags & SQLITE_OPEN_CREATE);
                   4987:   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
                   4988:   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
                   4989: #if SQLITE_ENABLE_LOCKING_STYLE
                   4990:   int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
                   4991: #endif
                   4992: #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
                   4993:   struct statfs fsInfo;
                   4994: #endif
                   4995: 
                   4996:   /* If creating a master or main-file journal, this function will open
                   4997:   ** a file-descriptor on the directory too. The first time unixSync()
                   4998:   ** is called the directory file descriptor will be fsync()ed and close()d.
                   4999:   */
                   5000:   int syncDir = (isCreate && (
                   5001:         eType==SQLITE_OPEN_MASTER_JOURNAL 
                   5002:      || eType==SQLITE_OPEN_MAIN_JOURNAL 
                   5003:      || eType==SQLITE_OPEN_WAL
                   5004:   ));
                   5005: 
                   5006:   /* If argument zPath is a NULL pointer, this function is required to open
                   5007:   ** a temporary file. Use this buffer to store the file name in.
                   5008:   */
                   5009:   char zTmpname[MAX_PATHNAME+2];
                   5010:   const char *zName = zPath;
                   5011: 
                   5012:   /* Check the following statements are true: 
                   5013:   **
                   5014:   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
                   5015:   **   (b) if CREATE is set, then READWRITE must also be set, and
                   5016:   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
                   5017:   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
                   5018:   */
                   5019:   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
                   5020:   assert(isCreate==0 || isReadWrite);
                   5021:   assert(isExclusive==0 || isCreate);
                   5022:   assert(isDelete==0 || isCreate);
                   5023: 
                   5024:   /* The main DB, main journal, WAL file and master journal are never 
                   5025:   ** automatically deleted. Nor are they ever temporary files.  */
                   5026:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
                   5027:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
                   5028:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
                   5029:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
                   5030: 
                   5031:   /* Assert that the upper layer has set one of the "file-type" flags. */
                   5032:   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
                   5033:        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
                   5034:        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
                   5035:        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
                   5036:   );
                   5037: 
                   5038:   memset(p, 0, sizeof(unixFile));
                   5039: 
                   5040:   if( eType==SQLITE_OPEN_MAIN_DB ){
                   5041:     UnixUnusedFd *pUnused;
                   5042:     pUnused = findReusableFd(zName, flags);
                   5043:     if( pUnused ){
                   5044:       fd = pUnused->fd;
                   5045:     }else{
                   5046:       pUnused = sqlite3_malloc(sizeof(*pUnused));
                   5047:       if( !pUnused ){
                   5048:         return SQLITE_NOMEM;
                   5049:       }
                   5050:     }
                   5051:     p->pUnused = pUnused;
                   5052: 
                   5053:     /* Database filenames are double-zero terminated if they are not
                   5054:     ** URIs with parameters.  Hence, they can always be passed into
                   5055:     ** sqlite3_uri_parameter(). */
                   5056:     assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
                   5057: 
                   5058:   }else if( !zName ){
                   5059:     /* If zName is NULL, the upper layer is requesting a temp file. */
                   5060:     assert(isDelete && !syncDir);
                   5061:     rc = unixGetTempname(MAX_PATHNAME+2, zTmpname);
                   5062:     if( rc!=SQLITE_OK ){
                   5063:       return rc;
                   5064:     }
                   5065:     zName = zTmpname;
                   5066: 
                   5067:     /* Generated temporary filenames are always double-zero terminated
                   5068:     ** for use by sqlite3_uri_parameter(). */
                   5069:     assert( zName[strlen(zName)+1]==0 );
                   5070:   }
                   5071: 
                   5072:   /* Determine the value of the flags parameter passed to POSIX function
                   5073:   ** open(). These must be calculated even if open() is not called, as
                   5074:   ** they may be stored as part of the file handle and used by the 
                   5075:   ** 'conch file' locking functions later on.  */
                   5076:   if( isReadonly )  openFlags |= O_RDONLY;
                   5077:   if( isReadWrite ) openFlags |= O_RDWR;
                   5078:   if( isCreate )    openFlags |= O_CREAT;
                   5079:   if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
                   5080:   openFlags |= (O_LARGEFILE|O_BINARY);
                   5081: 
                   5082:   if( fd<0 ){
                   5083:     mode_t openMode;              /* Permissions to create file with */
                   5084:     rc = findCreateFileMode(zName, flags, &openMode);
                   5085:     if( rc!=SQLITE_OK ){
                   5086:       assert( !p->pUnused );
                   5087:       assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
                   5088:       return rc;
                   5089:     }
                   5090:     fd = robust_open(zName, openFlags, openMode);
                   5091:     OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
                   5092:     if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
                   5093:       /* Failed to open the file for read/write access. Try read-only. */
                   5094:       flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
                   5095:       openFlags &= ~(O_RDWR|O_CREAT);
                   5096:       flags |= SQLITE_OPEN_READONLY;
                   5097:       openFlags |= O_RDONLY;
                   5098:       isReadonly = 1;
                   5099:       fd = robust_open(zName, openFlags, openMode);
                   5100:     }
                   5101:     if( fd<0 ){
                   5102:       rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
                   5103:       goto open_finished;
                   5104:     }
                   5105:   }
                   5106:   assert( fd>=0 );
                   5107:   if( pOutFlags ){
                   5108:     *pOutFlags = flags;
                   5109:   }
                   5110: 
                   5111:   if( p->pUnused ){
                   5112:     p->pUnused->fd = fd;
                   5113:     p->pUnused->flags = flags;
                   5114:   }
                   5115: 
                   5116:   if( isDelete ){
                   5117: #if OS_VXWORKS
                   5118:     zPath = zName;
                   5119: #else
                   5120:     osUnlink(zName);
                   5121: #endif
                   5122:   }
                   5123: #if SQLITE_ENABLE_LOCKING_STYLE
                   5124:   else{
                   5125:     p->openFlags = openFlags;
                   5126:   }
                   5127: #endif
                   5128: 
                   5129: #ifdef FD_CLOEXEC
                   5130:   osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
                   5131: #endif
                   5132: 
                   5133:   noLock = eType!=SQLITE_OPEN_MAIN_DB;
                   5134: 
                   5135:   
                   5136: #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
                   5137:   if( fstatfs(fd, &fsInfo) == -1 ){
                   5138:     ((unixFile*)pFile)->lastErrno = errno;
                   5139:     robust_close(p, fd, __LINE__);
                   5140:     return SQLITE_IOERR_ACCESS;
                   5141:   }
                   5142:   if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
                   5143:     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
                   5144:   }
                   5145: #endif
                   5146: 
                   5147:   /* Set up appropriate ctrlFlags */
                   5148:   if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
                   5149:   if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
                   5150:   if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
                   5151:   if( syncDir )                 ctrlFlags |= UNIXFILE_DIRSYNC;
                   5152:   if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
                   5153: 
                   5154: #if SQLITE_ENABLE_LOCKING_STYLE
                   5155: #if SQLITE_PREFER_PROXY_LOCKING
                   5156:   isAutoProxy = 1;
                   5157: #endif
                   5158:   if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
                   5159:     char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
                   5160:     int useProxy = 0;
                   5161: 
                   5162:     /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
                   5163:     ** never use proxy, NULL means use proxy for non-local files only.  */
                   5164:     if( envforce!=NULL ){
                   5165:       useProxy = atoi(envforce)>0;
                   5166:     }else{
                   5167:       if( statfs(zPath, &fsInfo) == -1 ){
                   5168:         /* In theory, the close(fd) call is sub-optimal. If the file opened
                   5169:         ** with fd is a database file, and there are other connections open
                   5170:         ** on that file that are currently holding advisory locks on it,
                   5171:         ** then the call to close() will cancel those locks. In practice,
                   5172:         ** we're assuming that statfs() doesn't fail very often. At least
                   5173:         ** not while other file descriptors opened by the same process on
                   5174:         ** the same file are working.  */
                   5175:         p->lastErrno = errno;
                   5176:         robust_close(p, fd, __LINE__);
                   5177:         rc = SQLITE_IOERR_ACCESS;
                   5178:         goto open_finished;
                   5179:       }
                   5180:       useProxy = !(fsInfo.f_flags&MNT_LOCAL);
                   5181:     }
                   5182:     if( useProxy ){
                   5183:       rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
                   5184:       if( rc==SQLITE_OK ){
                   5185:         rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
                   5186:         if( rc!=SQLITE_OK ){
                   5187:           /* Use unixClose to clean up the resources added in fillInUnixFile 
                   5188:           ** and clear all the structure's references.  Specifically, 
                   5189:           ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op 
                   5190:           */
                   5191:           unixClose(pFile);
                   5192:           return rc;
                   5193:         }
                   5194:       }
                   5195:       goto open_finished;
                   5196:     }
                   5197:   }
                   5198: #endif
                   5199:   
                   5200:   rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
                   5201: 
                   5202: open_finished:
                   5203:   if( rc!=SQLITE_OK ){
                   5204:     sqlite3_free(p->pUnused);
                   5205:   }
                   5206:   return rc;
                   5207: }
                   5208: 
                   5209: 
                   5210: /*
                   5211: ** Delete the file at zPath. If the dirSync argument is true, fsync()
                   5212: ** the directory after deleting the file.
                   5213: */
                   5214: static int unixDelete(
                   5215:   sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
                   5216:   const char *zPath,        /* Name of file to be deleted */
                   5217:   int dirSync               /* If true, fsync() directory after deleting file */
                   5218: ){
                   5219:   int rc = SQLITE_OK;
                   5220:   UNUSED_PARAMETER(NotUsed);
                   5221:   SimulateIOError(return SQLITE_IOERR_DELETE);
                   5222:   if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
                   5223:     return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
                   5224:   }
                   5225: #ifndef SQLITE_DISABLE_DIRSYNC
                   5226:   if( (dirSync & 1)!=0 ){
                   5227:     int fd;
                   5228:     rc = osOpenDirectory(zPath, &fd);
                   5229:     if( rc==SQLITE_OK ){
                   5230: #if OS_VXWORKS
                   5231:       if( fsync(fd)==-1 )
                   5232: #else
                   5233:       if( fsync(fd) )
                   5234: #endif
                   5235:       {
                   5236:         rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
                   5237:       }
                   5238:       robust_close(0, fd, __LINE__);
                   5239:     }else if( rc==SQLITE_CANTOPEN ){
                   5240:       rc = SQLITE_OK;
                   5241:     }
                   5242:   }
                   5243: #endif
                   5244:   return rc;
                   5245: }
                   5246: 
                   5247: /*
                   5248: ** Test the existance of or access permissions of file zPath. The
                   5249: ** test performed depends on the value of flags:
                   5250: **
                   5251: **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
                   5252: **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
                   5253: **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
                   5254: **
                   5255: ** Otherwise return 0.
                   5256: */
                   5257: static int unixAccess(
                   5258:   sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
                   5259:   const char *zPath,      /* Path of the file to examine */
                   5260:   int flags,              /* What do we want to learn about the zPath file? */
                   5261:   int *pResOut            /* Write result boolean here */
                   5262: ){
                   5263:   int amode = 0;
                   5264:   UNUSED_PARAMETER(NotUsed);
                   5265:   SimulateIOError( return SQLITE_IOERR_ACCESS; );
                   5266:   switch( flags ){
                   5267:     case SQLITE_ACCESS_EXISTS:
                   5268:       amode = F_OK;
                   5269:       break;
                   5270:     case SQLITE_ACCESS_READWRITE:
                   5271:       amode = W_OK|R_OK;
                   5272:       break;
                   5273:     case SQLITE_ACCESS_READ:
                   5274:       amode = R_OK;
                   5275:       break;
                   5276: 
                   5277:     default:
                   5278:       assert(!"Invalid flags argument");
                   5279:   }
                   5280:   *pResOut = (osAccess(zPath, amode)==0);
                   5281:   if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
                   5282:     struct stat buf;
                   5283:     if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
                   5284:       *pResOut = 0;
                   5285:     }
                   5286:   }
                   5287:   return SQLITE_OK;
                   5288: }
                   5289: 
                   5290: 
                   5291: /*
                   5292: ** Turn a relative pathname into a full pathname. The relative path
                   5293: ** is stored as a nul-terminated string in the buffer pointed to by
                   5294: ** zPath. 
                   5295: **
                   5296: ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
                   5297: ** (in this case, MAX_PATHNAME bytes). The full-path is written to
                   5298: ** this buffer before returning.
                   5299: */
                   5300: static int unixFullPathname(
                   5301:   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
                   5302:   const char *zPath,            /* Possibly relative input path */
                   5303:   int nOut,                     /* Size of output buffer in bytes */
                   5304:   char *zOut                    /* Output buffer */
                   5305: ){
                   5306: 
                   5307:   /* It's odd to simulate an io-error here, but really this is just
                   5308:   ** using the io-error infrastructure to test that SQLite handles this
                   5309:   ** function failing. This function could fail if, for example, the
                   5310:   ** current working directory has been unlinked.
                   5311:   */
                   5312:   SimulateIOError( return SQLITE_ERROR );
                   5313: 
                   5314:   assert( pVfs->mxPathname==MAX_PATHNAME );
                   5315:   UNUSED_PARAMETER(pVfs);
                   5316: 
                   5317:   zOut[nOut-1] = '\0';
                   5318:   if( zPath[0]=='/' ){
                   5319:     sqlite3_snprintf(nOut, zOut, "%s", zPath);
                   5320:   }else{
                   5321:     int nCwd;
                   5322:     if( osGetcwd(zOut, nOut-1)==0 ){
                   5323:       return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
                   5324:     }
                   5325:     nCwd = (int)strlen(zOut);
                   5326:     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
                   5327:   }
                   5328:   return SQLITE_OK;
                   5329: }
                   5330: 
                   5331: 
                   5332: #ifndef SQLITE_OMIT_LOAD_EXTENSION
                   5333: /*
                   5334: ** Interfaces for opening a shared library, finding entry points
                   5335: ** within the shared library, and closing the shared library.
                   5336: */
                   5337: #include <dlfcn.h>
                   5338: static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
                   5339:   UNUSED_PARAMETER(NotUsed);
                   5340:   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
                   5341: }
                   5342: 
                   5343: /*
                   5344: ** SQLite calls this function immediately after a call to unixDlSym() or
                   5345: ** unixDlOpen() fails (returns a null pointer). If a more detailed error
                   5346: ** message is available, it is written to zBufOut. If no error message
                   5347: ** is available, zBufOut is left unmodified and SQLite uses a default
                   5348: ** error message.
                   5349: */
                   5350: static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
                   5351:   const char *zErr;
                   5352:   UNUSED_PARAMETER(NotUsed);
                   5353:   unixEnterMutex();
                   5354:   zErr = dlerror();
                   5355:   if( zErr ){
                   5356:     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
                   5357:   }
                   5358:   unixLeaveMutex();
                   5359: }
                   5360: static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
                   5361:   /* 
                   5362:   ** GCC with -pedantic-errors says that C90 does not allow a void* to be
                   5363:   ** cast into a pointer to a function.  And yet the library dlsym() routine
                   5364:   ** returns a void* which is really a pointer to a function.  So how do we
                   5365:   ** use dlsym() with -pedantic-errors?
                   5366:   **
                   5367:   ** Variable x below is defined to be a pointer to a function taking
                   5368:   ** parameters void* and const char* and returning a pointer to a function.
                   5369:   ** We initialize x by assigning it a pointer to the dlsym() function.
                   5370:   ** (That assignment requires a cast.)  Then we call the function that
                   5371:   ** x points to.  
                   5372:   **
                   5373:   ** This work-around is unlikely to work correctly on any system where
                   5374:   ** you really cannot cast a function pointer into void*.  But then, on the
                   5375:   ** other hand, dlsym() will not work on such a system either, so we have
                   5376:   ** not really lost anything.
                   5377:   */
                   5378:   void (*(*x)(void*,const char*))(void);
                   5379:   UNUSED_PARAMETER(NotUsed);
                   5380:   x = (void(*(*)(void*,const char*))(void))dlsym;
                   5381:   return (*x)(p, zSym);
                   5382: }
                   5383: static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
                   5384:   UNUSED_PARAMETER(NotUsed);
                   5385:   dlclose(pHandle);
                   5386: }
                   5387: #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
                   5388:   #define unixDlOpen  0
                   5389:   #define unixDlError 0
                   5390:   #define unixDlSym   0
                   5391:   #define unixDlClose 0
                   5392: #endif
                   5393: 
                   5394: /*
                   5395: ** Write nBuf bytes of random data to the supplied buffer zBuf.
                   5396: */
                   5397: static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
                   5398:   UNUSED_PARAMETER(NotUsed);
                   5399:   assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
                   5400: 
                   5401:   /* We have to initialize zBuf to prevent valgrind from reporting
                   5402:   ** errors.  The reports issued by valgrind are incorrect - we would
                   5403:   ** prefer that the randomness be increased by making use of the
                   5404:   ** uninitialized space in zBuf - but valgrind errors tend to worry
                   5405:   ** some users.  Rather than argue, it seems easier just to initialize
                   5406:   ** the whole array and silence valgrind, even if that means less randomness
                   5407:   ** in the random seed.
                   5408:   **
                   5409:   ** When testing, initializing zBuf[] to zero is all we do.  That means
                   5410:   ** that we always use the same random number sequence.  This makes the
                   5411:   ** tests repeatable.
                   5412:   */
                   5413:   memset(zBuf, 0, nBuf);
                   5414: #if !defined(SQLITE_TEST)
                   5415:   {
                   5416:     int pid, fd;
                   5417:     fd = robust_open("/dev/urandom", O_RDONLY, 0);
                   5418:     if( fd<0 ){
                   5419:       time_t t;
                   5420:       time(&t);
                   5421:       memcpy(zBuf, &t, sizeof(t));
                   5422:       pid = getpid();
                   5423:       memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
                   5424:       assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
                   5425:       nBuf = sizeof(t) + sizeof(pid);
                   5426:     }else{
                   5427:       do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
                   5428:       robust_close(0, fd, __LINE__);
                   5429:     }
                   5430:   }
                   5431: #endif
                   5432:   return nBuf;
                   5433: }
                   5434: 
                   5435: 
                   5436: /*
                   5437: ** Sleep for a little while.  Return the amount of time slept.
                   5438: ** The argument is the number of microseconds we want to sleep.
                   5439: ** The return value is the number of microseconds of sleep actually
                   5440: ** requested from the underlying operating system, a number which
                   5441: ** might be greater than or equal to the argument, but not less
                   5442: ** than the argument.
                   5443: */
                   5444: static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
                   5445: #if OS_VXWORKS
                   5446:   struct timespec sp;
                   5447: 
                   5448:   sp.tv_sec = microseconds / 1000000;
                   5449:   sp.tv_nsec = (microseconds % 1000000) * 1000;
                   5450:   nanosleep(&sp, NULL);
                   5451:   UNUSED_PARAMETER(NotUsed);
                   5452:   return microseconds;
                   5453: #elif defined(HAVE_USLEEP) && HAVE_USLEEP
                   5454:   usleep(microseconds);
                   5455:   UNUSED_PARAMETER(NotUsed);
                   5456:   return microseconds;
                   5457: #else
                   5458:   int seconds = (microseconds+999999)/1000000;
                   5459:   sleep(seconds);
                   5460:   UNUSED_PARAMETER(NotUsed);
                   5461:   return seconds*1000000;
                   5462: #endif
                   5463: }
                   5464: 
                   5465: /*
                   5466: ** The following variable, if set to a non-zero value, is interpreted as
                   5467: ** the number of seconds since 1970 and is used to set the result of
                   5468: ** sqlite3OsCurrentTime() during testing.
                   5469: */
                   5470: #ifdef SQLITE_TEST
                   5471: int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
                   5472: #endif
                   5473: 
                   5474: /*
                   5475: ** Find the current time (in Universal Coordinated Time).  Write into *piNow
                   5476: ** the current time and date as a Julian Day number times 86_400_000.  In
                   5477: ** other words, write into *piNow the number of milliseconds since the Julian
                   5478: ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
                   5479: ** proleptic Gregorian calendar.
                   5480: **
                   5481: ** On success, return SQLITE_OK.  Return SQLITE_ERROR if the time and date 
                   5482: ** cannot be found.
                   5483: */
                   5484: static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
                   5485:   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
                   5486:   int rc = SQLITE_OK;
                   5487: #if defined(NO_GETTOD)
                   5488:   time_t t;
                   5489:   time(&t);
                   5490:   *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
                   5491: #elif OS_VXWORKS
                   5492:   struct timespec sNow;
                   5493:   clock_gettime(CLOCK_REALTIME, &sNow);
                   5494:   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
                   5495: #else
                   5496:   struct timeval sNow;
                   5497:   if( gettimeofday(&sNow, 0)==0 ){
                   5498:     *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
                   5499:   }else{
                   5500:     rc = SQLITE_ERROR;
                   5501:   }
                   5502: #endif
                   5503: 
                   5504: #ifdef SQLITE_TEST
                   5505:   if( sqlite3_current_time ){
                   5506:     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
                   5507:   }
                   5508: #endif
                   5509:   UNUSED_PARAMETER(NotUsed);
                   5510:   return rc;
                   5511: }
                   5512: 
                   5513: /*
                   5514: ** Find the current time (in Universal Coordinated Time).  Write the
                   5515: ** current time and date as a Julian Day number into *prNow and
                   5516: ** return 0.  Return 1 if the time and date cannot be found.
                   5517: */
                   5518: static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
                   5519:   sqlite3_int64 i = 0;
                   5520:   int rc;
                   5521:   UNUSED_PARAMETER(NotUsed);
                   5522:   rc = unixCurrentTimeInt64(0, &i);
                   5523:   *prNow = i/86400000.0;
                   5524:   return rc;
                   5525: }
                   5526: 
                   5527: /*
                   5528: ** We added the xGetLastError() method with the intention of providing
                   5529: ** better low-level error messages when operating-system problems come up
                   5530: ** during SQLite operation.  But so far, none of that has been implemented
                   5531: ** in the core.  So this routine is never called.  For now, it is merely
                   5532: ** a place-holder.
                   5533: */
                   5534: static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
                   5535:   UNUSED_PARAMETER(NotUsed);
                   5536:   UNUSED_PARAMETER(NotUsed2);
                   5537:   UNUSED_PARAMETER(NotUsed3);
                   5538:   return 0;
                   5539: }
                   5540: 
                   5541: 
                   5542: /*
                   5543: ************************ End of sqlite3_vfs methods ***************************
                   5544: ******************************************************************************/
                   5545: 
                   5546: /******************************************************************************
                   5547: ************************** Begin Proxy Locking ********************************
                   5548: **
                   5549: ** Proxy locking is a "uber-locking-method" in this sense:  It uses the
                   5550: ** other locking methods on secondary lock files.  Proxy locking is a
                   5551: ** meta-layer over top of the primitive locking implemented above.  For
                   5552: ** this reason, the division that implements of proxy locking is deferred
                   5553: ** until late in the file (here) after all of the other I/O methods have
                   5554: ** been defined - so that the primitive locking methods are available
                   5555: ** as services to help with the implementation of proxy locking.
                   5556: **
                   5557: ****
                   5558: **
                   5559: ** The default locking schemes in SQLite use byte-range locks on the
                   5560: ** database file to coordinate safe, concurrent access by multiple readers
                   5561: ** and writers [http://sqlite.org/lockingv3.html].  The five file locking
                   5562: ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
                   5563: ** as POSIX read & write locks over fixed set of locations (via fsctl),
                   5564: ** on AFP and SMB only exclusive byte-range locks are available via fsctl
                   5565: ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
                   5566: ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
                   5567: ** address in the shared range is taken for a SHARED lock, the entire
                   5568: ** shared range is taken for an EXCLUSIVE lock):
                   5569: **
                   5570: **      PENDING_BYTE        0x40000000                 
                   5571: **      RESERVED_BYTE       0x40000001
                   5572: **      SHARED_RANGE        0x40000002 -> 0x40000200
                   5573: **
                   5574: ** This works well on the local file system, but shows a nearly 100x
                   5575: ** slowdown in read performance on AFP because the AFP client disables
                   5576: ** the read cache when byte-range locks are present.  Enabling the read
                   5577: ** cache exposes a cache coherency problem that is present on all OS X
                   5578: ** supported network file systems.  NFS and AFP both observe the
                   5579: ** close-to-open semantics for ensuring cache coherency
                   5580: ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
                   5581: ** address the requirements for concurrent database access by multiple
                   5582: ** readers and writers
                   5583: ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
                   5584: **
                   5585: ** To address the performance and cache coherency issues, proxy file locking
                   5586: ** changes the way database access is controlled by limiting access to a
                   5587: ** single host at a time and moving file locks off of the database file
                   5588: ** and onto a proxy file on the local file system.  
                   5589: **
                   5590: **
                   5591: ** Using proxy locks
                   5592: ** -----------------
                   5593: **
                   5594: ** C APIs
                   5595: **
                   5596: **  sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
                   5597: **                       <proxy_path> | ":auto:");
                   5598: **  sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
                   5599: **
                   5600: **
                   5601: ** SQL pragmas
                   5602: **
                   5603: **  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
                   5604: **  PRAGMA [database.]lock_proxy_file
                   5605: **
                   5606: ** Specifying ":auto:" means that if there is a conch file with a matching
                   5607: ** host ID in it, the proxy path in the conch file will be used, otherwise
                   5608: ** a proxy path based on the user's temp dir
                   5609: ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
                   5610: ** actual proxy file name is generated from the name and path of the
                   5611: ** database file.  For example:
                   5612: **
                   5613: **       For database path "/Users/me/foo.db" 
                   5614: **       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
                   5615: **
                   5616: ** Once a lock proxy is configured for a database connection, it can not
                   5617: ** be removed, however it may be switched to a different proxy path via
                   5618: ** the above APIs (assuming the conch file is not being held by another
                   5619: ** connection or process). 
                   5620: **
                   5621: **
                   5622: ** How proxy locking works
                   5623: ** -----------------------
                   5624: **
                   5625: ** Proxy file locking relies primarily on two new supporting files: 
                   5626: **
                   5627: **   *  conch file to limit access to the database file to a single host
                   5628: **      at a time
                   5629: **
                   5630: **   *  proxy file to act as a proxy for the advisory locks normally
                   5631: **      taken on the database
                   5632: **
                   5633: ** The conch file - to use a proxy file, sqlite must first "hold the conch"
                   5634: ** by taking an sqlite-style shared lock on the conch file, reading the
                   5635: ** contents and comparing the host's unique host ID (see below) and lock
                   5636: ** proxy path against the values stored in the conch.  The conch file is
                   5637: ** stored in the same directory as the database file and the file name
                   5638: ** is patterned after the database file name as ".<databasename>-conch".
                   5639: ** If the conch file does not exist, or it's contents do not match the
                   5640: ** host ID and/or proxy path, then the lock is escalated to an exclusive
                   5641: ** lock and the conch file contents is updated with the host ID and proxy
                   5642: ** path and the lock is downgraded to a shared lock again.  If the conch
                   5643: ** is held by another process (with a shared lock), the exclusive lock
                   5644: ** will fail and SQLITE_BUSY is returned.
                   5645: **
                   5646: ** The proxy file - a single-byte file used for all advisory file locks
                   5647: ** normally taken on the database file.   This allows for safe sharing
                   5648: ** of the database file for multiple readers and writers on the same
                   5649: ** host (the conch ensures that they all use the same local lock file).
                   5650: **
                   5651: ** Requesting the lock proxy does not immediately take the conch, it is
                   5652: ** only taken when the first request to lock database file is made.  
                   5653: ** This matches the semantics of the traditional locking behavior, where
                   5654: ** opening a connection to a database file does not take a lock on it.
                   5655: ** The shared lock and an open file descriptor are maintained until 
                   5656: ** the connection to the database is closed. 
                   5657: **
                   5658: ** The proxy file and the lock file are never deleted so they only need
                   5659: ** to be created the first time they are used.
                   5660: **
                   5661: ** Configuration options
                   5662: ** ---------------------
                   5663: **
                   5664: **  SQLITE_PREFER_PROXY_LOCKING
                   5665: **
                   5666: **       Database files accessed on non-local file systems are
                   5667: **       automatically configured for proxy locking, lock files are
                   5668: **       named automatically using the same logic as
                   5669: **       PRAGMA lock_proxy_file=":auto:"
                   5670: **    
                   5671: **  SQLITE_PROXY_DEBUG
                   5672: **
                   5673: **       Enables the logging of error messages during host id file
                   5674: **       retrieval and creation
                   5675: **
                   5676: **  LOCKPROXYDIR
                   5677: **
                   5678: **       Overrides the default directory used for lock proxy files that
                   5679: **       are named automatically via the ":auto:" setting
                   5680: **
                   5681: **  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
                   5682: **
                   5683: **       Permissions to use when creating a directory for storing the
                   5684: **       lock proxy files, only used when LOCKPROXYDIR is not set.
                   5685: **    
                   5686: **    
                   5687: ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
                   5688: ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
                   5689: ** force proxy locking to be used for every database file opened, and 0
                   5690: ** will force automatic proxy locking to be disabled for all database
                   5691: ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
                   5692: ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
                   5693: */
                   5694: 
                   5695: /*
                   5696: ** Proxy locking is only available on MacOSX 
                   5697: */
                   5698: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
                   5699: 
                   5700: /*
                   5701: ** The proxyLockingContext has the path and file structures for the remote 
                   5702: ** and local proxy files in it
                   5703: */
                   5704: typedef struct proxyLockingContext proxyLockingContext;
                   5705: struct proxyLockingContext {
                   5706:   unixFile *conchFile;         /* Open conch file */
                   5707:   char *conchFilePath;         /* Name of the conch file */
                   5708:   unixFile *lockProxy;         /* Open proxy lock file */
                   5709:   char *lockProxyPath;         /* Name of the proxy lock file */
                   5710:   char *dbPath;                /* Name of the open file */
                   5711:   int conchHeld;               /* 1 if the conch is held, -1 if lockless */
                   5712:   void *oldLockingContext;     /* Original lockingcontext to restore on close */
                   5713:   sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
                   5714: };
                   5715: 
                   5716: /* 
                   5717: ** The proxy lock file path for the database at dbPath is written into lPath, 
                   5718: ** which must point to valid, writable memory large enough for a maxLen length
                   5719: ** file path. 
                   5720: */
                   5721: static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
                   5722:   int len;
                   5723:   int dbLen;
                   5724:   int i;
                   5725: 
                   5726: #ifdef LOCKPROXYDIR
                   5727:   len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
                   5728: #else
                   5729: # ifdef _CS_DARWIN_USER_TEMP_DIR
                   5730:   {
                   5731:     if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
                   5732:       OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
                   5733:                lPath, errno, getpid()));
                   5734:       return SQLITE_IOERR_LOCK;
                   5735:     }
                   5736:     len = strlcat(lPath, "sqliteplocks", maxLen);    
                   5737:   }
                   5738: # else
                   5739:   len = strlcpy(lPath, "/tmp/", maxLen);
                   5740: # endif
                   5741: #endif
                   5742: 
                   5743:   if( lPath[len-1]!='/' ){
                   5744:     len = strlcat(lPath, "/", maxLen);
                   5745:   }
                   5746:   
                   5747:   /* transform the db path to a unique cache name */
                   5748:   dbLen = (int)strlen(dbPath);
                   5749:   for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
                   5750:     char c = dbPath[i];
                   5751:     lPath[i+len] = (c=='/')?'_':c;
                   5752:   }
                   5753:   lPath[i+len]='\0';
                   5754:   strlcat(lPath, ":auto:", maxLen);
                   5755:   OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, getpid()));
                   5756:   return SQLITE_OK;
                   5757: }
                   5758: 
                   5759: /* 
                   5760:  ** Creates the lock file and any missing directories in lockPath
                   5761:  */
                   5762: static int proxyCreateLockPath(const char *lockPath){
                   5763:   int i, len;
                   5764:   char buf[MAXPATHLEN];
                   5765:   int start = 0;
                   5766:   
                   5767:   assert(lockPath!=NULL);
                   5768:   /* try to create all the intermediate directories */
                   5769:   len = (int)strlen(lockPath);
                   5770:   buf[0] = lockPath[0];
                   5771:   for( i=1; i<len; i++ ){
                   5772:     if( lockPath[i] == '/' && (i - start > 0) ){
                   5773:       /* only mkdir if leaf dir != "." or "/" or ".." */
                   5774:       if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') 
                   5775:          || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
                   5776:         buf[i]='\0';
                   5777:         if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
                   5778:           int err=errno;
                   5779:           if( err!=EEXIST ) {
                   5780:             OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
                   5781:                      "'%s' proxy lock path=%s pid=%d\n",
                   5782:                      buf, strerror(err), lockPath, getpid()));
                   5783:             return err;
                   5784:           }
                   5785:         }
                   5786:       }
                   5787:       start=i+1;
                   5788:     }
                   5789:     buf[i] = lockPath[i];
                   5790:   }
                   5791:   OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, getpid()));
                   5792:   return 0;
                   5793: }
                   5794: 
                   5795: /*
                   5796: ** Create a new VFS file descriptor (stored in memory obtained from
                   5797: ** sqlite3_malloc) and open the file named "path" in the file descriptor.
                   5798: **
                   5799: ** The caller is responsible not only for closing the file descriptor
                   5800: ** but also for freeing the memory associated with the file descriptor.
                   5801: */
                   5802: static int proxyCreateUnixFile(
                   5803:     const char *path,        /* path for the new unixFile */
                   5804:     unixFile **ppFile,       /* unixFile created and returned by ref */
                   5805:     int islockfile           /* if non zero missing dirs will be created */
                   5806: ) {
                   5807:   int fd = -1;
                   5808:   unixFile *pNew;
                   5809:   int rc = SQLITE_OK;
                   5810:   int openFlags = O_RDWR | O_CREAT;
                   5811:   sqlite3_vfs dummyVfs;
                   5812:   int terrno = 0;
                   5813:   UnixUnusedFd *pUnused = NULL;
                   5814: 
                   5815:   /* 1. first try to open/create the file
                   5816:   ** 2. if that fails, and this is a lock file (not-conch), try creating
                   5817:   ** the parent directories and then try again.
                   5818:   ** 3. if that fails, try to open the file read-only
                   5819:   ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
                   5820:   */
                   5821:   pUnused = findReusableFd(path, openFlags);
                   5822:   if( pUnused ){
                   5823:     fd = pUnused->fd;
                   5824:   }else{
                   5825:     pUnused = sqlite3_malloc(sizeof(*pUnused));
                   5826:     if( !pUnused ){
                   5827:       return SQLITE_NOMEM;
                   5828:     }
                   5829:   }
                   5830:   if( fd<0 ){
                   5831:     fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
                   5832:     terrno = errno;
                   5833:     if( fd<0 && errno==ENOENT && islockfile ){
                   5834:       if( proxyCreateLockPath(path) == SQLITE_OK ){
                   5835:         fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
                   5836:       }
                   5837:     }
                   5838:   }
                   5839:   if( fd<0 ){
                   5840:     openFlags = O_RDONLY;
                   5841:     fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
                   5842:     terrno = errno;
                   5843:   }
                   5844:   if( fd<0 ){
                   5845:     if( islockfile ){
                   5846:       return SQLITE_BUSY;
                   5847:     }
                   5848:     switch (terrno) {
                   5849:       case EACCES:
                   5850:         return SQLITE_PERM;
                   5851:       case EIO: 
                   5852:         return SQLITE_IOERR_LOCK; /* even though it is the conch */
                   5853:       default:
                   5854:         return SQLITE_CANTOPEN_BKPT;
                   5855:     }
                   5856:   }
                   5857:   
                   5858:   pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
                   5859:   if( pNew==NULL ){
                   5860:     rc = SQLITE_NOMEM;
                   5861:     goto end_create_proxy;
                   5862:   }
                   5863:   memset(pNew, 0, sizeof(unixFile));
                   5864:   pNew->openFlags = openFlags;
                   5865:   memset(&dummyVfs, 0, sizeof(dummyVfs));
                   5866:   dummyVfs.pAppData = (void*)&autolockIoFinder;
                   5867:   dummyVfs.zName = "dummy";
                   5868:   pUnused->fd = fd;
                   5869:   pUnused->flags = openFlags;
                   5870:   pNew->pUnused = pUnused;
                   5871:   
                   5872:   rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
                   5873:   if( rc==SQLITE_OK ){
                   5874:     *ppFile = pNew;
                   5875:     return SQLITE_OK;
                   5876:   }
                   5877: end_create_proxy:    
                   5878:   robust_close(pNew, fd, __LINE__);
                   5879:   sqlite3_free(pNew);
                   5880:   sqlite3_free(pUnused);
                   5881:   return rc;
                   5882: }
                   5883: 
                   5884: #ifdef SQLITE_TEST
                   5885: /* simulate multiple hosts by creating unique hostid file paths */
                   5886: int sqlite3_hostid_num = 0;
                   5887: #endif
                   5888: 
                   5889: #define PROXY_HOSTIDLEN    16  /* conch file host id length */
                   5890: 
                   5891: /* Not always defined in the headers as it ought to be */
                   5892: extern int gethostuuid(uuid_t id, const struct timespec *wait);
                   5893: 
                   5894: /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN 
                   5895: ** bytes of writable memory.
                   5896: */
                   5897: static int proxyGetHostID(unsigned char *pHostID, int *pError){
                   5898:   assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
                   5899:   memset(pHostID, 0, PROXY_HOSTIDLEN);
                   5900: #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
                   5901:                && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
                   5902:   {
                   5903:     static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
                   5904:     if( gethostuuid(pHostID, &timeout) ){
                   5905:       int err = errno;
                   5906:       if( pError ){
                   5907:         *pError = err;
                   5908:       }
                   5909:       return SQLITE_IOERR;
                   5910:     }
                   5911:   }
                   5912: #else
                   5913:   UNUSED_PARAMETER(pError);
                   5914: #endif
                   5915: #ifdef SQLITE_TEST
                   5916:   /* simulate multiple hosts by creating unique hostid file paths */
                   5917:   if( sqlite3_hostid_num != 0){
                   5918:     pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
                   5919:   }
                   5920: #endif
                   5921:   
                   5922:   return SQLITE_OK;
                   5923: }
                   5924: 
                   5925: /* The conch file contains the header, host id and lock file path
                   5926:  */
                   5927: #define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
                   5928: #define PROXY_HEADERLEN    1   /* conch file header length */
                   5929: #define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
                   5930: #define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
                   5931: 
                   5932: /* 
                   5933: ** Takes an open conch file, copies the contents to a new path and then moves 
                   5934: ** it back.  The newly created file's file descriptor is assigned to the
                   5935: ** conch file structure and finally the original conch file descriptor is 
                   5936: ** closed.  Returns zero if successful.
                   5937: */
                   5938: static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
                   5939:   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
                   5940:   unixFile *conchFile = pCtx->conchFile;
                   5941:   char tPath[MAXPATHLEN];
                   5942:   char buf[PROXY_MAXCONCHLEN];
                   5943:   char *cPath = pCtx->conchFilePath;
                   5944:   size_t readLen = 0;
                   5945:   size_t pathLen = 0;
                   5946:   char errmsg[64] = "";
                   5947:   int fd = -1;
                   5948:   int rc = -1;
                   5949:   UNUSED_PARAMETER(myHostID);
                   5950: 
                   5951:   /* create a new path by replace the trailing '-conch' with '-break' */
                   5952:   pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
                   5953:   if( pathLen>MAXPATHLEN || pathLen<6 || 
                   5954:      (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
                   5955:     sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
                   5956:     goto end_breaklock;
                   5957:   }
                   5958:   /* read the conch content */
                   5959:   readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
                   5960:   if( readLen<PROXY_PATHINDEX ){
                   5961:     sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
                   5962:     goto end_breaklock;
                   5963:   }
                   5964:   /* write it out to the temporary break file */
                   5965:   fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
                   5966:                    SQLITE_DEFAULT_FILE_PERMISSIONS);
                   5967:   if( fd<0 ){
                   5968:     sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
                   5969:     goto end_breaklock;
                   5970:   }
                   5971:   if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
                   5972:     sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
                   5973:     goto end_breaklock;
                   5974:   }
                   5975:   if( rename(tPath, cPath) ){
                   5976:     sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
                   5977:     goto end_breaklock;
                   5978:   }
                   5979:   rc = 0;
                   5980:   fprintf(stderr, "broke stale lock on %s\n", cPath);
                   5981:   robust_close(pFile, conchFile->h, __LINE__);
                   5982:   conchFile->h = fd;
                   5983:   conchFile->openFlags = O_RDWR | O_CREAT;
                   5984: 
                   5985: end_breaklock:
                   5986:   if( rc ){
                   5987:     if( fd>=0 ){
                   5988:       osUnlink(tPath);
                   5989:       robust_close(pFile, fd, __LINE__);
                   5990:     }
                   5991:     fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
                   5992:   }
                   5993:   return rc;
                   5994: }
                   5995: 
                   5996: /* Take the requested lock on the conch file and break a stale lock if the 
                   5997: ** host id matches.
                   5998: */
                   5999: static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
                   6000:   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
                   6001:   unixFile *conchFile = pCtx->conchFile;
                   6002:   int rc = SQLITE_OK;
                   6003:   int nTries = 0;
                   6004:   struct timespec conchModTime;
                   6005:   
                   6006:   memset(&conchModTime, 0, sizeof(conchModTime));
                   6007:   do {
                   6008:     rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
                   6009:     nTries ++;
                   6010:     if( rc==SQLITE_BUSY ){
                   6011:       /* If the lock failed (busy):
                   6012:        * 1st try: get the mod time of the conch, wait 0.5s and try again. 
                   6013:        * 2nd try: fail if the mod time changed or host id is different, wait 
                   6014:        *           10 sec and try again
                   6015:        * 3rd try: break the lock unless the mod time has changed.
                   6016:        */
                   6017:       struct stat buf;
                   6018:       if( osFstat(conchFile->h, &buf) ){
                   6019:         pFile->lastErrno = errno;
                   6020:         return SQLITE_IOERR_LOCK;
                   6021:       }
                   6022:       
                   6023:       if( nTries==1 ){
                   6024:         conchModTime = buf.st_mtimespec;
                   6025:         usleep(500000); /* wait 0.5 sec and try the lock again*/
                   6026:         continue;  
                   6027:       }
                   6028: 
                   6029:       assert( nTries>1 );
                   6030:       if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || 
                   6031:          conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
                   6032:         return SQLITE_BUSY;
                   6033:       }
                   6034:       
                   6035:       if( nTries==2 ){  
                   6036:         char tBuf[PROXY_MAXCONCHLEN];
                   6037:         int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
                   6038:         if( len<0 ){
                   6039:           pFile->lastErrno = errno;
                   6040:           return SQLITE_IOERR_LOCK;
                   6041:         }
                   6042:         if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
                   6043:           /* don't break the lock if the host id doesn't match */
                   6044:           if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
                   6045:             return SQLITE_BUSY;
                   6046:           }
                   6047:         }else{
                   6048:           /* don't break the lock on short read or a version mismatch */
                   6049:           return SQLITE_BUSY;
                   6050:         }
                   6051:         usleep(10000000); /* wait 10 sec and try the lock again */
                   6052:         continue; 
                   6053:       }
                   6054:       
                   6055:       assert( nTries==3 );
                   6056:       if( 0==proxyBreakConchLock(pFile, myHostID) ){
                   6057:         rc = SQLITE_OK;
                   6058:         if( lockType==EXCLUSIVE_LOCK ){
                   6059:           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);          
                   6060:         }
                   6061:         if( !rc ){
                   6062:           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
                   6063:         }
                   6064:       }
                   6065:     }
                   6066:   } while( rc==SQLITE_BUSY && nTries<3 );
                   6067:   
                   6068:   return rc;
                   6069: }
                   6070: 
                   6071: /* Takes the conch by taking a shared lock and read the contents conch, if 
                   6072: ** lockPath is non-NULL, the host ID and lock file path must match.  A NULL 
                   6073: ** lockPath means that the lockPath in the conch file will be used if the 
                   6074: ** host IDs match, or a new lock path will be generated automatically 
                   6075: ** and written to the conch file.
                   6076: */
                   6077: static int proxyTakeConch(unixFile *pFile){
                   6078:   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
                   6079:   
                   6080:   if( pCtx->conchHeld!=0 ){
                   6081:     return SQLITE_OK;
                   6082:   }else{
                   6083:     unixFile *conchFile = pCtx->conchFile;
                   6084:     uuid_t myHostID;
                   6085:     int pError = 0;
                   6086:     char readBuf[PROXY_MAXCONCHLEN];
                   6087:     char lockPath[MAXPATHLEN];
                   6088:     char *tempLockPath = NULL;
                   6089:     int rc = SQLITE_OK;
                   6090:     int createConch = 0;
                   6091:     int hostIdMatch = 0;
                   6092:     int readLen = 0;
                   6093:     int tryOldLockPath = 0;
                   6094:     int forceNewLockPath = 0;
                   6095:     
                   6096:     OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
                   6097:              (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
                   6098: 
                   6099:     rc = proxyGetHostID(myHostID, &pError);
                   6100:     if( (rc&0xff)==SQLITE_IOERR ){
                   6101:       pFile->lastErrno = pError;
                   6102:       goto end_takeconch;
                   6103:     }
                   6104:     rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
                   6105:     if( rc!=SQLITE_OK ){
                   6106:       goto end_takeconch;
                   6107:     }
                   6108:     /* read the existing conch file */
                   6109:     readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
                   6110:     if( readLen<0 ){
                   6111:       /* I/O error: lastErrno set by seekAndRead */
                   6112:       pFile->lastErrno = conchFile->lastErrno;
                   6113:       rc = SQLITE_IOERR_READ;
                   6114:       goto end_takeconch;
                   6115:     }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || 
                   6116:              readBuf[0]!=(char)PROXY_CONCHVERSION ){
                   6117:       /* a short read or version format mismatch means we need to create a new 
                   6118:       ** conch file. 
                   6119:       */
                   6120:       createConch = 1;
                   6121:     }
                   6122:     /* if the host id matches and the lock path already exists in the conch
                   6123:     ** we'll try to use the path there, if we can't open that path, we'll 
                   6124:     ** retry with a new auto-generated path 
                   6125:     */
                   6126:     do { /* in case we need to try again for an :auto: named lock file */
                   6127: 
                   6128:       if( !createConch && !forceNewLockPath ){
                   6129:         hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, 
                   6130:                                   PROXY_HOSTIDLEN);
                   6131:         /* if the conch has data compare the contents */
                   6132:         if( !pCtx->lockProxyPath ){
                   6133:           /* for auto-named local lock file, just check the host ID and we'll
                   6134:            ** use the local lock file path that's already in there
                   6135:            */
                   6136:           if( hostIdMatch ){
                   6137:             size_t pathLen = (readLen - PROXY_PATHINDEX);
                   6138:             
                   6139:             if( pathLen>=MAXPATHLEN ){
                   6140:               pathLen=MAXPATHLEN-1;
                   6141:             }
                   6142:             memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
                   6143:             lockPath[pathLen] = 0;
                   6144:             tempLockPath = lockPath;
                   6145:             tryOldLockPath = 1;
                   6146:             /* create a copy of the lock path if the conch is taken */
                   6147:             goto end_takeconch;
                   6148:           }
                   6149:         }else if( hostIdMatch
                   6150:                && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
                   6151:                            readLen-PROXY_PATHINDEX)
                   6152:         ){
                   6153:           /* conch host and lock path match */
                   6154:           goto end_takeconch; 
                   6155:         }
                   6156:       }
                   6157:       
                   6158:       /* if the conch isn't writable and doesn't match, we can't take it */
                   6159:       if( (conchFile->openFlags&O_RDWR) == 0 ){
                   6160:         rc = SQLITE_BUSY;
                   6161:         goto end_takeconch;
                   6162:       }
                   6163:       
                   6164:       /* either the conch didn't match or we need to create a new one */
                   6165:       if( !pCtx->lockProxyPath ){
                   6166:         proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
                   6167:         tempLockPath = lockPath;
                   6168:         /* create a copy of the lock path _only_ if the conch is taken */
                   6169:       }
                   6170:       
                   6171:       /* update conch with host and path (this will fail if other process
                   6172:       ** has a shared lock already), if the host id matches, use the big
                   6173:       ** stick.
                   6174:       */
                   6175:       futimes(conchFile->h, NULL);
                   6176:       if( hostIdMatch && !createConch ){
                   6177:         if( conchFile->pInode && conchFile->pInode->nShared>1 ){
                   6178:           /* We are trying for an exclusive lock but another thread in this
                   6179:            ** same process is still holding a shared lock. */
                   6180:           rc = SQLITE_BUSY;
                   6181:         } else {          
                   6182:           rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
                   6183:         }
                   6184:       }else{
                   6185:         rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
                   6186:       }
                   6187:       if( rc==SQLITE_OK ){
                   6188:         char writeBuffer[PROXY_MAXCONCHLEN];
                   6189:         int writeSize = 0;
                   6190:         
                   6191:         writeBuffer[0] = (char)PROXY_CONCHVERSION;
                   6192:         memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
                   6193:         if( pCtx->lockProxyPath!=NULL ){
                   6194:           strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
                   6195:         }else{
                   6196:           strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
                   6197:         }
                   6198:         writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
                   6199:         robust_ftruncate(conchFile->h, writeSize);
                   6200:         rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
                   6201:         fsync(conchFile->h);
                   6202:         /* If we created a new conch file (not just updated the contents of a 
                   6203:          ** valid conch file), try to match the permissions of the database 
                   6204:          */
                   6205:         if( rc==SQLITE_OK && createConch ){
                   6206:           struct stat buf;
                   6207:           int err = osFstat(pFile->h, &buf);
                   6208:           if( err==0 ){
                   6209:             mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
                   6210:                                         S_IROTH|S_IWOTH);
                   6211:             /* try to match the database file R/W permissions, ignore failure */
                   6212: #ifndef SQLITE_PROXY_DEBUG
                   6213:             osFchmod(conchFile->h, cmode);
                   6214: #else
                   6215:             do{
                   6216:               rc = osFchmod(conchFile->h, cmode);
                   6217:             }while( rc==(-1) && errno==EINTR );
                   6218:             if( rc!=0 ){
                   6219:               int code = errno;
                   6220:               fprintf(stderr, "fchmod %o FAILED with %d %s\n",
                   6221:                       cmode, code, strerror(code));
                   6222:             } else {
                   6223:               fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
                   6224:             }
                   6225:           }else{
                   6226:             int code = errno;
                   6227:             fprintf(stderr, "STAT FAILED[%d] with %d %s\n", 
                   6228:                     err, code, strerror(code));
                   6229: #endif
                   6230:           }
                   6231:         }
                   6232:       }
                   6233:       conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
                   6234:       
                   6235:     end_takeconch:
                   6236:       OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
                   6237:       if( rc==SQLITE_OK && pFile->openFlags ){
                   6238:         int fd;
                   6239:         if( pFile->h>=0 ){
                   6240:           robust_close(pFile, pFile->h, __LINE__);
                   6241:         }
                   6242:         pFile->h = -1;
                   6243:         fd = robust_open(pCtx->dbPath, pFile->openFlags,
                   6244:                       SQLITE_DEFAULT_FILE_PERMISSIONS);
                   6245:         OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
                   6246:         if( fd>=0 ){
                   6247:           pFile->h = fd;
                   6248:         }else{
                   6249:           rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
                   6250:            during locking */
                   6251:         }
                   6252:       }
                   6253:       if( rc==SQLITE_OK && !pCtx->lockProxy ){
                   6254:         char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
                   6255:         rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
                   6256:         if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
                   6257:           /* we couldn't create the proxy lock file with the old lock file path
                   6258:            ** so try again via auto-naming 
                   6259:            */
                   6260:           forceNewLockPath = 1;
                   6261:           tryOldLockPath = 0;
                   6262:           continue; /* go back to the do {} while start point, try again */
                   6263:         }
                   6264:       }
                   6265:       if( rc==SQLITE_OK ){
                   6266:         /* Need to make a copy of path if we extracted the value
                   6267:          ** from the conch file or the path was allocated on the stack
                   6268:          */
                   6269:         if( tempLockPath ){
                   6270:           pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
                   6271:           if( !pCtx->lockProxyPath ){
                   6272:             rc = SQLITE_NOMEM;
                   6273:           }
                   6274:         }
                   6275:       }
                   6276:       if( rc==SQLITE_OK ){
                   6277:         pCtx->conchHeld = 1;
                   6278:         
                   6279:         if( pCtx->lockProxy->pMethod == &afpIoMethods ){
                   6280:           afpLockingContext *afpCtx;
                   6281:           afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
                   6282:           afpCtx->dbPath = pCtx->lockProxyPath;
                   6283:         }
                   6284:       } else {
                   6285:         conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
                   6286:       }
                   6287:       OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
                   6288:                rc==SQLITE_OK?"ok":"failed"));
                   6289:       return rc;
                   6290:     } while (1); /* in case we need to retry the :auto: lock file - 
                   6291:                  ** we should never get here except via the 'continue' call. */
                   6292:   }
                   6293: }
                   6294: 
                   6295: /*
                   6296: ** If pFile holds a lock on a conch file, then release that lock.
                   6297: */
                   6298: static int proxyReleaseConch(unixFile *pFile){
                   6299:   int rc = SQLITE_OK;         /* Subroutine return code */
                   6300:   proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
                   6301:   unixFile *conchFile;        /* Name of the conch file */
                   6302: 
                   6303:   pCtx = (proxyLockingContext *)pFile->lockingContext;
                   6304:   conchFile = pCtx->conchFile;
                   6305:   OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
                   6306:            (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), 
                   6307:            getpid()));
                   6308:   if( pCtx->conchHeld>0 ){
                   6309:     rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
                   6310:   }
                   6311:   pCtx->conchHeld = 0;
                   6312:   OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
                   6313:            (rc==SQLITE_OK ? "ok" : "failed")));
                   6314:   return rc;
                   6315: }
                   6316: 
                   6317: /*
                   6318: ** Given the name of a database file, compute the name of its conch file.
                   6319: ** Store the conch filename in memory obtained from sqlite3_malloc().
                   6320: ** Make *pConchPath point to the new name.  Return SQLITE_OK on success
                   6321: ** or SQLITE_NOMEM if unable to obtain memory.
                   6322: **
                   6323: ** The caller is responsible for ensuring that the allocated memory
                   6324: ** space is eventually freed.
                   6325: **
                   6326: ** *pConchPath is set to NULL if a memory allocation error occurs.
                   6327: */
                   6328: static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
                   6329:   int i;                        /* Loop counter */
                   6330:   int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
                   6331:   char *conchPath;              /* buffer in which to construct conch name */
                   6332: 
                   6333:   /* Allocate space for the conch filename and initialize the name to
                   6334:   ** the name of the original database file. */  
                   6335:   *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
                   6336:   if( conchPath==0 ){
                   6337:     return SQLITE_NOMEM;
                   6338:   }
                   6339:   memcpy(conchPath, dbPath, len+1);
                   6340:   
                   6341:   /* now insert a "." before the last / character */
                   6342:   for( i=(len-1); i>=0; i-- ){
                   6343:     if( conchPath[i]=='/' ){
                   6344:       i++;
                   6345:       break;
                   6346:     }
                   6347:   }
                   6348:   conchPath[i]='.';
                   6349:   while ( i<len ){
                   6350:     conchPath[i+1]=dbPath[i];
                   6351:     i++;
                   6352:   }
                   6353: 
                   6354:   /* append the "-conch" suffix to the file */
                   6355:   memcpy(&conchPath[i+1], "-conch", 7);
                   6356:   assert( (int)strlen(conchPath) == len+7 );
                   6357: 
                   6358:   return SQLITE_OK;
                   6359: }
                   6360: 
                   6361: 
                   6362: /* Takes a fully configured proxy locking-style unix file and switches
                   6363: ** the local lock file path 
                   6364: */
                   6365: static int switchLockProxyPath(unixFile *pFile, const char *path) {
                   6366:   proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
                   6367:   char *oldPath = pCtx->lockProxyPath;
                   6368:   int rc = SQLITE_OK;
                   6369: 
                   6370:   if( pFile->eFileLock!=NO_LOCK ){
                   6371:     return SQLITE_BUSY;
                   6372:   }  
                   6373: 
                   6374:   /* nothing to do if the path is NULL, :auto: or matches the existing path */
                   6375:   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
                   6376:     (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
                   6377:     return SQLITE_OK;
                   6378:   }else{
                   6379:     unixFile *lockProxy = pCtx->lockProxy;
                   6380:     pCtx->lockProxy=NULL;
                   6381:     pCtx->conchHeld = 0;
                   6382:     if( lockProxy!=NULL ){
                   6383:       rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
                   6384:       if( rc ) return rc;
                   6385:       sqlite3_free(lockProxy);
                   6386:     }
                   6387:     sqlite3_free(oldPath);
                   6388:     pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
                   6389:   }
                   6390:   
                   6391:   return rc;
                   6392: }
                   6393: 
                   6394: /*
                   6395: ** pFile is a file that has been opened by a prior xOpen call.  dbPath
                   6396: ** is a string buffer at least MAXPATHLEN+1 characters in size.
                   6397: **
                   6398: ** This routine find the filename associated with pFile and writes it
                   6399: ** int dbPath.
                   6400: */
                   6401: static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
                   6402: #if defined(__APPLE__)
                   6403:   if( pFile->pMethod == &afpIoMethods ){
                   6404:     /* afp style keeps a reference to the db path in the filePath field 
                   6405:     ** of the struct */
                   6406:     assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
                   6407:     strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
                   6408:   } else
                   6409: #endif
                   6410:   if( pFile->pMethod == &dotlockIoMethods ){
                   6411:     /* dot lock style uses the locking context to store the dot lock
                   6412:     ** file path */
                   6413:     int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
                   6414:     memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
                   6415:   }else{
                   6416:     /* all other styles use the locking context to store the db file path */
                   6417:     assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
                   6418:     strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
                   6419:   }
                   6420:   return SQLITE_OK;
                   6421: }
                   6422: 
                   6423: /*
                   6424: ** Takes an already filled in unix file and alters it so all file locking 
                   6425: ** will be performed on the local proxy lock file.  The following fields
                   6426: ** are preserved in the locking context so that they can be restored and 
                   6427: ** the unix structure properly cleaned up at close time:
                   6428: **  ->lockingContext
                   6429: **  ->pMethod
                   6430: */
                   6431: static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
                   6432:   proxyLockingContext *pCtx;
                   6433:   char dbPath[MAXPATHLEN+1];       /* Name of the database file */
                   6434:   char *lockPath=NULL;
                   6435:   int rc = SQLITE_OK;
                   6436:   
                   6437:   if( pFile->eFileLock!=NO_LOCK ){
                   6438:     return SQLITE_BUSY;
                   6439:   }
                   6440:   proxyGetDbPathForUnixFile(pFile, dbPath);
                   6441:   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
                   6442:     lockPath=NULL;
                   6443:   }else{
                   6444:     lockPath=(char *)path;
                   6445:   }
                   6446:   
                   6447:   OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
                   6448:            (lockPath ? lockPath : ":auto:"), getpid()));
                   6449: 
                   6450:   pCtx = sqlite3_malloc( sizeof(*pCtx) );
                   6451:   if( pCtx==0 ){
                   6452:     return SQLITE_NOMEM;
                   6453:   }
                   6454:   memset(pCtx, 0, sizeof(*pCtx));
                   6455: 
                   6456:   rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
                   6457:   if( rc==SQLITE_OK ){
                   6458:     rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
                   6459:     if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
                   6460:       /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
                   6461:       ** (c) the file system is read-only, then enable no-locking access.
                   6462:       ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
                   6463:       ** that openFlags will have only one of O_RDONLY or O_RDWR.
                   6464:       */
                   6465:       struct statfs fsInfo;
                   6466:       struct stat conchInfo;
                   6467:       int goLockless = 0;
                   6468: 
                   6469:       if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
                   6470:         int err = errno;
                   6471:         if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
                   6472:           goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
                   6473:         }
                   6474:       }
                   6475:       if( goLockless ){
                   6476:         pCtx->conchHeld = -1; /* read only FS/ lockless */
                   6477:         rc = SQLITE_OK;
                   6478:       }
                   6479:     }
                   6480:   }  
                   6481:   if( rc==SQLITE_OK && lockPath ){
                   6482:     pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
                   6483:   }
                   6484: 
                   6485:   if( rc==SQLITE_OK ){
                   6486:     pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
                   6487:     if( pCtx->dbPath==NULL ){
                   6488:       rc = SQLITE_NOMEM;
                   6489:     }
                   6490:   }
                   6491:   if( rc==SQLITE_OK ){
                   6492:     /* all memory is allocated, proxys are created and assigned, 
                   6493:     ** switch the locking context and pMethod then return.
                   6494:     */
                   6495:     pCtx->oldLockingContext = pFile->lockingContext;
                   6496:     pFile->lockingContext = pCtx;
                   6497:     pCtx->pOldMethod = pFile->pMethod;
                   6498:     pFile->pMethod = &proxyIoMethods;
                   6499:   }else{
                   6500:     if( pCtx->conchFile ){ 
                   6501:       pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
                   6502:       sqlite3_free(pCtx->conchFile);
                   6503:     }
                   6504:     sqlite3DbFree(0, pCtx->lockProxyPath);
                   6505:     sqlite3_free(pCtx->conchFilePath); 
                   6506:     sqlite3_free(pCtx);
                   6507:   }
                   6508:   OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
                   6509:            (rc==SQLITE_OK ? "ok" : "failed")));
                   6510:   return rc;
                   6511: }
                   6512: 
                   6513: 
                   6514: /*
                   6515: ** This routine handles sqlite3_file_control() calls that are specific
                   6516: ** to proxy locking.
                   6517: */
                   6518: static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
                   6519:   switch( op ){
                   6520:     case SQLITE_GET_LOCKPROXYFILE: {
                   6521:       unixFile *pFile = (unixFile*)id;
                   6522:       if( pFile->pMethod == &proxyIoMethods ){
                   6523:         proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
                   6524:         proxyTakeConch(pFile);
                   6525:         if( pCtx->lockProxyPath ){
                   6526:           *(const char **)pArg = pCtx->lockProxyPath;
                   6527:         }else{
                   6528:           *(const char **)pArg = ":auto: (not held)";
                   6529:         }
                   6530:       } else {
                   6531:         *(const char **)pArg = NULL;
                   6532:       }
                   6533:       return SQLITE_OK;
                   6534:     }
                   6535:     case SQLITE_SET_LOCKPROXYFILE: {
                   6536:       unixFile *pFile = (unixFile*)id;
                   6537:       int rc = SQLITE_OK;
                   6538:       int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
                   6539:       if( pArg==NULL || (const char *)pArg==0 ){
                   6540:         if( isProxyStyle ){
                   6541:           /* turn off proxy locking - not supported */
                   6542:           rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
                   6543:         }else{
                   6544:           /* turn off proxy locking - already off - NOOP */
                   6545:           rc = SQLITE_OK;
                   6546:         }
                   6547:       }else{
                   6548:         const char *proxyPath = (const char *)pArg;
                   6549:         if( isProxyStyle ){
                   6550:           proxyLockingContext *pCtx = 
                   6551:             (proxyLockingContext*)pFile->lockingContext;
                   6552:           if( !strcmp(pArg, ":auto:") 
                   6553:            || (pCtx->lockProxyPath &&
                   6554:                !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
                   6555:           ){
                   6556:             rc = SQLITE_OK;
                   6557:           }else{
                   6558:             rc = switchLockProxyPath(pFile, proxyPath);
                   6559:           }
                   6560:         }else{
                   6561:           /* turn on proxy file locking */
                   6562:           rc = proxyTransformUnixFile(pFile, proxyPath);
                   6563:         }
                   6564:       }
                   6565:       return rc;
                   6566:     }
                   6567:     default: {
                   6568:       assert( 0 );  /* The call assures that only valid opcodes are sent */
                   6569:     }
                   6570:   }
                   6571:   /*NOTREACHED*/
                   6572:   return SQLITE_ERROR;
                   6573: }
                   6574: 
                   6575: /*
                   6576: ** Within this division (the proxying locking implementation) the procedures
                   6577: ** above this point are all utilities.  The lock-related methods of the
                   6578: ** proxy-locking sqlite3_io_method object follow.
                   6579: */
                   6580: 
                   6581: 
                   6582: /*
                   6583: ** This routine checks if there is a RESERVED lock held on the specified
                   6584: ** file by this or any other process. If such a lock is held, set *pResOut
                   6585: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
                   6586: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
                   6587: */
                   6588: static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
                   6589:   unixFile *pFile = (unixFile*)id;
                   6590:   int rc = proxyTakeConch(pFile);
                   6591:   if( rc==SQLITE_OK ){
                   6592:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
                   6593:     if( pCtx->conchHeld>0 ){
                   6594:       unixFile *proxy = pCtx->lockProxy;
                   6595:       return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
                   6596:     }else{ /* conchHeld < 0 is lockless */
                   6597:       pResOut=0;
                   6598:     }
                   6599:   }
                   6600:   return rc;
                   6601: }
                   6602: 
                   6603: /*
                   6604: ** Lock the file with the lock specified by parameter eFileLock - one
                   6605: ** of the following:
                   6606: **
                   6607: **     (1) SHARED_LOCK
                   6608: **     (2) RESERVED_LOCK
                   6609: **     (3) PENDING_LOCK
                   6610: **     (4) EXCLUSIVE_LOCK
                   6611: **
                   6612: ** Sometimes when requesting one lock state, additional lock states
                   6613: ** are inserted in between.  The locking might fail on one of the later
                   6614: ** transitions leaving the lock state different from what it started but
                   6615: ** still short of its goal.  The following chart shows the allowed
                   6616: ** transitions and the inserted intermediate states:
                   6617: **
                   6618: **    UNLOCKED -> SHARED
                   6619: **    SHARED -> RESERVED
                   6620: **    SHARED -> (PENDING) -> EXCLUSIVE
                   6621: **    RESERVED -> (PENDING) -> EXCLUSIVE
                   6622: **    PENDING -> EXCLUSIVE
                   6623: **
                   6624: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
                   6625: ** routine to lower a locking level.
                   6626: */
                   6627: static int proxyLock(sqlite3_file *id, int eFileLock) {
                   6628:   unixFile *pFile = (unixFile*)id;
                   6629:   int rc = proxyTakeConch(pFile);
                   6630:   if( rc==SQLITE_OK ){
                   6631:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
                   6632:     if( pCtx->conchHeld>0 ){
                   6633:       unixFile *proxy = pCtx->lockProxy;
                   6634:       rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
                   6635:       pFile->eFileLock = proxy->eFileLock;
                   6636:     }else{
                   6637:       /* conchHeld < 0 is lockless */
                   6638:     }
                   6639:   }
                   6640:   return rc;
                   6641: }
                   6642: 
                   6643: 
                   6644: /*
                   6645: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
                   6646: ** must be either NO_LOCK or SHARED_LOCK.
                   6647: **
                   6648: ** If the locking level of the file descriptor is already at or below
                   6649: ** the requested locking level, this routine is a no-op.
                   6650: */
                   6651: static int proxyUnlock(sqlite3_file *id, int eFileLock) {
                   6652:   unixFile *pFile = (unixFile*)id;
                   6653:   int rc = proxyTakeConch(pFile);
                   6654:   if( rc==SQLITE_OK ){
                   6655:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
                   6656:     if( pCtx->conchHeld>0 ){
                   6657:       unixFile *proxy = pCtx->lockProxy;
                   6658:       rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
                   6659:       pFile->eFileLock = proxy->eFileLock;
                   6660:     }else{
                   6661:       /* conchHeld < 0 is lockless */
                   6662:     }
                   6663:   }
                   6664:   return rc;
                   6665: }
                   6666: 
                   6667: /*
                   6668: ** Close a file that uses proxy locks.
                   6669: */
                   6670: static int proxyClose(sqlite3_file *id) {
                   6671:   if( id ){
                   6672:     unixFile *pFile = (unixFile*)id;
                   6673:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
                   6674:     unixFile *lockProxy = pCtx->lockProxy;
                   6675:     unixFile *conchFile = pCtx->conchFile;
                   6676:     int rc = SQLITE_OK;
                   6677:     
                   6678:     if( lockProxy ){
                   6679:       rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
                   6680:       if( rc ) return rc;
                   6681:       rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
                   6682:       if( rc ) return rc;
                   6683:       sqlite3_free(lockProxy);
                   6684:       pCtx->lockProxy = 0;
                   6685:     }
                   6686:     if( conchFile ){
                   6687:       if( pCtx->conchHeld ){
                   6688:         rc = proxyReleaseConch(pFile);
                   6689:         if( rc ) return rc;
                   6690:       }
                   6691:       rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
                   6692:       if( rc ) return rc;
                   6693:       sqlite3_free(conchFile);
                   6694:     }
                   6695:     sqlite3DbFree(0, pCtx->lockProxyPath);
                   6696:     sqlite3_free(pCtx->conchFilePath);
                   6697:     sqlite3DbFree(0, pCtx->dbPath);
                   6698:     /* restore the original locking context and pMethod then close it */
                   6699:     pFile->lockingContext = pCtx->oldLockingContext;
                   6700:     pFile->pMethod = pCtx->pOldMethod;
                   6701:     sqlite3_free(pCtx);
                   6702:     return pFile->pMethod->xClose(id);
                   6703:   }
                   6704:   return SQLITE_OK;
                   6705: }
                   6706: 
                   6707: 
                   6708: 
                   6709: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
                   6710: /*
                   6711: ** The proxy locking style is intended for use with AFP filesystems.
                   6712: ** And since AFP is only supported on MacOSX, the proxy locking is also
                   6713: ** restricted to MacOSX.
                   6714: ** 
                   6715: **
                   6716: ******************* End of the proxy lock implementation **********************
                   6717: ******************************************************************************/
                   6718: 
                   6719: /*
                   6720: ** Initialize the operating system interface.
                   6721: **
                   6722: ** This routine registers all VFS implementations for unix-like operating
                   6723: ** systems.  This routine, and the sqlite3_os_end() routine that follows,
                   6724: ** should be the only routines in this file that are visible from other
                   6725: ** files.
                   6726: **
                   6727: ** This routine is called once during SQLite initialization and by a
                   6728: ** single thread.  The memory allocation and mutex subsystems have not
                   6729: ** necessarily been initialized when this routine is called, and so they
                   6730: ** should not be used.
                   6731: */
                   6732: int sqlite3_os_init(void){ 
                   6733:   /* 
                   6734:   ** The following macro defines an initializer for an sqlite3_vfs object.
                   6735:   ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
                   6736:   ** to the "finder" function.  (pAppData is a pointer to a pointer because
                   6737:   ** silly C90 rules prohibit a void* from being cast to a function pointer
                   6738:   ** and so we have to go through the intermediate pointer to avoid problems
                   6739:   ** when compiling with -pedantic-errors on GCC.)
                   6740:   **
                   6741:   ** The FINDER parameter to this macro is the name of the pointer to the
                   6742:   ** finder-function.  The finder-function returns a pointer to the
                   6743:   ** sqlite_io_methods object that implements the desired locking
                   6744:   ** behaviors.  See the division above that contains the IOMETHODS
                   6745:   ** macro for addition information on finder-functions.
                   6746:   **
                   6747:   ** Most finders simply return a pointer to a fixed sqlite3_io_methods
                   6748:   ** object.  But the "autolockIoFinder" available on MacOSX does a little
                   6749:   ** more than that; it looks at the filesystem type that hosts the 
                   6750:   ** database file and tries to choose an locking method appropriate for
                   6751:   ** that filesystem time.
                   6752:   */
                   6753:   #define UNIXVFS(VFSNAME, FINDER) {                        \
                   6754:     3,                    /* iVersion */                    \
                   6755:     sizeof(unixFile),     /* szOsFile */                    \
                   6756:     MAX_PATHNAME,         /* mxPathname */                  \
                   6757:     0,                    /* pNext */                       \
                   6758:     VFSNAME,              /* zName */                       \
                   6759:     (void*)&FINDER,       /* pAppData */                    \
                   6760:     unixOpen,             /* xOpen */                       \
                   6761:     unixDelete,           /* xDelete */                     \
                   6762:     unixAccess,           /* xAccess */                     \
                   6763:     unixFullPathname,     /* xFullPathname */               \
                   6764:     unixDlOpen,           /* xDlOpen */                     \
                   6765:     unixDlError,          /* xDlError */                    \
                   6766:     unixDlSym,            /* xDlSym */                      \
                   6767:     unixDlClose,          /* xDlClose */                    \
                   6768:     unixRandomness,       /* xRandomness */                 \
                   6769:     unixSleep,            /* xSleep */                      \
                   6770:     unixCurrentTime,      /* xCurrentTime */                \
                   6771:     unixGetLastError,     /* xGetLastError */               \
                   6772:     unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
                   6773:     unixSetSystemCall,    /* xSetSystemCall */              \
                   6774:     unixGetSystemCall,    /* xGetSystemCall */              \
                   6775:     unixNextSystemCall,   /* xNextSystemCall */             \
                   6776:   }
                   6777: 
                   6778:   /*
                   6779:   ** All default VFSes for unix are contained in the following array.
                   6780:   **
                   6781:   ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
                   6782:   ** by the SQLite core when the VFS is registered.  So the following
                   6783:   ** array cannot be const.
                   6784:   */
                   6785:   static sqlite3_vfs aVfs[] = {
                   6786: #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
                   6787:     UNIXVFS("unix",          autolockIoFinder ),
                   6788: #else
                   6789:     UNIXVFS("unix",          posixIoFinder ),
                   6790: #endif
                   6791:     UNIXVFS("unix-none",     nolockIoFinder ),
                   6792:     UNIXVFS("unix-dotfile",  dotlockIoFinder ),
                   6793:     UNIXVFS("unix-excl",     posixIoFinder ),
                   6794: #if OS_VXWORKS
                   6795:     UNIXVFS("unix-namedsem", semIoFinder ),
                   6796: #endif
                   6797: #if SQLITE_ENABLE_LOCKING_STYLE
                   6798:     UNIXVFS("unix-posix",    posixIoFinder ),
                   6799: #if !OS_VXWORKS
                   6800:     UNIXVFS("unix-flock",    flockIoFinder ),
                   6801: #endif
                   6802: #endif
                   6803: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
                   6804:     UNIXVFS("unix-afp",      afpIoFinder ),
                   6805:     UNIXVFS("unix-nfs",      nfsIoFinder ),
                   6806:     UNIXVFS("unix-proxy",    proxyIoFinder ),
                   6807: #endif
                   6808:   };
                   6809:   unsigned int i;          /* Loop counter */
                   6810: 
                   6811:   /* Double-check that the aSyscall[] array has been constructed
                   6812:   ** correctly.  See ticket [bb3a86e890c8e96ab] */
                   6813:   assert( ArraySize(aSyscall)==20 );
                   6814: 
                   6815:   /* Register all VFSes defined in the aVfs[] array */
                   6816:   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
                   6817:     sqlite3_vfs_register(&aVfs[i], i==0);
                   6818:   }
                   6819:   return SQLITE_OK; 
                   6820: }
                   6821: 
                   6822: /*
                   6823: ** Shutdown the operating system interface.
                   6824: **
                   6825: ** Some operating systems might need to do some cleanup in this routine,
                   6826: ** to release dynamically allocated objects.  But not on unix.
                   6827: ** This routine is a no-op for unix.
                   6828: */
                   6829: int sqlite3_os_end(void){ 
                   6830:   return SQLITE_OK; 
                   6831: }
                   6832:  
                   6833: #endif /* SQLITE_OS_UNIX */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>