File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / os_unix.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2004 May 22
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: ******************************************************************************
   12: **
   13: ** This file contains the VFS implementation for unix-like operating systems
   14: ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
   15: **
   16: ** There are actually several different VFS implementations in this file.
   17: ** The differences are in the way that file locking is done.  The default
   18: ** implementation uses Posix Advisory Locks.  Alternative implementations
   19: ** use flock(), dot-files, various proprietary locking schemas, or simply
   20: ** skip locking all together.
   21: **
   22: ** This source file is organized into divisions where the logic for various
   23: ** subfunctions is contained within the appropriate division.  PLEASE
   24: ** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
   25: ** in the correct division and should be clearly labeled.
   26: **
   27: ** The layout of divisions is as follows:
   28: **
   29: **   *  General-purpose declarations and utility functions.
   30: **   *  Unique file ID logic used by VxWorks.
   31: **   *  Various locking primitive implementations (all except proxy locking):
   32: **      + for Posix Advisory Locks
   33: **      + for no-op locks
   34: **      + for dot-file locks
   35: **      + for flock() locking
   36: **      + for named semaphore locks (VxWorks only)
   37: **      + for AFP filesystem locks (MacOSX only)
   38: **   *  sqlite3_file methods not associated with locking.
   39: **   *  Definitions of sqlite3_io_methods objects for all locking
   40: **      methods plus "finder" functions for each locking method.
   41: **   *  sqlite3_vfs method implementations.
   42: **   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
   43: **   *  Definitions of sqlite3_vfs objects for all locking methods
   44: **      plus implementations of sqlite3_os_init() and sqlite3_os_end().
   45: */
   46: #include "sqliteInt.h"
   47: #if SQLITE_OS_UNIX              /* This file is used on unix only */
   48: 
   49: /*
   50: ** There are various methods for file locking used for concurrency
   51: ** control:
   52: **
   53: **   1. POSIX locking (the default),
   54: **   2. No locking,
   55: **   3. Dot-file locking,
   56: **   4. flock() locking,
   57: **   5. AFP locking (OSX only),
   58: **   6. Named POSIX semaphores (VXWorks only),
   59: **   7. proxy locking. (OSX only)
   60: **
   61: ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
   62: ** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
   63: ** selection of the appropriate locking style based on the filesystem
   64: ** where the database is located.  
   65: */
   66: #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
   67: #  if defined(__APPLE__)
   68: #    define SQLITE_ENABLE_LOCKING_STYLE 1
   69: #  else
   70: #    define SQLITE_ENABLE_LOCKING_STYLE 0
   71: #  endif
   72: #endif
   73: 
   74: /*
   75: ** Define the OS_VXWORKS pre-processor macro to 1 if building on 
   76: ** vxworks, or 0 otherwise.
   77: */
   78: #ifndef OS_VXWORKS
   79: #  if defined(__RTP__) || defined(_WRS_KERNEL)
   80: #    define OS_VXWORKS 1
   81: #  else
   82: #    define OS_VXWORKS 0
   83: #  endif
   84: #endif
   85: 
   86: /*
   87: ** These #defines should enable >2GB file support on Posix if the
   88: ** underlying operating system supports it.  If the OS lacks
   89: ** large file support, these should be no-ops.
   90: **
   91: ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
   92: ** on the compiler command line.  This is necessary if you are compiling
   93: ** on a recent machine (ex: RedHat 7.2) but you want your code to work
   94: ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
   95: ** without this option, LFS is enable.  But LFS does not exist in the kernel
   96: ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
   97: ** portability you should omit LFS.
   98: **
   99: ** The previous paragraph was written in 2005.  (This paragraph is written
  100: ** on 2008-11-28.) These days, all Linux kernels support large files, so
  101: ** you should probably leave LFS enabled.  But some embedded platforms might
  102: ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
  103: */
  104: #ifndef SQLITE_DISABLE_LFS
  105: # define _LARGE_FILE       1
  106: # ifndef _FILE_OFFSET_BITS
  107: #   define _FILE_OFFSET_BITS 64
  108: # endif
  109: # define _LARGEFILE_SOURCE 1
  110: #endif
  111: 
  112: /*
  113: ** standard include files.
  114: */
  115: #include <sys/types.h>
  116: #include <sys/stat.h>
  117: #include <fcntl.h>
  118: #include <unistd.h>
  119: #include <time.h>
  120: #include <sys/time.h>
  121: #include <errno.h>
  122: #ifndef SQLITE_OMIT_WAL
  123: #include <sys/mman.h>
  124: #endif
  125: 
  126: 
  127: #if SQLITE_ENABLE_LOCKING_STYLE
  128: # include <sys/ioctl.h>
  129: # if OS_VXWORKS
  130: #  include <semaphore.h>
  131: #  include <limits.h>
  132: # else
  133: #  include <sys/file.h>
  134: #  include <sys/param.h>
  135: # endif
  136: #endif /* SQLITE_ENABLE_LOCKING_STYLE */
  137: 
  138: #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
  139: # include <sys/mount.h>
  140: #endif
  141: 
  142: #ifdef HAVE_UTIME
  143: # include <utime.h>
  144: #endif
  145: 
  146: /*
  147: ** Allowed values of unixFile.fsFlags
  148: */
  149: #define SQLITE_FSFLAGS_IS_MSDOS     0x1
  150: 
  151: /*
  152: ** If we are to be thread-safe, include the pthreads header and define
  153: ** the SQLITE_UNIX_THREADS macro.
  154: */
  155: #if SQLITE_THREADSAFE
  156: # include <pthread.h>
  157: # define SQLITE_UNIX_THREADS 1
  158: #endif
  159: 
  160: /*
  161: ** Default permissions when creating a new file
  162: */
  163: #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
  164: # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
  165: #endif
  166: 
  167: /*
  168:  ** Default permissions when creating auto proxy dir
  169:  */
  170: #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
  171: # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
  172: #endif
  173: 
  174: /*
  175: ** Maximum supported path-length.
  176: */
  177: #define MAX_PATHNAME 512
  178: 
  179: /*
  180: ** Only set the lastErrno if the error code is a real error and not 
  181: ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
  182: */
  183: #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
  184: 
  185: /* Forward references */
  186: typedef struct unixShm unixShm;               /* Connection shared memory */
  187: typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
  188: typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
  189: typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
  190: 
  191: /*
  192: ** Sometimes, after a file handle is closed by SQLite, the file descriptor
  193: ** cannot be closed immediately. In these cases, instances of the following
  194: ** structure are used to store the file descriptor while waiting for an
  195: ** opportunity to either close or reuse it.
  196: */
  197: struct UnixUnusedFd {
  198:   int fd;                   /* File descriptor to close */
  199:   int flags;                /* Flags this file descriptor was opened with */
  200:   UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
  201: };
  202: 
  203: /*
  204: ** The unixFile structure is subclass of sqlite3_file specific to the unix
  205: ** VFS implementations.
  206: */
  207: typedef struct unixFile unixFile;
  208: struct unixFile {
  209:   sqlite3_io_methods const *pMethod;  /* Always the first entry */
  210:   sqlite3_vfs *pVfs;                  /* The VFS that created this unixFile */
  211:   unixInodeInfo *pInode;              /* Info about locks on this inode */
  212:   int h;                              /* The file descriptor */
  213:   unsigned char eFileLock;            /* The type of lock held on this fd */
  214:   unsigned char ctrlFlags;            /* Behavioral bits.  UNIXFILE_* flags */
  215:   int lastErrno;                      /* The unix errno from last I/O error */
  216:   void *lockingContext;               /* Locking style specific state */
  217:   UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
  218:   const char *zPath;                  /* Name of the file */
  219:   unixShm *pShm;                      /* Shared memory segment information */
  220:   int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
  221: #if SQLITE_ENABLE_LOCKING_STYLE
  222:   int openFlags;                      /* The flags specified at open() */
  223: #endif
  224: #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
  225:   unsigned fsFlags;                   /* cached details from statfs() */
  226: #endif
  227: #if OS_VXWORKS
  228:   struct vxworksFileId *pId;          /* Unique file ID */
  229: #endif
  230: #ifndef NDEBUG
  231:   /* The next group of variables are used to track whether or not the
  232:   ** transaction counter in bytes 24-27 of database files are updated
  233:   ** whenever any part of the database changes.  An assertion fault will
  234:   ** occur if a file is updated without also updating the transaction
  235:   ** counter.  This test is made to avoid new problems similar to the
  236:   ** one described by ticket #3584. 
  237:   */
  238:   unsigned char transCntrChng;   /* True if the transaction counter changed */
  239:   unsigned char dbUpdate;        /* True if any part of database file changed */
  240:   unsigned char inNormalWrite;   /* True if in a normal write operation */
  241: #endif
  242: #ifdef SQLITE_TEST
  243:   /* In test mode, increase the size of this structure a bit so that 
  244:   ** it is larger than the struct CrashFile defined in test6.c.
  245:   */
  246:   char aPadding[32];
  247: #endif
  248: };
  249: 
  250: /*
  251: ** Allowed values for the unixFile.ctrlFlags bitmask:
  252: */
  253: #define UNIXFILE_EXCL        0x01     /* Connections from one process only */
  254: #define UNIXFILE_RDONLY      0x02     /* Connection is read only */
  255: #define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
  256: #ifndef SQLITE_DISABLE_DIRSYNC
  257: # define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
  258: #else
  259: # define UNIXFILE_DIRSYNC    0x00
  260: #endif
  261: #define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
  262: #define UNIXFILE_DELETE      0x20     /* Delete on close */
  263: #define UNIXFILE_URI         0x40     /* Filename might have query parameters */
  264: #define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
  265: 
  266: /*
  267: ** Include code that is common to all os_*.c files
  268: */
  269: #include "os_common.h"
  270: 
  271: /*
  272: ** Define various macros that are missing from some systems.
  273: */
  274: #ifndef O_LARGEFILE
  275: # define O_LARGEFILE 0
  276: #endif
  277: #ifdef SQLITE_DISABLE_LFS
  278: # undef O_LARGEFILE
  279: # define O_LARGEFILE 0
  280: #endif
  281: #ifndef O_NOFOLLOW
  282: # define O_NOFOLLOW 0
  283: #endif
  284: #ifndef O_BINARY
  285: # define O_BINARY 0
  286: #endif
  287: 
  288: /*
  289: ** The threadid macro resolves to the thread-id or to 0.  Used for
  290: ** testing and debugging only.
  291: */
  292: #if SQLITE_THREADSAFE
  293: #define threadid pthread_self()
  294: #else
  295: #define threadid 0
  296: #endif
  297: 
  298: /*
  299: ** Different Unix systems declare open() in different ways.  Same use
  300: ** open(const char*,int,mode_t).  Others use open(const char*,int,...).
  301: ** The difference is important when using a pointer to the function.
  302: **
  303: ** The safest way to deal with the problem is to always use this wrapper
  304: ** which always has the same well-defined interface.
  305: */
  306: static int posixOpen(const char *zFile, int flags, int mode){
  307:   return open(zFile, flags, mode);
  308: }
  309: 
  310: /* Forward reference */
  311: static int openDirectory(const char*, int*);
  312: 
  313: /*
  314: ** Many system calls are accessed through pointer-to-functions so that
  315: ** they may be overridden at runtime to facilitate fault injection during
  316: ** testing and sandboxing.  The following array holds the names and pointers
  317: ** to all overrideable system calls.
  318: */
  319: static struct unix_syscall {
  320:   const char *zName;            /* Name of the sytem call */
  321:   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
  322:   sqlite3_syscall_ptr pDefault; /* Default value */
  323: } aSyscall[] = {
  324:   { "open",         (sqlite3_syscall_ptr)posixOpen,  0  },
  325: #define osOpen      ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
  326: 
  327:   { "close",        (sqlite3_syscall_ptr)close,      0  },
  328: #define osClose     ((int(*)(int))aSyscall[1].pCurrent)
  329: 
  330:   { "access",       (sqlite3_syscall_ptr)access,     0  },
  331: #define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
  332: 
  333:   { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
  334: #define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
  335: 
  336:   { "stat",         (sqlite3_syscall_ptr)stat,       0  },
  337: #define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
  338: 
  339: /*
  340: ** The DJGPP compiler environment looks mostly like Unix, but it
  341: ** lacks the fcntl() system call.  So redefine fcntl() to be something
  342: ** that always succeeds.  This means that locking does not occur under
  343: ** DJGPP.  But it is DOS - what did you expect?
  344: */
  345: #ifdef __DJGPP__
  346:   { "fstat",        0,                 0  },
  347: #define osFstat(a,b,c)    0
  348: #else     
  349:   { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
  350: #define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
  351: #endif
  352: 
  353:   { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
  354: #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
  355: 
  356:   { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
  357: #define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
  358: 
  359:   { "read",         (sqlite3_syscall_ptr)read,       0  },
  360: #define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
  361: 
  362: #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
  363:   { "pread",        (sqlite3_syscall_ptr)pread,      0  },
  364: #else
  365:   { "pread",        (sqlite3_syscall_ptr)0,          0  },
  366: #endif
  367: #define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
  368: 
  369: #if defined(USE_PREAD64)
  370:   { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
  371: #else
  372:   { "pread64",      (sqlite3_syscall_ptr)0,          0  },
  373: #endif
  374: #define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
  375: 
  376:   { "write",        (sqlite3_syscall_ptr)write,      0  },
  377: #define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
  378: 
  379: #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
  380:   { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
  381: #else
  382:   { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
  383: #endif
  384: #define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
  385:                     aSyscall[12].pCurrent)
  386: 
  387: #if defined(USE_PREAD64)
  388:   { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
  389: #else
  390:   { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
  391: #endif
  392: #define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
  393:                     aSyscall[13].pCurrent)
  394: 
  395: #if SQLITE_ENABLE_LOCKING_STYLE
  396:   { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
  397: #else
  398:   { "fchmod",       (sqlite3_syscall_ptr)0,          0  },
  399: #endif
  400: #define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
  401: 
  402: #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  403:   { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
  404: #else
  405:   { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
  406: #endif
  407: #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
  408: 
  409:   { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
  410: #define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
  411: 
  412:   { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
  413: #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
  414: 
  415:   { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
  416: #define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
  417: 
  418:   { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
  419: #define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)
  420: 
  421: }; /* End of the overrideable system calls */
  422: 
  423: /*
  424: ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
  425: ** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
  426: ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
  427: ** system call named zName.
  428: */
  429: static int unixSetSystemCall(
  430:   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
  431:   const char *zName,            /* Name of system call to override */
  432:   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
  433: ){
  434:   unsigned int i;
  435:   int rc = SQLITE_NOTFOUND;
  436: 
  437:   UNUSED_PARAMETER(pNotUsed);
  438:   if( zName==0 ){
  439:     /* If no zName is given, restore all system calls to their default
  440:     ** settings and return NULL
  441:     */
  442:     rc = SQLITE_OK;
  443:     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
  444:       if( aSyscall[i].pDefault ){
  445:         aSyscall[i].pCurrent = aSyscall[i].pDefault;
  446:       }
  447:     }
  448:   }else{
  449:     /* If zName is specified, operate on only the one system call
  450:     ** specified.
  451:     */
  452:     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
  453:       if( strcmp(zName, aSyscall[i].zName)==0 ){
  454:         if( aSyscall[i].pDefault==0 ){
  455:           aSyscall[i].pDefault = aSyscall[i].pCurrent;
  456:         }
  457:         rc = SQLITE_OK;
  458:         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
  459:         aSyscall[i].pCurrent = pNewFunc;
  460:         break;
  461:       }
  462:     }
  463:   }
  464:   return rc;
  465: }
  466: 
  467: /*
  468: ** Return the value of a system call.  Return NULL if zName is not a
  469: ** recognized system call name.  NULL is also returned if the system call
  470: ** is currently undefined.
  471: */
  472: static sqlite3_syscall_ptr unixGetSystemCall(
  473:   sqlite3_vfs *pNotUsed,
  474:   const char *zName
  475: ){
  476:   unsigned int i;
  477: 
  478:   UNUSED_PARAMETER(pNotUsed);
  479:   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
  480:     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
  481:   }
  482:   return 0;
  483: }
  484: 
  485: /*
  486: ** Return the name of the first system call after zName.  If zName==NULL
  487: ** then return the name of the first system call.  Return NULL if zName
  488: ** is the last system call or if zName is not the name of a valid
  489: ** system call.
  490: */
  491: static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
  492:   int i = -1;
  493: 
  494:   UNUSED_PARAMETER(p);
  495:   if( zName ){
  496:     for(i=0; i<ArraySize(aSyscall)-1; i++){
  497:       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
  498:     }
  499:   }
  500:   for(i++; i<ArraySize(aSyscall); i++){
  501:     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  502:   }
  503:   return 0;
  504: }
  505: 
  506: /*
  507: ** Retry open() calls that fail due to EINTR
  508: */
  509: static int robust_open(const char *z, int f, int m){
  510:   int rc;
  511:   do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
  512:   return rc;
  513: }
  514: 
  515: /*
  516: ** Helper functions to obtain and relinquish the global mutex. The
  517: ** global mutex is used to protect the unixInodeInfo and
  518: ** vxworksFileId objects used by this file, all of which may be 
  519: ** shared by multiple threads.
  520: **
  521: ** Function unixMutexHeld() is used to assert() that the global mutex 
  522: ** is held when required. This function is only used as part of assert() 
  523: ** statements. e.g.
  524: **
  525: **   unixEnterMutex()
  526: **     assert( unixMutexHeld() );
  527: **   unixEnterLeave()
  528: */
  529: static void unixEnterMutex(void){
  530:   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
  531: }
  532: static void unixLeaveMutex(void){
  533:   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
  534: }
  535: #ifdef SQLITE_DEBUG
  536: static int unixMutexHeld(void) {
  537:   return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
  538: }
  539: #endif
  540: 
  541: 
  542: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  543: /*
  544: ** Helper function for printing out trace information from debugging
  545: ** binaries. This returns the string represetation of the supplied
  546: ** integer lock-type.
  547: */
  548: static const char *azFileLock(int eFileLock){
  549:   switch( eFileLock ){
  550:     case NO_LOCK: return "NONE";
  551:     case SHARED_LOCK: return "SHARED";
  552:     case RESERVED_LOCK: return "RESERVED";
  553:     case PENDING_LOCK: return "PENDING";
  554:     case EXCLUSIVE_LOCK: return "EXCLUSIVE";
  555:   }
  556:   return "ERROR";
  557: }
  558: #endif
  559: 
  560: #ifdef SQLITE_LOCK_TRACE
  561: /*
  562: ** Print out information about all locking operations.
  563: **
  564: ** This routine is used for troubleshooting locks on multithreaded
  565: ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
  566: ** command-line option on the compiler.  This code is normally
  567: ** turned off.
  568: */
  569: static int lockTrace(int fd, int op, struct flock *p){
  570:   char *zOpName, *zType;
  571:   int s;
  572:   int savedErrno;
  573:   if( op==F_GETLK ){
  574:     zOpName = "GETLK";
  575:   }else if( op==F_SETLK ){
  576:     zOpName = "SETLK";
  577:   }else{
  578:     s = osFcntl(fd, op, p);
  579:     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
  580:     return s;
  581:   }
  582:   if( p->l_type==F_RDLCK ){
  583:     zType = "RDLCK";
  584:   }else if( p->l_type==F_WRLCK ){
  585:     zType = "WRLCK";
  586:   }else if( p->l_type==F_UNLCK ){
  587:     zType = "UNLCK";
  588:   }else{
  589:     assert( 0 );
  590:   }
  591:   assert( p->l_whence==SEEK_SET );
  592:   s = osFcntl(fd, op, p);
  593:   savedErrno = errno;
  594:   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
  595:      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
  596:      (int)p->l_pid, s);
  597:   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
  598:     struct flock l2;
  599:     l2 = *p;
  600:     osFcntl(fd, F_GETLK, &l2);
  601:     if( l2.l_type==F_RDLCK ){
  602:       zType = "RDLCK";
  603:     }else if( l2.l_type==F_WRLCK ){
  604:       zType = "WRLCK";
  605:     }else if( l2.l_type==F_UNLCK ){
  606:       zType = "UNLCK";
  607:     }else{
  608:       assert( 0 );
  609:     }
  610:     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
  611:        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
  612:   }
  613:   errno = savedErrno;
  614:   return s;
  615: }
  616: #undef osFcntl
  617: #define osFcntl lockTrace
  618: #endif /* SQLITE_LOCK_TRACE */
  619: 
  620: /*
  621: ** Retry ftruncate() calls that fail due to EINTR
  622: */
  623: static int robust_ftruncate(int h, sqlite3_int64 sz){
  624:   int rc;
  625:   do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
  626:   return rc;
  627: }
  628: 
  629: /*
  630: ** This routine translates a standard POSIX errno code into something
  631: ** useful to the clients of the sqlite3 functions.  Specifically, it is
  632: ** intended to translate a variety of "try again" errors into SQLITE_BUSY
  633: ** and a variety of "please close the file descriptor NOW" errors into 
  634: ** SQLITE_IOERR
  635: ** 
  636: ** Errors during initialization of locks, or file system support for locks,
  637: ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
  638: */
  639: static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
  640:   switch (posixError) {
  641: #if 0
  642:   /* At one point this code was not commented out. In theory, this branch
  643:   ** should never be hit, as this function should only be called after
  644:   ** a locking-related function (i.e. fcntl()) has returned non-zero with
  645:   ** the value of errno as the first argument. Since a system call has failed,
  646:   ** errno should be non-zero.
  647:   **
  648:   ** Despite this, if errno really is zero, we still don't want to return
  649:   ** SQLITE_OK. The system call failed, and *some* SQLite error should be
  650:   ** propagated back to the caller. Commenting this branch out means errno==0
  651:   ** will be handled by the "default:" case below.
  652:   */
  653:   case 0: 
  654:     return SQLITE_OK;
  655: #endif
  656: 
  657:   case EAGAIN:
  658:   case ETIMEDOUT:
  659:   case EBUSY:
  660:   case EINTR:
  661:   case ENOLCK:  
  662:     /* random NFS retry error, unless during file system support 
  663:      * introspection, in which it actually means what it says */
  664:     return SQLITE_BUSY;
  665:     
  666:   case EACCES: 
  667:     /* EACCES is like EAGAIN during locking operations, but not any other time*/
  668:     if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
  669: 	(sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
  670: 	(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
  671: 	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
  672:       return SQLITE_BUSY;
  673:     }
  674:     /* else fall through */
  675:   case EPERM: 
  676:     return SQLITE_PERM;
  677:     
  678:   /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
  679:   ** this module never makes such a call. And the code in SQLite itself 
  680:   ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
  681:   ** this case is also commented out. If the system does set errno to EDEADLK,
  682:   ** the default SQLITE_IOERR_XXX code will be returned. */
  683: #if 0
  684:   case EDEADLK:
  685:     return SQLITE_IOERR_BLOCKED;
  686: #endif
  687:     
  688: #if EOPNOTSUPP!=ENOTSUP
  689:   case EOPNOTSUPP: 
  690:     /* something went terribly awry, unless during file system support 
  691:      * introspection, in which it actually means what it says */
  692: #endif
  693: #ifdef ENOTSUP
  694:   case ENOTSUP: 
  695:     /* invalid fd, unless during file system support introspection, in which 
  696:      * it actually means what it says */
  697: #endif
  698:   case EIO:
  699:   case EBADF:
  700:   case EINVAL:
  701:   case ENOTCONN:
  702:   case ENODEV:
  703:   case ENXIO:
  704:   case ENOENT:
  705: #ifdef ESTALE                     /* ESTALE is not defined on Interix systems */
  706:   case ESTALE:
  707: #endif
  708:   case ENOSYS:
  709:     /* these should force the client to close the file and reconnect */
  710:     
  711:   default: 
  712:     return sqliteIOErr;
  713:   }
  714: }
  715: 
  716: 
  717: 
  718: /******************************************************************************
  719: ****************** Begin Unique File ID Utility Used By VxWorks ***************
  720: **
  721: ** On most versions of unix, we can get a unique ID for a file by concatenating
  722: ** the device number and the inode number.  But this does not work on VxWorks.
  723: ** On VxWorks, a unique file id must be based on the canonical filename.
  724: **
  725: ** A pointer to an instance of the following structure can be used as a
  726: ** unique file ID in VxWorks.  Each instance of this structure contains
  727: ** a copy of the canonical filename.  There is also a reference count.  
  728: ** The structure is reclaimed when the number of pointers to it drops to
  729: ** zero.
  730: **
  731: ** There are never very many files open at one time and lookups are not
  732: ** a performance-critical path, so it is sufficient to put these
  733: ** structures on a linked list.
  734: */
  735: struct vxworksFileId {
  736:   struct vxworksFileId *pNext;  /* Next in a list of them all */
  737:   int nRef;                     /* Number of references to this one */
  738:   int nName;                    /* Length of the zCanonicalName[] string */
  739:   char *zCanonicalName;         /* Canonical filename */
  740: };
  741: 
  742: #if OS_VXWORKS
  743: /* 
  744: ** All unique filenames are held on a linked list headed by this
  745: ** variable:
  746: */
  747: static struct vxworksFileId *vxworksFileList = 0;
  748: 
  749: /*
  750: ** Simplify a filename into its canonical form
  751: ** by making the following changes:
  752: **
  753: **  * removing any trailing and duplicate /
  754: **  * convert /./ into just /
  755: **  * convert /A/../ where A is any simple name into just /
  756: **
  757: ** Changes are made in-place.  Return the new name length.
  758: **
  759: ** The original filename is in z[0..n-1].  Return the number of
  760: ** characters in the simplified name.
  761: */
  762: static int vxworksSimplifyName(char *z, int n){
  763:   int i, j;
  764:   while( n>1 && z[n-1]=='/' ){ n--; }
  765:   for(i=j=0; i<n; i++){
  766:     if( z[i]=='/' ){
  767:       if( z[i+1]=='/' ) continue;
  768:       if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
  769:         i += 1;
  770:         continue;
  771:       }
  772:       if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
  773:         while( j>0 && z[j-1]!='/' ){ j--; }
  774:         if( j>0 ){ j--; }
  775:         i += 2;
  776:         continue;
  777:       }
  778:     }
  779:     z[j++] = z[i];
  780:   }
  781:   z[j] = 0;
  782:   return j;
  783: }
  784: 
  785: /*
  786: ** Find a unique file ID for the given absolute pathname.  Return
  787: ** a pointer to the vxworksFileId object.  This pointer is the unique
  788: ** file ID.
  789: **
  790: ** The nRef field of the vxworksFileId object is incremented before
  791: ** the object is returned.  A new vxworksFileId object is created
  792: ** and added to the global list if necessary.
  793: **
  794: ** If a memory allocation error occurs, return NULL.
  795: */
  796: static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
  797:   struct vxworksFileId *pNew;         /* search key and new file ID */
  798:   struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
  799:   int n;                              /* Length of zAbsoluteName string */
  800: 
  801:   assert( zAbsoluteName[0]=='/' );
  802:   n = (int)strlen(zAbsoluteName);
  803:   pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
  804:   if( pNew==0 ) return 0;
  805:   pNew->zCanonicalName = (char*)&pNew[1];
  806:   memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
  807:   n = vxworksSimplifyName(pNew->zCanonicalName, n);
  808: 
  809:   /* Search for an existing entry that matching the canonical name.
  810:   ** If found, increment the reference count and return a pointer to
  811:   ** the existing file ID.
  812:   */
  813:   unixEnterMutex();
  814:   for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
  815:     if( pCandidate->nName==n 
  816:      && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
  817:     ){
  818:        sqlite3_free(pNew);
  819:        pCandidate->nRef++;
  820:        unixLeaveMutex();
  821:        return pCandidate;
  822:     }
  823:   }
  824: 
  825:   /* No match was found.  We will make a new file ID */
  826:   pNew->nRef = 1;
  827:   pNew->nName = n;
  828:   pNew->pNext = vxworksFileList;
  829:   vxworksFileList = pNew;
  830:   unixLeaveMutex();
  831:   return pNew;
  832: }
  833: 
  834: /*
  835: ** Decrement the reference count on a vxworksFileId object.  Free
  836: ** the object when the reference count reaches zero.
  837: */
  838: static void vxworksReleaseFileId(struct vxworksFileId *pId){
  839:   unixEnterMutex();
  840:   assert( pId->nRef>0 );
  841:   pId->nRef--;
  842:   if( pId->nRef==0 ){
  843:     struct vxworksFileId **pp;
  844:     for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
  845:     assert( *pp==pId );
  846:     *pp = pId->pNext;
  847:     sqlite3_free(pId);
  848:   }
  849:   unixLeaveMutex();
  850: }
  851: #endif /* OS_VXWORKS */
  852: /*************** End of Unique File ID Utility Used By VxWorks ****************
  853: ******************************************************************************/
  854: 
  855: 
  856: /******************************************************************************
  857: *************************** Posix Advisory Locking ****************************
  858: **
  859: ** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
  860: ** section 6.5.2.2 lines 483 through 490 specify that when a process
  861: ** sets or clears a lock, that operation overrides any prior locks set
  862: ** by the same process.  It does not explicitly say so, but this implies
  863: ** that it overrides locks set by the same process using a different
  864: ** file descriptor.  Consider this test case:
  865: **
  866: **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
  867: **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
  868: **
  869: ** Suppose ./file1 and ./file2 are really the same file (because
  870: ** one is a hard or symbolic link to the other) then if you set
  871: ** an exclusive lock on fd1, then try to get an exclusive lock
  872: ** on fd2, it works.  I would have expected the second lock to
  873: ** fail since there was already a lock on the file due to fd1.
  874: ** But not so.  Since both locks came from the same process, the
  875: ** second overrides the first, even though they were on different
  876: ** file descriptors opened on different file names.
  877: **
  878: ** This means that we cannot use POSIX locks to synchronize file access
  879: ** among competing threads of the same process.  POSIX locks will work fine
  880: ** to synchronize access for threads in separate processes, but not
  881: ** threads within the same process.
  882: **
  883: ** To work around the problem, SQLite has to manage file locks internally
  884: ** on its own.  Whenever a new database is opened, we have to find the
  885: ** specific inode of the database file (the inode is determined by the
  886: ** st_dev and st_ino fields of the stat structure that fstat() fills in)
  887: ** and check for locks already existing on that inode.  When locks are
  888: ** created or removed, we have to look at our own internal record of the
  889: ** locks to see if another thread has previously set a lock on that same
  890: ** inode.
  891: **
  892: ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
  893: ** For VxWorks, we have to use the alternative unique ID system based on
  894: ** canonical filename and implemented in the previous division.)
  895: **
  896: ** The sqlite3_file structure for POSIX is no longer just an integer file
  897: ** descriptor.  It is now a structure that holds the integer file
  898: ** descriptor and a pointer to a structure that describes the internal
  899: ** locks on the corresponding inode.  There is one locking structure
  900: ** per inode, so if the same inode is opened twice, both unixFile structures
  901: ** point to the same locking structure.  The locking structure keeps
  902: ** a reference count (so we will know when to delete it) and a "cnt"
  903: ** field that tells us its internal lock status.  cnt==0 means the
  904: ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
  905: ** cnt>0 means there are cnt shared locks on the file.
  906: **
  907: ** Any attempt to lock or unlock a file first checks the locking
  908: ** structure.  The fcntl() system call is only invoked to set a 
  909: ** POSIX lock if the internal lock structure transitions between
  910: ** a locked and an unlocked state.
  911: **
  912: ** But wait:  there are yet more problems with POSIX advisory locks.
  913: **
  914: ** If you close a file descriptor that points to a file that has locks,
  915: ** all locks on that file that are owned by the current process are
  916: ** released.  To work around this problem, each unixInodeInfo object
  917: ** maintains a count of the number of pending locks on tha inode.
  918: ** When an attempt is made to close an unixFile, if there are
  919: ** other unixFile open on the same inode that are holding locks, the call
  920: ** to close() the file descriptor is deferred until all of the locks clear.
  921: ** The unixInodeInfo structure keeps a list of file descriptors that need to
  922: ** be closed and that list is walked (and cleared) when the last lock
  923: ** clears.
  924: **
  925: ** Yet another problem:  LinuxThreads do not play well with posix locks.
  926: **
  927: ** Many older versions of linux use the LinuxThreads library which is
  928: ** not posix compliant.  Under LinuxThreads, a lock created by thread
  929: ** A cannot be modified or overridden by a different thread B.
  930: ** Only thread A can modify the lock.  Locking behavior is correct
  931: ** if the appliation uses the newer Native Posix Thread Library (NPTL)
  932: ** on linux - with NPTL a lock created by thread A can override locks
  933: ** in thread B.  But there is no way to know at compile-time which
  934: ** threading library is being used.  So there is no way to know at
  935: ** compile-time whether or not thread A can override locks on thread B.
  936: ** One has to do a run-time check to discover the behavior of the
  937: ** current process.
  938: **
  939: ** SQLite used to support LinuxThreads.  But support for LinuxThreads
  940: ** was dropped beginning with version 3.7.0.  SQLite will still work with
  941: ** LinuxThreads provided that (1) there is no more than one connection 
  942: ** per database file in the same process and (2) database connections
  943: ** do not move across threads.
  944: */
  945: 
  946: /*
  947: ** An instance of the following structure serves as the key used
  948: ** to locate a particular unixInodeInfo object.
  949: */
  950: struct unixFileId {
  951:   dev_t dev;                  /* Device number */
  952: #if OS_VXWORKS
  953:   struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
  954: #else
  955:   ino_t ino;                  /* Inode number */
  956: #endif
  957: };
  958: 
  959: /*
  960: ** An instance of the following structure is allocated for each open
  961: ** inode.  Or, on LinuxThreads, there is one of these structures for
  962: ** each inode opened by each thread.
  963: **
  964: ** A single inode can have multiple file descriptors, so each unixFile
  965: ** structure contains a pointer to an instance of this object and this
  966: ** object keeps a count of the number of unixFile pointing to it.
  967: */
  968: struct unixInodeInfo {
  969:   struct unixFileId fileId;       /* The lookup key */
  970:   int nShared;                    /* Number of SHARED locks held */
  971:   unsigned char eFileLock;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
  972:   unsigned char bProcessLock;     /* An exclusive process lock is held */
  973:   int nRef;                       /* Number of pointers to this structure */
  974:   unixShmNode *pShmNode;          /* Shared memory associated with this inode */
  975:   int nLock;                      /* Number of outstanding file locks */
  976:   UnixUnusedFd *pUnused;          /* Unused file descriptors to close */
  977:   unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
  978:   unixInodeInfo *pPrev;           /*    .... doubly linked */
  979: #if SQLITE_ENABLE_LOCKING_STYLE
  980:   unsigned long long sharedByte;  /* for AFP simulated shared lock */
  981: #endif
  982: #if OS_VXWORKS
  983:   sem_t *pSem;                    /* Named POSIX semaphore */
  984:   char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
  985: #endif
  986: };
  987: 
  988: /*
  989: ** A lists of all unixInodeInfo objects.
  990: */
  991: static unixInodeInfo *inodeList = 0;
  992: 
  993: /*
  994: **
  995: ** This function - unixLogError_x(), is only ever called via the macro
  996: ** unixLogError().
  997: **
  998: ** It is invoked after an error occurs in an OS function and errno has been
  999: ** set. It logs a message using sqlite3_log() containing the current value of
 1000: ** errno and, if possible, the human-readable equivalent from strerror() or
 1001: ** strerror_r().
 1002: **
 1003: ** The first argument passed to the macro should be the error code that
 1004: ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 
 1005: ** The two subsequent arguments should be the name of the OS function that
 1006: ** failed (e.g. "unlink", "open") and the the associated file-system path,
 1007: ** if any.
 1008: */
 1009: #define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
 1010: static int unixLogErrorAtLine(
 1011:   int errcode,                    /* SQLite error code */
 1012:   const char *zFunc,              /* Name of OS function that failed */
 1013:   const char *zPath,              /* File path associated with error */
 1014:   int iLine                       /* Source line number where error occurred */
 1015: ){
 1016:   char *zErr;                     /* Message from strerror() or equivalent */
 1017:   int iErrno = errno;             /* Saved syscall error number */
 1018: 
 1019:   /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
 1020:   ** the strerror() function to obtain the human-readable error message
 1021:   ** equivalent to errno. Otherwise, use strerror_r().
 1022:   */ 
 1023: #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
 1024:   char aErr[80];
 1025:   memset(aErr, 0, sizeof(aErr));
 1026:   zErr = aErr;
 1027: 
 1028:   /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
 1029:   ** assume that the system provides the the GNU version of strerror_r() that 
 1030:   ** returns a pointer to a buffer containing the error message. That pointer 
 1031:   ** may point to aErr[], or it may point to some static storage somewhere. 
 1032:   ** Otherwise, assume that the system provides the POSIX version of 
 1033:   ** strerror_r(), which always writes an error message into aErr[].
 1034:   **
 1035:   ** If the code incorrectly assumes that it is the POSIX version that is
 1036:   ** available, the error message will often be an empty string. Not a
 1037:   ** huge problem. Incorrectly concluding that the GNU version is available 
 1038:   ** could lead to a segfault though.
 1039:   */
 1040: #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
 1041:   zErr = 
 1042: # endif
 1043:   strerror_r(iErrno, aErr, sizeof(aErr)-1);
 1044: 
 1045: #elif SQLITE_THREADSAFE
 1046:   /* This is a threadsafe build, but strerror_r() is not available. */
 1047:   zErr = "";
 1048: #else
 1049:   /* Non-threadsafe build, use strerror(). */
 1050:   zErr = strerror(iErrno);
 1051: #endif
 1052: 
 1053:   assert( errcode!=SQLITE_OK );
 1054:   if( zPath==0 ) zPath = "";
 1055:   sqlite3_log(errcode,
 1056:       "os_unix.c:%d: (%d) %s(%s) - %s",
 1057:       iLine, iErrno, zFunc, zPath, zErr
 1058:   );
 1059: 
 1060:   return errcode;
 1061: }
 1062: 
 1063: /*
 1064: ** Close a file descriptor.
 1065: **
 1066: ** We assume that close() almost always works, since it is only in a
 1067: ** very sick application or on a very sick platform that it might fail.
 1068: ** If it does fail, simply leak the file descriptor, but do log the
 1069: ** error.
 1070: **
 1071: ** Note that it is not safe to retry close() after EINTR since the
 1072: ** file descriptor might have already been reused by another thread.
 1073: ** So we don't even try to recover from an EINTR.  Just log the error
 1074: ** and move on.
 1075: */
 1076: static void robust_close(unixFile *pFile, int h, int lineno){
 1077:   if( osClose(h) ){
 1078:     unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
 1079:                        pFile ? pFile->zPath : 0, lineno);
 1080:   }
 1081: }
 1082: 
 1083: /*
 1084: ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
 1085: */ 
 1086: static void closePendingFds(unixFile *pFile){
 1087:   unixInodeInfo *pInode = pFile->pInode;
 1088:   UnixUnusedFd *p;
 1089:   UnixUnusedFd *pNext;
 1090:   for(p=pInode->pUnused; p; p=pNext){
 1091:     pNext = p->pNext;
 1092:     robust_close(pFile, p->fd, __LINE__);
 1093:     sqlite3_free(p);
 1094:   }
 1095:   pInode->pUnused = 0;
 1096: }
 1097: 
 1098: /*
 1099: ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
 1100: **
 1101: ** The mutex entered using the unixEnterMutex() function must be held
 1102: ** when this function is called.
 1103: */
 1104: static void releaseInodeInfo(unixFile *pFile){
 1105:   unixInodeInfo *pInode = pFile->pInode;
 1106:   assert( unixMutexHeld() );
 1107:   if( ALWAYS(pInode) ){
 1108:     pInode->nRef--;
 1109:     if( pInode->nRef==0 ){
 1110:       assert( pInode->pShmNode==0 );
 1111:       closePendingFds(pFile);
 1112:       if( pInode->pPrev ){
 1113:         assert( pInode->pPrev->pNext==pInode );
 1114:         pInode->pPrev->pNext = pInode->pNext;
 1115:       }else{
 1116:         assert( inodeList==pInode );
 1117:         inodeList = pInode->pNext;
 1118:       }
 1119:       if( pInode->pNext ){
 1120:         assert( pInode->pNext->pPrev==pInode );
 1121:         pInode->pNext->pPrev = pInode->pPrev;
 1122:       }
 1123:       sqlite3_free(pInode);
 1124:     }
 1125:   }
 1126: }
 1127: 
 1128: /*
 1129: ** Given a file descriptor, locate the unixInodeInfo object that
 1130: ** describes that file descriptor.  Create a new one if necessary.  The
 1131: ** return value might be uninitialized if an error occurs.
 1132: **
 1133: ** The mutex entered using the unixEnterMutex() function must be held
 1134: ** when this function is called.
 1135: **
 1136: ** Return an appropriate error code.
 1137: */
 1138: static int findInodeInfo(
 1139:   unixFile *pFile,               /* Unix file with file desc used in the key */
 1140:   unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
 1141: ){
 1142:   int rc;                        /* System call return code */
 1143:   int fd;                        /* The file descriptor for pFile */
 1144:   struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
 1145:   struct stat statbuf;           /* Low-level file information */
 1146:   unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
 1147: 
 1148:   assert( unixMutexHeld() );
 1149: 
 1150:   /* Get low-level information about the file that we can used to
 1151:   ** create a unique name for the file.
 1152:   */
 1153:   fd = pFile->h;
 1154:   rc = osFstat(fd, &statbuf);
 1155:   if( rc!=0 ){
 1156:     pFile->lastErrno = errno;
 1157: #ifdef EOVERFLOW
 1158:     if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
 1159: #endif
 1160:     return SQLITE_IOERR;
 1161:   }
 1162: 
 1163: #ifdef __APPLE__
 1164:   /* On OS X on an msdos filesystem, the inode number is reported
 1165:   ** incorrectly for zero-size files.  See ticket #3260.  To work
 1166:   ** around this problem (we consider it a bug in OS X, not SQLite)
 1167:   ** we always increase the file size to 1 by writing a single byte
 1168:   ** prior to accessing the inode number.  The one byte written is
 1169:   ** an ASCII 'S' character which also happens to be the first byte
 1170:   ** in the header of every SQLite database.  In this way, if there
 1171:   ** is a race condition such that another thread has already populated
 1172:   ** the first page of the database, no damage is done.
 1173:   */
 1174:   if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
 1175:     do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
 1176:     if( rc!=1 ){
 1177:       pFile->lastErrno = errno;
 1178:       return SQLITE_IOERR;
 1179:     }
 1180:     rc = osFstat(fd, &statbuf);
 1181:     if( rc!=0 ){
 1182:       pFile->lastErrno = errno;
 1183:       return SQLITE_IOERR;
 1184:     }
 1185:   }
 1186: #endif
 1187: 
 1188:   memset(&fileId, 0, sizeof(fileId));
 1189:   fileId.dev = statbuf.st_dev;
 1190: #if OS_VXWORKS
 1191:   fileId.pId = pFile->pId;
 1192: #else
 1193:   fileId.ino = statbuf.st_ino;
 1194: #endif
 1195:   pInode = inodeList;
 1196:   while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
 1197:     pInode = pInode->pNext;
 1198:   }
 1199:   if( pInode==0 ){
 1200:     pInode = sqlite3_malloc( sizeof(*pInode) );
 1201:     if( pInode==0 ){
 1202:       return SQLITE_NOMEM;
 1203:     }
 1204:     memset(pInode, 0, sizeof(*pInode));
 1205:     memcpy(&pInode->fileId, &fileId, sizeof(fileId));
 1206:     pInode->nRef = 1;
 1207:     pInode->pNext = inodeList;
 1208:     pInode->pPrev = 0;
 1209:     if( inodeList ) inodeList->pPrev = pInode;
 1210:     inodeList = pInode;
 1211:   }else{
 1212:     pInode->nRef++;
 1213:   }
 1214:   *ppInode = pInode;
 1215:   return SQLITE_OK;
 1216: }
 1217: 
 1218: 
 1219: /*
 1220: ** This routine checks if there is a RESERVED lock held on the specified
 1221: ** file by this or any other process. If such a lock is held, set *pResOut
 1222: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
 1223: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
 1224: */
 1225: static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
 1226:   int rc = SQLITE_OK;
 1227:   int reserved = 0;
 1228:   unixFile *pFile = (unixFile*)id;
 1229: 
 1230:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
 1231: 
 1232:   assert( pFile );
 1233:   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
 1234: 
 1235:   /* Check if a thread in this process holds such a lock */
 1236:   if( pFile->pInode->eFileLock>SHARED_LOCK ){
 1237:     reserved = 1;
 1238:   }
 1239: 
 1240:   /* Otherwise see if some other process holds it.
 1241:   */
 1242: #ifndef __DJGPP__
 1243:   if( !reserved && !pFile->pInode->bProcessLock ){
 1244:     struct flock lock;
 1245:     lock.l_whence = SEEK_SET;
 1246:     lock.l_start = RESERVED_BYTE;
 1247:     lock.l_len = 1;
 1248:     lock.l_type = F_WRLCK;
 1249:     if( osFcntl(pFile->h, F_GETLK, &lock) ){
 1250:       rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
 1251:       pFile->lastErrno = errno;
 1252:     } else if( lock.l_type!=F_UNLCK ){
 1253:       reserved = 1;
 1254:     }
 1255:   }
 1256: #endif
 1257:   
 1258:   unixLeaveMutex();
 1259:   OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
 1260: 
 1261:   *pResOut = reserved;
 1262:   return rc;
 1263: }
 1264: 
 1265: /*
 1266: ** Attempt to set a system-lock on the file pFile.  The lock is 
 1267: ** described by pLock.
 1268: **
 1269: ** If the pFile was opened read/write from unix-excl, then the only lock
 1270: ** ever obtained is an exclusive lock, and it is obtained exactly once
 1271: ** the first time any lock is attempted.  All subsequent system locking
 1272: ** operations become no-ops.  Locking operations still happen internally,
 1273: ** in order to coordinate access between separate database connections
 1274: ** within this process, but all of that is handled in memory and the
 1275: ** operating system does not participate.
 1276: **
 1277: ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
 1278: ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
 1279: ** and is read-only.
 1280: **
 1281: ** Zero is returned if the call completes successfully, or -1 if a call
 1282: ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
 1283: */
 1284: static int unixFileLock(unixFile *pFile, struct flock *pLock){
 1285:   int rc;
 1286:   unixInodeInfo *pInode = pFile->pInode;
 1287:   assert( unixMutexHeld() );
 1288:   assert( pInode!=0 );
 1289:   if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
 1290:    && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
 1291:   ){
 1292:     if( pInode->bProcessLock==0 ){
 1293:       struct flock lock;
 1294:       assert( pInode->nLock==0 );
 1295:       lock.l_whence = SEEK_SET;
 1296:       lock.l_start = SHARED_FIRST;
 1297:       lock.l_len = SHARED_SIZE;
 1298:       lock.l_type = F_WRLCK;
 1299:       rc = osFcntl(pFile->h, F_SETLK, &lock);
 1300:       if( rc<0 ) return rc;
 1301:       pInode->bProcessLock = 1;
 1302:       pInode->nLock++;
 1303:     }else{
 1304:       rc = 0;
 1305:     }
 1306:   }else{
 1307:     rc = osFcntl(pFile->h, F_SETLK, pLock);
 1308:   }
 1309:   return rc;
 1310: }
 1311: 
 1312: /*
 1313: ** Lock the file with the lock specified by parameter eFileLock - one
 1314: ** of the following:
 1315: **
 1316: **     (1) SHARED_LOCK
 1317: **     (2) RESERVED_LOCK
 1318: **     (3) PENDING_LOCK
 1319: **     (4) EXCLUSIVE_LOCK
 1320: **
 1321: ** Sometimes when requesting one lock state, additional lock states
 1322: ** are inserted in between.  The locking might fail on one of the later
 1323: ** transitions leaving the lock state different from what it started but
 1324: ** still short of its goal.  The following chart shows the allowed
 1325: ** transitions and the inserted intermediate states:
 1326: **
 1327: **    UNLOCKED -> SHARED
 1328: **    SHARED -> RESERVED
 1329: **    SHARED -> (PENDING) -> EXCLUSIVE
 1330: **    RESERVED -> (PENDING) -> EXCLUSIVE
 1331: **    PENDING -> EXCLUSIVE
 1332: **
 1333: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 1334: ** routine to lower a locking level.
 1335: */
 1336: static int unixLock(sqlite3_file *id, int eFileLock){
 1337:   /* The following describes the implementation of the various locks and
 1338:   ** lock transitions in terms of the POSIX advisory shared and exclusive
 1339:   ** lock primitives (called read-locks and write-locks below, to avoid
 1340:   ** confusion with SQLite lock names). The algorithms are complicated
 1341:   ** slightly in order to be compatible with windows systems simultaneously
 1342:   ** accessing the same database file, in case that is ever required.
 1343:   **
 1344:   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
 1345:   ** byte', each single bytes at well known offsets, and the 'shared byte
 1346:   ** range', a range of 510 bytes at a well known offset.
 1347:   **
 1348:   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
 1349:   ** byte'.  If this is successful, a random byte from the 'shared byte
 1350:   ** range' is read-locked and the lock on the 'pending byte' released.
 1351:   **
 1352:   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
 1353:   ** A RESERVED lock is implemented by grabbing a write-lock on the
 1354:   ** 'reserved byte'. 
 1355:   **
 1356:   ** A process may only obtain a PENDING lock after it has obtained a
 1357:   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
 1358:   ** on the 'pending byte'. This ensures that no new SHARED locks can be
 1359:   ** obtained, but existing SHARED locks are allowed to persist. A process
 1360:   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
 1361:   ** This property is used by the algorithm for rolling back a journal file
 1362:   ** after a crash.
 1363:   **
 1364:   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
 1365:   ** implemented by obtaining a write-lock on the entire 'shared byte
 1366:   ** range'. Since all other locks require a read-lock on one of the bytes
 1367:   ** within this range, this ensures that no other locks are held on the
 1368:   ** database. 
 1369:   **
 1370:   ** The reason a single byte cannot be used instead of the 'shared byte
 1371:   ** range' is that some versions of windows do not support read-locks. By
 1372:   ** locking a random byte from a range, concurrent SHARED locks may exist
 1373:   ** even if the locking primitive used is always a write-lock.
 1374:   */
 1375:   int rc = SQLITE_OK;
 1376:   unixFile *pFile = (unixFile*)id;
 1377:   unixInodeInfo *pInode;
 1378:   struct flock lock;
 1379:   int tErrno = 0;
 1380: 
 1381:   assert( pFile );
 1382:   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
 1383:       azFileLock(eFileLock), azFileLock(pFile->eFileLock),
 1384:       azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));
 1385: 
 1386:   /* If there is already a lock of this type or more restrictive on the
 1387:   ** unixFile, do nothing. Don't use the end_lock: exit path, as
 1388:   ** unixEnterMutex() hasn't been called yet.
 1389:   */
 1390:   if( pFile->eFileLock>=eFileLock ){
 1391:     OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
 1392:             azFileLock(eFileLock)));
 1393:     return SQLITE_OK;
 1394:   }
 1395: 
 1396:   /* Make sure the locking sequence is correct.
 1397:   **  (1) We never move from unlocked to anything higher than shared lock.
 1398:   **  (2) SQLite never explicitly requests a pendig lock.
 1399:   **  (3) A shared lock is always held when a reserve lock is requested.
 1400:   */
 1401:   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
 1402:   assert( eFileLock!=PENDING_LOCK );
 1403:   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
 1404: 
 1405:   /* This mutex is needed because pFile->pInode is shared across threads
 1406:   */
 1407:   unixEnterMutex();
 1408:   pInode = pFile->pInode;
 1409: 
 1410:   /* If some thread using this PID has a lock via a different unixFile*
 1411:   ** handle that precludes the requested lock, return BUSY.
 1412:   */
 1413:   if( (pFile->eFileLock!=pInode->eFileLock && 
 1414:           (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
 1415:   ){
 1416:     rc = SQLITE_BUSY;
 1417:     goto end_lock;
 1418:   }
 1419: 
 1420:   /* If a SHARED lock is requested, and some thread using this PID already
 1421:   ** has a SHARED or RESERVED lock, then increment reference counts and
 1422:   ** return SQLITE_OK.
 1423:   */
 1424:   if( eFileLock==SHARED_LOCK && 
 1425:       (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
 1426:     assert( eFileLock==SHARED_LOCK );
 1427:     assert( pFile->eFileLock==0 );
 1428:     assert( pInode->nShared>0 );
 1429:     pFile->eFileLock = SHARED_LOCK;
 1430:     pInode->nShared++;
 1431:     pInode->nLock++;
 1432:     goto end_lock;
 1433:   }
 1434: 
 1435: 
 1436:   /* A PENDING lock is needed before acquiring a SHARED lock and before
 1437:   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
 1438:   ** be released.
 1439:   */
 1440:   lock.l_len = 1L;
 1441:   lock.l_whence = SEEK_SET;
 1442:   if( eFileLock==SHARED_LOCK 
 1443:       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
 1444:   ){
 1445:     lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
 1446:     lock.l_start = PENDING_BYTE;
 1447:     if( unixFileLock(pFile, &lock) ){
 1448:       tErrno = errno;
 1449:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
 1450:       if( rc!=SQLITE_BUSY ){
 1451:         pFile->lastErrno = tErrno;
 1452:       }
 1453:       goto end_lock;
 1454:     }
 1455:   }
 1456: 
 1457: 
 1458:   /* If control gets to this point, then actually go ahead and make
 1459:   ** operating system calls for the specified lock.
 1460:   */
 1461:   if( eFileLock==SHARED_LOCK ){
 1462:     assert( pInode->nShared==0 );
 1463:     assert( pInode->eFileLock==0 );
 1464:     assert( rc==SQLITE_OK );
 1465: 
 1466:     /* Now get the read-lock */
 1467:     lock.l_start = SHARED_FIRST;
 1468:     lock.l_len = SHARED_SIZE;
 1469:     if( unixFileLock(pFile, &lock) ){
 1470:       tErrno = errno;
 1471:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
 1472:     }
 1473: 
 1474:     /* Drop the temporary PENDING lock */
 1475:     lock.l_start = PENDING_BYTE;
 1476:     lock.l_len = 1L;
 1477:     lock.l_type = F_UNLCK;
 1478:     if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
 1479:       /* This could happen with a network mount */
 1480:       tErrno = errno;
 1481:       rc = SQLITE_IOERR_UNLOCK; 
 1482:     }
 1483: 
 1484:     if( rc ){
 1485:       if( rc!=SQLITE_BUSY ){
 1486:         pFile->lastErrno = tErrno;
 1487:       }
 1488:       goto end_lock;
 1489:     }else{
 1490:       pFile->eFileLock = SHARED_LOCK;
 1491:       pInode->nLock++;
 1492:       pInode->nShared = 1;
 1493:     }
 1494:   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
 1495:     /* We are trying for an exclusive lock but another thread in this
 1496:     ** same process is still holding a shared lock. */
 1497:     rc = SQLITE_BUSY;
 1498:   }else{
 1499:     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
 1500:     ** assumed that there is a SHARED or greater lock on the file
 1501:     ** already.
 1502:     */
 1503:     assert( 0!=pFile->eFileLock );
 1504:     lock.l_type = F_WRLCK;
 1505: 
 1506:     assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
 1507:     if( eFileLock==RESERVED_LOCK ){
 1508:       lock.l_start = RESERVED_BYTE;
 1509:       lock.l_len = 1L;
 1510:     }else{
 1511:       lock.l_start = SHARED_FIRST;
 1512:       lock.l_len = SHARED_SIZE;
 1513:     }
 1514: 
 1515:     if( unixFileLock(pFile, &lock) ){
 1516:       tErrno = errno;
 1517:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
 1518:       if( rc!=SQLITE_BUSY ){
 1519:         pFile->lastErrno = tErrno;
 1520:       }
 1521:     }
 1522:   }
 1523:   
 1524: 
 1525: #ifndef NDEBUG
 1526:   /* Set up the transaction-counter change checking flags when
 1527:   ** transitioning from a SHARED to a RESERVED lock.  The change
 1528:   ** from SHARED to RESERVED marks the beginning of a normal
 1529:   ** write operation (not a hot journal rollback).
 1530:   */
 1531:   if( rc==SQLITE_OK
 1532:    && pFile->eFileLock<=SHARED_LOCK
 1533:    && eFileLock==RESERVED_LOCK
 1534:   ){
 1535:     pFile->transCntrChng = 0;
 1536:     pFile->dbUpdate = 0;
 1537:     pFile->inNormalWrite = 1;
 1538:   }
 1539: #endif
 1540: 
 1541: 
 1542:   if( rc==SQLITE_OK ){
 1543:     pFile->eFileLock = eFileLock;
 1544:     pInode->eFileLock = eFileLock;
 1545:   }else if( eFileLock==EXCLUSIVE_LOCK ){
 1546:     pFile->eFileLock = PENDING_LOCK;
 1547:     pInode->eFileLock = PENDING_LOCK;
 1548:   }
 1549: 
 1550: end_lock:
 1551:   unixLeaveMutex();
 1552:   OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), 
 1553:       rc==SQLITE_OK ? "ok" : "failed"));
 1554:   return rc;
 1555: }
 1556: 
 1557: /*
 1558: ** Add the file descriptor used by file handle pFile to the corresponding
 1559: ** pUnused list.
 1560: */
 1561: static void setPendingFd(unixFile *pFile){
 1562:   unixInodeInfo *pInode = pFile->pInode;
 1563:   UnixUnusedFd *p = pFile->pUnused;
 1564:   p->pNext = pInode->pUnused;
 1565:   pInode->pUnused = p;
 1566:   pFile->h = -1;
 1567:   pFile->pUnused = 0;
 1568: }
 1569: 
 1570: /*
 1571: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 1572: ** must be either NO_LOCK or SHARED_LOCK.
 1573: **
 1574: ** If the locking level of the file descriptor is already at or below
 1575: ** the requested locking level, this routine is a no-op.
 1576: ** 
 1577: ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
 1578: ** the byte range is divided into 2 parts and the first part is unlocked then
 1579: ** set to a read lock, then the other part is simply unlocked.  This works 
 1580: ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to 
 1581: ** remove the write lock on a region when a read lock is set.
 1582: */
 1583: static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
 1584:   unixFile *pFile = (unixFile*)id;
 1585:   unixInodeInfo *pInode;
 1586:   struct flock lock;
 1587:   int rc = SQLITE_OK;
 1588: 
 1589:   assert( pFile );
 1590:   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
 1591:       pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
 1592:       getpid()));
 1593: 
 1594:   assert( eFileLock<=SHARED_LOCK );
 1595:   if( pFile->eFileLock<=eFileLock ){
 1596:     return SQLITE_OK;
 1597:   }
 1598:   unixEnterMutex();
 1599:   pInode = pFile->pInode;
 1600:   assert( pInode->nShared!=0 );
 1601:   if( pFile->eFileLock>SHARED_LOCK ){
 1602:     assert( pInode->eFileLock==pFile->eFileLock );
 1603: 
 1604: #ifndef NDEBUG
 1605:     /* When reducing a lock such that other processes can start
 1606:     ** reading the database file again, make sure that the
 1607:     ** transaction counter was updated if any part of the database
 1608:     ** file changed.  If the transaction counter is not updated,
 1609:     ** other connections to the same file might not realize that
 1610:     ** the file has changed and hence might not know to flush their
 1611:     ** cache.  The use of a stale cache can lead to database corruption.
 1612:     */
 1613:     pFile->inNormalWrite = 0;
 1614: #endif
 1615: 
 1616:     /* downgrading to a shared lock on NFS involves clearing the write lock
 1617:     ** before establishing the readlock - to avoid a race condition we downgrade
 1618:     ** the lock in 2 blocks, so that part of the range will be covered by a 
 1619:     ** write lock until the rest is covered by a read lock:
 1620:     **  1:   [WWWWW]
 1621:     **  2:   [....W]
 1622:     **  3:   [RRRRW]
 1623:     **  4:   [RRRR.]
 1624:     */
 1625:     if( eFileLock==SHARED_LOCK ){
 1626: 
 1627: #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
 1628:       (void)handleNFSUnlock;
 1629:       assert( handleNFSUnlock==0 );
 1630: #endif
 1631: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 1632:       if( handleNFSUnlock ){
 1633:         int tErrno;               /* Error code from system call errors */
 1634:         off_t divSize = SHARED_SIZE - 1;
 1635:         
 1636:         lock.l_type = F_UNLCK;
 1637:         lock.l_whence = SEEK_SET;
 1638:         lock.l_start = SHARED_FIRST;
 1639:         lock.l_len = divSize;
 1640:         if( unixFileLock(pFile, &lock)==(-1) ){
 1641:           tErrno = errno;
 1642:           rc = SQLITE_IOERR_UNLOCK;
 1643:           if( IS_LOCK_ERROR(rc) ){
 1644:             pFile->lastErrno = tErrno;
 1645:           }
 1646:           goto end_unlock;
 1647:         }
 1648:         lock.l_type = F_RDLCK;
 1649:         lock.l_whence = SEEK_SET;
 1650:         lock.l_start = SHARED_FIRST;
 1651:         lock.l_len = divSize;
 1652:         if( unixFileLock(pFile, &lock)==(-1) ){
 1653:           tErrno = errno;
 1654:           rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
 1655:           if( IS_LOCK_ERROR(rc) ){
 1656:             pFile->lastErrno = tErrno;
 1657:           }
 1658:           goto end_unlock;
 1659:         }
 1660:         lock.l_type = F_UNLCK;
 1661:         lock.l_whence = SEEK_SET;
 1662:         lock.l_start = SHARED_FIRST+divSize;
 1663:         lock.l_len = SHARED_SIZE-divSize;
 1664:         if( unixFileLock(pFile, &lock)==(-1) ){
 1665:           tErrno = errno;
 1666:           rc = SQLITE_IOERR_UNLOCK;
 1667:           if( IS_LOCK_ERROR(rc) ){
 1668:             pFile->lastErrno = tErrno;
 1669:           }
 1670:           goto end_unlock;
 1671:         }
 1672:       }else
 1673: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
 1674:       {
 1675:         lock.l_type = F_RDLCK;
 1676:         lock.l_whence = SEEK_SET;
 1677:         lock.l_start = SHARED_FIRST;
 1678:         lock.l_len = SHARED_SIZE;
 1679:         if( unixFileLock(pFile, &lock) ){
 1680:           /* In theory, the call to unixFileLock() cannot fail because another
 1681:           ** process is holding an incompatible lock. If it does, this 
 1682:           ** indicates that the other process is not following the locking
 1683:           ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
 1684:           ** SQLITE_BUSY would confuse the upper layer (in practice it causes 
 1685:           ** an assert to fail). */ 
 1686:           rc = SQLITE_IOERR_RDLOCK;
 1687:           pFile->lastErrno = errno;
 1688:           goto end_unlock;
 1689:         }
 1690:       }
 1691:     }
 1692:     lock.l_type = F_UNLCK;
 1693:     lock.l_whence = SEEK_SET;
 1694:     lock.l_start = PENDING_BYTE;
 1695:     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
 1696:     if( unixFileLock(pFile, &lock)==0 ){
 1697:       pInode->eFileLock = SHARED_LOCK;
 1698:     }else{
 1699:       rc = SQLITE_IOERR_UNLOCK;
 1700:       pFile->lastErrno = errno;
 1701:       goto end_unlock;
 1702:     }
 1703:   }
 1704:   if( eFileLock==NO_LOCK ){
 1705:     /* Decrement the shared lock counter.  Release the lock using an
 1706:     ** OS call only when all threads in this same process have released
 1707:     ** the lock.
 1708:     */
 1709:     pInode->nShared--;
 1710:     if( pInode->nShared==0 ){
 1711:       lock.l_type = F_UNLCK;
 1712:       lock.l_whence = SEEK_SET;
 1713:       lock.l_start = lock.l_len = 0L;
 1714:       if( unixFileLock(pFile, &lock)==0 ){
 1715:         pInode->eFileLock = NO_LOCK;
 1716:       }else{
 1717:         rc = SQLITE_IOERR_UNLOCK;
 1718: 	pFile->lastErrno = errno;
 1719:         pInode->eFileLock = NO_LOCK;
 1720:         pFile->eFileLock = NO_LOCK;
 1721:       }
 1722:     }
 1723: 
 1724:     /* Decrement the count of locks against this same file.  When the
 1725:     ** count reaches zero, close any other file descriptors whose close
 1726:     ** was deferred because of outstanding locks.
 1727:     */
 1728:     pInode->nLock--;
 1729:     assert( pInode->nLock>=0 );
 1730:     if( pInode->nLock==0 ){
 1731:       closePendingFds(pFile);
 1732:     }
 1733:   }
 1734: 	
 1735: end_unlock:
 1736:   unixLeaveMutex();
 1737:   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
 1738:   return rc;
 1739: }
 1740: 
 1741: /*
 1742: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 1743: ** must be either NO_LOCK or SHARED_LOCK.
 1744: **
 1745: ** If the locking level of the file descriptor is already at or below
 1746: ** the requested locking level, this routine is a no-op.
 1747: */
 1748: static int unixUnlock(sqlite3_file *id, int eFileLock){
 1749:   return posixUnlock(id, eFileLock, 0);
 1750: }
 1751: 
 1752: /*
 1753: ** This function performs the parts of the "close file" operation 
 1754: ** common to all locking schemes. It closes the directory and file
 1755: ** handles, if they are valid, and sets all fields of the unixFile
 1756: ** structure to 0.
 1757: **
 1758: ** It is *not* necessary to hold the mutex when this routine is called,
 1759: ** even on VxWorks.  A mutex will be acquired on VxWorks by the
 1760: ** vxworksReleaseFileId() routine.
 1761: */
 1762: static int closeUnixFile(sqlite3_file *id){
 1763:   unixFile *pFile = (unixFile*)id;
 1764:   if( pFile->h>=0 ){
 1765:     robust_close(pFile, pFile->h, __LINE__);
 1766:     pFile->h = -1;
 1767:   }
 1768: #if OS_VXWORKS
 1769:   if( pFile->pId ){
 1770:     if( pFile->ctrlFlags & UNIXFILE_DELETE ){
 1771:       osUnlink(pFile->pId->zCanonicalName);
 1772:     }
 1773:     vxworksReleaseFileId(pFile->pId);
 1774:     pFile->pId = 0;
 1775:   }
 1776: #endif
 1777:   OSTRACE(("CLOSE   %-3d\n", pFile->h));
 1778:   OpenCounter(-1);
 1779:   sqlite3_free(pFile->pUnused);
 1780:   memset(pFile, 0, sizeof(unixFile));
 1781:   return SQLITE_OK;
 1782: }
 1783: 
 1784: /*
 1785: ** Close a file.
 1786: */
 1787: static int unixClose(sqlite3_file *id){
 1788:   int rc = SQLITE_OK;
 1789:   unixFile *pFile = (unixFile *)id;
 1790:   unixUnlock(id, NO_LOCK);
 1791:   unixEnterMutex();
 1792: 
 1793:   /* unixFile.pInode is always valid here. Otherwise, a different close
 1794:   ** routine (e.g. nolockClose()) would be called instead.
 1795:   */
 1796:   assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
 1797:   if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
 1798:     /* If there are outstanding locks, do not actually close the file just
 1799:     ** yet because that would clear those locks.  Instead, add the file
 1800:     ** descriptor to pInode->pUnused list.  It will be automatically closed 
 1801:     ** when the last lock is cleared.
 1802:     */
 1803:     setPendingFd(pFile);
 1804:   }
 1805:   releaseInodeInfo(pFile);
 1806:   rc = closeUnixFile(id);
 1807:   unixLeaveMutex();
 1808:   return rc;
 1809: }
 1810: 
 1811: /************** End of the posix advisory lock implementation *****************
 1812: ******************************************************************************/
 1813: 
 1814: /******************************************************************************
 1815: ****************************** No-op Locking **********************************
 1816: **
 1817: ** Of the various locking implementations available, this is by far the
 1818: ** simplest:  locking is ignored.  No attempt is made to lock the database
 1819: ** file for reading or writing.
 1820: **
 1821: ** This locking mode is appropriate for use on read-only databases
 1822: ** (ex: databases that are burned into CD-ROM, for example.)  It can
 1823: ** also be used if the application employs some external mechanism to
 1824: ** prevent simultaneous access of the same database by two or more
 1825: ** database connections.  But there is a serious risk of database
 1826: ** corruption if this locking mode is used in situations where multiple
 1827: ** database connections are accessing the same database file at the same
 1828: ** time and one or more of those connections are writing.
 1829: */
 1830: 
 1831: static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
 1832:   UNUSED_PARAMETER(NotUsed);
 1833:   *pResOut = 0;
 1834:   return SQLITE_OK;
 1835: }
 1836: static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
 1837:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
 1838:   return SQLITE_OK;
 1839: }
 1840: static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
 1841:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
 1842:   return SQLITE_OK;
 1843: }
 1844: 
 1845: /*
 1846: ** Close the file.
 1847: */
 1848: static int nolockClose(sqlite3_file *id) {
 1849:   return closeUnixFile(id);
 1850: }
 1851: 
 1852: /******************* End of the no-op lock implementation *********************
 1853: ******************************************************************************/
 1854: 
 1855: /******************************************************************************
 1856: ************************* Begin dot-file Locking ******************************
 1857: **
 1858: ** The dotfile locking implementation uses the existance of separate lock
 1859: ** files (really a directory) to control access to the database.  This works
 1860: ** on just about every filesystem imaginable.  But there are serious downsides:
 1861: **
 1862: **    (1)  There is zero concurrency.  A single reader blocks all other
 1863: **         connections from reading or writing the database.
 1864: **
 1865: **    (2)  An application crash or power loss can leave stale lock files
 1866: **         sitting around that need to be cleared manually.
 1867: **
 1868: ** Nevertheless, a dotlock is an appropriate locking mode for use if no
 1869: ** other locking strategy is available.
 1870: **
 1871: ** Dotfile locking works by creating a subdirectory in the same directory as
 1872: ** the database and with the same name but with a ".lock" extension added.
 1873: ** The existance of a lock directory implies an EXCLUSIVE lock.  All other
 1874: ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
 1875: */
 1876: 
 1877: /*
 1878: ** The file suffix added to the data base filename in order to create the
 1879: ** lock directory.
 1880: */
 1881: #define DOTLOCK_SUFFIX ".lock"
 1882: 
 1883: /*
 1884: ** This routine checks if there is a RESERVED lock held on the specified
 1885: ** file by this or any other process. If such a lock is held, set *pResOut
 1886: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
 1887: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
 1888: **
 1889: ** In dotfile locking, either a lock exists or it does not.  So in this
 1890: ** variation of CheckReservedLock(), *pResOut is set to true if any lock
 1891: ** is held on the file and false if the file is unlocked.
 1892: */
 1893: static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
 1894:   int rc = SQLITE_OK;
 1895:   int reserved = 0;
 1896:   unixFile *pFile = (unixFile*)id;
 1897: 
 1898:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
 1899:   
 1900:   assert( pFile );
 1901: 
 1902:   /* Check if a thread in this process holds such a lock */
 1903:   if( pFile->eFileLock>SHARED_LOCK ){
 1904:     /* Either this connection or some other connection in the same process
 1905:     ** holds a lock on the file.  No need to check further. */
 1906:     reserved = 1;
 1907:   }else{
 1908:     /* The lock is held if and only if the lockfile exists */
 1909:     const char *zLockFile = (const char*)pFile->lockingContext;
 1910:     reserved = osAccess(zLockFile, 0)==0;
 1911:   }
 1912:   OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
 1913:   *pResOut = reserved;
 1914:   return rc;
 1915: }
 1916: 
 1917: /*
 1918: ** Lock the file with the lock specified by parameter eFileLock - one
 1919: ** of the following:
 1920: **
 1921: **     (1) SHARED_LOCK
 1922: **     (2) RESERVED_LOCK
 1923: **     (3) PENDING_LOCK
 1924: **     (4) EXCLUSIVE_LOCK
 1925: **
 1926: ** Sometimes when requesting one lock state, additional lock states
 1927: ** are inserted in between.  The locking might fail on one of the later
 1928: ** transitions leaving the lock state different from what it started but
 1929: ** still short of its goal.  The following chart shows the allowed
 1930: ** transitions and the inserted intermediate states:
 1931: **
 1932: **    UNLOCKED -> SHARED
 1933: **    SHARED -> RESERVED
 1934: **    SHARED -> (PENDING) -> EXCLUSIVE
 1935: **    RESERVED -> (PENDING) -> EXCLUSIVE
 1936: **    PENDING -> EXCLUSIVE
 1937: **
 1938: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 1939: ** routine to lower a locking level.
 1940: **
 1941: ** With dotfile locking, we really only support state (4): EXCLUSIVE.
 1942: ** But we track the other locking levels internally.
 1943: */
 1944: static int dotlockLock(sqlite3_file *id, int eFileLock) {
 1945:   unixFile *pFile = (unixFile*)id;
 1946:   char *zLockFile = (char *)pFile->lockingContext;
 1947:   int rc = SQLITE_OK;
 1948: 
 1949: 
 1950:   /* If we have any lock, then the lock file already exists.  All we have
 1951:   ** to do is adjust our internal record of the lock level.
 1952:   */
 1953:   if( pFile->eFileLock > NO_LOCK ){
 1954:     pFile->eFileLock = eFileLock;
 1955:     /* Always update the timestamp on the old file */
 1956: #ifdef HAVE_UTIME
 1957:     utime(zLockFile, NULL);
 1958: #else
 1959:     utimes(zLockFile, NULL);
 1960: #endif
 1961:     return SQLITE_OK;
 1962:   }
 1963:   
 1964:   /* grab an exclusive lock */
 1965:   rc = osMkdir(zLockFile, 0777);
 1966:   if( rc<0 ){
 1967:     /* failed to open/create the lock directory */
 1968:     int tErrno = errno;
 1969:     if( EEXIST == tErrno ){
 1970:       rc = SQLITE_BUSY;
 1971:     } else {
 1972:       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
 1973:       if( IS_LOCK_ERROR(rc) ){
 1974:         pFile->lastErrno = tErrno;
 1975:       }
 1976:     }
 1977:     return rc;
 1978:   } 
 1979:   
 1980:   /* got it, set the type and return ok */
 1981:   pFile->eFileLock = eFileLock;
 1982:   return rc;
 1983: }
 1984: 
 1985: /*
 1986: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 1987: ** must be either NO_LOCK or SHARED_LOCK.
 1988: **
 1989: ** If the locking level of the file descriptor is already at or below
 1990: ** the requested locking level, this routine is a no-op.
 1991: **
 1992: ** When the locking level reaches NO_LOCK, delete the lock file.
 1993: */
 1994: static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
 1995:   unixFile *pFile = (unixFile*)id;
 1996:   char *zLockFile = (char *)pFile->lockingContext;
 1997:   int rc;
 1998: 
 1999:   assert( pFile );
 2000:   OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
 2001: 	   pFile->eFileLock, getpid()));
 2002:   assert( eFileLock<=SHARED_LOCK );
 2003:   
 2004:   /* no-op if possible */
 2005:   if( pFile->eFileLock==eFileLock ){
 2006:     return SQLITE_OK;
 2007:   }
 2008: 
 2009:   /* To downgrade to shared, simply update our internal notion of the
 2010:   ** lock state.  No need to mess with the file on disk.
 2011:   */
 2012:   if( eFileLock==SHARED_LOCK ){
 2013:     pFile->eFileLock = SHARED_LOCK;
 2014:     return SQLITE_OK;
 2015:   }
 2016:   
 2017:   /* To fully unlock the database, delete the lock file */
 2018:   assert( eFileLock==NO_LOCK );
 2019:   rc = osRmdir(zLockFile);
 2020:   if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
 2021:   if( rc<0 ){
 2022:     int tErrno = errno;
 2023:     rc = 0;
 2024:     if( ENOENT != tErrno ){
 2025:       rc = SQLITE_IOERR_UNLOCK;
 2026:     }
 2027:     if( IS_LOCK_ERROR(rc) ){
 2028:       pFile->lastErrno = tErrno;
 2029:     }
 2030:     return rc; 
 2031:   }
 2032:   pFile->eFileLock = NO_LOCK;
 2033:   return SQLITE_OK;
 2034: }
 2035: 
 2036: /*
 2037: ** Close a file.  Make sure the lock has been released before closing.
 2038: */
 2039: static int dotlockClose(sqlite3_file *id) {
 2040:   int rc;
 2041:   if( id ){
 2042:     unixFile *pFile = (unixFile*)id;
 2043:     dotlockUnlock(id, NO_LOCK);
 2044:     sqlite3_free(pFile->lockingContext);
 2045:   }
 2046:   rc = closeUnixFile(id);
 2047:   return rc;
 2048: }
 2049: /****************** End of the dot-file lock implementation *******************
 2050: ******************************************************************************/
 2051: 
 2052: /******************************************************************************
 2053: ************************** Begin flock Locking ********************************
 2054: **
 2055: ** Use the flock() system call to do file locking.
 2056: **
 2057: ** flock() locking is like dot-file locking in that the various
 2058: ** fine-grain locking levels supported by SQLite are collapsed into
 2059: ** a single exclusive lock.  In other words, SHARED, RESERVED, and
 2060: ** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
 2061: ** still works when you do this, but concurrency is reduced since
 2062: ** only a single process can be reading the database at a time.
 2063: **
 2064: ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
 2065: ** compiling for VXWORKS.
 2066: */
 2067: #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
 2068: 
 2069: /*
 2070: ** Retry flock() calls that fail with EINTR
 2071: */
 2072: #ifdef EINTR
 2073: static int robust_flock(int fd, int op){
 2074:   int rc;
 2075:   do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
 2076:   return rc;
 2077: }
 2078: #else
 2079: # define robust_flock(a,b) flock(a,b)
 2080: #endif
 2081:      
 2082: 
 2083: /*
 2084: ** This routine checks if there is a RESERVED lock held on the specified
 2085: ** file by this or any other process. If such a lock is held, set *pResOut
 2086: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
 2087: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
 2088: */
 2089: static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
 2090:   int rc = SQLITE_OK;
 2091:   int reserved = 0;
 2092:   unixFile *pFile = (unixFile*)id;
 2093:   
 2094:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
 2095:   
 2096:   assert( pFile );
 2097:   
 2098:   /* Check if a thread in this process holds such a lock */
 2099:   if( pFile->eFileLock>SHARED_LOCK ){
 2100:     reserved = 1;
 2101:   }
 2102:   
 2103:   /* Otherwise see if some other process holds it. */
 2104:   if( !reserved ){
 2105:     /* attempt to get the lock */
 2106:     int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
 2107:     if( !lrc ){
 2108:       /* got the lock, unlock it */
 2109:       lrc = robust_flock(pFile->h, LOCK_UN);
 2110:       if ( lrc ) {
 2111:         int tErrno = errno;
 2112:         /* unlock failed with an error */
 2113:         lrc = SQLITE_IOERR_UNLOCK; 
 2114:         if( IS_LOCK_ERROR(lrc) ){
 2115:           pFile->lastErrno = tErrno;
 2116:           rc = lrc;
 2117:         }
 2118:       }
 2119:     } else {
 2120:       int tErrno = errno;
 2121:       reserved = 1;
 2122:       /* someone else might have it reserved */
 2123:       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
 2124:       if( IS_LOCK_ERROR(lrc) ){
 2125:         pFile->lastErrno = tErrno;
 2126:         rc = lrc;
 2127:       }
 2128:     }
 2129:   }
 2130:   OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
 2131: 
 2132: #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
 2133:   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
 2134:     rc = SQLITE_OK;
 2135:     reserved=1;
 2136:   }
 2137: #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
 2138:   *pResOut = reserved;
 2139:   return rc;
 2140: }
 2141: 
 2142: /*
 2143: ** Lock the file with the lock specified by parameter eFileLock - one
 2144: ** of the following:
 2145: **
 2146: **     (1) SHARED_LOCK
 2147: **     (2) RESERVED_LOCK
 2148: **     (3) PENDING_LOCK
 2149: **     (4) EXCLUSIVE_LOCK
 2150: **
 2151: ** Sometimes when requesting one lock state, additional lock states
 2152: ** are inserted in between.  The locking might fail on one of the later
 2153: ** transitions leaving the lock state different from what it started but
 2154: ** still short of its goal.  The following chart shows the allowed
 2155: ** transitions and the inserted intermediate states:
 2156: **
 2157: **    UNLOCKED -> SHARED
 2158: **    SHARED -> RESERVED
 2159: **    SHARED -> (PENDING) -> EXCLUSIVE
 2160: **    RESERVED -> (PENDING) -> EXCLUSIVE
 2161: **    PENDING -> EXCLUSIVE
 2162: **
 2163: ** flock() only really support EXCLUSIVE locks.  We track intermediate
 2164: ** lock states in the sqlite3_file structure, but all locks SHARED or
 2165: ** above are really EXCLUSIVE locks and exclude all other processes from
 2166: ** access the file.
 2167: **
 2168: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 2169: ** routine to lower a locking level.
 2170: */
 2171: static int flockLock(sqlite3_file *id, int eFileLock) {
 2172:   int rc = SQLITE_OK;
 2173:   unixFile *pFile = (unixFile*)id;
 2174: 
 2175:   assert( pFile );
 2176: 
 2177:   /* if we already have a lock, it is exclusive.  
 2178:   ** Just adjust level and punt on outta here. */
 2179:   if (pFile->eFileLock > NO_LOCK) {
 2180:     pFile->eFileLock = eFileLock;
 2181:     return SQLITE_OK;
 2182:   }
 2183:   
 2184:   /* grab an exclusive lock */
 2185:   
 2186:   if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
 2187:     int tErrno = errno;
 2188:     /* didn't get, must be busy */
 2189:     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
 2190:     if( IS_LOCK_ERROR(rc) ){
 2191:       pFile->lastErrno = tErrno;
 2192:     }
 2193:   } else {
 2194:     /* got it, set the type and return ok */
 2195:     pFile->eFileLock = eFileLock;
 2196:   }
 2197:   OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), 
 2198:            rc==SQLITE_OK ? "ok" : "failed"));
 2199: #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
 2200:   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
 2201:     rc = SQLITE_BUSY;
 2202:   }
 2203: #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
 2204:   return rc;
 2205: }
 2206: 
 2207: 
 2208: /*
 2209: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 2210: ** must be either NO_LOCK or SHARED_LOCK.
 2211: **
 2212: ** If the locking level of the file descriptor is already at or below
 2213: ** the requested locking level, this routine is a no-op.
 2214: */
 2215: static int flockUnlock(sqlite3_file *id, int eFileLock) {
 2216:   unixFile *pFile = (unixFile*)id;
 2217:   
 2218:   assert( pFile );
 2219:   OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
 2220:            pFile->eFileLock, getpid()));
 2221:   assert( eFileLock<=SHARED_LOCK );
 2222:   
 2223:   /* no-op if possible */
 2224:   if( pFile->eFileLock==eFileLock ){
 2225:     return SQLITE_OK;
 2226:   }
 2227:   
 2228:   /* shared can just be set because we always have an exclusive */
 2229:   if (eFileLock==SHARED_LOCK) {
 2230:     pFile->eFileLock = eFileLock;
 2231:     return SQLITE_OK;
 2232:   }
 2233:   
 2234:   /* no, really, unlock. */
 2235:   if( robust_flock(pFile->h, LOCK_UN) ){
 2236: #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
 2237:     return SQLITE_OK;
 2238: #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
 2239:     return SQLITE_IOERR_UNLOCK;
 2240:   }else{
 2241:     pFile->eFileLock = NO_LOCK;
 2242:     return SQLITE_OK;
 2243:   }
 2244: }
 2245: 
 2246: /*
 2247: ** Close a file.
 2248: */
 2249: static int flockClose(sqlite3_file *id) {
 2250:   if( id ){
 2251:     flockUnlock(id, NO_LOCK);
 2252:   }
 2253:   return closeUnixFile(id);
 2254: }
 2255: 
 2256: #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
 2257: 
 2258: /******************* End of the flock lock implementation *********************
 2259: ******************************************************************************/
 2260: 
 2261: /******************************************************************************
 2262: ************************ Begin Named Semaphore Locking ************************
 2263: **
 2264: ** Named semaphore locking is only supported on VxWorks.
 2265: **
 2266: ** Semaphore locking is like dot-lock and flock in that it really only
 2267: ** supports EXCLUSIVE locking.  Only a single process can read or write
 2268: ** the database file at a time.  This reduces potential concurrency, but
 2269: ** makes the lock implementation much easier.
 2270: */
 2271: #if OS_VXWORKS
 2272: 
 2273: /*
 2274: ** This routine checks if there is a RESERVED lock held on the specified
 2275: ** file by this or any other process. If such a lock is held, set *pResOut
 2276: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
 2277: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
 2278: */
 2279: static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
 2280:   int rc = SQLITE_OK;
 2281:   int reserved = 0;
 2282:   unixFile *pFile = (unixFile*)id;
 2283: 
 2284:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
 2285:   
 2286:   assert( pFile );
 2287: 
 2288:   /* Check if a thread in this process holds such a lock */
 2289:   if( pFile->eFileLock>SHARED_LOCK ){
 2290:     reserved = 1;
 2291:   }
 2292:   
 2293:   /* Otherwise see if some other process holds it. */
 2294:   if( !reserved ){
 2295:     sem_t *pSem = pFile->pInode->pSem;
 2296:     struct stat statBuf;
 2297: 
 2298:     if( sem_trywait(pSem)==-1 ){
 2299:       int tErrno = errno;
 2300:       if( EAGAIN != tErrno ){
 2301:         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
 2302:         pFile->lastErrno = tErrno;
 2303:       } else {
 2304:         /* someone else has the lock when we are in NO_LOCK */
 2305:         reserved = (pFile->eFileLock < SHARED_LOCK);
 2306:       }
 2307:     }else{
 2308:       /* we could have it if we want it */
 2309:       sem_post(pSem);
 2310:     }
 2311:   }
 2312:   OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
 2313: 
 2314:   *pResOut = reserved;
 2315:   return rc;
 2316: }
 2317: 
 2318: /*
 2319: ** Lock the file with the lock specified by parameter eFileLock - one
 2320: ** of the following:
 2321: **
 2322: **     (1) SHARED_LOCK
 2323: **     (2) RESERVED_LOCK
 2324: **     (3) PENDING_LOCK
 2325: **     (4) EXCLUSIVE_LOCK
 2326: **
 2327: ** Sometimes when requesting one lock state, additional lock states
 2328: ** are inserted in between.  The locking might fail on one of the later
 2329: ** transitions leaving the lock state different from what it started but
 2330: ** still short of its goal.  The following chart shows the allowed
 2331: ** transitions and the inserted intermediate states:
 2332: **
 2333: **    UNLOCKED -> SHARED
 2334: **    SHARED -> RESERVED
 2335: **    SHARED -> (PENDING) -> EXCLUSIVE
 2336: **    RESERVED -> (PENDING) -> EXCLUSIVE
 2337: **    PENDING -> EXCLUSIVE
 2338: **
 2339: ** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
 2340: ** lock states in the sqlite3_file structure, but all locks SHARED or
 2341: ** above are really EXCLUSIVE locks and exclude all other processes from
 2342: ** access the file.
 2343: **
 2344: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 2345: ** routine to lower a locking level.
 2346: */
 2347: static int semLock(sqlite3_file *id, int eFileLock) {
 2348:   unixFile *pFile = (unixFile*)id;
 2349:   int fd;
 2350:   sem_t *pSem = pFile->pInode->pSem;
 2351:   int rc = SQLITE_OK;
 2352: 
 2353:   /* if we already have a lock, it is exclusive.  
 2354:   ** Just adjust level and punt on outta here. */
 2355:   if (pFile->eFileLock > NO_LOCK) {
 2356:     pFile->eFileLock = eFileLock;
 2357:     rc = SQLITE_OK;
 2358:     goto sem_end_lock;
 2359:   }
 2360:   
 2361:   /* lock semaphore now but bail out when already locked. */
 2362:   if( sem_trywait(pSem)==-1 ){
 2363:     rc = SQLITE_BUSY;
 2364:     goto sem_end_lock;
 2365:   }
 2366: 
 2367:   /* got it, set the type and return ok */
 2368:   pFile->eFileLock = eFileLock;
 2369: 
 2370:  sem_end_lock:
 2371:   return rc;
 2372: }
 2373: 
 2374: /*
 2375: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 2376: ** must be either NO_LOCK or SHARED_LOCK.
 2377: **
 2378: ** If the locking level of the file descriptor is already at or below
 2379: ** the requested locking level, this routine is a no-op.
 2380: */
 2381: static int semUnlock(sqlite3_file *id, int eFileLock) {
 2382:   unixFile *pFile = (unixFile*)id;
 2383:   sem_t *pSem = pFile->pInode->pSem;
 2384: 
 2385:   assert( pFile );
 2386:   assert( pSem );
 2387:   OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
 2388: 	   pFile->eFileLock, getpid()));
 2389:   assert( eFileLock<=SHARED_LOCK );
 2390:   
 2391:   /* no-op if possible */
 2392:   if( pFile->eFileLock==eFileLock ){
 2393:     return SQLITE_OK;
 2394:   }
 2395:   
 2396:   /* shared can just be set because we always have an exclusive */
 2397:   if (eFileLock==SHARED_LOCK) {
 2398:     pFile->eFileLock = eFileLock;
 2399:     return SQLITE_OK;
 2400:   }
 2401:   
 2402:   /* no, really unlock. */
 2403:   if ( sem_post(pSem)==-1 ) {
 2404:     int rc, tErrno = errno;
 2405:     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
 2406:     if( IS_LOCK_ERROR(rc) ){
 2407:       pFile->lastErrno = tErrno;
 2408:     }
 2409:     return rc; 
 2410:   }
 2411:   pFile->eFileLock = NO_LOCK;
 2412:   return SQLITE_OK;
 2413: }
 2414: 
 2415: /*
 2416:  ** Close a file.
 2417:  */
 2418: static int semClose(sqlite3_file *id) {
 2419:   if( id ){
 2420:     unixFile *pFile = (unixFile*)id;
 2421:     semUnlock(id, NO_LOCK);
 2422:     assert( pFile );
 2423:     unixEnterMutex();
 2424:     releaseInodeInfo(pFile);
 2425:     unixLeaveMutex();
 2426:     closeUnixFile(id);
 2427:   }
 2428:   return SQLITE_OK;
 2429: }
 2430: 
 2431: #endif /* OS_VXWORKS */
 2432: /*
 2433: ** Named semaphore locking is only available on VxWorks.
 2434: **
 2435: *************** End of the named semaphore lock implementation ****************
 2436: ******************************************************************************/
 2437: 
 2438: 
 2439: /******************************************************************************
 2440: *************************** Begin AFP Locking *********************************
 2441: **
 2442: ** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
 2443: ** on Apple Macintosh computers - both OS9 and OSX.
 2444: **
 2445: ** Third-party implementations of AFP are available.  But this code here
 2446: ** only works on OSX.
 2447: */
 2448: 
 2449: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 2450: /*
 2451: ** The afpLockingContext structure contains all afp lock specific state
 2452: */
 2453: typedef struct afpLockingContext afpLockingContext;
 2454: struct afpLockingContext {
 2455:   int reserved;
 2456:   const char *dbPath;             /* Name of the open file */
 2457: };
 2458: 
 2459: struct ByteRangeLockPB2
 2460: {
 2461:   unsigned long long offset;        /* offset to first byte to lock */
 2462:   unsigned long long length;        /* nbr of bytes to lock */
 2463:   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
 2464:   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
 2465:   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
 2466:   int fd;                           /* file desc to assoc this lock with */
 2467: };
 2468: 
 2469: #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
 2470: 
 2471: /*
 2472: ** This is a utility for setting or clearing a bit-range lock on an
 2473: ** AFP filesystem.
 2474: ** 
 2475: ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
 2476: */
 2477: static int afpSetLock(
 2478:   const char *path,              /* Name of the file to be locked or unlocked */
 2479:   unixFile *pFile,               /* Open file descriptor on path */
 2480:   unsigned long long offset,     /* First byte to be locked */
 2481:   unsigned long long length,     /* Number of bytes to lock */
 2482:   int setLockFlag                /* True to set lock.  False to clear lock */
 2483: ){
 2484:   struct ByteRangeLockPB2 pb;
 2485:   int err;
 2486:   
 2487:   pb.unLockFlag = setLockFlag ? 0 : 1;
 2488:   pb.startEndFlag = 0;
 2489:   pb.offset = offset;
 2490:   pb.length = length; 
 2491:   pb.fd = pFile->h;
 2492:   
 2493:   OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", 
 2494:     (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
 2495:     offset, length));
 2496:   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
 2497:   if ( err==-1 ) {
 2498:     int rc;
 2499:     int tErrno = errno;
 2500:     OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
 2501:              path, tErrno, strerror(tErrno)));
 2502: #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
 2503:     rc = SQLITE_BUSY;
 2504: #else
 2505:     rc = sqliteErrorFromPosixError(tErrno,
 2506:                     setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
 2507: #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
 2508:     if( IS_LOCK_ERROR(rc) ){
 2509:       pFile->lastErrno = tErrno;
 2510:     }
 2511:     return rc;
 2512:   } else {
 2513:     return SQLITE_OK;
 2514:   }
 2515: }
 2516: 
 2517: /*
 2518: ** This routine checks if there is a RESERVED lock held on the specified
 2519: ** file by this or any other process. If such a lock is held, set *pResOut
 2520: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
 2521: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
 2522: */
 2523: static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
 2524:   int rc = SQLITE_OK;
 2525:   int reserved = 0;
 2526:   unixFile *pFile = (unixFile*)id;
 2527:   afpLockingContext *context;
 2528:   
 2529:   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
 2530:   
 2531:   assert( pFile );
 2532:   context = (afpLockingContext *) pFile->lockingContext;
 2533:   if( context->reserved ){
 2534:     *pResOut = 1;
 2535:     return SQLITE_OK;
 2536:   }
 2537:   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
 2538:   
 2539:   /* Check if a thread in this process holds such a lock */
 2540:   if( pFile->pInode->eFileLock>SHARED_LOCK ){
 2541:     reserved = 1;
 2542:   }
 2543:   
 2544:   /* Otherwise see if some other process holds it.
 2545:    */
 2546:   if( !reserved ){
 2547:     /* lock the RESERVED byte */
 2548:     int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);  
 2549:     if( SQLITE_OK==lrc ){
 2550:       /* if we succeeded in taking the reserved lock, unlock it to restore
 2551:       ** the original state */
 2552:       lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
 2553:     } else {
 2554:       /* if we failed to get the lock then someone else must have it */
 2555:       reserved = 1;
 2556:     }
 2557:     if( IS_LOCK_ERROR(lrc) ){
 2558:       rc=lrc;
 2559:     }
 2560:   }
 2561:   
 2562:   unixLeaveMutex();
 2563:   OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
 2564:   
 2565:   *pResOut = reserved;
 2566:   return rc;
 2567: }
 2568: 
 2569: /*
 2570: ** Lock the file with the lock specified by parameter eFileLock - one
 2571: ** of the following:
 2572: **
 2573: **     (1) SHARED_LOCK
 2574: **     (2) RESERVED_LOCK
 2575: **     (3) PENDING_LOCK
 2576: **     (4) EXCLUSIVE_LOCK
 2577: **
 2578: ** Sometimes when requesting one lock state, additional lock states
 2579: ** are inserted in between.  The locking might fail on one of the later
 2580: ** transitions leaving the lock state different from what it started but
 2581: ** still short of its goal.  The following chart shows the allowed
 2582: ** transitions and the inserted intermediate states:
 2583: **
 2584: **    UNLOCKED -> SHARED
 2585: **    SHARED -> RESERVED
 2586: **    SHARED -> (PENDING) -> EXCLUSIVE
 2587: **    RESERVED -> (PENDING) -> EXCLUSIVE
 2588: **    PENDING -> EXCLUSIVE
 2589: **
 2590: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 2591: ** routine to lower a locking level.
 2592: */
 2593: static int afpLock(sqlite3_file *id, int eFileLock){
 2594:   int rc = SQLITE_OK;
 2595:   unixFile *pFile = (unixFile*)id;
 2596:   unixInodeInfo *pInode = pFile->pInode;
 2597:   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
 2598:   
 2599:   assert( pFile );
 2600:   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
 2601:            azFileLock(eFileLock), azFileLock(pFile->eFileLock),
 2602:            azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
 2603: 
 2604:   /* If there is already a lock of this type or more restrictive on the
 2605:   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
 2606:   ** unixEnterMutex() hasn't been called yet.
 2607:   */
 2608:   if( pFile->eFileLock>=eFileLock ){
 2609:     OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
 2610:            azFileLock(eFileLock)));
 2611:     return SQLITE_OK;
 2612:   }
 2613: 
 2614:   /* Make sure the locking sequence is correct
 2615:   **  (1) We never move from unlocked to anything higher than shared lock.
 2616:   **  (2) SQLite never explicitly requests a pendig lock.
 2617:   **  (3) A shared lock is always held when a reserve lock is requested.
 2618:   */
 2619:   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
 2620:   assert( eFileLock!=PENDING_LOCK );
 2621:   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
 2622:   
 2623:   /* This mutex is needed because pFile->pInode is shared across threads
 2624:   */
 2625:   unixEnterMutex();
 2626:   pInode = pFile->pInode;
 2627: 
 2628:   /* If some thread using this PID has a lock via a different unixFile*
 2629:   ** handle that precludes the requested lock, return BUSY.
 2630:   */
 2631:   if( (pFile->eFileLock!=pInode->eFileLock && 
 2632:        (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
 2633:      ){
 2634:     rc = SQLITE_BUSY;
 2635:     goto afp_end_lock;
 2636:   }
 2637:   
 2638:   /* If a SHARED lock is requested, and some thread using this PID already
 2639:   ** has a SHARED or RESERVED lock, then increment reference counts and
 2640:   ** return SQLITE_OK.
 2641:   */
 2642:   if( eFileLock==SHARED_LOCK && 
 2643:      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
 2644:     assert( eFileLock==SHARED_LOCK );
 2645:     assert( pFile->eFileLock==0 );
 2646:     assert( pInode->nShared>0 );
 2647:     pFile->eFileLock = SHARED_LOCK;
 2648:     pInode->nShared++;
 2649:     pInode->nLock++;
 2650:     goto afp_end_lock;
 2651:   }
 2652:     
 2653:   /* A PENDING lock is needed before acquiring a SHARED lock and before
 2654:   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
 2655:   ** be released.
 2656:   */
 2657:   if( eFileLock==SHARED_LOCK 
 2658:       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
 2659:   ){
 2660:     int failed;
 2661:     failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
 2662:     if (failed) {
 2663:       rc = failed;
 2664:       goto afp_end_lock;
 2665:     }
 2666:   }
 2667:   
 2668:   /* If control gets to this point, then actually go ahead and make
 2669:   ** operating system calls for the specified lock.
 2670:   */
 2671:   if( eFileLock==SHARED_LOCK ){
 2672:     int lrc1, lrc2, lrc1Errno = 0;
 2673:     long lk, mask;
 2674:     
 2675:     assert( pInode->nShared==0 );
 2676:     assert( pInode->eFileLock==0 );
 2677:         
 2678:     mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
 2679:     /* Now get the read-lock SHARED_LOCK */
 2680:     /* note that the quality of the randomness doesn't matter that much */
 2681:     lk = random(); 
 2682:     pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
 2683:     lrc1 = afpSetLock(context->dbPath, pFile, 
 2684:           SHARED_FIRST+pInode->sharedByte, 1, 1);
 2685:     if( IS_LOCK_ERROR(lrc1) ){
 2686:       lrc1Errno = pFile->lastErrno;
 2687:     }
 2688:     /* Drop the temporary PENDING lock */
 2689:     lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
 2690:     
 2691:     if( IS_LOCK_ERROR(lrc1) ) {
 2692:       pFile->lastErrno = lrc1Errno;
 2693:       rc = lrc1;
 2694:       goto afp_end_lock;
 2695:     } else if( IS_LOCK_ERROR(lrc2) ){
 2696:       rc = lrc2;
 2697:       goto afp_end_lock;
 2698:     } else if( lrc1 != SQLITE_OK ) {
 2699:       rc = lrc1;
 2700:     } else {
 2701:       pFile->eFileLock = SHARED_LOCK;
 2702:       pInode->nLock++;
 2703:       pInode->nShared = 1;
 2704:     }
 2705:   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
 2706:     /* We are trying for an exclusive lock but another thread in this
 2707:      ** same process is still holding a shared lock. */
 2708:     rc = SQLITE_BUSY;
 2709:   }else{
 2710:     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
 2711:     ** assumed that there is a SHARED or greater lock on the file
 2712:     ** already.
 2713:     */
 2714:     int failed = 0;
 2715:     assert( 0!=pFile->eFileLock );
 2716:     if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
 2717:         /* Acquire a RESERVED lock */
 2718:         failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
 2719:       if( !failed ){
 2720:         context->reserved = 1;
 2721:       }
 2722:     }
 2723:     if (!failed && eFileLock == EXCLUSIVE_LOCK) {
 2724:       /* Acquire an EXCLUSIVE lock */
 2725:         
 2726:       /* Remove the shared lock before trying the range.  we'll need to 
 2727:       ** reestablish the shared lock if we can't get the  afpUnlock
 2728:       */
 2729:       if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
 2730:                          pInode->sharedByte, 1, 0)) ){
 2731:         int failed2 = SQLITE_OK;
 2732:         /* now attemmpt to get the exclusive lock range */
 2733:         failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, 
 2734:                                SHARED_SIZE, 1);
 2735:         if( failed && (failed2 = afpSetLock(context->dbPath, pFile, 
 2736:                        SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
 2737:           /* Can't reestablish the shared lock.  Sqlite can't deal, this is
 2738:           ** a critical I/O error
 2739:           */
 2740:           rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : 
 2741:                SQLITE_IOERR_LOCK;
 2742:           goto afp_end_lock;
 2743:         } 
 2744:       }else{
 2745:         rc = failed; 
 2746:       }
 2747:     }
 2748:     if( failed ){
 2749:       rc = failed;
 2750:     }
 2751:   }
 2752:   
 2753:   if( rc==SQLITE_OK ){
 2754:     pFile->eFileLock = eFileLock;
 2755:     pInode->eFileLock = eFileLock;
 2756:   }else if( eFileLock==EXCLUSIVE_LOCK ){
 2757:     pFile->eFileLock = PENDING_LOCK;
 2758:     pInode->eFileLock = PENDING_LOCK;
 2759:   }
 2760:   
 2761: afp_end_lock:
 2762:   unixLeaveMutex();
 2763:   OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), 
 2764:          rc==SQLITE_OK ? "ok" : "failed"));
 2765:   return rc;
 2766: }
 2767: 
 2768: /*
 2769: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 2770: ** must be either NO_LOCK or SHARED_LOCK.
 2771: **
 2772: ** If the locking level of the file descriptor is already at or below
 2773: ** the requested locking level, this routine is a no-op.
 2774: */
 2775: static int afpUnlock(sqlite3_file *id, int eFileLock) {
 2776:   int rc = SQLITE_OK;
 2777:   unixFile *pFile = (unixFile*)id;
 2778:   unixInodeInfo *pInode;
 2779:   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
 2780:   int skipShared = 0;
 2781: #ifdef SQLITE_TEST
 2782:   int h = pFile->h;
 2783: #endif
 2784: 
 2785:   assert( pFile );
 2786:   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
 2787:            pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
 2788:            getpid()));
 2789: 
 2790:   assert( eFileLock<=SHARED_LOCK );
 2791:   if( pFile->eFileLock<=eFileLock ){
 2792:     return SQLITE_OK;
 2793:   }
 2794:   unixEnterMutex();
 2795:   pInode = pFile->pInode;
 2796:   assert( pInode->nShared!=0 );
 2797:   if( pFile->eFileLock>SHARED_LOCK ){
 2798:     assert( pInode->eFileLock==pFile->eFileLock );
 2799:     SimulateIOErrorBenign(1);
 2800:     SimulateIOError( h=(-1) )
 2801:     SimulateIOErrorBenign(0);
 2802:     
 2803: #ifndef NDEBUG
 2804:     /* When reducing a lock such that other processes can start
 2805:     ** reading the database file again, make sure that the
 2806:     ** transaction counter was updated if any part of the database
 2807:     ** file changed.  If the transaction counter is not updated,
 2808:     ** other connections to the same file might not realize that
 2809:     ** the file has changed and hence might not know to flush their
 2810:     ** cache.  The use of a stale cache can lead to database corruption.
 2811:     */
 2812:     assert( pFile->inNormalWrite==0
 2813:            || pFile->dbUpdate==0
 2814:            || pFile->transCntrChng==1 );
 2815:     pFile->inNormalWrite = 0;
 2816: #endif
 2817:     
 2818:     if( pFile->eFileLock==EXCLUSIVE_LOCK ){
 2819:       rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
 2820:       if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
 2821:         /* only re-establish the shared lock if necessary */
 2822:         int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
 2823:         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
 2824:       } else {
 2825:         skipShared = 1;
 2826:       }
 2827:     }
 2828:     if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
 2829:       rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
 2830:     } 
 2831:     if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
 2832:       rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
 2833:       if( !rc ){ 
 2834:         context->reserved = 0; 
 2835:       }
 2836:     }
 2837:     if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
 2838:       pInode->eFileLock = SHARED_LOCK;
 2839:     }
 2840:   }
 2841:   if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
 2842: 
 2843:     /* Decrement the shared lock counter.  Release the lock using an
 2844:     ** OS call only when all threads in this same process have released
 2845:     ** the lock.
 2846:     */
 2847:     unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
 2848:     pInode->nShared--;
 2849:     if( pInode->nShared==0 ){
 2850:       SimulateIOErrorBenign(1);
 2851:       SimulateIOError( h=(-1) )
 2852:       SimulateIOErrorBenign(0);
 2853:       if( !skipShared ){
 2854:         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
 2855:       }
 2856:       if( !rc ){
 2857:         pInode->eFileLock = NO_LOCK;
 2858:         pFile->eFileLock = NO_LOCK;
 2859:       }
 2860:     }
 2861:     if( rc==SQLITE_OK ){
 2862:       pInode->nLock--;
 2863:       assert( pInode->nLock>=0 );
 2864:       if( pInode->nLock==0 ){
 2865:         closePendingFds(pFile);
 2866:       }
 2867:     }
 2868:   }
 2869:   
 2870:   unixLeaveMutex();
 2871:   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
 2872:   return rc;
 2873: }
 2874: 
 2875: /*
 2876: ** Close a file & cleanup AFP specific locking context 
 2877: */
 2878: static int afpClose(sqlite3_file *id) {
 2879:   int rc = SQLITE_OK;
 2880:   if( id ){
 2881:     unixFile *pFile = (unixFile*)id;
 2882:     afpUnlock(id, NO_LOCK);
 2883:     unixEnterMutex();
 2884:     if( pFile->pInode && pFile->pInode->nLock ){
 2885:       /* If there are outstanding locks, do not actually close the file just
 2886:       ** yet because that would clear those locks.  Instead, add the file
 2887:       ** descriptor to pInode->aPending.  It will be automatically closed when
 2888:       ** the last lock is cleared.
 2889:       */
 2890:       setPendingFd(pFile);
 2891:     }
 2892:     releaseInodeInfo(pFile);
 2893:     sqlite3_free(pFile->lockingContext);
 2894:     rc = closeUnixFile(id);
 2895:     unixLeaveMutex();
 2896:   }
 2897:   return rc;
 2898: }
 2899: 
 2900: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
 2901: /*
 2902: ** The code above is the AFP lock implementation.  The code is specific
 2903: ** to MacOSX and does not work on other unix platforms.  No alternative
 2904: ** is available.  If you don't compile for a mac, then the "unix-afp"
 2905: ** VFS is not available.
 2906: **
 2907: ********************* End of the AFP lock implementation **********************
 2908: ******************************************************************************/
 2909: 
 2910: /******************************************************************************
 2911: *************************** Begin NFS Locking ********************************/
 2912: 
 2913: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 2914: /*
 2915:  ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 2916:  ** must be either NO_LOCK or SHARED_LOCK.
 2917:  **
 2918:  ** If the locking level of the file descriptor is already at or below
 2919:  ** the requested locking level, this routine is a no-op.
 2920:  */
 2921: static int nfsUnlock(sqlite3_file *id, int eFileLock){
 2922:   return posixUnlock(id, eFileLock, 1);
 2923: }
 2924: 
 2925: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
 2926: /*
 2927: ** The code above is the NFS lock implementation.  The code is specific
 2928: ** to MacOSX and does not work on other unix platforms.  No alternative
 2929: ** is available.  
 2930: **
 2931: ********************* End of the NFS lock implementation **********************
 2932: ******************************************************************************/
 2933: 
 2934: /******************************************************************************
 2935: **************** Non-locking sqlite3_file methods *****************************
 2936: **
 2937: ** The next division contains implementations for all methods of the 
 2938: ** sqlite3_file object other than the locking methods.  The locking
 2939: ** methods were defined in divisions above (one locking method per
 2940: ** division).  Those methods that are common to all locking modes
 2941: ** are gather together into this division.
 2942: */
 2943: 
 2944: /*
 2945: ** Seek to the offset passed as the second argument, then read cnt 
 2946: ** bytes into pBuf. Return the number of bytes actually read.
 2947: **
 2948: ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
 2949: ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
 2950: ** one system to another.  Since SQLite does not define USE_PREAD
 2951: ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
 2952: ** See tickets #2741 and #2681.
 2953: **
 2954: ** To avoid stomping the errno value on a failed read the lastErrno value
 2955: ** is set before returning.
 2956: */
 2957: static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
 2958:   int got;
 2959:   int prior = 0;
 2960: #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
 2961:   i64 newOffset;
 2962: #endif
 2963:   TIMER_START;
 2964:   do{
 2965: #if defined(USE_PREAD)
 2966:     got = osPread(id->h, pBuf, cnt, offset);
 2967:     SimulateIOError( got = -1 );
 2968: #elif defined(USE_PREAD64)
 2969:     got = osPread64(id->h, pBuf, cnt, offset);
 2970:     SimulateIOError( got = -1 );
 2971: #else
 2972:     newOffset = lseek(id->h, offset, SEEK_SET);
 2973:     SimulateIOError( newOffset-- );
 2974:     if( newOffset!=offset ){
 2975:       if( newOffset == -1 ){
 2976:         ((unixFile*)id)->lastErrno = errno;
 2977:       }else{
 2978:         ((unixFile*)id)->lastErrno = 0;			
 2979:       }
 2980:       return -1;
 2981:     }
 2982:     got = osRead(id->h, pBuf, cnt);
 2983: #endif
 2984:     if( got==cnt ) break;
 2985:     if( got<0 ){
 2986:       if( errno==EINTR ){ got = 1; continue; }
 2987:       prior = 0;
 2988:       ((unixFile*)id)->lastErrno = errno;
 2989:       break;
 2990:     }else if( got>0 ){
 2991:       cnt -= got;
 2992:       offset += got;
 2993:       prior += got;
 2994:       pBuf = (void*)(got + (char*)pBuf);
 2995:     }
 2996:   }while( got>0 );
 2997:   TIMER_END;
 2998:   OSTRACE(("READ    %-3d %5d %7lld %llu\n",
 2999:             id->h, got+prior, offset-prior, TIMER_ELAPSED));
 3000:   return got+prior;
 3001: }
 3002: 
 3003: /*
 3004: ** Read data from a file into a buffer.  Return SQLITE_OK if all
 3005: ** bytes were read successfully and SQLITE_IOERR if anything goes
 3006: ** wrong.
 3007: */
 3008: static int unixRead(
 3009:   sqlite3_file *id, 
 3010:   void *pBuf, 
 3011:   int amt,
 3012:   sqlite3_int64 offset
 3013: ){
 3014:   unixFile *pFile = (unixFile *)id;
 3015:   int got;
 3016:   assert( id );
 3017: 
 3018:   /* If this is a database file (not a journal, master-journal or temp
 3019:   ** file), the bytes in the locking range should never be read or written. */
 3020: #if 0
 3021:   assert( pFile->pUnused==0
 3022:        || offset>=PENDING_BYTE+512
 3023:        || offset+amt<=PENDING_BYTE 
 3024:   );
 3025: #endif
 3026: 
 3027:   got = seekAndRead(pFile, offset, pBuf, amt);
 3028:   if( got==amt ){
 3029:     return SQLITE_OK;
 3030:   }else if( got<0 ){
 3031:     /* lastErrno set by seekAndRead */
 3032:     return SQLITE_IOERR_READ;
 3033:   }else{
 3034:     pFile->lastErrno = 0; /* not a system error */
 3035:     /* Unread parts of the buffer must be zero-filled */
 3036:     memset(&((char*)pBuf)[got], 0, amt-got);
 3037:     return SQLITE_IOERR_SHORT_READ;
 3038:   }
 3039: }
 3040: 
 3041: /*
 3042: ** Seek to the offset in id->offset then read cnt bytes into pBuf.
 3043: ** Return the number of bytes actually read.  Update the offset.
 3044: **
 3045: ** To avoid stomping the errno value on a failed write the lastErrno value
 3046: ** is set before returning.
 3047: */
 3048: static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
 3049:   int got;
 3050: #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
 3051:   i64 newOffset;
 3052: #endif
 3053:   TIMER_START;
 3054: #if defined(USE_PREAD)
 3055:   do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
 3056: #elif defined(USE_PREAD64)
 3057:   do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
 3058: #else
 3059:   do{
 3060:     newOffset = lseek(id->h, offset, SEEK_SET);
 3061:     SimulateIOError( newOffset-- );
 3062:     if( newOffset!=offset ){
 3063:       if( newOffset == -1 ){
 3064:         ((unixFile*)id)->lastErrno = errno;
 3065:       }else{
 3066:         ((unixFile*)id)->lastErrno = 0;			
 3067:       }
 3068:       return -1;
 3069:     }
 3070:     got = osWrite(id->h, pBuf, cnt);
 3071:   }while( got<0 && errno==EINTR );
 3072: #endif
 3073:   TIMER_END;
 3074:   if( got<0 ){
 3075:     ((unixFile*)id)->lastErrno = errno;
 3076:   }
 3077: 
 3078:   OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
 3079:   return got;
 3080: }
 3081: 
 3082: 
 3083: /*
 3084: ** Write data from a buffer into a file.  Return SQLITE_OK on success
 3085: ** or some other error code on failure.
 3086: */
 3087: static int unixWrite(
 3088:   sqlite3_file *id, 
 3089:   const void *pBuf, 
 3090:   int amt,
 3091:   sqlite3_int64 offset 
 3092: ){
 3093:   unixFile *pFile = (unixFile*)id;
 3094:   int wrote = 0;
 3095:   assert( id );
 3096:   assert( amt>0 );
 3097: 
 3098:   /* If this is a database file (not a journal, master-journal or temp
 3099:   ** file), the bytes in the locking range should never be read or written. */
 3100: #if 0
 3101:   assert( pFile->pUnused==0
 3102:        || offset>=PENDING_BYTE+512
 3103:        || offset+amt<=PENDING_BYTE 
 3104:   );
 3105: #endif
 3106: 
 3107: #ifndef NDEBUG
 3108:   /* If we are doing a normal write to a database file (as opposed to
 3109:   ** doing a hot-journal rollback or a write to some file other than a
 3110:   ** normal database file) then record the fact that the database
 3111:   ** has changed.  If the transaction counter is modified, record that
 3112:   ** fact too.
 3113:   */
 3114:   if( pFile->inNormalWrite ){
 3115:     pFile->dbUpdate = 1;  /* The database has been modified */
 3116:     if( offset<=24 && offset+amt>=27 ){
 3117:       int rc;
 3118:       char oldCntr[4];
 3119:       SimulateIOErrorBenign(1);
 3120:       rc = seekAndRead(pFile, 24, oldCntr, 4);
 3121:       SimulateIOErrorBenign(0);
 3122:       if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
 3123:         pFile->transCntrChng = 1;  /* The transaction counter has changed */
 3124:       }
 3125:     }
 3126:   }
 3127: #endif
 3128: 
 3129:   while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
 3130:     amt -= wrote;
 3131:     offset += wrote;
 3132:     pBuf = &((char*)pBuf)[wrote];
 3133:   }
 3134:   SimulateIOError(( wrote=(-1), amt=1 ));
 3135:   SimulateDiskfullError(( wrote=0, amt=1 ));
 3136: 
 3137:   if( amt>0 ){
 3138:     if( wrote<0 && pFile->lastErrno!=ENOSPC ){
 3139:       /* lastErrno set by seekAndWrite */
 3140:       return SQLITE_IOERR_WRITE;
 3141:     }else{
 3142:       pFile->lastErrno = 0; /* not a system error */
 3143:       return SQLITE_FULL;
 3144:     }
 3145:   }
 3146: 
 3147:   return SQLITE_OK;
 3148: }
 3149: 
 3150: #ifdef SQLITE_TEST
 3151: /*
 3152: ** Count the number of fullsyncs and normal syncs.  This is used to test
 3153: ** that syncs and fullsyncs are occurring at the right times.
 3154: */
 3155: int sqlite3_sync_count = 0;
 3156: int sqlite3_fullsync_count = 0;
 3157: #endif
 3158: 
 3159: /*
 3160: ** We do not trust systems to provide a working fdatasync().  Some do.
 3161: ** Others do no.  To be safe, we will stick with the (slightly slower)
 3162: ** fsync(). If you know that your system does support fdatasync() correctly,
 3163: ** then simply compile with -Dfdatasync=fdatasync
 3164: */
 3165: #if !defined(fdatasync)
 3166: # define fdatasync fsync
 3167: #endif
 3168: 
 3169: /*
 3170: ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
 3171: ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
 3172: ** only available on Mac OS X.  But that could change.
 3173: */
 3174: #ifdef F_FULLFSYNC
 3175: # define HAVE_FULLFSYNC 1
 3176: #else
 3177: # define HAVE_FULLFSYNC 0
 3178: #endif
 3179: 
 3180: 
 3181: /*
 3182: ** The fsync() system call does not work as advertised on many
 3183: ** unix systems.  The following procedure is an attempt to make
 3184: ** it work better.
 3185: **
 3186: ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
 3187: ** for testing when we want to run through the test suite quickly.
 3188: ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
 3189: ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
 3190: ** or power failure will likely corrupt the database file.
 3191: **
 3192: ** SQLite sets the dataOnly flag if the size of the file is unchanged.
 3193: ** The idea behind dataOnly is that it should only write the file content
 3194: ** to disk, not the inode.  We only set dataOnly if the file size is 
 3195: ** unchanged since the file size is part of the inode.  However, 
 3196: ** Ted Ts'o tells us that fdatasync() will also write the inode if the
 3197: ** file size has changed.  The only real difference between fdatasync()
 3198: ** and fsync(), Ted tells us, is that fdatasync() will not flush the
 3199: ** inode if the mtime or owner or other inode attributes have changed.
 3200: ** We only care about the file size, not the other file attributes, so
 3201: ** as far as SQLite is concerned, an fdatasync() is always adequate.
 3202: ** So, we always use fdatasync() if it is available, regardless of
 3203: ** the value of the dataOnly flag.
 3204: */
 3205: static int full_fsync(int fd, int fullSync, int dataOnly){
 3206:   int rc;
 3207: 
 3208:   /* The following "ifdef/elif/else/" block has the same structure as
 3209:   ** the one below. It is replicated here solely to avoid cluttering 
 3210:   ** up the real code with the UNUSED_PARAMETER() macros.
 3211:   */
 3212: #ifdef SQLITE_NO_SYNC
 3213:   UNUSED_PARAMETER(fd);
 3214:   UNUSED_PARAMETER(fullSync);
 3215:   UNUSED_PARAMETER(dataOnly);
 3216: #elif HAVE_FULLFSYNC
 3217:   UNUSED_PARAMETER(dataOnly);
 3218: #else
 3219:   UNUSED_PARAMETER(fullSync);
 3220:   UNUSED_PARAMETER(dataOnly);
 3221: #endif
 3222: 
 3223:   /* Record the number of times that we do a normal fsync() and 
 3224:   ** FULLSYNC.  This is used during testing to verify that this procedure
 3225:   ** gets called with the correct arguments.
 3226:   */
 3227: #ifdef SQLITE_TEST
 3228:   if( fullSync ) sqlite3_fullsync_count++;
 3229:   sqlite3_sync_count++;
 3230: #endif
 3231: 
 3232:   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
 3233:   ** no-op
 3234:   */
 3235: #ifdef SQLITE_NO_SYNC
 3236:   rc = SQLITE_OK;
 3237: #elif HAVE_FULLFSYNC
 3238:   if( fullSync ){
 3239:     rc = osFcntl(fd, F_FULLFSYNC, 0);
 3240:   }else{
 3241:     rc = 1;
 3242:   }
 3243:   /* If the FULLFSYNC failed, fall back to attempting an fsync().
 3244:   ** It shouldn't be possible for fullfsync to fail on the local 
 3245:   ** file system (on OSX), so failure indicates that FULLFSYNC
 3246:   ** isn't supported for this file system. So, attempt an fsync 
 3247:   ** and (for now) ignore the overhead of a superfluous fcntl call.  
 3248:   ** It'd be better to detect fullfsync support once and avoid 
 3249:   ** the fcntl call every time sync is called.
 3250:   */
 3251:   if( rc ) rc = fsync(fd);
 3252: 
 3253: #elif defined(__APPLE__)
 3254:   /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
 3255:   ** so currently we default to the macro that redefines fdatasync to fsync
 3256:   */
 3257:   rc = fsync(fd);
 3258: #else 
 3259:   rc = fdatasync(fd);
 3260: #if OS_VXWORKS
 3261:   if( rc==-1 && errno==ENOTSUP ){
 3262:     rc = fsync(fd);
 3263:   }
 3264: #endif /* OS_VXWORKS */
 3265: #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
 3266: 
 3267:   if( OS_VXWORKS && rc!= -1 ){
 3268:     rc = 0;
 3269:   }
 3270:   return rc;
 3271: }
 3272: 
 3273: /*
 3274: ** Open a file descriptor to the directory containing file zFilename.
 3275: ** If successful, *pFd is set to the opened file descriptor and
 3276: ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
 3277: ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
 3278: ** value.
 3279: **
 3280: ** The directory file descriptor is used for only one thing - to
 3281: ** fsync() a directory to make sure file creation and deletion events
 3282: ** are flushed to disk.  Such fsyncs are not needed on newer
 3283: ** journaling filesystems, but are required on older filesystems.
 3284: **
 3285: ** This routine can be overridden using the xSetSysCall interface.
 3286: ** The ability to override this routine was added in support of the
 3287: ** chromium sandbox.  Opening a directory is a security risk (we are
 3288: ** told) so making it overrideable allows the chromium sandbox to
 3289: ** replace this routine with a harmless no-op.  To make this routine
 3290: ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
 3291: ** *pFd set to a negative number.
 3292: **
 3293: ** If SQLITE_OK is returned, the caller is responsible for closing
 3294: ** the file descriptor *pFd using close().
 3295: */
 3296: static int openDirectory(const char *zFilename, int *pFd){
 3297:   int ii;
 3298:   int fd = -1;
 3299:   char zDirname[MAX_PATHNAME+1];
 3300: 
 3301:   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
 3302:   for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
 3303:   if( ii>0 ){
 3304:     zDirname[ii] = '\0';
 3305:     fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
 3306:     if( fd>=0 ){
 3307: #ifdef FD_CLOEXEC
 3308:       osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
 3309: #endif
 3310:       OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
 3311:     }
 3312:   }
 3313:   *pFd = fd;
 3314:   return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
 3315: }
 3316: 
 3317: /*
 3318: ** Make sure all writes to a particular file are committed to disk.
 3319: **
 3320: ** If dataOnly==0 then both the file itself and its metadata (file
 3321: ** size, access time, etc) are synced.  If dataOnly!=0 then only the
 3322: ** file data is synced.
 3323: **
 3324: ** Under Unix, also make sure that the directory entry for the file
 3325: ** has been created by fsync-ing the directory that contains the file.
 3326: ** If we do not do this and we encounter a power failure, the directory
 3327: ** entry for the journal might not exist after we reboot.  The next
 3328: ** SQLite to access the file will not know that the journal exists (because
 3329: ** the directory entry for the journal was never created) and the transaction
 3330: ** will not roll back - possibly leading to database corruption.
 3331: */
 3332: static int unixSync(sqlite3_file *id, int flags){
 3333:   int rc;
 3334:   unixFile *pFile = (unixFile*)id;
 3335: 
 3336:   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
 3337:   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
 3338: 
 3339:   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
 3340:   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
 3341:       || (flags&0x0F)==SQLITE_SYNC_FULL
 3342:   );
 3343: 
 3344:   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
 3345:   ** line is to test that doing so does not cause any problems.
 3346:   */
 3347:   SimulateDiskfullError( return SQLITE_FULL );
 3348: 
 3349:   assert( pFile );
 3350:   OSTRACE(("SYNC    %-3d\n", pFile->h));
 3351:   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
 3352:   SimulateIOError( rc=1 );
 3353:   if( rc ){
 3354:     pFile->lastErrno = errno;
 3355:     return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
 3356:   }
 3357: 
 3358:   /* Also fsync the directory containing the file if the DIRSYNC flag
 3359:   ** is set.  This is a one-time occurrance.  Many systems (examples: AIX)
 3360:   ** are unable to fsync a directory, so ignore errors on the fsync.
 3361:   */
 3362:   if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
 3363:     int dirfd;
 3364:     OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
 3365:             HAVE_FULLFSYNC, isFullsync));
 3366:     rc = osOpenDirectory(pFile->zPath, &dirfd);
 3367:     if( rc==SQLITE_OK && dirfd>=0 ){
 3368:       full_fsync(dirfd, 0, 0);
 3369:       robust_close(pFile, dirfd, __LINE__);
 3370:     }else if( rc==SQLITE_CANTOPEN ){
 3371:       rc = SQLITE_OK;
 3372:     }
 3373:     pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
 3374:   }
 3375:   return rc;
 3376: }
 3377: 
 3378: /*
 3379: ** Truncate an open file to a specified size
 3380: */
 3381: static int unixTruncate(sqlite3_file *id, i64 nByte){
 3382:   unixFile *pFile = (unixFile *)id;
 3383:   int rc;
 3384:   assert( pFile );
 3385:   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
 3386: 
 3387:   /* If the user has configured a chunk-size for this file, truncate the
 3388:   ** file so that it consists of an integer number of chunks (i.e. the
 3389:   ** actual file size after the operation may be larger than the requested
 3390:   ** size).
 3391:   */
 3392:   if( pFile->szChunk ){
 3393:     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
 3394:   }
 3395: 
 3396:   rc = robust_ftruncate(pFile->h, (off_t)nByte);
 3397:   if( rc ){
 3398:     pFile->lastErrno = errno;
 3399:     return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
 3400:   }else{
 3401: #ifndef NDEBUG
 3402:     /* If we are doing a normal write to a database file (as opposed to
 3403:     ** doing a hot-journal rollback or a write to some file other than a
 3404:     ** normal database file) and we truncate the file to zero length,
 3405:     ** that effectively updates the change counter.  This might happen
 3406:     ** when restoring a database using the backup API from a zero-length
 3407:     ** source.
 3408:     */
 3409:     if( pFile->inNormalWrite && nByte==0 ){
 3410:       pFile->transCntrChng = 1;
 3411:     }
 3412: #endif
 3413: 
 3414:     return SQLITE_OK;
 3415:   }
 3416: }
 3417: 
 3418: /*
 3419: ** Determine the current size of a file in bytes
 3420: */
 3421: static int unixFileSize(sqlite3_file *id, i64 *pSize){
 3422:   int rc;
 3423:   struct stat buf;
 3424:   assert( id );
 3425:   rc = osFstat(((unixFile*)id)->h, &buf);
 3426:   SimulateIOError( rc=1 );
 3427:   if( rc!=0 ){
 3428:     ((unixFile*)id)->lastErrno = errno;
 3429:     return SQLITE_IOERR_FSTAT;
 3430:   }
 3431:   *pSize = buf.st_size;
 3432: 
 3433:   /* When opening a zero-size database, the findInodeInfo() procedure
 3434:   ** writes a single byte into that file in order to work around a bug
 3435:   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
 3436:   ** layers, we need to report this file size as zero even though it is
 3437:   ** really 1.   Ticket #3260.
 3438:   */
 3439:   if( *pSize==1 ) *pSize = 0;
 3440: 
 3441: 
 3442:   return SQLITE_OK;
 3443: }
 3444: 
 3445: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
 3446: /*
 3447: ** Handler for proxy-locking file-control verbs.  Defined below in the
 3448: ** proxying locking division.
 3449: */
 3450: static int proxyFileControl(sqlite3_file*,int,void*);
 3451: #endif
 3452: 
 3453: /* 
 3454: ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT 
 3455: ** file-control operation.  Enlarge the database to nBytes in size
 3456: ** (rounded up to the next chunk-size).  If the database is already
 3457: ** nBytes or larger, this routine is a no-op.
 3458: */
 3459: static int fcntlSizeHint(unixFile *pFile, i64 nByte){
 3460:   if( pFile->szChunk>0 ){
 3461:     i64 nSize;                    /* Required file size */
 3462:     struct stat buf;              /* Used to hold return values of fstat() */
 3463:    
 3464:     if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
 3465: 
 3466:     nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
 3467:     if( nSize>(i64)buf.st_size ){
 3468: 
 3469: #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
 3470:       /* The code below is handling the return value of osFallocate() 
 3471:       ** correctly. posix_fallocate() is defined to "returns zero on success, 
 3472:       ** or an error number on  failure". See the manpage for details. */
 3473:       int err;
 3474:       do{
 3475:         err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
 3476:       }while( err==EINTR );
 3477:       if( err ) return SQLITE_IOERR_WRITE;
 3478: #else
 3479:       /* If the OS does not have posix_fallocate(), fake it. First use
 3480:       ** ftruncate() to set the file size, then write a single byte to
 3481:       ** the last byte in each block within the extended region. This
 3482:       ** is the same technique used by glibc to implement posix_fallocate()
 3483:       ** on systems that do not have a real fallocate() system call.
 3484:       */
 3485:       int nBlk = buf.st_blksize;  /* File-system block size */
 3486:       i64 iWrite;                 /* Next offset to write to */
 3487: 
 3488:       if( robust_ftruncate(pFile->h, nSize) ){
 3489:         pFile->lastErrno = errno;
 3490:         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
 3491:       }
 3492:       iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
 3493:       while( iWrite<nSize ){
 3494:         int nWrite = seekAndWrite(pFile, iWrite, "", 1);
 3495:         if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
 3496:         iWrite += nBlk;
 3497:       }
 3498: #endif
 3499:     }
 3500:   }
 3501: 
 3502:   return SQLITE_OK;
 3503: }
 3504: 
 3505: /*
 3506: ** If *pArg is inititially negative then this is a query.  Set *pArg to
 3507: ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
 3508: **
 3509: ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
 3510: */
 3511: static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
 3512:   if( *pArg<0 ){
 3513:     *pArg = (pFile->ctrlFlags & mask)!=0;
 3514:   }else if( (*pArg)==0 ){
 3515:     pFile->ctrlFlags &= ~mask;
 3516:   }else{
 3517:     pFile->ctrlFlags |= mask;
 3518:   }
 3519: }
 3520: 
 3521: /*
 3522: ** Information and control of an open file handle.
 3523: */
 3524: static int unixFileControl(sqlite3_file *id, int op, void *pArg){
 3525:   unixFile *pFile = (unixFile*)id;
 3526:   switch( op ){
 3527:     case SQLITE_FCNTL_LOCKSTATE: {
 3528:       *(int*)pArg = pFile->eFileLock;
 3529:       return SQLITE_OK;
 3530:     }
 3531:     case SQLITE_LAST_ERRNO: {
 3532:       *(int*)pArg = pFile->lastErrno;
 3533:       return SQLITE_OK;
 3534:     }
 3535:     case SQLITE_FCNTL_CHUNK_SIZE: {
 3536:       pFile->szChunk = *(int *)pArg;
 3537:       return SQLITE_OK;
 3538:     }
 3539:     case SQLITE_FCNTL_SIZE_HINT: {
 3540:       int rc;
 3541:       SimulateIOErrorBenign(1);
 3542:       rc = fcntlSizeHint(pFile, *(i64 *)pArg);
 3543:       SimulateIOErrorBenign(0);
 3544:       return rc;
 3545:     }
 3546:     case SQLITE_FCNTL_PERSIST_WAL: {
 3547:       unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
 3548:       return SQLITE_OK;
 3549:     }
 3550:     case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
 3551:       unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
 3552:       return SQLITE_OK;
 3553:     }
 3554:     case SQLITE_FCNTL_VFSNAME: {
 3555:       *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
 3556:       return SQLITE_OK;
 3557:     }
 3558: #ifndef NDEBUG
 3559:     /* The pager calls this method to signal that it has done
 3560:     ** a rollback and that the database is therefore unchanged and
 3561:     ** it hence it is OK for the transaction change counter to be
 3562:     ** unchanged.
 3563:     */
 3564:     case SQLITE_FCNTL_DB_UNCHANGED: {
 3565:       ((unixFile*)id)->dbUpdate = 0;
 3566:       return SQLITE_OK;
 3567:     }
 3568: #endif
 3569: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
 3570:     case SQLITE_SET_LOCKPROXYFILE:
 3571:     case SQLITE_GET_LOCKPROXYFILE: {
 3572:       return proxyFileControl(id,op,pArg);
 3573:     }
 3574: #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
 3575:   }
 3576:   return SQLITE_NOTFOUND;
 3577: }
 3578: 
 3579: /*
 3580: ** Return the sector size in bytes of the underlying block device for
 3581: ** the specified file. This is almost always 512 bytes, but may be
 3582: ** larger for some devices.
 3583: **
 3584: ** SQLite code assumes this function cannot fail. It also assumes that
 3585: ** if two files are created in the same file-system directory (i.e.
 3586: ** a database and its journal file) that the sector size will be the
 3587: ** same for both.
 3588: */
 3589: static int unixSectorSize(sqlite3_file *pFile){
 3590:   (void)pFile;
 3591:   return SQLITE_DEFAULT_SECTOR_SIZE;
 3592: }
 3593: 
 3594: /*
 3595: ** Return the device characteristics for the file.
 3596: **
 3597: ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
 3598: ** However, that choice is contraversial since technically the underlying
 3599: ** file system does not always provide powersafe overwrites.  (In other
 3600: ** words, after a power-loss event, parts of the file that were never
 3601: ** written might end up being altered.)  However, non-PSOW behavior is very,
 3602: ** very rare.  And asserting PSOW makes a large reduction in the amount
 3603: ** of required I/O for journaling, since a lot of padding is eliminated.
 3604: **  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
 3605: ** available to turn it off and URI query parameter available to turn it off.
 3606: */
 3607: static int unixDeviceCharacteristics(sqlite3_file *id){
 3608:   unixFile *p = (unixFile*)id;
 3609:   if( p->ctrlFlags & UNIXFILE_PSOW ){
 3610:     return SQLITE_IOCAP_POWERSAFE_OVERWRITE;
 3611:   }else{
 3612:     return 0;
 3613:   }
 3614: }
 3615: 
 3616: #ifndef SQLITE_OMIT_WAL
 3617: 
 3618: 
 3619: /*
 3620: ** Object used to represent an shared memory buffer.  
 3621: **
 3622: ** When multiple threads all reference the same wal-index, each thread
 3623: ** has its own unixShm object, but they all point to a single instance
 3624: ** of this unixShmNode object.  In other words, each wal-index is opened
 3625: ** only once per process.
 3626: **
 3627: ** Each unixShmNode object is connected to a single unixInodeInfo object.
 3628: ** We could coalesce this object into unixInodeInfo, but that would mean
 3629: ** every open file that does not use shared memory (in other words, most
 3630: ** open files) would have to carry around this extra information.  So
 3631: ** the unixInodeInfo object contains a pointer to this unixShmNode object
 3632: ** and the unixShmNode object is created only when needed.
 3633: **
 3634: ** unixMutexHeld() must be true when creating or destroying
 3635: ** this object or while reading or writing the following fields:
 3636: **
 3637: **      nRef
 3638: **
 3639: ** The following fields are read-only after the object is created:
 3640: ** 
 3641: **      fid
 3642: **      zFilename
 3643: **
 3644: ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
 3645: ** unixMutexHeld() is true when reading or writing any other field
 3646: ** in this structure.
 3647: */
 3648: struct unixShmNode {
 3649:   unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
 3650:   sqlite3_mutex *mutex;      /* Mutex to access this object */
 3651:   char *zFilename;           /* Name of the mmapped file */
 3652:   int h;                     /* Open file descriptor */
 3653:   int szRegion;              /* Size of shared-memory regions */
 3654:   u16 nRegion;               /* Size of array apRegion */
 3655:   u8 isReadonly;             /* True if read-only */
 3656:   char **apRegion;           /* Array of mapped shared-memory regions */
 3657:   int nRef;                  /* Number of unixShm objects pointing to this */
 3658:   unixShm *pFirst;           /* All unixShm objects pointing to this */
 3659: #ifdef SQLITE_DEBUG
 3660:   u8 exclMask;               /* Mask of exclusive locks held */
 3661:   u8 sharedMask;             /* Mask of shared locks held */
 3662:   u8 nextShmId;              /* Next available unixShm.id value */
 3663: #endif
 3664: };
 3665: 
 3666: /*
 3667: ** Structure used internally by this VFS to record the state of an
 3668: ** open shared memory connection.
 3669: **
 3670: ** The following fields are initialized when this object is created and
 3671: ** are read-only thereafter:
 3672: **
 3673: **    unixShm.pFile
 3674: **    unixShm.id
 3675: **
 3676: ** All other fields are read/write.  The unixShm.pFile->mutex must be held
 3677: ** while accessing any read/write fields.
 3678: */
 3679: struct unixShm {
 3680:   unixShmNode *pShmNode;     /* The underlying unixShmNode object */
 3681:   unixShm *pNext;            /* Next unixShm with the same unixShmNode */
 3682:   u8 hasMutex;               /* True if holding the unixShmNode mutex */
 3683:   u8 id;                     /* Id of this connection within its unixShmNode */
 3684:   u16 sharedMask;            /* Mask of shared locks held */
 3685:   u16 exclMask;              /* Mask of exclusive locks held */
 3686: };
 3687: 
 3688: /*
 3689: ** Constants used for locking
 3690: */
 3691: #define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
 3692: #define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
 3693: 
 3694: /*
 3695: ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
 3696: **
 3697: ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
 3698: ** otherwise.
 3699: */
 3700: static int unixShmSystemLock(
 3701:   unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
 3702:   int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
 3703:   int ofst,              /* First byte of the locking range */
 3704:   int n                  /* Number of bytes to lock */
 3705: ){
 3706:   struct flock f;       /* The posix advisory locking structure */
 3707:   int rc = SQLITE_OK;   /* Result code form fcntl() */
 3708: 
 3709:   /* Access to the unixShmNode object is serialized by the caller */
 3710:   assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
 3711: 
 3712:   /* Shared locks never span more than one byte */
 3713:   assert( n==1 || lockType!=F_RDLCK );
 3714: 
 3715:   /* Locks are within range */
 3716:   assert( n>=1 && n<SQLITE_SHM_NLOCK );
 3717: 
 3718:   if( pShmNode->h>=0 ){
 3719:     /* Initialize the locking parameters */
 3720:     memset(&f, 0, sizeof(f));
 3721:     f.l_type = lockType;
 3722:     f.l_whence = SEEK_SET;
 3723:     f.l_start = ofst;
 3724:     f.l_len = n;
 3725: 
 3726:     rc = osFcntl(pShmNode->h, F_SETLK, &f);
 3727:     rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
 3728:   }
 3729: 
 3730:   /* Update the global lock state and do debug tracing */
 3731: #ifdef SQLITE_DEBUG
 3732:   { u16 mask;
 3733:   OSTRACE(("SHM-LOCK "));
 3734:   mask = (1<<(ofst+n)) - (1<<ofst);
 3735:   if( rc==SQLITE_OK ){
 3736:     if( lockType==F_UNLCK ){
 3737:       OSTRACE(("unlock %d ok", ofst));
 3738:       pShmNode->exclMask &= ~mask;
 3739:       pShmNode->sharedMask &= ~mask;
 3740:     }else if( lockType==F_RDLCK ){
 3741:       OSTRACE(("read-lock %d ok", ofst));
 3742:       pShmNode->exclMask &= ~mask;
 3743:       pShmNode->sharedMask |= mask;
 3744:     }else{
 3745:       assert( lockType==F_WRLCK );
 3746:       OSTRACE(("write-lock %d ok", ofst));
 3747:       pShmNode->exclMask |= mask;
 3748:       pShmNode->sharedMask &= ~mask;
 3749:     }
 3750:   }else{
 3751:     if( lockType==F_UNLCK ){
 3752:       OSTRACE(("unlock %d failed", ofst));
 3753:     }else if( lockType==F_RDLCK ){
 3754:       OSTRACE(("read-lock failed"));
 3755:     }else{
 3756:       assert( lockType==F_WRLCK );
 3757:       OSTRACE(("write-lock %d failed", ofst));
 3758:     }
 3759:   }
 3760:   OSTRACE((" - afterwards %03x,%03x\n",
 3761:            pShmNode->sharedMask, pShmNode->exclMask));
 3762:   }
 3763: #endif
 3764: 
 3765:   return rc;        
 3766: }
 3767: 
 3768: 
 3769: /*
 3770: ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
 3771: **
 3772: ** This is not a VFS shared-memory method; it is a utility function called
 3773: ** by VFS shared-memory methods.
 3774: */
 3775: static void unixShmPurge(unixFile *pFd){
 3776:   unixShmNode *p = pFd->pInode->pShmNode;
 3777:   assert( unixMutexHeld() );
 3778:   if( p && p->nRef==0 ){
 3779:     int i;
 3780:     assert( p->pInode==pFd->pInode );
 3781:     sqlite3_mutex_free(p->mutex);
 3782:     for(i=0; i<p->nRegion; i++){
 3783:       if( p->h>=0 ){
 3784:         munmap(p->apRegion[i], p->szRegion);
 3785:       }else{
 3786:         sqlite3_free(p->apRegion[i]);
 3787:       }
 3788:     }
 3789:     sqlite3_free(p->apRegion);
 3790:     if( p->h>=0 ){
 3791:       robust_close(pFd, p->h, __LINE__);
 3792:       p->h = -1;
 3793:     }
 3794:     p->pInode->pShmNode = 0;
 3795:     sqlite3_free(p);
 3796:   }
 3797: }
 3798: 
 3799: /*
 3800: ** Open a shared-memory area associated with open database file pDbFd.  
 3801: ** This particular implementation uses mmapped files.
 3802: **
 3803: ** The file used to implement shared-memory is in the same directory
 3804: ** as the open database file and has the same name as the open database
 3805: ** file with the "-shm" suffix added.  For example, if the database file
 3806: ** is "/home/user1/config.db" then the file that is created and mmapped
 3807: ** for shared memory will be called "/home/user1/config.db-shm".  
 3808: **
 3809: ** Another approach to is to use files in /dev/shm or /dev/tmp or an
 3810: ** some other tmpfs mount. But if a file in a different directory
 3811: ** from the database file is used, then differing access permissions
 3812: ** or a chroot() might cause two different processes on the same
 3813: ** database to end up using different files for shared memory - 
 3814: ** meaning that their memory would not really be shared - resulting
 3815: ** in database corruption.  Nevertheless, this tmpfs file usage
 3816: ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
 3817: ** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
 3818: ** option results in an incompatible build of SQLite;  builds of SQLite
 3819: ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
 3820: ** same database file at the same time, database corruption will likely
 3821: ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
 3822: ** "unsupported" and may go away in a future SQLite release.
 3823: **
 3824: ** When opening a new shared-memory file, if no other instances of that
 3825: ** file are currently open, in this process or in other processes, then
 3826: ** the file must be truncated to zero length or have its header cleared.
 3827: **
 3828: ** If the original database file (pDbFd) is using the "unix-excl" VFS
 3829: ** that means that an exclusive lock is held on the database file and
 3830: ** that no other processes are able to read or write the database.  In
 3831: ** that case, we do not really need shared memory.  No shared memory
 3832: ** file is created.  The shared memory will be simulated with heap memory.
 3833: */
 3834: static int unixOpenSharedMemory(unixFile *pDbFd){
 3835:   struct unixShm *p = 0;          /* The connection to be opened */
 3836:   struct unixShmNode *pShmNode;   /* The underlying mmapped file */
 3837:   int rc;                         /* Result code */
 3838:   unixInodeInfo *pInode;          /* The inode of fd */
 3839:   char *zShmFilename;             /* Name of the file used for SHM */
 3840:   int nShmFilename;               /* Size of the SHM filename in bytes */
 3841: 
 3842:   /* Allocate space for the new unixShm object. */
 3843:   p = sqlite3_malloc( sizeof(*p) );
 3844:   if( p==0 ) return SQLITE_NOMEM;
 3845:   memset(p, 0, sizeof(*p));
 3846:   assert( pDbFd->pShm==0 );
 3847: 
 3848:   /* Check to see if a unixShmNode object already exists. Reuse an existing
 3849:   ** one if present. Create a new one if necessary.
 3850:   */
 3851:   unixEnterMutex();
 3852:   pInode = pDbFd->pInode;
 3853:   pShmNode = pInode->pShmNode;
 3854:   if( pShmNode==0 ){
 3855:     struct stat sStat;                 /* fstat() info for database file */
 3856: 
 3857:     /* Call fstat() to figure out the permissions on the database file. If
 3858:     ** a new *-shm file is created, an attempt will be made to create it
 3859:     ** with the same permissions. The actual permissions the file is created
 3860:     ** with are subject to the current umask setting.
 3861:     */
 3862:     if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
 3863:       rc = SQLITE_IOERR_FSTAT;
 3864:       goto shm_open_err;
 3865:     }
 3866: 
 3867: #ifdef SQLITE_SHM_DIRECTORY
 3868:     nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
 3869: #else
 3870:     nShmFilename = 6 + (int)strlen(pDbFd->zPath);
 3871: #endif
 3872:     pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
 3873:     if( pShmNode==0 ){
 3874:       rc = SQLITE_NOMEM;
 3875:       goto shm_open_err;
 3876:     }
 3877:     memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
 3878:     zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
 3879: #ifdef SQLITE_SHM_DIRECTORY
 3880:     sqlite3_snprintf(nShmFilename, zShmFilename, 
 3881:                      SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
 3882:                      (u32)sStat.st_ino, (u32)sStat.st_dev);
 3883: #else
 3884:     sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
 3885:     sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
 3886: #endif
 3887:     pShmNode->h = -1;
 3888:     pDbFd->pInode->pShmNode = pShmNode;
 3889:     pShmNode->pInode = pDbFd->pInode;
 3890:     pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
 3891:     if( pShmNode->mutex==0 ){
 3892:       rc = SQLITE_NOMEM;
 3893:       goto shm_open_err;
 3894:     }
 3895: 
 3896:     if( pInode->bProcessLock==0 ){
 3897:       int openFlags = O_RDWR | O_CREAT;
 3898:       if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
 3899:         openFlags = O_RDONLY;
 3900:         pShmNode->isReadonly = 1;
 3901:       }
 3902:       pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
 3903:       if( pShmNode->h<0 ){
 3904:         if( pShmNode->h<0 ){
 3905:           rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
 3906:           goto shm_open_err;
 3907:         }
 3908:       }
 3909:   
 3910:       /* Check to see if another process is holding the dead-man switch.
 3911:       ** If not, truncate the file to zero length. 
 3912:       */
 3913:       rc = SQLITE_OK;
 3914:       if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
 3915:         if( robust_ftruncate(pShmNode->h, 0) ){
 3916:           rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
 3917:         }
 3918:       }
 3919:       if( rc==SQLITE_OK ){
 3920:         rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
 3921:       }
 3922:       if( rc ) goto shm_open_err;
 3923:     }
 3924:   }
 3925: 
 3926:   /* Make the new connection a child of the unixShmNode */
 3927:   p->pShmNode = pShmNode;
 3928: #ifdef SQLITE_DEBUG
 3929:   p->id = pShmNode->nextShmId++;
 3930: #endif
 3931:   pShmNode->nRef++;
 3932:   pDbFd->pShm = p;
 3933:   unixLeaveMutex();
 3934: 
 3935:   /* The reference count on pShmNode has already been incremented under
 3936:   ** the cover of the unixEnterMutex() mutex and the pointer from the
 3937:   ** new (struct unixShm) object to the pShmNode has been set. All that is
 3938:   ** left to do is to link the new object into the linked list starting
 3939:   ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex 
 3940:   ** mutex.
 3941:   */
 3942:   sqlite3_mutex_enter(pShmNode->mutex);
 3943:   p->pNext = pShmNode->pFirst;
 3944:   pShmNode->pFirst = p;
 3945:   sqlite3_mutex_leave(pShmNode->mutex);
 3946:   return SQLITE_OK;
 3947: 
 3948:   /* Jump here on any error */
 3949: shm_open_err:
 3950:   unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
 3951:   sqlite3_free(p);
 3952:   unixLeaveMutex();
 3953:   return rc;
 3954: }
 3955: 
 3956: /*
 3957: ** This function is called to obtain a pointer to region iRegion of the 
 3958: ** shared-memory associated with the database file fd. Shared-memory regions 
 3959: ** are numbered starting from zero. Each shared-memory region is szRegion 
 3960: ** bytes in size.
 3961: **
 3962: ** If an error occurs, an error code is returned and *pp is set to NULL.
 3963: **
 3964: ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
 3965: ** region has not been allocated (by any client, including one running in a
 3966: ** separate process), then *pp is set to NULL and SQLITE_OK returned. If 
 3967: ** bExtend is non-zero and the requested shared-memory region has not yet 
 3968: ** been allocated, it is allocated by this function.
 3969: **
 3970: ** If the shared-memory region has already been allocated or is allocated by
 3971: ** this call as described above, then it is mapped into this processes 
 3972: ** address space (if it is not already), *pp is set to point to the mapped 
 3973: ** memory and SQLITE_OK returned.
 3974: */
 3975: static int unixShmMap(
 3976:   sqlite3_file *fd,               /* Handle open on database file */
 3977:   int iRegion,                    /* Region to retrieve */
 3978:   int szRegion,                   /* Size of regions */
 3979:   int bExtend,                    /* True to extend file if necessary */
 3980:   void volatile **pp              /* OUT: Mapped memory */
 3981: ){
 3982:   unixFile *pDbFd = (unixFile*)fd;
 3983:   unixShm *p;
 3984:   unixShmNode *pShmNode;
 3985:   int rc = SQLITE_OK;
 3986: 
 3987:   /* If the shared-memory file has not yet been opened, open it now. */
 3988:   if( pDbFd->pShm==0 ){
 3989:     rc = unixOpenSharedMemory(pDbFd);
 3990:     if( rc!=SQLITE_OK ) return rc;
 3991:   }
 3992: 
 3993:   p = pDbFd->pShm;
 3994:   pShmNode = p->pShmNode;
 3995:   sqlite3_mutex_enter(pShmNode->mutex);
 3996:   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
 3997:   assert( pShmNode->pInode==pDbFd->pInode );
 3998:   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
 3999:   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
 4000: 
 4001:   if( pShmNode->nRegion<=iRegion ){
 4002:     char **apNew;                      /* New apRegion[] array */
 4003:     int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
 4004:     struct stat sStat;                 /* Used by fstat() */
 4005: 
 4006:     pShmNode->szRegion = szRegion;
 4007: 
 4008:     if( pShmNode->h>=0 ){
 4009:       /* The requested region is not mapped into this processes address space.
 4010:       ** Check to see if it has been allocated (i.e. if the wal-index file is
 4011:       ** large enough to contain the requested region).
 4012:       */
 4013:       if( osFstat(pShmNode->h, &sStat) ){
 4014:         rc = SQLITE_IOERR_SHMSIZE;
 4015:         goto shmpage_out;
 4016:       }
 4017:   
 4018:       if( sStat.st_size<nByte ){
 4019:         /* The requested memory region does not exist. If bExtend is set to
 4020:         ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
 4021:         **
 4022:         ** Alternatively, if bExtend is true, use ftruncate() to allocate
 4023:         ** the requested memory region.
 4024:         */
 4025:         if( !bExtend ) goto shmpage_out;
 4026:         if( robust_ftruncate(pShmNode->h, nByte) ){
 4027:           rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
 4028:                             pShmNode->zFilename);
 4029:           goto shmpage_out;
 4030:         }
 4031:       }
 4032:     }
 4033: 
 4034:     /* Map the requested memory region into this processes address space. */
 4035:     apNew = (char **)sqlite3_realloc(
 4036:         pShmNode->apRegion, (iRegion+1)*sizeof(char *)
 4037:     );
 4038:     if( !apNew ){
 4039:       rc = SQLITE_IOERR_NOMEM;
 4040:       goto shmpage_out;
 4041:     }
 4042:     pShmNode->apRegion = apNew;
 4043:     while(pShmNode->nRegion<=iRegion){
 4044:       void *pMem;
 4045:       if( pShmNode->h>=0 ){
 4046:         pMem = mmap(0, szRegion,
 4047:             pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
 4048:             MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
 4049:         );
 4050:         if( pMem==MAP_FAILED ){
 4051:           rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
 4052:           goto shmpage_out;
 4053:         }
 4054:       }else{
 4055:         pMem = sqlite3_malloc(szRegion);
 4056:         if( pMem==0 ){
 4057:           rc = SQLITE_NOMEM;
 4058:           goto shmpage_out;
 4059:         }
 4060:         memset(pMem, 0, szRegion);
 4061:       }
 4062:       pShmNode->apRegion[pShmNode->nRegion] = pMem;
 4063:       pShmNode->nRegion++;
 4064:     }
 4065:   }
 4066: 
 4067: shmpage_out:
 4068:   if( pShmNode->nRegion>iRegion ){
 4069:     *pp = pShmNode->apRegion[iRegion];
 4070:   }else{
 4071:     *pp = 0;
 4072:   }
 4073:   if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
 4074:   sqlite3_mutex_leave(pShmNode->mutex);
 4075:   return rc;
 4076: }
 4077: 
 4078: /*
 4079: ** Change the lock state for a shared-memory segment.
 4080: **
 4081: ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
 4082: ** different here than in posix.  In xShmLock(), one can go from unlocked
 4083: ** to shared and back or from unlocked to exclusive and back.  But one may
 4084: ** not go from shared to exclusive or from exclusive to shared.
 4085: */
 4086: static int unixShmLock(
 4087:   sqlite3_file *fd,          /* Database file holding the shared memory */
 4088:   int ofst,                  /* First lock to acquire or release */
 4089:   int n,                     /* Number of locks to acquire or release */
 4090:   int flags                  /* What to do with the lock */
 4091: ){
 4092:   unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
 4093:   unixShm *p = pDbFd->pShm;             /* The shared memory being locked */
 4094:   unixShm *pX;                          /* For looping over all siblings */
 4095:   unixShmNode *pShmNode = p->pShmNode;  /* The underlying file iNode */
 4096:   int rc = SQLITE_OK;                   /* Result code */
 4097:   u16 mask;                             /* Mask of locks to take or release */
 4098: 
 4099:   assert( pShmNode==pDbFd->pInode->pShmNode );
 4100:   assert( pShmNode->pInode==pDbFd->pInode );
 4101:   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
 4102:   assert( n>=1 );
 4103:   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
 4104:        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
 4105:        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
 4106:        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
 4107:   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
 4108:   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
 4109:   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
 4110: 
 4111:   mask = (1<<(ofst+n)) - (1<<ofst);
 4112:   assert( n>1 || mask==(1<<ofst) );
 4113:   sqlite3_mutex_enter(pShmNode->mutex);
 4114:   if( flags & SQLITE_SHM_UNLOCK ){
 4115:     u16 allMask = 0; /* Mask of locks held by siblings */
 4116: 
 4117:     /* See if any siblings hold this same lock */
 4118:     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
 4119:       if( pX==p ) continue;
 4120:       assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
 4121:       allMask |= pX->sharedMask;
 4122:     }
 4123: 
 4124:     /* Unlock the system-level locks */
 4125:     if( (mask & allMask)==0 ){
 4126:       rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
 4127:     }else{
 4128:       rc = SQLITE_OK;
 4129:     }
 4130: 
 4131:     /* Undo the local locks */
 4132:     if( rc==SQLITE_OK ){
 4133:       p->exclMask &= ~mask;
 4134:       p->sharedMask &= ~mask;
 4135:     } 
 4136:   }else if( flags & SQLITE_SHM_SHARED ){
 4137:     u16 allShared = 0;  /* Union of locks held by connections other than "p" */
 4138: 
 4139:     /* Find out which shared locks are already held by sibling connections.
 4140:     ** If any sibling already holds an exclusive lock, go ahead and return
 4141:     ** SQLITE_BUSY.
 4142:     */
 4143:     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
 4144:       if( (pX->exclMask & mask)!=0 ){
 4145:         rc = SQLITE_BUSY;
 4146:         break;
 4147:       }
 4148:       allShared |= pX->sharedMask;
 4149:     }
 4150: 
 4151:     /* Get shared locks at the system level, if necessary */
 4152:     if( rc==SQLITE_OK ){
 4153:       if( (allShared & mask)==0 ){
 4154:         rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
 4155:       }else{
 4156:         rc = SQLITE_OK;
 4157:       }
 4158:     }
 4159: 
 4160:     /* Get the local shared locks */
 4161:     if( rc==SQLITE_OK ){
 4162:       p->sharedMask |= mask;
 4163:     }
 4164:   }else{
 4165:     /* Make sure no sibling connections hold locks that will block this
 4166:     ** lock.  If any do, return SQLITE_BUSY right away.
 4167:     */
 4168:     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
 4169:       if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
 4170:         rc = SQLITE_BUSY;
 4171:         break;
 4172:       }
 4173:     }
 4174:   
 4175:     /* Get the exclusive locks at the system level.  Then if successful
 4176:     ** also mark the local connection as being locked.
 4177:     */
 4178:     if( rc==SQLITE_OK ){
 4179:       rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
 4180:       if( rc==SQLITE_OK ){
 4181:         assert( (p->sharedMask & mask)==0 );
 4182:         p->exclMask |= mask;
 4183:       }
 4184:     }
 4185:   }
 4186:   sqlite3_mutex_leave(pShmNode->mutex);
 4187:   OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
 4188:            p->id, getpid(), p->sharedMask, p->exclMask));
 4189:   return rc;
 4190: }
 4191: 
 4192: /*
 4193: ** Implement a memory barrier or memory fence on shared memory.  
 4194: **
 4195: ** All loads and stores begun before the barrier must complete before
 4196: ** any load or store begun after the barrier.
 4197: */
 4198: static void unixShmBarrier(
 4199:   sqlite3_file *fd                /* Database file holding the shared memory */
 4200: ){
 4201:   UNUSED_PARAMETER(fd);
 4202:   unixEnterMutex();
 4203:   unixLeaveMutex();
 4204: }
 4205: 
 4206: /*
 4207: ** Close a connection to shared-memory.  Delete the underlying 
 4208: ** storage if deleteFlag is true.
 4209: **
 4210: ** If there is no shared memory associated with the connection then this
 4211: ** routine is a harmless no-op.
 4212: */
 4213: static int unixShmUnmap(
 4214:   sqlite3_file *fd,               /* The underlying database file */
 4215:   int deleteFlag                  /* Delete shared-memory if true */
 4216: ){
 4217:   unixShm *p;                     /* The connection to be closed */
 4218:   unixShmNode *pShmNode;          /* The underlying shared-memory file */
 4219:   unixShm **pp;                   /* For looping over sibling connections */
 4220:   unixFile *pDbFd;                /* The underlying database file */
 4221: 
 4222:   pDbFd = (unixFile*)fd;
 4223:   p = pDbFd->pShm;
 4224:   if( p==0 ) return SQLITE_OK;
 4225:   pShmNode = p->pShmNode;
 4226: 
 4227:   assert( pShmNode==pDbFd->pInode->pShmNode );
 4228:   assert( pShmNode->pInode==pDbFd->pInode );
 4229: 
 4230:   /* Remove connection p from the set of connections associated
 4231:   ** with pShmNode */
 4232:   sqlite3_mutex_enter(pShmNode->mutex);
 4233:   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
 4234:   *pp = p->pNext;
 4235: 
 4236:   /* Free the connection p */
 4237:   sqlite3_free(p);
 4238:   pDbFd->pShm = 0;
 4239:   sqlite3_mutex_leave(pShmNode->mutex);
 4240: 
 4241:   /* If pShmNode->nRef has reached 0, then close the underlying
 4242:   ** shared-memory file, too */
 4243:   unixEnterMutex();
 4244:   assert( pShmNode->nRef>0 );
 4245:   pShmNode->nRef--;
 4246:   if( pShmNode->nRef==0 ){
 4247:     if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
 4248:     unixShmPurge(pDbFd);
 4249:   }
 4250:   unixLeaveMutex();
 4251: 
 4252:   return SQLITE_OK;
 4253: }
 4254: 
 4255: 
 4256: #else
 4257: # define unixShmMap     0
 4258: # define unixShmLock    0
 4259: # define unixShmBarrier 0
 4260: # define unixShmUnmap   0
 4261: #endif /* #ifndef SQLITE_OMIT_WAL */
 4262: 
 4263: /*
 4264: ** Here ends the implementation of all sqlite3_file methods.
 4265: **
 4266: ********************** End sqlite3_file Methods *******************************
 4267: ******************************************************************************/
 4268: 
 4269: /*
 4270: ** This division contains definitions of sqlite3_io_methods objects that
 4271: ** implement various file locking strategies.  It also contains definitions
 4272: ** of "finder" functions.  A finder-function is used to locate the appropriate
 4273: ** sqlite3_io_methods object for a particular database file.  The pAppData
 4274: ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
 4275: ** the correct finder-function for that VFS.
 4276: **
 4277: ** Most finder functions return a pointer to a fixed sqlite3_io_methods
 4278: ** object.  The only interesting finder-function is autolockIoFinder, which
 4279: ** looks at the filesystem type and tries to guess the best locking
 4280: ** strategy from that.
 4281: **
 4282: ** For finder-funtion F, two objects are created:
 4283: **
 4284: **    (1) The real finder-function named "FImpt()".
 4285: **
 4286: **    (2) A constant pointer to this function named just "F".
 4287: **
 4288: **
 4289: ** A pointer to the F pointer is used as the pAppData value for VFS
 4290: ** objects.  We have to do this instead of letting pAppData point
 4291: ** directly at the finder-function since C90 rules prevent a void*
 4292: ** from be cast into a function pointer.
 4293: **
 4294: **
 4295: ** Each instance of this macro generates two objects:
 4296: **
 4297: **   *  A constant sqlite3_io_methods object call METHOD that has locking
 4298: **      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
 4299: **
 4300: **   *  An I/O method finder function called FINDER that returns a pointer
 4301: **      to the METHOD object in the previous bullet.
 4302: */
 4303: #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK)      \
 4304: static const sqlite3_io_methods METHOD = {                                   \
 4305:    VERSION,                    /* iVersion */                                \
 4306:    CLOSE,                      /* xClose */                                  \
 4307:    unixRead,                   /* xRead */                                   \
 4308:    unixWrite,                  /* xWrite */                                  \
 4309:    unixTruncate,               /* xTruncate */                               \
 4310:    unixSync,                   /* xSync */                                   \
 4311:    unixFileSize,               /* xFileSize */                               \
 4312:    LOCK,                       /* xLock */                                   \
 4313:    UNLOCK,                     /* xUnlock */                                 \
 4314:    CKLOCK,                     /* xCheckReservedLock */                      \
 4315:    unixFileControl,            /* xFileControl */                            \
 4316:    unixSectorSize,             /* xSectorSize */                             \
 4317:    unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
 4318:    unixShmMap,                 /* xShmMap */                                 \
 4319:    unixShmLock,                /* xShmLock */                                \
 4320:    unixShmBarrier,             /* xShmBarrier */                             \
 4321:    unixShmUnmap                /* xShmUnmap */                               \
 4322: };                                                                           \
 4323: static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
 4324:   UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
 4325:   return &METHOD;                                                            \
 4326: }                                                                            \
 4327: static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
 4328:     = FINDER##Impl;
 4329: 
 4330: /*
 4331: ** Here are all of the sqlite3_io_methods objects for each of the
 4332: ** locking strategies.  Functions that return pointers to these methods
 4333: ** are also created.
 4334: */
 4335: IOMETHODS(
 4336:   posixIoFinder,            /* Finder function name */
 4337:   posixIoMethods,           /* sqlite3_io_methods object name */
 4338:   2,                        /* shared memory is enabled */
 4339:   unixClose,                /* xClose method */
 4340:   unixLock,                 /* xLock method */
 4341:   unixUnlock,               /* xUnlock method */
 4342:   unixCheckReservedLock     /* xCheckReservedLock method */
 4343: )
 4344: IOMETHODS(
 4345:   nolockIoFinder,           /* Finder function name */
 4346:   nolockIoMethods,          /* sqlite3_io_methods object name */
 4347:   1,                        /* shared memory is disabled */
 4348:   nolockClose,              /* xClose method */
 4349:   nolockLock,               /* xLock method */
 4350:   nolockUnlock,             /* xUnlock method */
 4351:   nolockCheckReservedLock   /* xCheckReservedLock method */
 4352: )
 4353: IOMETHODS(
 4354:   dotlockIoFinder,          /* Finder function name */
 4355:   dotlockIoMethods,         /* sqlite3_io_methods object name */
 4356:   1,                        /* shared memory is disabled */
 4357:   dotlockClose,             /* xClose method */
 4358:   dotlockLock,              /* xLock method */
 4359:   dotlockUnlock,            /* xUnlock method */
 4360:   dotlockCheckReservedLock  /* xCheckReservedLock method */
 4361: )
 4362: 
 4363: #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
 4364: IOMETHODS(
 4365:   flockIoFinder,            /* Finder function name */
 4366:   flockIoMethods,           /* sqlite3_io_methods object name */
 4367:   1,                        /* shared memory is disabled */
 4368:   flockClose,               /* xClose method */
 4369:   flockLock,                /* xLock method */
 4370:   flockUnlock,              /* xUnlock method */
 4371:   flockCheckReservedLock    /* xCheckReservedLock method */
 4372: )
 4373: #endif
 4374: 
 4375: #if OS_VXWORKS
 4376: IOMETHODS(
 4377:   semIoFinder,              /* Finder function name */
 4378:   semIoMethods,             /* sqlite3_io_methods object name */
 4379:   1,                        /* shared memory is disabled */
 4380:   semClose,                 /* xClose method */
 4381:   semLock,                  /* xLock method */
 4382:   semUnlock,                /* xUnlock method */
 4383:   semCheckReservedLock      /* xCheckReservedLock method */
 4384: )
 4385: #endif
 4386: 
 4387: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 4388: IOMETHODS(
 4389:   afpIoFinder,              /* Finder function name */
 4390:   afpIoMethods,             /* sqlite3_io_methods object name */
 4391:   1,                        /* shared memory is disabled */
 4392:   afpClose,                 /* xClose method */
 4393:   afpLock,                  /* xLock method */
 4394:   afpUnlock,                /* xUnlock method */
 4395:   afpCheckReservedLock      /* xCheckReservedLock method */
 4396: )
 4397: #endif
 4398: 
 4399: /*
 4400: ** The proxy locking method is a "super-method" in the sense that it
 4401: ** opens secondary file descriptors for the conch and lock files and
 4402: ** it uses proxy, dot-file, AFP, and flock() locking methods on those
 4403: ** secondary files.  For this reason, the division that implements
 4404: ** proxy locking is located much further down in the file.  But we need
 4405: ** to go ahead and define the sqlite3_io_methods and finder function
 4406: ** for proxy locking here.  So we forward declare the I/O methods.
 4407: */
 4408: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 4409: static int proxyClose(sqlite3_file*);
 4410: static int proxyLock(sqlite3_file*, int);
 4411: static int proxyUnlock(sqlite3_file*, int);
 4412: static int proxyCheckReservedLock(sqlite3_file*, int*);
 4413: IOMETHODS(
 4414:   proxyIoFinder,            /* Finder function name */
 4415:   proxyIoMethods,           /* sqlite3_io_methods object name */
 4416:   1,                        /* shared memory is disabled */
 4417:   proxyClose,               /* xClose method */
 4418:   proxyLock,                /* xLock method */
 4419:   proxyUnlock,              /* xUnlock method */
 4420:   proxyCheckReservedLock    /* xCheckReservedLock method */
 4421: )
 4422: #endif
 4423: 
 4424: /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
 4425: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 4426: IOMETHODS(
 4427:   nfsIoFinder,               /* Finder function name */
 4428:   nfsIoMethods,              /* sqlite3_io_methods object name */
 4429:   1,                         /* shared memory is disabled */
 4430:   unixClose,                 /* xClose method */
 4431:   unixLock,                  /* xLock method */
 4432:   nfsUnlock,                 /* xUnlock method */
 4433:   unixCheckReservedLock      /* xCheckReservedLock method */
 4434: )
 4435: #endif
 4436: 
 4437: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 4438: /* 
 4439: ** This "finder" function attempts to determine the best locking strategy 
 4440: ** for the database file "filePath".  It then returns the sqlite3_io_methods
 4441: ** object that implements that strategy.
 4442: **
 4443: ** This is for MacOSX only.
 4444: */
 4445: static const sqlite3_io_methods *autolockIoFinderImpl(
 4446:   const char *filePath,    /* name of the database file */
 4447:   unixFile *pNew           /* open file object for the database file */
 4448: ){
 4449:   static const struct Mapping {
 4450:     const char *zFilesystem;              /* Filesystem type name */
 4451:     const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
 4452:   } aMap[] = {
 4453:     { "hfs",    &posixIoMethods },
 4454:     { "ufs",    &posixIoMethods },
 4455:     { "afpfs",  &afpIoMethods },
 4456:     { "smbfs",  &afpIoMethods },
 4457:     { "webdav", &nolockIoMethods },
 4458:     { 0, 0 }
 4459:   };
 4460:   int i;
 4461:   struct statfs fsInfo;
 4462:   struct flock lockInfo;
 4463: 
 4464:   if( !filePath ){
 4465:     /* If filePath==NULL that means we are dealing with a transient file
 4466:     ** that does not need to be locked. */
 4467:     return &nolockIoMethods;
 4468:   }
 4469:   if( statfs(filePath, &fsInfo) != -1 ){
 4470:     if( fsInfo.f_flags & MNT_RDONLY ){
 4471:       return &nolockIoMethods;
 4472:     }
 4473:     for(i=0; aMap[i].zFilesystem; i++){
 4474:       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
 4475:         return aMap[i].pMethods;
 4476:       }
 4477:     }
 4478:   }
 4479: 
 4480:   /* Default case. Handles, amongst others, "nfs".
 4481:   ** Test byte-range lock using fcntl(). If the call succeeds, 
 4482:   ** assume that the file-system supports POSIX style locks. 
 4483:   */
 4484:   lockInfo.l_len = 1;
 4485:   lockInfo.l_start = 0;
 4486:   lockInfo.l_whence = SEEK_SET;
 4487:   lockInfo.l_type = F_RDLCK;
 4488:   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
 4489:     if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
 4490:       return &nfsIoMethods;
 4491:     } else {
 4492:       return &posixIoMethods;
 4493:     }
 4494:   }else{
 4495:     return &dotlockIoMethods;
 4496:   }
 4497: }
 4498: static const sqlite3_io_methods 
 4499:   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
 4500: 
 4501: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
 4502: 
 4503: #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
 4504: /* 
 4505: ** This "finder" function attempts to determine the best locking strategy 
 4506: ** for the database file "filePath".  It then returns the sqlite3_io_methods
 4507: ** object that implements that strategy.
 4508: **
 4509: ** This is for VXWorks only.
 4510: */
 4511: static const sqlite3_io_methods *autolockIoFinderImpl(
 4512:   const char *filePath,    /* name of the database file */
 4513:   unixFile *pNew           /* the open file object */
 4514: ){
 4515:   struct flock lockInfo;
 4516: 
 4517:   if( !filePath ){
 4518:     /* If filePath==NULL that means we are dealing with a transient file
 4519:     ** that does not need to be locked. */
 4520:     return &nolockIoMethods;
 4521:   }
 4522: 
 4523:   /* Test if fcntl() is supported and use POSIX style locks.
 4524:   ** Otherwise fall back to the named semaphore method.
 4525:   */
 4526:   lockInfo.l_len = 1;
 4527:   lockInfo.l_start = 0;
 4528:   lockInfo.l_whence = SEEK_SET;
 4529:   lockInfo.l_type = F_RDLCK;
 4530:   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
 4531:     return &posixIoMethods;
 4532:   }else{
 4533:     return &semIoMethods;
 4534:   }
 4535: }
 4536: static const sqlite3_io_methods 
 4537:   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
 4538: 
 4539: #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
 4540: 
 4541: /*
 4542: ** An abstract type for a pointer to a IO method finder function:
 4543: */
 4544: typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
 4545: 
 4546: 
 4547: /****************************************************************************
 4548: **************************** sqlite3_vfs methods ****************************
 4549: **
 4550: ** This division contains the implementation of methods on the
 4551: ** sqlite3_vfs object.
 4552: */
 4553: 
 4554: /*
 4555: ** Initialize the contents of the unixFile structure pointed to by pId.
 4556: */
 4557: static int fillInUnixFile(
 4558:   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
 4559:   int h,                  /* Open file descriptor of file being opened */
 4560:   sqlite3_file *pId,      /* Write to the unixFile structure here */
 4561:   const char *zFilename,  /* Name of the file being opened */
 4562:   int ctrlFlags           /* Zero or more UNIXFILE_* values */
 4563: ){
 4564:   const sqlite3_io_methods *pLockingStyle;
 4565:   unixFile *pNew = (unixFile *)pId;
 4566:   int rc = SQLITE_OK;
 4567: 
 4568:   assert( pNew->pInode==NULL );
 4569: 
 4570:   /* Usually the path zFilename should not be a relative pathname. The
 4571:   ** exception is when opening the proxy "conch" file in builds that
 4572:   ** include the special Apple locking styles.
 4573:   */
 4574: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 4575:   assert( zFilename==0 || zFilename[0]=='/' 
 4576:     || pVfs->pAppData==(void*)&autolockIoFinder );
 4577: #else
 4578:   assert( zFilename==0 || zFilename[0]=='/' );
 4579: #endif
 4580: 
 4581:   /* No locking occurs in temporary files */
 4582:   assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
 4583: 
 4584:   OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
 4585:   pNew->h = h;
 4586:   pNew->pVfs = pVfs;
 4587:   pNew->zPath = zFilename;
 4588:   pNew->ctrlFlags = (u8)ctrlFlags;
 4589:   if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
 4590:                            "psow", SQLITE_POWERSAFE_OVERWRITE) ){
 4591:     pNew->ctrlFlags |= UNIXFILE_PSOW;
 4592:   }
 4593:   if( memcmp(pVfs->zName,"unix-excl",10)==0 ){
 4594:     pNew->ctrlFlags |= UNIXFILE_EXCL;
 4595:   }
 4596: 
 4597: #if OS_VXWORKS
 4598:   pNew->pId = vxworksFindFileId(zFilename);
 4599:   if( pNew->pId==0 ){
 4600:     ctrlFlags |= UNIXFILE_NOLOCK;
 4601:     rc = SQLITE_NOMEM;
 4602:   }
 4603: #endif
 4604: 
 4605:   if( ctrlFlags & UNIXFILE_NOLOCK ){
 4606:     pLockingStyle = &nolockIoMethods;
 4607:   }else{
 4608:     pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
 4609: #if SQLITE_ENABLE_LOCKING_STYLE
 4610:     /* Cache zFilename in the locking context (AFP and dotlock override) for
 4611:     ** proxyLock activation is possible (remote proxy is based on db name)
 4612:     ** zFilename remains valid until file is closed, to support */
 4613:     pNew->lockingContext = (void*)zFilename;
 4614: #endif
 4615:   }
 4616: 
 4617:   if( pLockingStyle == &posixIoMethods
 4618: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 4619:     || pLockingStyle == &nfsIoMethods
 4620: #endif
 4621:   ){
 4622:     unixEnterMutex();
 4623:     rc = findInodeInfo(pNew, &pNew->pInode);
 4624:     if( rc!=SQLITE_OK ){
 4625:       /* If an error occured in findInodeInfo(), close the file descriptor
 4626:       ** immediately, before releasing the mutex. findInodeInfo() may fail
 4627:       ** in two scenarios:
 4628:       **
 4629:       **   (a) A call to fstat() failed.
 4630:       **   (b) A malloc failed.
 4631:       **
 4632:       ** Scenario (b) may only occur if the process is holding no other
 4633:       ** file descriptors open on the same file. If there were other file
 4634:       ** descriptors on this file, then no malloc would be required by
 4635:       ** findInodeInfo(). If this is the case, it is quite safe to close
 4636:       ** handle h - as it is guaranteed that no posix locks will be released
 4637:       ** by doing so.
 4638:       **
 4639:       ** If scenario (a) caused the error then things are not so safe. The
 4640:       ** implicit assumption here is that if fstat() fails, things are in
 4641:       ** such bad shape that dropping a lock or two doesn't matter much.
 4642:       */
 4643:       robust_close(pNew, h, __LINE__);
 4644:       h = -1;
 4645:     }
 4646:     unixLeaveMutex();
 4647:   }
 4648: 
 4649: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
 4650:   else if( pLockingStyle == &afpIoMethods ){
 4651:     /* AFP locking uses the file path so it needs to be included in
 4652:     ** the afpLockingContext.
 4653:     */
 4654:     afpLockingContext *pCtx;
 4655:     pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
 4656:     if( pCtx==0 ){
 4657:       rc = SQLITE_NOMEM;
 4658:     }else{
 4659:       /* NB: zFilename exists and remains valid until the file is closed
 4660:       ** according to requirement F11141.  So we do not need to make a
 4661:       ** copy of the filename. */
 4662:       pCtx->dbPath = zFilename;
 4663:       pCtx->reserved = 0;
 4664:       srandomdev();
 4665:       unixEnterMutex();
 4666:       rc = findInodeInfo(pNew, &pNew->pInode);
 4667:       if( rc!=SQLITE_OK ){
 4668:         sqlite3_free(pNew->lockingContext);
 4669:         robust_close(pNew, h, __LINE__);
 4670:         h = -1;
 4671:       }
 4672:       unixLeaveMutex();        
 4673:     }
 4674:   }
 4675: #endif
 4676: 
 4677:   else if( pLockingStyle == &dotlockIoMethods ){
 4678:     /* Dotfile locking uses the file path so it needs to be included in
 4679:     ** the dotlockLockingContext 
 4680:     */
 4681:     char *zLockFile;
 4682:     int nFilename;
 4683:     assert( zFilename!=0 );
 4684:     nFilename = (int)strlen(zFilename) + 6;
 4685:     zLockFile = (char *)sqlite3_malloc(nFilename);
 4686:     if( zLockFile==0 ){
 4687:       rc = SQLITE_NOMEM;
 4688:     }else{
 4689:       sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
 4690:     }
 4691:     pNew->lockingContext = zLockFile;
 4692:   }
 4693: 
 4694: #if OS_VXWORKS
 4695:   else if( pLockingStyle == &semIoMethods ){
 4696:     /* Named semaphore locking uses the file path so it needs to be
 4697:     ** included in the semLockingContext
 4698:     */
 4699:     unixEnterMutex();
 4700:     rc = findInodeInfo(pNew, &pNew->pInode);
 4701:     if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
 4702:       char *zSemName = pNew->pInode->aSemName;
 4703:       int n;
 4704:       sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
 4705:                        pNew->pId->zCanonicalName);
 4706:       for( n=1; zSemName[n]; n++ )
 4707:         if( zSemName[n]=='/' ) zSemName[n] = '_';
 4708:       pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
 4709:       if( pNew->pInode->pSem == SEM_FAILED ){
 4710:         rc = SQLITE_NOMEM;
 4711:         pNew->pInode->aSemName[0] = '\0';
 4712:       }
 4713:     }
 4714:     unixLeaveMutex();
 4715:   }
 4716: #endif
 4717:   
 4718:   pNew->lastErrno = 0;
 4719: #if OS_VXWORKS
 4720:   if( rc!=SQLITE_OK ){
 4721:     if( h>=0 ) robust_close(pNew, h, __LINE__);
 4722:     h = -1;
 4723:     osUnlink(zFilename);
 4724:     isDelete = 0;
 4725:   }
 4726:   if( isDelete ) pNew->ctrlFlags |= UNIXFILE_DELETE;
 4727: #endif
 4728:   if( rc!=SQLITE_OK ){
 4729:     if( h>=0 ) robust_close(pNew, h, __LINE__);
 4730:   }else{
 4731:     pNew->pMethod = pLockingStyle;
 4732:     OpenCounter(+1);
 4733:   }
 4734:   return rc;
 4735: }
 4736: 
 4737: /*
 4738: ** Return the name of a directory in which to put temporary files.
 4739: ** If no suitable temporary file directory can be found, return NULL.
 4740: */
 4741: static const char *unixTempFileDir(void){
 4742:   static const char *azDirs[] = {
 4743:      0,
 4744:      0,
 4745:      "/var/tmp",
 4746:      "/usr/tmp",
 4747:      "/tmp",
 4748:      0        /* List terminator */
 4749:   };
 4750:   unsigned int i;
 4751:   struct stat buf;
 4752:   const char *zDir = 0;
 4753: 
 4754:   azDirs[0] = sqlite3_temp_directory;
 4755:   if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
 4756:   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
 4757:     if( zDir==0 ) continue;
 4758:     if( osStat(zDir, &buf) ) continue;
 4759:     if( !S_ISDIR(buf.st_mode) ) continue;
 4760:     if( osAccess(zDir, 07) ) continue;
 4761:     break;
 4762:   }
 4763:   return zDir;
 4764: }
 4765: 
 4766: /*
 4767: ** Create a temporary file name in zBuf.  zBuf must be allocated
 4768: ** by the calling process and must be big enough to hold at least
 4769: ** pVfs->mxPathname bytes.
 4770: */
 4771: static int unixGetTempname(int nBuf, char *zBuf){
 4772:   static const unsigned char zChars[] =
 4773:     "abcdefghijklmnopqrstuvwxyz"
 4774:     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 4775:     "0123456789";
 4776:   unsigned int i, j;
 4777:   const char *zDir;
 4778: 
 4779:   /* It's odd to simulate an io-error here, but really this is just
 4780:   ** using the io-error infrastructure to test that SQLite handles this
 4781:   ** function failing. 
 4782:   */
 4783:   SimulateIOError( return SQLITE_IOERR );
 4784: 
 4785:   zDir = unixTempFileDir();
 4786:   if( zDir==0 ) zDir = ".";
 4787: 
 4788:   /* Check that the output buffer is large enough for the temporary file 
 4789:   ** name. If it is not, return SQLITE_ERROR.
 4790:   */
 4791:   if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){
 4792:     return SQLITE_ERROR;
 4793:   }
 4794: 
 4795:   do{
 4796:     sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
 4797:     j = (int)strlen(zBuf);
 4798:     sqlite3_randomness(15, &zBuf[j]);
 4799:     for(i=0; i<15; i++, j++){
 4800:       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
 4801:     }
 4802:     zBuf[j] = 0;
 4803:     zBuf[j+1] = 0;
 4804:   }while( osAccess(zBuf,0)==0 );
 4805:   return SQLITE_OK;
 4806: }
 4807: 
 4808: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
 4809: /*
 4810: ** Routine to transform a unixFile into a proxy-locking unixFile.
 4811: ** Implementation in the proxy-lock division, but used by unixOpen()
 4812: ** if SQLITE_PREFER_PROXY_LOCKING is defined.
 4813: */
 4814: static int proxyTransformUnixFile(unixFile*, const char*);
 4815: #endif
 4816: 
 4817: /*
 4818: ** Search for an unused file descriptor that was opened on the database 
 4819: ** file (not a journal or master-journal file) identified by pathname
 4820: ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
 4821: ** argument to this function.
 4822: **
 4823: ** Such a file descriptor may exist if a database connection was closed
 4824: ** but the associated file descriptor could not be closed because some
 4825: ** other file descriptor open on the same file is holding a file-lock.
 4826: ** Refer to comments in the unixClose() function and the lengthy comment
 4827: ** describing "Posix Advisory Locking" at the start of this file for 
 4828: ** further details. Also, ticket #4018.
 4829: **
 4830: ** If a suitable file descriptor is found, then it is returned. If no
 4831: ** such file descriptor is located, -1 is returned.
 4832: */
 4833: static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
 4834:   UnixUnusedFd *pUnused = 0;
 4835: 
 4836:   /* Do not search for an unused file descriptor on vxworks. Not because
 4837:   ** vxworks would not benefit from the change (it might, we're not sure),
 4838:   ** but because no way to test it is currently available. It is better 
 4839:   ** not to risk breaking vxworks support for the sake of such an obscure 
 4840:   ** feature.  */
 4841: #if !OS_VXWORKS
 4842:   struct stat sStat;                   /* Results of stat() call */
 4843: 
 4844:   /* A stat() call may fail for various reasons. If this happens, it is
 4845:   ** almost certain that an open() call on the same path will also fail.
 4846:   ** For this reason, if an error occurs in the stat() call here, it is
 4847:   ** ignored and -1 is returned. The caller will try to open a new file
 4848:   ** descriptor on the same path, fail, and return an error to SQLite.
 4849:   **
 4850:   ** Even if a subsequent open() call does succeed, the consequences of
 4851:   ** not searching for a resusable file descriptor are not dire.  */
 4852:   if( 0==osStat(zPath, &sStat) ){
 4853:     unixInodeInfo *pInode;
 4854: 
 4855:     unixEnterMutex();
 4856:     pInode = inodeList;
 4857:     while( pInode && (pInode->fileId.dev!=sStat.st_dev
 4858:                      || pInode->fileId.ino!=sStat.st_ino) ){
 4859:        pInode = pInode->pNext;
 4860:     }
 4861:     if( pInode ){
 4862:       UnixUnusedFd **pp;
 4863:       for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
 4864:       pUnused = *pp;
 4865:       if( pUnused ){
 4866:         *pp = pUnused->pNext;
 4867:       }
 4868:     }
 4869:     unixLeaveMutex();
 4870:   }
 4871: #endif    /* if !OS_VXWORKS */
 4872:   return pUnused;
 4873: }
 4874: 
 4875: /*
 4876: ** This function is called by unixOpen() to determine the unix permissions
 4877: ** to create new files with. If no error occurs, then SQLITE_OK is returned
 4878: ** and a value suitable for passing as the third argument to open(2) is
 4879: ** written to *pMode. If an IO error occurs, an SQLite error code is 
 4880: ** returned and the value of *pMode is not modified.
 4881: **
 4882: ** If the file being opened is a temporary file, it is always created with
 4883: ** the octal permissions 0600 (read/writable by owner only). If the file
 4884: ** is a database or master journal file, it is created with the permissions 
 4885: ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
 4886: **
 4887: ** Finally, if the file being opened is a WAL or regular journal file, then 
 4888: ** this function queries the file-system for the permissions on the 
 4889: ** corresponding database file and sets *pMode to this value. Whenever 
 4890: ** possible, WAL and journal files are created using the same permissions 
 4891: ** as the associated database file.
 4892: **
 4893: ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
 4894: ** original filename is unavailable.  But 8_3_NAMES is only used for
 4895: ** FAT filesystems and permissions do not matter there, so just use
 4896: ** the default permissions.
 4897: */
 4898: static int findCreateFileMode(
 4899:   const char *zPath,              /* Path of file (possibly) being created */
 4900:   int flags,                      /* Flags passed as 4th argument to xOpen() */
 4901:   mode_t *pMode                   /* OUT: Permissions to open file with */
 4902: ){
 4903:   int rc = SQLITE_OK;             /* Return Code */
 4904:   *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
 4905:   if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
 4906:     char zDb[MAX_PATHNAME+1];     /* Database file path */
 4907:     int nDb;                      /* Number of valid bytes in zDb */
 4908:     struct stat sStat;            /* Output of stat() on database file */
 4909: 
 4910:     /* zPath is a path to a WAL or journal file. The following block derives
 4911:     ** the path to the associated database file from zPath. This block handles
 4912:     ** the following naming conventions:
 4913:     **
 4914:     **   "<path to db>-journal"
 4915:     **   "<path to db>-wal"
 4916:     **   "<path to db>-journalNN"
 4917:     **   "<path to db>-walNN"
 4918:     **
 4919:     ** where NN is a decimal number. The NN naming schemes are 
 4920:     ** used by the test_multiplex.c module.
 4921:     */
 4922:     nDb = sqlite3Strlen30(zPath) - 1; 
 4923: #ifdef SQLITE_ENABLE_8_3_NAMES
 4924:     while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--;
 4925:     if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
 4926: #else
 4927:     while( zPath[nDb]!='-' ){
 4928:       assert( nDb>0 );
 4929:       assert( zPath[nDb]!='\n' );
 4930:       nDb--;
 4931:     }
 4932: #endif
 4933:     memcpy(zDb, zPath, nDb);
 4934:     zDb[nDb] = '\0';
 4935: 
 4936:     if( 0==osStat(zDb, &sStat) ){
 4937:       *pMode = sStat.st_mode & 0777;
 4938:     }else{
 4939:       rc = SQLITE_IOERR_FSTAT;
 4940:     }
 4941:   }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
 4942:     *pMode = 0600;
 4943:   }
 4944:   return rc;
 4945: }
 4946: 
 4947: /*
 4948: ** Open the file zPath.
 4949: ** 
 4950: ** Previously, the SQLite OS layer used three functions in place of this
 4951: ** one:
 4952: **
 4953: **     sqlite3OsOpenReadWrite();
 4954: **     sqlite3OsOpenReadOnly();
 4955: **     sqlite3OsOpenExclusive();
 4956: **
 4957: ** These calls correspond to the following combinations of flags:
 4958: **
 4959: **     ReadWrite() ->     (READWRITE | CREATE)
 4960: **     ReadOnly()  ->     (READONLY) 
 4961: **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
 4962: **
 4963: ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
 4964: ** true, the file was configured to be automatically deleted when the
 4965: ** file handle closed. To achieve the same effect using this new 
 4966: ** interface, add the DELETEONCLOSE flag to those specified above for 
 4967: ** OpenExclusive().
 4968: */
 4969: static int unixOpen(
 4970:   sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
 4971:   const char *zPath,           /* Pathname of file to be opened */
 4972:   sqlite3_file *pFile,         /* The file descriptor to be filled in */
 4973:   int flags,                   /* Input flags to control the opening */
 4974:   int *pOutFlags               /* Output flags returned to SQLite core */
 4975: ){
 4976:   unixFile *p = (unixFile *)pFile;
 4977:   int fd = -1;                   /* File descriptor returned by open() */
 4978:   int openFlags = 0;             /* Flags to pass to open() */
 4979:   int eType = flags&0xFFFFFF00;  /* Type of file to open */
 4980:   int noLock;                    /* True to omit locking primitives */
 4981:   int rc = SQLITE_OK;            /* Function Return Code */
 4982:   int ctrlFlags = 0;             /* UNIXFILE_* flags */
 4983: 
 4984:   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
 4985:   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
 4986:   int isCreate     = (flags & SQLITE_OPEN_CREATE);
 4987:   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
 4988:   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
 4989: #if SQLITE_ENABLE_LOCKING_STYLE
 4990:   int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
 4991: #endif
 4992: #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
 4993:   struct statfs fsInfo;
 4994: #endif
 4995: 
 4996:   /* If creating a master or main-file journal, this function will open
 4997:   ** a file-descriptor on the directory too. The first time unixSync()
 4998:   ** is called the directory file descriptor will be fsync()ed and close()d.
 4999:   */
 5000:   int syncDir = (isCreate && (
 5001:         eType==SQLITE_OPEN_MASTER_JOURNAL 
 5002:      || eType==SQLITE_OPEN_MAIN_JOURNAL 
 5003:      || eType==SQLITE_OPEN_WAL
 5004:   ));
 5005: 
 5006:   /* If argument zPath is a NULL pointer, this function is required to open
 5007:   ** a temporary file. Use this buffer to store the file name in.
 5008:   */
 5009:   char zTmpname[MAX_PATHNAME+2];
 5010:   const char *zName = zPath;
 5011: 
 5012:   /* Check the following statements are true: 
 5013:   **
 5014:   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
 5015:   **   (b) if CREATE is set, then READWRITE must also be set, and
 5016:   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
 5017:   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
 5018:   */
 5019:   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
 5020:   assert(isCreate==0 || isReadWrite);
 5021:   assert(isExclusive==0 || isCreate);
 5022:   assert(isDelete==0 || isCreate);
 5023: 
 5024:   /* The main DB, main journal, WAL file and master journal are never 
 5025:   ** automatically deleted. Nor are they ever temporary files.  */
 5026:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
 5027:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
 5028:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
 5029:   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
 5030: 
 5031:   /* Assert that the upper layer has set one of the "file-type" flags. */
 5032:   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
 5033:        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
 5034:        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
 5035:        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
 5036:   );
 5037: 
 5038:   memset(p, 0, sizeof(unixFile));
 5039: 
 5040:   if( eType==SQLITE_OPEN_MAIN_DB ){
 5041:     UnixUnusedFd *pUnused;
 5042:     pUnused = findReusableFd(zName, flags);
 5043:     if( pUnused ){
 5044:       fd = pUnused->fd;
 5045:     }else{
 5046:       pUnused = sqlite3_malloc(sizeof(*pUnused));
 5047:       if( !pUnused ){
 5048:         return SQLITE_NOMEM;
 5049:       }
 5050:     }
 5051:     p->pUnused = pUnused;
 5052: 
 5053:     /* Database filenames are double-zero terminated if they are not
 5054:     ** URIs with parameters.  Hence, they can always be passed into
 5055:     ** sqlite3_uri_parameter(). */
 5056:     assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
 5057: 
 5058:   }else if( !zName ){
 5059:     /* If zName is NULL, the upper layer is requesting a temp file. */
 5060:     assert(isDelete && !syncDir);
 5061:     rc = unixGetTempname(MAX_PATHNAME+2, zTmpname);
 5062:     if( rc!=SQLITE_OK ){
 5063:       return rc;
 5064:     }
 5065:     zName = zTmpname;
 5066: 
 5067:     /* Generated temporary filenames are always double-zero terminated
 5068:     ** for use by sqlite3_uri_parameter(). */
 5069:     assert( zName[strlen(zName)+1]==0 );
 5070:   }
 5071: 
 5072:   /* Determine the value of the flags parameter passed to POSIX function
 5073:   ** open(). These must be calculated even if open() is not called, as
 5074:   ** they may be stored as part of the file handle and used by the 
 5075:   ** 'conch file' locking functions later on.  */
 5076:   if( isReadonly )  openFlags |= O_RDONLY;
 5077:   if( isReadWrite ) openFlags |= O_RDWR;
 5078:   if( isCreate )    openFlags |= O_CREAT;
 5079:   if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
 5080:   openFlags |= (O_LARGEFILE|O_BINARY);
 5081: 
 5082:   if( fd<0 ){
 5083:     mode_t openMode;              /* Permissions to create file with */
 5084:     rc = findCreateFileMode(zName, flags, &openMode);
 5085:     if( rc!=SQLITE_OK ){
 5086:       assert( !p->pUnused );
 5087:       assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
 5088:       return rc;
 5089:     }
 5090:     fd = robust_open(zName, openFlags, openMode);
 5091:     OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
 5092:     if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
 5093:       /* Failed to open the file for read/write access. Try read-only. */
 5094:       flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
 5095:       openFlags &= ~(O_RDWR|O_CREAT);
 5096:       flags |= SQLITE_OPEN_READONLY;
 5097:       openFlags |= O_RDONLY;
 5098:       isReadonly = 1;
 5099:       fd = robust_open(zName, openFlags, openMode);
 5100:     }
 5101:     if( fd<0 ){
 5102:       rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
 5103:       goto open_finished;
 5104:     }
 5105:   }
 5106:   assert( fd>=0 );
 5107:   if( pOutFlags ){
 5108:     *pOutFlags = flags;
 5109:   }
 5110: 
 5111:   if( p->pUnused ){
 5112:     p->pUnused->fd = fd;
 5113:     p->pUnused->flags = flags;
 5114:   }
 5115: 
 5116:   if( isDelete ){
 5117: #if OS_VXWORKS
 5118:     zPath = zName;
 5119: #else
 5120:     osUnlink(zName);
 5121: #endif
 5122:   }
 5123: #if SQLITE_ENABLE_LOCKING_STYLE
 5124:   else{
 5125:     p->openFlags = openFlags;
 5126:   }
 5127: #endif
 5128: 
 5129: #ifdef FD_CLOEXEC
 5130:   osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
 5131: #endif
 5132: 
 5133:   noLock = eType!=SQLITE_OPEN_MAIN_DB;
 5134: 
 5135:   
 5136: #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
 5137:   if( fstatfs(fd, &fsInfo) == -1 ){
 5138:     ((unixFile*)pFile)->lastErrno = errno;
 5139:     robust_close(p, fd, __LINE__);
 5140:     return SQLITE_IOERR_ACCESS;
 5141:   }
 5142:   if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
 5143:     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
 5144:   }
 5145: #endif
 5146: 
 5147:   /* Set up appropriate ctrlFlags */
 5148:   if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
 5149:   if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
 5150:   if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
 5151:   if( syncDir )                 ctrlFlags |= UNIXFILE_DIRSYNC;
 5152:   if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
 5153: 
 5154: #if SQLITE_ENABLE_LOCKING_STYLE
 5155: #if SQLITE_PREFER_PROXY_LOCKING
 5156:   isAutoProxy = 1;
 5157: #endif
 5158:   if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
 5159:     char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
 5160:     int useProxy = 0;
 5161: 
 5162:     /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
 5163:     ** never use proxy, NULL means use proxy for non-local files only.  */
 5164:     if( envforce!=NULL ){
 5165:       useProxy = atoi(envforce)>0;
 5166:     }else{
 5167:       if( statfs(zPath, &fsInfo) == -1 ){
 5168:         /* In theory, the close(fd) call is sub-optimal. If the file opened
 5169:         ** with fd is a database file, and there are other connections open
 5170:         ** on that file that are currently holding advisory locks on it,
 5171:         ** then the call to close() will cancel those locks. In practice,
 5172:         ** we're assuming that statfs() doesn't fail very often. At least
 5173:         ** not while other file descriptors opened by the same process on
 5174:         ** the same file are working.  */
 5175:         p->lastErrno = errno;
 5176:         robust_close(p, fd, __LINE__);
 5177:         rc = SQLITE_IOERR_ACCESS;
 5178:         goto open_finished;
 5179:       }
 5180:       useProxy = !(fsInfo.f_flags&MNT_LOCAL);
 5181:     }
 5182:     if( useProxy ){
 5183:       rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
 5184:       if( rc==SQLITE_OK ){
 5185:         rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
 5186:         if( rc!=SQLITE_OK ){
 5187:           /* Use unixClose to clean up the resources added in fillInUnixFile 
 5188:           ** and clear all the structure's references.  Specifically, 
 5189:           ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op 
 5190:           */
 5191:           unixClose(pFile);
 5192:           return rc;
 5193:         }
 5194:       }
 5195:       goto open_finished;
 5196:     }
 5197:   }
 5198: #endif
 5199:   
 5200:   rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
 5201: 
 5202: open_finished:
 5203:   if( rc!=SQLITE_OK ){
 5204:     sqlite3_free(p->pUnused);
 5205:   }
 5206:   return rc;
 5207: }
 5208: 
 5209: 
 5210: /*
 5211: ** Delete the file at zPath. If the dirSync argument is true, fsync()
 5212: ** the directory after deleting the file.
 5213: */
 5214: static int unixDelete(
 5215:   sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
 5216:   const char *zPath,        /* Name of file to be deleted */
 5217:   int dirSync               /* If true, fsync() directory after deleting file */
 5218: ){
 5219:   int rc = SQLITE_OK;
 5220:   UNUSED_PARAMETER(NotUsed);
 5221:   SimulateIOError(return SQLITE_IOERR_DELETE);
 5222:   if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
 5223:     return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
 5224:   }
 5225: #ifndef SQLITE_DISABLE_DIRSYNC
 5226:   if( (dirSync & 1)!=0 ){
 5227:     int fd;
 5228:     rc = osOpenDirectory(zPath, &fd);
 5229:     if( rc==SQLITE_OK ){
 5230: #if OS_VXWORKS
 5231:       if( fsync(fd)==-1 )
 5232: #else
 5233:       if( fsync(fd) )
 5234: #endif
 5235:       {
 5236:         rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
 5237:       }
 5238:       robust_close(0, fd, __LINE__);
 5239:     }else if( rc==SQLITE_CANTOPEN ){
 5240:       rc = SQLITE_OK;
 5241:     }
 5242:   }
 5243: #endif
 5244:   return rc;
 5245: }
 5246: 
 5247: /*
 5248: ** Test the existance of or access permissions of file zPath. The
 5249: ** test performed depends on the value of flags:
 5250: **
 5251: **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
 5252: **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
 5253: **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
 5254: **
 5255: ** Otherwise return 0.
 5256: */
 5257: static int unixAccess(
 5258:   sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
 5259:   const char *zPath,      /* Path of the file to examine */
 5260:   int flags,              /* What do we want to learn about the zPath file? */
 5261:   int *pResOut            /* Write result boolean here */
 5262: ){
 5263:   int amode = 0;
 5264:   UNUSED_PARAMETER(NotUsed);
 5265:   SimulateIOError( return SQLITE_IOERR_ACCESS; );
 5266:   switch( flags ){
 5267:     case SQLITE_ACCESS_EXISTS:
 5268:       amode = F_OK;
 5269:       break;
 5270:     case SQLITE_ACCESS_READWRITE:
 5271:       amode = W_OK|R_OK;
 5272:       break;
 5273:     case SQLITE_ACCESS_READ:
 5274:       amode = R_OK;
 5275:       break;
 5276: 
 5277:     default:
 5278:       assert(!"Invalid flags argument");
 5279:   }
 5280:   *pResOut = (osAccess(zPath, amode)==0);
 5281:   if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
 5282:     struct stat buf;
 5283:     if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
 5284:       *pResOut = 0;
 5285:     }
 5286:   }
 5287:   return SQLITE_OK;
 5288: }
 5289: 
 5290: 
 5291: /*
 5292: ** Turn a relative pathname into a full pathname. The relative path
 5293: ** is stored as a nul-terminated string in the buffer pointed to by
 5294: ** zPath. 
 5295: **
 5296: ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
 5297: ** (in this case, MAX_PATHNAME bytes). The full-path is written to
 5298: ** this buffer before returning.
 5299: */
 5300: static int unixFullPathname(
 5301:   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
 5302:   const char *zPath,            /* Possibly relative input path */
 5303:   int nOut,                     /* Size of output buffer in bytes */
 5304:   char *zOut                    /* Output buffer */
 5305: ){
 5306: 
 5307:   /* It's odd to simulate an io-error here, but really this is just
 5308:   ** using the io-error infrastructure to test that SQLite handles this
 5309:   ** function failing. This function could fail if, for example, the
 5310:   ** current working directory has been unlinked.
 5311:   */
 5312:   SimulateIOError( return SQLITE_ERROR );
 5313: 
 5314:   assert( pVfs->mxPathname==MAX_PATHNAME );
 5315:   UNUSED_PARAMETER(pVfs);
 5316: 
 5317:   zOut[nOut-1] = '\0';
 5318:   if( zPath[0]=='/' ){
 5319:     sqlite3_snprintf(nOut, zOut, "%s", zPath);
 5320:   }else{
 5321:     int nCwd;
 5322:     if( osGetcwd(zOut, nOut-1)==0 ){
 5323:       return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
 5324:     }
 5325:     nCwd = (int)strlen(zOut);
 5326:     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
 5327:   }
 5328:   return SQLITE_OK;
 5329: }
 5330: 
 5331: 
 5332: #ifndef SQLITE_OMIT_LOAD_EXTENSION
 5333: /*
 5334: ** Interfaces for opening a shared library, finding entry points
 5335: ** within the shared library, and closing the shared library.
 5336: */
 5337: #include <dlfcn.h>
 5338: static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
 5339:   UNUSED_PARAMETER(NotUsed);
 5340:   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
 5341: }
 5342: 
 5343: /*
 5344: ** SQLite calls this function immediately after a call to unixDlSym() or
 5345: ** unixDlOpen() fails (returns a null pointer). If a more detailed error
 5346: ** message is available, it is written to zBufOut. If no error message
 5347: ** is available, zBufOut is left unmodified and SQLite uses a default
 5348: ** error message.
 5349: */
 5350: static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
 5351:   const char *zErr;
 5352:   UNUSED_PARAMETER(NotUsed);
 5353:   unixEnterMutex();
 5354:   zErr = dlerror();
 5355:   if( zErr ){
 5356:     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
 5357:   }
 5358:   unixLeaveMutex();
 5359: }
 5360: static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
 5361:   /* 
 5362:   ** GCC with -pedantic-errors says that C90 does not allow a void* to be
 5363:   ** cast into a pointer to a function.  And yet the library dlsym() routine
 5364:   ** returns a void* which is really a pointer to a function.  So how do we
 5365:   ** use dlsym() with -pedantic-errors?
 5366:   **
 5367:   ** Variable x below is defined to be a pointer to a function taking
 5368:   ** parameters void* and const char* and returning a pointer to a function.
 5369:   ** We initialize x by assigning it a pointer to the dlsym() function.
 5370:   ** (That assignment requires a cast.)  Then we call the function that
 5371:   ** x points to.  
 5372:   **
 5373:   ** This work-around is unlikely to work correctly on any system where
 5374:   ** you really cannot cast a function pointer into void*.  But then, on the
 5375:   ** other hand, dlsym() will not work on such a system either, so we have
 5376:   ** not really lost anything.
 5377:   */
 5378:   void (*(*x)(void*,const char*))(void);
 5379:   UNUSED_PARAMETER(NotUsed);
 5380:   x = (void(*(*)(void*,const char*))(void))dlsym;
 5381:   return (*x)(p, zSym);
 5382: }
 5383: static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
 5384:   UNUSED_PARAMETER(NotUsed);
 5385:   dlclose(pHandle);
 5386: }
 5387: #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
 5388:   #define unixDlOpen  0
 5389:   #define unixDlError 0
 5390:   #define unixDlSym   0
 5391:   #define unixDlClose 0
 5392: #endif
 5393: 
 5394: /*
 5395: ** Write nBuf bytes of random data to the supplied buffer zBuf.
 5396: */
 5397: static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
 5398:   UNUSED_PARAMETER(NotUsed);
 5399:   assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
 5400: 
 5401:   /* We have to initialize zBuf to prevent valgrind from reporting
 5402:   ** errors.  The reports issued by valgrind are incorrect - we would
 5403:   ** prefer that the randomness be increased by making use of the
 5404:   ** uninitialized space in zBuf - but valgrind errors tend to worry
 5405:   ** some users.  Rather than argue, it seems easier just to initialize
 5406:   ** the whole array and silence valgrind, even if that means less randomness
 5407:   ** in the random seed.
 5408:   **
 5409:   ** When testing, initializing zBuf[] to zero is all we do.  That means
 5410:   ** that we always use the same random number sequence.  This makes the
 5411:   ** tests repeatable.
 5412:   */
 5413:   memset(zBuf, 0, nBuf);
 5414: #if !defined(SQLITE_TEST)
 5415:   {
 5416:     int pid, fd;
 5417:     fd = robust_open("/dev/urandom", O_RDONLY, 0);
 5418:     if( fd<0 ){
 5419:       time_t t;
 5420:       time(&t);
 5421:       memcpy(zBuf, &t, sizeof(t));
 5422:       pid = getpid();
 5423:       memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
 5424:       assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
 5425:       nBuf = sizeof(t) + sizeof(pid);
 5426:     }else{
 5427:       do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
 5428:       robust_close(0, fd, __LINE__);
 5429:     }
 5430:   }
 5431: #endif
 5432:   return nBuf;
 5433: }
 5434: 
 5435: 
 5436: /*
 5437: ** Sleep for a little while.  Return the amount of time slept.
 5438: ** The argument is the number of microseconds we want to sleep.
 5439: ** The return value is the number of microseconds of sleep actually
 5440: ** requested from the underlying operating system, a number which
 5441: ** might be greater than or equal to the argument, but not less
 5442: ** than the argument.
 5443: */
 5444: static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
 5445: #if OS_VXWORKS
 5446:   struct timespec sp;
 5447: 
 5448:   sp.tv_sec = microseconds / 1000000;
 5449:   sp.tv_nsec = (microseconds % 1000000) * 1000;
 5450:   nanosleep(&sp, NULL);
 5451:   UNUSED_PARAMETER(NotUsed);
 5452:   return microseconds;
 5453: #elif defined(HAVE_USLEEP) && HAVE_USLEEP
 5454:   usleep(microseconds);
 5455:   UNUSED_PARAMETER(NotUsed);
 5456:   return microseconds;
 5457: #else
 5458:   int seconds = (microseconds+999999)/1000000;
 5459:   sleep(seconds);
 5460:   UNUSED_PARAMETER(NotUsed);
 5461:   return seconds*1000000;
 5462: #endif
 5463: }
 5464: 
 5465: /*
 5466: ** The following variable, if set to a non-zero value, is interpreted as
 5467: ** the number of seconds since 1970 and is used to set the result of
 5468: ** sqlite3OsCurrentTime() during testing.
 5469: */
 5470: #ifdef SQLITE_TEST
 5471: int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
 5472: #endif
 5473: 
 5474: /*
 5475: ** Find the current time (in Universal Coordinated Time).  Write into *piNow
 5476: ** the current time and date as a Julian Day number times 86_400_000.  In
 5477: ** other words, write into *piNow the number of milliseconds since the Julian
 5478: ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
 5479: ** proleptic Gregorian calendar.
 5480: **
 5481: ** On success, return SQLITE_OK.  Return SQLITE_ERROR if the time and date 
 5482: ** cannot be found.
 5483: */
 5484: static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
 5485:   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
 5486:   int rc = SQLITE_OK;
 5487: #if defined(NO_GETTOD)
 5488:   time_t t;
 5489:   time(&t);
 5490:   *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
 5491: #elif OS_VXWORKS
 5492:   struct timespec sNow;
 5493:   clock_gettime(CLOCK_REALTIME, &sNow);
 5494:   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
 5495: #else
 5496:   struct timeval sNow;
 5497:   if( gettimeofday(&sNow, 0)==0 ){
 5498:     *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
 5499:   }else{
 5500:     rc = SQLITE_ERROR;
 5501:   }
 5502: #endif
 5503: 
 5504: #ifdef SQLITE_TEST
 5505:   if( sqlite3_current_time ){
 5506:     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
 5507:   }
 5508: #endif
 5509:   UNUSED_PARAMETER(NotUsed);
 5510:   return rc;
 5511: }
 5512: 
 5513: /*
 5514: ** Find the current time (in Universal Coordinated Time).  Write the
 5515: ** current time and date as a Julian Day number into *prNow and
 5516: ** return 0.  Return 1 if the time and date cannot be found.
 5517: */
 5518: static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
 5519:   sqlite3_int64 i = 0;
 5520:   int rc;
 5521:   UNUSED_PARAMETER(NotUsed);
 5522:   rc = unixCurrentTimeInt64(0, &i);
 5523:   *prNow = i/86400000.0;
 5524:   return rc;
 5525: }
 5526: 
 5527: /*
 5528: ** We added the xGetLastError() method with the intention of providing
 5529: ** better low-level error messages when operating-system problems come up
 5530: ** during SQLite operation.  But so far, none of that has been implemented
 5531: ** in the core.  So this routine is never called.  For now, it is merely
 5532: ** a place-holder.
 5533: */
 5534: static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
 5535:   UNUSED_PARAMETER(NotUsed);
 5536:   UNUSED_PARAMETER(NotUsed2);
 5537:   UNUSED_PARAMETER(NotUsed3);
 5538:   return 0;
 5539: }
 5540: 
 5541: 
 5542: /*
 5543: ************************ End of sqlite3_vfs methods ***************************
 5544: ******************************************************************************/
 5545: 
 5546: /******************************************************************************
 5547: ************************** Begin Proxy Locking ********************************
 5548: **
 5549: ** Proxy locking is a "uber-locking-method" in this sense:  It uses the
 5550: ** other locking methods on secondary lock files.  Proxy locking is a
 5551: ** meta-layer over top of the primitive locking implemented above.  For
 5552: ** this reason, the division that implements of proxy locking is deferred
 5553: ** until late in the file (here) after all of the other I/O methods have
 5554: ** been defined - so that the primitive locking methods are available
 5555: ** as services to help with the implementation of proxy locking.
 5556: **
 5557: ****
 5558: **
 5559: ** The default locking schemes in SQLite use byte-range locks on the
 5560: ** database file to coordinate safe, concurrent access by multiple readers
 5561: ** and writers [http://sqlite.org/lockingv3.html].  The five file locking
 5562: ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
 5563: ** as POSIX read & write locks over fixed set of locations (via fsctl),
 5564: ** on AFP and SMB only exclusive byte-range locks are available via fsctl
 5565: ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
 5566: ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
 5567: ** address in the shared range is taken for a SHARED lock, the entire
 5568: ** shared range is taken for an EXCLUSIVE lock):
 5569: **
 5570: **      PENDING_BYTE        0x40000000		   	
 5571: **      RESERVED_BYTE       0x40000001
 5572: **      SHARED_RANGE        0x40000002 -> 0x40000200
 5573: **
 5574: ** This works well on the local file system, but shows a nearly 100x
 5575: ** slowdown in read performance on AFP because the AFP client disables
 5576: ** the read cache when byte-range locks are present.  Enabling the read
 5577: ** cache exposes a cache coherency problem that is present on all OS X
 5578: ** supported network file systems.  NFS and AFP both observe the
 5579: ** close-to-open semantics for ensuring cache coherency
 5580: ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
 5581: ** address the requirements for concurrent database access by multiple
 5582: ** readers and writers
 5583: ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
 5584: **
 5585: ** To address the performance and cache coherency issues, proxy file locking
 5586: ** changes the way database access is controlled by limiting access to a
 5587: ** single host at a time and moving file locks off of the database file
 5588: ** and onto a proxy file on the local file system.  
 5589: **
 5590: **
 5591: ** Using proxy locks
 5592: ** -----------------
 5593: **
 5594: ** C APIs
 5595: **
 5596: **  sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
 5597: **                       <proxy_path> | ":auto:");
 5598: **  sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
 5599: **
 5600: **
 5601: ** SQL pragmas
 5602: **
 5603: **  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
 5604: **  PRAGMA [database.]lock_proxy_file
 5605: **
 5606: ** Specifying ":auto:" means that if there is a conch file with a matching
 5607: ** host ID in it, the proxy path in the conch file will be used, otherwise
 5608: ** a proxy path based on the user's temp dir
 5609: ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
 5610: ** actual proxy file name is generated from the name and path of the
 5611: ** database file.  For example:
 5612: **
 5613: **       For database path "/Users/me/foo.db" 
 5614: **       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
 5615: **
 5616: ** Once a lock proxy is configured for a database connection, it can not
 5617: ** be removed, however it may be switched to a different proxy path via
 5618: ** the above APIs (assuming the conch file is not being held by another
 5619: ** connection or process). 
 5620: **
 5621: **
 5622: ** How proxy locking works
 5623: ** -----------------------
 5624: **
 5625: ** Proxy file locking relies primarily on two new supporting files: 
 5626: **
 5627: **   *  conch file to limit access to the database file to a single host
 5628: **      at a time
 5629: **
 5630: **   *  proxy file to act as a proxy for the advisory locks normally
 5631: **      taken on the database
 5632: **
 5633: ** The conch file - to use a proxy file, sqlite must first "hold the conch"
 5634: ** by taking an sqlite-style shared lock on the conch file, reading the
 5635: ** contents and comparing the host's unique host ID (see below) and lock
 5636: ** proxy path against the values stored in the conch.  The conch file is
 5637: ** stored in the same directory as the database file and the file name
 5638: ** is patterned after the database file name as ".<databasename>-conch".
 5639: ** If the conch file does not exist, or it's contents do not match the
 5640: ** host ID and/or proxy path, then the lock is escalated to an exclusive
 5641: ** lock and the conch file contents is updated with the host ID and proxy
 5642: ** path and the lock is downgraded to a shared lock again.  If the conch
 5643: ** is held by another process (with a shared lock), the exclusive lock
 5644: ** will fail and SQLITE_BUSY is returned.
 5645: **
 5646: ** The proxy file - a single-byte file used for all advisory file locks
 5647: ** normally taken on the database file.   This allows for safe sharing
 5648: ** of the database file for multiple readers and writers on the same
 5649: ** host (the conch ensures that they all use the same local lock file).
 5650: **
 5651: ** Requesting the lock proxy does not immediately take the conch, it is
 5652: ** only taken when the first request to lock database file is made.  
 5653: ** This matches the semantics of the traditional locking behavior, where
 5654: ** opening a connection to a database file does not take a lock on it.
 5655: ** The shared lock and an open file descriptor are maintained until 
 5656: ** the connection to the database is closed. 
 5657: **
 5658: ** The proxy file and the lock file are never deleted so they only need
 5659: ** to be created the first time they are used.
 5660: **
 5661: ** Configuration options
 5662: ** ---------------------
 5663: **
 5664: **  SQLITE_PREFER_PROXY_LOCKING
 5665: **
 5666: **       Database files accessed on non-local file systems are
 5667: **       automatically configured for proxy locking, lock files are
 5668: **       named automatically using the same logic as
 5669: **       PRAGMA lock_proxy_file=":auto:"
 5670: **    
 5671: **  SQLITE_PROXY_DEBUG
 5672: **
 5673: **       Enables the logging of error messages during host id file
 5674: **       retrieval and creation
 5675: **
 5676: **  LOCKPROXYDIR
 5677: **
 5678: **       Overrides the default directory used for lock proxy files that
 5679: **       are named automatically via the ":auto:" setting
 5680: **
 5681: **  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
 5682: **
 5683: **       Permissions to use when creating a directory for storing the
 5684: **       lock proxy files, only used when LOCKPROXYDIR is not set.
 5685: **    
 5686: **    
 5687: ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
 5688: ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
 5689: ** force proxy locking to be used for every database file opened, and 0
 5690: ** will force automatic proxy locking to be disabled for all database
 5691: ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
 5692: ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
 5693: */
 5694: 
 5695: /*
 5696: ** Proxy locking is only available on MacOSX 
 5697: */
 5698: #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
 5699: 
 5700: /*
 5701: ** The proxyLockingContext has the path and file structures for the remote 
 5702: ** and local proxy files in it
 5703: */
 5704: typedef struct proxyLockingContext proxyLockingContext;
 5705: struct proxyLockingContext {
 5706:   unixFile *conchFile;         /* Open conch file */
 5707:   char *conchFilePath;         /* Name of the conch file */
 5708:   unixFile *lockProxy;         /* Open proxy lock file */
 5709:   char *lockProxyPath;         /* Name of the proxy lock file */
 5710:   char *dbPath;                /* Name of the open file */
 5711:   int conchHeld;               /* 1 if the conch is held, -1 if lockless */
 5712:   void *oldLockingContext;     /* Original lockingcontext to restore on close */
 5713:   sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
 5714: };
 5715: 
 5716: /* 
 5717: ** The proxy lock file path for the database at dbPath is written into lPath, 
 5718: ** which must point to valid, writable memory large enough for a maxLen length
 5719: ** file path. 
 5720: */
 5721: static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
 5722:   int len;
 5723:   int dbLen;
 5724:   int i;
 5725: 
 5726: #ifdef LOCKPROXYDIR
 5727:   len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
 5728: #else
 5729: # ifdef _CS_DARWIN_USER_TEMP_DIR
 5730:   {
 5731:     if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
 5732:       OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
 5733:                lPath, errno, getpid()));
 5734:       return SQLITE_IOERR_LOCK;
 5735:     }
 5736:     len = strlcat(lPath, "sqliteplocks", maxLen);    
 5737:   }
 5738: # else
 5739:   len = strlcpy(lPath, "/tmp/", maxLen);
 5740: # endif
 5741: #endif
 5742: 
 5743:   if( lPath[len-1]!='/' ){
 5744:     len = strlcat(lPath, "/", maxLen);
 5745:   }
 5746:   
 5747:   /* transform the db path to a unique cache name */
 5748:   dbLen = (int)strlen(dbPath);
 5749:   for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
 5750:     char c = dbPath[i];
 5751:     lPath[i+len] = (c=='/')?'_':c;
 5752:   }
 5753:   lPath[i+len]='\0';
 5754:   strlcat(lPath, ":auto:", maxLen);
 5755:   OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, getpid()));
 5756:   return SQLITE_OK;
 5757: }
 5758: 
 5759: /* 
 5760:  ** Creates the lock file and any missing directories in lockPath
 5761:  */
 5762: static int proxyCreateLockPath(const char *lockPath){
 5763:   int i, len;
 5764:   char buf[MAXPATHLEN];
 5765:   int start = 0;
 5766:   
 5767:   assert(lockPath!=NULL);
 5768:   /* try to create all the intermediate directories */
 5769:   len = (int)strlen(lockPath);
 5770:   buf[0] = lockPath[0];
 5771:   for( i=1; i<len; i++ ){
 5772:     if( lockPath[i] == '/' && (i - start > 0) ){
 5773:       /* only mkdir if leaf dir != "." or "/" or ".." */
 5774:       if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') 
 5775:          || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
 5776:         buf[i]='\0';
 5777:         if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
 5778:           int err=errno;
 5779:           if( err!=EEXIST ) {
 5780:             OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
 5781:                      "'%s' proxy lock path=%s pid=%d\n",
 5782:                      buf, strerror(err), lockPath, getpid()));
 5783:             return err;
 5784:           }
 5785:         }
 5786:       }
 5787:       start=i+1;
 5788:     }
 5789:     buf[i] = lockPath[i];
 5790:   }
 5791:   OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, getpid()));
 5792:   return 0;
 5793: }
 5794: 
 5795: /*
 5796: ** Create a new VFS file descriptor (stored in memory obtained from
 5797: ** sqlite3_malloc) and open the file named "path" in the file descriptor.
 5798: **
 5799: ** The caller is responsible not only for closing the file descriptor
 5800: ** but also for freeing the memory associated with the file descriptor.
 5801: */
 5802: static int proxyCreateUnixFile(
 5803:     const char *path,        /* path for the new unixFile */
 5804:     unixFile **ppFile,       /* unixFile created and returned by ref */
 5805:     int islockfile           /* if non zero missing dirs will be created */
 5806: ) {
 5807:   int fd = -1;
 5808:   unixFile *pNew;
 5809:   int rc = SQLITE_OK;
 5810:   int openFlags = O_RDWR | O_CREAT;
 5811:   sqlite3_vfs dummyVfs;
 5812:   int terrno = 0;
 5813:   UnixUnusedFd *pUnused = NULL;
 5814: 
 5815:   /* 1. first try to open/create the file
 5816:   ** 2. if that fails, and this is a lock file (not-conch), try creating
 5817:   ** the parent directories and then try again.
 5818:   ** 3. if that fails, try to open the file read-only
 5819:   ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
 5820:   */
 5821:   pUnused = findReusableFd(path, openFlags);
 5822:   if( pUnused ){
 5823:     fd = pUnused->fd;
 5824:   }else{
 5825:     pUnused = sqlite3_malloc(sizeof(*pUnused));
 5826:     if( !pUnused ){
 5827:       return SQLITE_NOMEM;
 5828:     }
 5829:   }
 5830:   if( fd<0 ){
 5831:     fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
 5832:     terrno = errno;
 5833:     if( fd<0 && errno==ENOENT && islockfile ){
 5834:       if( proxyCreateLockPath(path) == SQLITE_OK ){
 5835:         fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
 5836:       }
 5837:     }
 5838:   }
 5839:   if( fd<0 ){
 5840:     openFlags = O_RDONLY;
 5841:     fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
 5842:     terrno = errno;
 5843:   }
 5844:   if( fd<0 ){
 5845:     if( islockfile ){
 5846:       return SQLITE_BUSY;
 5847:     }
 5848:     switch (terrno) {
 5849:       case EACCES:
 5850:         return SQLITE_PERM;
 5851:       case EIO: 
 5852:         return SQLITE_IOERR_LOCK; /* even though it is the conch */
 5853:       default:
 5854:         return SQLITE_CANTOPEN_BKPT;
 5855:     }
 5856:   }
 5857:   
 5858:   pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
 5859:   if( pNew==NULL ){
 5860:     rc = SQLITE_NOMEM;
 5861:     goto end_create_proxy;
 5862:   }
 5863:   memset(pNew, 0, sizeof(unixFile));
 5864:   pNew->openFlags = openFlags;
 5865:   memset(&dummyVfs, 0, sizeof(dummyVfs));
 5866:   dummyVfs.pAppData = (void*)&autolockIoFinder;
 5867:   dummyVfs.zName = "dummy";
 5868:   pUnused->fd = fd;
 5869:   pUnused->flags = openFlags;
 5870:   pNew->pUnused = pUnused;
 5871:   
 5872:   rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
 5873:   if( rc==SQLITE_OK ){
 5874:     *ppFile = pNew;
 5875:     return SQLITE_OK;
 5876:   }
 5877: end_create_proxy:    
 5878:   robust_close(pNew, fd, __LINE__);
 5879:   sqlite3_free(pNew);
 5880:   sqlite3_free(pUnused);
 5881:   return rc;
 5882: }
 5883: 
 5884: #ifdef SQLITE_TEST
 5885: /* simulate multiple hosts by creating unique hostid file paths */
 5886: int sqlite3_hostid_num = 0;
 5887: #endif
 5888: 
 5889: #define PROXY_HOSTIDLEN    16  /* conch file host id length */
 5890: 
 5891: /* Not always defined in the headers as it ought to be */
 5892: extern int gethostuuid(uuid_t id, const struct timespec *wait);
 5893: 
 5894: /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN 
 5895: ** bytes of writable memory.
 5896: */
 5897: static int proxyGetHostID(unsigned char *pHostID, int *pError){
 5898:   assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
 5899:   memset(pHostID, 0, PROXY_HOSTIDLEN);
 5900: #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
 5901:                && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
 5902:   {
 5903:     static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
 5904:     if( gethostuuid(pHostID, &timeout) ){
 5905:       int err = errno;
 5906:       if( pError ){
 5907:         *pError = err;
 5908:       }
 5909:       return SQLITE_IOERR;
 5910:     }
 5911:   }
 5912: #else
 5913:   UNUSED_PARAMETER(pError);
 5914: #endif
 5915: #ifdef SQLITE_TEST
 5916:   /* simulate multiple hosts by creating unique hostid file paths */
 5917:   if( sqlite3_hostid_num != 0){
 5918:     pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
 5919:   }
 5920: #endif
 5921:   
 5922:   return SQLITE_OK;
 5923: }
 5924: 
 5925: /* The conch file contains the header, host id and lock file path
 5926:  */
 5927: #define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
 5928: #define PROXY_HEADERLEN    1   /* conch file header length */
 5929: #define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
 5930: #define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
 5931: 
 5932: /* 
 5933: ** Takes an open conch file, copies the contents to a new path and then moves 
 5934: ** it back.  The newly created file's file descriptor is assigned to the
 5935: ** conch file structure and finally the original conch file descriptor is 
 5936: ** closed.  Returns zero if successful.
 5937: */
 5938: static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
 5939:   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
 5940:   unixFile *conchFile = pCtx->conchFile;
 5941:   char tPath[MAXPATHLEN];
 5942:   char buf[PROXY_MAXCONCHLEN];
 5943:   char *cPath = pCtx->conchFilePath;
 5944:   size_t readLen = 0;
 5945:   size_t pathLen = 0;
 5946:   char errmsg[64] = "";
 5947:   int fd = -1;
 5948:   int rc = -1;
 5949:   UNUSED_PARAMETER(myHostID);
 5950: 
 5951:   /* create a new path by replace the trailing '-conch' with '-break' */
 5952:   pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
 5953:   if( pathLen>MAXPATHLEN || pathLen<6 || 
 5954:      (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
 5955:     sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
 5956:     goto end_breaklock;
 5957:   }
 5958:   /* read the conch content */
 5959:   readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
 5960:   if( readLen<PROXY_PATHINDEX ){
 5961:     sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
 5962:     goto end_breaklock;
 5963:   }
 5964:   /* write it out to the temporary break file */
 5965:   fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
 5966:                    SQLITE_DEFAULT_FILE_PERMISSIONS);
 5967:   if( fd<0 ){
 5968:     sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
 5969:     goto end_breaklock;
 5970:   }
 5971:   if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
 5972:     sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
 5973:     goto end_breaklock;
 5974:   }
 5975:   if( rename(tPath, cPath) ){
 5976:     sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
 5977:     goto end_breaklock;
 5978:   }
 5979:   rc = 0;
 5980:   fprintf(stderr, "broke stale lock on %s\n", cPath);
 5981:   robust_close(pFile, conchFile->h, __LINE__);
 5982:   conchFile->h = fd;
 5983:   conchFile->openFlags = O_RDWR | O_CREAT;
 5984: 
 5985: end_breaklock:
 5986:   if( rc ){
 5987:     if( fd>=0 ){
 5988:       osUnlink(tPath);
 5989:       robust_close(pFile, fd, __LINE__);
 5990:     }
 5991:     fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
 5992:   }
 5993:   return rc;
 5994: }
 5995: 
 5996: /* Take the requested lock on the conch file and break a stale lock if the 
 5997: ** host id matches.
 5998: */
 5999: static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
 6000:   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
 6001:   unixFile *conchFile = pCtx->conchFile;
 6002:   int rc = SQLITE_OK;
 6003:   int nTries = 0;
 6004:   struct timespec conchModTime;
 6005:   
 6006:   memset(&conchModTime, 0, sizeof(conchModTime));
 6007:   do {
 6008:     rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
 6009:     nTries ++;
 6010:     if( rc==SQLITE_BUSY ){
 6011:       /* If the lock failed (busy):
 6012:        * 1st try: get the mod time of the conch, wait 0.5s and try again. 
 6013:        * 2nd try: fail if the mod time changed or host id is different, wait 
 6014:        *           10 sec and try again
 6015:        * 3rd try: break the lock unless the mod time has changed.
 6016:        */
 6017:       struct stat buf;
 6018:       if( osFstat(conchFile->h, &buf) ){
 6019:         pFile->lastErrno = errno;
 6020:         return SQLITE_IOERR_LOCK;
 6021:       }
 6022:       
 6023:       if( nTries==1 ){
 6024:         conchModTime = buf.st_mtimespec;
 6025:         usleep(500000); /* wait 0.5 sec and try the lock again*/
 6026:         continue;  
 6027:       }
 6028: 
 6029:       assert( nTries>1 );
 6030:       if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || 
 6031:          conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
 6032:         return SQLITE_BUSY;
 6033:       }
 6034:       
 6035:       if( nTries==2 ){  
 6036:         char tBuf[PROXY_MAXCONCHLEN];
 6037:         int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
 6038:         if( len<0 ){
 6039:           pFile->lastErrno = errno;
 6040:           return SQLITE_IOERR_LOCK;
 6041:         }
 6042:         if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
 6043:           /* don't break the lock if the host id doesn't match */
 6044:           if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
 6045:             return SQLITE_BUSY;
 6046:           }
 6047:         }else{
 6048:           /* don't break the lock on short read or a version mismatch */
 6049:           return SQLITE_BUSY;
 6050:         }
 6051:         usleep(10000000); /* wait 10 sec and try the lock again */
 6052:         continue; 
 6053:       }
 6054:       
 6055:       assert( nTries==3 );
 6056:       if( 0==proxyBreakConchLock(pFile, myHostID) ){
 6057:         rc = SQLITE_OK;
 6058:         if( lockType==EXCLUSIVE_LOCK ){
 6059:           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);          
 6060:         }
 6061:         if( !rc ){
 6062:           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
 6063:         }
 6064:       }
 6065:     }
 6066:   } while( rc==SQLITE_BUSY && nTries<3 );
 6067:   
 6068:   return rc;
 6069: }
 6070: 
 6071: /* Takes the conch by taking a shared lock and read the contents conch, if 
 6072: ** lockPath is non-NULL, the host ID and lock file path must match.  A NULL 
 6073: ** lockPath means that the lockPath in the conch file will be used if the 
 6074: ** host IDs match, or a new lock path will be generated automatically 
 6075: ** and written to the conch file.
 6076: */
 6077: static int proxyTakeConch(unixFile *pFile){
 6078:   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
 6079:   
 6080:   if( pCtx->conchHeld!=0 ){
 6081:     return SQLITE_OK;
 6082:   }else{
 6083:     unixFile *conchFile = pCtx->conchFile;
 6084:     uuid_t myHostID;
 6085:     int pError = 0;
 6086:     char readBuf[PROXY_MAXCONCHLEN];
 6087:     char lockPath[MAXPATHLEN];
 6088:     char *tempLockPath = NULL;
 6089:     int rc = SQLITE_OK;
 6090:     int createConch = 0;
 6091:     int hostIdMatch = 0;
 6092:     int readLen = 0;
 6093:     int tryOldLockPath = 0;
 6094:     int forceNewLockPath = 0;
 6095:     
 6096:     OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
 6097:              (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
 6098: 
 6099:     rc = proxyGetHostID(myHostID, &pError);
 6100:     if( (rc&0xff)==SQLITE_IOERR ){
 6101:       pFile->lastErrno = pError;
 6102:       goto end_takeconch;
 6103:     }
 6104:     rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
 6105:     if( rc!=SQLITE_OK ){
 6106:       goto end_takeconch;
 6107:     }
 6108:     /* read the existing conch file */
 6109:     readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
 6110:     if( readLen<0 ){
 6111:       /* I/O error: lastErrno set by seekAndRead */
 6112:       pFile->lastErrno = conchFile->lastErrno;
 6113:       rc = SQLITE_IOERR_READ;
 6114:       goto end_takeconch;
 6115:     }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || 
 6116:              readBuf[0]!=(char)PROXY_CONCHVERSION ){
 6117:       /* a short read or version format mismatch means we need to create a new 
 6118:       ** conch file. 
 6119:       */
 6120:       createConch = 1;
 6121:     }
 6122:     /* if the host id matches and the lock path already exists in the conch
 6123:     ** we'll try to use the path there, if we can't open that path, we'll 
 6124:     ** retry with a new auto-generated path 
 6125:     */
 6126:     do { /* in case we need to try again for an :auto: named lock file */
 6127: 
 6128:       if( !createConch && !forceNewLockPath ){
 6129:         hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, 
 6130:                                   PROXY_HOSTIDLEN);
 6131:         /* if the conch has data compare the contents */
 6132:         if( !pCtx->lockProxyPath ){
 6133:           /* for auto-named local lock file, just check the host ID and we'll
 6134:            ** use the local lock file path that's already in there
 6135:            */
 6136:           if( hostIdMatch ){
 6137:             size_t pathLen = (readLen - PROXY_PATHINDEX);
 6138:             
 6139:             if( pathLen>=MAXPATHLEN ){
 6140:               pathLen=MAXPATHLEN-1;
 6141:             }
 6142:             memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
 6143:             lockPath[pathLen] = 0;
 6144:             tempLockPath = lockPath;
 6145:             tryOldLockPath = 1;
 6146:             /* create a copy of the lock path if the conch is taken */
 6147:             goto end_takeconch;
 6148:           }
 6149:         }else if( hostIdMatch
 6150:                && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
 6151:                            readLen-PROXY_PATHINDEX)
 6152:         ){
 6153:           /* conch host and lock path match */
 6154:           goto end_takeconch; 
 6155:         }
 6156:       }
 6157:       
 6158:       /* if the conch isn't writable and doesn't match, we can't take it */
 6159:       if( (conchFile->openFlags&O_RDWR) == 0 ){
 6160:         rc = SQLITE_BUSY;
 6161:         goto end_takeconch;
 6162:       }
 6163:       
 6164:       /* either the conch didn't match or we need to create a new one */
 6165:       if( !pCtx->lockProxyPath ){
 6166:         proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
 6167:         tempLockPath = lockPath;
 6168:         /* create a copy of the lock path _only_ if the conch is taken */
 6169:       }
 6170:       
 6171:       /* update conch with host and path (this will fail if other process
 6172:       ** has a shared lock already), if the host id matches, use the big
 6173:       ** stick.
 6174:       */
 6175:       futimes(conchFile->h, NULL);
 6176:       if( hostIdMatch && !createConch ){
 6177:         if( conchFile->pInode && conchFile->pInode->nShared>1 ){
 6178:           /* We are trying for an exclusive lock but another thread in this
 6179:            ** same process is still holding a shared lock. */
 6180:           rc = SQLITE_BUSY;
 6181:         } else {          
 6182:           rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
 6183:         }
 6184:       }else{
 6185:         rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
 6186:       }
 6187:       if( rc==SQLITE_OK ){
 6188:         char writeBuffer[PROXY_MAXCONCHLEN];
 6189:         int writeSize = 0;
 6190:         
 6191:         writeBuffer[0] = (char)PROXY_CONCHVERSION;
 6192:         memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
 6193:         if( pCtx->lockProxyPath!=NULL ){
 6194:           strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
 6195:         }else{
 6196:           strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
 6197:         }
 6198:         writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
 6199:         robust_ftruncate(conchFile->h, writeSize);
 6200:         rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
 6201:         fsync(conchFile->h);
 6202:         /* If we created a new conch file (not just updated the contents of a 
 6203:          ** valid conch file), try to match the permissions of the database 
 6204:          */
 6205:         if( rc==SQLITE_OK && createConch ){
 6206:           struct stat buf;
 6207:           int err = osFstat(pFile->h, &buf);
 6208:           if( err==0 ){
 6209:             mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
 6210:                                         S_IROTH|S_IWOTH);
 6211:             /* try to match the database file R/W permissions, ignore failure */
 6212: #ifndef SQLITE_PROXY_DEBUG
 6213:             osFchmod(conchFile->h, cmode);
 6214: #else
 6215:             do{
 6216:               rc = osFchmod(conchFile->h, cmode);
 6217:             }while( rc==(-1) && errno==EINTR );
 6218:             if( rc!=0 ){
 6219:               int code = errno;
 6220:               fprintf(stderr, "fchmod %o FAILED with %d %s\n",
 6221:                       cmode, code, strerror(code));
 6222:             } else {
 6223:               fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
 6224:             }
 6225:           }else{
 6226:             int code = errno;
 6227:             fprintf(stderr, "STAT FAILED[%d] with %d %s\n", 
 6228:                     err, code, strerror(code));
 6229: #endif
 6230:           }
 6231:         }
 6232:       }
 6233:       conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
 6234:       
 6235:     end_takeconch:
 6236:       OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
 6237:       if( rc==SQLITE_OK && pFile->openFlags ){
 6238:         int fd;
 6239:         if( pFile->h>=0 ){
 6240:           robust_close(pFile, pFile->h, __LINE__);
 6241:         }
 6242:         pFile->h = -1;
 6243:         fd = robust_open(pCtx->dbPath, pFile->openFlags,
 6244:                       SQLITE_DEFAULT_FILE_PERMISSIONS);
 6245:         OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
 6246:         if( fd>=0 ){
 6247:           pFile->h = fd;
 6248:         }else{
 6249:           rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
 6250:            during locking */
 6251:         }
 6252:       }
 6253:       if( rc==SQLITE_OK && !pCtx->lockProxy ){
 6254:         char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
 6255:         rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
 6256:         if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
 6257:           /* we couldn't create the proxy lock file with the old lock file path
 6258:            ** so try again via auto-naming 
 6259:            */
 6260:           forceNewLockPath = 1;
 6261:           tryOldLockPath = 0;
 6262:           continue; /* go back to the do {} while start point, try again */
 6263:         }
 6264:       }
 6265:       if( rc==SQLITE_OK ){
 6266:         /* Need to make a copy of path if we extracted the value
 6267:          ** from the conch file or the path was allocated on the stack
 6268:          */
 6269:         if( tempLockPath ){
 6270:           pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
 6271:           if( !pCtx->lockProxyPath ){
 6272:             rc = SQLITE_NOMEM;
 6273:           }
 6274:         }
 6275:       }
 6276:       if( rc==SQLITE_OK ){
 6277:         pCtx->conchHeld = 1;
 6278:         
 6279:         if( pCtx->lockProxy->pMethod == &afpIoMethods ){
 6280:           afpLockingContext *afpCtx;
 6281:           afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
 6282:           afpCtx->dbPath = pCtx->lockProxyPath;
 6283:         }
 6284:       } else {
 6285:         conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
 6286:       }
 6287:       OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
 6288:                rc==SQLITE_OK?"ok":"failed"));
 6289:       return rc;
 6290:     } while (1); /* in case we need to retry the :auto: lock file - 
 6291:                  ** we should never get here except via the 'continue' call. */
 6292:   }
 6293: }
 6294: 
 6295: /*
 6296: ** If pFile holds a lock on a conch file, then release that lock.
 6297: */
 6298: static int proxyReleaseConch(unixFile *pFile){
 6299:   int rc = SQLITE_OK;         /* Subroutine return code */
 6300:   proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
 6301:   unixFile *conchFile;        /* Name of the conch file */
 6302: 
 6303:   pCtx = (proxyLockingContext *)pFile->lockingContext;
 6304:   conchFile = pCtx->conchFile;
 6305:   OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
 6306:            (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), 
 6307:            getpid()));
 6308:   if( pCtx->conchHeld>0 ){
 6309:     rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
 6310:   }
 6311:   pCtx->conchHeld = 0;
 6312:   OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
 6313:            (rc==SQLITE_OK ? "ok" : "failed")));
 6314:   return rc;
 6315: }
 6316: 
 6317: /*
 6318: ** Given the name of a database file, compute the name of its conch file.
 6319: ** Store the conch filename in memory obtained from sqlite3_malloc().
 6320: ** Make *pConchPath point to the new name.  Return SQLITE_OK on success
 6321: ** or SQLITE_NOMEM if unable to obtain memory.
 6322: **
 6323: ** The caller is responsible for ensuring that the allocated memory
 6324: ** space is eventually freed.
 6325: **
 6326: ** *pConchPath is set to NULL if a memory allocation error occurs.
 6327: */
 6328: static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
 6329:   int i;                        /* Loop counter */
 6330:   int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
 6331:   char *conchPath;              /* buffer in which to construct conch name */
 6332: 
 6333:   /* Allocate space for the conch filename and initialize the name to
 6334:   ** the name of the original database file. */  
 6335:   *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
 6336:   if( conchPath==0 ){
 6337:     return SQLITE_NOMEM;
 6338:   }
 6339:   memcpy(conchPath, dbPath, len+1);
 6340:   
 6341:   /* now insert a "." before the last / character */
 6342:   for( i=(len-1); i>=0; i-- ){
 6343:     if( conchPath[i]=='/' ){
 6344:       i++;
 6345:       break;
 6346:     }
 6347:   }
 6348:   conchPath[i]='.';
 6349:   while ( i<len ){
 6350:     conchPath[i+1]=dbPath[i];
 6351:     i++;
 6352:   }
 6353: 
 6354:   /* append the "-conch" suffix to the file */
 6355:   memcpy(&conchPath[i+1], "-conch", 7);
 6356:   assert( (int)strlen(conchPath) == len+7 );
 6357: 
 6358:   return SQLITE_OK;
 6359: }
 6360: 
 6361: 
 6362: /* Takes a fully configured proxy locking-style unix file and switches
 6363: ** the local lock file path 
 6364: */
 6365: static int switchLockProxyPath(unixFile *pFile, const char *path) {
 6366:   proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
 6367:   char *oldPath = pCtx->lockProxyPath;
 6368:   int rc = SQLITE_OK;
 6369: 
 6370:   if( pFile->eFileLock!=NO_LOCK ){
 6371:     return SQLITE_BUSY;
 6372:   }  
 6373: 
 6374:   /* nothing to do if the path is NULL, :auto: or matches the existing path */
 6375:   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
 6376:     (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
 6377:     return SQLITE_OK;
 6378:   }else{
 6379:     unixFile *lockProxy = pCtx->lockProxy;
 6380:     pCtx->lockProxy=NULL;
 6381:     pCtx->conchHeld = 0;
 6382:     if( lockProxy!=NULL ){
 6383:       rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
 6384:       if( rc ) return rc;
 6385:       sqlite3_free(lockProxy);
 6386:     }
 6387:     sqlite3_free(oldPath);
 6388:     pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
 6389:   }
 6390:   
 6391:   return rc;
 6392: }
 6393: 
 6394: /*
 6395: ** pFile is a file that has been opened by a prior xOpen call.  dbPath
 6396: ** is a string buffer at least MAXPATHLEN+1 characters in size.
 6397: **
 6398: ** This routine find the filename associated with pFile and writes it
 6399: ** int dbPath.
 6400: */
 6401: static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
 6402: #if defined(__APPLE__)
 6403:   if( pFile->pMethod == &afpIoMethods ){
 6404:     /* afp style keeps a reference to the db path in the filePath field 
 6405:     ** of the struct */
 6406:     assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
 6407:     strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
 6408:   } else
 6409: #endif
 6410:   if( pFile->pMethod == &dotlockIoMethods ){
 6411:     /* dot lock style uses the locking context to store the dot lock
 6412:     ** file path */
 6413:     int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
 6414:     memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
 6415:   }else{
 6416:     /* all other styles use the locking context to store the db file path */
 6417:     assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
 6418:     strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
 6419:   }
 6420:   return SQLITE_OK;
 6421: }
 6422: 
 6423: /*
 6424: ** Takes an already filled in unix file and alters it so all file locking 
 6425: ** will be performed on the local proxy lock file.  The following fields
 6426: ** are preserved in the locking context so that they can be restored and 
 6427: ** the unix structure properly cleaned up at close time:
 6428: **  ->lockingContext
 6429: **  ->pMethod
 6430: */
 6431: static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
 6432:   proxyLockingContext *pCtx;
 6433:   char dbPath[MAXPATHLEN+1];       /* Name of the database file */
 6434:   char *lockPath=NULL;
 6435:   int rc = SQLITE_OK;
 6436:   
 6437:   if( pFile->eFileLock!=NO_LOCK ){
 6438:     return SQLITE_BUSY;
 6439:   }
 6440:   proxyGetDbPathForUnixFile(pFile, dbPath);
 6441:   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
 6442:     lockPath=NULL;
 6443:   }else{
 6444:     lockPath=(char *)path;
 6445:   }
 6446:   
 6447:   OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
 6448:            (lockPath ? lockPath : ":auto:"), getpid()));
 6449: 
 6450:   pCtx = sqlite3_malloc( sizeof(*pCtx) );
 6451:   if( pCtx==0 ){
 6452:     return SQLITE_NOMEM;
 6453:   }
 6454:   memset(pCtx, 0, sizeof(*pCtx));
 6455: 
 6456:   rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
 6457:   if( rc==SQLITE_OK ){
 6458:     rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
 6459:     if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
 6460:       /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
 6461:       ** (c) the file system is read-only, then enable no-locking access.
 6462:       ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
 6463:       ** that openFlags will have only one of O_RDONLY or O_RDWR.
 6464:       */
 6465:       struct statfs fsInfo;
 6466:       struct stat conchInfo;
 6467:       int goLockless = 0;
 6468: 
 6469:       if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
 6470:         int err = errno;
 6471:         if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
 6472:           goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
 6473:         }
 6474:       }
 6475:       if( goLockless ){
 6476:         pCtx->conchHeld = -1; /* read only FS/ lockless */
 6477:         rc = SQLITE_OK;
 6478:       }
 6479:     }
 6480:   }  
 6481:   if( rc==SQLITE_OK && lockPath ){
 6482:     pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
 6483:   }
 6484: 
 6485:   if( rc==SQLITE_OK ){
 6486:     pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
 6487:     if( pCtx->dbPath==NULL ){
 6488:       rc = SQLITE_NOMEM;
 6489:     }
 6490:   }
 6491:   if( rc==SQLITE_OK ){
 6492:     /* all memory is allocated, proxys are created and assigned, 
 6493:     ** switch the locking context and pMethod then return.
 6494:     */
 6495:     pCtx->oldLockingContext = pFile->lockingContext;
 6496:     pFile->lockingContext = pCtx;
 6497:     pCtx->pOldMethod = pFile->pMethod;
 6498:     pFile->pMethod = &proxyIoMethods;
 6499:   }else{
 6500:     if( pCtx->conchFile ){ 
 6501:       pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
 6502:       sqlite3_free(pCtx->conchFile);
 6503:     }
 6504:     sqlite3DbFree(0, pCtx->lockProxyPath);
 6505:     sqlite3_free(pCtx->conchFilePath); 
 6506:     sqlite3_free(pCtx);
 6507:   }
 6508:   OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
 6509:            (rc==SQLITE_OK ? "ok" : "failed")));
 6510:   return rc;
 6511: }
 6512: 
 6513: 
 6514: /*
 6515: ** This routine handles sqlite3_file_control() calls that are specific
 6516: ** to proxy locking.
 6517: */
 6518: static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
 6519:   switch( op ){
 6520:     case SQLITE_GET_LOCKPROXYFILE: {
 6521:       unixFile *pFile = (unixFile*)id;
 6522:       if( pFile->pMethod == &proxyIoMethods ){
 6523:         proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
 6524:         proxyTakeConch(pFile);
 6525:         if( pCtx->lockProxyPath ){
 6526:           *(const char **)pArg = pCtx->lockProxyPath;
 6527:         }else{
 6528:           *(const char **)pArg = ":auto: (not held)";
 6529:         }
 6530:       } else {
 6531:         *(const char **)pArg = NULL;
 6532:       }
 6533:       return SQLITE_OK;
 6534:     }
 6535:     case SQLITE_SET_LOCKPROXYFILE: {
 6536:       unixFile *pFile = (unixFile*)id;
 6537:       int rc = SQLITE_OK;
 6538:       int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
 6539:       if( pArg==NULL || (const char *)pArg==0 ){
 6540:         if( isProxyStyle ){
 6541:           /* turn off proxy locking - not supported */
 6542:           rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
 6543:         }else{
 6544:           /* turn off proxy locking - already off - NOOP */
 6545:           rc = SQLITE_OK;
 6546:         }
 6547:       }else{
 6548:         const char *proxyPath = (const char *)pArg;
 6549:         if( isProxyStyle ){
 6550:           proxyLockingContext *pCtx = 
 6551:             (proxyLockingContext*)pFile->lockingContext;
 6552:           if( !strcmp(pArg, ":auto:") 
 6553:            || (pCtx->lockProxyPath &&
 6554:                !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
 6555:           ){
 6556:             rc = SQLITE_OK;
 6557:           }else{
 6558:             rc = switchLockProxyPath(pFile, proxyPath);
 6559:           }
 6560:         }else{
 6561:           /* turn on proxy file locking */
 6562:           rc = proxyTransformUnixFile(pFile, proxyPath);
 6563:         }
 6564:       }
 6565:       return rc;
 6566:     }
 6567:     default: {
 6568:       assert( 0 );  /* The call assures that only valid opcodes are sent */
 6569:     }
 6570:   }
 6571:   /*NOTREACHED*/
 6572:   return SQLITE_ERROR;
 6573: }
 6574: 
 6575: /*
 6576: ** Within this division (the proxying locking implementation) the procedures
 6577: ** above this point are all utilities.  The lock-related methods of the
 6578: ** proxy-locking sqlite3_io_method object follow.
 6579: */
 6580: 
 6581: 
 6582: /*
 6583: ** This routine checks if there is a RESERVED lock held on the specified
 6584: ** file by this or any other process. If such a lock is held, set *pResOut
 6585: ** to a non-zero value otherwise *pResOut is set to zero.  The return value
 6586: ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
 6587: */
 6588: static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
 6589:   unixFile *pFile = (unixFile*)id;
 6590:   int rc = proxyTakeConch(pFile);
 6591:   if( rc==SQLITE_OK ){
 6592:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
 6593:     if( pCtx->conchHeld>0 ){
 6594:       unixFile *proxy = pCtx->lockProxy;
 6595:       return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
 6596:     }else{ /* conchHeld < 0 is lockless */
 6597:       pResOut=0;
 6598:     }
 6599:   }
 6600:   return rc;
 6601: }
 6602: 
 6603: /*
 6604: ** Lock the file with the lock specified by parameter eFileLock - one
 6605: ** of the following:
 6606: **
 6607: **     (1) SHARED_LOCK
 6608: **     (2) RESERVED_LOCK
 6609: **     (3) PENDING_LOCK
 6610: **     (4) EXCLUSIVE_LOCK
 6611: **
 6612: ** Sometimes when requesting one lock state, additional lock states
 6613: ** are inserted in between.  The locking might fail on one of the later
 6614: ** transitions leaving the lock state different from what it started but
 6615: ** still short of its goal.  The following chart shows the allowed
 6616: ** transitions and the inserted intermediate states:
 6617: **
 6618: **    UNLOCKED -> SHARED
 6619: **    SHARED -> RESERVED
 6620: **    SHARED -> (PENDING) -> EXCLUSIVE
 6621: **    RESERVED -> (PENDING) -> EXCLUSIVE
 6622: **    PENDING -> EXCLUSIVE
 6623: **
 6624: ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 6625: ** routine to lower a locking level.
 6626: */
 6627: static int proxyLock(sqlite3_file *id, int eFileLock) {
 6628:   unixFile *pFile = (unixFile*)id;
 6629:   int rc = proxyTakeConch(pFile);
 6630:   if( rc==SQLITE_OK ){
 6631:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
 6632:     if( pCtx->conchHeld>0 ){
 6633:       unixFile *proxy = pCtx->lockProxy;
 6634:       rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
 6635:       pFile->eFileLock = proxy->eFileLock;
 6636:     }else{
 6637:       /* conchHeld < 0 is lockless */
 6638:     }
 6639:   }
 6640:   return rc;
 6641: }
 6642: 
 6643: 
 6644: /*
 6645: ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
 6646: ** must be either NO_LOCK or SHARED_LOCK.
 6647: **
 6648: ** If the locking level of the file descriptor is already at or below
 6649: ** the requested locking level, this routine is a no-op.
 6650: */
 6651: static int proxyUnlock(sqlite3_file *id, int eFileLock) {
 6652:   unixFile *pFile = (unixFile*)id;
 6653:   int rc = proxyTakeConch(pFile);
 6654:   if( rc==SQLITE_OK ){
 6655:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
 6656:     if( pCtx->conchHeld>0 ){
 6657:       unixFile *proxy = pCtx->lockProxy;
 6658:       rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
 6659:       pFile->eFileLock = proxy->eFileLock;
 6660:     }else{
 6661:       /* conchHeld < 0 is lockless */
 6662:     }
 6663:   }
 6664:   return rc;
 6665: }
 6666: 
 6667: /*
 6668: ** Close a file that uses proxy locks.
 6669: */
 6670: static int proxyClose(sqlite3_file *id) {
 6671:   if( id ){
 6672:     unixFile *pFile = (unixFile*)id;
 6673:     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
 6674:     unixFile *lockProxy = pCtx->lockProxy;
 6675:     unixFile *conchFile = pCtx->conchFile;
 6676:     int rc = SQLITE_OK;
 6677:     
 6678:     if( lockProxy ){
 6679:       rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
 6680:       if( rc ) return rc;
 6681:       rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
 6682:       if( rc ) return rc;
 6683:       sqlite3_free(lockProxy);
 6684:       pCtx->lockProxy = 0;
 6685:     }
 6686:     if( conchFile ){
 6687:       if( pCtx->conchHeld ){
 6688:         rc = proxyReleaseConch(pFile);
 6689:         if( rc ) return rc;
 6690:       }
 6691:       rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
 6692:       if( rc ) return rc;
 6693:       sqlite3_free(conchFile);
 6694:     }
 6695:     sqlite3DbFree(0, pCtx->lockProxyPath);
 6696:     sqlite3_free(pCtx->conchFilePath);
 6697:     sqlite3DbFree(0, pCtx->dbPath);
 6698:     /* restore the original locking context and pMethod then close it */
 6699:     pFile->lockingContext = pCtx->oldLockingContext;
 6700:     pFile->pMethod = pCtx->pOldMethod;
 6701:     sqlite3_free(pCtx);
 6702:     return pFile->pMethod->xClose(id);
 6703:   }
 6704:   return SQLITE_OK;
 6705: }
 6706: 
 6707: 
 6708: 
 6709: #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
 6710: /*
 6711: ** The proxy locking style is intended for use with AFP filesystems.
 6712: ** And since AFP is only supported on MacOSX, the proxy locking is also
 6713: ** restricted to MacOSX.
 6714: ** 
 6715: **
 6716: ******************* End of the proxy lock implementation **********************
 6717: ******************************************************************************/
 6718: 
 6719: /*
 6720: ** Initialize the operating system interface.
 6721: **
 6722: ** This routine registers all VFS implementations for unix-like operating
 6723: ** systems.  This routine, and the sqlite3_os_end() routine that follows,
 6724: ** should be the only routines in this file that are visible from other
 6725: ** files.
 6726: **
 6727: ** This routine is called once during SQLite initialization and by a
 6728: ** single thread.  The memory allocation and mutex subsystems have not
 6729: ** necessarily been initialized when this routine is called, and so they
 6730: ** should not be used.
 6731: */
 6732: int sqlite3_os_init(void){ 
 6733:   /* 
 6734:   ** The following macro defines an initializer for an sqlite3_vfs object.
 6735:   ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
 6736:   ** to the "finder" function.  (pAppData is a pointer to a pointer because
 6737:   ** silly C90 rules prohibit a void* from being cast to a function pointer
 6738:   ** and so we have to go through the intermediate pointer to avoid problems
 6739:   ** when compiling with -pedantic-errors on GCC.)
 6740:   **
 6741:   ** The FINDER parameter to this macro is the name of the pointer to the
 6742:   ** finder-function.  The finder-function returns a pointer to the
 6743:   ** sqlite_io_methods object that implements the desired locking
 6744:   ** behaviors.  See the division above that contains the IOMETHODS
 6745:   ** macro for addition information on finder-functions.
 6746:   **
 6747:   ** Most finders simply return a pointer to a fixed sqlite3_io_methods
 6748:   ** object.  But the "autolockIoFinder" available on MacOSX does a little
 6749:   ** more than that; it looks at the filesystem type that hosts the 
 6750:   ** database file and tries to choose an locking method appropriate for
 6751:   ** that filesystem time.
 6752:   */
 6753:   #define UNIXVFS(VFSNAME, FINDER) {                        \
 6754:     3,                    /* iVersion */                    \
 6755:     sizeof(unixFile),     /* szOsFile */                    \
 6756:     MAX_PATHNAME,         /* mxPathname */                  \
 6757:     0,                    /* pNext */                       \
 6758:     VFSNAME,              /* zName */                       \
 6759:     (void*)&FINDER,       /* pAppData */                    \
 6760:     unixOpen,             /* xOpen */                       \
 6761:     unixDelete,           /* xDelete */                     \
 6762:     unixAccess,           /* xAccess */                     \
 6763:     unixFullPathname,     /* xFullPathname */               \
 6764:     unixDlOpen,           /* xDlOpen */                     \
 6765:     unixDlError,          /* xDlError */                    \
 6766:     unixDlSym,            /* xDlSym */                      \
 6767:     unixDlClose,          /* xDlClose */                    \
 6768:     unixRandomness,       /* xRandomness */                 \
 6769:     unixSleep,            /* xSleep */                      \
 6770:     unixCurrentTime,      /* xCurrentTime */                \
 6771:     unixGetLastError,     /* xGetLastError */               \
 6772:     unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
 6773:     unixSetSystemCall,    /* xSetSystemCall */              \
 6774:     unixGetSystemCall,    /* xGetSystemCall */              \
 6775:     unixNextSystemCall,   /* xNextSystemCall */             \
 6776:   }
 6777: 
 6778:   /*
 6779:   ** All default VFSes for unix are contained in the following array.
 6780:   **
 6781:   ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
 6782:   ** by the SQLite core when the VFS is registered.  So the following
 6783:   ** array cannot be const.
 6784:   */
 6785:   static sqlite3_vfs aVfs[] = {
 6786: #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
 6787:     UNIXVFS("unix",          autolockIoFinder ),
 6788: #else
 6789:     UNIXVFS("unix",          posixIoFinder ),
 6790: #endif
 6791:     UNIXVFS("unix-none",     nolockIoFinder ),
 6792:     UNIXVFS("unix-dotfile",  dotlockIoFinder ),
 6793:     UNIXVFS("unix-excl",     posixIoFinder ),
 6794: #if OS_VXWORKS
 6795:     UNIXVFS("unix-namedsem", semIoFinder ),
 6796: #endif
 6797: #if SQLITE_ENABLE_LOCKING_STYLE
 6798:     UNIXVFS("unix-posix",    posixIoFinder ),
 6799: #if !OS_VXWORKS
 6800:     UNIXVFS("unix-flock",    flockIoFinder ),
 6801: #endif
 6802: #endif
 6803: #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
 6804:     UNIXVFS("unix-afp",      afpIoFinder ),
 6805:     UNIXVFS("unix-nfs",      nfsIoFinder ),
 6806:     UNIXVFS("unix-proxy",    proxyIoFinder ),
 6807: #endif
 6808:   };
 6809:   unsigned int i;          /* Loop counter */
 6810: 
 6811:   /* Double-check that the aSyscall[] array has been constructed
 6812:   ** correctly.  See ticket [bb3a86e890c8e96ab] */
 6813:   assert( ArraySize(aSyscall)==20 );
 6814: 
 6815:   /* Register all VFSes defined in the aVfs[] array */
 6816:   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
 6817:     sqlite3_vfs_register(&aVfs[i], i==0);
 6818:   }
 6819:   return SQLITE_OK; 
 6820: }
 6821: 
 6822: /*
 6823: ** Shutdown the operating system interface.
 6824: **
 6825: ** Some operating systems might need to do some cleanup in this routine,
 6826: ** to release dynamically allocated objects.  But not on unix.
 6827: ** This routine is a no-op for unix.
 6828: */
 6829: int sqlite3_os_end(void){ 
 6830:   return SQLITE_OK; 
 6831: }
 6832:  
 6833: #endif /* SQLITE_OS_UNIX */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>