Annotation of embedaddon/sqlite3/src/pcache1.c, revision 1.1
1.1 ! misho 1: /*
! 2: ** 2008 November 05
! 3: **
! 4: ** The author disclaims copyright to this source code. In place of
! 5: ** a legal notice, here is a blessing:
! 6: **
! 7: ** May you do good and not evil.
! 8: ** May you find forgiveness for yourself and forgive others.
! 9: ** May you share freely, never taking more than you give.
! 10: **
! 11: *************************************************************************
! 12: **
! 13: ** This file implements the default page cache implementation (the
! 14: ** sqlite3_pcache interface). It also contains part of the implementation
! 15: ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
! 16: ** If the default page cache implementation is overriden, then neither of
! 17: ** these two features are available.
! 18: */
! 19:
! 20: #include "sqliteInt.h"
! 21:
! 22: typedef struct PCache1 PCache1;
! 23: typedef struct PgHdr1 PgHdr1;
! 24: typedef struct PgFreeslot PgFreeslot;
! 25: typedef struct PGroup PGroup;
! 26:
! 27: /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
! 28: ** of one or more PCaches that are able to recycle each others unpinned
! 29: ** pages when they are under memory pressure. A PGroup is an instance of
! 30: ** the following object.
! 31: **
! 32: ** This page cache implementation works in one of two modes:
! 33: **
! 34: ** (1) Every PCache is the sole member of its own PGroup. There is
! 35: ** one PGroup per PCache.
! 36: **
! 37: ** (2) There is a single global PGroup that all PCaches are a member
! 38: ** of.
! 39: **
! 40: ** Mode 1 uses more memory (since PCache instances are not able to rob
! 41: ** unused pages from other PCaches) but it also operates without a mutex,
! 42: ** and is therefore often faster. Mode 2 requires a mutex in order to be
! 43: ** threadsafe, but recycles pages more efficiently.
! 44: **
! 45: ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
! 46: ** PGroup which is the pcache1.grp global variable and its mutex is
! 47: ** SQLITE_MUTEX_STATIC_LRU.
! 48: */
! 49: struct PGroup {
! 50: sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
! 51: unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
! 52: unsigned int nMinPage; /* Sum of nMin for purgeable caches */
! 53: unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
! 54: unsigned int nCurrentPage; /* Number of purgeable pages allocated */
! 55: PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
! 56: };
! 57:
! 58: /* Each page cache is an instance of the following object. Every
! 59: ** open database file (including each in-memory database and each
! 60: ** temporary or transient database) has a single page cache which
! 61: ** is an instance of this object.
! 62: **
! 63: ** Pointers to structures of this type are cast and returned as
! 64: ** opaque sqlite3_pcache* handles.
! 65: */
! 66: struct PCache1 {
! 67: /* Cache configuration parameters. Page size (szPage) and the purgeable
! 68: ** flag (bPurgeable) are set when the cache is created. nMax may be
! 69: ** modified at any time by a call to the pcache1Cachesize() method.
! 70: ** The PGroup mutex must be held when accessing nMax.
! 71: */
! 72: PGroup *pGroup; /* PGroup this cache belongs to */
! 73: int szPage; /* Size of allocated pages in bytes */
! 74: int szExtra; /* Size of extra space in bytes */
! 75: int bPurgeable; /* True if cache is purgeable */
! 76: unsigned int nMin; /* Minimum number of pages reserved */
! 77: unsigned int nMax; /* Configured "cache_size" value */
! 78: unsigned int n90pct; /* nMax*9/10 */
! 79:
! 80: /* Hash table of all pages. The following variables may only be accessed
! 81: ** when the accessor is holding the PGroup mutex.
! 82: */
! 83: unsigned int nRecyclable; /* Number of pages in the LRU list */
! 84: unsigned int nPage; /* Total number of pages in apHash */
! 85: unsigned int nHash; /* Number of slots in apHash[] */
! 86: PgHdr1 **apHash; /* Hash table for fast lookup by key */
! 87:
! 88: unsigned int iMaxKey; /* Largest key seen since xTruncate() */
! 89: };
! 90:
! 91: /*
! 92: ** Each cache entry is represented by an instance of the following
! 93: ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
! 94: ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
! 95: ** in memory.
! 96: */
! 97: struct PgHdr1 {
! 98: sqlite3_pcache_page page;
! 99: unsigned int iKey; /* Key value (page number) */
! 100: PgHdr1 *pNext; /* Next in hash table chain */
! 101: PCache1 *pCache; /* Cache that currently owns this page */
! 102: PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
! 103: PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
! 104: };
! 105:
! 106: /*
! 107: ** Free slots in the allocator used to divide up the buffer provided using
! 108: ** the SQLITE_CONFIG_PAGECACHE mechanism.
! 109: */
! 110: struct PgFreeslot {
! 111: PgFreeslot *pNext; /* Next free slot */
! 112: };
! 113:
! 114: /*
! 115: ** Global data used by this cache.
! 116: */
! 117: static SQLITE_WSD struct PCacheGlobal {
! 118: PGroup grp; /* The global PGroup for mode (2) */
! 119:
! 120: /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
! 121: ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
! 122: ** fixed at sqlite3_initialize() time and do not require mutex protection.
! 123: ** The nFreeSlot and pFree values do require mutex protection.
! 124: */
! 125: int isInit; /* True if initialized */
! 126: int szSlot; /* Size of each free slot */
! 127: int nSlot; /* The number of pcache slots */
! 128: int nReserve; /* Try to keep nFreeSlot above this */
! 129: void *pStart, *pEnd; /* Bounds of pagecache malloc range */
! 130: /* Above requires no mutex. Use mutex below for variable that follow. */
! 131: sqlite3_mutex *mutex; /* Mutex for accessing the following: */
! 132: int nFreeSlot; /* Number of unused pcache slots */
! 133: PgFreeslot *pFree; /* Free page blocks */
! 134: /* The following value requires a mutex to change. We skip the mutex on
! 135: ** reading because (1) most platforms read a 32-bit integer atomically and
! 136: ** (2) even if an incorrect value is read, no great harm is done since this
! 137: ** is really just an optimization. */
! 138: int bUnderPressure; /* True if low on PAGECACHE memory */
! 139: } pcache1_g;
! 140:
! 141: /*
! 142: ** All code in this file should access the global structure above via the
! 143: ** alias "pcache1". This ensures that the WSD emulation is used when
! 144: ** compiling for systems that do not support real WSD.
! 145: */
! 146: #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
! 147:
! 148: /*
! 149: ** Macros to enter and leave the PCache LRU mutex.
! 150: */
! 151: #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
! 152: #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
! 153:
! 154: /******************************************************************************/
! 155: /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
! 156:
! 157: /*
! 158: ** This function is called during initialization if a static buffer is
! 159: ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
! 160: ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
! 161: ** enough to contain 'n' buffers of 'sz' bytes each.
! 162: **
! 163: ** This routine is called from sqlite3_initialize() and so it is guaranteed
! 164: ** to be serialized already. There is no need for further mutexing.
! 165: */
! 166: void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
! 167: if( pcache1.isInit ){
! 168: PgFreeslot *p;
! 169: sz = ROUNDDOWN8(sz);
! 170: pcache1.szSlot = sz;
! 171: pcache1.nSlot = pcache1.nFreeSlot = n;
! 172: pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
! 173: pcache1.pStart = pBuf;
! 174: pcache1.pFree = 0;
! 175: pcache1.bUnderPressure = 0;
! 176: while( n-- ){
! 177: p = (PgFreeslot*)pBuf;
! 178: p->pNext = pcache1.pFree;
! 179: pcache1.pFree = p;
! 180: pBuf = (void*)&((char*)pBuf)[sz];
! 181: }
! 182: pcache1.pEnd = pBuf;
! 183: }
! 184: }
! 185:
! 186: /*
! 187: ** Malloc function used within this file to allocate space from the buffer
! 188: ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
! 189: ** such buffer exists or there is no space left in it, this function falls
! 190: ** back to sqlite3Malloc().
! 191: **
! 192: ** Multiple threads can run this routine at the same time. Global variables
! 193: ** in pcache1 need to be protected via mutex.
! 194: */
! 195: static void *pcache1Alloc(int nByte){
! 196: void *p = 0;
! 197: assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
! 198: sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
! 199: if( nByte<=pcache1.szSlot ){
! 200: sqlite3_mutex_enter(pcache1.mutex);
! 201: p = (PgHdr1 *)pcache1.pFree;
! 202: if( p ){
! 203: pcache1.pFree = pcache1.pFree->pNext;
! 204: pcache1.nFreeSlot--;
! 205: pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
! 206: assert( pcache1.nFreeSlot>=0 );
! 207: sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
! 208: }
! 209: sqlite3_mutex_leave(pcache1.mutex);
! 210: }
! 211: if( p==0 ){
! 212: /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
! 213: ** it from sqlite3Malloc instead.
! 214: */
! 215: p = sqlite3Malloc(nByte);
! 216: if( p ){
! 217: int sz = sqlite3MallocSize(p);
! 218: sqlite3_mutex_enter(pcache1.mutex);
! 219: sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
! 220: sqlite3_mutex_leave(pcache1.mutex);
! 221: }
! 222: sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
! 223: }
! 224: return p;
! 225: }
! 226:
! 227: /*
! 228: ** Free an allocated buffer obtained from pcache1Alloc().
! 229: */
! 230: static int pcache1Free(void *p){
! 231: int nFreed = 0;
! 232: if( p==0 ) return 0;
! 233: if( p>=pcache1.pStart && p<pcache1.pEnd ){
! 234: PgFreeslot *pSlot;
! 235: sqlite3_mutex_enter(pcache1.mutex);
! 236: sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
! 237: pSlot = (PgFreeslot*)p;
! 238: pSlot->pNext = pcache1.pFree;
! 239: pcache1.pFree = pSlot;
! 240: pcache1.nFreeSlot++;
! 241: pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
! 242: assert( pcache1.nFreeSlot<=pcache1.nSlot );
! 243: sqlite3_mutex_leave(pcache1.mutex);
! 244: }else{
! 245: assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
! 246: sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
! 247: nFreed = sqlite3MallocSize(p);
! 248: sqlite3_mutex_enter(pcache1.mutex);
! 249: sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
! 250: sqlite3_mutex_leave(pcache1.mutex);
! 251: sqlite3_free(p);
! 252: }
! 253: return nFreed;
! 254: }
! 255:
! 256: #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
! 257: /*
! 258: ** Return the size of a pcache allocation
! 259: */
! 260: static int pcache1MemSize(void *p){
! 261: if( p>=pcache1.pStart && p<pcache1.pEnd ){
! 262: return pcache1.szSlot;
! 263: }else{
! 264: int iSize;
! 265: assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
! 266: sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
! 267: iSize = sqlite3MallocSize(p);
! 268: sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
! 269: return iSize;
! 270: }
! 271: }
! 272: #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
! 273:
! 274: /*
! 275: ** Allocate a new page object initially associated with cache pCache.
! 276: */
! 277: static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
! 278: PgHdr1 *p = 0;
! 279: void *pPg;
! 280:
! 281: /* The group mutex must be released before pcache1Alloc() is called. This
! 282: ** is because it may call sqlite3_release_memory(), which assumes that
! 283: ** this mutex is not held. */
! 284: assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
! 285: pcache1LeaveMutex(pCache->pGroup);
! 286: #ifdef SQLITE_PCACHE_SEPARATE_HEADER
! 287: pPg = pcache1Alloc(pCache->szPage);
! 288: p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
! 289: if( !pPg || !p ){
! 290: pcache1Free(pPg);
! 291: sqlite3_free(p);
! 292: pPg = 0;
! 293: }
! 294: #else
! 295: pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
! 296: p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
! 297: #endif
! 298: pcache1EnterMutex(pCache->pGroup);
! 299:
! 300: if( pPg ){
! 301: p->page.pBuf = pPg;
! 302: p->page.pExtra = &p[1];
! 303: if( pCache->bPurgeable ){
! 304: pCache->pGroup->nCurrentPage++;
! 305: }
! 306: return p;
! 307: }
! 308: return 0;
! 309: }
! 310:
! 311: /*
! 312: ** Free a page object allocated by pcache1AllocPage().
! 313: **
! 314: ** The pointer is allowed to be NULL, which is prudent. But it turns out
! 315: ** that the current implementation happens to never call this routine
! 316: ** with a NULL pointer, so we mark the NULL test with ALWAYS().
! 317: */
! 318: static void pcache1FreePage(PgHdr1 *p){
! 319: if( ALWAYS(p) ){
! 320: PCache1 *pCache = p->pCache;
! 321: assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
! 322: pcache1Free(p->page.pBuf);
! 323: #ifdef SQLITE_PCACHE_SEPARATE_HEADER
! 324: sqlite3_free(p);
! 325: #endif
! 326: if( pCache->bPurgeable ){
! 327: pCache->pGroup->nCurrentPage--;
! 328: }
! 329: }
! 330: }
! 331:
! 332: /*
! 333: ** Malloc function used by SQLite to obtain space from the buffer configured
! 334: ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
! 335: ** exists, this function falls back to sqlite3Malloc().
! 336: */
! 337: void *sqlite3PageMalloc(int sz){
! 338: return pcache1Alloc(sz);
! 339: }
! 340:
! 341: /*
! 342: ** Free an allocated buffer obtained from sqlite3PageMalloc().
! 343: */
! 344: void sqlite3PageFree(void *p){
! 345: pcache1Free(p);
! 346: }
! 347:
! 348:
! 349: /*
! 350: ** Return true if it desirable to avoid allocating a new page cache
! 351: ** entry.
! 352: **
! 353: ** If memory was allocated specifically to the page cache using
! 354: ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
! 355: ** it is desirable to avoid allocating a new page cache entry because
! 356: ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
! 357: ** for all page cache needs and we should not need to spill the
! 358: ** allocation onto the heap.
! 359: **
! 360: ** Or, the heap is used for all page cache memory but the heap is
! 361: ** under memory pressure, then again it is desirable to avoid
! 362: ** allocating a new page cache entry in order to avoid stressing
! 363: ** the heap even further.
! 364: */
! 365: static int pcache1UnderMemoryPressure(PCache1 *pCache){
! 366: if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
! 367: return pcache1.bUnderPressure;
! 368: }else{
! 369: return sqlite3HeapNearlyFull();
! 370: }
! 371: }
! 372:
! 373: /******************************************************************************/
! 374: /******** General Implementation Functions ************************************/
! 375:
! 376: /*
! 377: ** This function is used to resize the hash table used by the cache passed
! 378: ** as the first argument.
! 379: **
! 380: ** The PCache mutex must be held when this function is called.
! 381: */
! 382: static int pcache1ResizeHash(PCache1 *p){
! 383: PgHdr1 **apNew;
! 384: unsigned int nNew;
! 385: unsigned int i;
! 386:
! 387: assert( sqlite3_mutex_held(p->pGroup->mutex) );
! 388:
! 389: nNew = p->nHash*2;
! 390: if( nNew<256 ){
! 391: nNew = 256;
! 392: }
! 393:
! 394: pcache1LeaveMutex(p->pGroup);
! 395: if( p->nHash ){ sqlite3BeginBenignMalloc(); }
! 396: apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
! 397: if( p->nHash ){ sqlite3EndBenignMalloc(); }
! 398: pcache1EnterMutex(p->pGroup);
! 399: if( apNew ){
! 400: memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
! 401: for(i=0; i<p->nHash; i++){
! 402: PgHdr1 *pPage;
! 403: PgHdr1 *pNext = p->apHash[i];
! 404: while( (pPage = pNext)!=0 ){
! 405: unsigned int h = pPage->iKey % nNew;
! 406: pNext = pPage->pNext;
! 407: pPage->pNext = apNew[h];
! 408: apNew[h] = pPage;
! 409: }
! 410: }
! 411: sqlite3_free(p->apHash);
! 412: p->apHash = apNew;
! 413: p->nHash = nNew;
! 414: }
! 415:
! 416: return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
! 417: }
! 418:
! 419: /*
! 420: ** This function is used internally to remove the page pPage from the
! 421: ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
! 422: ** LRU list, then this function is a no-op.
! 423: **
! 424: ** The PGroup mutex must be held when this function is called.
! 425: **
! 426: ** If pPage is NULL then this routine is a no-op.
! 427: */
! 428: static void pcache1PinPage(PgHdr1 *pPage){
! 429: PCache1 *pCache;
! 430: PGroup *pGroup;
! 431:
! 432: if( pPage==0 ) return;
! 433: pCache = pPage->pCache;
! 434: pGroup = pCache->pGroup;
! 435: assert( sqlite3_mutex_held(pGroup->mutex) );
! 436: if( pPage->pLruNext || pPage==pGroup->pLruTail ){
! 437: if( pPage->pLruPrev ){
! 438: pPage->pLruPrev->pLruNext = pPage->pLruNext;
! 439: }
! 440: if( pPage->pLruNext ){
! 441: pPage->pLruNext->pLruPrev = pPage->pLruPrev;
! 442: }
! 443: if( pGroup->pLruHead==pPage ){
! 444: pGroup->pLruHead = pPage->pLruNext;
! 445: }
! 446: if( pGroup->pLruTail==pPage ){
! 447: pGroup->pLruTail = pPage->pLruPrev;
! 448: }
! 449: pPage->pLruNext = 0;
! 450: pPage->pLruPrev = 0;
! 451: pPage->pCache->nRecyclable--;
! 452: }
! 453: }
! 454:
! 455:
! 456: /*
! 457: ** Remove the page supplied as an argument from the hash table
! 458: ** (PCache1.apHash structure) that it is currently stored in.
! 459: **
! 460: ** The PGroup mutex must be held when this function is called.
! 461: */
! 462: static void pcache1RemoveFromHash(PgHdr1 *pPage){
! 463: unsigned int h;
! 464: PCache1 *pCache = pPage->pCache;
! 465: PgHdr1 **pp;
! 466:
! 467: assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
! 468: h = pPage->iKey % pCache->nHash;
! 469: for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
! 470: *pp = (*pp)->pNext;
! 471:
! 472: pCache->nPage--;
! 473: }
! 474:
! 475: /*
! 476: ** If there are currently more than nMaxPage pages allocated, try
! 477: ** to recycle pages to reduce the number allocated to nMaxPage.
! 478: */
! 479: static void pcache1EnforceMaxPage(PGroup *pGroup){
! 480: assert( sqlite3_mutex_held(pGroup->mutex) );
! 481: while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
! 482: PgHdr1 *p = pGroup->pLruTail;
! 483: assert( p->pCache->pGroup==pGroup );
! 484: pcache1PinPage(p);
! 485: pcache1RemoveFromHash(p);
! 486: pcache1FreePage(p);
! 487: }
! 488: }
! 489:
! 490: /*
! 491: ** Discard all pages from cache pCache with a page number (key value)
! 492: ** greater than or equal to iLimit. Any pinned pages that meet this
! 493: ** criteria are unpinned before they are discarded.
! 494: **
! 495: ** The PCache mutex must be held when this function is called.
! 496: */
! 497: static void pcache1TruncateUnsafe(
! 498: PCache1 *pCache, /* The cache to truncate */
! 499: unsigned int iLimit /* Drop pages with this pgno or larger */
! 500: ){
! 501: TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
! 502: unsigned int h;
! 503: assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
! 504: for(h=0; h<pCache->nHash; h++){
! 505: PgHdr1 **pp = &pCache->apHash[h];
! 506: PgHdr1 *pPage;
! 507: while( (pPage = *pp)!=0 ){
! 508: if( pPage->iKey>=iLimit ){
! 509: pCache->nPage--;
! 510: *pp = pPage->pNext;
! 511: pcache1PinPage(pPage);
! 512: pcache1FreePage(pPage);
! 513: }else{
! 514: pp = &pPage->pNext;
! 515: TESTONLY( nPage++; )
! 516: }
! 517: }
! 518: }
! 519: assert( pCache->nPage==nPage );
! 520: }
! 521:
! 522: /******************************************************************************/
! 523: /******** sqlite3_pcache Methods **********************************************/
! 524:
! 525: /*
! 526: ** Implementation of the sqlite3_pcache.xInit method.
! 527: */
! 528: static int pcache1Init(void *NotUsed){
! 529: UNUSED_PARAMETER(NotUsed);
! 530: assert( pcache1.isInit==0 );
! 531: memset(&pcache1, 0, sizeof(pcache1));
! 532: if( sqlite3GlobalConfig.bCoreMutex ){
! 533: pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
! 534: pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
! 535: }
! 536: pcache1.grp.mxPinned = 10;
! 537: pcache1.isInit = 1;
! 538: return SQLITE_OK;
! 539: }
! 540:
! 541: /*
! 542: ** Implementation of the sqlite3_pcache.xShutdown method.
! 543: ** Note that the static mutex allocated in xInit does
! 544: ** not need to be freed.
! 545: */
! 546: static void pcache1Shutdown(void *NotUsed){
! 547: UNUSED_PARAMETER(NotUsed);
! 548: assert( pcache1.isInit!=0 );
! 549: memset(&pcache1, 0, sizeof(pcache1));
! 550: }
! 551:
! 552: /*
! 553: ** Implementation of the sqlite3_pcache.xCreate method.
! 554: **
! 555: ** Allocate a new cache.
! 556: */
! 557: static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
! 558: PCache1 *pCache; /* The newly created page cache */
! 559: PGroup *pGroup; /* The group the new page cache will belong to */
! 560: int sz; /* Bytes of memory required to allocate the new cache */
! 561:
! 562: /*
! 563: ** The seperateCache variable is true if each PCache has its own private
! 564: ** PGroup. In other words, separateCache is true for mode (1) where no
! 565: ** mutexing is required.
! 566: **
! 567: ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
! 568: **
! 569: ** * Always use a unified cache in single-threaded applications
! 570: **
! 571: ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
! 572: ** use separate caches (mode-1)
! 573: */
! 574: #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
! 575: const int separateCache = 0;
! 576: #else
! 577: int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
! 578: #endif
! 579:
! 580: assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
! 581: assert( szExtra < 300 );
! 582:
! 583: sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
! 584: pCache = (PCache1 *)sqlite3_malloc(sz);
! 585: if( pCache ){
! 586: memset(pCache, 0, sz);
! 587: if( separateCache ){
! 588: pGroup = (PGroup*)&pCache[1];
! 589: pGroup->mxPinned = 10;
! 590: }else{
! 591: pGroup = &pcache1.grp;
! 592: }
! 593: pCache->pGroup = pGroup;
! 594: pCache->szPage = szPage;
! 595: pCache->szExtra = szExtra;
! 596: pCache->bPurgeable = (bPurgeable ? 1 : 0);
! 597: if( bPurgeable ){
! 598: pCache->nMin = 10;
! 599: pcache1EnterMutex(pGroup);
! 600: pGroup->nMinPage += pCache->nMin;
! 601: pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
! 602: pcache1LeaveMutex(pGroup);
! 603: }
! 604: }
! 605: return (sqlite3_pcache *)pCache;
! 606: }
! 607:
! 608: /*
! 609: ** Implementation of the sqlite3_pcache.xCachesize method.
! 610: **
! 611: ** Configure the cache_size limit for a cache.
! 612: */
! 613: static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
! 614: PCache1 *pCache = (PCache1 *)p;
! 615: if( pCache->bPurgeable ){
! 616: PGroup *pGroup = pCache->pGroup;
! 617: pcache1EnterMutex(pGroup);
! 618: pGroup->nMaxPage += (nMax - pCache->nMax);
! 619: pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
! 620: pCache->nMax = nMax;
! 621: pCache->n90pct = pCache->nMax*9/10;
! 622: pcache1EnforceMaxPage(pGroup);
! 623: pcache1LeaveMutex(pGroup);
! 624: }
! 625: }
! 626:
! 627: /*
! 628: ** Implementation of the sqlite3_pcache.xShrink method.
! 629: **
! 630: ** Free up as much memory as possible.
! 631: */
! 632: static void pcache1Shrink(sqlite3_pcache *p){
! 633: PCache1 *pCache = (PCache1*)p;
! 634: if( pCache->bPurgeable ){
! 635: PGroup *pGroup = pCache->pGroup;
! 636: int savedMaxPage;
! 637: pcache1EnterMutex(pGroup);
! 638: savedMaxPage = pGroup->nMaxPage;
! 639: pGroup->nMaxPage = 0;
! 640: pcache1EnforceMaxPage(pGroup);
! 641: pGroup->nMaxPage = savedMaxPage;
! 642: pcache1LeaveMutex(pGroup);
! 643: }
! 644: }
! 645:
! 646: /*
! 647: ** Implementation of the sqlite3_pcache.xPagecount method.
! 648: */
! 649: static int pcache1Pagecount(sqlite3_pcache *p){
! 650: int n;
! 651: PCache1 *pCache = (PCache1*)p;
! 652: pcache1EnterMutex(pCache->pGroup);
! 653: n = pCache->nPage;
! 654: pcache1LeaveMutex(pCache->pGroup);
! 655: return n;
! 656: }
! 657:
! 658: /*
! 659: ** Implementation of the sqlite3_pcache.xFetch method.
! 660: **
! 661: ** Fetch a page by key value.
! 662: **
! 663: ** Whether or not a new page may be allocated by this function depends on
! 664: ** the value of the createFlag argument. 0 means do not allocate a new
! 665: ** page. 1 means allocate a new page if space is easily available. 2
! 666: ** means to try really hard to allocate a new page.
! 667: **
! 668: ** For a non-purgeable cache (a cache used as the storage for an in-memory
! 669: ** database) there is really no difference between createFlag 1 and 2. So
! 670: ** the calling function (pcache.c) will never have a createFlag of 1 on
! 671: ** a non-purgeable cache.
! 672: **
! 673: ** There are three different approaches to obtaining space for a page,
! 674: ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
! 675: **
! 676: ** 1. Regardless of the value of createFlag, the cache is searched for a
! 677: ** copy of the requested page. If one is found, it is returned.
! 678: **
! 679: ** 2. If createFlag==0 and the page is not already in the cache, NULL is
! 680: ** returned.
! 681: **
! 682: ** 3. If createFlag is 1, and the page is not already in the cache, then
! 683: ** return NULL (do not allocate a new page) if any of the following
! 684: ** conditions are true:
! 685: **
! 686: ** (a) the number of pages pinned by the cache is greater than
! 687: ** PCache1.nMax, or
! 688: **
! 689: ** (b) the number of pages pinned by the cache is greater than
! 690: ** the sum of nMax for all purgeable caches, less the sum of
! 691: ** nMin for all other purgeable caches, or
! 692: **
! 693: ** 4. If none of the first three conditions apply and the cache is marked
! 694: ** as purgeable, and if one of the following is true:
! 695: **
! 696: ** (a) The number of pages allocated for the cache is already
! 697: ** PCache1.nMax, or
! 698: **
! 699: ** (b) The number of pages allocated for all purgeable caches is
! 700: ** already equal to or greater than the sum of nMax for all
! 701: ** purgeable caches,
! 702: **
! 703: ** (c) The system is under memory pressure and wants to avoid
! 704: ** unnecessary pages cache entry allocations
! 705: **
! 706: ** then attempt to recycle a page from the LRU list. If it is the right
! 707: ** size, return the recycled buffer. Otherwise, free the buffer and
! 708: ** proceed to step 5.
! 709: **
! 710: ** 5. Otherwise, allocate and return a new page buffer.
! 711: */
! 712: static sqlite3_pcache_page *pcache1Fetch(
! 713: sqlite3_pcache *p,
! 714: unsigned int iKey,
! 715: int createFlag
! 716: ){
! 717: unsigned int nPinned;
! 718: PCache1 *pCache = (PCache1 *)p;
! 719: PGroup *pGroup;
! 720: PgHdr1 *pPage = 0;
! 721:
! 722: assert( pCache->bPurgeable || createFlag!=1 );
! 723: assert( pCache->bPurgeable || pCache->nMin==0 );
! 724: assert( pCache->bPurgeable==0 || pCache->nMin==10 );
! 725: assert( pCache->nMin==0 || pCache->bPurgeable );
! 726: pcache1EnterMutex(pGroup = pCache->pGroup);
! 727:
! 728: /* Step 1: Search the hash table for an existing entry. */
! 729: if( pCache->nHash>0 ){
! 730: unsigned int h = iKey % pCache->nHash;
! 731: for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
! 732: }
! 733:
! 734: /* Step 2: Abort if no existing page is found and createFlag is 0 */
! 735: if( pPage || createFlag==0 ){
! 736: pcache1PinPage(pPage);
! 737: goto fetch_out;
! 738: }
! 739:
! 740: /* The pGroup local variable will normally be initialized by the
! 741: ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined,
! 742: ** then pcache1EnterMutex() is a no-op, so we have to initialize the
! 743: ** local variable here. Delaying the initialization of pGroup is an
! 744: ** optimization: The common case is to exit the module before reaching
! 745: ** this point.
! 746: */
! 747: #ifdef SQLITE_MUTEX_OMIT
! 748: pGroup = pCache->pGroup;
! 749: #endif
! 750:
! 751: /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
! 752: assert( pCache->nPage >= pCache->nRecyclable );
! 753: nPinned = pCache->nPage - pCache->nRecyclable;
! 754: assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
! 755: assert( pCache->n90pct == pCache->nMax*9/10 );
! 756: if( createFlag==1 && (
! 757: nPinned>=pGroup->mxPinned
! 758: || nPinned>=pCache->n90pct
! 759: || pcache1UnderMemoryPressure(pCache)
! 760: )){
! 761: goto fetch_out;
! 762: }
! 763:
! 764: if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
! 765: goto fetch_out;
! 766: }
! 767:
! 768: /* Step 4. Try to recycle a page. */
! 769: if( pCache->bPurgeable && pGroup->pLruTail && (
! 770: (pCache->nPage+1>=pCache->nMax)
! 771: || pGroup->nCurrentPage>=pGroup->nMaxPage
! 772: || pcache1UnderMemoryPressure(pCache)
! 773: )){
! 774: PCache1 *pOther;
! 775: pPage = pGroup->pLruTail;
! 776: pcache1RemoveFromHash(pPage);
! 777: pcache1PinPage(pPage);
! 778: pOther = pPage->pCache;
! 779:
! 780: /* We want to verify that szPage and szExtra are the same for pOther
! 781: ** and pCache. Assert that we can verify this by comparing sums. */
! 782: assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
! 783: assert( pCache->szExtra<512 );
! 784: assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
! 785: assert( pOther->szExtra<512 );
! 786:
! 787: if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
! 788: pcache1FreePage(pPage);
! 789: pPage = 0;
! 790: }else{
! 791: pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
! 792: }
! 793: }
! 794:
! 795: /* Step 5. If a usable page buffer has still not been found,
! 796: ** attempt to allocate a new one.
! 797: */
! 798: if( !pPage ){
! 799: if( createFlag==1 ) sqlite3BeginBenignMalloc();
! 800: pPage = pcache1AllocPage(pCache);
! 801: if( createFlag==1 ) sqlite3EndBenignMalloc();
! 802: }
! 803:
! 804: if( pPage ){
! 805: unsigned int h = iKey % pCache->nHash;
! 806: pCache->nPage++;
! 807: pPage->iKey = iKey;
! 808: pPage->pNext = pCache->apHash[h];
! 809: pPage->pCache = pCache;
! 810: pPage->pLruPrev = 0;
! 811: pPage->pLruNext = 0;
! 812: *(void **)pPage->page.pExtra = 0;
! 813: pCache->apHash[h] = pPage;
! 814: }
! 815:
! 816: fetch_out:
! 817: if( pPage && iKey>pCache->iMaxKey ){
! 818: pCache->iMaxKey = iKey;
! 819: }
! 820: pcache1LeaveMutex(pGroup);
! 821: return &pPage->page;
! 822: }
! 823:
! 824:
! 825: /*
! 826: ** Implementation of the sqlite3_pcache.xUnpin method.
! 827: **
! 828: ** Mark a page as unpinned (eligible for asynchronous recycling).
! 829: */
! 830: static void pcache1Unpin(
! 831: sqlite3_pcache *p,
! 832: sqlite3_pcache_page *pPg,
! 833: int reuseUnlikely
! 834: ){
! 835: PCache1 *pCache = (PCache1 *)p;
! 836: PgHdr1 *pPage = (PgHdr1 *)pPg;
! 837: PGroup *pGroup = pCache->pGroup;
! 838:
! 839: assert( pPage->pCache==pCache );
! 840: pcache1EnterMutex(pGroup);
! 841:
! 842: /* It is an error to call this function if the page is already
! 843: ** part of the PGroup LRU list.
! 844: */
! 845: assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
! 846: assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
! 847:
! 848: if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
! 849: pcache1RemoveFromHash(pPage);
! 850: pcache1FreePage(pPage);
! 851: }else{
! 852: /* Add the page to the PGroup LRU list. */
! 853: if( pGroup->pLruHead ){
! 854: pGroup->pLruHead->pLruPrev = pPage;
! 855: pPage->pLruNext = pGroup->pLruHead;
! 856: pGroup->pLruHead = pPage;
! 857: }else{
! 858: pGroup->pLruTail = pPage;
! 859: pGroup->pLruHead = pPage;
! 860: }
! 861: pCache->nRecyclable++;
! 862: }
! 863:
! 864: pcache1LeaveMutex(pCache->pGroup);
! 865: }
! 866:
! 867: /*
! 868: ** Implementation of the sqlite3_pcache.xRekey method.
! 869: */
! 870: static void pcache1Rekey(
! 871: sqlite3_pcache *p,
! 872: sqlite3_pcache_page *pPg,
! 873: unsigned int iOld,
! 874: unsigned int iNew
! 875: ){
! 876: PCache1 *pCache = (PCache1 *)p;
! 877: PgHdr1 *pPage = (PgHdr1 *)pPg;
! 878: PgHdr1 **pp;
! 879: unsigned int h;
! 880: assert( pPage->iKey==iOld );
! 881: assert( pPage->pCache==pCache );
! 882:
! 883: pcache1EnterMutex(pCache->pGroup);
! 884:
! 885: h = iOld%pCache->nHash;
! 886: pp = &pCache->apHash[h];
! 887: while( (*pp)!=pPage ){
! 888: pp = &(*pp)->pNext;
! 889: }
! 890: *pp = pPage->pNext;
! 891:
! 892: h = iNew%pCache->nHash;
! 893: pPage->iKey = iNew;
! 894: pPage->pNext = pCache->apHash[h];
! 895: pCache->apHash[h] = pPage;
! 896: if( iNew>pCache->iMaxKey ){
! 897: pCache->iMaxKey = iNew;
! 898: }
! 899:
! 900: pcache1LeaveMutex(pCache->pGroup);
! 901: }
! 902:
! 903: /*
! 904: ** Implementation of the sqlite3_pcache.xTruncate method.
! 905: **
! 906: ** Discard all unpinned pages in the cache with a page number equal to
! 907: ** or greater than parameter iLimit. Any pinned pages with a page number
! 908: ** equal to or greater than iLimit are implicitly unpinned.
! 909: */
! 910: static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
! 911: PCache1 *pCache = (PCache1 *)p;
! 912: pcache1EnterMutex(pCache->pGroup);
! 913: if( iLimit<=pCache->iMaxKey ){
! 914: pcache1TruncateUnsafe(pCache, iLimit);
! 915: pCache->iMaxKey = iLimit-1;
! 916: }
! 917: pcache1LeaveMutex(pCache->pGroup);
! 918: }
! 919:
! 920: /*
! 921: ** Implementation of the sqlite3_pcache.xDestroy method.
! 922: **
! 923: ** Destroy a cache allocated using pcache1Create().
! 924: */
! 925: static void pcache1Destroy(sqlite3_pcache *p){
! 926: PCache1 *pCache = (PCache1 *)p;
! 927: PGroup *pGroup = pCache->pGroup;
! 928: assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
! 929: pcache1EnterMutex(pGroup);
! 930: pcache1TruncateUnsafe(pCache, 0);
! 931: assert( pGroup->nMaxPage >= pCache->nMax );
! 932: pGroup->nMaxPage -= pCache->nMax;
! 933: assert( pGroup->nMinPage >= pCache->nMin );
! 934: pGroup->nMinPage -= pCache->nMin;
! 935: pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
! 936: pcache1EnforceMaxPage(pGroup);
! 937: pcache1LeaveMutex(pGroup);
! 938: sqlite3_free(pCache->apHash);
! 939: sqlite3_free(pCache);
! 940: }
! 941:
! 942: /*
! 943: ** This function is called during initialization (sqlite3_initialize()) to
! 944: ** install the default pluggable cache module, assuming the user has not
! 945: ** already provided an alternative.
! 946: */
! 947: void sqlite3PCacheSetDefault(void){
! 948: static const sqlite3_pcache_methods2 defaultMethods = {
! 949: 1, /* iVersion */
! 950: 0, /* pArg */
! 951: pcache1Init, /* xInit */
! 952: pcache1Shutdown, /* xShutdown */
! 953: pcache1Create, /* xCreate */
! 954: pcache1Cachesize, /* xCachesize */
! 955: pcache1Pagecount, /* xPagecount */
! 956: pcache1Fetch, /* xFetch */
! 957: pcache1Unpin, /* xUnpin */
! 958: pcache1Rekey, /* xRekey */
! 959: pcache1Truncate, /* xTruncate */
! 960: pcache1Destroy, /* xDestroy */
! 961: pcache1Shrink /* xShrink */
! 962: };
! 963: sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
! 964: }
! 965:
! 966: #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
! 967: /*
! 968: ** This function is called to free superfluous dynamically allocated memory
! 969: ** held by the pager system. Memory in use by any SQLite pager allocated
! 970: ** by the current thread may be sqlite3_free()ed.
! 971: **
! 972: ** nReq is the number of bytes of memory required. Once this much has
! 973: ** been released, the function returns. The return value is the total number
! 974: ** of bytes of memory released.
! 975: */
! 976: int sqlite3PcacheReleaseMemory(int nReq){
! 977: int nFree = 0;
! 978: assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
! 979: assert( sqlite3_mutex_notheld(pcache1.mutex) );
! 980: if( pcache1.pStart==0 ){
! 981: PgHdr1 *p;
! 982: pcache1EnterMutex(&pcache1.grp);
! 983: while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
! 984: nFree += pcache1MemSize(p->page.pBuf);
! 985: #ifdef SQLITE_PCACHE_SEPARATE_HEADER
! 986: nFree += sqlite3MemSize(p);
! 987: #endif
! 988: pcache1PinPage(p);
! 989: pcache1RemoveFromHash(p);
! 990: pcache1FreePage(p);
! 991: }
! 992: pcache1LeaveMutex(&pcache1.grp);
! 993: }
! 994: return nFree;
! 995: }
! 996: #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
! 997:
! 998: #ifdef SQLITE_TEST
! 999: /*
! 1000: ** This function is used by test procedures to inspect the internal state
! 1001: ** of the global cache.
! 1002: */
! 1003: void sqlite3PcacheStats(
! 1004: int *pnCurrent, /* OUT: Total number of pages cached */
! 1005: int *pnMax, /* OUT: Global maximum cache size */
! 1006: int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
! 1007: int *pnRecyclable /* OUT: Total number of pages available for recycling */
! 1008: ){
! 1009: PgHdr1 *p;
! 1010: int nRecyclable = 0;
! 1011: for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
! 1012: nRecyclable++;
! 1013: }
! 1014: *pnCurrent = pcache1.grp.nCurrentPage;
! 1015: *pnMax = (int)pcache1.grp.nMaxPage;
! 1016: *pnMin = (int)pcache1.grp.nMinPage;
! 1017: *pnRecyclable = nRecyclable;
! 1018: }
! 1019: #endif
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>