Annotation of embedaddon/sqlite3/src/rowset.c, revision 1.1

1.1     ! misho       1: /*
        !             2: ** 2008 December 3
        !             3: **
        !             4: ** The author disclaims copyright to this source code.  In place of
        !             5: ** a legal notice, here is a blessing:
        !             6: **
        !             7: **    May you do good and not evil.
        !             8: **    May you find forgiveness for yourself and forgive others.
        !             9: **    May you share freely, never taking more than you give.
        !            10: **
        !            11: *************************************************************************
        !            12: **
        !            13: ** This module implements an object we call a "RowSet".
        !            14: **
        !            15: ** The RowSet object is a collection of rowids.  Rowids
        !            16: ** are inserted into the RowSet in an arbitrary order.  Inserts
        !            17: ** can be intermixed with tests to see if a given rowid has been
        !            18: ** previously inserted into the RowSet.
        !            19: **
        !            20: ** After all inserts are finished, it is possible to extract the
        !            21: ** elements of the RowSet in sorted order.  Once this extraction
        !            22: ** process has started, no new elements may be inserted.
        !            23: **
        !            24: ** Hence, the primitive operations for a RowSet are:
        !            25: **
        !            26: **    CREATE
        !            27: **    INSERT
        !            28: **    TEST
        !            29: **    SMALLEST
        !            30: **    DESTROY
        !            31: **
        !            32: ** The CREATE and DESTROY primitives are the constructor and destructor,
        !            33: ** obviously.  The INSERT primitive adds a new element to the RowSet.
        !            34: ** TEST checks to see if an element is already in the RowSet.  SMALLEST
        !            35: ** extracts the least value from the RowSet.
        !            36: **
        !            37: ** The INSERT primitive might allocate additional memory.  Memory is
        !            38: ** allocated in chunks so most INSERTs do no allocation.  There is an 
        !            39: ** upper bound on the size of allocated memory.  No memory is freed
        !            40: ** until DESTROY.
        !            41: **
        !            42: ** The TEST primitive includes a "batch" number.  The TEST primitive
        !            43: ** will only see elements that were inserted before the last change
        !            44: ** in the batch number.  In other words, if an INSERT occurs between
        !            45: ** two TESTs where the TESTs have the same batch nubmer, then the
        !            46: ** value added by the INSERT will not be visible to the second TEST.
        !            47: ** The initial batch number is zero, so if the very first TEST contains
        !            48: ** a non-zero batch number, it will see all prior INSERTs.
        !            49: **
        !            50: ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
        !            51: ** that is attempted.
        !            52: **
        !            53: ** The cost of an INSERT is roughly constant.  (Sometime new memory
        !            54: ** has to be allocated on an INSERT.)  The cost of a TEST with a new
        !            55: ** batch number is O(NlogN) where N is the number of elements in the RowSet.
        !            56: ** The cost of a TEST using the same batch number is O(logN).  The cost
        !            57: ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
        !            58: ** primitives are constant time.  The cost of DESTROY is O(N).
        !            59: **
        !            60: ** There is an added cost of O(N) when switching between TEST and
        !            61: ** SMALLEST primitives.
        !            62: */
        !            63: #include "sqliteInt.h"
        !            64: 
        !            65: 
        !            66: /*
        !            67: ** Target size for allocation chunks.
        !            68: */
        !            69: #define ROWSET_ALLOCATION_SIZE 1024
        !            70: 
        !            71: /*
        !            72: ** The number of rowset entries per allocation chunk.
        !            73: */
        !            74: #define ROWSET_ENTRY_PER_CHUNK  \
        !            75:                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
        !            76: 
        !            77: /*
        !            78: ** Each entry in a RowSet is an instance of the following object.
        !            79: */
        !            80: struct RowSetEntry {            
        !            81:   i64 v;                        /* ROWID value for this entry */
        !            82:   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
        !            83:   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
        !            84: };
        !            85: 
        !            86: /*
        !            87: ** RowSetEntry objects are allocated in large chunks (instances of the
        !            88: ** following structure) to reduce memory allocation overhead.  The
        !            89: ** chunks are kept on a linked list so that they can be deallocated
        !            90: ** when the RowSet is destroyed.
        !            91: */
        !            92: struct RowSetChunk {
        !            93:   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
        !            94:   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
        !            95: };
        !            96: 
        !            97: /*
        !            98: ** A RowSet in an instance of the following structure.
        !            99: **
        !           100: ** A typedef of this structure if found in sqliteInt.h.
        !           101: */
        !           102: struct RowSet {
        !           103:   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
        !           104:   sqlite3 *db;                   /* The database connection */
        !           105:   struct RowSetEntry *pEntry;    /* List of entries using pRight */
        !           106:   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
        !           107:   struct RowSetEntry *pFresh;    /* Source of new entry objects */
        !           108:   struct RowSetEntry *pTree;     /* Binary tree of entries */
        !           109:   u16 nFresh;                    /* Number of objects on pFresh */
        !           110:   u8 isSorted;                   /* True if pEntry is sorted */
        !           111:   u8 iBatch;                     /* Current insert batch */
        !           112: };
        !           113: 
        !           114: /*
        !           115: ** Turn bulk memory into a RowSet object.  N bytes of memory
        !           116: ** are available at pSpace.  The db pointer is used as a memory context
        !           117: ** for any subsequent allocations that need to occur.
        !           118: ** Return a pointer to the new RowSet object.
        !           119: **
        !           120: ** It must be the case that N is sufficient to make a Rowset.  If not
        !           121: ** an assertion fault occurs.
        !           122: ** 
        !           123: ** If N is larger than the minimum, use the surplus as an initial
        !           124: ** allocation of entries available to be filled.
        !           125: */
        !           126: RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
        !           127:   RowSet *p;
        !           128:   assert( N >= ROUND8(sizeof(*p)) );
        !           129:   p = pSpace;
        !           130:   p->pChunk = 0;
        !           131:   p->db = db;
        !           132:   p->pEntry = 0;
        !           133:   p->pLast = 0;
        !           134:   p->pTree = 0;
        !           135:   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
        !           136:   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
        !           137:   p->isSorted = 1;
        !           138:   p->iBatch = 0;
        !           139:   return p;
        !           140: }
        !           141: 
        !           142: /*
        !           143: ** Deallocate all chunks from a RowSet.  This frees all memory that
        !           144: ** the RowSet has allocated over its lifetime.  This routine is
        !           145: ** the destructor for the RowSet.
        !           146: */
        !           147: void sqlite3RowSetClear(RowSet *p){
        !           148:   struct RowSetChunk *pChunk, *pNextChunk;
        !           149:   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
        !           150:     pNextChunk = pChunk->pNextChunk;
        !           151:     sqlite3DbFree(p->db, pChunk);
        !           152:   }
        !           153:   p->pChunk = 0;
        !           154:   p->nFresh = 0;
        !           155:   p->pEntry = 0;
        !           156:   p->pLast = 0;
        !           157:   p->pTree = 0;
        !           158:   p->isSorted = 1;
        !           159: }
        !           160: 
        !           161: /*
        !           162: ** Insert a new value into a RowSet.
        !           163: **
        !           164: ** The mallocFailed flag of the database connection is set if a
        !           165: ** memory allocation fails.
        !           166: */
        !           167: void sqlite3RowSetInsert(RowSet *p, i64 rowid){
        !           168:   struct RowSetEntry *pEntry;  /* The new entry */
        !           169:   struct RowSetEntry *pLast;   /* The last prior entry */
        !           170:   assert( p!=0 );
        !           171:   if( p->nFresh==0 ){
        !           172:     struct RowSetChunk *pNew;
        !           173:     pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
        !           174:     if( pNew==0 ){
        !           175:       return;
        !           176:     }
        !           177:     pNew->pNextChunk = p->pChunk;
        !           178:     p->pChunk = pNew;
        !           179:     p->pFresh = pNew->aEntry;
        !           180:     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
        !           181:   }
        !           182:   pEntry = p->pFresh++;
        !           183:   p->nFresh--;
        !           184:   pEntry->v = rowid;
        !           185:   pEntry->pRight = 0;
        !           186:   pLast = p->pLast;
        !           187:   if( pLast ){
        !           188:     if( p->isSorted && rowid<=pLast->v ){
        !           189:       p->isSorted = 0;
        !           190:     }
        !           191:     pLast->pRight = pEntry;
        !           192:   }else{
        !           193:     assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
        !           194:     p->pEntry = pEntry;
        !           195:   }
        !           196:   p->pLast = pEntry;
        !           197: }
        !           198: 
        !           199: /*
        !           200: ** Merge two lists of RowSetEntry objects.  Remove duplicates.
        !           201: **
        !           202: ** The input lists are connected via pRight pointers and are 
        !           203: ** assumed to each already be in sorted order.
        !           204: */
        !           205: static struct RowSetEntry *rowSetMerge(
        !           206:   struct RowSetEntry *pA,    /* First sorted list to be merged */
        !           207:   struct RowSetEntry *pB     /* Second sorted list to be merged */
        !           208: ){
        !           209:   struct RowSetEntry head;
        !           210:   struct RowSetEntry *pTail;
        !           211: 
        !           212:   pTail = &head;
        !           213:   while( pA && pB ){
        !           214:     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
        !           215:     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
        !           216:     if( pA->v<pB->v ){
        !           217:       pTail->pRight = pA;
        !           218:       pA = pA->pRight;
        !           219:       pTail = pTail->pRight;
        !           220:     }else if( pB->v<pA->v ){
        !           221:       pTail->pRight = pB;
        !           222:       pB = pB->pRight;
        !           223:       pTail = pTail->pRight;
        !           224:     }else{
        !           225:       pA = pA->pRight;
        !           226:     }
        !           227:   }
        !           228:   if( pA ){
        !           229:     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
        !           230:     pTail->pRight = pA;
        !           231:   }else{
        !           232:     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
        !           233:     pTail->pRight = pB;
        !           234:   }
        !           235:   return head.pRight;
        !           236: }
        !           237: 
        !           238: /*
        !           239: ** Sort all elements on the pEntry list of the RowSet into ascending order.
        !           240: */ 
        !           241: static void rowSetSort(RowSet *p){
        !           242:   unsigned int i;
        !           243:   struct RowSetEntry *pEntry;
        !           244:   struct RowSetEntry *aBucket[40];
        !           245: 
        !           246:   assert( p->isSorted==0 );
        !           247:   memset(aBucket, 0, sizeof(aBucket));
        !           248:   while( p->pEntry ){
        !           249:     pEntry = p->pEntry;
        !           250:     p->pEntry = pEntry->pRight;
        !           251:     pEntry->pRight = 0;
        !           252:     for(i=0; aBucket[i]; i++){
        !           253:       pEntry = rowSetMerge(aBucket[i], pEntry);
        !           254:       aBucket[i] = 0;
        !           255:     }
        !           256:     aBucket[i] = pEntry;
        !           257:   }
        !           258:   pEntry = 0;
        !           259:   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
        !           260:     pEntry = rowSetMerge(pEntry, aBucket[i]);
        !           261:   }
        !           262:   p->pEntry = pEntry;
        !           263:   p->pLast = 0;
        !           264:   p->isSorted = 1;
        !           265: }
        !           266: 
        !           267: 
        !           268: /*
        !           269: ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
        !           270: ** Convert this tree into a linked list connected by the pRight pointers
        !           271: ** and return pointers to the first and last elements of the new list.
        !           272: */
        !           273: static void rowSetTreeToList(
        !           274:   struct RowSetEntry *pIn,         /* Root of the input tree */
        !           275:   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
        !           276:   struct RowSetEntry **ppLast      /* Write tail of the output list here */
        !           277: ){
        !           278:   assert( pIn!=0 );
        !           279:   if( pIn->pLeft ){
        !           280:     struct RowSetEntry *p;
        !           281:     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
        !           282:     p->pRight = pIn;
        !           283:   }else{
        !           284:     *ppFirst = pIn;
        !           285:   }
        !           286:   if( pIn->pRight ){
        !           287:     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
        !           288:   }else{
        !           289:     *ppLast = pIn;
        !           290:   }
        !           291:   assert( (*ppLast)->pRight==0 );
        !           292: }
        !           293: 
        !           294: 
        !           295: /*
        !           296: ** Convert a sorted list of elements (connected by pRight) into a binary
        !           297: ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
        !           298: ** node taken from the head of *ppList.  A depth of 2 means a tree with
        !           299: ** three nodes.  And so forth.
        !           300: **
        !           301: ** Use as many entries from the input list as required and update the
        !           302: ** *ppList to point to the unused elements of the list.  If the input
        !           303: ** list contains too few elements, then construct an incomplete tree
        !           304: ** and leave *ppList set to NULL.
        !           305: **
        !           306: ** Return a pointer to the root of the constructed binary tree.
        !           307: */
        !           308: static struct RowSetEntry *rowSetNDeepTree(
        !           309:   struct RowSetEntry **ppList,
        !           310:   int iDepth
        !           311: ){
        !           312:   struct RowSetEntry *p;         /* Root of the new tree */
        !           313:   struct RowSetEntry *pLeft;     /* Left subtree */
        !           314:   if( *ppList==0 ){
        !           315:     return 0;
        !           316:   }
        !           317:   if( iDepth==1 ){
        !           318:     p = *ppList;
        !           319:     *ppList = p->pRight;
        !           320:     p->pLeft = p->pRight = 0;
        !           321:     return p;
        !           322:   }
        !           323:   pLeft = rowSetNDeepTree(ppList, iDepth-1);
        !           324:   p = *ppList;
        !           325:   if( p==0 ){
        !           326:     return pLeft;
        !           327:   }
        !           328:   p->pLeft = pLeft;
        !           329:   *ppList = p->pRight;
        !           330:   p->pRight = rowSetNDeepTree(ppList, iDepth-1);
        !           331:   return p;
        !           332: }
        !           333: 
        !           334: /*
        !           335: ** Convert a sorted list of elements into a binary tree. Make the tree
        !           336: ** as deep as it needs to be in order to contain the entire list.
        !           337: */
        !           338: static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
        !           339:   int iDepth;           /* Depth of the tree so far */
        !           340:   struct RowSetEntry *p;       /* Current tree root */
        !           341:   struct RowSetEntry *pLeft;   /* Left subtree */
        !           342: 
        !           343:   assert( pList!=0 );
        !           344:   p = pList;
        !           345:   pList = p->pRight;
        !           346:   p->pLeft = p->pRight = 0;
        !           347:   for(iDepth=1; pList; iDepth++){
        !           348:     pLeft = p;
        !           349:     p = pList;
        !           350:     pList = p->pRight;
        !           351:     p->pLeft = pLeft;
        !           352:     p->pRight = rowSetNDeepTree(&pList, iDepth);
        !           353:   }
        !           354:   return p;
        !           355: }
        !           356: 
        !           357: /*
        !           358: ** Convert the list in p->pEntry into a sorted list if it is not
        !           359: ** sorted already.  If there is a binary tree on p->pTree, then
        !           360: ** convert it into a list too and merge it into the p->pEntry list.
        !           361: */
        !           362: static void rowSetToList(RowSet *p){
        !           363:   if( !p->isSorted ){
        !           364:     rowSetSort(p);
        !           365:   }
        !           366:   if( p->pTree ){
        !           367:     struct RowSetEntry *pHead, *pTail;
        !           368:     rowSetTreeToList(p->pTree, &pHead, &pTail);
        !           369:     p->pTree = 0;
        !           370:     p->pEntry = rowSetMerge(p->pEntry, pHead);
        !           371:   }
        !           372: }
        !           373: 
        !           374: /*
        !           375: ** Extract the smallest element from the RowSet.
        !           376: ** Write the element into *pRowid.  Return 1 on success.  Return
        !           377: ** 0 if the RowSet is already empty.
        !           378: **
        !           379: ** After this routine has been called, the sqlite3RowSetInsert()
        !           380: ** routine may not be called again.  
        !           381: */
        !           382: int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
        !           383:   rowSetToList(p);
        !           384:   if( p->pEntry ){
        !           385:     *pRowid = p->pEntry->v;
        !           386:     p->pEntry = p->pEntry->pRight;
        !           387:     if( p->pEntry==0 ){
        !           388:       sqlite3RowSetClear(p);
        !           389:     }
        !           390:     return 1;
        !           391:   }else{
        !           392:     return 0;
        !           393:   }
        !           394: }
        !           395: 
        !           396: /*
        !           397: ** Check to see if element iRowid was inserted into the the rowset as
        !           398: ** part of any insert batch prior to iBatch.  Return 1 or 0.
        !           399: */
        !           400: int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
        !           401:   struct RowSetEntry *p;
        !           402:   if( iBatch!=pRowSet->iBatch ){
        !           403:     if( pRowSet->pEntry ){
        !           404:       rowSetToList(pRowSet);
        !           405:       pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
        !           406:       pRowSet->pEntry = 0;
        !           407:       pRowSet->pLast = 0;
        !           408:     }
        !           409:     pRowSet->iBatch = iBatch;
        !           410:   }
        !           411:   p = pRowSet->pTree;
        !           412:   while( p ){
        !           413:     if( p->v<iRowid ){
        !           414:       p = p->pRight;
        !           415:     }else if( p->v>iRowid ){
        !           416:       p = p->pLeft;
        !           417:     }else{
        !           418:       return 1;
        !           419:     }
        !           420:   }
        !           421:   return 0;
        !           422: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>