File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / select.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2001 September 15
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains C code routines that are called by the parser
   13: ** to handle SELECT statements in SQLite.
   14: */
   15: #include "sqliteInt.h"
   16: 
   17: 
   18: /*
   19: ** Delete all the content of a Select structure but do not deallocate
   20: ** the select structure itself.
   21: */
   22: static void clearSelect(sqlite3 *db, Select *p){
   23:   sqlite3ExprListDelete(db, p->pEList);
   24:   sqlite3SrcListDelete(db, p->pSrc);
   25:   sqlite3ExprDelete(db, p->pWhere);
   26:   sqlite3ExprListDelete(db, p->pGroupBy);
   27:   sqlite3ExprDelete(db, p->pHaving);
   28:   sqlite3ExprListDelete(db, p->pOrderBy);
   29:   sqlite3SelectDelete(db, p->pPrior);
   30:   sqlite3ExprDelete(db, p->pLimit);
   31:   sqlite3ExprDelete(db, p->pOffset);
   32: }
   33: 
   34: /*
   35: ** Initialize a SelectDest structure.
   36: */
   37: void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
   38:   pDest->eDest = (u8)eDest;
   39:   pDest->iParm = iParm;
   40:   pDest->affinity = 0;
   41:   pDest->iMem = 0;
   42:   pDest->nMem = 0;
   43: }
   44: 
   45: 
   46: /*
   47: ** Allocate a new Select structure and return a pointer to that
   48: ** structure.
   49: */
   50: Select *sqlite3SelectNew(
   51:   Parse *pParse,        /* Parsing context */
   52:   ExprList *pEList,     /* which columns to include in the result */
   53:   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
   54:   Expr *pWhere,         /* the WHERE clause */
   55:   ExprList *pGroupBy,   /* the GROUP BY clause */
   56:   Expr *pHaving,        /* the HAVING clause */
   57:   ExprList *pOrderBy,   /* the ORDER BY clause */
   58:   int isDistinct,       /* true if the DISTINCT keyword is present */
   59:   Expr *pLimit,         /* LIMIT value.  NULL means not used */
   60:   Expr *pOffset         /* OFFSET value.  NULL means no offset */
   61: ){
   62:   Select *pNew;
   63:   Select standin;
   64:   sqlite3 *db = pParse->db;
   65:   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
   66:   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
   67:   if( pNew==0 ){
   68:     assert( db->mallocFailed );
   69:     pNew = &standin;
   70:     memset(pNew, 0, sizeof(*pNew));
   71:   }
   72:   if( pEList==0 ){
   73:     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
   74:   }
   75:   pNew->pEList = pEList;
   76:   pNew->pSrc = pSrc;
   77:   pNew->pWhere = pWhere;
   78:   pNew->pGroupBy = pGroupBy;
   79:   pNew->pHaving = pHaving;
   80:   pNew->pOrderBy = pOrderBy;
   81:   pNew->selFlags = isDistinct ? SF_Distinct : 0;
   82:   pNew->op = TK_SELECT;
   83:   pNew->pLimit = pLimit;
   84:   pNew->pOffset = pOffset;
   85:   assert( pOffset==0 || pLimit!=0 );
   86:   pNew->addrOpenEphm[0] = -1;
   87:   pNew->addrOpenEphm[1] = -1;
   88:   pNew->addrOpenEphm[2] = -1;
   89:   if( db->mallocFailed ) {
   90:     clearSelect(db, pNew);
   91:     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
   92:     pNew = 0;
   93:   }else{
   94:     assert( pNew->pSrc!=0 || pParse->nErr>0 );
   95:   }
   96:   assert( pNew!=&standin );
   97:   return pNew;
   98: }
   99: 
  100: /*
  101: ** Delete the given Select structure and all of its substructures.
  102: */
  103: void sqlite3SelectDelete(sqlite3 *db, Select *p){
  104:   if( p ){
  105:     clearSelect(db, p);
  106:     sqlite3DbFree(db, p);
  107:   }
  108: }
  109: 
  110: /*
  111: ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
  112: ** type of join.  Return an integer constant that expresses that type
  113: ** in terms of the following bit values:
  114: **
  115: **     JT_INNER
  116: **     JT_CROSS
  117: **     JT_OUTER
  118: **     JT_NATURAL
  119: **     JT_LEFT
  120: **     JT_RIGHT
  121: **
  122: ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
  123: **
  124: ** If an illegal or unsupported join type is seen, then still return
  125: ** a join type, but put an error in the pParse structure.
  126: */
  127: int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
  128:   int jointype = 0;
  129:   Token *apAll[3];
  130:   Token *p;
  131:                              /*   0123456789 123456789 123456789 123 */
  132:   static const char zKeyText[] = "naturaleftouterightfullinnercross";
  133:   static const struct {
  134:     u8 i;        /* Beginning of keyword text in zKeyText[] */
  135:     u8 nChar;    /* Length of the keyword in characters */
  136:     u8 code;     /* Join type mask */
  137:   } aKeyword[] = {
  138:     /* natural */ { 0,  7, JT_NATURAL                },
  139:     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
  140:     /* outer   */ { 10, 5, JT_OUTER                  },
  141:     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
  142:     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
  143:     /* inner   */ { 23, 5, JT_INNER                  },
  144:     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
  145:   };
  146:   int i, j;
  147:   apAll[0] = pA;
  148:   apAll[1] = pB;
  149:   apAll[2] = pC;
  150:   for(i=0; i<3 && apAll[i]; i++){
  151:     p = apAll[i];
  152:     for(j=0; j<ArraySize(aKeyword); j++){
  153:       if( p->n==aKeyword[j].nChar 
  154:           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
  155:         jointype |= aKeyword[j].code;
  156:         break;
  157:       }
  158:     }
  159:     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
  160:     if( j>=ArraySize(aKeyword) ){
  161:       jointype |= JT_ERROR;
  162:       break;
  163:     }
  164:   }
  165:   if(
  166:      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
  167:      (jointype & JT_ERROR)!=0
  168:   ){
  169:     const char *zSp = " ";
  170:     assert( pB!=0 );
  171:     if( pC==0 ){ zSp++; }
  172:     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
  173:        "%T %T%s%T", pA, pB, zSp, pC);
  174:     jointype = JT_INNER;
  175:   }else if( (jointype & JT_OUTER)!=0 
  176:          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
  177:     sqlite3ErrorMsg(pParse, 
  178:       "RIGHT and FULL OUTER JOINs are not currently supported");
  179:     jointype = JT_INNER;
  180:   }
  181:   return jointype;
  182: }
  183: 
  184: /*
  185: ** Return the index of a column in a table.  Return -1 if the column
  186: ** is not contained in the table.
  187: */
  188: static int columnIndex(Table *pTab, const char *zCol){
  189:   int i;
  190:   for(i=0; i<pTab->nCol; i++){
  191:     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
  192:   }
  193:   return -1;
  194: }
  195: 
  196: /*
  197: ** Search the first N tables in pSrc, from left to right, looking for a
  198: ** table that has a column named zCol.  
  199: **
  200: ** When found, set *piTab and *piCol to the table index and column index
  201: ** of the matching column and return TRUE.
  202: **
  203: ** If not found, return FALSE.
  204: */
  205: static int tableAndColumnIndex(
  206:   SrcList *pSrc,       /* Array of tables to search */
  207:   int N,               /* Number of tables in pSrc->a[] to search */
  208:   const char *zCol,    /* Name of the column we are looking for */
  209:   int *piTab,          /* Write index of pSrc->a[] here */
  210:   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
  211: ){
  212:   int i;               /* For looping over tables in pSrc */
  213:   int iCol;            /* Index of column matching zCol */
  214: 
  215:   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
  216:   for(i=0; i<N; i++){
  217:     iCol = columnIndex(pSrc->a[i].pTab, zCol);
  218:     if( iCol>=0 ){
  219:       if( piTab ){
  220:         *piTab = i;
  221:         *piCol = iCol;
  222:       }
  223:       return 1;
  224:     }
  225:   }
  226:   return 0;
  227: }
  228: 
  229: /*
  230: ** This function is used to add terms implied by JOIN syntax to the
  231: ** WHERE clause expression of a SELECT statement. The new term, which
  232: ** is ANDed with the existing WHERE clause, is of the form:
  233: **
  234: **    (tab1.col1 = tab2.col2)
  235: **
  236: ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 
  237: ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
  238: ** column iColRight of tab2.
  239: */
  240: static void addWhereTerm(
  241:   Parse *pParse,                  /* Parsing context */
  242:   SrcList *pSrc,                  /* List of tables in FROM clause */
  243:   int iLeft,                      /* Index of first table to join in pSrc */
  244:   int iColLeft,                   /* Index of column in first table */
  245:   int iRight,                     /* Index of second table in pSrc */
  246:   int iColRight,                  /* Index of column in second table */
  247:   int isOuterJoin,                /* True if this is an OUTER join */
  248:   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
  249: ){
  250:   sqlite3 *db = pParse->db;
  251:   Expr *pE1;
  252:   Expr *pE2;
  253:   Expr *pEq;
  254: 
  255:   assert( iLeft<iRight );
  256:   assert( pSrc->nSrc>iRight );
  257:   assert( pSrc->a[iLeft].pTab );
  258:   assert( pSrc->a[iRight].pTab );
  259: 
  260:   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
  261:   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
  262: 
  263:   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
  264:   if( pEq && isOuterJoin ){
  265:     ExprSetProperty(pEq, EP_FromJoin);
  266:     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
  267:     ExprSetIrreducible(pEq);
  268:     pEq->iRightJoinTable = (i16)pE2->iTable;
  269:   }
  270:   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
  271: }
  272: 
  273: /*
  274: ** Set the EP_FromJoin property on all terms of the given expression.
  275: ** And set the Expr.iRightJoinTable to iTable for every term in the
  276: ** expression.
  277: **
  278: ** The EP_FromJoin property is used on terms of an expression to tell
  279: ** the LEFT OUTER JOIN processing logic that this term is part of the
  280: ** join restriction specified in the ON or USING clause and not a part
  281: ** of the more general WHERE clause.  These terms are moved over to the
  282: ** WHERE clause during join processing but we need to remember that they
  283: ** originated in the ON or USING clause.
  284: **
  285: ** The Expr.iRightJoinTable tells the WHERE clause processing that the
  286: ** expression depends on table iRightJoinTable even if that table is not
  287: ** explicitly mentioned in the expression.  That information is needed
  288: ** for cases like this:
  289: **
  290: **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
  291: **
  292: ** The where clause needs to defer the handling of the t1.x=5
  293: ** term until after the t2 loop of the join.  In that way, a
  294: ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
  295: ** defer the handling of t1.x=5, it will be processed immediately
  296: ** after the t1 loop and rows with t1.x!=5 will never appear in
  297: ** the output, which is incorrect.
  298: */
  299: static void setJoinExpr(Expr *p, int iTable){
  300:   while( p ){
  301:     ExprSetProperty(p, EP_FromJoin);
  302:     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
  303:     ExprSetIrreducible(p);
  304:     p->iRightJoinTable = (i16)iTable;
  305:     setJoinExpr(p->pLeft, iTable);
  306:     p = p->pRight;
  307:   } 
  308: }
  309: 
  310: /*
  311: ** This routine processes the join information for a SELECT statement.
  312: ** ON and USING clauses are converted into extra terms of the WHERE clause.
  313: ** NATURAL joins also create extra WHERE clause terms.
  314: **
  315: ** The terms of a FROM clause are contained in the Select.pSrc structure.
  316: ** The left most table is the first entry in Select.pSrc.  The right-most
  317: ** table is the last entry.  The join operator is held in the entry to
  318: ** the left.  Thus entry 0 contains the join operator for the join between
  319: ** entries 0 and 1.  Any ON or USING clauses associated with the join are
  320: ** also attached to the left entry.
  321: **
  322: ** This routine returns the number of errors encountered.
  323: */
  324: static int sqliteProcessJoin(Parse *pParse, Select *p){
  325:   SrcList *pSrc;                  /* All tables in the FROM clause */
  326:   int i, j;                       /* Loop counters */
  327:   struct SrcList_item *pLeft;     /* Left table being joined */
  328:   struct SrcList_item *pRight;    /* Right table being joined */
  329: 
  330:   pSrc = p->pSrc;
  331:   pLeft = &pSrc->a[0];
  332:   pRight = &pLeft[1];
  333:   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
  334:     Table *pLeftTab = pLeft->pTab;
  335:     Table *pRightTab = pRight->pTab;
  336:     int isOuter;
  337: 
  338:     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
  339:     isOuter = (pRight->jointype & JT_OUTER)!=0;
  340: 
  341:     /* When the NATURAL keyword is present, add WHERE clause terms for
  342:     ** every column that the two tables have in common.
  343:     */
  344:     if( pRight->jointype & JT_NATURAL ){
  345:       if( pRight->pOn || pRight->pUsing ){
  346:         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
  347:            "an ON or USING clause", 0);
  348:         return 1;
  349:       }
  350:       for(j=0; j<pRightTab->nCol; j++){
  351:         char *zName;   /* Name of column in the right table */
  352:         int iLeft;     /* Matching left table */
  353:         int iLeftCol;  /* Matching column in the left table */
  354: 
  355:         zName = pRightTab->aCol[j].zName;
  356:         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
  357:           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
  358:                        isOuter, &p->pWhere);
  359:         }
  360:       }
  361:     }
  362: 
  363:     /* Disallow both ON and USING clauses in the same join
  364:     */
  365:     if( pRight->pOn && pRight->pUsing ){
  366:       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
  367:         "clauses in the same join");
  368:       return 1;
  369:     }
  370: 
  371:     /* Add the ON clause to the end of the WHERE clause, connected by
  372:     ** an AND operator.
  373:     */
  374:     if( pRight->pOn ){
  375:       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
  376:       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
  377:       pRight->pOn = 0;
  378:     }
  379: 
  380:     /* Create extra terms on the WHERE clause for each column named
  381:     ** in the USING clause.  Example: If the two tables to be joined are 
  382:     ** A and B and the USING clause names X, Y, and Z, then add this
  383:     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
  384:     ** Report an error if any column mentioned in the USING clause is
  385:     ** not contained in both tables to be joined.
  386:     */
  387:     if( pRight->pUsing ){
  388:       IdList *pList = pRight->pUsing;
  389:       for(j=0; j<pList->nId; j++){
  390:         char *zName;     /* Name of the term in the USING clause */
  391:         int iLeft;       /* Table on the left with matching column name */
  392:         int iLeftCol;    /* Column number of matching column on the left */
  393:         int iRightCol;   /* Column number of matching column on the right */
  394: 
  395:         zName = pList->a[j].zName;
  396:         iRightCol = columnIndex(pRightTab, zName);
  397:         if( iRightCol<0
  398:          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
  399:         ){
  400:           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
  401:             "not present in both tables", zName);
  402:           return 1;
  403:         }
  404:         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
  405:                      isOuter, &p->pWhere);
  406:       }
  407:     }
  408:   }
  409:   return 0;
  410: }
  411: 
  412: /*
  413: ** Insert code into "v" that will push the record on the top of the
  414: ** stack into the sorter.
  415: */
  416: static void pushOntoSorter(
  417:   Parse *pParse,         /* Parser context */
  418:   ExprList *pOrderBy,    /* The ORDER BY clause */
  419:   Select *pSelect,       /* The whole SELECT statement */
  420:   int regData            /* Register holding data to be sorted */
  421: ){
  422:   Vdbe *v = pParse->pVdbe;
  423:   int nExpr = pOrderBy->nExpr;
  424:   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
  425:   int regRecord = sqlite3GetTempReg(pParse);
  426:   int op;
  427:   sqlite3ExprCacheClear(pParse);
  428:   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
  429:   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
  430:   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
  431:   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
  432:   if( pSelect->selFlags & SF_UseSorter ){
  433:     op = OP_SorterInsert;
  434:   }else{
  435:     op = OP_IdxInsert;
  436:   }
  437:   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
  438:   sqlite3ReleaseTempReg(pParse, regRecord);
  439:   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
  440:   if( pSelect->iLimit ){
  441:     int addr1, addr2;
  442:     int iLimit;
  443:     if( pSelect->iOffset ){
  444:       iLimit = pSelect->iOffset+1;
  445:     }else{
  446:       iLimit = pSelect->iLimit;
  447:     }
  448:     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
  449:     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
  450:     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
  451:     sqlite3VdbeJumpHere(v, addr1);
  452:     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
  453:     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
  454:     sqlite3VdbeJumpHere(v, addr2);
  455:   }
  456: }
  457: 
  458: /*
  459: ** Add code to implement the OFFSET
  460: */
  461: static void codeOffset(
  462:   Vdbe *v,          /* Generate code into this VM */
  463:   Select *p,        /* The SELECT statement being coded */
  464:   int iContinue     /* Jump here to skip the current record */
  465: ){
  466:   if( p->iOffset && iContinue!=0 ){
  467:     int addr;
  468:     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
  469:     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
  470:     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
  471:     VdbeComment((v, "skip OFFSET records"));
  472:     sqlite3VdbeJumpHere(v, addr);
  473:   }
  474: }
  475: 
  476: /*
  477: ** Add code that will check to make sure the N registers starting at iMem
  478: ** form a distinct entry.  iTab is a sorting index that holds previously
  479: ** seen combinations of the N values.  A new entry is made in iTab
  480: ** if the current N values are new.
  481: **
  482: ** A jump to addrRepeat is made and the N+1 values are popped from the
  483: ** stack if the top N elements are not distinct.
  484: */
  485: static void codeDistinct(
  486:   Parse *pParse,     /* Parsing and code generating context */
  487:   int iTab,          /* A sorting index used to test for distinctness */
  488:   int addrRepeat,    /* Jump to here if not distinct */
  489:   int N,             /* Number of elements */
  490:   int iMem           /* First element */
  491: ){
  492:   Vdbe *v;
  493:   int r1;
  494: 
  495:   v = pParse->pVdbe;
  496:   r1 = sqlite3GetTempReg(pParse);
  497:   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
  498:   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  499:   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
  500:   sqlite3ReleaseTempReg(pParse, r1);
  501: }
  502: 
  503: #ifndef SQLITE_OMIT_SUBQUERY
  504: /*
  505: ** Generate an error message when a SELECT is used within a subexpression
  506: ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
  507: ** column.  We do this in a subroutine because the error used to occur
  508: ** in multiple places.  (The error only occurs in one place now, but we
  509: ** retain the subroutine to minimize code disruption.)
  510: */
  511: static int checkForMultiColumnSelectError(
  512:   Parse *pParse,       /* Parse context. */
  513:   SelectDest *pDest,   /* Destination of SELECT results */
  514:   int nExpr            /* Number of result columns returned by SELECT */
  515: ){
  516:   int eDest = pDest->eDest;
  517:   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
  518:     sqlite3ErrorMsg(pParse, "only a single result allowed for "
  519:        "a SELECT that is part of an expression");
  520:     return 1;
  521:   }else{
  522:     return 0;
  523:   }
  524: }
  525: #endif
  526: 
  527: /*
  528: ** This routine generates the code for the inside of the inner loop
  529: ** of a SELECT.
  530: **
  531: ** If srcTab and nColumn are both zero, then the pEList expressions
  532: ** are evaluated in order to get the data for this row.  If nColumn>0
  533: ** then data is pulled from srcTab and pEList is used only to get the
  534: ** datatypes for each column.
  535: */
  536: static void selectInnerLoop(
  537:   Parse *pParse,          /* The parser context */
  538:   Select *p,              /* The complete select statement being coded */
  539:   ExprList *pEList,       /* List of values being extracted */
  540:   int srcTab,             /* Pull data from this table */
  541:   int nColumn,            /* Number of columns in the source table */
  542:   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
  543:   int distinct,           /* If >=0, make sure results are distinct */
  544:   SelectDest *pDest,      /* How to dispose of the results */
  545:   int iContinue,          /* Jump here to continue with next row */
  546:   int iBreak              /* Jump here to break out of the inner loop */
  547: ){
  548:   Vdbe *v = pParse->pVdbe;
  549:   int i;
  550:   int hasDistinct;        /* True if the DISTINCT keyword is present */
  551:   int regResult;              /* Start of memory holding result set */
  552:   int eDest = pDest->eDest;   /* How to dispose of results */
  553:   int iParm = pDest->iParm;   /* First argument to disposal method */
  554:   int nResultCol;             /* Number of result columns */
  555: 
  556:   assert( v );
  557:   if( NEVER(v==0) ) return;
  558:   assert( pEList!=0 );
  559:   hasDistinct = distinct>=0;
  560:   if( pOrderBy==0 && !hasDistinct ){
  561:     codeOffset(v, p, iContinue);
  562:   }
  563: 
  564:   /* Pull the requested columns.
  565:   */
  566:   if( nColumn>0 ){
  567:     nResultCol = nColumn;
  568:   }else{
  569:     nResultCol = pEList->nExpr;
  570:   }
  571:   if( pDest->iMem==0 ){
  572:     pDest->iMem = pParse->nMem+1;
  573:     pDest->nMem = nResultCol;
  574:     pParse->nMem += nResultCol;
  575:   }else{ 
  576:     assert( pDest->nMem==nResultCol );
  577:   }
  578:   regResult = pDest->iMem;
  579:   if( nColumn>0 ){
  580:     for(i=0; i<nColumn; i++){
  581:       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
  582:     }
  583:   }else if( eDest!=SRT_Exists ){
  584:     /* If the destination is an EXISTS(...) expression, the actual
  585:     ** values returned by the SELECT are not required.
  586:     */
  587:     sqlite3ExprCacheClear(pParse);
  588:     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
  589:   }
  590:   nColumn = nResultCol;
  591: 
  592:   /* If the DISTINCT keyword was present on the SELECT statement
  593:   ** and this row has been seen before, then do not make this row
  594:   ** part of the result.
  595:   */
  596:   if( hasDistinct ){
  597:     assert( pEList!=0 );
  598:     assert( pEList->nExpr==nColumn );
  599:     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
  600:     if( pOrderBy==0 ){
  601:       codeOffset(v, p, iContinue);
  602:     }
  603:   }
  604: 
  605:   switch( eDest ){
  606:     /* In this mode, write each query result to the key of the temporary
  607:     ** table iParm.
  608:     */
  609: #ifndef SQLITE_OMIT_COMPOUND_SELECT
  610:     case SRT_Union: {
  611:       int r1;
  612:       r1 = sqlite3GetTempReg(pParse);
  613:       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
  614:       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
  615:       sqlite3ReleaseTempReg(pParse, r1);
  616:       break;
  617:     }
  618: 
  619:     /* Construct a record from the query result, but instead of
  620:     ** saving that record, use it as a key to delete elements from
  621:     ** the temporary table iParm.
  622:     */
  623:     case SRT_Except: {
  624:       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
  625:       break;
  626:     }
  627: #endif
  628: 
  629:     /* Store the result as data using a unique key.
  630:     */
  631:     case SRT_Table:
  632:     case SRT_EphemTab: {
  633:       int r1 = sqlite3GetTempReg(pParse);
  634:       testcase( eDest==SRT_Table );
  635:       testcase( eDest==SRT_EphemTab );
  636:       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
  637:       if( pOrderBy ){
  638:         pushOntoSorter(pParse, pOrderBy, p, r1);
  639:       }else{
  640:         int r2 = sqlite3GetTempReg(pParse);
  641:         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
  642:         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
  643:         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  644:         sqlite3ReleaseTempReg(pParse, r2);
  645:       }
  646:       sqlite3ReleaseTempReg(pParse, r1);
  647:       break;
  648:     }
  649: 
  650: #ifndef SQLITE_OMIT_SUBQUERY
  651:     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
  652:     ** then there should be a single item on the stack.  Write this
  653:     ** item into the set table with bogus data.
  654:     */
  655:     case SRT_Set: {
  656:       assert( nColumn==1 );
  657:       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
  658:       if( pOrderBy ){
  659:         /* At first glance you would think we could optimize out the
  660:         ** ORDER BY in this case since the order of entries in the set
  661:         ** does not matter.  But there might be a LIMIT clause, in which
  662:         ** case the order does matter */
  663:         pushOntoSorter(pParse, pOrderBy, p, regResult);
  664:       }else{
  665:         int r1 = sqlite3GetTempReg(pParse);
  666:         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
  667:         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
  668:         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
  669:         sqlite3ReleaseTempReg(pParse, r1);
  670:       }
  671:       break;
  672:     }
  673: 
  674:     /* If any row exist in the result set, record that fact and abort.
  675:     */
  676:     case SRT_Exists: {
  677:       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
  678:       /* The LIMIT clause will terminate the loop for us */
  679:       break;
  680:     }
  681: 
  682:     /* If this is a scalar select that is part of an expression, then
  683:     ** store the results in the appropriate memory cell and break out
  684:     ** of the scan loop.
  685:     */
  686:     case SRT_Mem: {
  687:       assert( nColumn==1 );
  688:       if( pOrderBy ){
  689:         pushOntoSorter(pParse, pOrderBy, p, regResult);
  690:       }else{
  691:         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
  692:         /* The LIMIT clause will jump out of the loop for us */
  693:       }
  694:       break;
  695:     }
  696: #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
  697: 
  698:     /* Send the data to the callback function or to a subroutine.  In the
  699:     ** case of a subroutine, the subroutine itself is responsible for
  700:     ** popping the data from the stack.
  701:     */
  702:     case SRT_Coroutine:
  703:     case SRT_Output: {
  704:       testcase( eDest==SRT_Coroutine );
  705:       testcase( eDest==SRT_Output );
  706:       if( pOrderBy ){
  707:         int r1 = sqlite3GetTempReg(pParse);
  708:         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
  709:         pushOntoSorter(pParse, pOrderBy, p, r1);
  710:         sqlite3ReleaseTempReg(pParse, r1);
  711:       }else if( eDest==SRT_Coroutine ){
  712:         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
  713:       }else{
  714:         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
  715:         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
  716:       }
  717:       break;
  718:     }
  719: 
  720: #if !defined(SQLITE_OMIT_TRIGGER)
  721:     /* Discard the results.  This is used for SELECT statements inside
  722:     ** the body of a TRIGGER.  The purpose of such selects is to call
  723:     ** user-defined functions that have side effects.  We do not care
  724:     ** about the actual results of the select.
  725:     */
  726:     default: {
  727:       assert( eDest==SRT_Discard );
  728:       break;
  729:     }
  730: #endif
  731:   }
  732: 
  733:   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
  734:   ** there is a sorter, in which case the sorter has already limited
  735:   ** the output for us.
  736:   */
  737:   if( pOrderBy==0 && p->iLimit ){
  738:     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
  739:   }
  740: }
  741: 
  742: /*
  743: ** Given an expression list, generate a KeyInfo structure that records
  744: ** the collating sequence for each expression in that expression list.
  745: **
  746: ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
  747: ** KeyInfo structure is appropriate for initializing a virtual index to
  748: ** implement that clause.  If the ExprList is the result set of a SELECT
  749: ** then the KeyInfo structure is appropriate for initializing a virtual
  750: ** index to implement a DISTINCT test.
  751: **
  752: ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
  753: ** function is responsible for seeing that this structure is eventually
  754: ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
  755: ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
  756: */
  757: static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
  758:   sqlite3 *db = pParse->db;
  759:   int nExpr;
  760:   KeyInfo *pInfo;
  761:   struct ExprList_item *pItem;
  762:   int i;
  763: 
  764:   nExpr = pList->nExpr;
  765:   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
  766:   if( pInfo ){
  767:     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
  768:     pInfo->nField = (u16)nExpr;
  769:     pInfo->enc = ENC(db);
  770:     pInfo->db = db;
  771:     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
  772:       CollSeq *pColl;
  773:       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
  774:       if( !pColl ){
  775:         pColl = db->pDfltColl;
  776:       }
  777:       pInfo->aColl[i] = pColl;
  778:       pInfo->aSortOrder[i] = pItem->sortOrder;
  779:     }
  780:   }
  781:   return pInfo;
  782: }
  783: 
  784: #ifndef SQLITE_OMIT_COMPOUND_SELECT
  785: /*
  786: ** Name of the connection operator, used for error messages.
  787: */
  788: static const char *selectOpName(int id){
  789:   char *z;
  790:   switch( id ){
  791:     case TK_ALL:       z = "UNION ALL";   break;
  792:     case TK_INTERSECT: z = "INTERSECT";   break;
  793:     case TK_EXCEPT:    z = "EXCEPT";      break;
  794:     default:           z = "UNION";       break;
  795:   }
  796:   return z;
  797: }
  798: #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  799: 
  800: #ifndef SQLITE_OMIT_EXPLAIN
  801: /*
  802: ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
  803: ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
  804: ** where the caption is of the form:
  805: **
  806: **   "USE TEMP B-TREE FOR xxx"
  807: **
  808: ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
  809: ** is determined by the zUsage argument.
  810: */
  811: static void explainTempTable(Parse *pParse, const char *zUsage){
  812:   if( pParse->explain==2 ){
  813:     Vdbe *v = pParse->pVdbe;
  814:     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
  815:     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  816:   }
  817: }
  818: 
  819: /*
  820: ** Assign expression b to lvalue a. A second, no-op, version of this macro
  821: ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
  822: ** in sqlite3Select() to assign values to structure member variables that
  823: ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
  824: ** code with #ifndef directives.
  825: */
  826: # define explainSetInteger(a, b) a = b
  827: 
  828: #else
  829: /* No-op versions of the explainXXX() functions and macros. */
  830: # define explainTempTable(y,z)
  831: # define explainSetInteger(y,z)
  832: #endif
  833: 
  834: #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
  835: /*
  836: ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
  837: ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
  838: ** where the caption is of one of the two forms:
  839: **
  840: **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
  841: **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
  842: **
  843: ** where iSub1 and iSub2 are the integers passed as the corresponding
  844: ** function parameters, and op is the text representation of the parameter
  845: ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
  846: ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 
  847: ** false, or the second form if it is true.
  848: */
  849: static void explainComposite(
  850:   Parse *pParse,                  /* Parse context */
  851:   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
  852:   int iSub1,                      /* Subquery id 1 */
  853:   int iSub2,                      /* Subquery id 2 */
  854:   int bUseTmp                     /* True if a temp table was used */
  855: ){
  856:   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
  857:   if( pParse->explain==2 ){
  858:     Vdbe *v = pParse->pVdbe;
  859:     char *zMsg = sqlite3MPrintf(
  860:         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
  861:         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
  862:     );
  863:     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  864:   }
  865: }
  866: #else
  867: /* No-op versions of the explainXXX() functions and macros. */
  868: # define explainComposite(v,w,x,y,z)
  869: #endif
  870: 
  871: /*
  872: ** If the inner loop was generated using a non-null pOrderBy argument,
  873: ** then the results were placed in a sorter.  After the loop is terminated
  874: ** we need to run the sorter and output the results.  The following
  875: ** routine generates the code needed to do that.
  876: */
  877: static void generateSortTail(
  878:   Parse *pParse,    /* Parsing context */
  879:   Select *p,        /* The SELECT statement */
  880:   Vdbe *v,          /* Generate code into this VDBE */
  881:   int nColumn,      /* Number of columns of data */
  882:   SelectDest *pDest /* Write the sorted results here */
  883: ){
  884:   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
  885:   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  886:   int addr;
  887:   int iTab;
  888:   int pseudoTab = 0;
  889:   ExprList *pOrderBy = p->pOrderBy;
  890: 
  891:   int eDest = pDest->eDest;
  892:   int iParm = pDest->iParm;
  893: 
  894:   int regRow;
  895:   int regRowid;
  896: 
  897:   iTab = pOrderBy->iECursor;
  898:   regRow = sqlite3GetTempReg(pParse);
  899:   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
  900:     pseudoTab = pParse->nTab++;
  901:     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
  902:     regRowid = 0;
  903:   }else{
  904:     regRowid = sqlite3GetTempReg(pParse);
  905:   }
  906:   if( p->selFlags & SF_UseSorter ){
  907:     int regSortOut = ++pParse->nMem;
  908:     int ptab2 = pParse->nTab++;
  909:     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
  910:     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
  911:     codeOffset(v, p, addrContinue);
  912:     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
  913:     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
  914:     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
  915:   }else{
  916:     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
  917:     codeOffset(v, p, addrContinue);
  918:     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
  919:   }
  920:   switch( eDest ){
  921:     case SRT_Table:
  922:     case SRT_EphemTab: {
  923:       testcase( eDest==SRT_Table );
  924:       testcase( eDest==SRT_EphemTab );
  925:       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
  926:       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
  927:       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  928:       break;
  929:     }
  930: #ifndef SQLITE_OMIT_SUBQUERY
  931:     case SRT_Set: {
  932:       assert( nColumn==1 );
  933:       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
  934:       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
  935:       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
  936:       break;
  937:     }
  938:     case SRT_Mem: {
  939:       assert( nColumn==1 );
  940:       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
  941:       /* The LIMIT clause will terminate the loop for us */
  942:       break;
  943:     }
  944: #endif
  945:     default: {
  946:       int i;
  947:       assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
  948:       testcase( eDest==SRT_Output );
  949:       testcase( eDest==SRT_Coroutine );
  950:       for(i=0; i<nColumn; i++){
  951:         assert( regRow!=pDest->iMem+i );
  952:         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
  953:         if( i==0 ){
  954:           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
  955:         }
  956:       }
  957:       if( eDest==SRT_Output ){
  958:         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
  959:         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
  960:       }else{
  961:         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
  962:       }
  963:       break;
  964:     }
  965:   }
  966:   sqlite3ReleaseTempReg(pParse, regRow);
  967:   sqlite3ReleaseTempReg(pParse, regRowid);
  968: 
  969:   /* The bottom of the loop
  970:   */
  971:   sqlite3VdbeResolveLabel(v, addrContinue);
  972:   if( p->selFlags & SF_UseSorter ){
  973:     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
  974:   }else{
  975:     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
  976:   }
  977:   sqlite3VdbeResolveLabel(v, addrBreak);
  978:   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
  979:     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  980:   }
  981: }
  982: 
  983: /*
  984: ** Return a pointer to a string containing the 'declaration type' of the
  985: ** expression pExpr. The string may be treated as static by the caller.
  986: **
  987: ** The declaration type is the exact datatype definition extracted from the
  988: ** original CREATE TABLE statement if the expression is a column. The
  989: ** declaration type for a ROWID field is INTEGER. Exactly when an expression
  990: ** is considered a column can be complex in the presence of subqueries. The
  991: ** result-set expression in all of the following SELECT statements is 
  992: ** considered a column by this function.
  993: **
  994: **   SELECT col FROM tbl;
  995: **   SELECT (SELECT col FROM tbl;
  996: **   SELECT (SELECT col FROM tbl);
  997: **   SELECT abc FROM (SELECT col AS abc FROM tbl);
  998: ** 
  999: ** The declaration type for any expression other than a column is NULL.
 1000: */
 1001: static const char *columnType(
 1002:   NameContext *pNC, 
 1003:   Expr *pExpr,
 1004:   const char **pzOriginDb,
 1005:   const char **pzOriginTab,
 1006:   const char **pzOriginCol
 1007: ){
 1008:   char const *zType = 0;
 1009:   char const *zOriginDb = 0;
 1010:   char const *zOriginTab = 0;
 1011:   char const *zOriginCol = 0;
 1012:   int j;
 1013:   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
 1014: 
 1015:   switch( pExpr->op ){
 1016:     case TK_AGG_COLUMN:
 1017:     case TK_COLUMN: {
 1018:       /* The expression is a column. Locate the table the column is being
 1019:       ** extracted from in NameContext.pSrcList. This table may be real
 1020:       ** database table or a subquery.
 1021:       */
 1022:       Table *pTab = 0;            /* Table structure column is extracted from */
 1023:       Select *pS = 0;             /* Select the column is extracted from */
 1024:       int iCol = pExpr->iColumn;  /* Index of column in pTab */
 1025:       testcase( pExpr->op==TK_AGG_COLUMN );
 1026:       testcase( pExpr->op==TK_COLUMN );
 1027:       while( pNC && !pTab ){
 1028:         SrcList *pTabList = pNC->pSrcList;
 1029:         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
 1030:         if( j<pTabList->nSrc ){
 1031:           pTab = pTabList->a[j].pTab;
 1032:           pS = pTabList->a[j].pSelect;
 1033:         }else{
 1034:           pNC = pNC->pNext;
 1035:         }
 1036:       }
 1037: 
 1038:       if( pTab==0 ){
 1039:         /* At one time, code such as "SELECT new.x" within a trigger would
 1040:         ** cause this condition to run.  Since then, we have restructured how
 1041:         ** trigger code is generated and so this condition is no longer 
 1042:         ** possible. However, it can still be true for statements like
 1043:         ** the following:
 1044:         **
 1045:         **   CREATE TABLE t1(col INTEGER);
 1046:         **   SELECT (SELECT t1.col) FROM FROM t1;
 1047:         **
 1048:         ** when columnType() is called on the expression "t1.col" in the 
 1049:         ** sub-select. In this case, set the column type to NULL, even
 1050:         ** though it should really be "INTEGER".
 1051:         **
 1052:         ** This is not a problem, as the column type of "t1.col" is never
 1053:         ** used. When columnType() is called on the expression 
 1054:         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
 1055:         ** branch below.  */
 1056:         break;
 1057:       }
 1058: 
 1059:       assert( pTab && pExpr->pTab==pTab );
 1060:       if( pS ){
 1061:         /* The "table" is actually a sub-select or a view in the FROM clause
 1062:         ** of the SELECT statement. Return the declaration type and origin
 1063:         ** data for the result-set column of the sub-select.
 1064:         */
 1065:         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
 1066:           /* If iCol is less than zero, then the expression requests the
 1067:           ** rowid of the sub-select or view. This expression is legal (see 
 1068:           ** test case misc2.2.2) - it always evaluates to NULL.
 1069:           */
 1070:           NameContext sNC;
 1071:           Expr *p = pS->pEList->a[iCol].pExpr;
 1072:           sNC.pSrcList = pS->pSrc;
 1073:           sNC.pNext = pNC;
 1074:           sNC.pParse = pNC->pParse;
 1075:           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 1076:         }
 1077:       }else if( ALWAYS(pTab->pSchema) ){
 1078:         /* A real table */
 1079:         assert( !pS );
 1080:         if( iCol<0 ) iCol = pTab->iPKey;
 1081:         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 1082:         if( iCol<0 ){
 1083:           zType = "INTEGER";
 1084:           zOriginCol = "rowid";
 1085:         }else{
 1086:           zType = pTab->aCol[iCol].zType;
 1087:           zOriginCol = pTab->aCol[iCol].zName;
 1088:         }
 1089:         zOriginTab = pTab->zName;
 1090:         if( pNC->pParse ){
 1091:           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
 1092:           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
 1093:         }
 1094:       }
 1095:       break;
 1096:     }
 1097: #ifndef SQLITE_OMIT_SUBQUERY
 1098:     case TK_SELECT: {
 1099:       /* The expression is a sub-select. Return the declaration type and
 1100:       ** origin info for the single column in the result set of the SELECT
 1101:       ** statement.
 1102:       */
 1103:       NameContext sNC;
 1104:       Select *pS = pExpr->x.pSelect;
 1105:       Expr *p = pS->pEList->a[0].pExpr;
 1106:       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
 1107:       sNC.pSrcList = pS->pSrc;
 1108:       sNC.pNext = pNC;
 1109:       sNC.pParse = pNC->pParse;
 1110:       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 1111:       break;
 1112:     }
 1113: #endif
 1114:   }
 1115:   
 1116:   if( pzOriginDb ){
 1117:     assert( pzOriginTab && pzOriginCol );
 1118:     *pzOriginDb = zOriginDb;
 1119:     *pzOriginTab = zOriginTab;
 1120:     *pzOriginCol = zOriginCol;
 1121:   }
 1122:   return zType;
 1123: }
 1124: 
 1125: /*
 1126: ** Generate code that will tell the VDBE the declaration types of columns
 1127: ** in the result set.
 1128: */
 1129: static void generateColumnTypes(
 1130:   Parse *pParse,      /* Parser context */
 1131:   SrcList *pTabList,  /* List of tables */
 1132:   ExprList *pEList    /* Expressions defining the result set */
 1133: ){
 1134: #ifndef SQLITE_OMIT_DECLTYPE
 1135:   Vdbe *v = pParse->pVdbe;
 1136:   int i;
 1137:   NameContext sNC;
 1138:   sNC.pSrcList = pTabList;
 1139:   sNC.pParse = pParse;
 1140:   for(i=0; i<pEList->nExpr; i++){
 1141:     Expr *p = pEList->a[i].pExpr;
 1142:     const char *zType;
 1143: #ifdef SQLITE_ENABLE_COLUMN_METADATA
 1144:     const char *zOrigDb = 0;
 1145:     const char *zOrigTab = 0;
 1146:     const char *zOrigCol = 0;
 1147:     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
 1148: 
 1149:     /* The vdbe must make its own copy of the column-type and other 
 1150:     ** column specific strings, in case the schema is reset before this
 1151:     ** virtual machine is deleted.
 1152:     */
 1153:     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
 1154:     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
 1155:     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
 1156: #else
 1157:     zType = columnType(&sNC, p, 0, 0, 0);
 1158: #endif
 1159:     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
 1160:   }
 1161: #endif /* SQLITE_OMIT_DECLTYPE */
 1162: }
 1163: 
 1164: /*
 1165: ** Generate code that will tell the VDBE the names of columns
 1166: ** in the result set.  This information is used to provide the
 1167: ** azCol[] values in the callback.
 1168: */
 1169: static void generateColumnNames(
 1170:   Parse *pParse,      /* Parser context */
 1171:   SrcList *pTabList,  /* List of tables */
 1172:   ExprList *pEList    /* Expressions defining the result set */
 1173: ){
 1174:   Vdbe *v = pParse->pVdbe;
 1175:   int i, j;
 1176:   sqlite3 *db = pParse->db;
 1177:   int fullNames, shortNames;
 1178: 
 1179: #ifndef SQLITE_OMIT_EXPLAIN
 1180:   /* If this is an EXPLAIN, skip this step */
 1181:   if( pParse->explain ){
 1182:     return;
 1183:   }
 1184: #endif
 1185: 
 1186:   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
 1187:   pParse->colNamesSet = 1;
 1188:   fullNames = (db->flags & SQLITE_FullColNames)!=0;
 1189:   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
 1190:   sqlite3VdbeSetNumCols(v, pEList->nExpr);
 1191:   for(i=0; i<pEList->nExpr; i++){
 1192:     Expr *p;
 1193:     p = pEList->a[i].pExpr;
 1194:     if( NEVER(p==0) ) continue;
 1195:     if( pEList->a[i].zName ){
 1196:       char *zName = pEList->a[i].zName;
 1197:       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
 1198:     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
 1199:       Table *pTab;
 1200:       char *zCol;
 1201:       int iCol = p->iColumn;
 1202:       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
 1203:         if( pTabList->a[j].iCursor==p->iTable ) break;
 1204:       }
 1205:       assert( j<pTabList->nSrc );
 1206:       pTab = pTabList->a[j].pTab;
 1207:       if( iCol<0 ) iCol = pTab->iPKey;
 1208:       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 1209:       if( iCol<0 ){
 1210:         zCol = "rowid";
 1211:       }else{
 1212:         zCol = pTab->aCol[iCol].zName;
 1213:       }
 1214:       if( !shortNames && !fullNames ){
 1215:         sqlite3VdbeSetColName(v, i, COLNAME_NAME, 
 1216:             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
 1217:       }else if( fullNames ){
 1218:         char *zName = 0;
 1219:         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
 1220:         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
 1221:       }else{
 1222:         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
 1223:       }
 1224:     }else{
 1225:       sqlite3VdbeSetColName(v, i, COLNAME_NAME, 
 1226:           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
 1227:     }
 1228:   }
 1229:   generateColumnTypes(pParse, pTabList, pEList);
 1230: }
 1231: 
 1232: /*
 1233: ** Given a an expression list (which is really the list of expressions
 1234: ** that form the result set of a SELECT statement) compute appropriate
 1235: ** column names for a table that would hold the expression list.
 1236: **
 1237: ** All column names will be unique.
 1238: **
 1239: ** Only the column names are computed.  Column.zType, Column.zColl,
 1240: ** and other fields of Column are zeroed.
 1241: **
 1242: ** Return SQLITE_OK on success.  If a memory allocation error occurs,
 1243: ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
 1244: */
 1245: static int selectColumnsFromExprList(
 1246:   Parse *pParse,          /* Parsing context */
 1247:   ExprList *pEList,       /* Expr list from which to derive column names */
 1248:   int *pnCol,             /* Write the number of columns here */
 1249:   Column **paCol          /* Write the new column list here */
 1250: ){
 1251:   sqlite3 *db = pParse->db;   /* Database connection */
 1252:   int i, j;                   /* Loop counters */
 1253:   int cnt;                    /* Index added to make the name unique */
 1254:   Column *aCol, *pCol;        /* For looping over result columns */
 1255:   int nCol;                   /* Number of columns in the result set */
 1256:   Expr *p;                    /* Expression for a single result column */
 1257:   char *zName;                /* Column name */
 1258:   int nName;                  /* Size of name in zName[] */
 1259: 
 1260:   *pnCol = nCol = pEList->nExpr;
 1261:   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
 1262:   if( aCol==0 ) return SQLITE_NOMEM;
 1263:   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
 1264:     /* Get an appropriate name for the column
 1265:     */
 1266:     p = pEList->a[i].pExpr;
 1267:     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
 1268:                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
 1269:     if( (zName = pEList->a[i].zName)!=0 ){
 1270:       /* If the column contains an "AS <name>" phrase, use <name> as the name */
 1271:       zName = sqlite3DbStrDup(db, zName);
 1272:     }else{
 1273:       Expr *pColExpr = p;  /* The expression that is the result column name */
 1274:       Table *pTab;         /* Table associated with this expression */
 1275:       while( pColExpr->op==TK_DOT ){
 1276:         pColExpr = pColExpr->pRight;
 1277:         assert( pColExpr!=0 );
 1278:       }
 1279:       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
 1280:         /* For columns use the column name name */
 1281:         int iCol = pColExpr->iColumn;
 1282:         pTab = pColExpr->pTab;
 1283:         if( iCol<0 ) iCol = pTab->iPKey;
 1284:         zName = sqlite3MPrintf(db, "%s",
 1285:                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
 1286:       }else if( pColExpr->op==TK_ID ){
 1287:         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
 1288:         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
 1289:       }else{
 1290:         /* Use the original text of the column expression as its name */
 1291:         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
 1292:       }
 1293:     }
 1294:     if( db->mallocFailed ){
 1295:       sqlite3DbFree(db, zName);
 1296:       break;
 1297:     }
 1298: 
 1299:     /* Make sure the column name is unique.  If the name is not unique,
 1300:     ** append a integer to the name so that it becomes unique.
 1301:     */
 1302:     nName = sqlite3Strlen30(zName);
 1303:     for(j=cnt=0; j<i; j++){
 1304:       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
 1305:         char *zNewName;
 1306:         zName[nName] = 0;
 1307:         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
 1308:         sqlite3DbFree(db, zName);
 1309:         zName = zNewName;
 1310:         j = -1;
 1311:         if( zName==0 ) break;
 1312:       }
 1313:     }
 1314:     pCol->zName = zName;
 1315:   }
 1316:   if( db->mallocFailed ){
 1317:     for(j=0; j<i; j++){
 1318:       sqlite3DbFree(db, aCol[j].zName);
 1319:     }
 1320:     sqlite3DbFree(db, aCol);
 1321:     *paCol = 0;
 1322:     *pnCol = 0;
 1323:     return SQLITE_NOMEM;
 1324:   }
 1325:   return SQLITE_OK;
 1326: }
 1327: 
 1328: /*
 1329: ** Add type and collation information to a column list based on
 1330: ** a SELECT statement.
 1331: ** 
 1332: ** The column list presumably came from selectColumnNamesFromExprList().
 1333: ** The column list has only names, not types or collations.  This
 1334: ** routine goes through and adds the types and collations.
 1335: **
 1336: ** This routine requires that all identifiers in the SELECT
 1337: ** statement be resolved.
 1338: */
 1339: static void selectAddColumnTypeAndCollation(
 1340:   Parse *pParse,        /* Parsing contexts */
 1341:   int nCol,             /* Number of columns */
 1342:   Column *aCol,         /* List of columns */
 1343:   Select *pSelect       /* SELECT used to determine types and collations */
 1344: ){
 1345:   sqlite3 *db = pParse->db;
 1346:   NameContext sNC;
 1347:   Column *pCol;
 1348:   CollSeq *pColl;
 1349:   int i;
 1350:   Expr *p;
 1351:   struct ExprList_item *a;
 1352: 
 1353:   assert( pSelect!=0 );
 1354:   assert( (pSelect->selFlags & SF_Resolved)!=0 );
 1355:   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
 1356:   if( db->mallocFailed ) return;
 1357:   memset(&sNC, 0, sizeof(sNC));
 1358:   sNC.pSrcList = pSelect->pSrc;
 1359:   a = pSelect->pEList->a;
 1360:   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
 1361:     p = a[i].pExpr;
 1362:     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
 1363:     pCol->affinity = sqlite3ExprAffinity(p);
 1364:     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
 1365:     pColl = sqlite3ExprCollSeq(pParse, p);
 1366:     if( pColl ){
 1367:       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
 1368:     }
 1369:   }
 1370: }
 1371: 
 1372: /*
 1373: ** Given a SELECT statement, generate a Table structure that describes
 1374: ** the result set of that SELECT.
 1375: */
 1376: Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
 1377:   Table *pTab;
 1378:   sqlite3 *db = pParse->db;
 1379:   int savedFlags;
 1380: 
 1381:   savedFlags = db->flags;
 1382:   db->flags &= ~SQLITE_FullColNames;
 1383:   db->flags |= SQLITE_ShortColNames;
 1384:   sqlite3SelectPrep(pParse, pSelect, 0);
 1385:   if( pParse->nErr ) return 0;
 1386:   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
 1387:   db->flags = savedFlags;
 1388:   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
 1389:   if( pTab==0 ){
 1390:     return 0;
 1391:   }
 1392:   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
 1393:   ** is disabled */
 1394:   assert( db->lookaside.bEnabled==0 );
 1395:   pTab->nRef = 1;
 1396:   pTab->zName = 0;
 1397:   pTab->nRowEst = 1000000;
 1398:   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
 1399:   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
 1400:   pTab->iPKey = -1;
 1401:   if( db->mallocFailed ){
 1402:     sqlite3DeleteTable(db, pTab);
 1403:     return 0;
 1404:   }
 1405:   return pTab;
 1406: }
 1407: 
 1408: /*
 1409: ** Get a VDBE for the given parser context.  Create a new one if necessary.
 1410: ** If an error occurs, return NULL and leave a message in pParse.
 1411: */
 1412: Vdbe *sqlite3GetVdbe(Parse *pParse){
 1413:   Vdbe *v = pParse->pVdbe;
 1414:   if( v==0 ){
 1415:     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
 1416: #ifndef SQLITE_OMIT_TRACE
 1417:     if( v ){
 1418:       sqlite3VdbeAddOp0(v, OP_Trace);
 1419:     }
 1420: #endif
 1421:   }
 1422:   return v;
 1423: }
 1424: 
 1425: 
 1426: /*
 1427: ** Compute the iLimit and iOffset fields of the SELECT based on the
 1428: ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
 1429: ** that appear in the original SQL statement after the LIMIT and OFFSET
 1430: ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
 1431: ** are the integer memory register numbers for counters used to compute 
 1432: ** the limit and offset.  If there is no limit and/or offset, then 
 1433: ** iLimit and iOffset are negative.
 1434: **
 1435: ** This routine changes the values of iLimit and iOffset only if
 1436: ** a limit or offset is defined by pLimit and pOffset.  iLimit and
 1437: ** iOffset should have been preset to appropriate default values
 1438: ** (usually but not always -1) prior to calling this routine.
 1439: ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
 1440: ** redefined.  The UNION ALL operator uses this property to force
 1441: ** the reuse of the same limit and offset registers across multiple
 1442: ** SELECT statements.
 1443: */
 1444: static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
 1445:   Vdbe *v = 0;
 1446:   int iLimit = 0;
 1447:   int iOffset;
 1448:   int addr1, n;
 1449:   if( p->iLimit ) return;
 1450: 
 1451:   /* 
 1452:   ** "LIMIT -1" always shows all rows.  There is some
 1453:   ** contraversy about what the correct behavior should be.
 1454:   ** The current implementation interprets "LIMIT 0" to mean
 1455:   ** no rows.
 1456:   */
 1457:   sqlite3ExprCacheClear(pParse);
 1458:   assert( p->pOffset==0 || p->pLimit!=0 );
 1459:   if( p->pLimit ){
 1460:     p->iLimit = iLimit = ++pParse->nMem;
 1461:     v = sqlite3GetVdbe(pParse);
 1462:     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
 1463:     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
 1464:       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
 1465:       VdbeComment((v, "LIMIT counter"));
 1466:       if( n==0 ){
 1467:         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
 1468:       }else{
 1469:         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
 1470:       }
 1471:     }else{
 1472:       sqlite3ExprCode(pParse, p->pLimit, iLimit);
 1473:       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
 1474:       VdbeComment((v, "LIMIT counter"));
 1475:       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
 1476:     }
 1477:     if( p->pOffset ){
 1478:       p->iOffset = iOffset = ++pParse->nMem;
 1479:       pParse->nMem++;   /* Allocate an extra register for limit+offset */
 1480:       sqlite3ExprCode(pParse, p->pOffset, iOffset);
 1481:       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
 1482:       VdbeComment((v, "OFFSET counter"));
 1483:       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
 1484:       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
 1485:       sqlite3VdbeJumpHere(v, addr1);
 1486:       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
 1487:       VdbeComment((v, "LIMIT+OFFSET"));
 1488:       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
 1489:       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
 1490:       sqlite3VdbeJumpHere(v, addr1);
 1491:     }
 1492:   }
 1493: }
 1494: 
 1495: #ifndef SQLITE_OMIT_COMPOUND_SELECT
 1496: /*
 1497: ** Return the appropriate collating sequence for the iCol-th column of
 1498: ** the result set for the compound-select statement "p".  Return NULL if
 1499: ** the column has no default collating sequence.
 1500: **
 1501: ** The collating sequence for the compound select is taken from the
 1502: ** left-most term of the select that has a collating sequence.
 1503: */
 1504: static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
 1505:   CollSeq *pRet;
 1506:   if( p->pPrior ){
 1507:     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
 1508:   }else{
 1509:     pRet = 0;
 1510:   }
 1511:   assert( iCol>=0 );
 1512:   if( pRet==0 && iCol<p->pEList->nExpr ){
 1513:     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
 1514:   }
 1515:   return pRet;
 1516: }
 1517: #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 1518: 
 1519: /* Forward reference */
 1520: static int multiSelectOrderBy(
 1521:   Parse *pParse,        /* Parsing context */
 1522:   Select *p,            /* The right-most of SELECTs to be coded */
 1523:   SelectDest *pDest     /* What to do with query results */
 1524: );
 1525: 
 1526: 
 1527: #ifndef SQLITE_OMIT_COMPOUND_SELECT
 1528: /*
 1529: ** This routine is called to process a compound query form from
 1530: ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
 1531: ** INTERSECT
 1532: **
 1533: ** "p" points to the right-most of the two queries.  the query on the
 1534: ** left is p->pPrior.  The left query could also be a compound query
 1535: ** in which case this routine will be called recursively. 
 1536: **
 1537: ** The results of the total query are to be written into a destination
 1538: ** of type eDest with parameter iParm.
 1539: **
 1540: ** Example 1:  Consider a three-way compound SQL statement.
 1541: **
 1542: **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
 1543: **
 1544: ** This statement is parsed up as follows:
 1545: **
 1546: **     SELECT c FROM t3
 1547: **      |
 1548: **      `----->  SELECT b FROM t2
 1549: **                |
 1550: **                `------>  SELECT a FROM t1
 1551: **
 1552: ** The arrows in the diagram above represent the Select.pPrior pointer.
 1553: ** So if this routine is called with p equal to the t3 query, then
 1554: ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
 1555: **
 1556: ** Notice that because of the way SQLite parses compound SELECTs, the
 1557: ** individual selects always group from left to right.
 1558: */
 1559: static int multiSelect(
 1560:   Parse *pParse,        /* Parsing context */
 1561:   Select *p,            /* The right-most of SELECTs to be coded */
 1562:   SelectDest *pDest     /* What to do with query results */
 1563: ){
 1564:   int rc = SQLITE_OK;   /* Success code from a subroutine */
 1565:   Select *pPrior;       /* Another SELECT immediately to our left */
 1566:   Vdbe *v;              /* Generate code to this VDBE */
 1567:   SelectDest dest;      /* Alternative data destination */
 1568:   Select *pDelete = 0;  /* Chain of simple selects to delete */
 1569:   sqlite3 *db;          /* Database connection */
 1570: #ifndef SQLITE_OMIT_EXPLAIN
 1571:   int iSub1;            /* EQP id of left-hand query */
 1572:   int iSub2;            /* EQP id of right-hand query */
 1573: #endif
 1574: 
 1575:   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
 1576:   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
 1577:   */
 1578:   assert( p && p->pPrior );  /* Calling function guarantees this much */
 1579:   db = pParse->db;
 1580:   pPrior = p->pPrior;
 1581:   assert( pPrior->pRightmost!=pPrior );
 1582:   assert( pPrior->pRightmost==p->pRightmost );
 1583:   dest = *pDest;
 1584:   if( pPrior->pOrderBy ){
 1585:     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
 1586:       selectOpName(p->op));
 1587:     rc = 1;
 1588:     goto multi_select_end;
 1589:   }
 1590:   if( pPrior->pLimit ){
 1591:     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
 1592:       selectOpName(p->op));
 1593:     rc = 1;
 1594:     goto multi_select_end;
 1595:   }
 1596: 
 1597:   v = sqlite3GetVdbe(pParse);
 1598:   assert( v!=0 );  /* The VDBE already created by calling function */
 1599: 
 1600:   /* Create the destination temporary table if necessary
 1601:   */
 1602:   if( dest.eDest==SRT_EphemTab ){
 1603:     assert( p->pEList );
 1604:     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
 1605:     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
 1606:     dest.eDest = SRT_Table;
 1607:   }
 1608: 
 1609:   /* Make sure all SELECTs in the statement have the same number of elements
 1610:   ** in their result sets.
 1611:   */
 1612:   assert( p->pEList && pPrior->pEList );
 1613:   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
 1614:     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
 1615:       " do not have the same number of result columns", selectOpName(p->op));
 1616:     rc = 1;
 1617:     goto multi_select_end;
 1618:   }
 1619: 
 1620:   /* Compound SELECTs that have an ORDER BY clause are handled separately.
 1621:   */
 1622:   if( p->pOrderBy ){
 1623:     return multiSelectOrderBy(pParse, p, pDest);
 1624:   }
 1625: 
 1626:   /* Generate code for the left and right SELECT statements.
 1627:   */
 1628:   switch( p->op ){
 1629:     case TK_ALL: {
 1630:       int addr = 0;
 1631:       int nLimit;
 1632:       assert( !pPrior->pLimit );
 1633:       pPrior->pLimit = p->pLimit;
 1634:       pPrior->pOffset = p->pOffset;
 1635:       explainSetInteger(iSub1, pParse->iNextSelectId);
 1636:       rc = sqlite3Select(pParse, pPrior, &dest);
 1637:       p->pLimit = 0;
 1638:       p->pOffset = 0;
 1639:       if( rc ){
 1640:         goto multi_select_end;
 1641:       }
 1642:       p->pPrior = 0;
 1643:       p->iLimit = pPrior->iLimit;
 1644:       p->iOffset = pPrior->iOffset;
 1645:       if( p->iLimit ){
 1646:         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
 1647:         VdbeComment((v, "Jump ahead if LIMIT reached"));
 1648:       }
 1649:       explainSetInteger(iSub2, pParse->iNextSelectId);
 1650:       rc = sqlite3Select(pParse, p, &dest);
 1651:       testcase( rc!=SQLITE_OK );
 1652:       pDelete = p->pPrior;
 1653:       p->pPrior = pPrior;
 1654:       p->nSelectRow += pPrior->nSelectRow;
 1655:       if( pPrior->pLimit
 1656:        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
 1657:        && p->nSelectRow > (double)nLimit 
 1658:       ){
 1659:         p->nSelectRow = (double)nLimit;
 1660:       }
 1661:       if( addr ){
 1662:         sqlite3VdbeJumpHere(v, addr);
 1663:       }
 1664:       break;
 1665:     }
 1666:     case TK_EXCEPT:
 1667:     case TK_UNION: {
 1668:       int unionTab;    /* Cursor number of the temporary table holding result */
 1669:       u8 op = 0;       /* One of the SRT_ operations to apply to self */
 1670:       int priorOp;     /* The SRT_ operation to apply to prior selects */
 1671:       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
 1672:       int addr;
 1673:       SelectDest uniondest;
 1674: 
 1675:       testcase( p->op==TK_EXCEPT );
 1676:       testcase( p->op==TK_UNION );
 1677:       priorOp = SRT_Union;
 1678:       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
 1679:         /* We can reuse a temporary table generated by a SELECT to our
 1680:         ** right.
 1681:         */
 1682:         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
 1683:                                      ** of a 3-way or more compound */
 1684:         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
 1685:         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
 1686:         unionTab = dest.iParm;
 1687:       }else{
 1688:         /* We will need to create our own temporary table to hold the
 1689:         ** intermediate results.
 1690:         */
 1691:         unionTab = pParse->nTab++;
 1692:         assert( p->pOrderBy==0 );
 1693:         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
 1694:         assert( p->addrOpenEphm[0] == -1 );
 1695:         p->addrOpenEphm[0] = addr;
 1696:         p->pRightmost->selFlags |= SF_UsesEphemeral;
 1697:         assert( p->pEList );
 1698:       }
 1699: 
 1700:       /* Code the SELECT statements to our left
 1701:       */
 1702:       assert( !pPrior->pOrderBy );
 1703:       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
 1704:       explainSetInteger(iSub1, pParse->iNextSelectId);
 1705:       rc = sqlite3Select(pParse, pPrior, &uniondest);
 1706:       if( rc ){
 1707:         goto multi_select_end;
 1708:       }
 1709: 
 1710:       /* Code the current SELECT statement
 1711:       */
 1712:       if( p->op==TK_EXCEPT ){
 1713:         op = SRT_Except;
 1714:       }else{
 1715:         assert( p->op==TK_UNION );
 1716:         op = SRT_Union;
 1717:       }
 1718:       p->pPrior = 0;
 1719:       pLimit = p->pLimit;
 1720:       p->pLimit = 0;
 1721:       pOffset = p->pOffset;
 1722:       p->pOffset = 0;
 1723:       uniondest.eDest = op;
 1724:       explainSetInteger(iSub2, pParse->iNextSelectId);
 1725:       rc = sqlite3Select(pParse, p, &uniondest);
 1726:       testcase( rc!=SQLITE_OK );
 1727:       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
 1728:       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
 1729:       sqlite3ExprListDelete(db, p->pOrderBy);
 1730:       pDelete = p->pPrior;
 1731:       p->pPrior = pPrior;
 1732:       p->pOrderBy = 0;
 1733:       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
 1734:       sqlite3ExprDelete(db, p->pLimit);
 1735:       p->pLimit = pLimit;
 1736:       p->pOffset = pOffset;
 1737:       p->iLimit = 0;
 1738:       p->iOffset = 0;
 1739: 
 1740:       /* Convert the data in the temporary table into whatever form
 1741:       ** it is that we currently need.
 1742:       */
 1743:       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
 1744:       if( dest.eDest!=priorOp ){
 1745:         int iCont, iBreak, iStart;
 1746:         assert( p->pEList );
 1747:         if( dest.eDest==SRT_Output ){
 1748:           Select *pFirst = p;
 1749:           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 1750:           generateColumnNames(pParse, 0, pFirst->pEList);
 1751:         }
 1752:         iBreak = sqlite3VdbeMakeLabel(v);
 1753:         iCont = sqlite3VdbeMakeLabel(v);
 1754:         computeLimitRegisters(pParse, p, iBreak);
 1755:         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
 1756:         iStart = sqlite3VdbeCurrentAddr(v);
 1757:         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
 1758:                         0, -1, &dest, iCont, iBreak);
 1759:         sqlite3VdbeResolveLabel(v, iCont);
 1760:         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
 1761:         sqlite3VdbeResolveLabel(v, iBreak);
 1762:         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
 1763:       }
 1764:       break;
 1765:     }
 1766:     default: assert( p->op==TK_INTERSECT ); {
 1767:       int tab1, tab2;
 1768:       int iCont, iBreak, iStart;
 1769:       Expr *pLimit, *pOffset;
 1770:       int addr;
 1771:       SelectDest intersectdest;
 1772:       int r1;
 1773: 
 1774:       /* INTERSECT is different from the others since it requires
 1775:       ** two temporary tables.  Hence it has its own case.  Begin
 1776:       ** by allocating the tables we will need.
 1777:       */
 1778:       tab1 = pParse->nTab++;
 1779:       tab2 = pParse->nTab++;
 1780:       assert( p->pOrderBy==0 );
 1781: 
 1782:       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
 1783:       assert( p->addrOpenEphm[0] == -1 );
 1784:       p->addrOpenEphm[0] = addr;
 1785:       p->pRightmost->selFlags |= SF_UsesEphemeral;
 1786:       assert( p->pEList );
 1787: 
 1788:       /* Code the SELECTs to our left into temporary table "tab1".
 1789:       */
 1790:       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
 1791:       explainSetInteger(iSub1, pParse->iNextSelectId);
 1792:       rc = sqlite3Select(pParse, pPrior, &intersectdest);
 1793:       if( rc ){
 1794:         goto multi_select_end;
 1795:       }
 1796: 
 1797:       /* Code the current SELECT into temporary table "tab2"
 1798:       */
 1799:       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
 1800:       assert( p->addrOpenEphm[1] == -1 );
 1801:       p->addrOpenEphm[1] = addr;
 1802:       p->pPrior = 0;
 1803:       pLimit = p->pLimit;
 1804:       p->pLimit = 0;
 1805:       pOffset = p->pOffset;
 1806:       p->pOffset = 0;
 1807:       intersectdest.iParm = tab2;
 1808:       explainSetInteger(iSub2, pParse->iNextSelectId);
 1809:       rc = sqlite3Select(pParse, p, &intersectdest);
 1810:       testcase( rc!=SQLITE_OK );
 1811:       pDelete = p->pPrior;
 1812:       p->pPrior = pPrior;
 1813:       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
 1814:       sqlite3ExprDelete(db, p->pLimit);
 1815:       p->pLimit = pLimit;
 1816:       p->pOffset = pOffset;
 1817: 
 1818:       /* Generate code to take the intersection of the two temporary
 1819:       ** tables.
 1820:       */
 1821:       assert( p->pEList );
 1822:       if( dest.eDest==SRT_Output ){
 1823:         Select *pFirst = p;
 1824:         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 1825:         generateColumnNames(pParse, 0, pFirst->pEList);
 1826:       }
 1827:       iBreak = sqlite3VdbeMakeLabel(v);
 1828:       iCont = sqlite3VdbeMakeLabel(v);
 1829:       computeLimitRegisters(pParse, p, iBreak);
 1830:       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
 1831:       r1 = sqlite3GetTempReg(pParse);
 1832:       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
 1833:       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
 1834:       sqlite3ReleaseTempReg(pParse, r1);
 1835:       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
 1836:                       0, -1, &dest, iCont, iBreak);
 1837:       sqlite3VdbeResolveLabel(v, iCont);
 1838:       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
 1839:       sqlite3VdbeResolveLabel(v, iBreak);
 1840:       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
 1841:       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
 1842:       break;
 1843:     }
 1844:   }
 1845: 
 1846:   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
 1847: 
 1848:   /* Compute collating sequences used by 
 1849:   ** temporary tables needed to implement the compound select.
 1850:   ** Attach the KeyInfo structure to all temporary tables.
 1851:   **
 1852:   ** This section is run by the right-most SELECT statement only.
 1853:   ** SELECT statements to the left always skip this part.  The right-most
 1854:   ** SELECT might also skip this part if it has no ORDER BY clause and
 1855:   ** no temp tables are required.
 1856:   */
 1857:   if( p->selFlags & SF_UsesEphemeral ){
 1858:     int i;                        /* Loop counter */
 1859:     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
 1860:     Select *pLoop;                /* For looping through SELECT statements */
 1861:     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
 1862:     int nCol;                     /* Number of columns in result set */
 1863: 
 1864:     assert( p->pRightmost==p );
 1865:     nCol = p->pEList->nExpr;
 1866:     pKeyInfo = sqlite3DbMallocZero(db,
 1867:                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
 1868:     if( !pKeyInfo ){
 1869:       rc = SQLITE_NOMEM;
 1870:       goto multi_select_end;
 1871:     }
 1872: 
 1873:     pKeyInfo->enc = ENC(db);
 1874:     pKeyInfo->nField = (u16)nCol;
 1875: 
 1876:     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
 1877:       *apColl = multiSelectCollSeq(pParse, p, i);
 1878:       if( 0==*apColl ){
 1879:         *apColl = db->pDfltColl;
 1880:       }
 1881:     }
 1882: 
 1883:     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
 1884:       for(i=0; i<2; i++){
 1885:         int addr = pLoop->addrOpenEphm[i];
 1886:         if( addr<0 ){
 1887:           /* If [0] is unused then [1] is also unused.  So we can
 1888:           ** always safely abort as soon as the first unused slot is found */
 1889:           assert( pLoop->addrOpenEphm[1]<0 );
 1890:           break;
 1891:         }
 1892:         sqlite3VdbeChangeP2(v, addr, nCol);
 1893:         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
 1894:         pLoop->addrOpenEphm[i] = -1;
 1895:       }
 1896:     }
 1897:     sqlite3DbFree(db, pKeyInfo);
 1898:   }
 1899: 
 1900: multi_select_end:
 1901:   pDest->iMem = dest.iMem;
 1902:   pDest->nMem = dest.nMem;
 1903:   sqlite3SelectDelete(db, pDelete);
 1904:   return rc;
 1905: }
 1906: #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 1907: 
 1908: /*
 1909: ** Code an output subroutine for a coroutine implementation of a
 1910: ** SELECT statment.
 1911: **
 1912: ** The data to be output is contained in pIn->iMem.  There are
 1913: ** pIn->nMem columns to be output.  pDest is where the output should
 1914: ** be sent.
 1915: **
 1916: ** regReturn is the number of the register holding the subroutine
 1917: ** return address.
 1918: **
 1919: ** If regPrev>0 then it is the first register in a vector that
 1920: ** records the previous output.  mem[regPrev] is a flag that is false
 1921: ** if there has been no previous output.  If regPrev>0 then code is
 1922: ** generated to suppress duplicates.  pKeyInfo is used for comparing
 1923: ** keys.
 1924: **
 1925: ** If the LIMIT found in p->iLimit is reached, jump immediately to
 1926: ** iBreak.
 1927: */
 1928: static int generateOutputSubroutine(
 1929:   Parse *pParse,          /* Parsing context */
 1930:   Select *p,              /* The SELECT statement */
 1931:   SelectDest *pIn,        /* Coroutine supplying data */
 1932:   SelectDest *pDest,      /* Where to send the data */
 1933:   int regReturn,          /* The return address register */
 1934:   int regPrev,            /* Previous result register.  No uniqueness if 0 */
 1935:   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
 1936:   int p4type,             /* The p4 type for pKeyInfo */
 1937:   int iBreak              /* Jump here if we hit the LIMIT */
 1938: ){
 1939:   Vdbe *v = pParse->pVdbe;
 1940:   int iContinue;
 1941:   int addr;
 1942: 
 1943:   addr = sqlite3VdbeCurrentAddr(v);
 1944:   iContinue = sqlite3VdbeMakeLabel(v);
 1945: 
 1946:   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
 1947:   */
 1948:   if( regPrev ){
 1949:     int j1, j2;
 1950:     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
 1951:     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
 1952:                               (char*)pKeyInfo, p4type);
 1953:     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
 1954:     sqlite3VdbeJumpHere(v, j1);
 1955:     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
 1956:     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
 1957:   }
 1958:   if( pParse->db->mallocFailed ) return 0;
 1959: 
 1960:   /* Suppress the the first OFFSET entries if there is an OFFSET clause
 1961:   */
 1962:   codeOffset(v, p, iContinue);
 1963: 
 1964:   switch( pDest->eDest ){
 1965:     /* Store the result as data using a unique key.
 1966:     */
 1967:     case SRT_Table:
 1968:     case SRT_EphemTab: {
 1969:       int r1 = sqlite3GetTempReg(pParse);
 1970:       int r2 = sqlite3GetTempReg(pParse);
 1971:       testcase( pDest->eDest==SRT_Table );
 1972:       testcase( pDest->eDest==SRT_EphemTab );
 1973:       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
 1974:       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
 1975:       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
 1976:       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
 1977:       sqlite3ReleaseTempReg(pParse, r2);
 1978:       sqlite3ReleaseTempReg(pParse, r1);
 1979:       break;
 1980:     }
 1981: 
 1982: #ifndef SQLITE_OMIT_SUBQUERY
 1983:     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
 1984:     ** then there should be a single item on the stack.  Write this
 1985:     ** item into the set table with bogus data.
 1986:     */
 1987:     case SRT_Set: {
 1988:       int r1;
 1989:       assert( pIn->nMem==1 );
 1990:       p->affinity = 
 1991:          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
 1992:       r1 = sqlite3GetTempReg(pParse);
 1993:       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
 1994:       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
 1995:       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
 1996:       sqlite3ReleaseTempReg(pParse, r1);
 1997:       break;
 1998:     }
 1999: 
 2000: #if 0  /* Never occurs on an ORDER BY query */
 2001:     /* If any row exist in the result set, record that fact and abort.
 2002:     */
 2003:     case SRT_Exists: {
 2004:       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
 2005:       /* The LIMIT clause will terminate the loop for us */
 2006:       break;
 2007:     }
 2008: #endif
 2009: 
 2010:     /* If this is a scalar select that is part of an expression, then
 2011:     ** store the results in the appropriate memory cell and break out
 2012:     ** of the scan loop.
 2013:     */
 2014:     case SRT_Mem: {
 2015:       assert( pIn->nMem==1 );
 2016:       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
 2017:       /* The LIMIT clause will jump out of the loop for us */
 2018:       break;
 2019:     }
 2020: #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
 2021: 
 2022:     /* The results are stored in a sequence of registers
 2023:     ** starting at pDest->iMem.  Then the co-routine yields.
 2024:     */
 2025:     case SRT_Coroutine: {
 2026:       if( pDest->iMem==0 ){
 2027:         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
 2028:         pDest->nMem = pIn->nMem;
 2029:       }
 2030:       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
 2031:       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
 2032:       break;
 2033:     }
 2034: 
 2035:     /* If none of the above, then the result destination must be
 2036:     ** SRT_Output.  This routine is never called with any other
 2037:     ** destination other than the ones handled above or SRT_Output.
 2038:     **
 2039:     ** For SRT_Output, results are stored in a sequence of registers.  
 2040:     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
 2041:     ** return the next row of result.
 2042:     */
 2043:     default: {
 2044:       assert( pDest->eDest==SRT_Output );
 2045:       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
 2046:       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
 2047:       break;
 2048:     }
 2049:   }
 2050: 
 2051:   /* Jump to the end of the loop if the LIMIT is reached.
 2052:   */
 2053:   if( p->iLimit ){
 2054:     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
 2055:   }
 2056: 
 2057:   /* Generate the subroutine return
 2058:   */
 2059:   sqlite3VdbeResolveLabel(v, iContinue);
 2060:   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
 2061: 
 2062:   return addr;
 2063: }
 2064: 
 2065: /*
 2066: ** Alternative compound select code generator for cases when there
 2067: ** is an ORDER BY clause.
 2068: **
 2069: ** We assume a query of the following form:
 2070: **
 2071: **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
 2072: **
 2073: ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
 2074: ** is to code both <selectA> and <selectB> with the ORDER BY clause as
 2075: ** co-routines.  Then run the co-routines in parallel and merge the results
 2076: ** into the output.  In addition to the two coroutines (called selectA and
 2077: ** selectB) there are 7 subroutines:
 2078: **
 2079: **    outA:    Move the output of the selectA coroutine into the output
 2080: **             of the compound query.
 2081: **
 2082: **    outB:    Move the output of the selectB coroutine into the output
 2083: **             of the compound query.  (Only generated for UNION and
 2084: **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
 2085: **             appears only in B.)
 2086: **
 2087: **    AltB:    Called when there is data from both coroutines and A<B.
 2088: **
 2089: **    AeqB:    Called when there is data from both coroutines and A==B.
 2090: **
 2091: **    AgtB:    Called when there is data from both coroutines and A>B.
 2092: **
 2093: **    EofA:    Called when data is exhausted from selectA.
 2094: **
 2095: **    EofB:    Called when data is exhausted from selectB.
 2096: **
 2097: ** The implementation of the latter five subroutines depend on which 
 2098: ** <operator> is used:
 2099: **
 2100: **
 2101: **             UNION ALL         UNION            EXCEPT          INTERSECT
 2102: **          -------------  -----------------  --------------  -----------------
 2103: **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
 2104: **
 2105: **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
 2106: **
 2107: **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
 2108: **
 2109: **   EofA:   outB, nextB      outB, nextB          halt             halt
 2110: **
 2111: **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
 2112: **
 2113: ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
 2114: ** causes an immediate jump to EofA and an EOF on B following nextB causes
 2115: ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
 2116: ** following nextX causes a jump to the end of the select processing.
 2117: **
 2118: ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
 2119: ** within the output subroutine.  The regPrev register set holds the previously
 2120: ** output value.  A comparison is made against this value and the output
 2121: ** is skipped if the next results would be the same as the previous.
 2122: **
 2123: ** The implementation plan is to implement the two coroutines and seven
 2124: ** subroutines first, then put the control logic at the bottom.  Like this:
 2125: **
 2126: **          goto Init
 2127: **     coA: coroutine for left query (A)
 2128: **     coB: coroutine for right query (B)
 2129: **    outA: output one row of A
 2130: **    outB: output one row of B (UNION and UNION ALL only)
 2131: **    EofA: ...
 2132: **    EofB: ...
 2133: **    AltB: ...
 2134: **    AeqB: ...
 2135: **    AgtB: ...
 2136: **    Init: initialize coroutine registers
 2137: **          yield coA
 2138: **          if eof(A) goto EofA
 2139: **          yield coB
 2140: **          if eof(B) goto EofB
 2141: **    Cmpr: Compare A, B
 2142: **          Jump AltB, AeqB, AgtB
 2143: **     End: ...
 2144: **
 2145: ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
 2146: ** actually called using Gosub and they do not Return.  EofA and EofB loop
 2147: ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
 2148: ** and AgtB jump to either L2 or to one of EofA or EofB.
 2149: */
 2150: #ifndef SQLITE_OMIT_COMPOUND_SELECT
 2151: static int multiSelectOrderBy(
 2152:   Parse *pParse,        /* Parsing context */
 2153:   Select *p,            /* The right-most of SELECTs to be coded */
 2154:   SelectDest *pDest     /* What to do with query results */
 2155: ){
 2156:   int i, j;             /* Loop counters */
 2157:   Select *pPrior;       /* Another SELECT immediately to our left */
 2158:   Vdbe *v;              /* Generate code to this VDBE */
 2159:   SelectDest destA;     /* Destination for coroutine A */
 2160:   SelectDest destB;     /* Destination for coroutine B */
 2161:   int regAddrA;         /* Address register for select-A coroutine */
 2162:   int regEofA;          /* Flag to indicate when select-A is complete */
 2163:   int regAddrB;         /* Address register for select-B coroutine */
 2164:   int regEofB;          /* Flag to indicate when select-B is complete */
 2165:   int addrSelectA;      /* Address of the select-A coroutine */
 2166:   int addrSelectB;      /* Address of the select-B coroutine */
 2167:   int regOutA;          /* Address register for the output-A subroutine */
 2168:   int regOutB;          /* Address register for the output-B subroutine */
 2169:   int addrOutA;         /* Address of the output-A subroutine */
 2170:   int addrOutB = 0;     /* Address of the output-B subroutine */
 2171:   int addrEofA;         /* Address of the select-A-exhausted subroutine */
 2172:   int addrEofB;         /* Address of the select-B-exhausted subroutine */
 2173:   int addrAltB;         /* Address of the A<B subroutine */
 2174:   int addrAeqB;         /* Address of the A==B subroutine */
 2175:   int addrAgtB;         /* Address of the A>B subroutine */
 2176:   int regLimitA;        /* Limit register for select-A */
 2177:   int regLimitB;        /* Limit register for select-A */
 2178:   int regPrev;          /* A range of registers to hold previous output */
 2179:   int savedLimit;       /* Saved value of p->iLimit */
 2180:   int savedOffset;      /* Saved value of p->iOffset */
 2181:   int labelCmpr;        /* Label for the start of the merge algorithm */
 2182:   int labelEnd;         /* Label for the end of the overall SELECT stmt */
 2183:   int j1;               /* Jump instructions that get retargetted */
 2184:   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
 2185:   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
 2186:   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
 2187:   sqlite3 *db;          /* Database connection */
 2188:   ExprList *pOrderBy;   /* The ORDER BY clause */
 2189:   int nOrderBy;         /* Number of terms in the ORDER BY clause */
 2190:   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
 2191: #ifndef SQLITE_OMIT_EXPLAIN
 2192:   int iSub1;            /* EQP id of left-hand query */
 2193:   int iSub2;            /* EQP id of right-hand query */
 2194: #endif
 2195: 
 2196:   assert( p->pOrderBy!=0 );
 2197:   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
 2198:   db = pParse->db;
 2199:   v = pParse->pVdbe;
 2200:   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
 2201:   labelEnd = sqlite3VdbeMakeLabel(v);
 2202:   labelCmpr = sqlite3VdbeMakeLabel(v);
 2203: 
 2204: 
 2205:   /* Patch up the ORDER BY clause
 2206:   */
 2207:   op = p->op;  
 2208:   pPrior = p->pPrior;
 2209:   assert( pPrior->pOrderBy==0 );
 2210:   pOrderBy = p->pOrderBy;
 2211:   assert( pOrderBy );
 2212:   nOrderBy = pOrderBy->nExpr;
 2213: 
 2214:   /* For operators other than UNION ALL we have to make sure that
 2215:   ** the ORDER BY clause covers every term of the result set.  Add
 2216:   ** terms to the ORDER BY clause as necessary.
 2217:   */
 2218:   if( op!=TK_ALL ){
 2219:     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
 2220:       struct ExprList_item *pItem;
 2221:       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
 2222:         assert( pItem->iOrderByCol>0 );
 2223:         if( pItem->iOrderByCol==i ) break;
 2224:       }
 2225:       if( j==nOrderBy ){
 2226:         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
 2227:         if( pNew==0 ) return SQLITE_NOMEM;
 2228:         pNew->flags |= EP_IntValue;
 2229:         pNew->u.iValue = i;
 2230:         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
 2231:         pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
 2232:       }
 2233:     }
 2234:   }
 2235: 
 2236:   /* Compute the comparison permutation and keyinfo that is used with
 2237:   ** the permutation used to determine if the next
 2238:   ** row of results comes from selectA or selectB.  Also add explicit
 2239:   ** collations to the ORDER BY clause terms so that when the subqueries
 2240:   ** to the right and the left are evaluated, they use the correct
 2241:   ** collation.
 2242:   */
 2243:   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
 2244:   if( aPermute ){
 2245:     struct ExprList_item *pItem;
 2246:     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
 2247:       assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
 2248:       aPermute[i] = pItem->iOrderByCol - 1;
 2249:     }
 2250:     pKeyMerge =
 2251:       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
 2252:     if( pKeyMerge ){
 2253:       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
 2254:       pKeyMerge->nField = (u16)nOrderBy;
 2255:       pKeyMerge->enc = ENC(db);
 2256:       for(i=0; i<nOrderBy; i++){
 2257:         CollSeq *pColl;
 2258:         Expr *pTerm = pOrderBy->a[i].pExpr;
 2259:         if( pTerm->flags & EP_ExpCollate ){
 2260:           pColl = pTerm->pColl;
 2261:         }else{
 2262:           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
 2263:           pTerm->flags |= EP_ExpCollate;
 2264:           pTerm->pColl = pColl;
 2265:         }
 2266:         pKeyMerge->aColl[i] = pColl;
 2267:         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
 2268:       }
 2269:     }
 2270:   }else{
 2271:     pKeyMerge = 0;
 2272:   }
 2273: 
 2274:   /* Reattach the ORDER BY clause to the query.
 2275:   */
 2276:   p->pOrderBy = pOrderBy;
 2277:   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
 2278: 
 2279:   /* Allocate a range of temporary registers and the KeyInfo needed
 2280:   ** for the logic that removes duplicate result rows when the
 2281:   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
 2282:   */
 2283:   if( op==TK_ALL ){
 2284:     regPrev = 0;
 2285:   }else{
 2286:     int nExpr = p->pEList->nExpr;
 2287:     assert( nOrderBy>=nExpr || db->mallocFailed );
 2288:     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
 2289:     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
 2290:     pKeyDup = sqlite3DbMallocZero(db,
 2291:                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
 2292:     if( pKeyDup ){
 2293:       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
 2294:       pKeyDup->nField = (u16)nExpr;
 2295:       pKeyDup->enc = ENC(db);
 2296:       for(i=0; i<nExpr; i++){
 2297:         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
 2298:         pKeyDup->aSortOrder[i] = 0;
 2299:       }
 2300:     }
 2301:   }
 2302:  
 2303:   /* Separate the left and the right query from one another
 2304:   */
 2305:   p->pPrior = 0;
 2306:   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
 2307:   if( pPrior->pPrior==0 ){
 2308:     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
 2309:   }
 2310: 
 2311:   /* Compute the limit registers */
 2312:   computeLimitRegisters(pParse, p, labelEnd);
 2313:   if( p->iLimit && op==TK_ALL ){
 2314:     regLimitA = ++pParse->nMem;
 2315:     regLimitB = ++pParse->nMem;
 2316:     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
 2317:                                   regLimitA);
 2318:     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
 2319:   }else{
 2320:     regLimitA = regLimitB = 0;
 2321:   }
 2322:   sqlite3ExprDelete(db, p->pLimit);
 2323:   p->pLimit = 0;
 2324:   sqlite3ExprDelete(db, p->pOffset);
 2325:   p->pOffset = 0;
 2326: 
 2327:   regAddrA = ++pParse->nMem;
 2328:   regEofA = ++pParse->nMem;
 2329:   regAddrB = ++pParse->nMem;
 2330:   regEofB = ++pParse->nMem;
 2331:   regOutA = ++pParse->nMem;
 2332:   regOutB = ++pParse->nMem;
 2333:   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
 2334:   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
 2335: 
 2336:   /* Jump past the various subroutines and coroutines to the main
 2337:   ** merge loop
 2338:   */
 2339:   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
 2340:   addrSelectA = sqlite3VdbeCurrentAddr(v);
 2341: 
 2342: 
 2343:   /* Generate a coroutine to evaluate the SELECT statement to the
 2344:   ** left of the compound operator - the "A" select.
 2345:   */
 2346:   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
 2347:   pPrior->iLimit = regLimitA;
 2348:   explainSetInteger(iSub1, pParse->iNextSelectId);
 2349:   sqlite3Select(pParse, pPrior, &destA);
 2350:   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
 2351:   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
 2352:   VdbeNoopComment((v, "End coroutine for left SELECT"));
 2353: 
 2354:   /* Generate a coroutine to evaluate the SELECT statement on 
 2355:   ** the right - the "B" select
 2356:   */
 2357:   addrSelectB = sqlite3VdbeCurrentAddr(v);
 2358:   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
 2359:   savedLimit = p->iLimit;
 2360:   savedOffset = p->iOffset;
 2361:   p->iLimit = regLimitB;
 2362:   p->iOffset = 0;  
 2363:   explainSetInteger(iSub2, pParse->iNextSelectId);
 2364:   sqlite3Select(pParse, p, &destB);
 2365:   p->iLimit = savedLimit;
 2366:   p->iOffset = savedOffset;
 2367:   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
 2368:   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
 2369:   VdbeNoopComment((v, "End coroutine for right SELECT"));
 2370: 
 2371:   /* Generate a subroutine that outputs the current row of the A
 2372:   ** select as the next output row of the compound select.
 2373:   */
 2374:   VdbeNoopComment((v, "Output routine for A"));
 2375:   addrOutA = generateOutputSubroutine(pParse,
 2376:                  p, &destA, pDest, regOutA,
 2377:                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
 2378:   
 2379:   /* Generate a subroutine that outputs the current row of the B
 2380:   ** select as the next output row of the compound select.
 2381:   */
 2382:   if( op==TK_ALL || op==TK_UNION ){
 2383:     VdbeNoopComment((v, "Output routine for B"));
 2384:     addrOutB = generateOutputSubroutine(pParse,
 2385:                  p, &destB, pDest, regOutB,
 2386:                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
 2387:   }
 2388: 
 2389:   /* Generate a subroutine to run when the results from select A
 2390:   ** are exhausted and only data in select B remains.
 2391:   */
 2392:   VdbeNoopComment((v, "eof-A subroutine"));
 2393:   if( op==TK_EXCEPT || op==TK_INTERSECT ){
 2394:     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
 2395:   }else{  
 2396:     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
 2397:     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
 2398:     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
 2399:     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
 2400:     p->nSelectRow += pPrior->nSelectRow;
 2401:   }
 2402: 
 2403:   /* Generate a subroutine to run when the results from select B
 2404:   ** are exhausted and only data in select A remains.
 2405:   */
 2406:   if( op==TK_INTERSECT ){
 2407:     addrEofB = addrEofA;
 2408:     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
 2409:   }else{  
 2410:     VdbeNoopComment((v, "eof-B subroutine"));
 2411:     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
 2412:     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
 2413:     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
 2414:     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
 2415:   }
 2416: 
 2417:   /* Generate code to handle the case of A<B
 2418:   */
 2419:   VdbeNoopComment((v, "A-lt-B subroutine"));
 2420:   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
 2421:   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
 2422:   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
 2423:   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
 2424: 
 2425:   /* Generate code to handle the case of A==B
 2426:   */
 2427:   if( op==TK_ALL ){
 2428:     addrAeqB = addrAltB;
 2429:   }else if( op==TK_INTERSECT ){
 2430:     addrAeqB = addrAltB;
 2431:     addrAltB++;
 2432:   }else{
 2433:     VdbeNoopComment((v, "A-eq-B subroutine"));
 2434:     addrAeqB =
 2435:     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
 2436:     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
 2437:     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
 2438:   }
 2439: 
 2440:   /* Generate code to handle the case of A>B
 2441:   */
 2442:   VdbeNoopComment((v, "A-gt-B subroutine"));
 2443:   addrAgtB = sqlite3VdbeCurrentAddr(v);
 2444:   if( op==TK_ALL || op==TK_UNION ){
 2445:     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
 2446:   }
 2447:   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
 2448:   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
 2449:   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
 2450: 
 2451:   /* This code runs once to initialize everything.
 2452:   */
 2453:   sqlite3VdbeJumpHere(v, j1);
 2454:   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
 2455:   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
 2456:   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
 2457:   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
 2458:   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
 2459:   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
 2460: 
 2461:   /* Implement the main merge loop
 2462:   */
 2463:   sqlite3VdbeResolveLabel(v, labelCmpr);
 2464:   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
 2465:   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
 2466:                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
 2467:   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
 2468: 
 2469:   /* Release temporary registers
 2470:   */
 2471:   if( regPrev ){
 2472:     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
 2473:   }
 2474: 
 2475:   /* Jump to the this point in order to terminate the query.
 2476:   */
 2477:   sqlite3VdbeResolveLabel(v, labelEnd);
 2478: 
 2479:   /* Set the number of output columns
 2480:   */
 2481:   if( pDest->eDest==SRT_Output ){
 2482:     Select *pFirst = pPrior;
 2483:     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 2484:     generateColumnNames(pParse, 0, pFirst->pEList);
 2485:   }
 2486: 
 2487:   /* Reassembly the compound query so that it will be freed correctly
 2488:   ** by the calling function */
 2489:   if( p->pPrior ){
 2490:     sqlite3SelectDelete(db, p->pPrior);
 2491:   }
 2492:   p->pPrior = pPrior;
 2493: 
 2494:   /*** TBD:  Insert subroutine calls to close cursors on incomplete
 2495:   **** subqueries ****/
 2496:   explainComposite(pParse, p->op, iSub1, iSub2, 0);
 2497:   return SQLITE_OK;
 2498: }
 2499: #endif
 2500: 
 2501: #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
 2502: /* Forward Declarations */
 2503: static void substExprList(sqlite3*, ExprList*, int, ExprList*);
 2504: static void substSelect(sqlite3*, Select *, int, ExprList *);
 2505: 
 2506: /*
 2507: ** Scan through the expression pExpr.  Replace every reference to
 2508: ** a column in table number iTable with a copy of the iColumn-th
 2509: ** entry in pEList.  (But leave references to the ROWID column 
 2510: ** unchanged.)
 2511: **
 2512: ** This routine is part of the flattening procedure.  A subquery
 2513: ** whose result set is defined by pEList appears as entry in the
 2514: ** FROM clause of a SELECT such that the VDBE cursor assigned to that
 2515: ** FORM clause entry is iTable.  This routine make the necessary 
 2516: ** changes to pExpr so that it refers directly to the source table
 2517: ** of the subquery rather the result set of the subquery.
 2518: */
 2519: static Expr *substExpr(
 2520:   sqlite3 *db,        /* Report malloc errors to this connection */
 2521:   Expr *pExpr,        /* Expr in which substitution occurs */
 2522:   int iTable,         /* Table to be substituted */
 2523:   ExprList *pEList    /* Substitute expressions */
 2524: ){
 2525:   if( pExpr==0 ) return 0;
 2526:   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
 2527:     if( pExpr->iColumn<0 ){
 2528:       pExpr->op = TK_NULL;
 2529:     }else{
 2530:       Expr *pNew;
 2531:       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
 2532:       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
 2533:       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
 2534:       if( pNew && pExpr->pColl ){
 2535:         pNew->pColl = pExpr->pColl;
 2536:       }
 2537:       sqlite3ExprDelete(db, pExpr);
 2538:       pExpr = pNew;
 2539:     }
 2540:   }else{
 2541:     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
 2542:     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
 2543:     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
 2544:       substSelect(db, pExpr->x.pSelect, iTable, pEList);
 2545:     }else{
 2546:       substExprList(db, pExpr->x.pList, iTable, pEList);
 2547:     }
 2548:   }
 2549:   return pExpr;
 2550: }
 2551: static void substExprList(
 2552:   sqlite3 *db,         /* Report malloc errors here */
 2553:   ExprList *pList,     /* List to scan and in which to make substitutes */
 2554:   int iTable,          /* Table to be substituted */
 2555:   ExprList *pEList     /* Substitute values */
 2556: ){
 2557:   int i;
 2558:   if( pList==0 ) return;
 2559:   for(i=0; i<pList->nExpr; i++){
 2560:     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
 2561:   }
 2562: }
 2563: static void substSelect(
 2564:   sqlite3 *db,         /* Report malloc errors here */
 2565:   Select *p,           /* SELECT statement in which to make substitutions */
 2566:   int iTable,          /* Table to be replaced */
 2567:   ExprList *pEList     /* Substitute values */
 2568: ){
 2569:   SrcList *pSrc;
 2570:   struct SrcList_item *pItem;
 2571:   int i;
 2572:   if( !p ) return;
 2573:   substExprList(db, p->pEList, iTable, pEList);
 2574:   substExprList(db, p->pGroupBy, iTable, pEList);
 2575:   substExprList(db, p->pOrderBy, iTable, pEList);
 2576:   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
 2577:   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
 2578:   substSelect(db, p->pPrior, iTable, pEList);
 2579:   pSrc = p->pSrc;
 2580:   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
 2581:   if( ALWAYS(pSrc) ){
 2582:     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
 2583:       substSelect(db, pItem->pSelect, iTable, pEList);
 2584:     }
 2585:   }
 2586: }
 2587: #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
 2588: 
 2589: #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
 2590: /*
 2591: ** This routine attempts to flatten subqueries as a performance optimization.
 2592: ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
 2593: **
 2594: ** To understand the concept of flattening, consider the following
 2595: ** query:
 2596: **
 2597: **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
 2598: **
 2599: ** The default way of implementing this query is to execute the
 2600: ** subquery first and store the results in a temporary table, then
 2601: ** run the outer query on that temporary table.  This requires two
 2602: ** passes over the data.  Furthermore, because the temporary table
 2603: ** has no indices, the WHERE clause on the outer query cannot be
 2604: ** optimized.
 2605: **
 2606: ** This routine attempts to rewrite queries such as the above into
 2607: ** a single flat select, like this:
 2608: **
 2609: **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
 2610: **
 2611: ** The code generated for this simpification gives the same result
 2612: ** but only has to scan the data once.  And because indices might 
 2613: ** exist on the table t1, a complete scan of the data might be
 2614: ** avoided.
 2615: **
 2616: ** Flattening is only attempted if all of the following are true:
 2617: **
 2618: **   (1)  The subquery and the outer query do not both use aggregates.
 2619: **
 2620: **   (2)  The subquery is not an aggregate or the outer query is not a join.
 2621: **
 2622: **   (3)  The subquery is not the right operand of a left outer join
 2623: **        (Originally ticket #306.  Strengthened by ticket #3300)
 2624: **
 2625: **   (4)  The subquery is not DISTINCT.
 2626: **
 2627: **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
 2628: **        sub-queries that were excluded from this optimization. Restriction 
 2629: **        (4) has since been expanded to exclude all DISTINCT subqueries.
 2630: **
 2631: **   (6)  The subquery does not use aggregates or the outer query is not
 2632: **        DISTINCT.
 2633: **
 2634: **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
 2635: **        A FROM clause, consider adding a FROM close with the special
 2636: **        table sqlite_once that consists of a single row containing a
 2637: **        single NULL.
 2638: **
 2639: **   (8)  The subquery does not use LIMIT or the outer query is not a join.
 2640: **
 2641: **   (9)  The subquery does not use LIMIT or the outer query does not use
 2642: **        aggregates.
 2643: **
 2644: **  (10)  The subquery does not use aggregates or the outer query does not
 2645: **        use LIMIT.
 2646: **
 2647: **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
 2648: **
 2649: **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
 2650: **        a separate restriction deriving from ticket #350.
 2651: **
 2652: **  (13)  The subquery and outer query do not both use LIMIT.
 2653: **
 2654: **  (14)  The subquery does not use OFFSET.
 2655: **
 2656: **  (15)  The outer query is not part of a compound select or the
 2657: **        subquery does not have a LIMIT clause.
 2658: **        (See ticket #2339 and ticket [02a8e81d44]).
 2659: **
 2660: **  (16)  The outer query is not an aggregate or the subquery does
 2661: **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
 2662: **        until we introduced the group_concat() function.  
 2663: **
 2664: **  (17)  The sub-query is not a compound select, or it is a UNION ALL 
 2665: **        compound clause made up entirely of non-aggregate queries, and 
 2666: **        the parent query:
 2667: **
 2668: **          * is not itself part of a compound select,
 2669: **          * is not an aggregate or DISTINCT query, and
 2670: **          * is not a join
 2671: **
 2672: **        The parent and sub-query may contain WHERE clauses. Subject to
 2673: **        rules (11), (13) and (14), they may also contain ORDER BY,
 2674: **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
 2675: **        operator other than UNION ALL because all the other compound
 2676: **        operators have an implied DISTINCT which is disallowed by
 2677: **        restriction (4).
 2678: **
 2679: **  (18)  If the sub-query is a compound select, then all terms of the
 2680: **        ORDER by clause of the parent must be simple references to 
 2681: **        columns of the sub-query.
 2682: **
 2683: **  (19)  The subquery does not use LIMIT or the outer query does not
 2684: **        have a WHERE clause.
 2685: **
 2686: **  (20)  If the sub-query is a compound select, then it must not use
 2687: **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
 2688: **        somewhat by saying that the terms of the ORDER BY clause must
 2689: **        appear as unmodified result columns in the outer query.  But we
 2690: **        have other optimizations in mind to deal with that case.
 2691: **
 2692: **  (21)  The subquery does not use LIMIT or the outer query is not
 2693: **        DISTINCT.  (See ticket [752e1646fc]).
 2694: **
 2695: ** In this routine, the "p" parameter is a pointer to the outer query.
 2696: ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
 2697: ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
 2698: **
 2699: ** If flattening is not attempted, this routine is a no-op and returns 0.
 2700: ** If flattening is attempted this routine returns 1.
 2701: **
 2702: ** All of the expression analysis must occur on both the outer query and
 2703: ** the subquery before this routine runs.
 2704: */
 2705: static int flattenSubquery(
 2706:   Parse *pParse,       /* Parsing context */
 2707:   Select *p,           /* The parent or outer SELECT statement */
 2708:   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
 2709:   int isAgg,           /* True if outer SELECT uses aggregate functions */
 2710:   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
 2711: ){
 2712:   const char *zSavedAuthContext = pParse->zAuthContext;
 2713:   Select *pParent;
 2714:   Select *pSub;       /* The inner query or "subquery" */
 2715:   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
 2716:   SrcList *pSrc;      /* The FROM clause of the outer query */
 2717:   SrcList *pSubSrc;   /* The FROM clause of the subquery */
 2718:   ExprList *pList;    /* The result set of the outer query */
 2719:   int iParent;        /* VDBE cursor number of the pSub result set temp table */
 2720:   int i;              /* Loop counter */
 2721:   Expr *pWhere;                    /* The WHERE clause */
 2722:   struct SrcList_item *pSubitem;   /* The subquery */
 2723:   sqlite3 *db = pParse->db;
 2724: 
 2725:   /* Check to see if flattening is permitted.  Return 0 if not.
 2726:   */
 2727:   assert( p!=0 );
 2728:   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
 2729:   if( db->flags & SQLITE_QueryFlattener ) return 0;
 2730:   pSrc = p->pSrc;
 2731:   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
 2732:   pSubitem = &pSrc->a[iFrom];
 2733:   iParent = pSubitem->iCursor;
 2734:   pSub = pSubitem->pSelect;
 2735:   assert( pSub!=0 );
 2736:   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
 2737:   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
 2738:   pSubSrc = pSub->pSrc;
 2739:   assert( pSubSrc );
 2740:   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
 2741:   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
 2742:   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
 2743:   ** became arbitrary expressions, we were forced to add restrictions (13)
 2744:   ** and (14). */
 2745:   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
 2746:   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
 2747:   if( p->pRightmost && pSub->pLimit ){
 2748:     return 0;                                            /* Restriction (15) */
 2749:   }
 2750:   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
 2751:   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
 2752:   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
 2753:      return 0;         /* Restrictions (8)(9) */
 2754:   }
 2755:   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
 2756:      return 0;         /* Restriction (6)  */
 2757:   }
 2758:   if( p->pOrderBy && pSub->pOrderBy ){
 2759:      return 0;                                           /* Restriction (11) */
 2760:   }
 2761:   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
 2762:   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
 2763:   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
 2764:      return 0;         /* Restriction (21) */
 2765:   }
 2766: 
 2767:   /* OBSOLETE COMMENT 1:
 2768:   ** Restriction 3:  If the subquery is a join, make sure the subquery is 
 2769:   ** not used as the right operand of an outer join.  Examples of why this
 2770:   ** is not allowed:
 2771:   **
 2772:   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
 2773:   **
 2774:   ** If we flatten the above, we would get
 2775:   **
 2776:   **         (t1 LEFT OUTER JOIN t2) JOIN t3
 2777:   **
 2778:   ** which is not at all the same thing.
 2779:   **
 2780:   ** OBSOLETE COMMENT 2:
 2781:   ** Restriction 12:  If the subquery is the right operand of a left outer
 2782:   ** join, make sure the subquery has no WHERE clause.
 2783:   ** An examples of why this is not allowed:
 2784:   **
 2785:   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
 2786:   **
 2787:   ** If we flatten the above, we would get
 2788:   **
 2789:   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
 2790:   **
 2791:   ** But the t2.x>0 test will always fail on a NULL row of t2, which
 2792:   ** effectively converts the OUTER JOIN into an INNER JOIN.
 2793:   **
 2794:   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
 2795:   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
 2796:   ** is fraught with danger.  Best to avoid the whole thing.  If the
 2797:   ** subquery is the right term of a LEFT JOIN, then do not flatten.
 2798:   */
 2799:   if( (pSubitem->jointype & JT_OUTER)!=0 ){
 2800:     return 0;
 2801:   }
 2802: 
 2803:   /* Restriction 17: If the sub-query is a compound SELECT, then it must
 2804:   ** use only the UNION ALL operator. And none of the simple select queries
 2805:   ** that make up the compound SELECT are allowed to be aggregate or distinct
 2806:   ** queries.
 2807:   */
 2808:   if( pSub->pPrior ){
 2809:     if( pSub->pOrderBy ){
 2810:       return 0;  /* Restriction 20 */
 2811:     }
 2812:     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
 2813:       return 0;
 2814:     }
 2815:     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
 2816:       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
 2817:       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
 2818:       assert( pSub->pSrc!=0 );
 2819:       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
 2820:        || (pSub1->pPrior && pSub1->op!=TK_ALL) 
 2821:        || pSub1->pSrc->nSrc<1
 2822:       ){
 2823:         return 0;
 2824:       }
 2825:       testcase( pSub1->pSrc->nSrc>1 );
 2826:     }
 2827: 
 2828:     /* Restriction 18. */
 2829:     if( p->pOrderBy ){
 2830:       int ii;
 2831:       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
 2832:         if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
 2833:       }
 2834:     }
 2835:   }
 2836: 
 2837:   /***** If we reach this point, flattening is permitted. *****/
 2838: 
 2839:   /* Authorize the subquery */
 2840:   pParse->zAuthContext = pSubitem->zName;
 2841:   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
 2842:   pParse->zAuthContext = zSavedAuthContext;
 2843: 
 2844:   /* If the sub-query is a compound SELECT statement, then (by restrictions
 2845:   ** 17 and 18 above) it must be a UNION ALL and the parent query must 
 2846:   ** be of the form:
 2847:   **
 2848:   **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
 2849:   **
 2850:   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
 2851:   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 
 2852:   ** OFFSET clauses and joins them to the left-hand-side of the original
 2853:   ** using UNION ALL operators. In this case N is the number of simple
 2854:   ** select statements in the compound sub-query.
 2855:   **
 2856:   ** Example:
 2857:   **
 2858:   **     SELECT a+1 FROM (
 2859:   **        SELECT x FROM tab
 2860:   **        UNION ALL
 2861:   **        SELECT y FROM tab
 2862:   **        UNION ALL
 2863:   **        SELECT abs(z*2) FROM tab2
 2864:   **     ) WHERE a!=5 ORDER BY 1
 2865:   **
 2866:   ** Transformed into:
 2867:   **
 2868:   **     SELECT x+1 FROM tab WHERE x+1!=5
 2869:   **     UNION ALL
 2870:   **     SELECT y+1 FROM tab WHERE y+1!=5
 2871:   **     UNION ALL
 2872:   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
 2873:   **     ORDER BY 1
 2874:   **
 2875:   ** We call this the "compound-subquery flattening".
 2876:   */
 2877:   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
 2878:     Select *pNew;
 2879:     ExprList *pOrderBy = p->pOrderBy;
 2880:     Expr *pLimit = p->pLimit;
 2881:     Select *pPrior = p->pPrior;
 2882:     p->pOrderBy = 0;
 2883:     p->pSrc = 0;
 2884:     p->pPrior = 0;
 2885:     p->pLimit = 0;
 2886:     pNew = sqlite3SelectDup(db, p, 0);
 2887:     p->pLimit = pLimit;
 2888:     p->pOrderBy = pOrderBy;
 2889:     p->pSrc = pSrc;
 2890:     p->op = TK_ALL;
 2891:     p->pRightmost = 0;
 2892:     if( pNew==0 ){
 2893:       pNew = pPrior;
 2894:     }else{
 2895:       pNew->pPrior = pPrior;
 2896:       pNew->pRightmost = 0;
 2897:     }
 2898:     p->pPrior = pNew;
 2899:     if( db->mallocFailed ) return 1;
 2900:   }
 2901: 
 2902:   /* Begin flattening the iFrom-th entry of the FROM clause 
 2903:   ** in the outer query.
 2904:   */
 2905:   pSub = pSub1 = pSubitem->pSelect;
 2906: 
 2907:   /* Delete the transient table structure associated with the
 2908:   ** subquery
 2909:   */
 2910:   sqlite3DbFree(db, pSubitem->zDatabase);
 2911:   sqlite3DbFree(db, pSubitem->zName);
 2912:   sqlite3DbFree(db, pSubitem->zAlias);
 2913:   pSubitem->zDatabase = 0;
 2914:   pSubitem->zName = 0;
 2915:   pSubitem->zAlias = 0;
 2916:   pSubitem->pSelect = 0;
 2917: 
 2918:   /* Defer deleting the Table object associated with the
 2919:   ** subquery until code generation is
 2920:   ** complete, since there may still exist Expr.pTab entries that
 2921:   ** refer to the subquery even after flattening.  Ticket #3346.
 2922:   **
 2923:   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
 2924:   */
 2925:   if( ALWAYS(pSubitem->pTab!=0) ){
 2926:     Table *pTabToDel = pSubitem->pTab;
 2927:     if( pTabToDel->nRef==1 ){
 2928:       Parse *pToplevel = sqlite3ParseToplevel(pParse);
 2929:       pTabToDel->pNextZombie = pToplevel->pZombieTab;
 2930:       pToplevel->pZombieTab = pTabToDel;
 2931:     }else{
 2932:       pTabToDel->nRef--;
 2933:     }
 2934:     pSubitem->pTab = 0;
 2935:   }
 2936: 
 2937:   /* The following loop runs once for each term in a compound-subquery
 2938:   ** flattening (as described above).  If we are doing a different kind
 2939:   ** of flattening - a flattening other than a compound-subquery flattening -
 2940:   ** then this loop only runs once.
 2941:   **
 2942:   ** This loop moves all of the FROM elements of the subquery into the
 2943:   ** the FROM clause of the outer query.  Before doing this, remember
 2944:   ** the cursor number for the original outer query FROM element in
 2945:   ** iParent.  The iParent cursor will never be used.  Subsequent code
 2946:   ** will scan expressions looking for iParent references and replace
 2947:   ** those references with expressions that resolve to the subquery FROM
 2948:   ** elements we are now copying in.
 2949:   */
 2950:   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
 2951:     int nSubSrc;
 2952:     u8 jointype = 0;
 2953:     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
 2954:     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
 2955:     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
 2956: 
 2957:     if( pSrc ){
 2958:       assert( pParent==p );  /* First time through the loop */
 2959:       jointype = pSubitem->jointype;
 2960:     }else{
 2961:       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
 2962:       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
 2963:       if( pSrc==0 ){
 2964:         assert( db->mallocFailed );
 2965:         break;
 2966:       }
 2967:     }
 2968: 
 2969:     /* The subquery uses a single slot of the FROM clause of the outer
 2970:     ** query.  If the subquery has more than one element in its FROM clause,
 2971:     ** then expand the outer query to make space for it to hold all elements
 2972:     ** of the subquery.
 2973:     **
 2974:     ** Example:
 2975:     **
 2976:     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
 2977:     **
 2978:     ** The outer query has 3 slots in its FROM clause.  One slot of the
 2979:     ** outer query (the middle slot) is used by the subquery.  The next
 2980:     ** block of code will expand the out query to 4 slots.  The middle
 2981:     ** slot is expanded to two slots in order to make space for the
 2982:     ** two elements in the FROM clause of the subquery.
 2983:     */
 2984:     if( nSubSrc>1 ){
 2985:       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
 2986:       if( db->mallocFailed ){
 2987:         break;
 2988:       }
 2989:     }
 2990: 
 2991:     /* Transfer the FROM clause terms from the subquery into the
 2992:     ** outer query.
 2993:     */
 2994:     for(i=0; i<nSubSrc; i++){
 2995:       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
 2996:       pSrc->a[i+iFrom] = pSubSrc->a[i];
 2997:       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
 2998:     }
 2999:     pSrc->a[iFrom].jointype = jointype;
 3000:   
 3001:     /* Now begin substituting subquery result set expressions for 
 3002:     ** references to the iParent in the outer query.
 3003:     ** 
 3004:     ** Example:
 3005:     **
 3006:     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
 3007:     **   \                     \_____________ subquery __________/          /
 3008:     **    \_____________________ outer query ______________________________/
 3009:     **
 3010:     ** We look at every expression in the outer query and every place we see
 3011:     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
 3012:     */
 3013:     pList = pParent->pEList;
 3014:     for(i=0; i<pList->nExpr; i++){
 3015:       if( pList->a[i].zName==0 ){
 3016:         const char *zSpan = pList->a[i].zSpan;
 3017:         if( ALWAYS(zSpan) ){
 3018:           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
 3019:         }
 3020:       }
 3021:     }
 3022:     substExprList(db, pParent->pEList, iParent, pSub->pEList);
 3023:     if( isAgg ){
 3024:       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
 3025:       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
 3026:     }
 3027:     if( pSub->pOrderBy ){
 3028:       assert( pParent->pOrderBy==0 );
 3029:       pParent->pOrderBy = pSub->pOrderBy;
 3030:       pSub->pOrderBy = 0;
 3031:     }else if( pParent->pOrderBy ){
 3032:       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
 3033:     }
 3034:     if( pSub->pWhere ){
 3035:       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
 3036:     }else{
 3037:       pWhere = 0;
 3038:     }
 3039:     if( subqueryIsAgg ){
 3040:       assert( pParent->pHaving==0 );
 3041:       pParent->pHaving = pParent->pWhere;
 3042:       pParent->pWhere = pWhere;
 3043:       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
 3044:       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
 3045:                                   sqlite3ExprDup(db, pSub->pHaving, 0));
 3046:       assert( pParent->pGroupBy==0 );
 3047:       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
 3048:     }else{
 3049:       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
 3050:       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
 3051:     }
 3052:   
 3053:     /* The flattened query is distinct if either the inner or the
 3054:     ** outer query is distinct. 
 3055:     */
 3056:     pParent->selFlags |= pSub->selFlags & SF_Distinct;
 3057:   
 3058:     /*
 3059:     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
 3060:     **
 3061:     ** One is tempted to try to add a and b to combine the limits.  But this
 3062:     ** does not work if either limit is negative.
 3063:     */
 3064:     if( pSub->pLimit ){
 3065:       pParent->pLimit = pSub->pLimit;
 3066:       pSub->pLimit = 0;
 3067:     }
 3068:   }
 3069: 
 3070:   /* Finially, delete what is left of the subquery and return
 3071:   ** success.
 3072:   */
 3073:   sqlite3SelectDelete(db, pSub1);
 3074: 
 3075:   return 1;
 3076: }
 3077: #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
 3078: 
 3079: /*
 3080: ** Analyze the SELECT statement passed as an argument to see if it
 3081: ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
 3082: ** it is, or 0 otherwise. At present, a query is considered to be
 3083: ** a min()/max() query if:
 3084: **
 3085: **   1. There is a single object in the FROM clause.
 3086: **
 3087: **   2. There is a single expression in the result set, and it is
 3088: **      either min(x) or max(x), where x is a column reference.
 3089: */
 3090: static u8 minMaxQuery(Select *p){
 3091:   Expr *pExpr;
 3092:   ExprList *pEList = p->pEList;
 3093: 
 3094:   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
 3095:   pExpr = pEList->a[0].pExpr;
 3096:   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
 3097:   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
 3098:   pEList = pExpr->x.pList;
 3099:   if( pEList==0 || pEList->nExpr!=1 ) return 0;
 3100:   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
 3101:   assert( !ExprHasProperty(pExpr, EP_IntValue) );
 3102:   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
 3103:     return WHERE_ORDERBY_MIN;
 3104:   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
 3105:     return WHERE_ORDERBY_MAX;
 3106:   }
 3107:   return WHERE_ORDERBY_NORMAL;
 3108: }
 3109: 
 3110: /*
 3111: ** The select statement passed as the first argument is an aggregate query.
 3112: ** The second argment is the associated aggregate-info object. This 
 3113: ** function tests if the SELECT is of the form:
 3114: **
 3115: **   SELECT count(*) FROM <tbl>
 3116: **
 3117: ** where table is a database table, not a sub-select or view. If the query
 3118: ** does match this pattern, then a pointer to the Table object representing
 3119: ** <tbl> is returned. Otherwise, 0 is returned.
 3120: */
 3121: static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
 3122:   Table *pTab;
 3123:   Expr *pExpr;
 3124: 
 3125:   assert( !p->pGroupBy );
 3126: 
 3127:   if( p->pWhere || p->pEList->nExpr!=1 
 3128:    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
 3129:   ){
 3130:     return 0;
 3131:   }
 3132:   pTab = p->pSrc->a[0].pTab;
 3133:   pExpr = p->pEList->a[0].pExpr;
 3134:   assert( pTab && !pTab->pSelect && pExpr );
 3135: 
 3136:   if( IsVirtual(pTab) ) return 0;
 3137:   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
 3138:   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
 3139:   if( pExpr->flags&EP_Distinct ) return 0;
 3140: 
 3141:   return pTab;
 3142: }
 3143: 
 3144: /*
 3145: ** If the source-list item passed as an argument was augmented with an
 3146: ** INDEXED BY clause, then try to locate the specified index. If there
 3147: ** was such a clause and the named index cannot be found, return 
 3148: ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 
 3149: ** pFrom->pIndex and return SQLITE_OK.
 3150: */
 3151: int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
 3152:   if( pFrom->pTab && pFrom->zIndex ){
 3153:     Table *pTab = pFrom->pTab;
 3154:     char *zIndex = pFrom->zIndex;
 3155:     Index *pIdx;
 3156:     for(pIdx=pTab->pIndex; 
 3157:         pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 
 3158:         pIdx=pIdx->pNext
 3159:     );
 3160:     if( !pIdx ){
 3161:       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
 3162:       pParse->checkSchema = 1;
 3163:       return SQLITE_ERROR;
 3164:     }
 3165:     pFrom->pIndex = pIdx;
 3166:   }
 3167:   return SQLITE_OK;
 3168: }
 3169: 
 3170: /*
 3171: ** This routine is a Walker callback for "expanding" a SELECT statement.
 3172: ** "Expanding" means to do the following:
 3173: **
 3174: **    (1)  Make sure VDBE cursor numbers have been assigned to every
 3175: **         element of the FROM clause.
 3176: **
 3177: **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
 3178: **         defines FROM clause.  When views appear in the FROM clause,
 3179: **         fill pTabList->a[].pSelect with a copy of the SELECT statement
 3180: **         that implements the view.  A copy is made of the view's SELECT
 3181: **         statement so that we can freely modify or delete that statement
 3182: **         without worrying about messing up the presistent representation
 3183: **         of the view.
 3184: **
 3185: **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
 3186: **         on joins and the ON and USING clause of joins.
 3187: **
 3188: **    (4)  Scan the list of columns in the result set (pEList) looking
 3189: **         for instances of the "*" operator or the TABLE.* operator.
 3190: **         If found, expand each "*" to be every column in every table
 3191: **         and TABLE.* to be every column in TABLE.
 3192: **
 3193: */
 3194: static int selectExpander(Walker *pWalker, Select *p){
 3195:   Parse *pParse = pWalker->pParse;
 3196:   int i, j, k;
 3197:   SrcList *pTabList;
 3198:   ExprList *pEList;
 3199:   struct SrcList_item *pFrom;
 3200:   sqlite3 *db = pParse->db;
 3201: 
 3202:   if( db->mallocFailed  ){
 3203:     return WRC_Abort;
 3204:   }
 3205:   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
 3206:     return WRC_Prune;
 3207:   }
 3208:   p->selFlags |= SF_Expanded;
 3209:   pTabList = p->pSrc;
 3210:   pEList = p->pEList;
 3211: 
 3212:   /* Make sure cursor numbers have been assigned to all entries in
 3213:   ** the FROM clause of the SELECT statement.
 3214:   */
 3215:   sqlite3SrcListAssignCursors(pParse, pTabList);
 3216: 
 3217:   /* Look up every table named in the FROM clause of the select.  If
 3218:   ** an entry of the FROM clause is a subquery instead of a table or view,
 3219:   ** then create a transient table structure to describe the subquery.
 3220:   */
 3221:   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 3222:     Table *pTab;
 3223:     if( pFrom->pTab!=0 ){
 3224:       /* This statement has already been prepared.  There is no need
 3225:       ** to go further. */
 3226:       assert( i==0 );
 3227:       return WRC_Prune;
 3228:     }
 3229:     if( pFrom->zName==0 ){
 3230: #ifndef SQLITE_OMIT_SUBQUERY
 3231:       Select *pSel = pFrom->pSelect;
 3232:       /* A sub-query in the FROM clause of a SELECT */
 3233:       assert( pSel!=0 );
 3234:       assert( pFrom->pTab==0 );
 3235:       sqlite3WalkSelect(pWalker, pSel);
 3236:       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
 3237:       if( pTab==0 ) return WRC_Abort;
 3238:       pTab->nRef = 1;
 3239:       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
 3240:       while( pSel->pPrior ){ pSel = pSel->pPrior; }
 3241:       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
 3242:       pTab->iPKey = -1;
 3243:       pTab->nRowEst = 1000000;
 3244:       pTab->tabFlags |= TF_Ephemeral;
 3245: #endif
 3246:     }else{
 3247:       /* An ordinary table or view name in the FROM clause */
 3248:       assert( pFrom->pTab==0 );
 3249:       pFrom->pTab = pTab = 
 3250:         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
 3251:       if( pTab==0 ) return WRC_Abort;
 3252:       pTab->nRef++;
 3253: #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
 3254:       if( pTab->pSelect || IsVirtual(pTab) ){
 3255:         /* We reach here if the named table is a really a view */
 3256:         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
 3257:         assert( pFrom->pSelect==0 );
 3258:         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
 3259:         sqlite3WalkSelect(pWalker, pFrom->pSelect);
 3260:       }
 3261: #endif
 3262:     }
 3263: 
 3264:     /* Locate the index named by the INDEXED BY clause, if any. */
 3265:     if( sqlite3IndexedByLookup(pParse, pFrom) ){
 3266:       return WRC_Abort;
 3267:     }
 3268:   }
 3269: 
 3270:   /* Process NATURAL keywords, and ON and USING clauses of joins.
 3271:   */
 3272:   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
 3273:     return WRC_Abort;
 3274:   }
 3275: 
 3276:   /* For every "*" that occurs in the column list, insert the names of
 3277:   ** all columns in all tables.  And for every TABLE.* insert the names
 3278:   ** of all columns in TABLE.  The parser inserted a special expression
 3279:   ** with the TK_ALL operator for each "*" that it found in the column list.
 3280:   ** The following code just has to locate the TK_ALL expressions and expand
 3281:   ** each one to the list of all columns in all tables.
 3282:   **
 3283:   ** The first loop just checks to see if there are any "*" operators
 3284:   ** that need expanding.
 3285:   */
 3286:   for(k=0; k<pEList->nExpr; k++){
 3287:     Expr *pE = pEList->a[k].pExpr;
 3288:     if( pE->op==TK_ALL ) break;
 3289:     assert( pE->op!=TK_DOT || pE->pRight!=0 );
 3290:     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
 3291:     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
 3292:   }
 3293:   if( k<pEList->nExpr ){
 3294:     /*
 3295:     ** If we get here it means the result set contains one or more "*"
 3296:     ** operators that need to be expanded.  Loop through each expression
 3297:     ** in the result set and expand them one by one.
 3298:     */
 3299:     struct ExprList_item *a = pEList->a;
 3300:     ExprList *pNew = 0;
 3301:     int flags = pParse->db->flags;
 3302:     int longNames = (flags & SQLITE_FullColNames)!=0
 3303:                       && (flags & SQLITE_ShortColNames)==0;
 3304: 
 3305:     for(k=0; k<pEList->nExpr; k++){
 3306:       Expr *pE = a[k].pExpr;
 3307:       assert( pE->op!=TK_DOT || pE->pRight!=0 );
 3308:       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
 3309:         /* This particular expression does not need to be expanded.
 3310:         */
 3311:         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
 3312:         if( pNew ){
 3313:           pNew->a[pNew->nExpr-1].zName = a[k].zName;
 3314:           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
 3315:           a[k].zName = 0;
 3316:           a[k].zSpan = 0;
 3317:         }
 3318:         a[k].pExpr = 0;
 3319:       }else{
 3320:         /* This expression is a "*" or a "TABLE.*" and needs to be
 3321:         ** expanded. */
 3322:         int tableSeen = 0;      /* Set to 1 when TABLE matches */
 3323:         char *zTName;            /* text of name of TABLE */
 3324:         if( pE->op==TK_DOT ){
 3325:           assert( pE->pLeft!=0 );
 3326:           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
 3327:           zTName = pE->pLeft->u.zToken;
 3328:         }else{
 3329:           zTName = 0;
 3330:         }
 3331:         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 3332:           Table *pTab = pFrom->pTab;
 3333:           char *zTabName = pFrom->zAlias;
 3334:           if( zTabName==0 ){
 3335:             zTabName = pTab->zName;
 3336:           }
 3337:           if( db->mallocFailed ) break;
 3338:           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
 3339:             continue;
 3340:           }
 3341:           tableSeen = 1;
 3342:           for(j=0; j<pTab->nCol; j++){
 3343:             Expr *pExpr, *pRight;
 3344:             char *zName = pTab->aCol[j].zName;
 3345:             char *zColname;  /* The computed column name */
 3346:             char *zToFree;   /* Malloced string that needs to be freed */
 3347:             Token sColname;  /* Computed column name as a token */
 3348: 
 3349:             /* If a column is marked as 'hidden' (currently only possible
 3350:             ** for virtual tables), do not include it in the expanded
 3351:             ** result-set list.
 3352:             */
 3353:             if( IsHiddenColumn(&pTab->aCol[j]) ){
 3354:               assert(IsVirtual(pTab));
 3355:               continue;
 3356:             }
 3357: 
 3358:             if( i>0 && zTName==0 ){
 3359:               if( (pFrom->jointype & JT_NATURAL)!=0
 3360:                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
 3361:               ){
 3362:                 /* In a NATURAL join, omit the join columns from the 
 3363:                 ** table to the right of the join */
 3364:                 continue;
 3365:               }
 3366:               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
 3367:                 /* In a join with a USING clause, omit columns in the
 3368:                 ** using clause from the table on the right. */
 3369:                 continue;
 3370:               }
 3371:             }
 3372:             pRight = sqlite3Expr(db, TK_ID, zName);
 3373:             zColname = zName;
 3374:             zToFree = 0;
 3375:             if( longNames || pTabList->nSrc>1 ){
 3376:               Expr *pLeft;
 3377:               pLeft = sqlite3Expr(db, TK_ID, zTabName);
 3378:               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
 3379:               if( longNames ){
 3380:                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
 3381:                 zToFree = zColname;
 3382:               }
 3383:             }else{
 3384:               pExpr = pRight;
 3385:             }
 3386:             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
 3387:             sColname.z = zColname;
 3388:             sColname.n = sqlite3Strlen30(zColname);
 3389:             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
 3390:             sqlite3DbFree(db, zToFree);
 3391:           }
 3392:         }
 3393:         if( !tableSeen ){
 3394:           if( zTName ){
 3395:             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
 3396:           }else{
 3397:             sqlite3ErrorMsg(pParse, "no tables specified");
 3398:           }
 3399:         }
 3400:       }
 3401:     }
 3402:     sqlite3ExprListDelete(db, pEList);
 3403:     p->pEList = pNew;
 3404:   }
 3405: #if SQLITE_MAX_COLUMN
 3406:   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
 3407:     sqlite3ErrorMsg(pParse, "too many columns in result set");
 3408:   }
 3409: #endif
 3410:   return WRC_Continue;
 3411: }
 3412: 
 3413: /*
 3414: ** No-op routine for the parse-tree walker.
 3415: **
 3416: ** When this routine is the Walker.xExprCallback then expression trees
 3417: ** are walked without any actions being taken at each node.  Presumably,
 3418: ** when this routine is used for Walker.xExprCallback then 
 3419: ** Walker.xSelectCallback is set to do something useful for every 
 3420: ** subquery in the parser tree.
 3421: */
 3422: static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
 3423:   UNUSED_PARAMETER2(NotUsed, NotUsed2);
 3424:   return WRC_Continue;
 3425: }
 3426: 
 3427: /*
 3428: ** This routine "expands" a SELECT statement and all of its subqueries.
 3429: ** For additional information on what it means to "expand" a SELECT
 3430: ** statement, see the comment on the selectExpand worker callback above.
 3431: **
 3432: ** Expanding a SELECT statement is the first step in processing a
 3433: ** SELECT statement.  The SELECT statement must be expanded before
 3434: ** name resolution is performed.
 3435: **
 3436: ** If anything goes wrong, an error message is written into pParse.
 3437: ** The calling function can detect the problem by looking at pParse->nErr
 3438: ** and/or pParse->db->mallocFailed.
 3439: */
 3440: static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
 3441:   Walker w;
 3442:   w.xSelectCallback = selectExpander;
 3443:   w.xExprCallback = exprWalkNoop;
 3444:   w.pParse = pParse;
 3445:   sqlite3WalkSelect(&w, pSelect);
 3446: }
 3447: 
 3448: 
 3449: #ifndef SQLITE_OMIT_SUBQUERY
 3450: /*
 3451: ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
 3452: ** interface.
 3453: **
 3454: ** For each FROM-clause subquery, add Column.zType and Column.zColl
 3455: ** information to the Table structure that represents the result set
 3456: ** of that subquery.
 3457: **
 3458: ** The Table structure that represents the result set was constructed
 3459: ** by selectExpander() but the type and collation information was omitted
 3460: ** at that point because identifiers had not yet been resolved.  This
 3461: ** routine is called after identifier resolution.
 3462: */
 3463: static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
 3464:   Parse *pParse;
 3465:   int i;
 3466:   SrcList *pTabList;
 3467:   struct SrcList_item *pFrom;
 3468: 
 3469:   assert( p->selFlags & SF_Resolved );
 3470:   if( (p->selFlags & SF_HasTypeInfo)==0 ){
 3471:     p->selFlags |= SF_HasTypeInfo;
 3472:     pParse = pWalker->pParse;
 3473:     pTabList = p->pSrc;
 3474:     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 3475:       Table *pTab = pFrom->pTab;
 3476:       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
 3477:         /* A sub-query in the FROM clause of a SELECT */
 3478:         Select *pSel = pFrom->pSelect;
 3479:         assert( pSel );
 3480:         while( pSel->pPrior ) pSel = pSel->pPrior;
 3481:         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
 3482:       }
 3483:     }
 3484:   }
 3485:   return WRC_Continue;
 3486: }
 3487: #endif
 3488: 
 3489: 
 3490: /*
 3491: ** This routine adds datatype and collating sequence information to
 3492: ** the Table structures of all FROM-clause subqueries in a
 3493: ** SELECT statement.
 3494: **
 3495: ** Use this routine after name resolution.
 3496: */
 3497: static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
 3498: #ifndef SQLITE_OMIT_SUBQUERY
 3499:   Walker w;
 3500:   w.xSelectCallback = selectAddSubqueryTypeInfo;
 3501:   w.xExprCallback = exprWalkNoop;
 3502:   w.pParse = pParse;
 3503:   sqlite3WalkSelect(&w, pSelect);
 3504: #endif
 3505: }
 3506: 
 3507: 
 3508: /*
 3509: ** This routine sets of a SELECT statement for processing.  The
 3510: ** following is accomplished:
 3511: **
 3512: **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
 3513: **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
 3514: **     *  ON and USING clauses are shifted into WHERE statements
 3515: **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
 3516: **     *  Identifiers in expression are matched to tables.
 3517: **
 3518: ** This routine acts recursively on all subqueries within the SELECT.
 3519: */
 3520: void sqlite3SelectPrep(
 3521:   Parse *pParse,         /* The parser context */
 3522:   Select *p,             /* The SELECT statement being coded. */
 3523:   NameContext *pOuterNC  /* Name context for container */
 3524: ){
 3525:   sqlite3 *db;
 3526:   if( NEVER(p==0) ) return;
 3527:   db = pParse->db;
 3528:   if( p->selFlags & SF_HasTypeInfo ) return;
 3529:   sqlite3SelectExpand(pParse, p);
 3530:   if( pParse->nErr || db->mallocFailed ) return;
 3531:   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
 3532:   if( pParse->nErr || db->mallocFailed ) return;
 3533:   sqlite3SelectAddTypeInfo(pParse, p);
 3534: }
 3535: 
 3536: /*
 3537: ** Reset the aggregate accumulator.
 3538: **
 3539: ** The aggregate accumulator is a set of memory cells that hold
 3540: ** intermediate results while calculating an aggregate.  This
 3541: ** routine simply stores NULLs in all of those memory cells.
 3542: */
 3543: static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
 3544:   Vdbe *v = pParse->pVdbe;
 3545:   int i;
 3546:   struct AggInfo_func *pFunc;
 3547:   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
 3548:     return;
 3549:   }
 3550:   for(i=0; i<pAggInfo->nColumn; i++){
 3551:     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
 3552:   }
 3553:   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
 3554:     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
 3555:     if( pFunc->iDistinct>=0 ){
 3556:       Expr *pE = pFunc->pExpr;
 3557:       assert( !ExprHasProperty(pE, EP_xIsSelect) );
 3558:       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
 3559:         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
 3560:            "argument");
 3561:         pFunc->iDistinct = -1;
 3562:       }else{
 3563:         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
 3564:         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
 3565:                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 3566:       }
 3567:     }
 3568:   }
 3569: }
 3570: 
 3571: /*
 3572: ** Invoke the OP_AggFinalize opcode for every aggregate function
 3573: ** in the AggInfo structure.
 3574: */
 3575: static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
 3576:   Vdbe *v = pParse->pVdbe;
 3577:   int i;
 3578:   struct AggInfo_func *pF;
 3579:   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 3580:     ExprList *pList = pF->pExpr->x.pList;
 3581:     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
 3582:     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
 3583:                       (void*)pF->pFunc, P4_FUNCDEF);
 3584:   }
 3585: }
 3586: 
 3587: /*
 3588: ** Update the accumulator memory cells for an aggregate based on
 3589: ** the current cursor position.
 3590: */
 3591: static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
 3592:   Vdbe *v = pParse->pVdbe;
 3593:   int i;
 3594:   struct AggInfo_func *pF;
 3595:   struct AggInfo_col *pC;
 3596: 
 3597:   pAggInfo->directMode = 1;
 3598:   sqlite3ExprCacheClear(pParse);
 3599:   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 3600:     int nArg;
 3601:     int addrNext = 0;
 3602:     int regAgg;
 3603:     ExprList *pList = pF->pExpr->x.pList;
 3604:     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
 3605:     if( pList ){
 3606:       nArg = pList->nExpr;
 3607:       regAgg = sqlite3GetTempRange(pParse, nArg);
 3608:       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
 3609:     }else{
 3610:       nArg = 0;
 3611:       regAgg = 0;
 3612:     }
 3613:     if( pF->iDistinct>=0 ){
 3614:       addrNext = sqlite3VdbeMakeLabel(v);
 3615:       assert( nArg==1 );
 3616:       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
 3617:     }
 3618:     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
 3619:       CollSeq *pColl = 0;
 3620:       struct ExprList_item *pItem;
 3621:       int j;
 3622:       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
 3623:       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
 3624:         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 3625:       }
 3626:       if( !pColl ){
 3627:         pColl = pParse->db->pDfltColl;
 3628:       }
 3629:       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
 3630:     }
 3631:     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
 3632:                       (void*)pF->pFunc, P4_FUNCDEF);
 3633:     sqlite3VdbeChangeP5(v, (u8)nArg);
 3634:     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
 3635:     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
 3636:     if( addrNext ){
 3637:       sqlite3VdbeResolveLabel(v, addrNext);
 3638:       sqlite3ExprCacheClear(pParse);
 3639:     }
 3640:   }
 3641: 
 3642:   /* Before populating the accumulator registers, clear the column cache.
 3643:   ** Otherwise, if any of the required column values are already present 
 3644:   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
 3645:   ** to pC->iMem. But by the time the value is used, the original register
 3646:   ** may have been used, invalidating the underlying buffer holding the
 3647:   ** text or blob value. See ticket [883034dcb5].
 3648:   **
 3649:   ** Another solution would be to change the OP_SCopy used to copy cached
 3650:   ** values to an OP_Copy.
 3651:   */
 3652:   sqlite3ExprCacheClear(pParse);
 3653:   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
 3654:     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
 3655:   }
 3656:   pAggInfo->directMode = 0;
 3657:   sqlite3ExprCacheClear(pParse);
 3658: }
 3659: 
 3660: /*
 3661: ** Add a single OP_Explain instruction to the VDBE to explain a simple
 3662: ** count(*) query ("SELECT count(*) FROM pTab").
 3663: */
 3664: #ifndef SQLITE_OMIT_EXPLAIN
 3665: static void explainSimpleCount(
 3666:   Parse *pParse,                  /* Parse context */
 3667:   Table *pTab,                    /* Table being queried */
 3668:   Index *pIdx                     /* Index used to optimize scan, or NULL */
 3669: ){
 3670:   if( pParse->explain==2 ){
 3671:     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
 3672:         pTab->zName, 
 3673:         pIdx ? "USING COVERING INDEX " : "",
 3674:         pIdx ? pIdx->zName : "",
 3675:         pTab->nRowEst
 3676:     );
 3677:     sqlite3VdbeAddOp4(
 3678:         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
 3679:     );
 3680:   }
 3681: }
 3682: #else
 3683: # define explainSimpleCount(a,b,c)
 3684: #endif
 3685: 
 3686: /*
 3687: ** Generate code for the SELECT statement given in the p argument.  
 3688: **
 3689: ** The results are distributed in various ways depending on the
 3690: ** contents of the SelectDest structure pointed to by argument pDest
 3691: ** as follows:
 3692: **
 3693: **     pDest->eDest    Result
 3694: **     ------------    -------------------------------------------
 3695: **     SRT_Output      Generate a row of output (using the OP_ResultRow
 3696: **                     opcode) for each row in the result set.
 3697: **
 3698: **     SRT_Mem         Only valid if the result is a single column.
 3699: **                     Store the first column of the first result row
 3700: **                     in register pDest->iParm then abandon the rest
 3701: **                     of the query.  This destination implies "LIMIT 1".
 3702: **
 3703: **     SRT_Set         The result must be a single column.  Store each
 3704: **                     row of result as the key in table pDest->iParm. 
 3705: **                     Apply the affinity pDest->affinity before storing
 3706: **                     results.  Used to implement "IN (SELECT ...)".
 3707: **
 3708: **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
 3709: **
 3710: **     SRT_Except      Remove results from the temporary table pDest->iParm.
 3711: **
 3712: **     SRT_Table       Store results in temporary table pDest->iParm.
 3713: **                     This is like SRT_EphemTab except that the table
 3714: **                     is assumed to already be open.
 3715: **
 3716: **     SRT_EphemTab    Create an temporary table pDest->iParm and store
 3717: **                     the result there. The cursor is left open after
 3718: **                     returning.  This is like SRT_Table except that
 3719: **                     this destination uses OP_OpenEphemeral to create
 3720: **                     the table first.
 3721: **
 3722: **     SRT_Coroutine   Generate a co-routine that returns a new row of
 3723: **                     results each time it is invoked.  The entry point
 3724: **                     of the co-routine is stored in register pDest->iParm.
 3725: **
 3726: **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
 3727: **                     set is not empty.
 3728: **
 3729: **     SRT_Discard     Throw the results away.  This is used by SELECT
 3730: **                     statements within triggers whose only purpose is
 3731: **                     the side-effects of functions.
 3732: **
 3733: ** This routine returns the number of errors.  If any errors are
 3734: ** encountered, then an appropriate error message is left in
 3735: ** pParse->zErrMsg.
 3736: **
 3737: ** This routine does NOT free the Select structure passed in.  The
 3738: ** calling function needs to do that.
 3739: */
 3740: int sqlite3Select(
 3741:   Parse *pParse,         /* The parser context */
 3742:   Select *p,             /* The SELECT statement being coded. */
 3743:   SelectDest *pDest      /* What to do with the query results */
 3744: ){
 3745:   int i, j;              /* Loop counters */
 3746:   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
 3747:   Vdbe *v;               /* The virtual machine under construction */
 3748:   int isAgg;             /* True for select lists like "count(*)" */
 3749:   ExprList *pEList;      /* List of columns to extract. */
 3750:   SrcList *pTabList;     /* List of tables to select from */
 3751:   Expr *pWhere;          /* The WHERE clause.  May be NULL */
 3752:   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
 3753:   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
 3754:   Expr *pHaving;         /* The HAVING clause.  May be NULL */
 3755:   int isDistinct;        /* True if the DISTINCT keyword is present */
 3756:   int distinct;          /* Table to use for the distinct set */
 3757:   int rc = 1;            /* Value to return from this function */
 3758:   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
 3759:   int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */
 3760:   AggInfo sAggInfo;      /* Information used by aggregate queries */
 3761:   int iEnd;              /* Address of the end of the query */
 3762:   sqlite3 *db;           /* The database connection */
 3763: 
 3764: #ifndef SQLITE_OMIT_EXPLAIN
 3765:   int iRestoreSelectId = pParse->iSelectId;
 3766:   pParse->iSelectId = pParse->iNextSelectId++;
 3767: #endif
 3768: 
 3769:   db = pParse->db;
 3770:   if( p==0 || db->mallocFailed || pParse->nErr ){
 3771:     return 1;
 3772:   }
 3773:   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
 3774:   memset(&sAggInfo, 0, sizeof(sAggInfo));
 3775: 
 3776:   if( IgnorableOrderby(pDest) ){
 3777:     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
 3778:            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
 3779:     /* If ORDER BY makes no difference in the output then neither does
 3780:     ** DISTINCT so it can be removed too. */
 3781:     sqlite3ExprListDelete(db, p->pOrderBy);
 3782:     p->pOrderBy = 0;
 3783:     p->selFlags &= ~SF_Distinct;
 3784:   }
 3785:   sqlite3SelectPrep(pParse, p, 0);
 3786:   pOrderBy = p->pOrderBy;
 3787:   pTabList = p->pSrc;
 3788:   pEList = p->pEList;
 3789:   if( pParse->nErr || db->mallocFailed ){
 3790:     goto select_end;
 3791:   }
 3792:   isAgg = (p->selFlags & SF_Aggregate)!=0;
 3793:   assert( pEList!=0 );
 3794: 
 3795:   /* Begin generating code.
 3796:   */
 3797:   v = sqlite3GetVdbe(pParse);
 3798:   if( v==0 ) goto select_end;
 3799: 
 3800:   /* If writing to memory or generating a set
 3801:   ** only a single column may be output.
 3802:   */
 3803: #ifndef SQLITE_OMIT_SUBQUERY
 3804:   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
 3805:     goto select_end;
 3806:   }
 3807: #endif
 3808: 
 3809:   /* Generate code for all sub-queries in the FROM clause
 3810:   */
 3811: #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
 3812:   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
 3813:     struct SrcList_item *pItem = &pTabList->a[i];
 3814:     SelectDest dest;
 3815:     Select *pSub = pItem->pSelect;
 3816:     int isAggSub;
 3817: 
 3818:     if( pSub==0 ) continue;
 3819:     if( pItem->addrFillSub ){
 3820:       sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
 3821:       continue;
 3822:     }
 3823: 
 3824:     /* Increment Parse.nHeight by the height of the largest expression
 3825:     ** tree refered to by this, the parent select. The child select
 3826:     ** may contain expression trees of at most
 3827:     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
 3828:     ** more conservative than necessary, but much easier than enforcing
 3829:     ** an exact limit.
 3830:     */
 3831:     pParse->nHeight += sqlite3SelectExprHeight(p);
 3832: 
 3833:     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
 3834:     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
 3835:       /* This subquery can be absorbed into its parent. */
 3836:       if( isAggSub ){
 3837:         isAgg = 1;
 3838:         p->selFlags |= SF_Aggregate;
 3839:       }
 3840:       i = -1;
 3841:     }else{
 3842:       /* Generate a subroutine that will fill an ephemeral table with
 3843:       ** the content of this subquery.  pItem->addrFillSub will point
 3844:       ** to the address of the generated subroutine.  pItem->regReturn
 3845:       ** is a register allocated to hold the subroutine return address
 3846:       */
 3847:       int topAddr;
 3848:       int onceAddr = 0;
 3849:       int retAddr;
 3850:       assert( pItem->addrFillSub==0 );
 3851:       pItem->regReturn = ++pParse->nMem;
 3852:       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
 3853:       pItem->addrFillSub = topAddr+1;
 3854:       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
 3855:       if( pItem->isCorrelated==0 ){
 3856:         /* If the subquery is no correlated and if we are not inside of
 3857:         ** a trigger, then we only need to compute the value of the subquery
 3858:         ** once. */
 3859:         onceAddr = sqlite3CodeOnce(pParse);
 3860:       }
 3861:       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
 3862:       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
 3863:       sqlite3Select(pParse, pSub, &dest);
 3864:       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
 3865:       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
 3866:       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
 3867:       VdbeComment((v, "end %s", pItem->pTab->zName));
 3868:       sqlite3VdbeChangeP1(v, topAddr, retAddr);
 3869:       sqlite3ClearTempRegCache(pParse);
 3870:     }
 3871:     if( /*pParse->nErr ||*/ db->mallocFailed ){
 3872:       goto select_end;
 3873:     }
 3874:     pParse->nHeight -= sqlite3SelectExprHeight(p);
 3875:     pTabList = p->pSrc;
 3876:     if( !IgnorableOrderby(pDest) ){
 3877:       pOrderBy = p->pOrderBy;
 3878:     }
 3879:   }
 3880:   pEList = p->pEList;
 3881: #endif
 3882:   pWhere = p->pWhere;
 3883:   pGroupBy = p->pGroupBy;
 3884:   pHaving = p->pHaving;
 3885:   isDistinct = (p->selFlags & SF_Distinct)!=0;
 3886: 
 3887: #ifndef SQLITE_OMIT_COMPOUND_SELECT
 3888:   /* If there is are a sequence of queries, do the earlier ones first.
 3889:   */
 3890:   if( p->pPrior ){
 3891:     if( p->pRightmost==0 ){
 3892:       Select *pLoop, *pRight = 0;
 3893:       int cnt = 0;
 3894:       int mxSelect;
 3895:       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
 3896:         pLoop->pRightmost = p;
 3897:         pLoop->pNext = pRight;
 3898:         pRight = pLoop;
 3899:       }
 3900:       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
 3901:       if( mxSelect && cnt>mxSelect ){
 3902:         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
 3903:         goto select_end;
 3904:       }
 3905:     }
 3906:     rc = multiSelect(pParse, p, pDest);
 3907:     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
 3908:     return rc;
 3909:   }
 3910: #endif
 3911: 
 3912:   /* If there is both a GROUP BY and an ORDER BY clause and they are
 3913:   ** identical, then disable the ORDER BY clause since the GROUP BY
 3914:   ** will cause elements to come out in the correct order.  This is
 3915:   ** an optimization - the correct answer should result regardless.
 3916:   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
 3917:   ** to disable this optimization for testing purposes.
 3918:   */
 3919:   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
 3920:          && (db->flags & SQLITE_GroupByOrder)==0 ){
 3921:     pOrderBy = 0;
 3922:   }
 3923: 
 3924:   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
 3925:   ** if the select-list is the same as the ORDER BY list, then this query
 3926:   ** can be rewritten as a GROUP BY. In other words, this:
 3927:   **
 3928:   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
 3929:   **
 3930:   ** is transformed to:
 3931:   **
 3932:   **     SELECT xyz FROM ... GROUP BY xyz
 3933:   **
 3934:   ** The second form is preferred as a single index (or temp-table) may be 
 3935:   ** used for both the ORDER BY and DISTINCT processing. As originally 
 3936:   ** written the query must use a temp-table for at least one of the ORDER 
 3937:   ** BY and DISTINCT, and an index or separate temp-table for the other.
 3938:   */
 3939:   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
 3940:    && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
 3941:   ){
 3942:     p->selFlags &= ~SF_Distinct;
 3943:     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
 3944:     pGroupBy = p->pGroupBy;
 3945:     pOrderBy = 0;
 3946:   }
 3947: 
 3948:   /* If there is an ORDER BY clause, then this sorting
 3949:   ** index might end up being unused if the data can be 
 3950:   ** extracted in pre-sorted order.  If that is the case, then the
 3951:   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
 3952:   ** we figure out that the sorting index is not needed.  The addrSortIndex
 3953:   ** variable is used to facilitate that change.
 3954:   */
 3955:   if( pOrderBy ){
 3956:     KeyInfo *pKeyInfo;
 3957:     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
 3958:     pOrderBy->iECursor = pParse->nTab++;
 3959:     p->addrOpenEphm[2] = addrSortIndex =
 3960:       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
 3961:                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
 3962:                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 3963:   }else{
 3964:     addrSortIndex = -1;
 3965:   }
 3966: 
 3967:   /* If the output is destined for a temporary table, open that table.
 3968:   */
 3969:   if( pDest->eDest==SRT_EphemTab ){
 3970:     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
 3971:   }
 3972: 
 3973:   /* Set the limiter.
 3974:   */
 3975:   iEnd = sqlite3VdbeMakeLabel(v);
 3976:   p->nSelectRow = (double)LARGEST_INT64;
 3977:   computeLimitRegisters(pParse, p, iEnd);
 3978:   if( p->iLimit==0 && addrSortIndex>=0 ){
 3979:     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
 3980:     p->selFlags |= SF_UseSorter;
 3981:   }
 3982: 
 3983:   /* Open a virtual index to use for the distinct set.
 3984:   */
 3985:   if( p->selFlags & SF_Distinct ){
 3986:     KeyInfo *pKeyInfo;
 3987:     distinct = pParse->nTab++;
 3988:     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
 3989:     addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
 3990:         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 3991:     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
 3992:   }else{
 3993:     distinct = addrDistinctIndex = -1;
 3994:   }
 3995: 
 3996:   /* Aggregate and non-aggregate queries are handled differently */
 3997:   if( !isAgg && pGroupBy==0 ){
 3998:     ExprList *pDist = (isDistinct ? p->pEList : 0);
 3999: 
 4000:     /* Begin the database scan. */
 4001:     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
 4002:     if( pWInfo==0 ) goto select_end;
 4003:     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
 4004: 
 4005:     /* If sorting index that was created by a prior OP_OpenEphemeral 
 4006:     ** instruction ended up not being needed, then change the OP_OpenEphemeral
 4007:     ** into an OP_Noop.
 4008:     */
 4009:     if( addrSortIndex>=0 && pOrderBy==0 ){
 4010:       sqlite3VdbeChangeToNoop(v, addrSortIndex);
 4011:       p->addrOpenEphm[2] = -1;
 4012:     }
 4013: 
 4014:     if( pWInfo->eDistinct ){
 4015:       VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
 4016:      
 4017:       assert( addrDistinctIndex>=0 );
 4018:       pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);
 4019: 
 4020:       assert( isDistinct );
 4021:       assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 
 4022:            || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 
 4023:       );
 4024:       distinct = -1;
 4025:       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){
 4026:         int iJump;
 4027:         int iExpr;
 4028:         int iFlag = ++pParse->nMem;
 4029:         int iBase = pParse->nMem+1;
 4030:         int iBase2 = iBase + pEList->nExpr;
 4031:         pParse->nMem += (pEList->nExpr*2);
 4032: 
 4033:         /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The
 4034:         ** OP_Integer initializes the "first row" flag.  */
 4035:         pOp->opcode = OP_Integer;
 4036:         pOp->p1 = 1;
 4037:         pOp->p2 = iFlag;
 4038: 
 4039:         sqlite3ExprCodeExprList(pParse, pEList, iBase, 1);
 4040:         iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1;
 4041:         sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1);
 4042:         for(iExpr=0; iExpr<pEList->nExpr; iExpr++){
 4043:           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr);
 4044:           sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr);
 4045:           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
 4046:           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
 4047:         }
 4048:         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue);
 4049: 
 4050:         sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag);
 4051:         assert( sqlite3VdbeCurrentAddr(v)==iJump );
 4052:         sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr);
 4053:       }else{
 4054:         pOp->opcode = OP_Noop;
 4055:       }
 4056:     }
 4057: 
 4058:     /* Use the standard inner loop. */
 4059:     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest,
 4060:                     pWInfo->iContinue, pWInfo->iBreak);
 4061: 
 4062:     /* End the database scan loop.
 4063:     */
 4064:     sqlite3WhereEnd(pWInfo);
 4065:   }else{
 4066:     /* This is the processing for aggregate queries */
 4067:     NameContext sNC;    /* Name context for processing aggregate information */
 4068:     int iAMem;          /* First Mem address for storing current GROUP BY */
 4069:     int iBMem;          /* First Mem address for previous GROUP BY */
 4070:     int iUseFlag;       /* Mem address holding flag indicating that at least
 4071:                         ** one row of the input to the aggregator has been
 4072:                         ** processed */
 4073:     int iAbortFlag;     /* Mem address which causes query abort if positive */
 4074:     int groupBySort;    /* Rows come from source in GROUP BY order */
 4075:     int addrEnd;        /* End of processing for this SELECT */
 4076:     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
 4077:     int sortOut = 0;    /* Output register from the sorter */
 4078: 
 4079:     /* Remove any and all aliases between the result set and the
 4080:     ** GROUP BY clause.
 4081:     */
 4082:     if( pGroupBy ){
 4083:       int k;                        /* Loop counter */
 4084:       struct ExprList_item *pItem;  /* For looping over expression in a list */
 4085: 
 4086:       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
 4087:         pItem->iAlias = 0;
 4088:       }
 4089:       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
 4090:         pItem->iAlias = 0;
 4091:       }
 4092:       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
 4093:     }else{
 4094:       p->nSelectRow = (double)1;
 4095:     }
 4096: 
 4097:  
 4098:     /* Create a label to jump to when we want to abort the query */
 4099:     addrEnd = sqlite3VdbeMakeLabel(v);
 4100: 
 4101:     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
 4102:     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
 4103:     ** SELECT statement.
 4104:     */
 4105:     memset(&sNC, 0, sizeof(sNC));
 4106:     sNC.pParse = pParse;
 4107:     sNC.pSrcList = pTabList;
 4108:     sNC.pAggInfo = &sAggInfo;
 4109:     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
 4110:     sAggInfo.pGroupBy = pGroupBy;
 4111:     sqlite3ExprAnalyzeAggList(&sNC, pEList);
 4112:     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
 4113:     if( pHaving ){
 4114:       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
 4115:     }
 4116:     sAggInfo.nAccumulator = sAggInfo.nColumn;
 4117:     for(i=0; i<sAggInfo.nFunc; i++){
 4118:       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
 4119:       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
 4120:     }
 4121:     if( db->mallocFailed ) goto select_end;
 4122: 
 4123:     /* Processing for aggregates with GROUP BY is very different and
 4124:     ** much more complex than aggregates without a GROUP BY.
 4125:     */
 4126:     if( pGroupBy ){
 4127:       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
 4128:       int j1;             /* A-vs-B comparision jump */
 4129:       int addrOutputRow;  /* Start of subroutine that outputs a result row */
 4130:       int regOutputRow;   /* Return address register for output subroutine */
 4131:       int addrSetAbort;   /* Set the abort flag and return */
 4132:       int addrTopOfLoop;  /* Top of the input loop */
 4133:       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
 4134:       int addrReset;      /* Subroutine for resetting the accumulator */
 4135:       int regReset;       /* Return address register for reset subroutine */
 4136: 
 4137:       /* If there is a GROUP BY clause we might need a sorting index to
 4138:       ** implement it.  Allocate that sorting index now.  If it turns out
 4139:       ** that we do not need it after all, the OP_SorterOpen instruction
 4140:       ** will be converted into a Noop.  
 4141:       */
 4142:       sAggInfo.sortingIdx = pParse->nTab++;
 4143:       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
 4144:       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
 4145:           sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
 4146:           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 4147: 
 4148:       /* Initialize memory locations used by GROUP BY aggregate processing
 4149:       */
 4150:       iUseFlag = ++pParse->nMem;
 4151:       iAbortFlag = ++pParse->nMem;
 4152:       regOutputRow = ++pParse->nMem;
 4153:       addrOutputRow = sqlite3VdbeMakeLabel(v);
 4154:       regReset = ++pParse->nMem;
 4155:       addrReset = sqlite3VdbeMakeLabel(v);
 4156:       iAMem = pParse->nMem + 1;
 4157:       pParse->nMem += pGroupBy->nExpr;
 4158:       iBMem = pParse->nMem + 1;
 4159:       pParse->nMem += pGroupBy->nExpr;
 4160:       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
 4161:       VdbeComment((v, "clear abort flag"));
 4162:       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
 4163:       VdbeComment((v, "indicate accumulator empty"));
 4164:       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
 4165: 
 4166:       /* Begin a loop that will extract all source rows in GROUP BY order.
 4167:       ** This might involve two separate loops with an OP_Sort in between, or
 4168:       ** it might be a single loop that uses an index to extract information
 4169:       ** in the right order to begin with.
 4170:       */
 4171:       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
 4172:       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
 4173:       if( pWInfo==0 ) goto select_end;
 4174:       if( pGroupBy==0 ){
 4175:         /* The optimizer is able to deliver rows in group by order so
 4176:         ** we do not have to sort.  The OP_OpenEphemeral table will be
 4177:         ** cancelled later because we still need to use the pKeyInfo
 4178:         */
 4179:         pGroupBy = p->pGroupBy;
 4180:         groupBySort = 0;
 4181:       }else{
 4182:         /* Rows are coming out in undetermined order.  We have to push
 4183:         ** each row into a sorting index, terminate the first loop,
 4184:         ** then loop over the sorting index in order to get the output
 4185:         ** in sorted order
 4186:         */
 4187:         int regBase;
 4188:         int regRecord;
 4189:         int nCol;
 4190:         int nGroupBy;
 4191: 
 4192:         explainTempTable(pParse, 
 4193:             isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
 4194: 
 4195:         groupBySort = 1;
 4196:         nGroupBy = pGroupBy->nExpr;
 4197:         nCol = nGroupBy + 1;
 4198:         j = nGroupBy+1;
 4199:         for(i=0; i<sAggInfo.nColumn; i++){
 4200:           if( sAggInfo.aCol[i].iSorterColumn>=j ){
 4201:             nCol++;
 4202:             j++;
 4203:           }
 4204:         }
 4205:         regBase = sqlite3GetTempRange(pParse, nCol);
 4206:         sqlite3ExprCacheClear(pParse);
 4207:         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
 4208:         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
 4209:         j = nGroupBy+1;
 4210:         for(i=0; i<sAggInfo.nColumn; i++){
 4211:           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
 4212:           if( pCol->iSorterColumn>=j ){
 4213:             int r1 = j + regBase;
 4214:             int r2;
 4215: 
 4216:             r2 = sqlite3ExprCodeGetColumn(pParse, 
 4217:                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
 4218:             if( r1!=r2 ){
 4219:               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
 4220:             }
 4221:             j++;
 4222:           }
 4223:         }
 4224:         regRecord = sqlite3GetTempReg(pParse);
 4225:         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
 4226:         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
 4227:         sqlite3ReleaseTempReg(pParse, regRecord);
 4228:         sqlite3ReleaseTempRange(pParse, regBase, nCol);
 4229:         sqlite3WhereEnd(pWInfo);
 4230:         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
 4231:         sortOut = sqlite3GetTempReg(pParse);
 4232:         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
 4233:         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
 4234:         VdbeComment((v, "GROUP BY sort"));
 4235:         sAggInfo.useSortingIdx = 1;
 4236:         sqlite3ExprCacheClear(pParse);
 4237:       }
 4238: 
 4239:       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
 4240:       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
 4241:       ** Then compare the current GROUP BY terms against the GROUP BY terms
 4242:       ** from the previous row currently stored in a0, a1, a2...
 4243:       */
 4244:       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
 4245:       sqlite3ExprCacheClear(pParse);
 4246:       if( groupBySort ){
 4247:         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
 4248:       }
 4249:       for(j=0; j<pGroupBy->nExpr; j++){
 4250:         if( groupBySort ){
 4251:           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
 4252:           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
 4253:         }else{
 4254:           sAggInfo.directMode = 1;
 4255:           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
 4256:         }
 4257:       }
 4258:       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
 4259:                           (char*)pKeyInfo, P4_KEYINFO);
 4260:       j1 = sqlite3VdbeCurrentAddr(v);
 4261:       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
 4262: 
 4263:       /* Generate code that runs whenever the GROUP BY changes.
 4264:       ** Changes in the GROUP BY are detected by the previous code
 4265:       ** block.  If there were no changes, this block is skipped.
 4266:       **
 4267:       ** This code copies current group by terms in b0,b1,b2,...
 4268:       ** over to a0,a1,a2.  It then calls the output subroutine
 4269:       ** and resets the aggregate accumulator registers in preparation
 4270:       ** for the next GROUP BY batch.
 4271:       */
 4272:       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
 4273:       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
 4274:       VdbeComment((v, "output one row"));
 4275:       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
 4276:       VdbeComment((v, "check abort flag"));
 4277:       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
 4278:       VdbeComment((v, "reset accumulator"));
 4279: 
 4280:       /* Update the aggregate accumulators based on the content of
 4281:       ** the current row
 4282:       */
 4283:       sqlite3VdbeJumpHere(v, j1);
 4284:       updateAccumulator(pParse, &sAggInfo);
 4285:       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
 4286:       VdbeComment((v, "indicate data in accumulator"));
 4287: 
 4288:       /* End of the loop
 4289:       */
 4290:       if( groupBySort ){
 4291:         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
 4292:       }else{
 4293:         sqlite3WhereEnd(pWInfo);
 4294:         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
 4295:       }
 4296: 
 4297:       /* Output the final row of result
 4298:       */
 4299:       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
 4300:       VdbeComment((v, "output final row"));
 4301: 
 4302:       /* Jump over the subroutines
 4303:       */
 4304:       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
 4305: 
 4306:       /* Generate a subroutine that outputs a single row of the result
 4307:       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
 4308:       ** is less than or equal to zero, the subroutine is a no-op.  If
 4309:       ** the processing calls for the query to abort, this subroutine
 4310:       ** increments the iAbortFlag memory location before returning in
 4311:       ** order to signal the caller to abort.
 4312:       */
 4313:       addrSetAbort = sqlite3VdbeCurrentAddr(v);
 4314:       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
 4315:       VdbeComment((v, "set abort flag"));
 4316:       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
 4317:       sqlite3VdbeResolveLabel(v, addrOutputRow);
 4318:       addrOutputRow = sqlite3VdbeCurrentAddr(v);
 4319:       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
 4320:       VdbeComment((v, "Groupby result generator entry point"));
 4321:       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
 4322:       finalizeAggFunctions(pParse, &sAggInfo);
 4323:       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
 4324:       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
 4325:                       distinct, pDest,
 4326:                       addrOutputRow+1, addrSetAbort);
 4327:       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
 4328:       VdbeComment((v, "end groupby result generator"));
 4329: 
 4330:       /* Generate a subroutine that will reset the group-by accumulator
 4331:       */
 4332:       sqlite3VdbeResolveLabel(v, addrReset);
 4333:       resetAccumulator(pParse, &sAggInfo);
 4334:       sqlite3VdbeAddOp1(v, OP_Return, regReset);
 4335:      
 4336:     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
 4337:     else {
 4338:       ExprList *pDel = 0;
 4339: #ifndef SQLITE_OMIT_BTREECOUNT
 4340:       Table *pTab;
 4341:       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
 4342:         /* If isSimpleCount() returns a pointer to a Table structure, then
 4343:         ** the SQL statement is of the form:
 4344:         **
 4345:         **   SELECT count(*) FROM <tbl>
 4346:         **
 4347:         ** where the Table structure returned represents table <tbl>.
 4348:         **
 4349:         ** This statement is so common that it is optimized specially. The
 4350:         ** OP_Count instruction is executed either on the intkey table that
 4351:         ** contains the data for table <tbl> or on one of its indexes. It
 4352:         ** is better to execute the op on an index, as indexes are almost
 4353:         ** always spread across less pages than their corresponding tables.
 4354:         */
 4355:         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 4356:         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
 4357:         Index *pIdx;                         /* Iterator variable */
 4358:         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
 4359:         Index *pBest = 0;                    /* Best index found so far */
 4360:         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
 4361: 
 4362:         sqlite3CodeVerifySchema(pParse, iDb);
 4363:         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 4364: 
 4365:         /* Search for the index that has the least amount of columns. If
 4366:         ** there is such an index, and it has less columns than the table
 4367:         ** does, then we can assume that it consumes less space on disk and
 4368:         ** will therefore be cheaper to scan to determine the query result.
 4369:         ** In this case set iRoot to the root page number of the index b-tree
 4370:         ** and pKeyInfo to the KeyInfo structure required to navigate the
 4371:         ** index.
 4372:         **
 4373:         ** (2011-04-15) Do not do a full scan of an unordered index.
 4374:         **
 4375:         ** In practice the KeyInfo structure will not be used. It is only 
 4376:         ** passed to keep OP_OpenRead happy.
 4377:         */
 4378:         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 4379:           if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
 4380:             pBest = pIdx;
 4381:           }
 4382:         }
 4383:         if( pBest && pBest->nColumn<pTab->nCol ){
 4384:           iRoot = pBest->tnum;
 4385:           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
 4386:         }
 4387: 
 4388:         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
 4389:         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
 4390:         if( pKeyInfo ){
 4391:           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
 4392:         }
 4393:         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
 4394:         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
 4395:         explainSimpleCount(pParse, pTab, pBest);
 4396:       }else
 4397: #endif /* SQLITE_OMIT_BTREECOUNT */
 4398:       {
 4399:         /* Check if the query is of one of the following forms:
 4400:         **
 4401:         **   SELECT min(x) FROM ...
 4402:         **   SELECT max(x) FROM ...
 4403:         **
 4404:         ** If it is, then ask the code in where.c to attempt to sort results
 4405:         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 
 4406:         ** If where.c is able to produce results sorted in this order, then
 4407:         ** add vdbe code to break out of the processing loop after the 
 4408:         ** first iteration (since the first iteration of the loop is 
 4409:         ** guaranteed to operate on the row with the minimum or maximum 
 4410:         ** value of x, the only row required).
 4411:         **
 4412:         ** A special flag must be passed to sqlite3WhereBegin() to slightly
 4413:         ** modify behaviour as follows:
 4414:         **
 4415:         **   + If the query is a "SELECT min(x)", then the loop coded by
 4416:         **     where.c should not iterate over any values with a NULL value
 4417:         **     for x.
 4418:         **
 4419:         **   + The optimizer code in where.c (the thing that decides which
 4420:         **     index or indices to use) should place a different priority on 
 4421:         **     satisfying the 'ORDER BY' clause than it does in other cases.
 4422:         **     Refer to code and comments in where.c for details.
 4423:         */
 4424:         ExprList *pMinMax = 0;
 4425:         u8 flag = minMaxQuery(p);
 4426:         if( flag ){
 4427:           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
 4428:           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
 4429:           pDel = pMinMax;
 4430:           if( pMinMax && !db->mallocFailed ){
 4431:             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
 4432:             pMinMax->a[0].pExpr->op = TK_COLUMN;
 4433:           }
 4434:         }
 4435:   
 4436:         /* This case runs if the aggregate has no GROUP BY clause.  The
 4437:         ** processing is much simpler since there is only a single row
 4438:         ** of output.
 4439:         */
 4440:         resetAccumulator(pParse, &sAggInfo);
 4441:         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
 4442:         if( pWInfo==0 ){
 4443:           sqlite3ExprListDelete(db, pDel);
 4444:           goto select_end;
 4445:         }
 4446:         updateAccumulator(pParse, &sAggInfo);
 4447:         if( !pMinMax && flag ){
 4448:           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
 4449:           VdbeComment((v, "%s() by index",
 4450:                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
 4451:         }
 4452:         sqlite3WhereEnd(pWInfo);
 4453:         finalizeAggFunctions(pParse, &sAggInfo);
 4454:       }
 4455: 
 4456:       pOrderBy = 0;
 4457:       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
 4458:       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
 4459:                       pDest, addrEnd, addrEnd);
 4460:       sqlite3ExprListDelete(db, pDel);
 4461:     }
 4462:     sqlite3VdbeResolveLabel(v, addrEnd);
 4463:     
 4464:   } /* endif aggregate query */
 4465: 
 4466:   if( distinct>=0 ){
 4467:     explainTempTable(pParse, "DISTINCT");
 4468:   }
 4469: 
 4470:   /* If there is an ORDER BY clause, then we need to sort the results
 4471:   ** and send them to the callback one by one.
 4472:   */
 4473:   if( pOrderBy ){
 4474:     explainTempTable(pParse, "ORDER BY");
 4475:     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
 4476:   }
 4477: 
 4478:   /* Jump here to skip this query
 4479:   */
 4480:   sqlite3VdbeResolveLabel(v, iEnd);
 4481: 
 4482:   /* The SELECT was successfully coded.   Set the return code to 0
 4483:   ** to indicate no errors.
 4484:   */
 4485:   rc = 0;
 4486: 
 4487:   /* Control jumps to here if an error is encountered above, or upon
 4488:   ** successful coding of the SELECT.
 4489:   */
 4490: select_end:
 4491:   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
 4492: 
 4493:   /* Identify column names if results of the SELECT are to be output.
 4494:   */
 4495:   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
 4496:     generateColumnNames(pParse, pTabList, pEList);
 4497:   }
 4498: 
 4499:   sqlite3DbFree(db, sAggInfo.aCol);
 4500:   sqlite3DbFree(db, sAggInfo.aFunc);
 4501:   return rc;
 4502: }
 4503: 
 4504: #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
 4505: /*
 4506: ** Generate a human-readable description of a the Select object.
 4507: */
 4508: static void explainOneSelect(Vdbe *pVdbe, Select *p){
 4509:   sqlite3ExplainPrintf(pVdbe, "SELECT ");
 4510:   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
 4511:     if( p->selFlags & SF_Distinct ){
 4512:       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
 4513:     }
 4514:     if( p->selFlags & SF_Aggregate ){
 4515:       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
 4516:     }
 4517:     sqlite3ExplainNL(pVdbe);
 4518:     sqlite3ExplainPrintf(pVdbe, "   ");
 4519:   }
 4520:   sqlite3ExplainExprList(pVdbe, p->pEList);
 4521:   sqlite3ExplainNL(pVdbe);
 4522:   if( p->pSrc && p->pSrc->nSrc ){
 4523:     int i;
 4524:     sqlite3ExplainPrintf(pVdbe, "FROM ");
 4525:     sqlite3ExplainPush(pVdbe);
 4526:     for(i=0; i<p->pSrc->nSrc; i++){
 4527:       struct SrcList_item *pItem = &p->pSrc->a[i];
 4528:       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
 4529:       if( pItem->pSelect ){
 4530:         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
 4531:         if( pItem->pTab ){
 4532:           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
 4533:         }
 4534:       }else if( pItem->zName ){
 4535:         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
 4536:       }
 4537:       if( pItem->zAlias ){
 4538:         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
 4539:       }
 4540:       if( pItem->jointype & JT_LEFT ){
 4541:         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
 4542:       }
 4543:       sqlite3ExplainNL(pVdbe);
 4544:     }
 4545:     sqlite3ExplainPop(pVdbe);
 4546:   }
 4547:   if( p->pWhere ){
 4548:     sqlite3ExplainPrintf(pVdbe, "WHERE ");
 4549:     sqlite3ExplainExpr(pVdbe, p->pWhere);
 4550:     sqlite3ExplainNL(pVdbe);
 4551:   }
 4552:   if( p->pGroupBy ){
 4553:     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
 4554:     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
 4555:     sqlite3ExplainNL(pVdbe);
 4556:   }
 4557:   if( p->pHaving ){
 4558:     sqlite3ExplainPrintf(pVdbe, "HAVING ");
 4559:     sqlite3ExplainExpr(pVdbe, p->pHaving);
 4560:     sqlite3ExplainNL(pVdbe);
 4561:   }
 4562:   if( p->pOrderBy ){
 4563:     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
 4564:     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
 4565:     sqlite3ExplainNL(pVdbe);
 4566:   }
 4567:   if( p->pLimit ){
 4568:     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
 4569:     sqlite3ExplainExpr(pVdbe, p->pLimit);
 4570:     sqlite3ExplainNL(pVdbe);
 4571:   }
 4572:   if( p->pOffset ){
 4573:     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
 4574:     sqlite3ExplainExpr(pVdbe, p->pOffset);
 4575:     sqlite3ExplainNL(pVdbe);
 4576:   }
 4577: }
 4578: void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
 4579:   if( p==0 ){
 4580:     sqlite3ExplainPrintf(pVdbe, "(null-select)");
 4581:     return;
 4582:   }
 4583:   while( p->pPrior ) p = p->pPrior;
 4584:   sqlite3ExplainPush(pVdbe);
 4585:   while( p ){
 4586:     explainOneSelect(pVdbe, p);
 4587:     p = p->pNext;
 4588:     if( p==0 ) break;
 4589:     sqlite3ExplainNL(pVdbe);
 4590:     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
 4591:   }
 4592:   sqlite3ExplainPrintf(pVdbe, "END");
 4593:   sqlite3ExplainPop(pVdbe);
 4594: }
 4595: 
 4596: /* End of the structure debug printing code
 4597: *****************************************************************************/
 4598: #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>