File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / utf.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2004 April 13
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This file contains routines used to translate between UTF-8, 
   13: ** UTF-16, UTF-16BE, and UTF-16LE.
   14: **
   15: ** Notes on UTF-8:
   16: **
   17: **   Byte-0    Byte-1    Byte-2    Byte-3    Value
   18: **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
   19: **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
   20: **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
   21: **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
   22: **
   23: **
   24: ** Notes on UTF-16:  (with wwww+1==uuuuu)
   25: **
   26: **      Word-0               Word-1          Value
   27: **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
   28: **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
   29: **
   30: **
   31: ** BOM or Byte Order Mark:
   32: **     0xff 0xfe   little-endian utf-16 follows
   33: **     0xfe 0xff   big-endian utf-16 follows
   34: **
   35: */
   36: #include "sqliteInt.h"
   37: #include <assert.h>
   38: #include "vdbeInt.h"
   39: 
   40: #ifndef SQLITE_AMALGAMATION
   41: /*
   42: ** The following constant value is used by the SQLITE_BIGENDIAN and
   43: ** SQLITE_LITTLEENDIAN macros.
   44: */
   45: const int sqlite3one = 1;
   46: #endif /* SQLITE_AMALGAMATION */
   47: 
   48: /*
   49: ** This lookup table is used to help decode the first byte of
   50: ** a multi-byte UTF8 character.
   51: */
   52: static const unsigned char sqlite3Utf8Trans1[] = {
   53:   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
   54:   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
   55:   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
   56:   0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
   57:   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
   58:   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
   59:   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
   60:   0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
   61: };
   62: 
   63: 
   64: #define WRITE_UTF8(zOut, c) {                          \
   65:   if( c<0x00080 ){                                     \
   66:     *zOut++ = (u8)(c&0xFF);                            \
   67:   }                                                    \
   68:   else if( c<0x00800 ){                                \
   69:     *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);                \
   70:     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
   71:   }                                                    \
   72:   else if( c<0x10000 ){                                \
   73:     *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);               \
   74:     *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);              \
   75:     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
   76:   }else{                                               \
   77:     *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);             \
   78:     *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);             \
   79:     *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);              \
   80:     *zOut++ = 0x80 + (u8)(c & 0x3F);                   \
   81:   }                                                    \
   82: }
   83: 
   84: #define WRITE_UTF16LE(zOut, c) {                                    \
   85:   if( c<=0xFFFF ){                                                  \
   86:     *zOut++ = (u8)(c&0x00FF);                                       \
   87:     *zOut++ = (u8)((c>>8)&0x00FF);                                  \
   88:   }else{                                                            \
   89:     *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
   90:     *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03));              \
   91:     *zOut++ = (u8)(c&0x00FF);                                       \
   92:     *zOut++ = (u8)(0x00DC + ((c>>8)&0x03));                         \
   93:   }                                                                 \
   94: }
   95: 
   96: #define WRITE_UTF16BE(zOut, c) {                                    \
   97:   if( c<=0xFFFF ){                                                  \
   98:     *zOut++ = (u8)((c>>8)&0x00FF);                                  \
   99:     *zOut++ = (u8)(c&0x00FF);                                       \
  100:   }else{                                                            \
  101:     *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03));              \
  102:     *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
  103:     *zOut++ = (u8)(0x00DC + ((c>>8)&0x03));                         \
  104:     *zOut++ = (u8)(c&0x00FF);                                       \
  105:   }                                                                 \
  106: }
  107: 
  108: #define READ_UTF16LE(zIn, TERM, c){                                   \
  109:   c = (*zIn++);                                                       \
  110:   c += ((*zIn++)<<8);                                                 \
  111:   if( c>=0xD800 && c<0xE000 && TERM ){                                \
  112:     int c2 = (*zIn++);                                                \
  113:     c2 += ((*zIn++)<<8);                                              \
  114:     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
  115:   }                                                                   \
  116: }
  117: 
  118: #define READ_UTF16BE(zIn, TERM, c){                                   \
  119:   c = ((*zIn++)<<8);                                                  \
  120:   c += (*zIn++);                                                      \
  121:   if( c>=0xD800 && c<0xE000 && TERM ){                                \
  122:     int c2 = ((*zIn++)<<8);                                           \
  123:     c2 += (*zIn++);                                                   \
  124:     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
  125:   }                                                                   \
  126: }
  127: 
  128: /*
  129: ** Translate a single UTF-8 character.  Return the unicode value.
  130: **
  131: ** During translation, assume that the byte that zTerm points
  132: ** is a 0x00.
  133: **
  134: ** Write a pointer to the next unread byte back into *pzNext.
  135: **
  136: ** Notes On Invalid UTF-8:
  137: **
  138: **  *  This routine never allows a 7-bit character (0x00 through 0x7f) to
  139: **     be encoded as a multi-byte character.  Any multi-byte character that
  140: **     attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
  141: **
  142: **  *  This routine never allows a UTF16 surrogate value to be encoded.
  143: **     If a multi-byte character attempts to encode a value between
  144: **     0xd800 and 0xe000 then it is rendered as 0xfffd.
  145: **
  146: **  *  Bytes in the range of 0x80 through 0xbf which occur as the first
  147: **     byte of a character are interpreted as single-byte characters
  148: **     and rendered as themselves even though they are technically
  149: **     invalid characters.
  150: **
  151: **  *  This routine accepts an infinite number of different UTF8 encodings
  152: **     for unicode values 0x80 and greater.  It do not change over-length
  153: **     encodings to 0xfffd as some systems recommend.
  154: */
  155: #define READ_UTF8(zIn, zTerm, c)                           \
  156:   c = *(zIn++);                                            \
  157:   if( c>=0xc0 ){                                           \
  158:     c = sqlite3Utf8Trans1[c-0xc0];                         \
  159:     while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
  160:       c = (c<<6) + (0x3f & *(zIn++));                      \
  161:     }                                                      \
  162:     if( c<0x80                                             \
  163:         || (c&0xFFFFF800)==0xD800                          \
  164:         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
  165:   }
  166: u32 sqlite3Utf8Read(
  167:   const unsigned char *zIn,       /* First byte of UTF-8 character */
  168:   const unsigned char **pzNext    /* Write first byte past UTF-8 char here */
  169: ){
  170:   unsigned int c;
  171: 
  172:   /* Same as READ_UTF8() above but without the zTerm parameter.
  173:   ** For this routine, we assume the UTF8 string is always zero-terminated.
  174:   */
  175:   c = *(zIn++);
  176:   if( c>=0xc0 ){
  177:     c = sqlite3Utf8Trans1[c-0xc0];
  178:     while( (*zIn & 0xc0)==0x80 ){
  179:       c = (c<<6) + (0x3f & *(zIn++));
  180:     }
  181:     if( c<0x80
  182:         || (c&0xFFFFF800)==0xD800
  183:         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }
  184:   }
  185:   *pzNext = zIn;
  186:   return c;
  187: }
  188: 
  189: 
  190: 
  191: 
  192: /*
  193: ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
  194: ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
  195: */ 
  196: /* #define TRANSLATE_TRACE 1 */
  197: 
  198: #ifndef SQLITE_OMIT_UTF16
  199: /*
  200: ** This routine transforms the internal text encoding used by pMem to
  201: ** desiredEnc. It is an error if the string is already of the desired
  202: ** encoding, or if *pMem does not contain a string value.
  203: */
  204: int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
  205:   int len;                    /* Maximum length of output string in bytes */
  206:   unsigned char *zOut;                  /* Output buffer */
  207:   unsigned char *zIn;                   /* Input iterator */
  208:   unsigned char *zTerm;                 /* End of input */
  209:   unsigned char *z;                     /* Output iterator */
  210:   unsigned int c;
  211: 
  212:   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  213:   assert( pMem->flags&MEM_Str );
  214:   assert( pMem->enc!=desiredEnc );
  215:   assert( pMem->enc!=0 );
  216:   assert( pMem->n>=0 );
  217: 
  218: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  219:   {
  220:     char zBuf[100];
  221:     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
  222:     fprintf(stderr, "INPUT:  %s\n", zBuf);
  223:   }
  224: #endif
  225: 
  226:   /* If the translation is between UTF-16 little and big endian, then 
  227:   ** all that is required is to swap the byte order. This case is handled
  228:   ** differently from the others.
  229:   */
  230:   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
  231:     u8 temp;
  232:     int rc;
  233:     rc = sqlite3VdbeMemMakeWriteable(pMem);
  234:     if( rc!=SQLITE_OK ){
  235:       assert( rc==SQLITE_NOMEM );
  236:       return SQLITE_NOMEM;
  237:     }
  238:     zIn = (u8*)pMem->z;
  239:     zTerm = &zIn[pMem->n&~1];
  240:     while( zIn<zTerm ){
  241:       temp = *zIn;
  242:       *zIn = *(zIn+1);
  243:       zIn++;
  244:       *zIn++ = temp;
  245:     }
  246:     pMem->enc = desiredEnc;
  247:     goto translate_out;
  248:   }
  249: 
  250:   /* Set len to the maximum number of bytes required in the output buffer. */
  251:   if( desiredEnc==SQLITE_UTF8 ){
  252:     /* When converting from UTF-16, the maximum growth results from
  253:     ** translating a 2-byte character to a 4-byte UTF-8 character.
  254:     ** A single byte is required for the output string
  255:     ** nul-terminator.
  256:     */
  257:     pMem->n &= ~1;
  258:     len = pMem->n * 2 + 1;
  259:   }else{
  260:     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
  261:     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
  262:     ** character. Two bytes are required in the output buffer for the
  263:     ** nul-terminator.
  264:     */
  265:     len = pMem->n * 2 + 2;
  266:   }
  267: 
  268:   /* Set zIn to point at the start of the input buffer and zTerm to point 1
  269:   ** byte past the end.
  270:   **
  271:   ** Variable zOut is set to point at the output buffer, space obtained
  272:   ** from sqlite3_malloc().
  273:   */
  274:   zIn = (u8*)pMem->z;
  275:   zTerm = &zIn[pMem->n];
  276:   zOut = sqlite3DbMallocRaw(pMem->db, len);
  277:   if( !zOut ){
  278:     return SQLITE_NOMEM;
  279:   }
  280:   z = zOut;
  281: 
  282:   if( pMem->enc==SQLITE_UTF8 ){
  283:     if( desiredEnc==SQLITE_UTF16LE ){
  284:       /* UTF-8 -> UTF-16 Little-endian */
  285:       while( zIn<zTerm ){
  286:         /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
  287:         READ_UTF8(zIn, zTerm, c);
  288:         WRITE_UTF16LE(z, c);
  289:       }
  290:     }else{
  291:       assert( desiredEnc==SQLITE_UTF16BE );
  292:       /* UTF-8 -> UTF-16 Big-endian */
  293:       while( zIn<zTerm ){
  294:         /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
  295:         READ_UTF8(zIn, zTerm, c);
  296:         WRITE_UTF16BE(z, c);
  297:       }
  298:     }
  299:     pMem->n = (int)(z - zOut);
  300:     *z++ = 0;
  301:   }else{
  302:     assert( desiredEnc==SQLITE_UTF8 );
  303:     if( pMem->enc==SQLITE_UTF16LE ){
  304:       /* UTF-16 Little-endian -> UTF-8 */
  305:       while( zIn<zTerm ){
  306:         READ_UTF16LE(zIn, zIn<zTerm, c); 
  307:         WRITE_UTF8(z, c);
  308:       }
  309:     }else{
  310:       /* UTF-16 Big-endian -> UTF-8 */
  311:       while( zIn<zTerm ){
  312:         READ_UTF16BE(zIn, zIn<zTerm, c); 
  313:         WRITE_UTF8(z, c);
  314:       }
  315:     }
  316:     pMem->n = (int)(z - zOut);
  317:   }
  318:   *z = 0;
  319:   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
  320: 
  321:   sqlite3VdbeMemRelease(pMem);
  322:   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
  323:   pMem->enc = desiredEnc;
  324:   pMem->flags |= (MEM_Term|MEM_Dyn);
  325:   pMem->z = (char*)zOut;
  326:   pMem->zMalloc = pMem->z;
  327: 
  328: translate_out:
  329: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  330:   {
  331:     char zBuf[100];
  332:     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
  333:     fprintf(stderr, "OUTPUT: %s\n", zBuf);
  334:   }
  335: #endif
  336:   return SQLITE_OK;
  337: }
  338: 
  339: /*
  340: ** This routine checks for a byte-order mark at the beginning of the 
  341: ** UTF-16 string stored in *pMem. If one is present, it is removed and
  342: ** the encoding of the Mem adjusted. This routine does not do any
  343: ** byte-swapping, it just sets Mem.enc appropriately.
  344: **
  345: ** The allocation (static, dynamic etc.) and encoding of the Mem may be
  346: ** changed by this function.
  347: */
  348: int sqlite3VdbeMemHandleBom(Mem *pMem){
  349:   int rc = SQLITE_OK;
  350:   u8 bom = 0;
  351: 
  352:   assert( pMem->n>=0 );
  353:   if( pMem->n>1 ){
  354:     u8 b1 = *(u8 *)pMem->z;
  355:     u8 b2 = *(((u8 *)pMem->z) + 1);
  356:     if( b1==0xFE && b2==0xFF ){
  357:       bom = SQLITE_UTF16BE;
  358:     }
  359:     if( b1==0xFF && b2==0xFE ){
  360:       bom = SQLITE_UTF16LE;
  361:     }
  362:   }
  363:   
  364:   if( bom ){
  365:     rc = sqlite3VdbeMemMakeWriteable(pMem);
  366:     if( rc==SQLITE_OK ){
  367:       pMem->n -= 2;
  368:       memmove(pMem->z, &pMem->z[2], pMem->n);
  369:       pMem->z[pMem->n] = '\0';
  370:       pMem->z[pMem->n+1] = '\0';
  371:       pMem->flags |= MEM_Term;
  372:       pMem->enc = bom;
  373:     }
  374:   }
  375:   return rc;
  376: }
  377: #endif /* SQLITE_OMIT_UTF16 */
  378: 
  379: /*
  380: ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
  381: ** return the number of unicode characters in pZ up to (but not including)
  382: ** the first 0x00 byte. If nByte is not less than zero, return the
  383: ** number of unicode characters in the first nByte of pZ (or up to 
  384: ** the first 0x00, whichever comes first).
  385: */
  386: int sqlite3Utf8CharLen(const char *zIn, int nByte){
  387:   int r = 0;
  388:   const u8 *z = (const u8*)zIn;
  389:   const u8 *zTerm;
  390:   if( nByte>=0 ){
  391:     zTerm = &z[nByte];
  392:   }else{
  393:     zTerm = (const u8*)(-1);
  394:   }
  395:   assert( z<=zTerm );
  396:   while( *z!=0 && z<zTerm ){
  397:     SQLITE_SKIP_UTF8(z);
  398:     r++;
  399:   }
  400:   return r;
  401: }
  402: 
  403: /* This test function is not currently used by the automated test-suite. 
  404: ** Hence it is only available in debug builds.
  405: */
  406: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  407: /*
  408: ** Translate UTF-8 to UTF-8.
  409: **
  410: ** This has the effect of making sure that the string is well-formed
  411: ** UTF-8.  Miscoded characters are removed.
  412: **
  413: ** The translation is done in-place and aborted if the output
  414: ** overruns the input.
  415: */
  416: int sqlite3Utf8To8(unsigned char *zIn){
  417:   unsigned char *zOut = zIn;
  418:   unsigned char *zStart = zIn;
  419:   u32 c;
  420: 
  421:   while( zIn[0] && zOut<=zIn ){
  422:     c = sqlite3Utf8Read(zIn, (const u8**)&zIn);
  423:     if( c!=0xfffd ){
  424:       WRITE_UTF8(zOut, c);
  425:     }
  426:   }
  427:   *zOut = 0;
  428:   return (int)(zOut - zStart);
  429: }
  430: #endif
  431: 
  432: #ifndef SQLITE_OMIT_UTF16
  433: /*
  434: ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
  435: ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
  436: ** be freed by the calling function.
  437: **
  438: ** NULL is returned if there is an allocation error.
  439: */
  440: char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){
  441:   Mem m;
  442:   memset(&m, 0, sizeof(m));
  443:   m.db = db;
  444:   sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC);
  445:   sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
  446:   if( db->mallocFailed ){
  447:     sqlite3VdbeMemRelease(&m);
  448:     m.z = 0;
  449:   }
  450:   assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  451:   assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  452:   assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
  453:   assert( m.z || db->mallocFailed );
  454:   return m.z;
  455: }
  456: 
  457: /*
  458: ** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
  459: ** enc. A pointer to the new string is returned, and the value of *pnOut
  460: ** is set to the length of the returned string in bytes. The call should
  461: ** arrange to call sqlite3DbFree() on the returned pointer when it is
  462: ** no longer required.
  463: ** 
  464: ** If a malloc failure occurs, NULL is returned and the db.mallocFailed
  465: ** flag set.
  466: */
  467: #ifdef SQLITE_ENABLE_STAT3
  468: char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
  469:   Mem m;
  470:   memset(&m, 0, sizeof(m));
  471:   m.db = db;
  472:   sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  473:   if( sqlite3VdbeMemTranslate(&m, enc) ){
  474:     assert( db->mallocFailed );
  475:     return 0;
  476:   }
  477:   assert( m.z==m.zMalloc );
  478:   *pnOut = m.n;
  479:   return m.z;
  480: }
  481: #endif
  482: 
  483: /*
  484: ** zIn is a UTF-16 encoded unicode string at least nChar characters long.
  485: ** Return the number of bytes in the first nChar unicode characters
  486: ** in pZ.  nChar must be non-negative.
  487: */
  488: int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  489:   int c;
  490:   unsigned char const *z = zIn;
  491:   int n = 0;
  492:   
  493:   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
  494:     while( n<nChar ){
  495:       READ_UTF16BE(z, 1, c);
  496:       n++;
  497:     }
  498:   }else{
  499:     while( n<nChar ){
  500:       READ_UTF16LE(z, 1, c);
  501:       n++;
  502:     }
  503:   }
  504:   return (int)(z-(unsigned char const *)zIn);
  505: }
  506: 
  507: #if defined(SQLITE_TEST)
  508: /*
  509: ** This routine is called from the TCL test function "translate_selftest".
  510: ** It checks that the primitives for serializing and deserializing
  511: ** characters in each encoding are inverses of each other.
  512: */
  513: void sqlite3UtfSelfTest(void){
  514:   unsigned int i, t;
  515:   unsigned char zBuf[20];
  516:   unsigned char *z;
  517:   int n;
  518:   unsigned int c;
  519: 
  520:   for(i=0; i<0x00110000; i++){
  521:     z = zBuf;
  522:     WRITE_UTF8(z, i);
  523:     n = (int)(z-zBuf);
  524:     assert( n>0 && n<=4 );
  525:     z[0] = 0;
  526:     z = zBuf;
  527:     c = sqlite3Utf8Read(z, (const u8**)&z);
  528:     t = i;
  529:     if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
  530:     if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
  531:     assert( c==t );
  532:     assert( (z-zBuf)==n );
  533:   }
  534:   for(i=0; i<0x00110000; i++){
  535:     if( i>=0xD800 && i<0xE000 ) continue;
  536:     z = zBuf;
  537:     WRITE_UTF16LE(z, i);
  538:     n = (int)(z-zBuf);
  539:     assert( n>0 && n<=4 );
  540:     z[0] = 0;
  541:     z = zBuf;
  542:     READ_UTF16LE(z, 1, c);
  543:     assert( c==i );
  544:     assert( (z-zBuf)==n );
  545:   }
  546:   for(i=0; i<0x00110000; i++){
  547:     if( i>=0xD800 && i<0xE000 ) continue;
  548:     z = zBuf;
  549:     WRITE_UTF16BE(z, i);
  550:     n = (int)(z-zBuf);
  551:     assert( n>0 && n<=4 );
  552:     z[0] = 0;
  553:     z = zBuf;
  554:     READ_UTF16BE(z, 1, c);
  555:     assert( c==i );
  556:     assert( (z-zBuf)==n );
  557:   }
  558: }
  559: #endif /* SQLITE_TEST */
  560: #endif /* SQLITE_OMIT_UTF16 */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>