Annotation of embedaddon/sqlite3/src/util.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2001 September 15
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** Utility functions used throughout sqlite.
                     13: **
                     14: ** This file contains functions for allocating memory, comparing
                     15: ** strings, and stuff like that.
                     16: **
                     17: */
                     18: #include "sqliteInt.h"
                     19: #include <stdarg.h>
                     20: #ifdef SQLITE_HAVE_ISNAN
                     21: # include <math.h>
                     22: #endif
                     23: 
                     24: /*
                     25: ** Routine needed to support the testcase() macro.
                     26: */
                     27: #ifdef SQLITE_COVERAGE_TEST
                     28: void sqlite3Coverage(int x){
                     29:   static unsigned dummy = 0;
                     30:   dummy += (unsigned)x;
                     31: }
                     32: #endif
                     33: 
                     34: #ifndef SQLITE_OMIT_FLOATING_POINT
                     35: /*
                     36: ** Return true if the floating point value is Not a Number (NaN).
                     37: **
                     38: ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
                     39: ** Otherwise, we have our own implementation that works on most systems.
                     40: */
                     41: int sqlite3IsNaN(double x){
                     42:   int rc;   /* The value return */
                     43: #if !defined(SQLITE_HAVE_ISNAN)
                     44:   /*
                     45:   ** Systems that support the isnan() library function should probably
                     46:   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
                     47:   ** found that many systems do not have a working isnan() function so
                     48:   ** this implementation is provided as an alternative.
                     49:   **
                     50:   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
                     51:   ** On the other hand, the use of -ffast-math comes with the following
                     52:   ** warning:
                     53:   **
                     54:   **      This option [-ffast-math] should never be turned on by any
                     55:   **      -O option since it can result in incorrect output for programs
                     56:   **      which depend on an exact implementation of IEEE or ISO 
                     57:   **      rules/specifications for math functions.
                     58:   **
                     59:   ** Under MSVC, this NaN test may fail if compiled with a floating-
                     60:   ** point precision mode other than /fp:precise.  From the MSDN 
                     61:   ** documentation:
                     62:   **
                     63:   **      The compiler [with /fp:precise] will properly handle comparisons 
                     64:   **      involving NaN. For example, x != x evaluates to true if x is NaN 
                     65:   **      ...
                     66:   */
                     67: #ifdef __FAST_MATH__
                     68: # error SQLite will not work correctly with the -ffast-math option of GCC.
                     69: #endif
                     70:   volatile double y = x;
                     71:   volatile double z = y;
                     72:   rc = (y!=z);
                     73: #else  /* if defined(SQLITE_HAVE_ISNAN) */
                     74:   rc = isnan(x);
                     75: #endif /* SQLITE_HAVE_ISNAN */
                     76:   testcase( rc );
                     77:   return rc;
                     78: }
                     79: #endif /* SQLITE_OMIT_FLOATING_POINT */
                     80: 
                     81: /*
                     82: ** Compute a string length that is limited to what can be stored in
                     83: ** lower 30 bits of a 32-bit signed integer.
                     84: **
                     85: ** The value returned will never be negative.  Nor will it ever be greater
                     86: ** than the actual length of the string.  For very long strings (greater
                     87: ** than 1GiB) the value returned might be less than the true string length.
                     88: */
                     89: int sqlite3Strlen30(const char *z){
                     90:   const char *z2 = z;
                     91:   if( z==0 ) return 0;
                     92:   while( *z2 ){ z2++; }
                     93:   return 0x3fffffff & (int)(z2 - z);
                     94: }
                     95: 
                     96: /*
                     97: ** Set the most recent error code and error string for the sqlite
                     98: ** handle "db". The error code is set to "err_code".
                     99: **
                    100: ** If it is not NULL, string zFormat specifies the format of the
                    101: ** error string in the style of the printf functions: The following
                    102: ** format characters are allowed:
                    103: **
                    104: **      %s      Insert a string
                    105: **      %z      A string that should be freed after use
                    106: **      %d      Insert an integer
                    107: **      %T      Insert a token
                    108: **      %S      Insert the first element of a SrcList
                    109: **
                    110: ** zFormat and any string tokens that follow it are assumed to be
                    111: ** encoded in UTF-8.
                    112: **
                    113: ** To clear the most recent error for sqlite handle "db", sqlite3Error
                    114: ** should be called with err_code set to SQLITE_OK and zFormat set
                    115: ** to NULL.
                    116: */
                    117: void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
                    118:   if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
                    119:     db->errCode = err_code;
                    120:     if( zFormat ){
                    121:       char *z;
                    122:       va_list ap;
                    123:       va_start(ap, zFormat);
                    124:       z = sqlite3VMPrintf(db, zFormat, ap);
                    125:       va_end(ap);
                    126:       sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
                    127:     }else{
                    128:       sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
                    129:     }
                    130:   }
                    131: }
                    132: 
                    133: /*
                    134: ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
                    135: ** The following formatting characters are allowed:
                    136: **
                    137: **      %s      Insert a string
                    138: **      %z      A string that should be freed after use
                    139: **      %d      Insert an integer
                    140: **      %T      Insert a token
                    141: **      %S      Insert the first element of a SrcList
                    142: **
                    143: ** This function should be used to report any error that occurs whilst
                    144: ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
                    145: ** last thing the sqlite3_prepare() function does is copy the error
                    146: ** stored by this function into the database handle using sqlite3Error().
                    147: ** Function sqlite3Error() should be used during statement execution
                    148: ** (sqlite3_step() etc.).
                    149: */
                    150: void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
                    151:   char *zMsg;
                    152:   va_list ap;
                    153:   sqlite3 *db = pParse->db;
                    154:   va_start(ap, zFormat);
                    155:   zMsg = sqlite3VMPrintf(db, zFormat, ap);
                    156:   va_end(ap);
                    157:   if( db->suppressErr ){
                    158:     sqlite3DbFree(db, zMsg);
                    159:   }else{
                    160:     pParse->nErr++;
                    161:     sqlite3DbFree(db, pParse->zErrMsg);
                    162:     pParse->zErrMsg = zMsg;
                    163:     pParse->rc = SQLITE_ERROR;
                    164:   }
                    165: }
                    166: 
                    167: /*
                    168: ** Convert an SQL-style quoted string into a normal string by removing
                    169: ** the quote characters.  The conversion is done in-place.  If the
                    170: ** input does not begin with a quote character, then this routine
                    171: ** is a no-op.
                    172: **
                    173: ** The input string must be zero-terminated.  A new zero-terminator
                    174: ** is added to the dequoted string.
                    175: **
                    176: ** The return value is -1 if no dequoting occurs or the length of the
                    177: ** dequoted string, exclusive of the zero terminator, if dequoting does
                    178: ** occur.
                    179: **
                    180: ** 2002-Feb-14: This routine is extended to remove MS-Access style
                    181: ** brackets from around identifers.  For example:  "[a-b-c]" becomes
                    182: ** "a-b-c".
                    183: */
                    184: int sqlite3Dequote(char *z){
                    185:   char quote;
                    186:   int i, j;
                    187:   if( z==0 ) return -1;
                    188:   quote = z[0];
                    189:   switch( quote ){
                    190:     case '\'':  break;
                    191:     case '"':   break;
                    192:     case '`':   break;                /* For MySQL compatibility */
                    193:     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
                    194:     default:    return -1;
                    195:   }
                    196:   for(i=1, j=0; ALWAYS(z[i]); i++){
                    197:     if( z[i]==quote ){
                    198:       if( z[i+1]==quote ){
                    199:         z[j++] = quote;
                    200:         i++;
                    201:       }else{
                    202:         break;
                    203:       }
                    204:     }else{
                    205:       z[j++] = z[i];
                    206:     }
                    207:   }
                    208:   z[j] = 0;
                    209:   return j;
                    210: }
                    211: 
                    212: /* Convenient short-hand */
                    213: #define UpperToLower sqlite3UpperToLower
                    214: 
                    215: /*
                    216: ** Some systems have stricmp().  Others have strcasecmp().  Because
                    217: ** there is no consistency, we will define our own.
                    218: **
                    219: ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
                    220: ** applications and extensions to compare the contents of two buffers
                    221: ** containing UTF-8 strings in a case-independent fashion, using the same
                    222: ** definition of case independence that SQLite uses internally when
                    223: ** comparing identifiers.
                    224: */
                    225: int sqlite3StrICmp(const char *zLeft, const char *zRight){
                    226:   register unsigned char *a, *b;
                    227:   a = (unsigned char *)zLeft;
                    228:   b = (unsigned char *)zRight;
                    229:   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
                    230:   return UpperToLower[*a] - UpperToLower[*b];
                    231: }
                    232: int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
                    233:   register unsigned char *a, *b;
                    234:   a = (unsigned char *)zLeft;
                    235:   b = (unsigned char *)zRight;
                    236:   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
                    237:   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
                    238: }
                    239: 
                    240: /*
                    241: ** The string z[] is an text representation of a real number.
                    242: ** Convert this string to a double and write it into *pResult.
                    243: **
                    244: ** The string z[] is length bytes in length (bytes, not characters) and
                    245: ** uses the encoding enc.  The string is not necessarily zero-terminated.
                    246: **
                    247: ** Return TRUE if the result is a valid real number (or integer) and FALSE
                    248: ** if the string is empty or contains extraneous text.  Valid numbers
                    249: ** are in one of these formats:
                    250: **
                    251: **    [+-]digits[E[+-]digits]
                    252: **    [+-]digits.[digits][E[+-]digits]
                    253: **    [+-].digits[E[+-]digits]
                    254: **
                    255: ** Leading and trailing whitespace is ignored for the purpose of determining
                    256: ** validity.
                    257: **
                    258: ** If some prefix of the input string is a valid number, this routine
                    259: ** returns FALSE but it still converts the prefix and writes the result
                    260: ** into *pResult.
                    261: */
                    262: int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
                    263: #ifndef SQLITE_OMIT_FLOATING_POINT
                    264:   int incr = (enc==SQLITE_UTF8?1:2);
                    265:   const char *zEnd = z + length;
                    266:   /* sign * significand * (10 ^ (esign * exponent)) */
                    267:   int sign = 1;    /* sign of significand */
                    268:   i64 s = 0;       /* significand */
                    269:   int d = 0;       /* adjust exponent for shifting decimal point */
                    270:   int esign = 1;   /* sign of exponent */
                    271:   int e = 0;       /* exponent */
                    272:   int eValid = 1;  /* True exponent is either not used or is well-formed */
                    273:   double result;
                    274:   int nDigits = 0;
                    275: 
                    276:   *pResult = 0.0;   /* Default return value, in case of an error */
                    277: 
                    278:   if( enc==SQLITE_UTF16BE ) z++;
                    279: 
                    280:   /* skip leading spaces */
                    281:   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
                    282:   if( z>=zEnd ) return 0;
                    283: 
                    284:   /* get sign of significand */
                    285:   if( *z=='-' ){
                    286:     sign = -1;
                    287:     z+=incr;
                    288:   }else if( *z=='+' ){
                    289:     z+=incr;
                    290:   }
                    291: 
                    292:   /* skip leading zeroes */
                    293:   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
                    294: 
                    295:   /* copy max significant digits to significand */
                    296:   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
                    297:     s = s*10 + (*z - '0');
                    298:     z+=incr, nDigits++;
                    299:   }
                    300: 
                    301:   /* skip non-significant significand digits
                    302:   ** (increase exponent by d to shift decimal left) */
                    303:   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
                    304:   if( z>=zEnd ) goto do_atof_calc;
                    305: 
                    306:   /* if decimal point is present */
                    307:   if( *z=='.' ){
                    308:     z+=incr;
                    309:     /* copy digits from after decimal to significand
                    310:     ** (decrease exponent by d to shift decimal right) */
                    311:     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
                    312:       s = s*10 + (*z - '0');
                    313:       z+=incr, nDigits++, d--;
                    314:     }
                    315:     /* skip non-significant digits */
                    316:     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
                    317:   }
                    318:   if( z>=zEnd ) goto do_atof_calc;
                    319: 
                    320:   /* if exponent is present */
                    321:   if( *z=='e' || *z=='E' ){
                    322:     z+=incr;
                    323:     eValid = 0;
                    324:     if( z>=zEnd ) goto do_atof_calc;
                    325:     /* get sign of exponent */
                    326:     if( *z=='-' ){
                    327:       esign = -1;
                    328:       z+=incr;
                    329:     }else if( *z=='+' ){
                    330:       z+=incr;
                    331:     }
                    332:     /* copy digits to exponent */
                    333:     while( z<zEnd && sqlite3Isdigit(*z) ){
                    334:       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
                    335:       z+=incr;
                    336:       eValid = 1;
                    337:     }
                    338:   }
                    339: 
                    340:   /* skip trailing spaces */
                    341:   if( nDigits && eValid ){
                    342:     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
                    343:   }
                    344: 
                    345: do_atof_calc:
                    346:   /* adjust exponent by d, and update sign */
                    347:   e = (e*esign) + d;
                    348:   if( e<0 ) {
                    349:     esign = -1;
                    350:     e *= -1;
                    351:   } else {
                    352:     esign = 1;
                    353:   }
                    354: 
                    355:   /* if 0 significand */
                    356:   if( !s ) {
                    357:     /* In the IEEE 754 standard, zero is signed.
                    358:     ** Add the sign if we've seen at least one digit */
                    359:     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
                    360:   } else {
                    361:     /* attempt to reduce exponent */
                    362:     if( esign>0 ){
                    363:       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
                    364:     }else{
                    365:       while( !(s%10) && e>0 ) e--,s/=10;
                    366:     }
                    367: 
                    368:     /* adjust the sign of significand */
                    369:     s = sign<0 ? -s : s;
                    370: 
                    371:     /* if exponent, scale significand as appropriate
                    372:     ** and store in result. */
                    373:     if( e ){
                    374:       double scale = 1.0;
                    375:       /* attempt to handle extremely small/large numbers better */
                    376:       if( e>307 && e<342 ){
                    377:         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
                    378:         if( esign<0 ){
                    379:           result = s / scale;
                    380:           result /= 1.0e+308;
                    381:         }else{
                    382:           result = s * scale;
                    383:           result *= 1.0e+308;
                    384:         }
                    385:       }else if( e>=342 ){
                    386:         if( esign<0 ){
                    387:           result = 0.0*s;
                    388:         }else{
                    389:           result = 1e308*1e308*s;  /* Infinity */
                    390:         }
                    391:       }else{
                    392:         /* 1.0e+22 is the largest power of 10 than can be 
                    393:         ** represented exactly. */
                    394:         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
                    395:         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
                    396:         if( esign<0 ){
                    397:           result = s / scale;
                    398:         }else{
                    399:           result = s * scale;
                    400:         }
                    401:       }
                    402:     } else {
                    403:       result = (double)s;
                    404:     }
                    405:   }
                    406: 
                    407:   /* store the result */
                    408:   *pResult = result;
                    409: 
                    410:   /* return true if number and no extra non-whitespace chracters after */
                    411:   return z>=zEnd && nDigits>0 && eValid;
                    412: #else
                    413:   return !sqlite3Atoi64(z, pResult, length, enc);
                    414: #endif /* SQLITE_OMIT_FLOATING_POINT */
                    415: }
                    416: 
                    417: /*
                    418: ** Compare the 19-character string zNum against the text representation
                    419: ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
                    420: ** if zNum is less than, equal to, or greater than the string.
                    421: ** Note that zNum must contain exactly 19 characters.
                    422: **
                    423: ** Unlike memcmp() this routine is guaranteed to return the difference
                    424: ** in the values of the last digit if the only difference is in the
                    425: ** last digit.  So, for example,
                    426: **
                    427: **      compare2pow63("9223372036854775800", 1)
                    428: **
                    429: ** will return -8.
                    430: */
                    431: static int compare2pow63(const char *zNum, int incr){
                    432:   int c = 0;
                    433:   int i;
                    434:                     /* 012345678901234567 */
                    435:   const char *pow63 = "922337203685477580";
                    436:   for(i=0; c==0 && i<18; i++){
                    437:     c = (zNum[i*incr]-pow63[i])*10;
                    438:   }
                    439:   if( c==0 ){
                    440:     c = zNum[18*incr] - '8';
                    441:     testcase( c==(-1) );
                    442:     testcase( c==0 );
                    443:     testcase( c==(+1) );
                    444:   }
                    445:   return c;
                    446: }
                    447: 
                    448: 
                    449: /*
                    450: ** Convert zNum to a 64-bit signed integer.
                    451: **
                    452: ** If the zNum value is representable as a 64-bit twos-complement 
                    453: ** integer, then write that value into *pNum and return 0.
                    454: **
                    455: ** If zNum is exactly 9223372036854665808, return 2.  This special
                    456: ** case is broken out because while 9223372036854665808 cannot be a 
                    457: ** signed 64-bit integer, its negative -9223372036854665808 can be.
                    458: **
                    459: ** If zNum is too big for a 64-bit integer and is not
                    460: ** 9223372036854665808 then return 1.
                    461: **
                    462: ** length is the number of bytes in the string (bytes, not characters).
                    463: ** The string is not necessarily zero-terminated.  The encoding is
                    464: ** given by enc.
                    465: */
                    466: int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
                    467:   int incr = (enc==SQLITE_UTF8?1:2);
                    468:   u64 u = 0;
                    469:   int neg = 0; /* assume positive */
                    470:   int i;
                    471:   int c = 0;
                    472:   const char *zStart;
                    473:   const char *zEnd = zNum + length;
                    474:   if( enc==SQLITE_UTF16BE ) zNum++;
                    475:   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
                    476:   if( zNum<zEnd ){
                    477:     if( *zNum=='-' ){
                    478:       neg = 1;
                    479:       zNum+=incr;
                    480:     }else if( *zNum=='+' ){
                    481:       zNum+=incr;
                    482:     }
                    483:   }
                    484:   zStart = zNum;
                    485:   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
                    486:   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
                    487:     u = u*10 + c - '0';
                    488:   }
                    489:   if( u>LARGEST_INT64 ){
                    490:     *pNum = SMALLEST_INT64;
                    491:   }else if( neg ){
                    492:     *pNum = -(i64)u;
                    493:   }else{
                    494:     *pNum = (i64)u;
                    495:   }
                    496:   testcase( i==18 );
                    497:   testcase( i==19 );
                    498:   testcase( i==20 );
                    499:   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
                    500:     /* zNum is empty or contains non-numeric text or is longer
                    501:     ** than 19 digits (thus guaranteeing that it is too large) */
                    502:     return 1;
                    503:   }else if( i<19*incr ){
                    504:     /* Less than 19 digits, so we know that it fits in 64 bits */
                    505:     assert( u<=LARGEST_INT64 );
                    506:     return 0;
                    507:   }else{
                    508:     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
                    509:     c = compare2pow63(zNum, incr);
                    510:     if( c<0 ){
                    511:       /* zNum is less than 9223372036854775808 so it fits */
                    512:       assert( u<=LARGEST_INT64 );
                    513:       return 0;
                    514:     }else if( c>0 ){
                    515:       /* zNum is greater than 9223372036854775808 so it overflows */
                    516:       return 1;
                    517:     }else{
                    518:       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
                    519:       ** special case 2 overflow if positive */
                    520:       assert( u-1==LARGEST_INT64 );
                    521:       assert( (*pNum)==SMALLEST_INT64 );
                    522:       return neg ? 0 : 2;
                    523:     }
                    524:   }
                    525: }
                    526: 
                    527: /*
                    528: ** If zNum represents an integer that will fit in 32-bits, then set
                    529: ** *pValue to that integer and return true.  Otherwise return false.
                    530: **
                    531: ** Any non-numeric characters that following zNum are ignored.
                    532: ** This is different from sqlite3Atoi64() which requires the
                    533: ** input number to be zero-terminated.
                    534: */
                    535: int sqlite3GetInt32(const char *zNum, int *pValue){
                    536:   sqlite_int64 v = 0;
                    537:   int i, c;
                    538:   int neg = 0;
                    539:   if( zNum[0]=='-' ){
                    540:     neg = 1;
                    541:     zNum++;
                    542:   }else if( zNum[0]=='+' ){
                    543:     zNum++;
                    544:   }
                    545:   while( zNum[0]=='0' ) zNum++;
                    546:   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
                    547:     v = v*10 + c;
                    548:   }
                    549: 
                    550:   /* The longest decimal representation of a 32 bit integer is 10 digits:
                    551:   **
                    552:   **             1234567890
                    553:   **     2^31 -> 2147483648
                    554:   */
                    555:   testcase( i==10 );
                    556:   if( i>10 ){
                    557:     return 0;
                    558:   }
                    559:   testcase( v-neg==2147483647 );
                    560:   if( v-neg>2147483647 ){
                    561:     return 0;
                    562:   }
                    563:   if( neg ){
                    564:     v = -v;
                    565:   }
                    566:   *pValue = (int)v;
                    567:   return 1;
                    568: }
                    569: 
                    570: /*
                    571: ** Return a 32-bit integer value extracted from a string.  If the
                    572: ** string is not an integer, just return 0.
                    573: */
                    574: int sqlite3Atoi(const char *z){
                    575:   int x = 0;
                    576:   if( z ) sqlite3GetInt32(z, &x);
                    577:   return x;
                    578: }
                    579: 
                    580: /*
                    581: ** The variable-length integer encoding is as follows:
                    582: **
                    583: ** KEY:
                    584: **         A = 0xxxxxxx    7 bits of data and one flag bit
                    585: **         B = 1xxxxxxx    7 bits of data and one flag bit
                    586: **         C = xxxxxxxx    8 bits of data
                    587: **
                    588: **  7 bits - A
                    589: ** 14 bits - BA
                    590: ** 21 bits - BBA
                    591: ** 28 bits - BBBA
                    592: ** 35 bits - BBBBA
                    593: ** 42 bits - BBBBBA
                    594: ** 49 bits - BBBBBBA
                    595: ** 56 bits - BBBBBBBA
                    596: ** 64 bits - BBBBBBBBC
                    597: */
                    598: 
                    599: /*
                    600: ** Write a 64-bit variable-length integer to memory starting at p[0].
                    601: ** The length of data write will be between 1 and 9 bytes.  The number
                    602: ** of bytes written is returned.
                    603: **
                    604: ** A variable-length integer consists of the lower 7 bits of each byte
                    605: ** for all bytes that have the 8th bit set and one byte with the 8th
                    606: ** bit clear.  Except, if we get to the 9th byte, it stores the full
                    607: ** 8 bits and is the last byte.
                    608: */
                    609: int sqlite3PutVarint(unsigned char *p, u64 v){
                    610:   int i, j, n;
                    611:   u8 buf[10];
                    612:   if( v & (((u64)0xff000000)<<32) ){
                    613:     p[8] = (u8)v;
                    614:     v >>= 8;
                    615:     for(i=7; i>=0; i--){
                    616:       p[i] = (u8)((v & 0x7f) | 0x80);
                    617:       v >>= 7;
                    618:     }
                    619:     return 9;
                    620:   }    
                    621:   n = 0;
                    622:   do{
                    623:     buf[n++] = (u8)((v & 0x7f) | 0x80);
                    624:     v >>= 7;
                    625:   }while( v!=0 );
                    626:   buf[0] &= 0x7f;
                    627:   assert( n<=9 );
                    628:   for(i=0, j=n-1; j>=0; j--, i++){
                    629:     p[i] = buf[j];
                    630:   }
                    631:   return n;
                    632: }
                    633: 
                    634: /*
                    635: ** This routine is a faster version of sqlite3PutVarint() that only
                    636: ** works for 32-bit positive integers and which is optimized for
                    637: ** the common case of small integers.  A MACRO version, putVarint32,
                    638: ** is provided which inlines the single-byte case.  All code should use
                    639: ** the MACRO version as this function assumes the single-byte case has
                    640: ** already been handled.
                    641: */
                    642: int sqlite3PutVarint32(unsigned char *p, u32 v){
                    643: #ifndef putVarint32
                    644:   if( (v & ~0x7f)==0 ){
                    645:     p[0] = v;
                    646:     return 1;
                    647:   }
                    648: #endif
                    649:   if( (v & ~0x3fff)==0 ){
                    650:     p[0] = (u8)((v>>7) | 0x80);
                    651:     p[1] = (u8)(v & 0x7f);
                    652:     return 2;
                    653:   }
                    654:   return sqlite3PutVarint(p, v);
                    655: }
                    656: 
                    657: /*
                    658: ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
                    659: ** are defined here rather than simply putting the constant expressions
                    660: ** inline in order to work around bugs in the RVT compiler.
                    661: **
                    662: ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
                    663: **
                    664: ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
                    665: */
                    666: #define SLOT_2_0     0x001fc07f
                    667: #define SLOT_4_2_0   0xf01fc07f
                    668: 
                    669: 
                    670: /*
                    671: ** Read a 64-bit variable-length integer from memory starting at p[0].
                    672: ** Return the number of bytes read.  The value is stored in *v.
                    673: */
                    674: u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
                    675:   u32 a,b,s;
                    676: 
                    677:   a = *p;
                    678:   /* a: p0 (unmasked) */
                    679:   if (!(a&0x80))
                    680:   {
                    681:     *v = a;
                    682:     return 1;
                    683:   }
                    684: 
                    685:   p++;
                    686:   b = *p;
                    687:   /* b: p1 (unmasked) */
                    688:   if (!(b&0x80))
                    689:   {
                    690:     a &= 0x7f;
                    691:     a = a<<7;
                    692:     a |= b;
                    693:     *v = a;
                    694:     return 2;
                    695:   }
                    696: 
                    697:   /* Verify that constants are precomputed correctly */
                    698:   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
                    699:   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
                    700: 
                    701:   p++;
                    702:   a = a<<14;
                    703:   a |= *p;
                    704:   /* a: p0<<14 | p2 (unmasked) */
                    705:   if (!(a&0x80))
                    706:   {
                    707:     a &= SLOT_2_0;
                    708:     b &= 0x7f;
                    709:     b = b<<7;
                    710:     a |= b;
                    711:     *v = a;
                    712:     return 3;
                    713:   }
                    714: 
                    715:   /* CSE1 from below */
                    716:   a &= SLOT_2_0;
                    717:   p++;
                    718:   b = b<<14;
                    719:   b |= *p;
                    720:   /* b: p1<<14 | p3 (unmasked) */
                    721:   if (!(b&0x80))
                    722:   {
                    723:     b &= SLOT_2_0;
                    724:     /* moved CSE1 up */
                    725:     /* a &= (0x7f<<14)|(0x7f); */
                    726:     a = a<<7;
                    727:     a |= b;
                    728:     *v = a;
                    729:     return 4;
                    730:   }
                    731: 
                    732:   /* a: p0<<14 | p2 (masked) */
                    733:   /* b: p1<<14 | p3 (unmasked) */
                    734:   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
                    735:   /* moved CSE1 up */
                    736:   /* a &= (0x7f<<14)|(0x7f); */
                    737:   b &= SLOT_2_0;
                    738:   s = a;
                    739:   /* s: p0<<14 | p2 (masked) */
                    740: 
                    741:   p++;
                    742:   a = a<<14;
                    743:   a |= *p;
                    744:   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
                    745:   if (!(a&0x80))
                    746:   {
                    747:     /* we can skip these cause they were (effectively) done above in calc'ing s */
                    748:     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
                    749:     /* b &= (0x7f<<14)|(0x7f); */
                    750:     b = b<<7;
                    751:     a |= b;
                    752:     s = s>>18;
                    753:     *v = ((u64)s)<<32 | a;
                    754:     return 5;
                    755:   }
                    756: 
                    757:   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
                    758:   s = s<<7;
                    759:   s |= b;
                    760:   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
                    761: 
                    762:   p++;
                    763:   b = b<<14;
                    764:   b |= *p;
                    765:   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
                    766:   if (!(b&0x80))
                    767:   {
                    768:     /* we can skip this cause it was (effectively) done above in calc'ing s */
                    769:     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
                    770:     a &= SLOT_2_0;
                    771:     a = a<<7;
                    772:     a |= b;
                    773:     s = s>>18;
                    774:     *v = ((u64)s)<<32 | a;
                    775:     return 6;
                    776:   }
                    777: 
                    778:   p++;
                    779:   a = a<<14;
                    780:   a |= *p;
                    781:   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
                    782:   if (!(a&0x80))
                    783:   {
                    784:     a &= SLOT_4_2_0;
                    785:     b &= SLOT_2_0;
                    786:     b = b<<7;
                    787:     a |= b;
                    788:     s = s>>11;
                    789:     *v = ((u64)s)<<32 | a;
                    790:     return 7;
                    791:   }
                    792: 
                    793:   /* CSE2 from below */
                    794:   a &= SLOT_2_0;
                    795:   p++;
                    796:   b = b<<14;
                    797:   b |= *p;
                    798:   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
                    799:   if (!(b&0x80))
                    800:   {
                    801:     b &= SLOT_4_2_0;
                    802:     /* moved CSE2 up */
                    803:     /* a &= (0x7f<<14)|(0x7f); */
                    804:     a = a<<7;
                    805:     a |= b;
                    806:     s = s>>4;
                    807:     *v = ((u64)s)<<32 | a;
                    808:     return 8;
                    809:   }
                    810: 
                    811:   p++;
                    812:   a = a<<15;
                    813:   a |= *p;
                    814:   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
                    815: 
                    816:   /* moved CSE2 up */
                    817:   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
                    818:   b &= SLOT_2_0;
                    819:   b = b<<8;
                    820:   a |= b;
                    821: 
                    822:   s = s<<4;
                    823:   b = p[-4];
                    824:   b &= 0x7f;
                    825:   b = b>>3;
                    826:   s |= b;
                    827: 
                    828:   *v = ((u64)s)<<32 | a;
                    829: 
                    830:   return 9;
                    831: }
                    832: 
                    833: /*
                    834: ** Read a 32-bit variable-length integer from memory starting at p[0].
                    835: ** Return the number of bytes read.  The value is stored in *v.
                    836: **
                    837: ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
                    838: ** integer, then set *v to 0xffffffff.
                    839: **
                    840: ** A MACRO version, getVarint32, is provided which inlines the 
                    841: ** single-byte case.  All code should use the MACRO version as 
                    842: ** this function assumes the single-byte case has already been handled.
                    843: */
                    844: u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
                    845:   u32 a,b;
                    846: 
                    847:   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
                    848:   ** by the getVarin32() macro */
                    849:   a = *p;
                    850:   /* a: p0 (unmasked) */
                    851: #ifndef getVarint32
                    852:   if (!(a&0x80))
                    853:   {
                    854:     /* Values between 0 and 127 */
                    855:     *v = a;
                    856:     return 1;
                    857:   }
                    858: #endif
                    859: 
                    860:   /* The 2-byte case */
                    861:   p++;
                    862:   b = *p;
                    863:   /* b: p1 (unmasked) */
                    864:   if (!(b&0x80))
                    865:   {
                    866:     /* Values between 128 and 16383 */
                    867:     a &= 0x7f;
                    868:     a = a<<7;
                    869:     *v = a | b;
                    870:     return 2;
                    871:   }
                    872: 
                    873:   /* The 3-byte case */
                    874:   p++;
                    875:   a = a<<14;
                    876:   a |= *p;
                    877:   /* a: p0<<14 | p2 (unmasked) */
                    878:   if (!(a&0x80))
                    879:   {
                    880:     /* Values between 16384 and 2097151 */
                    881:     a &= (0x7f<<14)|(0x7f);
                    882:     b &= 0x7f;
                    883:     b = b<<7;
                    884:     *v = a | b;
                    885:     return 3;
                    886:   }
                    887: 
                    888:   /* A 32-bit varint is used to store size information in btrees.
                    889:   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
                    890:   ** A 3-byte varint is sufficient, for example, to record the size
                    891:   ** of a 1048569-byte BLOB or string.
                    892:   **
                    893:   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
                    894:   ** rare larger cases can be handled by the slower 64-bit varint
                    895:   ** routine.
                    896:   */
                    897: #if 1
                    898:   {
                    899:     u64 v64;
                    900:     u8 n;
                    901: 
                    902:     p -= 2;
                    903:     n = sqlite3GetVarint(p, &v64);
                    904:     assert( n>3 && n<=9 );
                    905:     if( (v64 & SQLITE_MAX_U32)!=v64 ){
                    906:       *v = 0xffffffff;
                    907:     }else{
                    908:       *v = (u32)v64;
                    909:     }
                    910:     return n;
                    911:   }
                    912: 
                    913: #else
                    914:   /* For following code (kept for historical record only) shows an
                    915:   ** unrolling for the 3- and 4-byte varint cases.  This code is
                    916:   ** slightly faster, but it is also larger and much harder to test.
                    917:   */
                    918:   p++;
                    919:   b = b<<14;
                    920:   b |= *p;
                    921:   /* b: p1<<14 | p3 (unmasked) */
                    922:   if (!(b&0x80))
                    923:   {
                    924:     /* Values between 2097152 and 268435455 */
                    925:     b &= (0x7f<<14)|(0x7f);
                    926:     a &= (0x7f<<14)|(0x7f);
                    927:     a = a<<7;
                    928:     *v = a | b;
                    929:     return 4;
                    930:   }
                    931: 
                    932:   p++;
                    933:   a = a<<14;
                    934:   a |= *p;
                    935:   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
                    936:   if (!(a&0x80))
                    937:   {
                    938:     /* Values  between 268435456 and 34359738367 */
                    939:     a &= SLOT_4_2_0;
                    940:     b &= SLOT_4_2_0;
                    941:     b = b<<7;
                    942:     *v = a | b;
                    943:     return 5;
                    944:   }
                    945: 
                    946:   /* We can only reach this point when reading a corrupt database
                    947:   ** file.  In that case we are not in any hurry.  Use the (relatively
                    948:   ** slow) general-purpose sqlite3GetVarint() routine to extract the
                    949:   ** value. */
                    950:   {
                    951:     u64 v64;
                    952:     u8 n;
                    953: 
                    954:     p -= 4;
                    955:     n = sqlite3GetVarint(p, &v64);
                    956:     assert( n>5 && n<=9 );
                    957:     *v = (u32)v64;
                    958:     return n;
                    959:   }
                    960: #endif
                    961: }
                    962: 
                    963: /*
                    964: ** Return the number of bytes that will be needed to store the given
                    965: ** 64-bit integer.
                    966: */
                    967: int sqlite3VarintLen(u64 v){
                    968:   int i = 0;
                    969:   do{
                    970:     i++;
                    971:     v >>= 7;
                    972:   }while( v!=0 && ALWAYS(i<9) );
                    973:   return i;
                    974: }
                    975: 
                    976: 
                    977: /*
                    978: ** Read or write a four-byte big-endian integer value.
                    979: */
                    980: u32 sqlite3Get4byte(const u8 *p){
                    981:   return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
                    982: }
                    983: void sqlite3Put4byte(unsigned char *p, u32 v){
                    984:   p[0] = (u8)(v>>24);
                    985:   p[1] = (u8)(v>>16);
                    986:   p[2] = (u8)(v>>8);
                    987:   p[3] = (u8)v;
                    988: }
                    989: 
                    990: 
                    991: 
                    992: /*
                    993: ** Translate a single byte of Hex into an integer.
                    994: ** This routine only works if h really is a valid hexadecimal
                    995: ** character:  0..9a..fA..F
                    996: */
                    997: u8 sqlite3HexToInt(int h){
                    998:   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
                    999: #ifdef SQLITE_ASCII
                   1000:   h += 9*(1&(h>>6));
                   1001: #endif
                   1002: #ifdef SQLITE_EBCDIC
                   1003:   h += 9*(1&~(h>>4));
                   1004: #endif
                   1005:   return (u8)(h & 0xf);
                   1006: }
                   1007: 
                   1008: #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
                   1009: /*
                   1010: ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
                   1011: ** value.  Return a pointer to its binary value.  Space to hold the
                   1012: ** binary value has been obtained from malloc and must be freed by
                   1013: ** the calling routine.
                   1014: */
                   1015: void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
                   1016:   char *zBlob;
                   1017:   int i;
                   1018: 
                   1019:   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
                   1020:   n--;
                   1021:   if( zBlob ){
                   1022:     for(i=0; i<n; i+=2){
                   1023:       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
                   1024:     }
                   1025:     zBlob[i/2] = 0;
                   1026:   }
                   1027:   return zBlob;
                   1028: }
                   1029: #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
                   1030: 
                   1031: /*
                   1032: ** Log an error that is an API call on a connection pointer that should
                   1033: ** not have been used.  The "type" of connection pointer is given as the
                   1034: ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
                   1035: */
                   1036: static void logBadConnection(const char *zType){
                   1037:   sqlite3_log(SQLITE_MISUSE, 
                   1038:      "API call with %s database connection pointer",
                   1039:      zType
                   1040:   );
                   1041: }
                   1042: 
                   1043: /*
                   1044: ** Check to make sure we have a valid db pointer.  This test is not
                   1045: ** foolproof but it does provide some measure of protection against
                   1046: ** misuse of the interface such as passing in db pointers that are
                   1047: ** NULL or which have been previously closed.  If this routine returns
                   1048: ** 1 it means that the db pointer is valid and 0 if it should not be
                   1049: ** dereferenced for any reason.  The calling function should invoke
                   1050: ** SQLITE_MISUSE immediately.
                   1051: **
                   1052: ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
                   1053: ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
                   1054: ** open properly and is not fit for general use but which can be
                   1055: ** used as an argument to sqlite3_errmsg() or sqlite3_close().
                   1056: */
                   1057: int sqlite3SafetyCheckOk(sqlite3 *db){
                   1058:   u32 magic;
                   1059:   if( db==0 ){
                   1060:     logBadConnection("NULL");
                   1061:     return 0;
                   1062:   }
                   1063:   magic = db->magic;
                   1064:   if( magic!=SQLITE_MAGIC_OPEN ){
                   1065:     if( sqlite3SafetyCheckSickOrOk(db) ){
                   1066:       testcase( sqlite3GlobalConfig.xLog!=0 );
                   1067:       logBadConnection("unopened");
                   1068:     }
                   1069:     return 0;
                   1070:   }else{
                   1071:     return 1;
                   1072:   }
                   1073: }
                   1074: int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
                   1075:   u32 magic;
                   1076:   magic = db->magic;
                   1077:   if( magic!=SQLITE_MAGIC_SICK &&
                   1078:       magic!=SQLITE_MAGIC_OPEN &&
                   1079:       magic!=SQLITE_MAGIC_BUSY ){
                   1080:     testcase( sqlite3GlobalConfig.xLog!=0 );
                   1081:     logBadConnection("invalid");
                   1082:     return 0;
                   1083:   }else{
                   1084:     return 1;
                   1085:   }
                   1086: }
                   1087: 
                   1088: /*
                   1089: ** Attempt to add, substract, or multiply the 64-bit signed value iB against
                   1090: ** the other 64-bit signed integer at *pA and store the result in *pA.
                   1091: ** Return 0 on success.  Or if the operation would have resulted in an
                   1092: ** overflow, leave *pA unchanged and return 1.
                   1093: */
                   1094: int sqlite3AddInt64(i64 *pA, i64 iB){
                   1095:   i64 iA = *pA;
                   1096:   testcase( iA==0 ); testcase( iA==1 );
                   1097:   testcase( iB==-1 ); testcase( iB==0 );
                   1098:   if( iB>=0 ){
                   1099:     testcase( iA>0 && LARGEST_INT64 - iA == iB );
                   1100:     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
                   1101:     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
                   1102:     *pA += iB;
                   1103:   }else{
                   1104:     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
                   1105:     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
                   1106:     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
                   1107:     *pA += iB;
                   1108:   }
                   1109:   return 0; 
                   1110: }
                   1111: int sqlite3SubInt64(i64 *pA, i64 iB){
                   1112:   testcase( iB==SMALLEST_INT64+1 );
                   1113:   if( iB==SMALLEST_INT64 ){
                   1114:     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
                   1115:     if( (*pA)>=0 ) return 1;
                   1116:     *pA -= iB;
                   1117:     return 0;
                   1118:   }else{
                   1119:     return sqlite3AddInt64(pA, -iB);
                   1120:   }
                   1121: }
                   1122: #define TWOPOWER32 (((i64)1)<<32)
                   1123: #define TWOPOWER31 (((i64)1)<<31)
                   1124: int sqlite3MulInt64(i64 *pA, i64 iB){
                   1125:   i64 iA = *pA;
                   1126:   i64 iA1, iA0, iB1, iB0, r;
                   1127: 
                   1128:   iA1 = iA/TWOPOWER32;
                   1129:   iA0 = iA % TWOPOWER32;
                   1130:   iB1 = iB/TWOPOWER32;
                   1131:   iB0 = iB % TWOPOWER32;
                   1132:   if( iA1*iB1 != 0 ) return 1;
                   1133:   assert( iA1*iB0==0 || iA0*iB1==0 );
                   1134:   r = iA1*iB0 + iA0*iB1;
                   1135:   testcase( r==(-TWOPOWER31)-1 );
                   1136:   testcase( r==(-TWOPOWER31) );
                   1137:   testcase( r==TWOPOWER31 );
                   1138:   testcase( r==TWOPOWER31-1 );
                   1139:   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
                   1140:   r *= TWOPOWER32;
                   1141:   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
                   1142:   *pA = r;
                   1143:   return 0;
                   1144: }
                   1145: 
                   1146: /*
                   1147: ** Compute the absolute value of a 32-bit signed integer, of possible.  Or 
                   1148: ** if the integer has a value of -2147483648, return +2147483647
                   1149: */
                   1150: int sqlite3AbsInt32(int x){
                   1151:   if( x>=0 ) return x;
                   1152:   if( x==(int)0x80000000 ) return 0x7fffffff;
                   1153:   return -x;
                   1154: }
                   1155: 
                   1156: #ifdef SQLITE_ENABLE_8_3_NAMES
                   1157: /*
                   1158: ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
                   1159: ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
                   1160: ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
                   1161: ** three characters, then shorten the suffix on z[] to be the last three
                   1162: ** characters of the original suffix.
                   1163: **
                   1164: ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
                   1165: ** do the suffix shortening regardless of URI parameter.
                   1166: **
                   1167: ** Examples:
                   1168: **
                   1169: **     test.db-journal    =>   test.nal
                   1170: **     test.db-wal        =>   test.wal
                   1171: **     test.db-shm        =>   test.shm
                   1172: **     test.db-mj7f3319fa =>   test.9fa
                   1173: */
                   1174: void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
                   1175: #if SQLITE_ENABLE_8_3_NAMES<2
                   1176:   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
                   1177: #endif
                   1178:   {
                   1179:     int i, sz;
                   1180:     sz = sqlite3Strlen30(z);
                   1181:     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
                   1182:     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
                   1183:   }
                   1184: }
                   1185: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>