File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / util.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2001 September 15
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** Utility functions used throughout sqlite.
   13: **
   14: ** This file contains functions for allocating memory, comparing
   15: ** strings, and stuff like that.
   16: **
   17: */
   18: #include "sqliteInt.h"
   19: #include <stdarg.h>
   20: #ifdef SQLITE_HAVE_ISNAN
   21: # include <math.h>
   22: #endif
   23: 
   24: /*
   25: ** Routine needed to support the testcase() macro.
   26: */
   27: #ifdef SQLITE_COVERAGE_TEST
   28: void sqlite3Coverage(int x){
   29:   static unsigned dummy = 0;
   30:   dummy += (unsigned)x;
   31: }
   32: #endif
   33: 
   34: #ifndef SQLITE_OMIT_FLOATING_POINT
   35: /*
   36: ** Return true if the floating point value is Not a Number (NaN).
   37: **
   38: ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
   39: ** Otherwise, we have our own implementation that works on most systems.
   40: */
   41: int sqlite3IsNaN(double x){
   42:   int rc;   /* The value return */
   43: #if !defined(SQLITE_HAVE_ISNAN)
   44:   /*
   45:   ** Systems that support the isnan() library function should probably
   46:   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
   47:   ** found that many systems do not have a working isnan() function so
   48:   ** this implementation is provided as an alternative.
   49:   **
   50:   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
   51:   ** On the other hand, the use of -ffast-math comes with the following
   52:   ** warning:
   53:   **
   54:   **      This option [-ffast-math] should never be turned on by any
   55:   **      -O option since it can result in incorrect output for programs
   56:   **      which depend on an exact implementation of IEEE or ISO 
   57:   **      rules/specifications for math functions.
   58:   **
   59:   ** Under MSVC, this NaN test may fail if compiled with a floating-
   60:   ** point precision mode other than /fp:precise.  From the MSDN 
   61:   ** documentation:
   62:   **
   63:   **      The compiler [with /fp:precise] will properly handle comparisons 
   64:   **      involving NaN. For example, x != x evaluates to true if x is NaN 
   65:   **      ...
   66:   */
   67: #ifdef __FAST_MATH__
   68: # error SQLite will not work correctly with the -ffast-math option of GCC.
   69: #endif
   70:   volatile double y = x;
   71:   volatile double z = y;
   72:   rc = (y!=z);
   73: #else  /* if defined(SQLITE_HAVE_ISNAN) */
   74:   rc = isnan(x);
   75: #endif /* SQLITE_HAVE_ISNAN */
   76:   testcase( rc );
   77:   return rc;
   78: }
   79: #endif /* SQLITE_OMIT_FLOATING_POINT */
   80: 
   81: /*
   82: ** Compute a string length that is limited to what can be stored in
   83: ** lower 30 bits of a 32-bit signed integer.
   84: **
   85: ** The value returned will never be negative.  Nor will it ever be greater
   86: ** than the actual length of the string.  For very long strings (greater
   87: ** than 1GiB) the value returned might be less than the true string length.
   88: */
   89: int sqlite3Strlen30(const char *z){
   90:   const char *z2 = z;
   91:   if( z==0 ) return 0;
   92:   while( *z2 ){ z2++; }
   93:   return 0x3fffffff & (int)(z2 - z);
   94: }
   95: 
   96: /*
   97: ** Set the most recent error code and error string for the sqlite
   98: ** handle "db". The error code is set to "err_code".
   99: **
  100: ** If it is not NULL, string zFormat specifies the format of the
  101: ** error string in the style of the printf functions: The following
  102: ** format characters are allowed:
  103: **
  104: **      %s      Insert a string
  105: **      %z      A string that should be freed after use
  106: **      %d      Insert an integer
  107: **      %T      Insert a token
  108: **      %S      Insert the first element of a SrcList
  109: **
  110: ** zFormat and any string tokens that follow it are assumed to be
  111: ** encoded in UTF-8.
  112: **
  113: ** To clear the most recent error for sqlite handle "db", sqlite3Error
  114: ** should be called with err_code set to SQLITE_OK and zFormat set
  115: ** to NULL.
  116: */
  117: void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
  118:   if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
  119:     db->errCode = err_code;
  120:     if( zFormat ){
  121:       char *z;
  122:       va_list ap;
  123:       va_start(ap, zFormat);
  124:       z = sqlite3VMPrintf(db, zFormat, ap);
  125:       va_end(ap);
  126:       sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
  127:     }else{
  128:       sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
  129:     }
  130:   }
  131: }
  132: 
  133: /*
  134: ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
  135: ** The following formatting characters are allowed:
  136: **
  137: **      %s      Insert a string
  138: **      %z      A string that should be freed after use
  139: **      %d      Insert an integer
  140: **      %T      Insert a token
  141: **      %S      Insert the first element of a SrcList
  142: **
  143: ** This function should be used to report any error that occurs whilst
  144: ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
  145: ** last thing the sqlite3_prepare() function does is copy the error
  146: ** stored by this function into the database handle using sqlite3Error().
  147: ** Function sqlite3Error() should be used during statement execution
  148: ** (sqlite3_step() etc.).
  149: */
  150: void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
  151:   char *zMsg;
  152:   va_list ap;
  153:   sqlite3 *db = pParse->db;
  154:   va_start(ap, zFormat);
  155:   zMsg = sqlite3VMPrintf(db, zFormat, ap);
  156:   va_end(ap);
  157:   if( db->suppressErr ){
  158:     sqlite3DbFree(db, zMsg);
  159:   }else{
  160:     pParse->nErr++;
  161:     sqlite3DbFree(db, pParse->zErrMsg);
  162:     pParse->zErrMsg = zMsg;
  163:     pParse->rc = SQLITE_ERROR;
  164:   }
  165: }
  166: 
  167: /*
  168: ** Convert an SQL-style quoted string into a normal string by removing
  169: ** the quote characters.  The conversion is done in-place.  If the
  170: ** input does not begin with a quote character, then this routine
  171: ** is a no-op.
  172: **
  173: ** The input string must be zero-terminated.  A new zero-terminator
  174: ** is added to the dequoted string.
  175: **
  176: ** The return value is -1 if no dequoting occurs or the length of the
  177: ** dequoted string, exclusive of the zero terminator, if dequoting does
  178: ** occur.
  179: **
  180: ** 2002-Feb-14: This routine is extended to remove MS-Access style
  181: ** brackets from around identifers.  For example:  "[a-b-c]" becomes
  182: ** "a-b-c".
  183: */
  184: int sqlite3Dequote(char *z){
  185:   char quote;
  186:   int i, j;
  187:   if( z==0 ) return -1;
  188:   quote = z[0];
  189:   switch( quote ){
  190:     case '\'':  break;
  191:     case '"':   break;
  192:     case '`':   break;                /* For MySQL compatibility */
  193:     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
  194:     default:    return -1;
  195:   }
  196:   for(i=1, j=0; ALWAYS(z[i]); i++){
  197:     if( z[i]==quote ){
  198:       if( z[i+1]==quote ){
  199:         z[j++] = quote;
  200:         i++;
  201:       }else{
  202:         break;
  203:       }
  204:     }else{
  205:       z[j++] = z[i];
  206:     }
  207:   }
  208:   z[j] = 0;
  209:   return j;
  210: }
  211: 
  212: /* Convenient short-hand */
  213: #define UpperToLower sqlite3UpperToLower
  214: 
  215: /*
  216: ** Some systems have stricmp().  Others have strcasecmp().  Because
  217: ** there is no consistency, we will define our own.
  218: **
  219: ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
  220: ** applications and extensions to compare the contents of two buffers
  221: ** containing UTF-8 strings in a case-independent fashion, using the same
  222: ** definition of case independence that SQLite uses internally when
  223: ** comparing identifiers.
  224: */
  225: int sqlite3StrICmp(const char *zLeft, const char *zRight){
  226:   register unsigned char *a, *b;
  227:   a = (unsigned char *)zLeft;
  228:   b = (unsigned char *)zRight;
  229:   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  230:   return UpperToLower[*a] - UpperToLower[*b];
  231: }
  232: int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
  233:   register unsigned char *a, *b;
  234:   a = (unsigned char *)zLeft;
  235:   b = (unsigned char *)zRight;
  236:   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  237:   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
  238: }
  239: 
  240: /*
  241: ** The string z[] is an text representation of a real number.
  242: ** Convert this string to a double and write it into *pResult.
  243: **
  244: ** The string z[] is length bytes in length (bytes, not characters) and
  245: ** uses the encoding enc.  The string is not necessarily zero-terminated.
  246: **
  247: ** Return TRUE if the result is a valid real number (or integer) and FALSE
  248: ** if the string is empty or contains extraneous text.  Valid numbers
  249: ** are in one of these formats:
  250: **
  251: **    [+-]digits[E[+-]digits]
  252: **    [+-]digits.[digits][E[+-]digits]
  253: **    [+-].digits[E[+-]digits]
  254: **
  255: ** Leading and trailing whitespace is ignored for the purpose of determining
  256: ** validity.
  257: **
  258: ** If some prefix of the input string is a valid number, this routine
  259: ** returns FALSE but it still converts the prefix and writes the result
  260: ** into *pResult.
  261: */
  262: int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
  263: #ifndef SQLITE_OMIT_FLOATING_POINT
  264:   int incr = (enc==SQLITE_UTF8?1:2);
  265:   const char *zEnd = z + length;
  266:   /* sign * significand * (10 ^ (esign * exponent)) */
  267:   int sign = 1;    /* sign of significand */
  268:   i64 s = 0;       /* significand */
  269:   int d = 0;       /* adjust exponent for shifting decimal point */
  270:   int esign = 1;   /* sign of exponent */
  271:   int e = 0;       /* exponent */
  272:   int eValid = 1;  /* True exponent is either not used or is well-formed */
  273:   double result;
  274:   int nDigits = 0;
  275: 
  276:   *pResult = 0.0;   /* Default return value, in case of an error */
  277: 
  278:   if( enc==SQLITE_UTF16BE ) z++;
  279: 
  280:   /* skip leading spaces */
  281:   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
  282:   if( z>=zEnd ) return 0;
  283: 
  284:   /* get sign of significand */
  285:   if( *z=='-' ){
  286:     sign = -1;
  287:     z+=incr;
  288:   }else if( *z=='+' ){
  289:     z+=incr;
  290:   }
  291: 
  292:   /* skip leading zeroes */
  293:   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
  294: 
  295:   /* copy max significant digits to significand */
  296:   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
  297:     s = s*10 + (*z - '0');
  298:     z+=incr, nDigits++;
  299:   }
  300: 
  301:   /* skip non-significant significand digits
  302:   ** (increase exponent by d to shift decimal left) */
  303:   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
  304:   if( z>=zEnd ) goto do_atof_calc;
  305: 
  306:   /* if decimal point is present */
  307:   if( *z=='.' ){
  308:     z+=incr;
  309:     /* copy digits from after decimal to significand
  310:     ** (decrease exponent by d to shift decimal right) */
  311:     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
  312:       s = s*10 + (*z - '0');
  313:       z+=incr, nDigits++, d--;
  314:     }
  315:     /* skip non-significant digits */
  316:     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
  317:   }
  318:   if( z>=zEnd ) goto do_atof_calc;
  319: 
  320:   /* if exponent is present */
  321:   if( *z=='e' || *z=='E' ){
  322:     z+=incr;
  323:     eValid = 0;
  324:     if( z>=zEnd ) goto do_atof_calc;
  325:     /* get sign of exponent */
  326:     if( *z=='-' ){
  327:       esign = -1;
  328:       z+=incr;
  329:     }else if( *z=='+' ){
  330:       z+=incr;
  331:     }
  332:     /* copy digits to exponent */
  333:     while( z<zEnd && sqlite3Isdigit(*z) ){
  334:       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
  335:       z+=incr;
  336:       eValid = 1;
  337:     }
  338:   }
  339: 
  340:   /* skip trailing spaces */
  341:   if( nDigits && eValid ){
  342:     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
  343:   }
  344: 
  345: do_atof_calc:
  346:   /* adjust exponent by d, and update sign */
  347:   e = (e*esign) + d;
  348:   if( e<0 ) {
  349:     esign = -1;
  350:     e *= -1;
  351:   } else {
  352:     esign = 1;
  353:   }
  354: 
  355:   /* if 0 significand */
  356:   if( !s ) {
  357:     /* In the IEEE 754 standard, zero is signed.
  358:     ** Add the sign if we've seen at least one digit */
  359:     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
  360:   } else {
  361:     /* attempt to reduce exponent */
  362:     if( esign>0 ){
  363:       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
  364:     }else{
  365:       while( !(s%10) && e>0 ) e--,s/=10;
  366:     }
  367: 
  368:     /* adjust the sign of significand */
  369:     s = sign<0 ? -s : s;
  370: 
  371:     /* if exponent, scale significand as appropriate
  372:     ** and store in result. */
  373:     if( e ){
  374:       double scale = 1.0;
  375:       /* attempt to handle extremely small/large numbers better */
  376:       if( e>307 && e<342 ){
  377:         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
  378:         if( esign<0 ){
  379:           result = s / scale;
  380:           result /= 1.0e+308;
  381:         }else{
  382:           result = s * scale;
  383:           result *= 1.0e+308;
  384:         }
  385:       }else if( e>=342 ){
  386:         if( esign<0 ){
  387:           result = 0.0*s;
  388:         }else{
  389:           result = 1e308*1e308*s;  /* Infinity */
  390:         }
  391:       }else{
  392:         /* 1.0e+22 is the largest power of 10 than can be 
  393:         ** represented exactly. */
  394:         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
  395:         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
  396:         if( esign<0 ){
  397:           result = s / scale;
  398:         }else{
  399:           result = s * scale;
  400:         }
  401:       }
  402:     } else {
  403:       result = (double)s;
  404:     }
  405:   }
  406: 
  407:   /* store the result */
  408:   *pResult = result;
  409: 
  410:   /* return true if number and no extra non-whitespace chracters after */
  411:   return z>=zEnd && nDigits>0 && eValid;
  412: #else
  413:   return !sqlite3Atoi64(z, pResult, length, enc);
  414: #endif /* SQLITE_OMIT_FLOATING_POINT */
  415: }
  416: 
  417: /*
  418: ** Compare the 19-character string zNum against the text representation
  419: ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
  420: ** if zNum is less than, equal to, or greater than the string.
  421: ** Note that zNum must contain exactly 19 characters.
  422: **
  423: ** Unlike memcmp() this routine is guaranteed to return the difference
  424: ** in the values of the last digit if the only difference is in the
  425: ** last digit.  So, for example,
  426: **
  427: **      compare2pow63("9223372036854775800", 1)
  428: **
  429: ** will return -8.
  430: */
  431: static int compare2pow63(const char *zNum, int incr){
  432:   int c = 0;
  433:   int i;
  434:                     /* 012345678901234567 */
  435:   const char *pow63 = "922337203685477580";
  436:   for(i=0; c==0 && i<18; i++){
  437:     c = (zNum[i*incr]-pow63[i])*10;
  438:   }
  439:   if( c==0 ){
  440:     c = zNum[18*incr] - '8';
  441:     testcase( c==(-1) );
  442:     testcase( c==0 );
  443:     testcase( c==(+1) );
  444:   }
  445:   return c;
  446: }
  447: 
  448: 
  449: /*
  450: ** Convert zNum to a 64-bit signed integer.
  451: **
  452: ** If the zNum value is representable as a 64-bit twos-complement 
  453: ** integer, then write that value into *pNum and return 0.
  454: **
  455: ** If zNum is exactly 9223372036854665808, return 2.  This special
  456: ** case is broken out because while 9223372036854665808 cannot be a 
  457: ** signed 64-bit integer, its negative -9223372036854665808 can be.
  458: **
  459: ** If zNum is too big for a 64-bit integer and is not
  460: ** 9223372036854665808 then return 1.
  461: **
  462: ** length is the number of bytes in the string (bytes, not characters).
  463: ** The string is not necessarily zero-terminated.  The encoding is
  464: ** given by enc.
  465: */
  466: int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
  467:   int incr = (enc==SQLITE_UTF8?1:2);
  468:   u64 u = 0;
  469:   int neg = 0; /* assume positive */
  470:   int i;
  471:   int c = 0;
  472:   const char *zStart;
  473:   const char *zEnd = zNum + length;
  474:   if( enc==SQLITE_UTF16BE ) zNum++;
  475:   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
  476:   if( zNum<zEnd ){
  477:     if( *zNum=='-' ){
  478:       neg = 1;
  479:       zNum+=incr;
  480:     }else if( *zNum=='+' ){
  481:       zNum+=incr;
  482:     }
  483:   }
  484:   zStart = zNum;
  485:   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
  486:   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
  487:     u = u*10 + c - '0';
  488:   }
  489:   if( u>LARGEST_INT64 ){
  490:     *pNum = SMALLEST_INT64;
  491:   }else if( neg ){
  492:     *pNum = -(i64)u;
  493:   }else{
  494:     *pNum = (i64)u;
  495:   }
  496:   testcase( i==18 );
  497:   testcase( i==19 );
  498:   testcase( i==20 );
  499:   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
  500:     /* zNum is empty or contains non-numeric text or is longer
  501:     ** than 19 digits (thus guaranteeing that it is too large) */
  502:     return 1;
  503:   }else if( i<19*incr ){
  504:     /* Less than 19 digits, so we know that it fits in 64 bits */
  505:     assert( u<=LARGEST_INT64 );
  506:     return 0;
  507:   }else{
  508:     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
  509:     c = compare2pow63(zNum, incr);
  510:     if( c<0 ){
  511:       /* zNum is less than 9223372036854775808 so it fits */
  512:       assert( u<=LARGEST_INT64 );
  513:       return 0;
  514:     }else if( c>0 ){
  515:       /* zNum is greater than 9223372036854775808 so it overflows */
  516:       return 1;
  517:     }else{
  518:       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
  519:       ** special case 2 overflow if positive */
  520:       assert( u-1==LARGEST_INT64 );
  521:       assert( (*pNum)==SMALLEST_INT64 );
  522:       return neg ? 0 : 2;
  523:     }
  524:   }
  525: }
  526: 
  527: /*
  528: ** If zNum represents an integer that will fit in 32-bits, then set
  529: ** *pValue to that integer and return true.  Otherwise return false.
  530: **
  531: ** Any non-numeric characters that following zNum are ignored.
  532: ** This is different from sqlite3Atoi64() which requires the
  533: ** input number to be zero-terminated.
  534: */
  535: int sqlite3GetInt32(const char *zNum, int *pValue){
  536:   sqlite_int64 v = 0;
  537:   int i, c;
  538:   int neg = 0;
  539:   if( zNum[0]=='-' ){
  540:     neg = 1;
  541:     zNum++;
  542:   }else if( zNum[0]=='+' ){
  543:     zNum++;
  544:   }
  545:   while( zNum[0]=='0' ) zNum++;
  546:   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
  547:     v = v*10 + c;
  548:   }
  549: 
  550:   /* The longest decimal representation of a 32 bit integer is 10 digits:
  551:   **
  552:   **             1234567890
  553:   **     2^31 -> 2147483648
  554:   */
  555:   testcase( i==10 );
  556:   if( i>10 ){
  557:     return 0;
  558:   }
  559:   testcase( v-neg==2147483647 );
  560:   if( v-neg>2147483647 ){
  561:     return 0;
  562:   }
  563:   if( neg ){
  564:     v = -v;
  565:   }
  566:   *pValue = (int)v;
  567:   return 1;
  568: }
  569: 
  570: /*
  571: ** Return a 32-bit integer value extracted from a string.  If the
  572: ** string is not an integer, just return 0.
  573: */
  574: int sqlite3Atoi(const char *z){
  575:   int x = 0;
  576:   if( z ) sqlite3GetInt32(z, &x);
  577:   return x;
  578: }
  579: 
  580: /*
  581: ** The variable-length integer encoding is as follows:
  582: **
  583: ** KEY:
  584: **         A = 0xxxxxxx    7 bits of data and one flag bit
  585: **         B = 1xxxxxxx    7 bits of data and one flag bit
  586: **         C = xxxxxxxx    8 bits of data
  587: **
  588: **  7 bits - A
  589: ** 14 bits - BA
  590: ** 21 bits - BBA
  591: ** 28 bits - BBBA
  592: ** 35 bits - BBBBA
  593: ** 42 bits - BBBBBA
  594: ** 49 bits - BBBBBBA
  595: ** 56 bits - BBBBBBBA
  596: ** 64 bits - BBBBBBBBC
  597: */
  598: 
  599: /*
  600: ** Write a 64-bit variable-length integer to memory starting at p[0].
  601: ** The length of data write will be between 1 and 9 bytes.  The number
  602: ** of bytes written is returned.
  603: **
  604: ** A variable-length integer consists of the lower 7 bits of each byte
  605: ** for all bytes that have the 8th bit set and one byte with the 8th
  606: ** bit clear.  Except, if we get to the 9th byte, it stores the full
  607: ** 8 bits and is the last byte.
  608: */
  609: int sqlite3PutVarint(unsigned char *p, u64 v){
  610:   int i, j, n;
  611:   u8 buf[10];
  612:   if( v & (((u64)0xff000000)<<32) ){
  613:     p[8] = (u8)v;
  614:     v >>= 8;
  615:     for(i=7; i>=0; i--){
  616:       p[i] = (u8)((v & 0x7f) | 0x80);
  617:       v >>= 7;
  618:     }
  619:     return 9;
  620:   }    
  621:   n = 0;
  622:   do{
  623:     buf[n++] = (u8)((v & 0x7f) | 0x80);
  624:     v >>= 7;
  625:   }while( v!=0 );
  626:   buf[0] &= 0x7f;
  627:   assert( n<=9 );
  628:   for(i=0, j=n-1; j>=0; j--, i++){
  629:     p[i] = buf[j];
  630:   }
  631:   return n;
  632: }
  633: 
  634: /*
  635: ** This routine is a faster version of sqlite3PutVarint() that only
  636: ** works for 32-bit positive integers and which is optimized for
  637: ** the common case of small integers.  A MACRO version, putVarint32,
  638: ** is provided which inlines the single-byte case.  All code should use
  639: ** the MACRO version as this function assumes the single-byte case has
  640: ** already been handled.
  641: */
  642: int sqlite3PutVarint32(unsigned char *p, u32 v){
  643: #ifndef putVarint32
  644:   if( (v & ~0x7f)==0 ){
  645:     p[0] = v;
  646:     return 1;
  647:   }
  648: #endif
  649:   if( (v & ~0x3fff)==0 ){
  650:     p[0] = (u8)((v>>7) | 0x80);
  651:     p[1] = (u8)(v & 0x7f);
  652:     return 2;
  653:   }
  654:   return sqlite3PutVarint(p, v);
  655: }
  656: 
  657: /*
  658: ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
  659: ** are defined here rather than simply putting the constant expressions
  660: ** inline in order to work around bugs in the RVT compiler.
  661: **
  662: ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
  663: **
  664: ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
  665: */
  666: #define SLOT_2_0     0x001fc07f
  667: #define SLOT_4_2_0   0xf01fc07f
  668: 
  669: 
  670: /*
  671: ** Read a 64-bit variable-length integer from memory starting at p[0].
  672: ** Return the number of bytes read.  The value is stored in *v.
  673: */
  674: u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
  675:   u32 a,b,s;
  676: 
  677:   a = *p;
  678:   /* a: p0 (unmasked) */
  679:   if (!(a&0x80))
  680:   {
  681:     *v = a;
  682:     return 1;
  683:   }
  684: 
  685:   p++;
  686:   b = *p;
  687:   /* b: p1 (unmasked) */
  688:   if (!(b&0x80))
  689:   {
  690:     a &= 0x7f;
  691:     a = a<<7;
  692:     a |= b;
  693:     *v = a;
  694:     return 2;
  695:   }
  696: 
  697:   /* Verify that constants are precomputed correctly */
  698:   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
  699:   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
  700: 
  701:   p++;
  702:   a = a<<14;
  703:   a |= *p;
  704:   /* a: p0<<14 | p2 (unmasked) */
  705:   if (!(a&0x80))
  706:   {
  707:     a &= SLOT_2_0;
  708:     b &= 0x7f;
  709:     b = b<<7;
  710:     a |= b;
  711:     *v = a;
  712:     return 3;
  713:   }
  714: 
  715:   /* CSE1 from below */
  716:   a &= SLOT_2_0;
  717:   p++;
  718:   b = b<<14;
  719:   b |= *p;
  720:   /* b: p1<<14 | p3 (unmasked) */
  721:   if (!(b&0x80))
  722:   {
  723:     b &= SLOT_2_0;
  724:     /* moved CSE1 up */
  725:     /* a &= (0x7f<<14)|(0x7f); */
  726:     a = a<<7;
  727:     a |= b;
  728:     *v = a;
  729:     return 4;
  730:   }
  731: 
  732:   /* a: p0<<14 | p2 (masked) */
  733:   /* b: p1<<14 | p3 (unmasked) */
  734:   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
  735:   /* moved CSE1 up */
  736:   /* a &= (0x7f<<14)|(0x7f); */
  737:   b &= SLOT_2_0;
  738:   s = a;
  739:   /* s: p0<<14 | p2 (masked) */
  740: 
  741:   p++;
  742:   a = a<<14;
  743:   a |= *p;
  744:   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
  745:   if (!(a&0x80))
  746:   {
  747:     /* we can skip these cause they were (effectively) done above in calc'ing s */
  748:     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
  749:     /* b &= (0x7f<<14)|(0x7f); */
  750:     b = b<<7;
  751:     a |= b;
  752:     s = s>>18;
  753:     *v = ((u64)s)<<32 | a;
  754:     return 5;
  755:   }
  756: 
  757:   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
  758:   s = s<<7;
  759:   s |= b;
  760:   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
  761: 
  762:   p++;
  763:   b = b<<14;
  764:   b |= *p;
  765:   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
  766:   if (!(b&0x80))
  767:   {
  768:     /* we can skip this cause it was (effectively) done above in calc'ing s */
  769:     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
  770:     a &= SLOT_2_0;
  771:     a = a<<7;
  772:     a |= b;
  773:     s = s>>18;
  774:     *v = ((u64)s)<<32 | a;
  775:     return 6;
  776:   }
  777: 
  778:   p++;
  779:   a = a<<14;
  780:   a |= *p;
  781:   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
  782:   if (!(a&0x80))
  783:   {
  784:     a &= SLOT_4_2_0;
  785:     b &= SLOT_2_0;
  786:     b = b<<7;
  787:     a |= b;
  788:     s = s>>11;
  789:     *v = ((u64)s)<<32 | a;
  790:     return 7;
  791:   }
  792: 
  793:   /* CSE2 from below */
  794:   a &= SLOT_2_0;
  795:   p++;
  796:   b = b<<14;
  797:   b |= *p;
  798:   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
  799:   if (!(b&0x80))
  800:   {
  801:     b &= SLOT_4_2_0;
  802:     /* moved CSE2 up */
  803:     /* a &= (0x7f<<14)|(0x7f); */
  804:     a = a<<7;
  805:     a |= b;
  806:     s = s>>4;
  807:     *v = ((u64)s)<<32 | a;
  808:     return 8;
  809:   }
  810: 
  811:   p++;
  812:   a = a<<15;
  813:   a |= *p;
  814:   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
  815: 
  816:   /* moved CSE2 up */
  817:   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
  818:   b &= SLOT_2_0;
  819:   b = b<<8;
  820:   a |= b;
  821: 
  822:   s = s<<4;
  823:   b = p[-4];
  824:   b &= 0x7f;
  825:   b = b>>3;
  826:   s |= b;
  827: 
  828:   *v = ((u64)s)<<32 | a;
  829: 
  830:   return 9;
  831: }
  832: 
  833: /*
  834: ** Read a 32-bit variable-length integer from memory starting at p[0].
  835: ** Return the number of bytes read.  The value is stored in *v.
  836: **
  837: ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
  838: ** integer, then set *v to 0xffffffff.
  839: **
  840: ** A MACRO version, getVarint32, is provided which inlines the 
  841: ** single-byte case.  All code should use the MACRO version as 
  842: ** this function assumes the single-byte case has already been handled.
  843: */
  844: u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
  845:   u32 a,b;
  846: 
  847:   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
  848:   ** by the getVarin32() macro */
  849:   a = *p;
  850:   /* a: p0 (unmasked) */
  851: #ifndef getVarint32
  852:   if (!(a&0x80))
  853:   {
  854:     /* Values between 0 and 127 */
  855:     *v = a;
  856:     return 1;
  857:   }
  858: #endif
  859: 
  860:   /* The 2-byte case */
  861:   p++;
  862:   b = *p;
  863:   /* b: p1 (unmasked) */
  864:   if (!(b&0x80))
  865:   {
  866:     /* Values between 128 and 16383 */
  867:     a &= 0x7f;
  868:     a = a<<7;
  869:     *v = a | b;
  870:     return 2;
  871:   }
  872: 
  873:   /* The 3-byte case */
  874:   p++;
  875:   a = a<<14;
  876:   a |= *p;
  877:   /* a: p0<<14 | p2 (unmasked) */
  878:   if (!(a&0x80))
  879:   {
  880:     /* Values between 16384 and 2097151 */
  881:     a &= (0x7f<<14)|(0x7f);
  882:     b &= 0x7f;
  883:     b = b<<7;
  884:     *v = a | b;
  885:     return 3;
  886:   }
  887: 
  888:   /* A 32-bit varint is used to store size information in btrees.
  889:   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
  890:   ** A 3-byte varint is sufficient, for example, to record the size
  891:   ** of a 1048569-byte BLOB or string.
  892:   **
  893:   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
  894:   ** rare larger cases can be handled by the slower 64-bit varint
  895:   ** routine.
  896:   */
  897: #if 1
  898:   {
  899:     u64 v64;
  900:     u8 n;
  901: 
  902:     p -= 2;
  903:     n = sqlite3GetVarint(p, &v64);
  904:     assert( n>3 && n<=9 );
  905:     if( (v64 & SQLITE_MAX_U32)!=v64 ){
  906:       *v = 0xffffffff;
  907:     }else{
  908:       *v = (u32)v64;
  909:     }
  910:     return n;
  911:   }
  912: 
  913: #else
  914:   /* For following code (kept for historical record only) shows an
  915:   ** unrolling for the 3- and 4-byte varint cases.  This code is
  916:   ** slightly faster, but it is also larger and much harder to test.
  917:   */
  918:   p++;
  919:   b = b<<14;
  920:   b |= *p;
  921:   /* b: p1<<14 | p3 (unmasked) */
  922:   if (!(b&0x80))
  923:   {
  924:     /* Values between 2097152 and 268435455 */
  925:     b &= (0x7f<<14)|(0x7f);
  926:     a &= (0x7f<<14)|(0x7f);
  927:     a = a<<7;
  928:     *v = a | b;
  929:     return 4;
  930:   }
  931: 
  932:   p++;
  933:   a = a<<14;
  934:   a |= *p;
  935:   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
  936:   if (!(a&0x80))
  937:   {
  938:     /* Values  between 268435456 and 34359738367 */
  939:     a &= SLOT_4_2_0;
  940:     b &= SLOT_4_2_0;
  941:     b = b<<7;
  942:     *v = a | b;
  943:     return 5;
  944:   }
  945: 
  946:   /* We can only reach this point when reading a corrupt database
  947:   ** file.  In that case we are not in any hurry.  Use the (relatively
  948:   ** slow) general-purpose sqlite3GetVarint() routine to extract the
  949:   ** value. */
  950:   {
  951:     u64 v64;
  952:     u8 n;
  953: 
  954:     p -= 4;
  955:     n = sqlite3GetVarint(p, &v64);
  956:     assert( n>5 && n<=9 );
  957:     *v = (u32)v64;
  958:     return n;
  959:   }
  960: #endif
  961: }
  962: 
  963: /*
  964: ** Return the number of bytes that will be needed to store the given
  965: ** 64-bit integer.
  966: */
  967: int sqlite3VarintLen(u64 v){
  968:   int i = 0;
  969:   do{
  970:     i++;
  971:     v >>= 7;
  972:   }while( v!=0 && ALWAYS(i<9) );
  973:   return i;
  974: }
  975: 
  976: 
  977: /*
  978: ** Read or write a four-byte big-endian integer value.
  979: */
  980: u32 sqlite3Get4byte(const u8 *p){
  981:   return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
  982: }
  983: void sqlite3Put4byte(unsigned char *p, u32 v){
  984:   p[0] = (u8)(v>>24);
  985:   p[1] = (u8)(v>>16);
  986:   p[2] = (u8)(v>>8);
  987:   p[3] = (u8)v;
  988: }
  989: 
  990: 
  991: 
  992: /*
  993: ** Translate a single byte of Hex into an integer.
  994: ** This routine only works if h really is a valid hexadecimal
  995: ** character:  0..9a..fA..F
  996: */
  997: u8 sqlite3HexToInt(int h){
  998:   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
  999: #ifdef SQLITE_ASCII
 1000:   h += 9*(1&(h>>6));
 1001: #endif
 1002: #ifdef SQLITE_EBCDIC
 1003:   h += 9*(1&~(h>>4));
 1004: #endif
 1005:   return (u8)(h & 0xf);
 1006: }
 1007: 
 1008: #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
 1009: /*
 1010: ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
 1011: ** value.  Return a pointer to its binary value.  Space to hold the
 1012: ** binary value has been obtained from malloc and must be freed by
 1013: ** the calling routine.
 1014: */
 1015: void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
 1016:   char *zBlob;
 1017:   int i;
 1018: 
 1019:   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
 1020:   n--;
 1021:   if( zBlob ){
 1022:     for(i=0; i<n; i+=2){
 1023:       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
 1024:     }
 1025:     zBlob[i/2] = 0;
 1026:   }
 1027:   return zBlob;
 1028: }
 1029: #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
 1030: 
 1031: /*
 1032: ** Log an error that is an API call on a connection pointer that should
 1033: ** not have been used.  The "type" of connection pointer is given as the
 1034: ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
 1035: */
 1036: static void logBadConnection(const char *zType){
 1037:   sqlite3_log(SQLITE_MISUSE, 
 1038:      "API call with %s database connection pointer",
 1039:      zType
 1040:   );
 1041: }
 1042: 
 1043: /*
 1044: ** Check to make sure we have a valid db pointer.  This test is not
 1045: ** foolproof but it does provide some measure of protection against
 1046: ** misuse of the interface such as passing in db pointers that are
 1047: ** NULL or which have been previously closed.  If this routine returns
 1048: ** 1 it means that the db pointer is valid and 0 if it should not be
 1049: ** dereferenced for any reason.  The calling function should invoke
 1050: ** SQLITE_MISUSE immediately.
 1051: **
 1052: ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
 1053: ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
 1054: ** open properly and is not fit for general use but which can be
 1055: ** used as an argument to sqlite3_errmsg() or sqlite3_close().
 1056: */
 1057: int sqlite3SafetyCheckOk(sqlite3 *db){
 1058:   u32 magic;
 1059:   if( db==0 ){
 1060:     logBadConnection("NULL");
 1061:     return 0;
 1062:   }
 1063:   magic = db->magic;
 1064:   if( magic!=SQLITE_MAGIC_OPEN ){
 1065:     if( sqlite3SafetyCheckSickOrOk(db) ){
 1066:       testcase( sqlite3GlobalConfig.xLog!=0 );
 1067:       logBadConnection("unopened");
 1068:     }
 1069:     return 0;
 1070:   }else{
 1071:     return 1;
 1072:   }
 1073: }
 1074: int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
 1075:   u32 magic;
 1076:   magic = db->magic;
 1077:   if( magic!=SQLITE_MAGIC_SICK &&
 1078:       magic!=SQLITE_MAGIC_OPEN &&
 1079:       magic!=SQLITE_MAGIC_BUSY ){
 1080:     testcase( sqlite3GlobalConfig.xLog!=0 );
 1081:     logBadConnection("invalid");
 1082:     return 0;
 1083:   }else{
 1084:     return 1;
 1085:   }
 1086: }
 1087: 
 1088: /*
 1089: ** Attempt to add, substract, or multiply the 64-bit signed value iB against
 1090: ** the other 64-bit signed integer at *pA and store the result in *pA.
 1091: ** Return 0 on success.  Or if the operation would have resulted in an
 1092: ** overflow, leave *pA unchanged and return 1.
 1093: */
 1094: int sqlite3AddInt64(i64 *pA, i64 iB){
 1095:   i64 iA = *pA;
 1096:   testcase( iA==0 ); testcase( iA==1 );
 1097:   testcase( iB==-1 ); testcase( iB==0 );
 1098:   if( iB>=0 ){
 1099:     testcase( iA>0 && LARGEST_INT64 - iA == iB );
 1100:     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
 1101:     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
 1102:     *pA += iB;
 1103:   }else{
 1104:     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
 1105:     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
 1106:     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
 1107:     *pA += iB;
 1108:   }
 1109:   return 0; 
 1110: }
 1111: int sqlite3SubInt64(i64 *pA, i64 iB){
 1112:   testcase( iB==SMALLEST_INT64+1 );
 1113:   if( iB==SMALLEST_INT64 ){
 1114:     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
 1115:     if( (*pA)>=0 ) return 1;
 1116:     *pA -= iB;
 1117:     return 0;
 1118:   }else{
 1119:     return sqlite3AddInt64(pA, -iB);
 1120:   }
 1121: }
 1122: #define TWOPOWER32 (((i64)1)<<32)
 1123: #define TWOPOWER31 (((i64)1)<<31)
 1124: int sqlite3MulInt64(i64 *pA, i64 iB){
 1125:   i64 iA = *pA;
 1126:   i64 iA1, iA0, iB1, iB0, r;
 1127: 
 1128:   iA1 = iA/TWOPOWER32;
 1129:   iA0 = iA % TWOPOWER32;
 1130:   iB1 = iB/TWOPOWER32;
 1131:   iB0 = iB % TWOPOWER32;
 1132:   if( iA1*iB1 != 0 ) return 1;
 1133:   assert( iA1*iB0==0 || iA0*iB1==0 );
 1134:   r = iA1*iB0 + iA0*iB1;
 1135:   testcase( r==(-TWOPOWER31)-1 );
 1136:   testcase( r==(-TWOPOWER31) );
 1137:   testcase( r==TWOPOWER31 );
 1138:   testcase( r==TWOPOWER31-1 );
 1139:   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
 1140:   r *= TWOPOWER32;
 1141:   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
 1142:   *pA = r;
 1143:   return 0;
 1144: }
 1145: 
 1146: /*
 1147: ** Compute the absolute value of a 32-bit signed integer, of possible.  Or 
 1148: ** if the integer has a value of -2147483648, return +2147483647
 1149: */
 1150: int sqlite3AbsInt32(int x){
 1151:   if( x>=0 ) return x;
 1152:   if( x==(int)0x80000000 ) return 0x7fffffff;
 1153:   return -x;
 1154: }
 1155: 
 1156: #ifdef SQLITE_ENABLE_8_3_NAMES
 1157: /*
 1158: ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
 1159: ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
 1160: ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
 1161: ** three characters, then shorten the suffix on z[] to be the last three
 1162: ** characters of the original suffix.
 1163: **
 1164: ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
 1165: ** do the suffix shortening regardless of URI parameter.
 1166: **
 1167: ** Examples:
 1168: **
 1169: **     test.db-journal    =>   test.nal
 1170: **     test.db-wal        =>   test.wal
 1171: **     test.db-shm        =>   test.shm
 1172: **     test.db-mj7f3319fa =>   test.9fa
 1173: */
 1174: void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
 1175: #if SQLITE_ENABLE_8_3_NAMES<2
 1176:   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
 1177: #endif
 1178:   {
 1179:     int i, sz;
 1180:     sz = sqlite3Strlen30(z);
 1181:     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
 1182:     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
 1183:   }
 1184: }
 1185: #endif

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>