Annotation of embedaddon/sqlite3/src/vdbeaux.c, revision 1.1
1.1 ! misho 1: /*
! 2: ** 2003 September 6
! 3: **
! 4: ** The author disclaims copyright to this source code. In place of
! 5: ** a legal notice, here is a blessing:
! 6: **
! 7: ** May you do good and not evil.
! 8: ** May you find forgiveness for yourself and forgive others.
! 9: ** May you share freely, never taking more than you give.
! 10: **
! 11: *************************************************************************
! 12: ** This file contains code used for creating, destroying, and populating
! 13: ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
! 14: ** to version 2.8.7, all this code was combined into the vdbe.c source file.
! 15: ** But that file was getting too big so this subroutines were split out.
! 16: */
! 17: #include "sqliteInt.h"
! 18: #include "vdbeInt.h"
! 19:
! 20:
! 21:
! 22: /*
! 23: ** When debugging the code generator in a symbolic debugger, one can
! 24: ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
! 25: ** as they are added to the instruction stream.
! 26: */
! 27: #ifdef SQLITE_DEBUG
! 28: int sqlite3VdbeAddopTrace = 0;
! 29: #endif
! 30:
! 31:
! 32: /*
! 33: ** Create a new virtual database engine.
! 34: */
! 35: Vdbe *sqlite3VdbeCreate(sqlite3 *db){
! 36: Vdbe *p;
! 37: p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
! 38: if( p==0 ) return 0;
! 39: p->db = db;
! 40: if( db->pVdbe ){
! 41: db->pVdbe->pPrev = p;
! 42: }
! 43: p->pNext = db->pVdbe;
! 44: p->pPrev = 0;
! 45: db->pVdbe = p;
! 46: p->magic = VDBE_MAGIC_INIT;
! 47: return p;
! 48: }
! 49:
! 50: /*
! 51: ** Remember the SQL string for a prepared statement.
! 52: */
! 53: void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
! 54: assert( isPrepareV2==1 || isPrepareV2==0 );
! 55: if( p==0 ) return;
! 56: #ifdef SQLITE_OMIT_TRACE
! 57: if( !isPrepareV2 ) return;
! 58: #endif
! 59: assert( p->zSql==0 );
! 60: p->zSql = sqlite3DbStrNDup(p->db, z, n);
! 61: p->isPrepareV2 = (u8)isPrepareV2;
! 62: }
! 63:
! 64: /*
! 65: ** Return the SQL associated with a prepared statement
! 66: */
! 67: const char *sqlite3_sql(sqlite3_stmt *pStmt){
! 68: Vdbe *p = (Vdbe *)pStmt;
! 69: return (p && p->isPrepareV2) ? p->zSql : 0;
! 70: }
! 71:
! 72: /*
! 73: ** Swap all content between two VDBE structures.
! 74: */
! 75: void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
! 76: Vdbe tmp, *pTmp;
! 77: char *zTmp;
! 78: tmp = *pA;
! 79: *pA = *pB;
! 80: *pB = tmp;
! 81: pTmp = pA->pNext;
! 82: pA->pNext = pB->pNext;
! 83: pB->pNext = pTmp;
! 84: pTmp = pA->pPrev;
! 85: pA->pPrev = pB->pPrev;
! 86: pB->pPrev = pTmp;
! 87: zTmp = pA->zSql;
! 88: pA->zSql = pB->zSql;
! 89: pB->zSql = zTmp;
! 90: pB->isPrepareV2 = pA->isPrepareV2;
! 91: }
! 92:
! 93: #ifdef SQLITE_DEBUG
! 94: /*
! 95: ** Turn tracing on or off
! 96: */
! 97: void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
! 98: p->trace = trace;
! 99: }
! 100: #endif
! 101:
! 102: /*
! 103: ** Resize the Vdbe.aOp array so that it is at least one op larger than
! 104: ** it was.
! 105: **
! 106: ** If an out-of-memory error occurs while resizing the array, return
! 107: ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
! 108: ** unchanged (this is so that any opcodes already allocated can be
! 109: ** correctly deallocated along with the rest of the Vdbe).
! 110: */
! 111: static int growOpArray(Vdbe *p){
! 112: VdbeOp *pNew;
! 113: int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
! 114: pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
! 115: if( pNew ){
! 116: p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
! 117: p->aOp = pNew;
! 118: }
! 119: return (pNew ? SQLITE_OK : SQLITE_NOMEM);
! 120: }
! 121:
! 122: /*
! 123: ** Add a new instruction to the list of instructions current in the
! 124: ** VDBE. Return the address of the new instruction.
! 125: **
! 126: ** Parameters:
! 127: **
! 128: ** p Pointer to the VDBE
! 129: **
! 130: ** op The opcode for this instruction
! 131: **
! 132: ** p1, p2, p3 Operands
! 133: **
! 134: ** Use the sqlite3VdbeResolveLabel() function to fix an address and
! 135: ** the sqlite3VdbeChangeP4() function to change the value of the P4
! 136: ** operand.
! 137: */
! 138: int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
! 139: int i;
! 140: VdbeOp *pOp;
! 141:
! 142: i = p->nOp;
! 143: assert( p->magic==VDBE_MAGIC_INIT );
! 144: assert( op>0 && op<0xff );
! 145: if( p->nOpAlloc<=i ){
! 146: if( growOpArray(p) ){
! 147: return 1;
! 148: }
! 149: }
! 150: p->nOp++;
! 151: pOp = &p->aOp[i];
! 152: pOp->opcode = (u8)op;
! 153: pOp->p5 = 0;
! 154: pOp->p1 = p1;
! 155: pOp->p2 = p2;
! 156: pOp->p3 = p3;
! 157: pOp->p4.p = 0;
! 158: pOp->p4type = P4_NOTUSED;
! 159: #ifdef SQLITE_DEBUG
! 160: pOp->zComment = 0;
! 161: if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
! 162: #endif
! 163: #ifdef VDBE_PROFILE
! 164: pOp->cycles = 0;
! 165: pOp->cnt = 0;
! 166: #endif
! 167: return i;
! 168: }
! 169: int sqlite3VdbeAddOp0(Vdbe *p, int op){
! 170: return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
! 171: }
! 172: int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
! 173: return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
! 174: }
! 175: int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
! 176: return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
! 177: }
! 178:
! 179:
! 180: /*
! 181: ** Add an opcode that includes the p4 value as a pointer.
! 182: */
! 183: int sqlite3VdbeAddOp4(
! 184: Vdbe *p, /* Add the opcode to this VM */
! 185: int op, /* The new opcode */
! 186: int p1, /* The P1 operand */
! 187: int p2, /* The P2 operand */
! 188: int p3, /* The P3 operand */
! 189: const char *zP4, /* The P4 operand */
! 190: int p4type /* P4 operand type */
! 191: ){
! 192: int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
! 193: sqlite3VdbeChangeP4(p, addr, zP4, p4type);
! 194: return addr;
! 195: }
! 196:
! 197: /*
! 198: ** Add an OP_ParseSchema opcode. This routine is broken out from
! 199: ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
! 200: ** as having been used.
! 201: **
! 202: ** The zWhere string must have been obtained from sqlite3_malloc().
! 203: ** This routine will take ownership of the allocated memory.
! 204: */
! 205: void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
! 206: int j;
! 207: int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
! 208: sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
! 209: for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
! 210: }
! 211:
! 212: /*
! 213: ** Add an opcode that includes the p4 value as an integer.
! 214: */
! 215: int sqlite3VdbeAddOp4Int(
! 216: Vdbe *p, /* Add the opcode to this VM */
! 217: int op, /* The new opcode */
! 218: int p1, /* The P1 operand */
! 219: int p2, /* The P2 operand */
! 220: int p3, /* The P3 operand */
! 221: int p4 /* The P4 operand as an integer */
! 222: ){
! 223: int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
! 224: sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
! 225: return addr;
! 226: }
! 227:
! 228: /*
! 229: ** Create a new symbolic label for an instruction that has yet to be
! 230: ** coded. The symbolic label is really just a negative number. The
! 231: ** label can be used as the P2 value of an operation. Later, when
! 232: ** the label is resolved to a specific address, the VDBE will scan
! 233: ** through its operation list and change all values of P2 which match
! 234: ** the label into the resolved address.
! 235: **
! 236: ** The VDBE knows that a P2 value is a label because labels are
! 237: ** always negative and P2 values are suppose to be non-negative.
! 238: ** Hence, a negative P2 value is a label that has yet to be resolved.
! 239: **
! 240: ** Zero is returned if a malloc() fails.
! 241: */
! 242: int sqlite3VdbeMakeLabel(Vdbe *p){
! 243: int i;
! 244: i = p->nLabel++;
! 245: assert( p->magic==VDBE_MAGIC_INIT );
! 246: if( i>=p->nLabelAlloc ){
! 247: int n = p->nLabelAlloc*2 + 5;
! 248: p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
! 249: n*sizeof(p->aLabel[0]));
! 250: p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
! 251: }
! 252: if( p->aLabel ){
! 253: p->aLabel[i] = -1;
! 254: }
! 255: return -1-i;
! 256: }
! 257:
! 258: /*
! 259: ** Resolve label "x" to be the address of the next instruction to
! 260: ** be inserted. The parameter "x" must have been obtained from
! 261: ** a prior call to sqlite3VdbeMakeLabel().
! 262: */
! 263: void sqlite3VdbeResolveLabel(Vdbe *p, int x){
! 264: int j = -1-x;
! 265: assert( p->magic==VDBE_MAGIC_INIT );
! 266: assert( j>=0 && j<p->nLabel );
! 267: if( p->aLabel ){
! 268: p->aLabel[j] = p->nOp;
! 269: }
! 270: }
! 271:
! 272: /*
! 273: ** Mark the VDBE as one that can only be run one time.
! 274: */
! 275: void sqlite3VdbeRunOnlyOnce(Vdbe *p){
! 276: p->runOnlyOnce = 1;
! 277: }
! 278:
! 279: #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
! 280:
! 281: /*
! 282: ** The following type and function are used to iterate through all opcodes
! 283: ** in a Vdbe main program and each of the sub-programs (triggers) it may
! 284: ** invoke directly or indirectly. It should be used as follows:
! 285: **
! 286: ** Op *pOp;
! 287: ** VdbeOpIter sIter;
! 288: **
! 289: ** memset(&sIter, 0, sizeof(sIter));
! 290: ** sIter.v = v; // v is of type Vdbe*
! 291: ** while( (pOp = opIterNext(&sIter)) ){
! 292: ** // Do something with pOp
! 293: ** }
! 294: ** sqlite3DbFree(v->db, sIter.apSub);
! 295: **
! 296: */
! 297: typedef struct VdbeOpIter VdbeOpIter;
! 298: struct VdbeOpIter {
! 299: Vdbe *v; /* Vdbe to iterate through the opcodes of */
! 300: SubProgram **apSub; /* Array of subprograms */
! 301: int nSub; /* Number of entries in apSub */
! 302: int iAddr; /* Address of next instruction to return */
! 303: int iSub; /* 0 = main program, 1 = first sub-program etc. */
! 304: };
! 305: static Op *opIterNext(VdbeOpIter *p){
! 306: Vdbe *v = p->v;
! 307: Op *pRet = 0;
! 308: Op *aOp;
! 309: int nOp;
! 310:
! 311: if( p->iSub<=p->nSub ){
! 312:
! 313: if( p->iSub==0 ){
! 314: aOp = v->aOp;
! 315: nOp = v->nOp;
! 316: }else{
! 317: aOp = p->apSub[p->iSub-1]->aOp;
! 318: nOp = p->apSub[p->iSub-1]->nOp;
! 319: }
! 320: assert( p->iAddr<nOp );
! 321:
! 322: pRet = &aOp[p->iAddr];
! 323: p->iAddr++;
! 324: if( p->iAddr==nOp ){
! 325: p->iSub++;
! 326: p->iAddr = 0;
! 327: }
! 328:
! 329: if( pRet->p4type==P4_SUBPROGRAM ){
! 330: int nByte = (p->nSub+1)*sizeof(SubProgram*);
! 331: int j;
! 332: for(j=0; j<p->nSub; j++){
! 333: if( p->apSub[j]==pRet->p4.pProgram ) break;
! 334: }
! 335: if( j==p->nSub ){
! 336: p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
! 337: if( !p->apSub ){
! 338: pRet = 0;
! 339: }else{
! 340: p->apSub[p->nSub++] = pRet->p4.pProgram;
! 341: }
! 342: }
! 343: }
! 344: }
! 345:
! 346: return pRet;
! 347: }
! 348:
! 349: /*
! 350: ** Check if the program stored in the VM associated with pParse may
! 351: ** throw an ABORT exception (causing the statement, but not entire transaction
! 352: ** to be rolled back). This condition is true if the main program or any
! 353: ** sub-programs contains any of the following:
! 354: **
! 355: ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
! 356: ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
! 357: ** * OP_Destroy
! 358: ** * OP_VUpdate
! 359: ** * OP_VRename
! 360: ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
! 361: **
! 362: ** Then check that the value of Parse.mayAbort is true if an
! 363: ** ABORT may be thrown, or false otherwise. Return true if it does
! 364: ** match, or false otherwise. This function is intended to be used as
! 365: ** part of an assert statement in the compiler. Similar to:
! 366: **
! 367: ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
! 368: */
! 369: int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
! 370: int hasAbort = 0;
! 371: Op *pOp;
! 372: VdbeOpIter sIter;
! 373: memset(&sIter, 0, sizeof(sIter));
! 374: sIter.v = v;
! 375:
! 376: while( (pOp = opIterNext(&sIter))!=0 ){
! 377: int opcode = pOp->opcode;
! 378: if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
! 379: #ifndef SQLITE_OMIT_FOREIGN_KEY
! 380: || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
! 381: #endif
! 382: || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
! 383: && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
! 384: ){
! 385: hasAbort = 1;
! 386: break;
! 387: }
! 388: }
! 389: sqlite3DbFree(v->db, sIter.apSub);
! 390:
! 391: /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
! 392: ** If malloc failed, then the while() loop above may not have iterated
! 393: ** through all opcodes and hasAbort may be set incorrectly. Return
! 394: ** true for this case to prevent the assert() in the callers frame
! 395: ** from failing. */
! 396: return ( v->db->mallocFailed || hasAbort==mayAbort );
! 397: }
! 398: #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
! 399:
! 400: /*
! 401: ** Loop through the program looking for P2 values that are negative
! 402: ** on jump instructions. Each such value is a label. Resolve the
! 403: ** label by setting the P2 value to its correct non-zero value.
! 404: **
! 405: ** This routine is called once after all opcodes have been inserted.
! 406: **
! 407: ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
! 408: ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
! 409: ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
! 410: **
! 411: ** The Op.opflags field is set on all opcodes.
! 412: */
! 413: static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
! 414: int i;
! 415: int nMaxArgs = *pMaxFuncArgs;
! 416: Op *pOp;
! 417: int *aLabel = p->aLabel;
! 418: p->readOnly = 1;
! 419: for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
! 420: u8 opcode = pOp->opcode;
! 421:
! 422: pOp->opflags = sqlite3OpcodeProperty[opcode];
! 423: if( opcode==OP_Function || opcode==OP_AggStep ){
! 424: if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
! 425: }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
! 426: p->readOnly = 0;
! 427: #ifndef SQLITE_OMIT_VIRTUALTABLE
! 428: }else if( opcode==OP_VUpdate ){
! 429: if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
! 430: }else if( opcode==OP_VFilter ){
! 431: int n;
! 432: assert( p->nOp - i >= 3 );
! 433: assert( pOp[-1].opcode==OP_Integer );
! 434: n = pOp[-1].p1;
! 435: if( n>nMaxArgs ) nMaxArgs = n;
! 436: #endif
! 437: }else if( opcode==OP_Next || opcode==OP_SorterNext ){
! 438: pOp->p4.xAdvance = sqlite3BtreeNext;
! 439: pOp->p4type = P4_ADVANCE;
! 440: }else if( opcode==OP_Prev ){
! 441: pOp->p4.xAdvance = sqlite3BtreePrevious;
! 442: pOp->p4type = P4_ADVANCE;
! 443: }
! 444:
! 445: if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
! 446: assert( -1-pOp->p2<p->nLabel );
! 447: pOp->p2 = aLabel[-1-pOp->p2];
! 448: }
! 449: }
! 450: sqlite3DbFree(p->db, p->aLabel);
! 451: p->aLabel = 0;
! 452:
! 453: *pMaxFuncArgs = nMaxArgs;
! 454: }
! 455:
! 456: /*
! 457: ** Return the address of the next instruction to be inserted.
! 458: */
! 459: int sqlite3VdbeCurrentAddr(Vdbe *p){
! 460: assert( p->magic==VDBE_MAGIC_INIT );
! 461: return p->nOp;
! 462: }
! 463:
! 464: /*
! 465: ** This function returns a pointer to the array of opcodes associated with
! 466: ** the Vdbe passed as the first argument. It is the callers responsibility
! 467: ** to arrange for the returned array to be eventually freed using the
! 468: ** vdbeFreeOpArray() function.
! 469: **
! 470: ** Before returning, *pnOp is set to the number of entries in the returned
! 471: ** array. Also, *pnMaxArg is set to the larger of its current value and
! 472: ** the number of entries in the Vdbe.apArg[] array required to execute the
! 473: ** returned program.
! 474: */
! 475: VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
! 476: VdbeOp *aOp = p->aOp;
! 477: assert( aOp && !p->db->mallocFailed );
! 478:
! 479: /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
! 480: assert( p->btreeMask==0 );
! 481:
! 482: resolveP2Values(p, pnMaxArg);
! 483: *pnOp = p->nOp;
! 484: p->aOp = 0;
! 485: return aOp;
! 486: }
! 487:
! 488: /*
! 489: ** Add a whole list of operations to the operation stack. Return the
! 490: ** address of the first operation added.
! 491: */
! 492: int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
! 493: int addr;
! 494: assert( p->magic==VDBE_MAGIC_INIT );
! 495: if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
! 496: return 0;
! 497: }
! 498: addr = p->nOp;
! 499: if( ALWAYS(nOp>0) ){
! 500: int i;
! 501: VdbeOpList const *pIn = aOp;
! 502: for(i=0; i<nOp; i++, pIn++){
! 503: int p2 = pIn->p2;
! 504: VdbeOp *pOut = &p->aOp[i+addr];
! 505: pOut->opcode = pIn->opcode;
! 506: pOut->p1 = pIn->p1;
! 507: if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
! 508: pOut->p2 = addr + ADDR(p2);
! 509: }else{
! 510: pOut->p2 = p2;
! 511: }
! 512: pOut->p3 = pIn->p3;
! 513: pOut->p4type = P4_NOTUSED;
! 514: pOut->p4.p = 0;
! 515: pOut->p5 = 0;
! 516: #ifdef SQLITE_DEBUG
! 517: pOut->zComment = 0;
! 518: if( sqlite3VdbeAddopTrace ){
! 519: sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
! 520: }
! 521: #endif
! 522: }
! 523: p->nOp += nOp;
! 524: }
! 525: return addr;
! 526: }
! 527:
! 528: /*
! 529: ** Change the value of the P1 operand for a specific instruction.
! 530: ** This routine is useful when a large program is loaded from a
! 531: ** static array using sqlite3VdbeAddOpList but we want to make a
! 532: ** few minor changes to the program.
! 533: */
! 534: void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
! 535: assert( p!=0 );
! 536: if( ((u32)p->nOp)>addr ){
! 537: p->aOp[addr].p1 = val;
! 538: }
! 539: }
! 540:
! 541: /*
! 542: ** Change the value of the P2 operand for a specific instruction.
! 543: ** This routine is useful for setting a jump destination.
! 544: */
! 545: void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
! 546: assert( p!=0 );
! 547: if( ((u32)p->nOp)>addr ){
! 548: p->aOp[addr].p2 = val;
! 549: }
! 550: }
! 551:
! 552: /*
! 553: ** Change the value of the P3 operand for a specific instruction.
! 554: */
! 555: void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
! 556: assert( p!=0 );
! 557: if( ((u32)p->nOp)>addr ){
! 558: p->aOp[addr].p3 = val;
! 559: }
! 560: }
! 561:
! 562: /*
! 563: ** Change the value of the P5 operand for the most recently
! 564: ** added operation.
! 565: */
! 566: void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
! 567: assert( p!=0 );
! 568: if( p->aOp ){
! 569: assert( p->nOp>0 );
! 570: p->aOp[p->nOp-1].p5 = val;
! 571: }
! 572: }
! 573:
! 574: /*
! 575: ** Change the P2 operand of instruction addr so that it points to
! 576: ** the address of the next instruction to be coded.
! 577: */
! 578: void sqlite3VdbeJumpHere(Vdbe *p, int addr){
! 579: assert( addr>=0 || p->db->mallocFailed );
! 580: if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
! 581: }
! 582:
! 583:
! 584: /*
! 585: ** If the input FuncDef structure is ephemeral, then free it. If
! 586: ** the FuncDef is not ephermal, then do nothing.
! 587: */
! 588: static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
! 589: if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
! 590: sqlite3DbFree(db, pDef);
! 591: }
! 592: }
! 593:
! 594: static void vdbeFreeOpArray(sqlite3 *, Op *, int);
! 595:
! 596: /*
! 597: ** Delete a P4 value if necessary.
! 598: */
! 599: static void freeP4(sqlite3 *db, int p4type, void *p4){
! 600: if( p4 ){
! 601: assert( db );
! 602: switch( p4type ){
! 603: case P4_REAL:
! 604: case P4_INT64:
! 605: case P4_DYNAMIC:
! 606: case P4_KEYINFO:
! 607: case P4_INTARRAY:
! 608: case P4_KEYINFO_HANDOFF: {
! 609: sqlite3DbFree(db, p4);
! 610: break;
! 611: }
! 612: case P4_MPRINTF: {
! 613: if( db->pnBytesFreed==0 ) sqlite3_free(p4);
! 614: break;
! 615: }
! 616: case P4_VDBEFUNC: {
! 617: VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
! 618: freeEphemeralFunction(db, pVdbeFunc->pFunc);
! 619: if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
! 620: sqlite3DbFree(db, pVdbeFunc);
! 621: break;
! 622: }
! 623: case P4_FUNCDEF: {
! 624: freeEphemeralFunction(db, (FuncDef*)p4);
! 625: break;
! 626: }
! 627: case P4_MEM: {
! 628: if( db->pnBytesFreed==0 ){
! 629: sqlite3ValueFree((sqlite3_value*)p4);
! 630: }else{
! 631: Mem *p = (Mem*)p4;
! 632: sqlite3DbFree(db, p->zMalloc);
! 633: sqlite3DbFree(db, p);
! 634: }
! 635: break;
! 636: }
! 637: case P4_VTAB : {
! 638: if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
! 639: break;
! 640: }
! 641: }
! 642: }
! 643: }
! 644:
! 645: /*
! 646: ** Free the space allocated for aOp and any p4 values allocated for the
! 647: ** opcodes contained within. If aOp is not NULL it is assumed to contain
! 648: ** nOp entries.
! 649: */
! 650: static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
! 651: if( aOp ){
! 652: Op *pOp;
! 653: for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
! 654: freeP4(db, pOp->p4type, pOp->p4.p);
! 655: #ifdef SQLITE_DEBUG
! 656: sqlite3DbFree(db, pOp->zComment);
! 657: #endif
! 658: }
! 659: }
! 660: sqlite3DbFree(db, aOp);
! 661: }
! 662:
! 663: /*
! 664: ** Link the SubProgram object passed as the second argument into the linked
! 665: ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
! 666: ** objects when the VM is no longer required.
! 667: */
! 668: void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
! 669: p->pNext = pVdbe->pProgram;
! 670: pVdbe->pProgram = p;
! 671: }
! 672:
! 673: /*
! 674: ** Change the opcode at addr into OP_Noop
! 675: */
! 676: void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
! 677: if( p->aOp ){
! 678: VdbeOp *pOp = &p->aOp[addr];
! 679: sqlite3 *db = p->db;
! 680: freeP4(db, pOp->p4type, pOp->p4.p);
! 681: memset(pOp, 0, sizeof(pOp[0]));
! 682: pOp->opcode = OP_Noop;
! 683: }
! 684: }
! 685:
! 686: /*
! 687: ** Change the value of the P4 operand for a specific instruction.
! 688: ** This routine is useful when a large program is loaded from a
! 689: ** static array using sqlite3VdbeAddOpList but we want to make a
! 690: ** few minor changes to the program.
! 691: **
! 692: ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
! 693: ** the string is made into memory obtained from sqlite3_malloc().
! 694: ** A value of n==0 means copy bytes of zP4 up to and including the
! 695: ** first null byte. If n>0 then copy n+1 bytes of zP4.
! 696: **
! 697: ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
! 698: ** A copy is made of the KeyInfo structure into memory obtained from
! 699: ** sqlite3_malloc, to be freed when the Vdbe is finalized.
! 700: ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
! 701: ** stored in memory that the caller has obtained from sqlite3_malloc. The
! 702: ** caller should not free the allocation, it will be freed when the Vdbe is
! 703: ** finalized.
! 704: **
! 705: ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
! 706: ** to a string or structure that is guaranteed to exist for the lifetime of
! 707: ** the Vdbe. In these cases we can just copy the pointer.
! 708: **
! 709: ** If addr<0 then change P4 on the most recently inserted instruction.
! 710: */
! 711: void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
! 712: Op *pOp;
! 713: sqlite3 *db;
! 714: assert( p!=0 );
! 715: db = p->db;
! 716: assert( p->magic==VDBE_MAGIC_INIT );
! 717: if( p->aOp==0 || db->mallocFailed ){
! 718: if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
! 719: freeP4(db, n, (void*)*(char**)&zP4);
! 720: }
! 721: return;
! 722: }
! 723: assert( p->nOp>0 );
! 724: assert( addr<p->nOp );
! 725: if( addr<0 ){
! 726: addr = p->nOp - 1;
! 727: }
! 728: pOp = &p->aOp[addr];
! 729: freeP4(db, pOp->p4type, pOp->p4.p);
! 730: pOp->p4.p = 0;
! 731: if( n==P4_INT32 ){
! 732: /* Note: this cast is safe, because the origin data point was an int
! 733: ** that was cast to a (const char *). */
! 734: pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
! 735: pOp->p4type = P4_INT32;
! 736: }else if( zP4==0 ){
! 737: pOp->p4.p = 0;
! 738: pOp->p4type = P4_NOTUSED;
! 739: }else if( n==P4_KEYINFO ){
! 740: KeyInfo *pKeyInfo;
! 741: int nField, nByte;
! 742:
! 743: nField = ((KeyInfo*)zP4)->nField;
! 744: nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
! 745: pKeyInfo = sqlite3DbMallocRaw(0, nByte);
! 746: pOp->p4.pKeyInfo = pKeyInfo;
! 747: if( pKeyInfo ){
! 748: u8 *aSortOrder;
! 749: memcpy((char*)pKeyInfo, zP4, nByte - nField);
! 750: aSortOrder = pKeyInfo->aSortOrder;
! 751: if( aSortOrder ){
! 752: pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
! 753: memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
! 754: }
! 755: pOp->p4type = P4_KEYINFO;
! 756: }else{
! 757: p->db->mallocFailed = 1;
! 758: pOp->p4type = P4_NOTUSED;
! 759: }
! 760: }else if( n==P4_KEYINFO_HANDOFF ){
! 761: pOp->p4.p = (void*)zP4;
! 762: pOp->p4type = P4_KEYINFO;
! 763: }else if( n==P4_VTAB ){
! 764: pOp->p4.p = (void*)zP4;
! 765: pOp->p4type = P4_VTAB;
! 766: sqlite3VtabLock((VTable *)zP4);
! 767: assert( ((VTable *)zP4)->db==p->db );
! 768: }else if( n<0 ){
! 769: pOp->p4.p = (void*)zP4;
! 770: pOp->p4type = (signed char)n;
! 771: }else{
! 772: if( n==0 ) n = sqlite3Strlen30(zP4);
! 773: pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
! 774: pOp->p4type = P4_DYNAMIC;
! 775: }
! 776: }
! 777:
! 778: #ifndef NDEBUG
! 779: /*
! 780: ** Change the comment on the the most recently coded instruction. Or
! 781: ** insert a No-op and add the comment to that new instruction. This
! 782: ** makes the code easier to read during debugging. None of this happens
! 783: ** in a production build.
! 784: */
! 785: static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
! 786: assert( p->nOp>0 || p->aOp==0 );
! 787: assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
! 788: if( p->nOp ){
! 789: assert( p->aOp );
! 790: sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
! 791: p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
! 792: }
! 793: }
! 794: void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
! 795: va_list ap;
! 796: if( p ){
! 797: va_start(ap, zFormat);
! 798: vdbeVComment(p, zFormat, ap);
! 799: va_end(ap);
! 800: }
! 801: }
! 802: void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
! 803: va_list ap;
! 804: if( p ){
! 805: sqlite3VdbeAddOp0(p, OP_Noop);
! 806: va_start(ap, zFormat);
! 807: vdbeVComment(p, zFormat, ap);
! 808: va_end(ap);
! 809: }
! 810: }
! 811: #endif /* NDEBUG */
! 812:
! 813: /*
! 814: ** Return the opcode for a given address. If the address is -1, then
! 815: ** return the most recently inserted opcode.
! 816: **
! 817: ** If a memory allocation error has occurred prior to the calling of this
! 818: ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
! 819: ** is readable but not writable, though it is cast to a writable value.
! 820: ** The return of a dummy opcode allows the call to continue functioning
! 821: ** after a OOM fault without having to check to see if the return from
! 822: ** this routine is a valid pointer. But because the dummy.opcode is 0,
! 823: ** dummy will never be written to. This is verified by code inspection and
! 824: ** by running with Valgrind.
! 825: **
! 826: ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
! 827: ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
! 828: ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
! 829: ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
! 830: ** having to double-check to make sure that the result is non-negative. But
! 831: ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
! 832: ** check the value of p->nOp-1 before continuing.
! 833: */
! 834: VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
! 835: /* C89 specifies that the constant "dummy" will be initialized to all
! 836: ** zeros, which is correct. MSVC generates a warning, nevertheless. */
! 837: static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
! 838: assert( p->magic==VDBE_MAGIC_INIT );
! 839: if( addr<0 ){
! 840: #ifdef SQLITE_OMIT_TRACE
! 841: if( p->nOp==0 ) return (VdbeOp*)&dummy;
! 842: #endif
! 843: addr = p->nOp - 1;
! 844: }
! 845: assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
! 846: if( p->db->mallocFailed ){
! 847: return (VdbeOp*)&dummy;
! 848: }else{
! 849: return &p->aOp[addr];
! 850: }
! 851: }
! 852:
! 853: #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
! 854: || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
! 855: /*
! 856: ** Compute a string that describes the P4 parameter for an opcode.
! 857: ** Use zTemp for any required temporary buffer space.
! 858: */
! 859: static char *displayP4(Op *pOp, char *zTemp, int nTemp){
! 860: char *zP4 = zTemp;
! 861: assert( nTemp>=20 );
! 862: switch( pOp->p4type ){
! 863: case P4_KEYINFO_STATIC:
! 864: case P4_KEYINFO: {
! 865: int i, j;
! 866: KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
! 867: sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
! 868: i = sqlite3Strlen30(zTemp);
! 869: for(j=0; j<pKeyInfo->nField; j++){
! 870: CollSeq *pColl = pKeyInfo->aColl[j];
! 871: if( pColl ){
! 872: int n = sqlite3Strlen30(pColl->zName);
! 873: if( i+n>nTemp-6 ){
! 874: memcpy(&zTemp[i],",...",4);
! 875: break;
! 876: }
! 877: zTemp[i++] = ',';
! 878: if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
! 879: zTemp[i++] = '-';
! 880: }
! 881: memcpy(&zTemp[i], pColl->zName,n+1);
! 882: i += n;
! 883: }else if( i+4<nTemp-6 ){
! 884: memcpy(&zTemp[i],",nil",4);
! 885: i += 4;
! 886: }
! 887: }
! 888: zTemp[i++] = ')';
! 889: zTemp[i] = 0;
! 890: assert( i<nTemp );
! 891: break;
! 892: }
! 893: case P4_COLLSEQ: {
! 894: CollSeq *pColl = pOp->p4.pColl;
! 895: sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
! 896: break;
! 897: }
! 898: case P4_FUNCDEF: {
! 899: FuncDef *pDef = pOp->p4.pFunc;
! 900: sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
! 901: break;
! 902: }
! 903: case P4_INT64: {
! 904: sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
! 905: break;
! 906: }
! 907: case P4_INT32: {
! 908: sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
! 909: break;
! 910: }
! 911: case P4_REAL: {
! 912: sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
! 913: break;
! 914: }
! 915: case P4_MEM: {
! 916: Mem *pMem = pOp->p4.pMem;
! 917: if( pMem->flags & MEM_Str ){
! 918: zP4 = pMem->z;
! 919: }else if( pMem->flags & MEM_Int ){
! 920: sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
! 921: }else if( pMem->flags & MEM_Real ){
! 922: sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
! 923: }else if( pMem->flags & MEM_Null ){
! 924: sqlite3_snprintf(nTemp, zTemp, "NULL");
! 925: }else{
! 926: assert( pMem->flags & MEM_Blob );
! 927: zP4 = "(blob)";
! 928: }
! 929: break;
! 930: }
! 931: #ifndef SQLITE_OMIT_VIRTUALTABLE
! 932: case P4_VTAB: {
! 933: sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
! 934: sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
! 935: break;
! 936: }
! 937: #endif
! 938: case P4_INTARRAY: {
! 939: sqlite3_snprintf(nTemp, zTemp, "intarray");
! 940: break;
! 941: }
! 942: case P4_SUBPROGRAM: {
! 943: sqlite3_snprintf(nTemp, zTemp, "program");
! 944: break;
! 945: }
! 946: case P4_ADVANCE: {
! 947: zTemp[0] = 0;
! 948: break;
! 949: }
! 950: default: {
! 951: zP4 = pOp->p4.z;
! 952: if( zP4==0 ){
! 953: zP4 = zTemp;
! 954: zTemp[0] = 0;
! 955: }
! 956: }
! 957: }
! 958: assert( zP4!=0 );
! 959: return zP4;
! 960: }
! 961: #endif
! 962:
! 963: /*
! 964: ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
! 965: **
! 966: ** The prepared statements need to know in advance the complete set of
! 967: ** attached databases that will be use. A mask of these databases
! 968: ** is maintained in p->btreeMask. The p->lockMask value is the subset of
! 969: ** p->btreeMask of databases that will require a lock.
! 970: */
! 971: void sqlite3VdbeUsesBtree(Vdbe *p, int i){
! 972: assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
! 973: assert( i<(int)sizeof(p->btreeMask)*8 );
! 974: p->btreeMask |= ((yDbMask)1)<<i;
! 975: if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
! 976: p->lockMask |= ((yDbMask)1)<<i;
! 977: }
! 978: }
! 979:
! 980: #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
! 981: /*
! 982: ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
! 983: ** this routine obtains the mutex associated with each BtShared structure
! 984: ** that may be accessed by the VM passed as an argument. In doing so it also
! 985: ** sets the BtShared.db member of each of the BtShared structures, ensuring
! 986: ** that the correct busy-handler callback is invoked if required.
! 987: **
! 988: ** If SQLite is not threadsafe but does support shared-cache mode, then
! 989: ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
! 990: ** of all of BtShared structures accessible via the database handle
! 991: ** associated with the VM.
! 992: **
! 993: ** If SQLite is not threadsafe and does not support shared-cache mode, this
! 994: ** function is a no-op.
! 995: **
! 996: ** The p->btreeMask field is a bitmask of all btrees that the prepared
! 997: ** statement p will ever use. Let N be the number of bits in p->btreeMask
! 998: ** corresponding to btrees that use shared cache. Then the runtime of
! 999: ** this routine is N*N. But as N is rarely more than 1, this should not
! 1000: ** be a problem.
! 1001: */
! 1002: void sqlite3VdbeEnter(Vdbe *p){
! 1003: int i;
! 1004: yDbMask mask;
! 1005: sqlite3 *db;
! 1006: Db *aDb;
! 1007: int nDb;
! 1008: if( p->lockMask==0 ) return; /* The common case */
! 1009: db = p->db;
! 1010: aDb = db->aDb;
! 1011: nDb = db->nDb;
! 1012: for(i=0, mask=1; i<nDb; i++, mask += mask){
! 1013: if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
! 1014: sqlite3BtreeEnter(aDb[i].pBt);
! 1015: }
! 1016: }
! 1017: }
! 1018: #endif
! 1019:
! 1020: #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
! 1021: /*
! 1022: ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
! 1023: */
! 1024: void sqlite3VdbeLeave(Vdbe *p){
! 1025: int i;
! 1026: yDbMask mask;
! 1027: sqlite3 *db;
! 1028: Db *aDb;
! 1029: int nDb;
! 1030: if( p->lockMask==0 ) return; /* The common case */
! 1031: db = p->db;
! 1032: aDb = db->aDb;
! 1033: nDb = db->nDb;
! 1034: for(i=0, mask=1; i<nDb; i++, mask += mask){
! 1035: if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
! 1036: sqlite3BtreeLeave(aDb[i].pBt);
! 1037: }
! 1038: }
! 1039: }
! 1040: #endif
! 1041:
! 1042: #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
! 1043: /*
! 1044: ** Print a single opcode. This routine is used for debugging only.
! 1045: */
! 1046: void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
! 1047: char *zP4;
! 1048: char zPtr[50];
! 1049: static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
! 1050: if( pOut==0 ) pOut = stdout;
! 1051: zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
! 1052: fprintf(pOut, zFormat1, pc,
! 1053: sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
! 1054: #ifdef SQLITE_DEBUG
! 1055: pOp->zComment ? pOp->zComment : ""
! 1056: #else
! 1057: ""
! 1058: #endif
! 1059: );
! 1060: fflush(pOut);
! 1061: }
! 1062: #endif
! 1063:
! 1064: /*
! 1065: ** Release an array of N Mem elements
! 1066: */
! 1067: static void releaseMemArray(Mem *p, int N){
! 1068: if( p && N ){
! 1069: Mem *pEnd;
! 1070: sqlite3 *db = p->db;
! 1071: u8 malloc_failed = db->mallocFailed;
! 1072: if( db->pnBytesFreed ){
! 1073: for(pEnd=&p[N]; p<pEnd; p++){
! 1074: sqlite3DbFree(db, p->zMalloc);
! 1075: }
! 1076: return;
! 1077: }
! 1078: for(pEnd=&p[N]; p<pEnd; p++){
! 1079: assert( (&p[1])==pEnd || p[0].db==p[1].db );
! 1080:
! 1081: /* This block is really an inlined version of sqlite3VdbeMemRelease()
! 1082: ** that takes advantage of the fact that the memory cell value is
! 1083: ** being set to NULL after releasing any dynamic resources.
! 1084: **
! 1085: ** The justification for duplicating code is that according to
! 1086: ** callgrind, this causes a certain test case to hit the CPU 4.7
! 1087: ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
! 1088: ** sqlite3MemRelease() were called from here. With -O2, this jumps
! 1089: ** to 6.6 percent. The test case is inserting 1000 rows into a table
! 1090: ** with no indexes using a single prepared INSERT statement, bind()
! 1091: ** and reset(). Inserts are grouped into a transaction.
! 1092: */
! 1093: if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
! 1094: sqlite3VdbeMemRelease(p);
! 1095: }else if( p->zMalloc ){
! 1096: sqlite3DbFree(db, p->zMalloc);
! 1097: p->zMalloc = 0;
! 1098: }
! 1099:
! 1100: p->flags = MEM_Invalid;
! 1101: }
! 1102: db->mallocFailed = malloc_failed;
! 1103: }
! 1104: }
! 1105:
! 1106: /*
! 1107: ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
! 1108: ** allocated by the OP_Program opcode in sqlite3VdbeExec().
! 1109: */
! 1110: void sqlite3VdbeFrameDelete(VdbeFrame *p){
! 1111: int i;
! 1112: Mem *aMem = VdbeFrameMem(p);
! 1113: VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
! 1114: for(i=0; i<p->nChildCsr; i++){
! 1115: sqlite3VdbeFreeCursor(p->v, apCsr[i]);
! 1116: }
! 1117: releaseMemArray(aMem, p->nChildMem);
! 1118: sqlite3DbFree(p->v->db, p);
! 1119: }
! 1120:
! 1121: #ifndef SQLITE_OMIT_EXPLAIN
! 1122: /*
! 1123: ** Give a listing of the program in the virtual machine.
! 1124: **
! 1125: ** The interface is the same as sqlite3VdbeExec(). But instead of
! 1126: ** running the code, it invokes the callback once for each instruction.
! 1127: ** This feature is used to implement "EXPLAIN".
! 1128: **
! 1129: ** When p->explain==1, each instruction is listed. When
! 1130: ** p->explain==2, only OP_Explain instructions are listed and these
! 1131: ** are shown in a different format. p->explain==2 is used to implement
! 1132: ** EXPLAIN QUERY PLAN.
! 1133: **
! 1134: ** When p->explain==1, first the main program is listed, then each of
! 1135: ** the trigger subprograms are listed one by one.
! 1136: */
! 1137: int sqlite3VdbeList(
! 1138: Vdbe *p /* The VDBE */
! 1139: ){
! 1140: int nRow; /* Stop when row count reaches this */
! 1141: int nSub = 0; /* Number of sub-vdbes seen so far */
! 1142: SubProgram **apSub = 0; /* Array of sub-vdbes */
! 1143: Mem *pSub = 0; /* Memory cell hold array of subprogs */
! 1144: sqlite3 *db = p->db; /* The database connection */
! 1145: int i; /* Loop counter */
! 1146: int rc = SQLITE_OK; /* Return code */
! 1147: Mem *pMem = &p->aMem[1]; /* First Mem of result set */
! 1148:
! 1149: assert( p->explain );
! 1150: assert( p->magic==VDBE_MAGIC_RUN );
! 1151: assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
! 1152:
! 1153: /* Even though this opcode does not use dynamic strings for
! 1154: ** the result, result columns may become dynamic if the user calls
! 1155: ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
! 1156: */
! 1157: releaseMemArray(pMem, 8);
! 1158: p->pResultSet = 0;
! 1159:
! 1160: if( p->rc==SQLITE_NOMEM ){
! 1161: /* This happens if a malloc() inside a call to sqlite3_column_text() or
! 1162: ** sqlite3_column_text16() failed. */
! 1163: db->mallocFailed = 1;
! 1164: return SQLITE_ERROR;
! 1165: }
! 1166:
! 1167: /* When the number of output rows reaches nRow, that means the
! 1168: ** listing has finished and sqlite3_step() should return SQLITE_DONE.
! 1169: ** nRow is the sum of the number of rows in the main program, plus
! 1170: ** the sum of the number of rows in all trigger subprograms encountered
! 1171: ** so far. The nRow value will increase as new trigger subprograms are
! 1172: ** encountered, but p->pc will eventually catch up to nRow.
! 1173: */
! 1174: nRow = p->nOp;
! 1175: if( p->explain==1 ){
! 1176: /* The first 8 memory cells are used for the result set. So we will
! 1177: ** commandeer the 9th cell to use as storage for an array of pointers
! 1178: ** to trigger subprograms. The VDBE is guaranteed to have at least 9
! 1179: ** cells. */
! 1180: assert( p->nMem>9 );
! 1181: pSub = &p->aMem[9];
! 1182: if( pSub->flags&MEM_Blob ){
! 1183: /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
! 1184: ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
! 1185: nSub = pSub->n/sizeof(Vdbe*);
! 1186: apSub = (SubProgram **)pSub->z;
! 1187: }
! 1188: for(i=0; i<nSub; i++){
! 1189: nRow += apSub[i]->nOp;
! 1190: }
! 1191: }
! 1192:
! 1193: do{
! 1194: i = p->pc++;
! 1195: }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
! 1196: if( i>=nRow ){
! 1197: p->rc = SQLITE_OK;
! 1198: rc = SQLITE_DONE;
! 1199: }else if( db->u1.isInterrupted ){
! 1200: p->rc = SQLITE_INTERRUPT;
! 1201: rc = SQLITE_ERROR;
! 1202: sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
! 1203: }else{
! 1204: char *z;
! 1205: Op *pOp;
! 1206: if( i<p->nOp ){
! 1207: /* The output line number is small enough that we are still in the
! 1208: ** main program. */
! 1209: pOp = &p->aOp[i];
! 1210: }else{
! 1211: /* We are currently listing subprograms. Figure out which one and
! 1212: ** pick up the appropriate opcode. */
! 1213: int j;
! 1214: i -= p->nOp;
! 1215: for(j=0; i>=apSub[j]->nOp; j++){
! 1216: i -= apSub[j]->nOp;
! 1217: }
! 1218: pOp = &apSub[j]->aOp[i];
! 1219: }
! 1220: if( p->explain==1 ){
! 1221: pMem->flags = MEM_Int;
! 1222: pMem->type = SQLITE_INTEGER;
! 1223: pMem->u.i = i; /* Program counter */
! 1224: pMem++;
! 1225:
! 1226: pMem->flags = MEM_Static|MEM_Str|MEM_Term;
! 1227: pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
! 1228: assert( pMem->z!=0 );
! 1229: pMem->n = sqlite3Strlen30(pMem->z);
! 1230: pMem->type = SQLITE_TEXT;
! 1231: pMem->enc = SQLITE_UTF8;
! 1232: pMem++;
! 1233:
! 1234: /* When an OP_Program opcode is encounter (the only opcode that has
! 1235: ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
! 1236: ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
! 1237: ** has not already been seen.
! 1238: */
! 1239: if( pOp->p4type==P4_SUBPROGRAM ){
! 1240: int nByte = (nSub+1)*sizeof(SubProgram*);
! 1241: int j;
! 1242: for(j=0; j<nSub; j++){
! 1243: if( apSub[j]==pOp->p4.pProgram ) break;
! 1244: }
! 1245: if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
! 1246: apSub = (SubProgram **)pSub->z;
! 1247: apSub[nSub++] = pOp->p4.pProgram;
! 1248: pSub->flags |= MEM_Blob;
! 1249: pSub->n = nSub*sizeof(SubProgram*);
! 1250: }
! 1251: }
! 1252: }
! 1253:
! 1254: pMem->flags = MEM_Int;
! 1255: pMem->u.i = pOp->p1; /* P1 */
! 1256: pMem->type = SQLITE_INTEGER;
! 1257: pMem++;
! 1258:
! 1259: pMem->flags = MEM_Int;
! 1260: pMem->u.i = pOp->p2; /* P2 */
! 1261: pMem->type = SQLITE_INTEGER;
! 1262: pMem++;
! 1263:
! 1264: pMem->flags = MEM_Int;
! 1265: pMem->u.i = pOp->p3; /* P3 */
! 1266: pMem->type = SQLITE_INTEGER;
! 1267: pMem++;
! 1268:
! 1269: if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
! 1270: assert( p->db->mallocFailed );
! 1271: return SQLITE_ERROR;
! 1272: }
! 1273: pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
! 1274: z = displayP4(pOp, pMem->z, 32);
! 1275: if( z!=pMem->z ){
! 1276: sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
! 1277: }else{
! 1278: assert( pMem->z!=0 );
! 1279: pMem->n = sqlite3Strlen30(pMem->z);
! 1280: pMem->enc = SQLITE_UTF8;
! 1281: }
! 1282: pMem->type = SQLITE_TEXT;
! 1283: pMem++;
! 1284:
! 1285: if( p->explain==1 ){
! 1286: if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
! 1287: assert( p->db->mallocFailed );
! 1288: return SQLITE_ERROR;
! 1289: }
! 1290: pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
! 1291: pMem->n = 2;
! 1292: sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
! 1293: pMem->type = SQLITE_TEXT;
! 1294: pMem->enc = SQLITE_UTF8;
! 1295: pMem++;
! 1296:
! 1297: #ifdef SQLITE_DEBUG
! 1298: if( pOp->zComment ){
! 1299: pMem->flags = MEM_Str|MEM_Term;
! 1300: pMem->z = pOp->zComment;
! 1301: pMem->n = sqlite3Strlen30(pMem->z);
! 1302: pMem->enc = SQLITE_UTF8;
! 1303: pMem->type = SQLITE_TEXT;
! 1304: }else
! 1305: #endif
! 1306: {
! 1307: pMem->flags = MEM_Null; /* Comment */
! 1308: pMem->type = SQLITE_NULL;
! 1309: }
! 1310: }
! 1311:
! 1312: p->nResColumn = 8 - 4*(p->explain-1);
! 1313: p->pResultSet = &p->aMem[1];
! 1314: p->rc = SQLITE_OK;
! 1315: rc = SQLITE_ROW;
! 1316: }
! 1317: return rc;
! 1318: }
! 1319: #endif /* SQLITE_OMIT_EXPLAIN */
! 1320:
! 1321: #ifdef SQLITE_DEBUG
! 1322: /*
! 1323: ** Print the SQL that was used to generate a VDBE program.
! 1324: */
! 1325: void sqlite3VdbePrintSql(Vdbe *p){
! 1326: int nOp = p->nOp;
! 1327: VdbeOp *pOp;
! 1328: if( nOp<1 ) return;
! 1329: pOp = &p->aOp[0];
! 1330: if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
! 1331: const char *z = pOp->p4.z;
! 1332: while( sqlite3Isspace(*z) ) z++;
! 1333: printf("SQL: [%s]\n", z);
! 1334: }
! 1335: }
! 1336: #endif
! 1337:
! 1338: #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
! 1339: /*
! 1340: ** Print an IOTRACE message showing SQL content.
! 1341: */
! 1342: void sqlite3VdbeIOTraceSql(Vdbe *p){
! 1343: int nOp = p->nOp;
! 1344: VdbeOp *pOp;
! 1345: if( sqlite3IoTrace==0 ) return;
! 1346: if( nOp<1 ) return;
! 1347: pOp = &p->aOp[0];
! 1348: if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
! 1349: int i, j;
! 1350: char z[1000];
! 1351: sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
! 1352: for(i=0; sqlite3Isspace(z[i]); i++){}
! 1353: for(j=0; z[i]; i++){
! 1354: if( sqlite3Isspace(z[i]) ){
! 1355: if( z[i-1]!=' ' ){
! 1356: z[j++] = ' ';
! 1357: }
! 1358: }else{
! 1359: z[j++] = z[i];
! 1360: }
! 1361: }
! 1362: z[j] = 0;
! 1363: sqlite3IoTrace("SQL %s\n", z);
! 1364: }
! 1365: }
! 1366: #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
! 1367:
! 1368: /*
! 1369: ** Allocate space from a fixed size buffer and return a pointer to
! 1370: ** that space. If insufficient space is available, return NULL.
! 1371: **
! 1372: ** The pBuf parameter is the initial value of a pointer which will
! 1373: ** receive the new memory. pBuf is normally NULL. If pBuf is not
! 1374: ** NULL, it means that memory space has already been allocated and that
! 1375: ** this routine should not allocate any new memory. When pBuf is not
! 1376: ** NULL simply return pBuf. Only allocate new memory space when pBuf
! 1377: ** is NULL.
! 1378: **
! 1379: ** nByte is the number of bytes of space needed.
! 1380: **
! 1381: ** *ppFrom points to available space and pEnd points to the end of the
! 1382: ** available space. When space is allocated, *ppFrom is advanced past
! 1383: ** the end of the allocated space.
! 1384: **
! 1385: ** *pnByte is a counter of the number of bytes of space that have failed
! 1386: ** to allocate. If there is insufficient space in *ppFrom to satisfy the
! 1387: ** request, then increment *pnByte by the amount of the request.
! 1388: */
! 1389: static void *allocSpace(
! 1390: void *pBuf, /* Where return pointer will be stored */
! 1391: int nByte, /* Number of bytes to allocate */
! 1392: u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
! 1393: u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
! 1394: int *pnByte /* If allocation cannot be made, increment *pnByte */
! 1395: ){
! 1396: assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
! 1397: if( pBuf ) return pBuf;
! 1398: nByte = ROUND8(nByte);
! 1399: if( &(*ppFrom)[nByte] <= pEnd ){
! 1400: pBuf = (void*)*ppFrom;
! 1401: *ppFrom += nByte;
! 1402: }else{
! 1403: *pnByte += nByte;
! 1404: }
! 1405: return pBuf;
! 1406: }
! 1407:
! 1408: /*
! 1409: ** Rewind the VDBE back to the beginning in preparation for
! 1410: ** running it.
! 1411: */
! 1412: void sqlite3VdbeRewind(Vdbe *p){
! 1413: #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
! 1414: int i;
! 1415: #endif
! 1416: assert( p!=0 );
! 1417: assert( p->magic==VDBE_MAGIC_INIT );
! 1418:
! 1419: /* There should be at least one opcode.
! 1420: */
! 1421: assert( p->nOp>0 );
! 1422:
! 1423: /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
! 1424: p->magic = VDBE_MAGIC_RUN;
! 1425:
! 1426: #ifdef SQLITE_DEBUG
! 1427: for(i=1; i<p->nMem; i++){
! 1428: assert( p->aMem[i].db==p->db );
! 1429: }
! 1430: #endif
! 1431: p->pc = -1;
! 1432: p->rc = SQLITE_OK;
! 1433: p->errorAction = OE_Abort;
! 1434: p->magic = VDBE_MAGIC_RUN;
! 1435: p->nChange = 0;
! 1436: p->cacheCtr = 1;
! 1437: p->minWriteFileFormat = 255;
! 1438: p->iStatement = 0;
! 1439: p->nFkConstraint = 0;
! 1440: #ifdef VDBE_PROFILE
! 1441: for(i=0; i<p->nOp; i++){
! 1442: p->aOp[i].cnt = 0;
! 1443: p->aOp[i].cycles = 0;
! 1444: }
! 1445: #endif
! 1446: }
! 1447:
! 1448: /*
! 1449: ** Prepare a virtual machine for execution for the first time after
! 1450: ** creating the virtual machine. This involves things such
! 1451: ** as allocating stack space and initializing the program counter.
! 1452: ** After the VDBE has be prepped, it can be executed by one or more
! 1453: ** calls to sqlite3VdbeExec().
! 1454: **
! 1455: ** This function may be called exact once on a each virtual machine.
! 1456: ** After this routine is called the VM has been "packaged" and is ready
! 1457: ** to run. After this routine is called, futher calls to
! 1458: ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
! 1459: ** the Vdbe from the Parse object that helped generate it so that the
! 1460: ** the Vdbe becomes an independent entity and the Parse object can be
! 1461: ** destroyed.
! 1462: **
! 1463: ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
! 1464: ** to its initial state after it has been run.
! 1465: */
! 1466: void sqlite3VdbeMakeReady(
! 1467: Vdbe *p, /* The VDBE */
! 1468: Parse *pParse /* Parsing context */
! 1469: ){
! 1470: sqlite3 *db; /* The database connection */
! 1471: int nVar; /* Number of parameters */
! 1472: int nMem; /* Number of VM memory registers */
! 1473: int nCursor; /* Number of cursors required */
! 1474: int nArg; /* Number of arguments in subprograms */
! 1475: int nOnce; /* Number of OP_Once instructions */
! 1476: int n; /* Loop counter */
! 1477: u8 *zCsr; /* Memory available for allocation */
! 1478: u8 *zEnd; /* First byte past allocated memory */
! 1479: int nByte; /* How much extra memory is needed */
! 1480:
! 1481: assert( p!=0 );
! 1482: assert( p->nOp>0 );
! 1483: assert( pParse!=0 );
! 1484: assert( p->magic==VDBE_MAGIC_INIT );
! 1485: db = p->db;
! 1486: assert( db->mallocFailed==0 );
! 1487: nVar = pParse->nVar;
! 1488: nMem = pParse->nMem;
! 1489: nCursor = pParse->nTab;
! 1490: nArg = pParse->nMaxArg;
! 1491: nOnce = pParse->nOnce;
! 1492: if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
! 1493:
! 1494: /* For each cursor required, also allocate a memory cell. Memory
! 1495: ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
! 1496: ** the vdbe program. Instead they are used to allocate space for
! 1497: ** VdbeCursor/BtCursor structures. The blob of memory associated with
! 1498: ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
! 1499: ** stores the blob of memory associated with cursor 1, etc.
! 1500: **
! 1501: ** See also: allocateCursor().
! 1502: */
! 1503: nMem += nCursor;
! 1504:
! 1505: /* Allocate space for memory registers, SQL variables, VDBE cursors and
! 1506: ** an array to marshal SQL function arguments in.
! 1507: */
! 1508: zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
! 1509: zEnd = (u8*)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */
! 1510:
! 1511: resolveP2Values(p, &nArg);
! 1512: p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
! 1513: if( pParse->explain && nMem<10 ){
! 1514: nMem = 10;
! 1515: }
! 1516: memset(zCsr, 0, zEnd-zCsr);
! 1517: zCsr += (zCsr - (u8*)0)&7;
! 1518: assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
! 1519: p->expired = 0;
! 1520:
! 1521: /* Memory for registers, parameters, cursor, etc, is allocated in two
! 1522: ** passes. On the first pass, we try to reuse unused space at the
! 1523: ** end of the opcode array. If we are unable to satisfy all memory
! 1524: ** requirements by reusing the opcode array tail, then the second
! 1525: ** pass will fill in the rest using a fresh allocation.
! 1526: **
! 1527: ** This two-pass approach that reuses as much memory as possible from
! 1528: ** the leftover space at the end of the opcode array can significantly
! 1529: ** reduce the amount of memory held by a prepared statement.
! 1530: */
! 1531: do {
! 1532: nByte = 0;
! 1533: p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
! 1534: p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
! 1535: p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
! 1536: p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
! 1537: p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
! 1538: &zCsr, zEnd, &nByte);
! 1539: p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
! 1540: if( nByte ){
! 1541: p->pFree = sqlite3DbMallocZero(db, nByte);
! 1542: }
! 1543: zCsr = p->pFree;
! 1544: zEnd = &zCsr[nByte];
! 1545: }while( nByte && !db->mallocFailed );
! 1546:
! 1547: p->nCursor = (u16)nCursor;
! 1548: p->nOnceFlag = nOnce;
! 1549: if( p->aVar ){
! 1550: p->nVar = (ynVar)nVar;
! 1551: for(n=0; n<nVar; n++){
! 1552: p->aVar[n].flags = MEM_Null;
! 1553: p->aVar[n].db = db;
! 1554: }
! 1555: }
! 1556: if( p->azVar ){
! 1557: p->nzVar = pParse->nzVar;
! 1558: memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
! 1559: memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
! 1560: }
! 1561: if( p->aMem ){
! 1562: p->aMem--; /* aMem[] goes from 1..nMem */
! 1563: p->nMem = nMem; /* not from 0..nMem-1 */
! 1564: for(n=1; n<=nMem; n++){
! 1565: p->aMem[n].flags = MEM_Invalid;
! 1566: p->aMem[n].db = db;
! 1567: }
! 1568: }
! 1569: p->explain = pParse->explain;
! 1570: sqlite3VdbeRewind(p);
! 1571: }
! 1572:
! 1573: /*
! 1574: ** Close a VDBE cursor and release all the resources that cursor
! 1575: ** happens to hold.
! 1576: */
! 1577: void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
! 1578: if( pCx==0 ){
! 1579: return;
! 1580: }
! 1581: sqlite3VdbeSorterClose(p->db, pCx);
! 1582: if( pCx->pBt ){
! 1583: sqlite3BtreeClose(pCx->pBt);
! 1584: /* The pCx->pCursor will be close automatically, if it exists, by
! 1585: ** the call above. */
! 1586: }else if( pCx->pCursor ){
! 1587: sqlite3BtreeCloseCursor(pCx->pCursor);
! 1588: }
! 1589: #ifndef SQLITE_OMIT_VIRTUALTABLE
! 1590: if( pCx->pVtabCursor ){
! 1591: sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
! 1592: const sqlite3_module *pModule = pCx->pModule;
! 1593: p->inVtabMethod = 1;
! 1594: pModule->xClose(pVtabCursor);
! 1595: p->inVtabMethod = 0;
! 1596: }
! 1597: #endif
! 1598: }
! 1599:
! 1600: /*
! 1601: ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
! 1602: ** is used, for example, when a trigger sub-program is halted to restore
! 1603: ** control to the main program.
! 1604: */
! 1605: int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
! 1606: Vdbe *v = pFrame->v;
! 1607: v->aOnceFlag = pFrame->aOnceFlag;
! 1608: v->nOnceFlag = pFrame->nOnceFlag;
! 1609: v->aOp = pFrame->aOp;
! 1610: v->nOp = pFrame->nOp;
! 1611: v->aMem = pFrame->aMem;
! 1612: v->nMem = pFrame->nMem;
! 1613: v->apCsr = pFrame->apCsr;
! 1614: v->nCursor = pFrame->nCursor;
! 1615: v->db->lastRowid = pFrame->lastRowid;
! 1616: v->nChange = pFrame->nChange;
! 1617: return pFrame->pc;
! 1618: }
! 1619:
! 1620: /*
! 1621: ** Close all cursors.
! 1622: **
! 1623: ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
! 1624: ** cell array. This is necessary as the memory cell array may contain
! 1625: ** pointers to VdbeFrame objects, which may in turn contain pointers to
! 1626: ** open cursors.
! 1627: */
! 1628: static void closeAllCursors(Vdbe *p){
! 1629: if( p->pFrame ){
! 1630: VdbeFrame *pFrame;
! 1631: for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
! 1632: sqlite3VdbeFrameRestore(pFrame);
! 1633: }
! 1634: p->pFrame = 0;
! 1635: p->nFrame = 0;
! 1636:
! 1637: if( p->apCsr ){
! 1638: int i;
! 1639: for(i=0; i<p->nCursor; i++){
! 1640: VdbeCursor *pC = p->apCsr[i];
! 1641: if( pC ){
! 1642: sqlite3VdbeFreeCursor(p, pC);
! 1643: p->apCsr[i] = 0;
! 1644: }
! 1645: }
! 1646: }
! 1647: if( p->aMem ){
! 1648: releaseMemArray(&p->aMem[1], p->nMem);
! 1649: }
! 1650: while( p->pDelFrame ){
! 1651: VdbeFrame *pDel = p->pDelFrame;
! 1652: p->pDelFrame = pDel->pParent;
! 1653: sqlite3VdbeFrameDelete(pDel);
! 1654: }
! 1655: }
! 1656:
! 1657: /*
! 1658: ** Clean up the VM after execution.
! 1659: **
! 1660: ** This routine will automatically close any cursors, lists, and/or
! 1661: ** sorters that were left open. It also deletes the values of
! 1662: ** variables in the aVar[] array.
! 1663: */
! 1664: static void Cleanup(Vdbe *p){
! 1665: sqlite3 *db = p->db;
! 1666:
! 1667: #ifdef SQLITE_DEBUG
! 1668: /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
! 1669: ** Vdbe.aMem[] arrays have already been cleaned up. */
! 1670: int i;
! 1671: if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
! 1672: if( p->aMem ){
! 1673: for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
! 1674: }
! 1675: #endif
! 1676:
! 1677: sqlite3DbFree(db, p->zErrMsg);
! 1678: p->zErrMsg = 0;
! 1679: p->pResultSet = 0;
! 1680: }
! 1681:
! 1682: /*
! 1683: ** Set the number of result columns that will be returned by this SQL
! 1684: ** statement. This is now set at compile time, rather than during
! 1685: ** execution of the vdbe program so that sqlite3_column_count() can
! 1686: ** be called on an SQL statement before sqlite3_step().
! 1687: */
! 1688: void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
! 1689: Mem *pColName;
! 1690: int n;
! 1691: sqlite3 *db = p->db;
! 1692:
! 1693: releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
! 1694: sqlite3DbFree(db, p->aColName);
! 1695: n = nResColumn*COLNAME_N;
! 1696: p->nResColumn = (u16)nResColumn;
! 1697: p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
! 1698: if( p->aColName==0 ) return;
! 1699: while( n-- > 0 ){
! 1700: pColName->flags = MEM_Null;
! 1701: pColName->db = p->db;
! 1702: pColName++;
! 1703: }
! 1704: }
! 1705:
! 1706: /*
! 1707: ** Set the name of the idx'th column to be returned by the SQL statement.
! 1708: ** zName must be a pointer to a nul terminated string.
! 1709: **
! 1710: ** This call must be made after a call to sqlite3VdbeSetNumCols().
! 1711: **
! 1712: ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
! 1713: ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
! 1714: ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
! 1715: */
! 1716: int sqlite3VdbeSetColName(
! 1717: Vdbe *p, /* Vdbe being configured */
! 1718: int idx, /* Index of column zName applies to */
! 1719: int var, /* One of the COLNAME_* constants */
! 1720: const char *zName, /* Pointer to buffer containing name */
! 1721: void (*xDel)(void*) /* Memory management strategy for zName */
! 1722: ){
! 1723: int rc;
! 1724: Mem *pColName;
! 1725: assert( idx<p->nResColumn );
! 1726: assert( var<COLNAME_N );
! 1727: if( p->db->mallocFailed ){
! 1728: assert( !zName || xDel!=SQLITE_DYNAMIC );
! 1729: return SQLITE_NOMEM;
! 1730: }
! 1731: assert( p->aColName!=0 );
! 1732: pColName = &(p->aColName[idx+var*p->nResColumn]);
! 1733: rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
! 1734: assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
! 1735: return rc;
! 1736: }
! 1737:
! 1738: /*
! 1739: ** A read or write transaction may or may not be active on database handle
! 1740: ** db. If a transaction is active, commit it. If there is a
! 1741: ** write-transaction spanning more than one database file, this routine
! 1742: ** takes care of the master journal trickery.
! 1743: */
! 1744: static int vdbeCommit(sqlite3 *db, Vdbe *p){
! 1745: int i;
! 1746: int nTrans = 0; /* Number of databases with an active write-transaction */
! 1747: int rc = SQLITE_OK;
! 1748: int needXcommit = 0;
! 1749:
! 1750: #ifdef SQLITE_OMIT_VIRTUALTABLE
! 1751: /* With this option, sqlite3VtabSync() is defined to be simply
! 1752: ** SQLITE_OK so p is not used.
! 1753: */
! 1754: UNUSED_PARAMETER(p);
! 1755: #endif
! 1756:
! 1757: /* Before doing anything else, call the xSync() callback for any
! 1758: ** virtual module tables written in this transaction. This has to
! 1759: ** be done before determining whether a master journal file is
! 1760: ** required, as an xSync() callback may add an attached database
! 1761: ** to the transaction.
! 1762: */
! 1763: rc = sqlite3VtabSync(db, &p->zErrMsg);
! 1764:
! 1765: /* This loop determines (a) if the commit hook should be invoked and
! 1766: ** (b) how many database files have open write transactions, not
! 1767: ** including the temp database. (b) is important because if more than
! 1768: ** one database file has an open write transaction, a master journal
! 1769: ** file is required for an atomic commit.
! 1770: */
! 1771: for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
! 1772: Btree *pBt = db->aDb[i].pBt;
! 1773: if( sqlite3BtreeIsInTrans(pBt) ){
! 1774: needXcommit = 1;
! 1775: if( i!=1 ) nTrans++;
! 1776: rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
! 1777: }
! 1778: }
! 1779: if( rc!=SQLITE_OK ){
! 1780: return rc;
! 1781: }
! 1782:
! 1783: /* If there are any write-transactions at all, invoke the commit hook */
! 1784: if( needXcommit && db->xCommitCallback ){
! 1785: rc = db->xCommitCallback(db->pCommitArg);
! 1786: if( rc ){
! 1787: return SQLITE_CONSTRAINT;
! 1788: }
! 1789: }
! 1790:
! 1791: /* The simple case - no more than one database file (not counting the
! 1792: ** TEMP database) has a transaction active. There is no need for the
! 1793: ** master-journal.
! 1794: **
! 1795: ** If the return value of sqlite3BtreeGetFilename() is a zero length
! 1796: ** string, it means the main database is :memory: or a temp file. In
! 1797: ** that case we do not support atomic multi-file commits, so use the
! 1798: ** simple case then too.
! 1799: */
! 1800: if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
! 1801: || nTrans<=1
! 1802: ){
! 1803: for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
! 1804: Btree *pBt = db->aDb[i].pBt;
! 1805: if( pBt ){
! 1806: rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
! 1807: }
! 1808: }
! 1809:
! 1810: /* Do the commit only if all databases successfully complete phase 1.
! 1811: ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
! 1812: ** IO error while deleting or truncating a journal file. It is unlikely,
! 1813: ** but could happen. In this case abandon processing and return the error.
! 1814: */
! 1815: for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
! 1816: Btree *pBt = db->aDb[i].pBt;
! 1817: if( pBt ){
! 1818: rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
! 1819: }
! 1820: }
! 1821: if( rc==SQLITE_OK ){
! 1822: sqlite3VtabCommit(db);
! 1823: }
! 1824: }
! 1825:
! 1826: /* The complex case - There is a multi-file write-transaction active.
! 1827: ** This requires a master journal file to ensure the transaction is
! 1828: ** committed atomicly.
! 1829: */
! 1830: #ifndef SQLITE_OMIT_DISKIO
! 1831: else{
! 1832: sqlite3_vfs *pVfs = db->pVfs;
! 1833: int needSync = 0;
! 1834: char *zMaster = 0; /* File-name for the master journal */
! 1835: char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
! 1836: sqlite3_file *pMaster = 0;
! 1837: i64 offset = 0;
! 1838: int res;
! 1839: int retryCount = 0;
! 1840: int nMainFile;
! 1841:
! 1842: /* Select a master journal file name */
! 1843: nMainFile = sqlite3Strlen30(zMainFile);
! 1844: zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
! 1845: if( zMaster==0 ) return SQLITE_NOMEM;
! 1846: do {
! 1847: u32 iRandom;
! 1848: if( retryCount ){
! 1849: if( retryCount>100 ){
! 1850: sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
! 1851: sqlite3OsDelete(pVfs, zMaster, 0);
! 1852: break;
! 1853: }else if( retryCount==1 ){
! 1854: sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
! 1855: }
! 1856: }
! 1857: retryCount++;
! 1858: sqlite3_randomness(sizeof(iRandom), &iRandom);
! 1859: sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
! 1860: (iRandom>>8)&0xffffff, iRandom&0xff);
! 1861: /* The antipenultimate character of the master journal name must
! 1862: ** be "9" to avoid name collisions when using 8+3 filenames. */
! 1863: assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
! 1864: sqlite3FileSuffix3(zMainFile, zMaster);
! 1865: rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
! 1866: }while( rc==SQLITE_OK && res );
! 1867: if( rc==SQLITE_OK ){
! 1868: /* Open the master journal. */
! 1869: rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
! 1870: SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
! 1871: SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
! 1872: );
! 1873: }
! 1874: if( rc!=SQLITE_OK ){
! 1875: sqlite3DbFree(db, zMaster);
! 1876: return rc;
! 1877: }
! 1878:
! 1879: /* Write the name of each database file in the transaction into the new
! 1880: ** master journal file. If an error occurs at this point close
! 1881: ** and delete the master journal file. All the individual journal files
! 1882: ** still have 'null' as the master journal pointer, so they will roll
! 1883: ** back independently if a failure occurs.
! 1884: */
! 1885: for(i=0; i<db->nDb; i++){
! 1886: Btree *pBt = db->aDb[i].pBt;
! 1887: if( sqlite3BtreeIsInTrans(pBt) ){
! 1888: char const *zFile = sqlite3BtreeGetJournalname(pBt);
! 1889: if( zFile==0 ){
! 1890: continue; /* Ignore TEMP and :memory: databases */
! 1891: }
! 1892: assert( zFile[0]!=0 );
! 1893: if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
! 1894: needSync = 1;
! 1895: }
! 1896: rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
! 1897: offset += sqlite3Strlen30(zFile)+1;
! 1898: if( rc!=SQLITE_OK ){
! 1899: sqlite3OsCloseFree(pMaster);
! 1900: sqlite3OsDelete(pVfs, zMaster, 0);
! 1901: sqlite3DbFree(db, zMaster);
! 1902: return rc;
! 1903: }
! 1904: }
! 1905: }
! 1906:
! 1907: /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
! 1908: ** flag is set this is not required.
! 1909: */
! 1910: if( needSync
! 1911: && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
! 1912: && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
! 1913: ){
! 1914: sqlite3OsCloseFree(pMaster);
! 1915: sqlite3OsDelete(pVfs, zMaster, 0);
! 1916: sqlite3DbFree(db, zMaster);
! 1917: return rc;
! 1918: }
! 1919:
! 1920: /* Sync all the db files involved in the transaction. The same call
! 1921: ** sets the master journal pointer in each individual journal. If
! 1922: ** an error occurs here, do not delete the master journal file.
! 1923: **
! 1924: ** If the error occurs during the first call to
! 1925: ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
! 1926: ** master journal file will be orphaned. But we cannot delete it,
! 1927: ** in case the master journal file name was written into the journal
! 1928: ** file before the failure occurred.
! 1929: */
! 1930: for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
! 1931: Btree *pBt = db->aDb[i].pBt;
! 1932: if( pBt ){
! 1933: rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
! 1934: }
! 1935: }
! 1936: sqlite3OsCloseFree(pMaster);
! 1937: assert( rc!=SQLITE_BUSY );
! 1938: if( rc!=SQLITE_OK ){
! 1939: sqlite3DbFree(db, zMaster);
! 1940: return rc;
! 1941: }
! 1942:
! 1943: /* Delete the master journal file. This commits the transaction. After
! 1944: ** doing this the directory is synced again before any individual
! 1945: ** transaction files are deleted.
! 1946: */
! 1947: rc = sqlite3OsDelete(pVfs, zMaster, 1);
! 1948: sqlite3DbFree(db, zMaster);
! 1949: zMaster = 0;
! 1950: if( rc ){
! 1951: return rc;
! 1952: }
! 1953:
! 1954: /* All files and directories have already been synced, so the following
! 1955: ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
! 1956: ** deleting or truncating journals. If something goes wrong while
! 1957: ** this is happening we don't really care. The integrity of the
! 1958: ** transaction is already guaranteed, but some stray 'cold' journals
! 1959: ** may be lying around. Returning an error code won't help matters.
! 1960: */
! 1961: disable_simulated_io_errors();
! 1962: sqlite3BeginBenignMalloc();
! 1963: for(i=0; i<db->nDb; i++){
! 1964: Btree *pBt = db->aDb[i].pBt;
! 1965: if( pBt ){
! 1966: sqlite3BtreeCommitPhaseTwo(pBt, 1);
! 1967: }
! 1968: }
! 1969: sqlite3EndBenignMalloc();
! 1970: enable_simulated_io_errors();
! 1971:
! 1972: sqlite3VtabCommit(db);
! 1973: }
! 1974: #endif
! 1975:
! 1976: return rc;
! 1977: }
! 1978:
! 1979: /*
! 1980: ** This routine checks that the sqlite3.activeVdbeCnt count variable
! 1981: ** matches the number of vdbe's in the list sqlite3.pVdbe that are
! 1982: ** currently active. An assertion fails if the two counts do not match.
! 1983: ** This is an internal self-check only - it is not an essential processing
! 1984: ** step.
! 1985: **
! 1986: ** This is a no-op if NDEBUG is defined.
! 1987: */
! 1988: #ifndef NDEBUG
! 1989: static void checkActiveVdbeCnt(sqlite3 *db){
! 1990: Vdbe *p;
! 1991: int cnt = 0;
! 1992: int nWrite = 0;
! 1993: p = db->pVdbe;
! 1994: while( p ){
! 1995: if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
! 1996: cnt++;
! 1997: if( p->readOnly==0 ) nWrite++;
! 1998: }
! 1999: p = p->pNext;
! 2000: }
! 2001: assert( cnt==db->activeVdbeCnt );
! 2002: assert( nWrite==db->writeVdbeCnt );
! 2003: }
! 2004: #else
! 2005: #define checkActiveVdbeCnt(x)
! 2006: #endif
! 2007:
! 2008: /*
! 2009: ** For every Btree that in database connection db which
! 2010: ** has been modified, "trip" or invalidate each cursor in
! 2011: ** that Btree might have been modified so that the cursor
! 2012: ** can never be used again. This happens when a rollback
! 2013: *** occurs. We have to trip all the other cursors, even
! 2014: ** cursor from other VMs in different database connections,
! 2015: ** so that none of them try to use the data at which they
! 2016: ** were pointing and which now may have been changed due
! 2017: ** to the rollback.
! 2018: **
! 2019: ** Remember that a rollback can delete tables complete and
! 2020: ** reorder rootpages. So it is not sufficient just to save
! 2021: ** the state of the cursor. We have to invalidate the cursor
! 2022: ** so that it is never used again.
! 2023: */
! 2024: static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
! 2025: int i;
! 2026: for(i=0; i<db->nDb; i++){
! 2027: Btree *p = db->aDb[i].pBt;
! 2028: if( p && sqlite3BtreeIsInTrans(p) ){
! 2029: sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
! 2030: }
! 2031: }
! 2032: }
! 2033:
! 2034: /*
! 2035: ** If the Vdbe passed as the first argument opened a statement-transaction,
! 2036: ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
! 2037: ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
! 2038: ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
! 2039: ** statement transaction is commtted.
! 2040: **
! 2041: ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
! 2042: ** Otherwise SQLITE_OK.
! 2043: */
! 2044: int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
! 2045: sqlite3 *const db = p->db;
! 2046: int rc = SQLITE_OK;
! 2047:
! 2048: /* If p->iStatement is greater than zero, then this Vdbe opened a
! 2049: ** statement transaction that should be closed here. The only exception
! 2050: ** is that an IO error may have occured, causing an emergency rollback.
! 2051: ** In this case (db->nStatement==0), and there is nothing to do.
! 2052: */
! 2053: if( db->nStatement && p->iStatement ){
! 2054: int i;
! 2055: const int iSavepoint = p->iStatement-1;
! 2056:
! 2057: assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
! 2058: assert( db->nStatement>0 );
! 2059: assert( p->iStatement==(db->nStatement+db->nSavepoint) );
! 2060:
! 2061: for(i=0; i<db->nDb; i++){
! 2062: int rc2 = SQLITE_OK;
! 2063: Btree *pBt = db->aDb[i].pBt;
! 2064: if( pBt ){
! 2065: if( eOp==SAVEPOINT_ROLLBACK ){
! 2066: rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
! 2067: }
! 2068: if( rc2==SQLITE_OK ){
! 2069: rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
! 2070: }
! 2071: if( rc==SQLITE_OK ){
! 2072: rc = rc2;
! 2073: }
! 2074: }
! 2075: }
! 2076: db->nStatement--;
! 2077: p->iStatement = 0;
! 2078:
! 2079: if( rc==SQLITE_OK ){
! 2080: if( eOp==SAVEPOINT_ROLLBACK ){
! 2081: rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
! 2082: }
! 2083: if( rc==SQLITE_OK ){
! 2084: rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
! 2085: }
! 2086: }
! 2087:
! 2088: /* If the statement transaction is being rolled back, also restore the
! 2089: ** database handles deferred constraint counter to the value it had when
! 2090: ** the statement transaction was opened. */
! 2091: if( eOp==SAVEPOINT_ROLLBACK ){
! 2092: db->nDeferredCons = p->nStmtDefCons;
! 2093: }
! 2094: }
! 2095: return rc;
! 2096: }
! 2097:
! 2098: /*
! 2099: ** This function is called when a transaction opened by the database
! 2100: ** handle associated with the VM passed as an argument is about to be
! 2101: ** committed. If there are outstanding deferred foreign key constraint
! 2102: ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
! 2103: **
! 2104: ** If there are outstanding FK violations and this function returns
! 2105: ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
! 2106: ** an error message to it. Then return SQLITE_ERROR.
! 2107: */
! 2108: #ifndef SQLITE_OMIT_FOREIGN_KEY
! 2109: int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
! 2110: sqlite3 *db = p->db;
! 2111: if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
! 2112: p->rc = SQLITE_CONSTRAINT;
! 2113: p->errorAction = OE_Abort;
! 2114: sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
! 2115: return SQLITE_ERROR;
! 2116: }
! 2117: return SQLITE_OK;
! 2118: }
! 2119: #endif
! 2120:
! 2121: /*
! 2122: ** This routine is called the when a VDBE tries to halt. If the VDBE
! 2123: ** has made changes and is in autocommit mode, then commit those
! 2124: ** changes. If a rollback is needed, then do the rollback.
! 2125: **
! 2126: ** This routine is the only way to move the state of a VM from
! 2127: ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
! 2128: ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
! 2129: **
! 2130: ** Return an error code. If the commit could not complete because of
! 2131: ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
! 2132: ** means the close did not happen and needs to be repeated.
! 2133: */
! 2134: int sqlite3VdbeHalt(Vdbe *p){
! 2135: int rc; /* Used to store transient return codes */
! 2136: sqlite3 *db = p->db;
! 2137:
! 2138: /* This function contains the logic that determines if a statement or
! 2139: ** transaction will be committed or rolled back as a result of the
! 2140: ** execution of this virtual machine.
! 2141: **
! 2142: ** If any of the following errors occur:
! 2143: **
! 2144: ** SQLITE_NOMEM
! 2145: ** SQLITE_IOERR
! 2146: ** SQLITE_FULL
! 2147: ** SQLITE_INTERRUPT
! 2148: **
! 2149: ** Then the internal cache might have been left in an inconsistent
! 2150: ** state. We need to rollback the statement transaction, if there is
! 2151: ** one, or the complete transaction if there is no statement transaction.
! 2152: */
! 2153:
! 2154: if( p->db->mallocFailed ){
! 2155: p->rc = SQLITE_NOMEM;
! 2156: }
! 2157: if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
! 2158: closeAllCursors(p);
! 2159: if( p->magic!=VDBE_MAGIC_RUN ){
! 2160: return SQLITE_OK;
! 2161: }
! 2162: checkActiveVdbeCnt(db);
! 2163:
! 2164: /* No commit or rollback needed if the program never started */
! 2165: if( p->pc>=0 ){
! 2166: int mrc; /* Primary error code from p->rc */
! 2167: int eStatementOp = 0;
! 2168: int isSpecialError; /* Set to true if a 'special' error */
! 2169:
! 2170: /* Lock all btrees used by the statement */
! 2171: sqlite3VdbeEnter(p);
! 2172:
! 2173: /* Check for one of the special errors */
! 2174: mrc = p->rc & 0xff;
! 2175: assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
! 2176: isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
! 2177: || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
! 2178: if( isSpecialError ){
! 2179: /* If the query was read-only and the error code is SQLITE_INTERRUPT,
! 2180: ** no rollback is necessary. Otherwise, at least a savepoint
! 2181: ** transaction must be rolled back to restore the database to a
! 2182: ** consistent state.
! 2183: **
! 2184: ** Even if the statement is read-only, it is important to perform
! 2185: ** a statement or transaction rollback operation. If the error
! 2186: ** occured while writing to the journal, sub-journal or database
! 2187: ** file as part of an effort to free up cache space (see function
! 2188: ** pagerStress() in pager.c), the rollback is required to restore
! 2189: ** the pager to a consistent state.
! 2190: */
! 2191: if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
! 2192: if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
! 2193: eStatementOp = SAVEPOINT_ROLLBACK;
! 2194: }else{
! 2195: /* We are forced to roll back the active transaction. Before doing
! 2196: ** so, abort any other statements this handle currently has active.
! 2197: */
! 2198: invalidateCursorsOnModifiedBtrees(db);
! 2199: sqlite3RollbackAll(db);
! 2200: sqlite3CloseSavepoints(db);
! 2201: db->autoCommit = 1;
! 2202: }
! 2203: }
! 2204: }
! 2205:
! 2206: /* Check for immediate foreign key violations. */
! 2207: if( p->rc==SQLITE_OK ){
! 2208: sqlite3VdbeCheckFk(p, 0);
! 2209: }
! 2210:
! 2211: /* If the auto-commit flag is set and this is the only active writer
! 2212: ** VM, then we do either a commit or rollback of the current transaction.
! 2213: **
! 2214: ** Note: This block also runs if one of the special errors handled
! 2215: ** above has occurred.
! 2216: */
! 2217: if( !sqlite3VtabInSync(db)
! 2218: && db->autoCommit
! 2219: && db->writeVdbeCnt==(p->readOnly==0)
! 2220: ){
! 2221: if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
! 2222: rc = sqlite3VdbeCheckFk(p, 1);
! 2223: if( rc!=SQLITE_OK ){
! 2224: if( NEVER(p->readOnly) ){
! 2225: sqlite3VdbeLeave(p);
! 2226: return SQLITE_ERROR;
! 2227: }
! 2228: rc = SQLITE_CONSTRAINT;
! 2229: }else{
! 2230: /* The auto-commit flag is true, the vdbe program was successful
! 2231: ** or hit an 'OR FAIL' constraint and there are no deferred foreign
! 2232: ** key constraints to hold up the transaction. This means a commit
! 2233: ** is required. */
! 2234: rc = vdbeCommit(db, p);
! 2235: }
! 2236: if( rc==SQLITE_BUSY && p->readOnly ){
! 2237: sqlite3VdbeLeave(p);
! 2238: return SQLITE_BUSY;
! 2239: }else if( rc!=SQLITE_OK ){
! 2240: p->rc = rc;
! 2241: sqlite3RollbackAll(db);
! 2242: }else{
! 2243: db->nDeferredCons = 0;
! 2244: sqlite3CommitInternalChanges(db);
! 2245: }
! 2246: }else{
! 2247: sqlite3RollbackAll(db);
! 2248: }
! 2249: db->nStatement = 0;
! 2250: }else if( eStatementOp==0 ){
! 2251: if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
! 2252: eStatementOp = SAVEPOINT_RELEASE;
! 2253: }else if( p->errorAction==OE_Abort ){
! 2254: eStatementOp = SAVEPOINT_ROLLBACK;
! 2255: }else{
! 2256: invalidateCursorsOnModifiedBtrees(db);
! 2257: sqlite3RollbackAll(db);
! 2258: sqlite3CloseSavepoints(db);
! 2259: db->autoCommit = 1;
! 2260: }
! 2261: }
! 2262:
! 2263: /* If eStatementOp is non-zero, then a statement transaction needs to
! 2264: ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
! 2265: ** do so. If this operation returns an error, and the current statement
! 2266: ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
! 2267: ** current statement error code.
! 2268: */
! 2269: if( eStatementOp ){
! 2270: rc = sqlite3VdbeCloseStatement(p, eStatementOp);
! 2271: if( rc ){
! 2272: if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
! 2273: p->rc = rc;
! 2274: sqlite3DbFree(db, p->zErrMsg);
! 2275: p->zErrMsg = 0;
! 2276: }
! 2277: invalidateCursorsOnModifiedBtrees(db);
! 2278: sqlite3RollbackAll(db);
! 2279: sqlite3CloseSavepoints(db);
! 2280: db->autoCommit = 1;
! 2281: }
! 2282: }
! 2283:
! 2284: /* If this was an INSERT, UPDATE or DELETE and no statement transaction
! 2285: ** has been rolled back, update the database connection change-counter.
! 2286: */
! 2287: if( p->changeCntOn ){
! 2288: if( eStatementOp!=SAVEPOINT_ROLLBACK ){
! 2289: sqlite3VdbeSetChanges(db, p->nChange);
! 2290: }else{
! 2291: sqlite3VdbeSetChanges(db, 0);
! 2292: }
! 2293: p->nChange = 0;
! 2294: }
! 2295:
! 2296: /* Rollback or commit any schema changes that occurred. */
! 2297: if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
! 2298: sqlite3ResetInternalSchema(db, -1);
! 2299: db->flags = (db->flags | SQLITE_InternChanges);
! 2300: }
! 2301:
! 2302: /* Release the locks */
! 2303: sqlite3VdbeLeave(p);
! 2304: }
! 2305:
! 2306: /* We have successfully halted and closed the VM. Record this fact. */
! 2307: if( p->pc>=0 ){
! 2308: db->activeVdbeCnt--;
! 2309: if( !p->readOnly ){
! 2310: db->writeVdbeCnt--;
! 2311: }
! 2312: assert( db->activeVdbeCnt>=db->writeVdbeCnt );
! 2313: }
! 2314: p->magic = VDBE_MAGIC_HALT;
! 2315: checkActiveVdbeCnt(db);
! 2316: if( p->db->mallocFailed ){
! 2317: p->rc = SQLITE_NOMEM;
! 2318: }
! 2319:
! 2320: /* If the auto-commit flag is set to true, then any locks that were held
! 2321: ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
! 2322: ** to invoke any required unlock-notify callbacks.
! 2323: */
! 2324: if( db->autoCommit ){
! 2325: sqlite3ConnectionUnlocked(db);
! 2326: }
! 2327:
! 2328: assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
! 2329: return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
! 2330: }
! 2331:
! 2332:
! 2333: /*
! 2334: ** Each VDBE holds the result of the most recent sqlite3_step() call
! 2335: ** in p->rc. This routine sets that result back to SQLITE_OK.
! 2336: */
! 2337: void sqlite3VdbeResetStepResult(Vdbe *p){
! 2338: p->rc = SQLITE_OK;
! 2339: }
! 2340:
! 2341: /*
! 2342: ** Copy the error code and error message belonging to the VDBE passed
! 2343: ** as the first argument to its database handle (so that they will be
! 2344: ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
! 2345: **
! 2346: ** This function does not clear the VDBE error code or message, just
! 2347: ** copies them to the database handle.
! 2348: */
! 2349: int sqlite3VdbeTransferError(Vdbe *p){
! 2350: sqlite3 *db = p->db;
! 2351: int rc = p->rc;
! 2352: if( p->zErrMsg ){
! 2353: u8 mallocFailed = db->mallocFailed;
! 2354: sqlite3BeginBenignMalloc();
! 2355: sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
! 2356: sqlite3EndBenignMalloc();
! 2357: db->mallocFailed = mallocFailed;
! 2358: db->errCode = rc;
! 2359: }else{
! 2360: sqlite3Error(db, rc, 0);
! 2361: }
! 2362: return rc;
! 2363: }
! 2364:
! 2365: /*
! 2366: ** Clean up a VDBE after execution but do not delete the VDBE just yet.
! 2367: ** Write any error messages into *pzErrMsg. Return the result code.
! 2368: **
! 2369: ** After this routine is run, the VDBE should be ready to be executed
! 2370: ** again.
! 2371: **
! 2372: ** To look at it another way, this routine resets the state of the
! 2373: ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
! 2374: ** VDBE_MAGIC_INIT.
! 2375: */
! 2376: int sqlite3VdbeReset(Vdbe *p){
! 2377: sqlite3 *db;
! 2378: db = p->db;
! 2379:
! 2380: /* If the VM did not run to completion or if it encountered an
! 2381: ** error, then it might not have been halted properly. So halt
! 2382: ** it now.
! 2383: */
! 2384: sqlite3VdbeHalt(p);
! 2385:
! 2386: /* If the VDBE has be run even partially, then transfer the error code
! 2387: ** and error message from the VDBE into the main database structure. But
! 2388: ** if the VDBE has just been set to run but has not actually executed any
! 2389: ** instructions yet, leave the main database error information unchanged.
! 2390: */
! 2391: if( p->pc>=0 ){
! 2392: sqlite3VdbeTransferError(p);
! 2393: sqlite3DbFree(db, p->zErrMsg);
! 2394: p->zErrMsg = 0;
! 2395: if( p->runOnlyOnce ) p->expired = 1;
! 2396: }else if( p->rc && p->expired ){
! 2397: /* The expired flag was set on the VDBE before the first call
! 2398: ** to sqlite3_step(). For consistency (since sqlite3_step() was
! 2399: ** called), set the database error in this case as well.
! 2400: */
! 2401: sqlite3Error(db, p->rc, 0);
! 2402: sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
! 2403: sqlite3DbFree(db, p->zErrMsg);
! 2404: p->zErrMsg = 0;
! 2405: }
! 2406:
! 2407: /* Reclaim all memory used by the VDBE
! 2408: */
! 2409: Cleanup(p);
! 2410:
! 2411: /* Save profiling information from this VDBE run.
! 2412: */
! 2413: #ifdef VDBE_PROFILE
! 2414: {
! 2415: FILE *out = fopen("vdbe_profile.out", "a");
! 2416: if( out ){
! 2417: int i;
! 2418: fprintf(out, "---- ");
! 2419: for(i=0; i<p->nOp; i++){
! 2420: fprintf(out, "%02x", p->aOp[i].opcode);
! 2421: }
! 2422: fprintf(out, "\n");
! 2423: for(i=0; i<p->nOp; i++){
! 2424: fprintf(out, "%6d %10lld %8lld ",
! 2425: p->aOp[i].cnt,
! 2426: p->aOp[i].cycles,
! 2427: p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
! 2428: );
! 2429: sqlite3VdbePrintOp(out, i, &p->aOp[i]);
! 2430: }
! 2431: fclose(out);
! 2432: }
! 2433: }
! 2434: #endif
! 2435: p->magic = VDBE_MAGIC_INIT;
! 2436: return p->rc & db->errMask;
! 2437: }
! 2438:
! 2439: /*
! 2440: ** Clean up and delete a VDBE after execution. Return an integer which is
! 2441: ** the result code. Write any error message text into *pzErrMsg.
! 2442: */
! 2443: int sqlite3VdbeFinalize(Vdbe *p){
! 2444: int rc = SQLITE_OK;
! 2445: if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
! 2446: rc = sqlite3VdbeReset(p);
! 2447: assert( (rc & p->db->errMask)==rc );
! 2448: }
! 2449: sqlite3VdbeDelete(p);
! 2450: return rc;
! 2451: }
! 2452:
! 2453: /*
! 2454: ** Call the destructor for each auxdata entry in pVdbeFunc for which
! 2455: ** the corresponding bit in mask is clear. Auxdata entries beyond 31
! 2456: ** are always destroyed. To destroy all auxdata entries, call this
! 2457: ** routine with mask==0.
! 2458: */
! 2459: void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
! 2460: int i;
! 2461: for(i=0; i<pVdbeFunc->nAux; i++){
! 2462: struct AuxData *pAux = &pVdbeFunc->apAux[i];
! 2463: if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
! 2464: if( pAux->xDelete ){
! 2465: pAux->xDelete(pAux->pAux);
! 2466: }
! 2467: pAux->pAux = 0;
! 2468: }
! 2469: }
! 2470: }
! 2471:
! 2472: /*
! 2473: ** Free all memory associated with the Vdbe passed as the second argument.
! 2474: ** The difference between this function and sqlite3VdbeDelete() is that
! 2475: ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
! 2476: ** the database connection.
! 2477: */
! 2478: void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
! 2479: SubProgram *pSub, *pNext;
! 2480: int i;
! 2481: assert( p->db==0 || p->db==db );
! 2482: releaseMemArray(p->aVar, p->nVar);
! 2483: releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
! 2484: for(pSub=p->pProgram; pSub; pSub=pNext){
! 2485: pNext = pSub->pNext;
! 2486: vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
! 2487: sqlite3DbFree(db, pSub);
! 2488: }
! 2489: for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
! 2490: vdbeFreeOpArray(db, p->aOp, p->nOp);
! 2491: sqlite3DbFree(db, p->aLabel);
! 2492: sqlite3DbFree(db, p->aColName);
! 2493: sqlite3DbFree(db, p->zSql);
! 2494: sqlite3DbFree(db, p->pFree);
! 2495: #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
! 2496: sqlite3DbFree(db, p->zExplain);
! 2497: sqlite3DbFree(db, p->pExplain);
! 2498: #endif
! 2499: sqlite3DbFree(db, p);
! 2500: }
! 2501:
! 2502: /*
! 2503: ** Delete an entire VDBE.
! 2504: */
! 2505: void sqlite3VdbeDelete(Vdbe *p){
! 2506: sqlite3 *db;
! 2507:
! 2508: if( NEVER(p==0) ) return;
! 2509: db = p->db;
! 2510: if( p->pPrev ){
! 2511: p->pPrev->pNext = p->pNext;
! 2512: }else{
! 2513: assert( db->pVdbe==p );
! 2514: db->pVdbe = p->pNext;
! 2515: }
! 2516: if( p->pNext ){
! 2517: p->pNext->pPrev = p->pPrev;
! 2518: }
! 2519: p->magic = VDBE_MAGIC_DEAD;
! 2520: p->db = 0;
! 2521: sqlite3VdbeDeleteObject(db, p);
! 2522: }
! 2523:
! 2524: /*
! 2525: ** Make sure the cursor p is ready to read or write the row to which it
! 2526: ** was last positioned. Return an error code if an OOM fault or I/O error
! 2527: ** prevents us from positioning the cursor to its correct position.
! 2528: **
! 2529: ** If a MoveTo operation is pending on the given cursor, then do that
! 2530: ** MoveTo now. If no move is pending, check to see if the row has been
! 2531: ** deleted out from under the cursor and if it has, mark the row as
! 2532: ** a NULL row.
! 2533: **
! 2534: ** If the cursor is already pointing to the correct row and that row has
! 2535: ** not been deleted out from under the cursor, then this routine is a no-op.
! 2536: */
! 2537: int sqlite3VdbeCursorMoveto(VdbeCursor *p){
! 2538: if( p->deferredMoveto ){
! 2539: int res, rc;
! 2540: #ifdef SQLITE_TEST
! 2541: extern int sqlite3_search_count;
! 2542: #endif
! 2543: assert( p->isTable );
! 2544: rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
! 2545: if( rc ) return rc;
! 2546: p->lastRowid = p->movetoTarget;
! 2547: if( res!=0 ) return SQLITE_CORRUPT_BKPT;
! 2548: p->rowidIsValid = 1;
! 2549: #ifdef SQLITE_TEST
! 2550: sqlite3_search_count++;
! 2551: #endif
! 2552: p->deferredMoveto = 0;
! 2553: p->cacheStatus = CACHE_STALE;
! 2554: }else if( ALWAYS(p->pCursor) ){
! 2555: int hasMoved;
! 2556: int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
! 2557: if( rc ) return rc;
! 2558: if( hasMoved ){
! 2559: p->cacheStatus = CACHE_STALE;
! 2560: p->nullRow = 1;
! 2561: }
! 2562: }
! 2563: return SQLITE_OK;
! 2564: }
! 2565:
! 2566: /*
! 2567: ** The following functions:
! 2568: **
! 2569: ** sqlite3VdbeSerialType()
! 2570: ** sqlite3VdbeSerialTypeLen()
! 2571: ** sqlite3VdbeSerialLen()
! 2572: ** sqlite3VdbeSerialPut()
! 2573: ** sqlite3VdbeSerialGet()
! 2574: **
! 2575: ** encapsulate the code that serializes values for storage in SQLite
! 2576: ** data and index records. Each serialized value consists of a
! 2577: ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
! 2578: ** integer, stored as a varint.
! 2579: **
! 2580: ** In an SQLite index record, the serial type is stored directly before
! 2581: ** the blob of data that it corresponds to. In a table record, all serial
! 2582: ** types are stored at the start of the record, and the blobs of data at
! 2583: ** the end. Hence these functions allow the caller to handle the
! 2584: ** serial-type and data blob seperately.
! 2585: **
! 2586: ** The following table describes the various storage classes for data:
! 2587: **
! 2588: ** serial type bytes of data type
! 2589: ** -------------- --------------- ---------------
! 2590: ** 0 0 NULL
! 2591: ** 1 1 signed integer
! 2592: ** 2 2 signed integer
! 2593: ** 3 3 signed integer
! 2594: ** 4 4 signed integer
! 2595: ** 5 6 signed integer
! 2596: ** 6 8 signed integer
! 2597: ** 7 8 IEEE float
! 2598: ** 8 0 Integer constant 0
! 2599: ** 9 0 Integer constant 1
! 2600: ** 10,11 reserved for expansion
! 2601: ** N>=12 and even (N-12)/2 BLOB
! 2602: ** N>=13 and odd (N-13)/2 text
! 2603: **
! 2604: ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
! 2605: ** of SQLite will not understand those serial types.
! 2606: */
! 2607:
! 2608: /*
! 2609: ** Return the serial-type for the value stored in pMem.
! 2610: */
! 2611: u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
! 2612: int flags = pMem->flags;
! 2613: int n;
! 2614:
! 2615: if( flags&MEM_Null ){
! 2616: return 0;
! 2617: }
! 2618: if( flags&MEM_Int ){
! 2619: /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
! 2620: # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
! 2621: i64 i = pMem->u.i;
! 2622: u64 u;
! 2623: if( file_format>=4 && (i&1)==i ){
! 2624: return 8+(u32)i;
! 2625: }
! 2626: if( i<0 ){
! 2627: if( i<(-MAX_6BYTE) ) return 6;
! 2628: /* Previous test prevents: u = -(-9223372036854775808) */
! 2629: u = -i;
! 2630: }else{
! 2631: u = i;
! 2632: }
! 2633: if( u<=127 ) return 1;
! 2634: if( u<=32767 ) return 2;
! 2635: if( u<=8388607 ) return 3;
! 2636: if( u<=2147483647 ) return 4;
! 2637: if( u<=MAX_6BYTE ) return 5;
! 2638: return 6;
! 2639: }
! 2640: if( flags&MEM_Real ){
! 2641: return 7;
! 2642: }
! 2643: assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
! 2644: n = pMem->n;
! 2645: if( flags & MEM_Zero ){
! 2646: n += pMem->u.nZero;
! 2647: }
! 2648: assert( n>=0 );
! 2649: return ((n*2) + 12 + ((flags&MEM_Str)!=0));
! 2650: }
! 2651:
! 2652: /*
! 2653: ** Return the length of the data corresponding to the supplied serial-type.
! 2654: */
! 2655: u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
! 2656: if( serial_type>=12 ){
! 2657: return (serial_type-12)/2;
! 2658: }else{
! 2659: static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
! 2660: return aSize[serial_type];
! 2661: }
! 2662: }
! 2663:
! 2664: /*
! 2665: ** If we are on an architecture with mixed-endian floating
! 2666: ** points (ex: ARM7) then swap the lower 4 bytes with the
! 2667: ** upper 4 bytes. Return the result.
! 2668: **
! 2669: ** For most architectures, this is a no-op.
! 2670: **
! 2671: ** (later): It is reported to me that the mixed-endian problem
! 2672: ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
! 2673: ** that early versions of GCC stored the two words of a 64-bit
! 2674: ** float in the wrong order. And that error has been propagated
! 2675: ** ever since. The blame is not necessarily with GCC, though.
! 2676: ** GCC might have just copying the problem from a prior compiler.
! 2677: ** I am also told that newer versions of GCC that follow a different
! 2678: ** ABI get the byte order right.
! 2679: **
! 2680: ** Developers using SQLite on an ARM7 should compile and run their
! 2681: ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
! 2682: ** enabled, some asserts below will ensure that the byte order of
! 2683: ** floating point values is correct.
! 2684: **
! 2685: ** (2007-08-30) Frank van Vugt has studied this problem closely
! 2686: ** and has send his findings to the SQLite developers. Frank
! 2687: ** writes that some Linux kernels offer floating point hardware
! 2688: ** emulation that uses only 32-bit mantissas instead of a full
! 2689: ** 48-bits as required by the IEEE standard. (This is the
! 2690: ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
! 2691: ** byte swapping becomes very complicated. To avoid problems,
! 2692: ** the necessary byte swapping is carried out using a 64-bit integer
! 2693: ** rather than a 64-bit float. Frank assures us that the code here
! 2694: ** works for him. We, the developers, have no way to independently
! 2695: ** verify this, but Frank seems to know what he is talking about
! 2696: ** so we trust him.
! 2697: */
! 2698: #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
! 2699: static u64 floatSwap(u64 in){
! 2700: union {
! 2701: u64 r;
! 2702: u32 i[2];
! 2703: } u;
! 2704: u32 t;
! 2705:
! 2706: u.r = in;
! 2707: t = u.i[0];
! 2708: u.i[0] = u.i[1];
! 2709: u.i[1] = t;
! 2710: return u.r;
! 2711: }
! 2712: # define swapMixedEndianFloat(X) X = floatSwap(X)
! 2713: #else
! 2714: # define swapMixedEndianFloat(X)
! 2715: #endif
! 2716:
! 2717: /*
! 2718: ** Write the serialized data blob for the value stored in pMem into
! 2719: ** buf. It is assumed that the caller has allocated sufficient space.
! 2720: ** Return the number of bytes written.
! 2721: **
! 2722: ** nBuf is the amount of space left in buf[]. nBuf must always be
! 2723: ** large enough to hold the entire field. Except, if the field is
! 2724: ** a blob with a zero-filled tail, then buf[] might be just the right
! 2725: ** size to hold everything except for the zero-filled tail. If buf[]
! 2726: ** is only big enough to hold the non-zero prefix, then only write that
! 2727: ** prefix into buf[]. But if buf[] is large enough to hold both the
! 2728: ** prefix and the tail then write the prefix and set the tail to all
! 2729: ** zeros.
! 2730: **
! 2731: ** Return the number of bytes actually written into buf[]. The number
! 2732: ** of bytes in the zero-filled tail is included in the return value only
! 2733: ** if those bytes were zeroed in buf[].
! 2734: */
! 2735: u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
! 2736: u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
! 2737: u32 len;
! 2738:
! 2739: /* Integer and Real */
! 2740: if( serial_type<=7 && serial_type>0 ){
! 2741: u64 v;
! 2742: u32 i;
! 2743: if( serial_type==7 ){
! 2744: assert( sizeof(v)==sizeof(pMem->r) );
! 2745: memcpy(&v, &pMem->r, sizeof(v));
! 2746: swapMixedEndianFloat(v);
! 2747: }else{
! 2748: v = pMem->u.i;
! 2749: }
! 2750: len = i = sqlite3VdbeSerialTypeLen(serial_type);
! 2751: assert( len<=(u32)nBuf );
! 2752: while( i-- ){
! 2753: buf[i] = (u8)(v&0xFF);
! 2754: v >>= 8;
! 2755: }
! 2756: return len;
! 2757: }
! 2758:
! 2759: /* String or blob */
! 2760: if( serial_type>=12 ){
! 2761: assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
! 2762: == (int)sqlite3VdbeSerialTypeLen(serial_type) );
! 2763: assert( pMem->n<=nBuf );
! 2764: len = pMem->n;
! 2765: memcpy(buf, pMem->z, len);
! 2766: if( pMem->flags & MEM_Zero ){
! 2767: len += pMem->u.nZero;
! 2768: assert( nBuf>=0 );
! 2769: if( len > (u32)nBuf ){
! 2770: len = (u32)nBuf;
! 2771: }
! 2772: memset(&buf[pMem->n], 0, len-pMem->n);
! 2773: }
! 2774: return len;
! 2775: }
! 2776:
! 2777: /* NULL or constants 0 or 1 */
! 2778: return 0;
! 2779: }
! 2780:
! 2781: /*
! 2782: ** Deserialize the data blob pointed to by buf as serial type serial_type
! 2783: ** and store the result in pMem. Return the number of bytes read.
! 2784: */
! 2785: u32 sqlite3VdbeSerialGet(
! 2786: const unsigned char *buf, /* Buffer to deserialize from */
! 2787: u32 serial_type, /* Serial type to deserialize */
! 2788: Mem *pMem /* Memory cell to write value into */
! 2789: ){
! 2790: switch( serial_type ){
! 2791: case 10: /* Reserved for future use */
! 2792: case 11: /* Reserved for future use */
! 2793: case 0: { /* NULL */
! 2794: pMem->flags = MEM_Null;
! 2795: break;
! 2796: }
! 2797: case 1: { /* 1-byte signed integer */
! 2798: pMem->u.i = (signed char)buf[0];
! 2799: pMem->flags = MEM_Int;
! 2800: return 1;
! 2801: }
! 2802: case 2: { /* 2-byte signed integer */
! 2803: pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
! 2804: pMem->flags = MEM_Int;
! 2805: return 2;
! 2806: }
! 2807: case 3: { /* 3-byte signed integer */
! 2808: pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
! 2809: pMem->flags = MEM_Int;
! 2810: return 3;
! 2811: }
! 2812: case 4: { /* 4-byte signed integer */
! 2813: pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
! 2814: pMem->flags = MEM_Int;
! 2815: return 4;
! 2816: }
! 2817: case 5: { /* 6-byte signed integer */
! 2818: u64 x = (((signed char)buf[0])<<8) | buf[1];
! 2819: u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
! 2820: x = (x<<32) | y;
! 2821: pMem->u.i = *(i64*)&x;
! 2822: pMem->flags = MEM_Int;
! 2823: return 6;
! 2824: }
! 2825: case 6: /* 8-byte signed integer */
! 2826: case 7: { /* IEEE floating point */
! 2827: u64 x;
! 2828: u32 y;
! 2829: #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
! 2830: /* Verify that integers and floating point values use the same
! 2831: ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
! 2832: ** defined that 64-bit floating point values really are mixed
! 2833: ** endian.
! 2834: */
! 2835: static const u64 t1 = ((u64)0x3ff00000)<<32;
! 2836: static const double r1 = 1.0;
! 2837: u64 t2 = t1;
! 2838: swapMixedEndianFloat(t2);
! 2839: assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
! 2840: #endif
! 2841:
! 2842: x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
! 2843: y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
! 2844: x = (x<<32) | y;
! 2845: if( serial_type==6 ){
! 2846: pMem->u.i = *(i64*)&x;
! 2847: pMem->flags = MEM_Int;
! 2848: }else{
! 2849: assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
! 2850: swapMixedEndianFloat(x);
! 2851: memcpy(&pMem->r, &x, sizeof(x));
! 2852: pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
! 2853: }
! 2854: return 8;
! 2855: }
! 2856: case 8: /* Integer 0 */
! 2857: case 9: { /* Integer 1 */
! 2858: pMem->u.i = serial_type-8;
! 2859: pMem->flags = MEM_Int;
! 2860: return 0;
! 2861: }
! 2862: default: {
! 2863: u32 len = (serial_type-12)/2;
! 2864: pMem->z = (char *)buf;
! 2865: pMem->n = len;
! 2866: pMem->xDel = 0;
! 2867: if( serial_type&0x01 ){
! 2868: pMem->flags = MEM_Str | MEM_Ephem;
! 2869: }else{
! 2870: pMem->flags = MEM_Blob | MEM_Ephem;
! 2871: }
! 2872: return len;
! 2873: }
! 2874: }
! 2875: return 0;
! 2876: }
! 2877:
! 2878: /*
! 2879: ** This routine is used to allocate sufficient space for an UnpackedRecord
! 2880: ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
! 2881: ** the first argument is a pointer to KeyInfo structure pKeyInfo.
! 2882: **
! 2883: ** The space is either allocated using sqlite3DbMallocRaw() or from within
! 2884: ** the unaligned buffer passed via the second and third arguments (presumably
! 2885: ** stack space). If the former, then *ppFree is set to a pointer that should
! 2886: ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
! 2887: ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
! 2888: ** before returning.
! 2889: **
! 2890: ** If an OOM error occurs, NULL is returned.
! 2891: */
! 2892: UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
! 2893: KeyInfo *pKeyInfo, /* Description of the record */
! 2894: char *pSpace, /* Unaligned space available */
! 2895: int szSpace, /* Size of pSpace[] in bytes */
! 2896: char **ppFree /* OUT: Caller should free this pointer */
! 2897: ){
! 2898: UnpackedRecord *p; /* Unpacked record to return */
! 2899: int nOff; /* Increment pSpace by nOff to align it */
! 2900: int nByte; /* Number of bytes required for *p */
! 2901:
! 2902: /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
! 2903: ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
! 2904: ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
! 2905: */
! 2906: nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
! 2907: nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
! 2908: if( nByte>szSpace+nOff ){
! 2909: p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
! 2910: *ppFree = (char *)p;
! 2911: if( !p ) return 0;
! 2912: }else{
! 2913: p = (UnpackedRecord*)&pSpace[nOff];
! 2914: *ppFree = 0;
! 2915: }
! 2916:
! 2917: p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
! 2918: p->pKeyInfo = pKeyInfo;
! 2919: p->nField = pKeyInfo->nField + 1;
! 2920: return p;
! 2921: }
! 2922:
! 2923: /*
! 2924: ** Given the nKey-byte encoding of a record in pKey[], populate the
! 2925: ** UnpackedRecord structure indicated by the fourth argument with the
! 2926: ** contents of the decoded record.
! 2927: */
! 2928: void sqlite3VdbeRecordUnpack(
! 2929: KeyInfo *pKeyInfo, /* Information about the record format */
! 2930: int nKey, /* Size of the binary record */
! 2931: const void *pKey, /* The binary record */
! 2932: UnpackedRecord *p /* Populate this structure before returning. */
! 2933: ){
! 2934: const unsigned char *aKey = (const unsigned char *)pKey;
! 2935: int d;
! 2936: u32 idx; /* Offset in aKey[] to read from */
! 2937: u16 u; /* Unsigned loop counter */
! 2938: u32 szHdr;
! 2939: Mem *pMem = p->aMem;
! 2940:
! 2941: p->flags = 0;
! 2942: assert( EIGHT_BYTE_ALIGNMENT(pMem) );
! 2943: idx = getVarint32(aKey, szHdr);
! 2944: d = szHdr;
! 2945: u = 0;
! 2946: while( idx<szHdr && u<p->nField && d<=nKey ){
! 2947: u32 serial_type;
! 2948:
! 2949: idx += getVarint32(&aKey[idx], serial_type);
! 2950: pMem->enc = pKeyInfo->enc;
! 2951: pMem->db = pKeyInfo->db;
! 2952: /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
! 2953: pMem->zMalloc = 0;
! 2954: d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
! 2955: pMem++;
! 2956: u++;
! 2957: }
! 2958: assert( u<=pKeyInfo->nField + 1 );
! 2959: p->nField = u;
! 2960: }
! 2961:
! 2962: /*
! 2963: ** This function compares the two table rows or index records
! 2964: ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
! 2965: ** or positive integer if key1 is less than, equal to or
! 2966: ** greater than key2. The {nKey1, pKey1} key must be a blob
! 2967: ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
! 2968: ** key must be a parsed key such as obtained from
! 2969: ** sqlite3VdbeParseRecord.
! 2970: **
! 2971: ** Key1 and Key2 do not have to contain the same number of fields.
! 2972: ** The key with fewer fields is usually compares less than the
! 2973: ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
! 2974: ** and the common prefixes are equal, then key1 is less than key2.
! 2975: ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
! 2976: ** equal, then the keys are considered to be equal and
! 2977: ** the parts beyond the common prefix are ignored.
! 2978: */
! 2979: int sqlite3VdbeRecordCompare(
! 2980: int nKey1, const void *pKey1, /* Left key */
! 2981: UnpackedRecord *pPKey2 /* Right key */
! 2982: ){
! 2983: int d1; /* Offset into aKey[] of next data element */
! 2984: u32 idx1; /* Offset into aKey[] of next header element */
! 2985: u32 szHdr1; /* Number of bytes in header */
! 2986: int i = 0;
! 2987: int nField;
! 2988: int rc = 0;
! 2989: const unsigned char *aKey1 = (const unsigned char *)pKey1;
! 2990: KeyInfo *pKeyInfo;
! 2991: Mem mem1;
! 2992:
! 2993: pKeyInfo = pPKey2->pKeyInfo;
! 2994: mem1.enc = pKeyInfo->enc;
! 2995: mem1.db = pKeyInfo->db;
! 2996: /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
! 2997: VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
! 2998:
! 2999: /* Compilers may complain that mem1.u.i is potentially uninitialized.
! 3000: ** We could initialize it, as shown here, to silence those complaints.
! 3001: ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
! 3002: ** the unnecessary initialization has a measurable negative performance
! 3003: ** impact, since this routine is a very high runner. And so, we choose
! 3004: ** to ignore the compiler warnings and leave this variable uninitialized.
! 3005: */
! 3006: /* mem1.u.i = 0; // not needed, here to silence compiler warning */
! 3007:
! 3008: idx1 = getVarint32(aKey1, szHdr1);
! 3009: d1 = szHdr1;
! 3010: nField = pKeyInfo->nField;
! 3011: while( idx1<szHdr1 && i<pPKey2->nField ){
! 3012: u32 serial_type1;
! 3013:
! 3014: /* Read the serial types for the next element in each key. */
! 3015: idx1 += getVarint32( aKey1+idx1, serial_type1 );
! 3016: if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
! 3017:
! 3018: /* Extract the values to be compared.
! 3019: */
! 3020: d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
! 3021:
! 3022: /* Do the comparison
! 3023: */
! 3024: rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
! 3025: i<nField ? pKeyInfo->aColl[i] : 0);
! 3026: if( rc!=0 ){
! 3027: assert( mem1.zMalloc==0 ); /* See comment below */
! 3028:
! 3029: /* Invert the result if we are using DESC sort order. */
! 3030: if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
! 3031: rc = -rc;
! 3032: }
! 3033:
! 3034: /* If the PREFIX_SEARCH flag is set and all fields except the final
! 3035: ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
! 3036: ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
! 3037: ** This is used by the OP_IsUnique opcode.
! 3038: */
! 3039: if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
! 3040: assert( idx1==szHdr1 && rc );
! 3041: assert( mem1.flags & MEM_Int );
! 3042: pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
! 3043: pPKey2->rowid = mem1.u.i;
! 3044: }
! 3045:
! 3046: return rc;
! 3047: }
! 3048: i++;
! 3049: }
! 3050:
! 3051: /* No memory allocation is ever used on mem1. Prove this using
! 3052: ** the following assert(). If the assert() fails, it indicates a
! 3053: ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
! 3054: */
! 3055: assert( mem1.zMalloc==0 );
! 3056:
! 3057: /* rc==0 here means that one of the keys ran out of fields and
! 3058: ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
! 3059: ** flag is set, then break the tie by treating key2 as larger.
! 3060: ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
! 3061: ** are considered to be equal. Otherwise, the longer key is the
! 3062: ** larger. As it happens, the pPKey2 will always be the longer
! 3063: ** if there is a difference.
! 3064: */
! 3065: assert( rc==0 );
! 3066: if( pPKey2->flags & UNPACKED_INCRKEY ){
! 3067: rc = -1;
! 3068: }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
! 3069: /* Leave rc==0 */
! 3070: }else if( idx1<szHdr1 ){
! 3071: rc = 1;
! 3072: }
! 3073: return rc;
! 3074: }
! 3075:
! 3076:
! 3077: /*
! 3078: ** pCur points at an index entry created using the OP_MakeRecord opcode.
! 3079: ** Read the rowid (the last field in the record) and store it in *rowid.
! 3080: ** Return SQLITE_OK if everything works, or an error code otherwise.
! 3081: **
! 3082: ** pCur might be pointing to text obtained from a corrupt database file.
! 3083: ** So the content cannot be trusted. Do appropriate checks on the content.
! 3084: */
! 3085: int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
! 3086: i64 nCellKey = 0;
! 3087: int rc;
! 3088: u32 szHdr; /* Size of the header */
! 3089: u32 typeRowid; /* Serial type of the rowid */
! 3090: u32 lenRowid; /* Size of the rowid */
! 3091: Mem m, v;
! 3092:
! 3093: UNUSED_PARAMETER(db);
! 3094:
! 3095: /* Get the size of the index entry. Only indices entries of less
! 3096: ** than 2GiB are support - anything large must be database corruption.
! 3097: ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
! 3098: ** this code can safely assume that nCellKey is 32-bits
! 3099: */
! 3100: assert( sqlite3BtreeCursorIsValid(pCur) );
! 3101: VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
! 3102: assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
! 3103: assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
! 3104:
! 3105: /* Read in the complete content of the index entry */
! 3106: memset(&m, 0, sizeof(m));
! 3107: rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
! 3108: if( rc ){
! 3109: return rc;
! 3110: }
! 3111:
! 3112: /* The index entry must begin with a header size */
! 3113: (void)getVarint32((u8*)m.z, szHdr);
! 3114: testcase( szHdr==3 );
! 3115: testcase( szHdr==m.n );
! 3116: if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
! 3117: goto idx_rowid_corruption;
! 3118: }
! 3119:
! 3120: /* The last field of the index should be an integer - the ROWID.
! 3121: ** Verify that the last entry really is an integer. */
! 3122: (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
! 3123: testcase( typeRowid==1 );
! 3124: testcase( typeRowid==2 );
! 3125: testcase( typeRowid==3 );
! 3126: testcase( typeRowid==4 );
! 3127: testcase( typeRowid==5 );
! 3128: testcase( typeRowid==6 );
! 3129: testcase( typeRowid==8 );
! 3130: testcase( typeRowid==9 );
! 3131: if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
! 3132: goto idx_rowid_corruption;
! 3133: }
! 3134: lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
! 3135: testcase( (u32)m.n==szHdr+lenRowid );
! 3136: if( unlikely((u32)m.n<szHdr+lenRowid) ){
! 3137: goto idx_rowid_corruption;
! 3138: }
! 3139:
! 3140: /* Fetch the integer off the end of the index record */
! 3141: sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
! 3142: *rowid = v.u.i;
! 3143: sqlite3VdbeMemRelease(&m);
! 3144: return SQLITE_OK;
! 3145:
! 3146: /* Jump here if database corruption is detected after m has been
! 3147: ** allocated. Free the m object and return SQLITE_CORRUPT. */
! 3148: idx_rowid_corruption:
! 3149: testcase( m.zMalloc!=0 );
! 3150: sqlite3VdbeMemRelease(&m);
! 3151: return SQLITE_CORRUPT_BKPT;
! 3152: }
! 3153:
! 3154: /*
! 3155: ** Compare the key of the index entry that cursor pC is pointing to against
! 3156: ** the key string in pUnpacked. Write into *pRes a number
! 3157: ** that is negative, zero, or positive if pC is less than, equal to,
! 3158: ** or greater than pUnpacked. Return SQLITE_OK on success.
! 3159: **
! 3160: ** pUnpacked is either created without a rowid or is truncated so that it
! 3161: ** omits the rowid at the end. The rowid at the end of the index entry
! 3162: ** is ignored as well. Hence, this routine only compares the prefixes
! 3163: ** of the keys prior to the final rowid, not the entire key.
! 3164: */
! 3165: int sqlite3VdbeIdxKeyCompare(
! 3166: VdbeCursor *pC, /* The cursor to compare against */
! 3167: UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
! 3168: int *res /* Write the comparison result here */
! 3169: ){
! 3170: i64 nCellKey = 0;
! 3171: int rc;
! 3172: BtCursor *pCur = pC->pCursor;
! 3173: Mem m;
! 3174:
! 3175: assert( sqlite3BtreeCursorIsValid(pCur) );
! 3176: VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
! 3177: assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
! 3178: /* nCellKey will always be between 0 and 0xffffffff because of the say
! 3179: ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
! 3180: if( nCellKey<=0 || nCellKey>0x7fffffff ){
! 3181: *res = 0;
! 3182: return SQLITE_CORRUPT_BKPT;
! 3183: }
! 3184: memset(&m, 0, sizeof(m));
! 3185: rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
! 3186: if( rc ){
! 3187: return rc;
! 3188: }
! 3189: assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
! 3190: *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
! 3191: sqlite3VdbeMemRelease(&m);
! 3192: return SQLITE_OK;
! 3193: }
! 3194:
! 3195: /*
! 3196: ** This routine sets the value to be returned by subsequent calls to
! 3197: ** sqlite3_changes() on the database handle 'db'.
! 3198: */
! 3199: void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
! 3200: assert( sqlite3_mutex_held(db->mutex) );
! 3201: db->nChange = nChange;
! 3202: db->nTotalChange += nChange;
! 3203: }
! 3204:
! 3205: /*
! 3206: ** Set a flag in the vdbe to update the change counter when it is finalised
! 3207: ** or reset.
! 3208: */
! 3209: void sqlite3VdbeCountChanges(Vdbe *v){
! 3210: v->changeCntOn = 1;
! 3211: }
! 3212:
! 3213: /*
! 3214: ** Mark every prepared statement associated with a database connection
! 3215: ** as expired.
! 3216: **
! 3217: ** An expired statement means that recompilation of the statement is
! 3218: ** recommend. Statements expire when things happen that make their
! 3219: ** programs obsolete. Removing user-defined functions or collating
! 3220: ** sequences, or changing an authorization function are the types of
! 3221: ** things that make prepared statements obsolete.
! 3222: */
! 3223: void sqlite3ExpirePreparedStatements(sqlite3 *db){
! 3224: Vdbe *p;
! 3225: for(p = db->pVdbe; p; p=p->pNext){
! 3226: p->expired = 1;
! 3227: }
! 3228: }
! 3229:
! 3230: /*
! 3231: ** Return the database associated with the Vdbe.
! 3232: */
! 3233: sqlite3 *sqlite3VdbeDb(Vdbe *v){
! 3234: return v->db;
! 3235: }
! 3236:
! 3237: /*
! 3238: ** Return a pointer to an sqlite3_value structure containing the value bound
! 3239: ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
! 3240: ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
! 3241: ** constants) to the value before returning it.
! 3242: **
! 3243: ** The returned value must be freed by the caller using sqlite3ValueFree().
! 3244: */
! 3245: sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
! 3246: assert( iVar>0 );
! 3247: if( v ){
! 3248: Mem *pMem = &v->aVar[iVar-1];
! 3249: if( 0==(pMem->flags & MEM_Null) ){
! 3250: sqlite3_value *pRet = sqlite3ValueNew(v->db);
! 3251: if( pRet ){
! 3252: sqlite3VdbeMemCopy((Mem *)pRet, pMem);
! 3253: sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
! 3254: sqlite3VdbeMemStoreType((Mem *)pRet);
! 3255: }
! 3256: return pRet;
! 3257: }
! 3258: }
! 3259: return 0;
! 3260: }
! 3261:
! 3262: /*
! 3263: ** Configure SQL variable iVar so that binding a new value to it signals
! 3264: ** to sqlite3_reoptimize() that re-preparing the statement may result
! 3265: ** in a better query plan.
! 3266: */
! 3267: void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
! 3268: assert( iVar>0 );
! 3269: if( iVar>32 ){
! 3270: v->expmask = 0xffffffff;
! 3271: }else{
! 3272: v->expmask |= ((u32)1 << (iVar-1));
! 3273: }
! 3274: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>