Annotation of embedaddon/sqlite3/src/vdbeaux.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2003 September 6
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This file contains code used for creating, destroying, and populating
                     13: ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
                     14: ** to version 2.8.7, all this code was combined into the vdbe.c source file.
                     15: ** But that file was getting too big so this subroutines were split out.
                     16: */
                     17: #include "sqliteInt.h"
                     18: #include "vdbeInt.h"
                     19: 
                     20: 
                     21: 
                     22: /*
                     23: ** When debugging the code generator in a symbolic debugger, one can
                     24: ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
                     25: ** as they are added to the instruction stream.
                     26: */
                     27: #ifdef SQLITE_DEBUG
                     28: int sqlite3VdbeAddopTrace = 0;
                     29: #endif
                     30: 
                     31: 
                     32: /*
                     33: ** Create a new virtual database engine.
                     34: */
                     35: Vdbe *sqlite3VdbeCreate(sqlite3 *db){
                     36:   Vdbe *p;
                     37:   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
                     38:   if( p==0 ) return 0;
                     39:   p->db = db;
                     40:   if( db->pVdbe ){
                     41:     db->pVdbe->pPrev = p;
                     42:   }
                     43:   p->pNext = db->pVdbe;
                     44:   p->pPrev = 0;
                     45:   db->pVdbe = p;
                     46:   p->magic = VDBE_MAGIC_INIT;
                     47:   return p;
                     48: }
                     49: 
                     50: /*
                     51: ** Remember the SQL string for a prepared statement.
                     52: */
                     53: void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
                     54:   assert( isPrepareV2==1 || isPrepareV2==0 );
                     55:   if( p==0 ) return;
                     56: #ifdef SQLITE_OMIT_TRACE
                     57:   if( !isPrepareV2 ) return;
                     58: #endif
                     59:   assert( p->zSql==0 );
                     60:   p->zSql = sqlite3DbStrNDup(p->db, z, n);
                     61:   p->isPrepareV2 = (u8)isPrepareV2;
                     62: }
                     63: 
                     64: /*
                     65: ** Return the SQL associated with a prepared statement
                     66: */
                     67: const char *sqlite3_sql(sqlite3_stmt *pStmt){
                     68:   Vdbe *p = (Vdbe *)pStmt;
                     69:   return (p && p->isPrepareV2) ? p->zSql : 0;
                     70: }
                     71: 
                     72: /*
                     73: ** Swap all content between two VDBE structures.
                     74: */
                     75: void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
                     76:   Vdbe tmp, *pTmp;
                     77:   char *zTmp;
                     78:   tmp = *pA;
                     79:   *pA = *pB;
                     80:   *pB = tmp;
                     81:   pTmp = pA->pNext;
                     82:   pA->pNext = pB->pNext;
                     83:   pB->pNext = pTmp;
                     84:   pTmp = pA->pPrev;
                     85:   pA->pPrev = pB->pPrev;
                     86:   pB->pPrev = pTmp;
                     87:   zTmp = pA->zSql;
                     88:   pA->zSql = pB->zSql;
                     89:   pB->zSql = zTmp;
                     90:   pB->isPrepareV2 = pA->isPrepareV2;
                     91: }
                     92: 
                     93: #ifdef SQLITE_DEBUG
                     94: /*
                     95: ** Turn tracing on or off
                     96: */
                     97: void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
                     98:   p->trace = trace;
                     99: }
                    100: #endif
                    101: 
                    102: /*
                    103: ** Resize the Vdbe.aOp array so that it is at least one op larger than 
                    104: ** it was.
                    105: **
                    106: ** If an out-of-memory error occurs while resizing the array, return
                    107: ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 
                    108: ** unchanged (this is so that any opcodes already allocated can be 
                    109: ** correctly deallocated along with the rest of the Vdbe).
                    110: */
                    111: static int growOpArray(Vdbe *p){
                    112:   VdbeOp *pNew;
                    113:   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
                    114:   pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
                    115:   if( pNew ){
                    116:     p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
                    117:     p->aOp = pNew;
                    118:   }
                    119:   return (pNew ? SQLITE_OK : SQLITE_NOMEM);
                    120: }
                    121: 
                    122: /*
                    123: ** Add a new instruction to the list of instructions current in the
                    124: ** VDBE.  Return the address of the new instruction.
                    125: **
                    126: ** Parameters:
                    127: **
                    128: **    p               Pointer to the VDBE
                    129: **
                    130: **    op              The opcode for this instruction
                    131: **
                    132: **    p1, p2, p3      Operands
                    133: **
                    134: ** Use the sqlite3VdbeResolveLabel() function to fix an address and
                    135: ** the sqlite3VdbeChangeP4() function to change the value of the P4
                    136: ** operand.
                    137: */
                    138: int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
                    139:   int i;
                    140:   VdbeOp *pOp;
                    141: 
                    142:   i = p->nOp;
                    143:   assert( p->magic==VDBE_MAGIC_INIT );
                    144:   assert( op>0 && op<0xff );
                    145:   if( p->nOpAlloc<=i ){
                    146:     if( growOpArray(p) ){
                    147:       return 1;
                    148:     }
                    149:   }
                    150:   p->nOp++;
                    151:   pOp = &p->aOp[i];
                    152:   pOp->opcode = (u8)op;
                    153:   pOp->p5 = 0;
                    154:   pOp->p1 = p1;
                    155:   pOp->p2 = p2;
                    156:   pOp->p3 = p3;
                    157:   pOp->p4.p = 0;
                    158:   pOp->p4type = P4_NOTUSED;
                    159: #ifdef SQLITE_DEBUG
                    160:   pOp->zComment = 0;
                    161:   if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
                    162: #endif
                    163: #ifdef VDBE_PROFILE
                    164:   pOp->cycles = 0;
                    165:   pOp->cnt = 0;
                    166: #endif
                    167:   return i;
                    168: }
                    169: int sqlite3VdbeAddOp0(Vdbe *p, int op){
                    170:   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
                    171: }
                    172: int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
                    173:   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
                    174: }
                    175: int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
                    176:   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
                    177: }
                    178: 
                    179: 
                    180: /*
                    181: ** Add an opcode that includes the p4 value as a pointer.
                    182: */
                    183: int sqlite3VdbeAddOp4(
                    184:   Vdbe *p,            /* Add the opcode to this VM */
                    185:   int op,             /* The new opcode */
                    186:   int p1,             /* The P1 operand */
                    187:   int p2,             /* The P2 operand */
                    188:   int p3,             /* The P3 operand */
                    189:   const char *zP4,    /* The P4 operand */
                    190:   int p4type          /* P4 operand type */
                    191: ){
                    192:   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
                    193:   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
                    194:   return addr;
                    195: }
                    196: 
                    197: /*
                    198: ** Add an OP_ParseSchema opcode.  This routine is broken out from
                    199: ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
                    200: ** as having been used.
                    201: **
                    202: ** The zWhere string must have been obtained from sqlite3_malloc().
                    203: ** This routine will take ownership of the allocated memory.
                    204: */
                    205: void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
                    206:   int j;
                    207:   int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
                    208:   sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
                    209:   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
                    210: }
                    211: 
                    212: /*
                    213: ** Add an opcode that includes the p4 value as an integer.
                    214: */
                    215: int sqlite3VdbeAddOp4Int(
                    216:   Vdbe *p,            /* Add the opcode to this VM */
                    217:   int op,             /* The new opcode */
                    218:   int p1,             /* The P1 operand */
                    219:   int p2,             /* The P2 operand */
                    220:   int p3,             /* The P3 operand */
                    221:   int p4              /* The P4 operand as an integer */
                    222: ){
                    223:   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
                    224:   sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
                    225:   return addr;
                    226: }
                    227: 
                    228: /*
                    229: ** Create a new symbolic label for an instruction that has yet to be
                    230: ** coded.  The symbolic label is really just a negative number.  The
                    231: ** label can be used as the P2 value of an operation.  Later, when
                    232: ** the label is resolved to a specific address, the VDBE will scan
                    233: ** through its operation list and change all values of P2 which match
                    234: ** the label into the resolved address.
                    235: **
                    236: ** The VDBE knows that a P2 value is a label because labels are
                    237: ** always negative and P2 values are suppose to be non-negative.
                    238: ** Hence, a negative P2 value is a label that has yet to be resolved.
                    239: **
                    240: ** Zero is returned if a malloc() fails.
                    241: */
                    242: int sqlite3VdbeMakeLabel(Vdbe *p){
                    243:   int i;
                    244:   i = p->nLabel++;
                    245:   assert( p->magic==VDBE_MAGIC_INIT );
                    246:   if( i>=p->nLabelAlloc ){
                    247:     int n = p->nLabelAlloc*2 + 5;
                    248:     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
                    249:                                        n*sizeof(p->aLabel[0]));
                    250:     p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
                    251:   }
                    252:   if( p->aLabel ){
                    253:     p->aLabel[i] = -1;
                    254:   }
                    255:   return -1-i;
                    256: }
                    257: 
                    258: /*
                    259: ** Resolve label "x" to be the address of the next instruction to
                    260: ** be inserted.  The parameter "x" must have been obtained from
                    261: ** a prior call to sqlite3VdbeMakeLabel().
                    262: */
                    263: void sqlite3VdbeResolveLabel(Vdbe *p, int x){
                    264:   int j = -1-x;
                    265:   assert( p->magic==VDBE_MAGIC_INIT );
                    266:   assert( j>=0 && j<p->nLabel );
                    267:   if( p->aLabel ){
                    268:     p->aLabel[j] = p->nOp;
                    269:   }
                    270: }
                    271: 
                    272: /*
                    273: ** Mark the VDBE as one that can only be run one time.
                    274: */
                    275: void sqlite3VdbeRunOnlyOnce(Vdbe *p){
                    276:   p->runOnlyOnce = 1;
                    277: }
                    278: 
                    279: #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
                    280: 
                    281: /*
                    282: ** The following type and function are used to iterate through all opcodes
                    283: ** in a Vdbe main program and each of the sub-programs (triggers) it may 
                    284: ** invoke directly or indirectly. It should be used as follows:
                    285: **
                    286: **   Op *pOp;
                    287: **   VdbeOpIter sIter;
                    288: **
                    289: **   memset(&sIter, 0, sizeof(sIter));
                    290: **   sIter.v = v;                            // v is of type Vdbe* 
                    291: **   while( (pOp = opIterNext(&sIter)) ){
                    292: **     // Do something with pOp
                    293: **   }
                    294: **   sqlite3DbFree(v->db, sIter.apSub);
                    295: ** 
                    296: */
                    297: typedef struct VdbeOpIter VdbeOpIter;
                    298: struct VdbeOpIter {
                    299:   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
                    300:   SubProgram **apSub;        /* Array of subprograms */
                    301:   int nSub;                  /* Number of entries in apSub */
                    302:   int iAddr;                 /* Address of next instruction to return */
                    303:   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
                    304: };
                    305: static Op *opIterNext(VdbeOpIter *p){
                    306:   Vdbe *v = p->v;
                    307:   Op *pRet = 0;
                    308:   Op *aOp;
                    309:   int nOp;
                    310: 
                    311:   if( p->iSub<=p->nSub ){
                    312: 
                    313:     if( p->iSub==0 ){
                    314:       aOp = v->aOp;
                    315:       nOp = v->nOp;
                    316:     }else{
                    317:       aOp = p->apSub[p->iSub-1]->aOp;
                    318:       nOp = p->apSub[p->iSub-1]->nOp;
                    319:     }
                    320:     assert( p->iAddr<nOp );
                    321: 
                    322:     pRet = &aOp[p->iAddr];
                    323:     p->iAddr++;
                    324:     if( p->iAddr==nOp ){
                    325:       p->iSub++;
                    326:       p->iAddr = 0;
                    327:     }
                    328:   
                    329:     if( pRet->p4type==P4_SUBPROGRAM ){
                    330:       int nByte = (p->nSub+1)*sizeof(SubProgram*);
                    331:       int j;
                    332:       for(j=0; j<p->nSub; j++){
                    333:         if( p->apSub[j]==pRet->p4.pProgram ) break;
                    334:       }
                    335:       if( j==p->nSub ){
                    336:         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
                    337:         if( !p->apSub ){
                    338:           pRet = 0;
                    339:         }else{
                    340:           p->apSub[p->nSub++] = pRet->p4.pProgram;
                    341:         }
                    342:       }
                    343:     }
                    344:   }
                    345: 
                    346:   return pRet;
                    347: }
                    348: 
                    349: /*
                    350: ** Check if the program stored in the VM associated with pParse may
                    351: ** throw an ABORT exception (causing the statement, but not entire transaction
                    352: ** to be rolled back). This condition is true if the main program or any
                    353: ** sub-programs contains any of the following:
                    354: **
                    355: **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
                    356: **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
                    357: **   *  OP_Destroy
                    358: **   *  OP_VUpdate
                    359: **   *  OP_VRename
                    360: **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
                    361: **
                    362: ** Then check that the value of Parse.mayAbort is true if an
                    363: ** ABORT may be thrown, or false otherwise. Return true if it does
                    364: ** match, or false otherwise. This function is intended to be used as
                    365: ** part of an assert statement in the compiler. Similar to:
                    366: **
                    367: **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
                    368: */
                    369: int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
                    370:   int hasAbort = 0;
                    371:   Op *pOp;
                    372:   VdbeOpIter sIter;
                    373:   memset(&sIter, 0, sizeof(sIter));
                    374:   sIter.v = v;
                    375: 
                    376:   while( (pOp = opIterNext(&sIter))!=0 ){
                    377:     int opcode = pOp->opcode;
                    378:     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
                    379: #ifndef SQLITE_OMIT_FOREIGN_KEY
                    380:      || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
                    381: #endif
                    382:      || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
                    383:       && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
                    384:     ){
                    385:       hasAbort = 1;
                    386:       break;
                    387:     }
                    388:   }
                    389:   sqlite3DbFree(v->db, sIter.apSub);
                    390: 
                    391:   /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
                    392:   ** If malloc failed, then the while() loop above may not have iterated
                    393:   ** through all opcodes and hasAbort may be set incorrectly. Return
                    394:   ** true for this case to prevent the assert() in the callers frame
                    395:   ** from failing.  */
                    396:   return ( v->db->mallocFailed || hasAbort==mayAbort );
                    397: }
                    398: #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
                    399: 
                    400: /*
                    401: ** Loop through the program looking for P2 values that are negative
                    402: ** on jump instructions.  Each such value is a label.  Resolve the
                    403: ** label by setting the P2 value to its correct non-zero value.
                    404: **
                    405: ** This routine is called once after all opcodes have been inserted.
                    406: **
                    407: ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
                    408: ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
                    409: ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
                    410: **
                    411: ** The Op.opflags field is set on all opcodes.
                    412: */
                    413: static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
                    414:   int i;
                    415:   int nMaxArgs = *pMaxFuncArgs;
                    416:   Op *pOp;
                    417:   int *aLabel = p->aLabel;
                    418:   p->readOnly = 1;
                    419:   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
                    420:     u8 opcode = pOp->opcode;
                    421: 
                    422:     pOp->opflags = sqlite3OpcodeProperty[opcode];
                    423:     if( opcode==OP_Function || opcode==OP_AggStep ){
                    424:       if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
                    425:     }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
                    426:       p->readOnly = 0;
                    427: #ifndef SQLITE_OMIT_VIRTUALTABLE
                    428:     }else if( opcode==OP_VUpdate ){
                    429:       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
                    430:     }else if( opcode==OP_VFilter ){
                    431:       int n;
                    432:       assert( p->nOp - i >= 3 );
                    433:       assert( pOp[-1].opcode==OP_Integer );
                    434:       n = pOp[-1].p1;
                    435:       if( n>nMaxArgs ) nMaxArgs = n;
                    436: #endif
                    437:     }else if( opcode==OP_Next || opcode==OP_SorterNext ){
                    438:       pOp->p4.xAdvance = sqlite3BtreeNext;
                    439:       pOp->p4type = P4_ADVANCE;
                    440:     }else if( opcode==OP_Prev ){
                    441:       pOp->p4.xAdvance = sqlite3BtreePrevious;
                    442:       pOp->p4type = P4_ADVANCE;
                    443:     }
                    444: 
                    445:     if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
                    446:       assert( -1-pOp->p2<p->nLabel );
                    447:       pOp->p2 = aLabel[-1-pOp->p2];
                    448:     }
                    449:   }
                    450:   sqlite3DbFree(p->db, p->aLabel);
                    451:   p->aLabel = 0;
                    452: 
                    453:   *pMaxFuncArgs = nMaxArgs;
                    454: }
                    455: 
                    456: /*
                    457: ** Return the address of the next instruction to be inserted.
                    458: */
                    459: int sqlite3VdbeCurrentAddr(Vdbe *p){
                    460:   assert( p->magic==VDBE_MAGIC_INIT );
                    461:   return p->nOp;
                    462: }
                    463: 
                    464: /*
                    465: ** This function returns a pointer to the array of opcodes associated with
                    466: ** the Vdbe passed as the first argument. It is the callers responsibility
                    467: ** to arrange for the returned array to be eventually freed using the 
                    468: ** vdbeFreeOpArray() function.
                    469: **
                    470: ** Before returning, *pnOp is set to the number of entries in the returned
                    471: ** array. Also, *pnMaxArg is set to the larger of its current value and 
                    472: ** the number of entries in the Vdbe.apArg[] array required to execute the 
                    473: ** returned program.
                    474: */
                    475: VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
                    476:   VdbeOp *aOp = p->aOp;
                    477:   assert( aOp && !p->db->mallocFailed );
                    478: 
                    479:   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
                    480:   assert( p->btreeMask==0 );
                    481: 
                    482:   resolveP2Values(p, pnMaxArg);
                    483:   *pnOp = p->nOp;
                    484:   p->aOp = 0;
                    485:   return aOp;
                    486: }
                    487: 
                    488: /*
                    489: ** Add a whole list of operations to the operation stack.  Return the
                    490: ** address of the first operation added.
                    491: */
                    492: int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
                    493:   int addr;
                    494:   assert( p->magic==VDBE_MAGIC_INIT );
                    495:   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
                    496:     return 0;
                    497:   }
                    498:   addr = p->nOp;
                    499:   if( ALWAYS(nOp>0) ){
                    500:     int i;
                    501:     VdbeOpList const *pIn = aOp;
                    502:     for(i=0; i<nOp; i++, pIn++){
                    503:       int p2 = pIn->p2;
                    504:       VdbeOp *pOut = &p->aOp[i+addr];
                    505:       pOut->opcode = pIn->opcode;
                    506:       pOut->p1 = pIn->p1;
                    507:       if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
                    508:         pOut->p2 = addr + ADDR(p2);
                    509:       }else{
                    510:         pOut->p2 = p2;
                    511:       }
                    512:       pOut->p3 = pIn->p3;
                    513:       pOut->p4type = P4_NOTUSED;
                    514:       pOut->p4.p = 0;
                    515:       pOut->p5 = 0;
                    516: #ifdef SQLITE_DEBUG
                    517:       pOut->zComment = 0;
                    518:       if( sqlite3VdbeAddopTrace ){
                    519:         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
                    520:       }
                    521: #endif
                    522:     }
                    523:     p->nOp += nOp;
                    524:   }
                    525:   return addr;
                    526: }
                    527: 
                    528: /*
                    529: ** Change the value of the P1 operand for a specific instruction.
                    530: ** This routine is useful when a large program is loaded from a
                    531: ** static array using sqlite3VdbeAddOpList but we want to make a
                    532: ** few minor changes to the program.
                    533: */
                    534: void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
                    535:   assert( p!=0 );
                    536:   if( ((u32)p->nOp)>addr ){
                    537:     p->aOp[addr].p1 = val;
                    538:   }
                    539: }
                    540: 
                    541: /*
                    542: ** Change the value of the P2 operand for a specific instruction.
                    543: ** This routine is useful for setting a jump destination.
                    544: */
                    545: void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
                    546:   assert( p!=0 );
                    547:   if( ((u32)p->nOp)>addr ){
                    548:     p->aOp[addr].p2 = val;
                    549:   }
                    550: }
                    551: 
                    552: /*
                    553: ** Change the value of the P3 operand for a specific instruction.
                    554: */
                    555: void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
                    556:   assert( p!=0 );
                    557:   if( ((u32)p->nOp)>addr ){
                    558:     p->aOp[addr].p3 = val;
                    559:   }
                    560: }
                    561: 
                    562: /*
                    563: ** Change the value of the P5 operand for the most recently
                    564: ** added operation.
                    565: */
                    566: void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
                    567:   assert( p!=0 );
                    568:   if( p->aOp ){
                    569:     assert( p->nOp>0 );
                    570:     p->aOp[p->nOp-1].p5 = val;
                    571:   }
                    572: }
                    573: 
                    574: /*
                    575: ** Change the P2 operand of instruction addr so that it points to
                    576: ** the address of the next instruction to be coded.
                    577: */
                    578: void sqlite3VdbeJumpHere(Vdbe *p, int addr){
                    579:   assert( addr>=0 || p->db->mallocFailed );
                    580:   if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
                    581: }
                    582: 
                    583: 
                    584: /*
                    585: ** If the input FuncDef structure is ephemeral, then free it.  If
                    586: ** the FuncDef is not ephermal, then do nothing.
                    587: */
                    588: static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
                    589:   if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
                    590:     sqlite3DbFree(db, pDef);
                    591:   }
                    592: }
                    593: 
                    594: static void vdbeFreeOpArray(sqlite3 *, Op *, int);
                    595: 
                    596: /*
                    597: ** Delete a P4 value if necessary.
                    598: */
                    599: static void freeP4(sqlite3 *db, int p4type, void *p4){
                    600:   if( p4 ){
                    601:     assert( db );
                    602:     switch( p4type ){
                    603:       case P4_REAL:
                    604:       case P4_INT64:
                    605:       case P4_DYNAMIC:
                    606:       case P4_KEYINFO:
                    607:       case P4_INTARRAY:
                    608:       case P4_KEYINFO_HANDOFF: {
                    609:         sqlite3DbFree(db, p4);
                    610:         break;
                    611:       }
                    612:       case P4_MPRINTF: {
                    613:         if( db->pnBytesFreed==0 ) sqlite3_free(p4);
                    614:         break;
                    615:       }
                    616:       case P4_VDBEFUNC: {
                    617:         VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
                    618:         freeEphemeralFunction(db, pVdbeFunc->pFunc);
                    619:         if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
                    620:         sqlite3DbFree(db, pVdbeFunc);
                    621:         break;
                    622:       }
                    623:       case P4_FUNCDEF: {
                    624:         freeEphemeralFunction(db, (FuncDef*)p4);
                    625:         break;
                    626:       }
                    627:       case P4_MEM: {
                    628:         if( db->pnBytesFreed==0 ){
                    629:           sqlite3ValueFree((sqlite3_value*)p4);
                    630:         }else{
                    631:           Mem *p = (Mem*)p4;
                    632:           sqlite3DbFree(db, p->zMalloc);
                    633:           sqlite3DbFree(db, p);
                    634:         }
                    635:         break;
                    636:       }
                    637:       case P4_VTAB : {
                    638:         if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
                    639:         break;
                    640:       }
                    641:     }
                    642:   }
                    643: }
                    644: 
                    645: /*
                    646: ** Free the space allocated for aOp and any p4 values allocated for the
                    647: ** opcodes contained within. If aOp is not NULL it is assumed to contain 
                    648: ** nOp entries. 
                    649: */
                    650: static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
                    651:   if( aOp ){
                    652:     Op *pOp;
                    653:     for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
                    654:       freeP4(db, pOp->p4type, pOp->p4.p);
                    655: #ifdef SQLITE_DEBUG
                    656:       sqlite3DbFree(db, pOp->zComment);
                    657: #endif     
                    658:     }
                    659:   }
                    660:   sqlite3DbFree(db, aOp);
                    661: }
                    662: 
                    663: /*
                    664: ** Link the SubProgram object passed as the second argument into the linked
                    665: ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
                    666: ** objects when the VM is no longer required.
                    667: */
                    668: void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
                    669:   p->pNext = pVdbe->pProgram;
                    670:   pVdbe->pProgram = p;
                    671: }
                    672: 
                    673: /*
                    674: ** Change the opcode at addr into OP_Noop
                    675: */
                    676: void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
                    677:   if( p->aOp ){
                    678:     VdbeOp *pOp = &p->aOp[addr];
                    679:     sqlite3 *db = p->db;
                    680:     freeP4(db, pOp->p4type, pOp->p4.p);
                    681:     memset(pOp, 0, sizeof(pOp[0]));
                    682:     pOp->opcode = OP_Noop;
                    683:   }
                    684: }
                    685: 
                    686: /*
                    687: ** Change the value of the P4 operand for a specific instruction.
                    688: ** This routine is useful when a large program is loaded from a
                    689: ** static array using sqlite3VdbeAddOpList but we want to make a
                    690: ** few minor changes to the program.
                    691: **
                    692: ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
                    693: ** the string is made into memory obtained from sqlite3_malloc().
                    694: ** A value of n==0 means copy bytes of zP4 up to and including the
                    695: ** first null byte.  If n>0 then copy n+1 bytes of zP4.
                    696: **
                    697: ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
                    698: ** A copy is made of the KeyInfo structure into memory obtained from
                    699: ** sqlite3_malloc, to be freed when the Vdbe is finalized.
                    700: ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
                    701: ** stored in memory that the caller has obtained from sqlite3_malloc. The 
                    702: ** caller should not free the allocation, it will be freed when the Vdbe is
                    703: ** finalized.
                    704: ** 
                    705: ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
                    706: ** to a string or structure that is guaranteed to exist for the lifetime of
                    707: ** the Vdbe. In these cases we can just copy the pointer.
                    708: **
                    709: ** If addr<0 then change P4 on the most recently inserted instruction.
                    710: */
                    711: void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
                    712:   Op *pOp;
                    713:   sqlite3 *db;
                    714:   assert( p!=0 );
                    715:   db = p->db;
                    716:   assert( p->magic==VDBE_MAGIC_INIT );
                    717:   if( p->aOp==0 || db->mallocFailed ){
                    718:     if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
                    719:       freeP4(db, n, (void*)*(char**)&zP4);
                    720:     }
                    721:     return;
                    722:   }
                    723:   assert( p->nOp>0 );
                    724:   assert( addr<p->nOp );
                    725:   if( addr<0 ){
                    726:     addr = p->nOp - 1;
                    727:   }
                    728:   pOp = &p->aOp[addr];
                    729:   freeP4(db, pOp->p4type, pOp->p4.p);
                    730:   pOp->p4.p = 0;
                    731:   if( n==P4_INT32 ){
                    732:     /* Note: this cast is safe, because the origin data point was an int
                    733:     ** that was cast to a (const char *). */
                    734:     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
                    735:     pOp->p4type = P4_INT32;
                    736:   }else if( zP4==0 ){
                    737:     pOp->p4.p = 0;
                    738:     pOp->p4type = P4_NOTUSED;
                    739:   }else if( n==P4_KEYINFO ){
                    740:     KeyInfo *pKeyInfo;
                    741:     int nField, nByte;
                    742: 
                    743:     nField = ((KeyInfo*)zP4)->nField;
                    744:     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
                    745:     pKeyInfo = sqlite3DbMallocRaw(0, nByte);
                    746:     pOp->p4.pKeyInfo = pKeyInfo;
                    747:     if( pKeyInfo ){
                    748:       u8 *aSortOrder;
                    749:       memcpy((char*)pKeyInfo, zP4, nByte - nField);
                    750:       aSortOrder = pKeyInfo->aSortOrder;
                    751:       if( aSortOrder ){
                    752:         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
                    753:         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
                    754:       }
                    755:       pOp->p4type = P4_KEYINFO;
                    756:     }else{
                    757:       p->db->mallocFailed = 1;
                    758:       pOp->p4type = P4_NOTUSED;
                    759:     }
                    760:   }else if( n==P4_KEYINFO_HANDOFF ){
                    761:     pOp->p4.p = (void*)zP4;
                    762:     pOp->p4type = P4_KEYINFO;
                    763:   }else if( n==P4_VTAB ){
                    764:     pOp->p4.p = (void*)zP4;
                    765:     pOp->p4type = P4_VTAB;
                    766:     sqlite3VtabLock((VTable *)zP4);
                    767:     assert( ((VTable *)zP4)->db==p->db );
                    768:   }else if( n<0 ){
                    769:     pOp->p4.p = (void*)zP4;
                    770:     pOp->p4type = (signed char)n;
                    771:   }else{
                    772:     if( n==0 ) n = sqlite3Strlen30(zP4);
                    773:     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
                    774:     pOp->p4type = P4_DYNAMIC;
                    775:   }
                    776: }
                    777: 
                    778: #ifndef NDEBUG
                    779: /*
                    780: ** Change the comment on the the most recently coded instruction.  Or
                    781: ** insert a No-op and add the comment to that new instruction.  This
                    782: ** makes the code easier to read during debugging.  None of this happens
                    783: ** in a production build.
                    784: */
                    785: static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
                    786:   assert( p->nOp>0 || p->aOp==0 );
                    787:   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
                    788:   if( p->nOp ){
                    789:     assert( p->aOp );
                    790:     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
                    791:     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
                    792:   }
                    793: }
                    794: void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
                    795:   va_list ap;
                    796:   if( p ){
                    797:     va_start(ap, zFormat);
                    798:     vdbeVComment(p, zFormat, ap);
                    799:     va_end(ap);
                    800:   }
                    801: }
                    802: void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
                    803:   va_list ap;
                    804:   if( p ){
                    805:     sqlite3VdbeAddOp0(p, OP_Noop);
                    806:     va_start(ap, zFormat);
                    807:     vdbeVComment(p, zFormat, ap);
                    808:     va_end(ap);
                    809:   }
                    810: }
                    811: #endif  /* NDEBUG */
                    812: 
                    813: /*
                    814: ** Return the opcode for a given address.  If the address is -1, then
                    815: ** return the most recently inserted opcode.
                    816: **
                    817: ** If a memory allocation error has occurred prior to the calling of this
                    818: ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
                    819: ** is readable but not writable, though it is cast to a writable value.
                    820: ** The return of a dummy opcode allows the call to continue functioning
                    821: ** after a OOM fault without having to check to see if the return from 
                    822: ** this routine is a valid pointer.  But because the dummy.opcode is 0,
                    823: ** dummy will never be written to.  This is verified by code inspection and
                    824: ** by running with Valgrind.
                    825: **
                    826: ** About the #ifdef SQLITE_OMIT_TRACE:  Normally, this routine is never called
                    827: ** unless p->nOp>0.  This is because in the absense of SQLITE_OMIT_TRACE,
                    828: ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
                    829: ** a new VDBE is created.  So we are free to set addr to p->nOp-1 without
                    830: ** having to double-check to make sure that the result is non-negative. But
                    831: ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
                    832: ** check the value of p->nOp-1 before continuing.
                    833: */
                    834: VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
                    835:   /* C89 specifies that the constant "dummy" will be initialized to all
                    836:   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
                    837:   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
                    838:   assert( p->magic==VDBE_MAGIC_INIT );
                    839:   if( addr<0 ){
                    840: #ifdef SQLITE_OMIT_TRACE
                    841:     if( p->nOp==0 ) return (VdbeOp*)&dummy;
                    842: #endif
                    843:     addr = p->nOp - 1;
                    844:   }
                    845:   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
                    846:   if( p->db->mallocFailed ){
                    847:     return (VdbeOp*)&dummy;
                    848:   }else{
                    849:     return &p->aOp[addr];
                    850:   }
                    851: }
                    852: 
                    853: #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
                    854:      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
                    855: /*
                    856: ** Compute a string that describes the P4 parameter for an opcode.
                    857: ** Use zTemp for any required temporary buffer space.
                    858: */
                    859: static char *displayP4(Op *pOp, char *zTemp, int nTemp){
                    860:   char *zP4 = zTemp;
                    861:   assert( nTemp>=20 );
                    862:   switch( pOp->p4type ){
                    863:     case P4_KEYINFO_STATIC:
                    864:     case P4_KEYINFO: {
                    865:       int i, j;
                    866:       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
                    867:       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
                    868:       i = sqlite3Strlen30(zTemp);
                    869:       for(j=0; j<pKeyInfo->nField; j++){
                    870:         CollSeq *pColl = pKeyInfo->aColl[j];
                    871:         if( pColl ){
                    872:           int n = sqlite3Strlen30(pColl->zName);
                    873:           if( i+n>nTemp-6 ){
                    874:             memcpy(&zTemp[i],",...",4);
                    875:             break;
                    876:           }
                    877:           zTemp[i++] = ',';
                    878:           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
                    879:             zTemp[i++] = '-';
                    880:           }
                    881:           memcpy(&zTemp[i], pColl->zName,n+1);
                    882:           i += n;
                    883:         }else if( i+4<nTemp-6 ){
                    884:           memcpy(&zTemp[i],",nil",4);
                    885:           i += 4;
                    886:         }
                    887:       }
                    888:       zTemp[i++] = ')';
                    889:       zTemp[i] = 0;
                    890:       assert( i<nTemp );
                    891:       break;
                    892:     }
                    893:     case P4_COLLSEQ: {
                    894:       CollSeq *pColl = pOp->p4.pColl;
                    895:       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
                    896:       break;
                    897:     }
                    898:     case P4_FUNCDEF: {
                    899:       FuncDef *pDef = pOp->p4.pFunc;
                    900:       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
                    901:       break;
                    902:     }
                    903:     case P4_INT64: {
                    904:       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
                    905:       break;
                    906:     }
                    907:     case P4_INT32: {
                    908:       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
                    909:       break;
                    910:     }
                    911:     case P4_REAL: {
                    912:       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
                    913:       break;
                    914:     }
                    915:     case P4_MEM: {
                    916:       Mem *pMem = pOp->p4.pMem;
                    917:       if( pMem->flags & MEM_Str ){
                    918:         zP4 = pMem->z;
                    919:       }else if( pMem->flags & MEM_Int ){
                    920:         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
                    921:       }else if( pMem->flags & MEM_Real ){
                    922:         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
                    923:       }else if( pMem->flags & MEM_Null ){
                    924:         sqlite3_snprintf(nTemp, zTemp, "NULL");
                    925:       }else{
                    926:         assert( pMem->flags & MEM_Blob );
                    927:         zP4 = "(blob)";
                    928:       }
                    929:       break;
                    930:     }
                    931: #ifndef SQLITE_OMIT_VIRTUALTABLE
                    932:     case P4_VTAB: {
                    933:       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
                    934:       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
                    935:       break;
                    936:     }
                    937: #endif
                    938:     case P4_INTARRAY: {
                    939:       sqlite3_snprintf(nTemp, zTemp, "intarray");
                    940:       break;
                    941:     }
                    942:     case P4_SUBPROGRAM: {
                    943:       sqlite3_snprintf(nTemp, zTemp, "program");
                    944:       break;
                    945:     }
                    946:     case P4_ADVANCE: {
                    947:       zTemp[0] = 0;
                    948:       break;
                    949:     }
                    950:     default: {
                    951:       zP4 = pOp->p4.z;
                    952:       if( zP4==0 ){
                    953:         zP4 = zTemp;
                    954:         zTemp[0] = 0;
                    955:       }
                    956:     }
                    957:   }
                    958:   assert( zP4!=0 );
                    959:   return zP4;
                    960: }
                    961: #endif
                    962: 
                    963: /*
                    964: ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
                    965: **
                    966: ** The prepared statements need to know in advance the complete set of
                    967: ** attached databases that will be use.  A mask of these databases
                    968: ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
                    969: ** p->btreeMask of databases that will require a lock.
                    970: */
                    971: void sqlite3VdbeUsesBtree(Vdbe *p, int i){
                    972:   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
                    973:   assert( i<(int)sizeof(p->btreeMask)*8 );
                    974:   p->btreeMask |= ((yDbMask)1)<<i;
                    975:   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
                    976:     p->lockMask |= ((yDbMask)1)<<i;
                    977:   }
                    978: }
                    979: 
                    980: #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
                    981: /*
                    982: ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
                    983: ** this routine obtains the mutex associated with each BtShared structure
                    984: ** that may be accessed by the VM passed as an argument. In doing so it also
                    985: ** sets the BtShared.db member of each of the BtShared structures, ensuring
                    986: ** that the correct busy-handler callback is invoked if required.
                    987: **
                    988: ** If SQLite is not threadsafe but does support shared-cache mode, then
                    989: ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
                    990: ** of all of BtShared structures accessible via the database handle 
                    991: ** associated with the VM.
                    992: **
                    993: ** If SQLite is not threadsafe and does not support shared-cache mode, this
                    994: ** function is a no-op.
                    995: **
                    996: ** The p->btreeMask field is a bitmask of all btrees that the prepared 
                    997: ** statement p will ever use.  Let N be the number of bits in p->btreeMask
                    998: ** corresponding to btrees that use shared cache.  Then the runtime of
                    999: ** this routine is N*N.  But as N is rarely more than 1, this should not
                   1000: ** be a problem.
                   1001: */
                   1002: void sqlite3VdbeEnter(Vdbe *p){
                   1003:   int i;
                   1004:   yDbMask mask;
                   1005:   sqlite3 *db;
                   1006:   Db *aDb;
                   1007:   int nDb;
                   1008:   if( p->lockMask==0 ) return;  /* The common case */
                   1009:   db = p->db;
                   1010:   aDb = db->aDb;
                   1011:   nDb = db->nDb;
                   1012:   for(i=0, mask=1; i<nDb; i++, mask += mask){
                   1013:     if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
                   1014:       sqlite3BtreeEnter(aDb[i].pBt);
                   1015:     }
                   1016:   }
                   1017: }
                   1018: #endif
                   1019: 
                   1020: #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
                   1021: /*
                   1022: ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
                   1023: */
                   1024: void sqlite3VdbeLeave(Vdbe *p){
                   1025:   int i;
                   1026:   yDbMask mask;
                   1027:   sqlite3 *db;
                   1028:   Db *aDb;
                   1029:   int nDb;
                   1030:   if( p->lockMask==0 ) return;  /* The common case */
                   1031:   db = p->db;
                   1032:   aDb = db->aDb;
                   1033:   nDb = db->nDb;
                   1034:   for(i=0, mask=1; i<nDb; i++, mask += mask){
                   1035:     if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
                   1036:       sqlite3BtreeLeave(aDb[i].pBt);
                   1037:     }
                   1038:   }
                   1039: }
                   1040: #endif
                   1041: 
                   1042: #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
                   1043: /*
                   1044: ** Print a single opcode.  This routine is used for debugging only.
                   1045: */
                   1046: void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
                   1047:   char *zP4;
                   1048:   char zPtr[50];
                   1049:   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
                   1050:   if( pOut==0 ) pOut = stdout;
                   1051:   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
                   1052:   fprintf(pOut, zFormat1, pc, 
                   1053:       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
                   1054: #ifdef SQLITE_DEBUG
                   1055:       pOp->zComment ? pOp->zComment : ""
                   1056: #else
                   1057:       ""
                   1058: #endif
                   1059:   );
                   1060:   fflush(pOut);
                   1061: }
                   1062: #endif
                   1063: 
                   1064: /*
                   1065: ** Release an array of N Mem elements
                   1066: */
                   1067: static void releaseMemArray(Mem *p, int N){
                   1068:   if( p && N ){
                   1069:     Mem *pEnd;
                   1070:     sqlite3 *db = p->db;
                   1071:     u8 malloc_failed = db->mallocFailed;
                   1072:     if( db->pnBytesFreed ){
                   1073:       for(pEnd=&p[N]; p<pEnd; p++){
                   1074:         sqlite3DbFree(db, p->zMalloc);
                   1075:       }
                   1076:       return;
                   1077:     }
                   1078:     for(pEnd=&p[N]; p<pEnd; p++){
                   1079:       assert( (&p[1])==pEnd || p[0].db==p[1].db );
                   1080: 
                   1081:       /* This block is really an inlined version of sqlite3VdbeMemRelease()
                   1082:       ** that takes advantage of the fact that the memory cell value is 
                   1083:       ** being set to NULL after releasing any dynamic resources.
                   1084:       **
                   1085:       ** The justification for duplicating code is that according to 
                   1086:       ** callgrind, this causes a certain test case to hit the CPU 4.7 
                   1087:       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
                   1088:       ** sqlite3MemRelease() were called from here. With -O2, this jumps
                   1089:       ** to 6.6 percent. The test case is inserting 1000 rows into a table 
                   1090:       ** with no indexes using a single prepared INSERT statement, bind() 
                   1091:       ** and reset(). Inserts are grouped into a transaction.
                   1092:       */
                   1093:       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
                   1094:         sqlite3VdbeMemRelease(p);
                   1095:       }else if( p->zMalloc ){
                   1096:         sqlite3DbFree(db, p->zMalloc);
                   1097:         p->zMalloc = 0;
                   1098:       }
                   1099: 
                   1100:       p->flags = MEM_Invalid;
                   1101:     }
                   1102:     db->mallocFailed = malloc_failed;
                   1103:   }
                   1104: }
                   1105: 
                   1106: /*
                   1107: ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
                   1108: ** allocated by the OP_Program opcode in sqlite3VdbeExec().
                   1109: */
                   1110: void sqlite3VdbeFrameDelete(VdbeFrame *p){
                   1111:   int i;
                   1112:   Mem *aMem = VdbeFrameMem(p);
                   1113:   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
                   1114:   for(i=0; i<p->nChildCsr; i++){
                   1115:     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
                   1116:   }
                   1117:   releaseMemArray(aMem, p->nChildMem);
                   1118:   sqlite3DbFree(p->v->db, p);
                   1119: }
                   1120: 
                   1121: #ifndef SQLITE_OMIT_EXPLAIN
                   1122: /*
                   1123: ** Give a listing of the program in the virtual machine.
                   1124: **
                   1125: ** The interface is the same as sqlite3VdbeExec().  But instead of
                   1126: ** running the code, it invokes the callback once for each instruction.
                   1127: ** This feature is used to implement "EXPLAIN".
                   1128: **
                   1129: ** When p->explain==1, each instruction is listed.  When
                   1130: ** p->explain==2, only OP_Explain instructions are listed and these
                   1131: ** are shown in a different format.  p->explain==2 is used to implement
                   1132: ** EXPLAIN QUERY PLAN.
                   1133: **
                   1134: ** When p->explain==1, first the main program is listed, then each of
                   1135: ** the trigger subprograms are listed one by one.
                   1136: */
                   1137: int sqlite3VdbeList(
                   1138:   Vdbe *p                   /* The VDBE */
                   1139: ){
                   1140:   int nRow;                            /* Stop when row count reaches this */
                   1141:   int nSub = 0;                        /* Number of sub-vdbes seen so far */
                   1142:   SubProgram **apSub = 0;              /* Array of sub-vdbes */
                   1143:   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
                   1144:   sqlite3 *db = p->db;                 /* The database connection */
                   1145:   int i;                               /* Loop counter */
                   1146:   int rc = SQLITE_OK;                  /* Return code */
                   1147:   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
                   1148: 
                   1149:   assert( p->explain );
                   1150:   assert( p->magic==VDBE_MAGIC_RUN );
                   1151:   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
                   1152: 
                   1153:   /* Even though this opcode does not use dynamic strings for
                   1154:   ** the result, result columns may become dynamic if the user calls
                   1155:   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
                   1156:   */
                   1157:   releaseMemArray(pMem, 8);
                   1158:   p->pResultSet = 0;
                   1159: 
                   1160:   if( p->rc==SQLITE_NOMEM ){
                   1161:     /* This happens if a malloc() inside a call to sqlite3_column_text() or
                   1162:     ** sqlite3_column_text16() failed.  */
                   1163:     db->mallocFailed = 1;
                   1164:     return SQLITE_ERROR;
                   1165:   }
                   1166: 
                   1167:   /* When the number of output rows reaches nRow, that means the
                   1168:   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
                   1169:   ** nRow is the sum of the number of rows in the main program, plus
                   1170:   ** the sum of the number of rows in all trigger subprograms encountered
                   1171:   ** so far.  The nRow value will increase as new trigger subprograms are
                   1172:   ** encountered, but p->pc will eventually catch up to nRow.
                   1173:   */
                   1174:   nRow = p->nOp;
                   1175:   if( p->explain==1 ){
                   1176:     /* The first 8 memory cells are used for the result set.  So we will
                   1177:     ** commandeer the 9th cell to use as storage for an array of pointers
                   1178:     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
                   1179:     ** cells.  */
                   1180:     assert( p->nMem>9 );
                   1181:     pSub = &p->aMem[9];
                   1182:     if( pSub->flags&MEM_Blob ){
                   1183:       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
                   1184:       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
                   1185:       nSub = pSub->n/sizeof(Vdbe*);
                   1186:       apSub = (SubProgram **)pSub->z;
                   1187:     }
                   1188:     for(i=0; i<nSub; i++){
                   1189:       nRow += apSub[i]->nOp;
                   1190:     }
                   1191:   }
                   1192: 
                   1193:   do{
                   1194:     i = p->pc++;
                   1195:   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
                   1196:   if( i>=nRow ){
                   1197:     p->rc = SQLITE_OK;
                   1198:     rc = SQLITE_DONE;
                   1199:   }else if( db->u1.isInterrupted ){
                   1200:     p->rc = SQLITE_INTERRUPT;
                   1201:     rc = SQLITE_ERROR;
                   1202:     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
                   1203:   }else{
                   1204:     char *z;
                   1205:     Op *pOp;
                   1206:     if( i<p->nOp ){
                   1207:       /* The output line number is small enough that we are still in the
                   1208:       ** main program. */
                   1209:       pOp = &p->aOp[i];
                   1210:     }else{
                   1211:       /* We are currently listing subprograms.  Figure out which one and
                   1212:       ** pick up the appropriate opcode. */
                   1213:       int j;
                   1214:       i -= p->nOp;
                   1215:       for(j=0; i>=apSub[j]->nOp; j++){
                   1216:         i -= apSub[j]->nOp;
                   1217:       }
                   1218:       pOp = &apSub[j]->aOp[i];
                   1219:     }
                   1220:     if( p->explain==1 ){
                   1221:       pMem->flags = MEM_Int;
                   1222:       pMem->type = SQLITE_INTEGER;
                   1223:       pMem->u.i = i;                                /* Program counter */
                   1224:       pMem++;
                   1225:   
                   1226:       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
                   1227:       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
                   1228:       assert( pMem->z!=0 );
                   1229:       pMem->n = sqlite3Strlen30(pMem->z);
                   1230:       pMem->type = SQLITE_TEXT;
                   1231:       pMem->enc = SQLITE_UTF8;
                   1232:       pMem++;
                   1233: 
                   1234:       /* When an OP_Program opcode is encounter (the only opcode that has
                   1235:       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
                   1236:       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
                   1237:       ** has not already been seen.
                   1238:       */
                   1239:       if( pOp->p4type==P4_SUBPROGRAM ){
                   1240:         int nByte = (nSub+1)*sizeof(SubProgram*);
                   1241:         int j;
                   1242:         for(j=0; j<nSub; j++){
                   1243:           if( apSub[j]==pOp->p4.pProgram ) break;
                   1244:         }
                   1245:         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
                   1246:           apSub = (SubProgram **)pSub->z;
                   1247:           apSub[nSub++] = pOp->p4.pProgram;
                   1248:           pSub->flags |= MEM_Blob;
                   1249:           pSub->n = nSub*sizeof(SubProgram*);
                   1250:         }
                   1251:       }
                   1252:     }
                   1253: 
                   1254:     pMem->flags = MEM_Int;
                   1255:     pMem->u.i = pOp->p1;                          /* P1 */
                   1256:     pMem->type = SQLITE_INTEGER;
                   1257:     pMem++;
                   1258: 
                   1259:     pMem->flags = MEM_Int;
                   1260:     pMem->u.i = pOp->p2;                          /* P2 */
                   1261:     pMem->type = SQLITE_INTEGER;
                   1262:     pMem++;
                   1263: 
                   1264:     pMem->flags = MEM_Int;
                   1265:     pMem->u.i = pOp->p3;                          /* P3 */
                   1266:     pMem->type = SQLITE_INTEGER;
                   1267:     pMem++;
                   1268: 
                   1269:     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
                   1270:       assert( p->db->mallocFailed );
                   1271:       return SQLITE_ERROR;
                   1272:     }
                   1273:     pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
                   1274:     z = displayP4(pOp, pMem->z, 32);
                   1275:     if( z!=pMem->z ){
                   1276:       sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
                   1277:     }else{
                   1278:       assert( pMem->z!=0 );
                   1279:       pMem->n = sqlite3Strlen30(pMem->z);
                   1280:       pMem->enc = SQLITE_UTF8;
                   1281:     }
                   1282:     pMem->type = SQLITE_TEXT;
                   1283:     pMem++;
                   1284: 
                   1285:     if( p->explain==1 ){
                   1286:       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
                   1287:         assert( p->db->mallocFailed );
                   1288:         return SQLITE_ERROR;
                   1289:       }
                   1290:       pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
                   1291:       pMem->n = 2;
                   1292:       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
                   1293:       pMem->type = SQLITE_TEXT;
                   1294:       pMem->enc = SQLITE_UTF8;
                   1295:       pMem++;
                   1296:   
                   1297: #ifdef SQLITE_DEBUG
                   1298:       if( pOp->zComment ){
                   1299:         pMem->flags = MEM_Str|MEM_Term;
                   1300:         pMem->z = pOp->zComment;
                   1301:         pMem->n = sqlite3Strlen30(pMem->z);
                   1302:         pMem->enc = SQLITE_UTF8;
                   1303:         pMem->type = SQLITE_TEXT;
                   1304:       }else
                   1305: #endif
                   1306:       {
                   1307:         pMem->flags = MEM_Null;                       /* Comment */
                   1308:         pMem->type = SQLITE_NULL;
                   1309:       }
                   1310:     }
                   1311: 
                   1312:     p->nResColumn = 8 - 4*(p->explain-1);
                   1313:     p->pResultSet = &p->aMem[1];
                   1314:     p->rc = SQLITE_OK;
                   1315:     rc = SQLITE_ROW;
                   1316:   }
                   1317:   return rc;
                   1318: }
                   1319: #endif /* SQLITE_OMIT_EXPLAIN */
                   1320: 
                   1321: #ifdef SQLITE_DEBUG
                   1322: /*
                   1323: ** Print the SQL that was used to generate a VDBE program.
                   1324: */
                   1325: void sqlite3VdbePrintSql(Vdbe *p){
                   1326:   int nOp = p->nOp;
                   1327:   VdbeOp *pOp;
                   1328:   if( nOp<1 ) return;
                   1329:   pOp = &p->aOp[0];
                   1330:   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
                   1331:     const char *z = pOp->p4.z;
                   1332:     while( sqlite3Isspace(*z) ) z++;
                   1333:     printf("SQL: [%s]\n", z);
                   1334:   }
                   1335: }
                   1336: #endif
                   1337: 
                   1338: #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
                   1339: /*
                   1340: ** Print an IOTRACE message showing SQL content.
                   1341: */
                   1342: void sqlite3VdbeIOTraceSql(Vdbe *p){
                   1343:   int nOp = p->nOp;
                   1344:   VdbeOp *pOp;
                   1345:   if( sqlite3IoTrace==0 ) return;
                   1346:   if( nOp<1 ) return;
                   1347:   pOp = &p->aOp[0];
                   1348:   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
                   1349:     int i, j;
                   1350:     char z[1000];
                   1351:     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
                   1352:     for(i=0; sqlite3Isspace(z[i]); i++){}
                   1353:     for(j=0; z[i]; i++){
                   1354:       if( sqlite3Isspace(z[i]) ){
                   1355:         if( z[i-1]!=' ' ){
                   1356:           z[j++] = ' ';
                   1357:         }
                   1358:       }else{
                   1359:         z[j++] = z[i];
                   1360:       }
                   1361:     }
                   1362:     z[j] = 0;
                   1363:     sqlite3IoTrace("SQL %s\n", z);
                   1364:   }
                   1365: }
                   1366: #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
                   1367: 
                   1368: /*
                   1369: ** Allocate space from a fixed size buffer and return a pointer to
                   1370: ** that space.  If insufficient space is available, return NULL.
                   1371: **
                   1372: ** The pBuf parameter is the initial value of a pointer which will
                   1373: ** receive the new memory.  pBuf is normally NULL.  If pBuf is not
                   1374: ** NULL, it means that memory space has already been allocated and that
                   1375: ** this routine should not allocate any new memory.  When pBuf is not
                   1376: ** NULL simply return pBuf.  Only allocate new memory space when pBuf
                   1377: ** is NULL.
                   1378: **
                   1379: ** nByte is the number of bytes of space needed.
                   1380: **
                   1381: ** *ppFrom points to available space and pEnd points to the end of the
                   1382: ** available space.  When space is allocated, *ppFrom is advanced past
                   1383: ** the end of the allocated space.
                   1384: **
                   1385: ** *pnByte is a counter of the number of bytes of space that have failed
                   1386: ** to allocate.  If there is insufficient space in *ppFrom to satisfy the
                   1387: ** request, then increment *pnByte by the amount of the request.
                   1388: */
                   1389: static void *allocSpace(
                   1390:   void *pBuf,          /* Where return pointer will be stored */
                   1391:   int nByte,           /* Number of bytes to allocate */
                   1392:   u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
                   1393:   u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
                   1394:   int *pnByte          /* If allocation cannot be made, increment *pnByte */
                   1395: ){
                   1396:   assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
                   1397:   if( pBuf ) return pBuf;
                   1398:   nByte = ROUND8(nByte);
                   1399:   if( &(*ppFrom)[nByte] <= pEnd ){
                   1400:     pBuf = (void*)*ppFrom;
                   1401:     *ppFrom += nByte;
                   1402:   }else{
                   1403:     *pnByte += nByte;
                   1404:   }
                   1405:   return pBuf;
                   1406: }
                   1407: 
                   1408: /*
                   1409: ** Rewind the VDBE back to the beginning in preparation for
                   1410: ** running it.
                   1411: */
                   1412: void sqlite3VdbeRewind(Vdbe *p){
                   1413: #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
                   1414:   int i;
                   1415: #endif
                   1416:   assert( p!=0 );
                   1417:   assert( p->magic==VDBE_MAGIC_INIT );
                   1418: 
                   1419:   /* There should be at least one opcode.
                   1420:   */
                   1421:   assert( p->nOp>0 );
                   1422: 
                   1423:   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
                   1424:   p->magic = VDBE_MAGIC_RUN;
                   1425: 
                   1426: #ifdef SQLITE_DEBUG
                   1427:   for(i=1; i<p->nMem; i++){
                   1428:     assert( p->aMem[i].db==p->db );
                   1429:   }
                   1430: #endif
                   1431:   p->pc = -1;
                   1432:   p->rc = SQLITE_OK;
                   1433:   p->errorAction = OE_Abort;
                   1434:   p->magic = VDBE_MAGIC_RUN;
                   1435:   p->nChange = 0;
                   1436:   p->cacheCtr = 1;
                   1437:   p->minWriteFileFormat = 255;
                   1438:   p->iStatement = 0;
                   1439:   p->nFkConstraint = 0;
                   1440: #ifdef VDBE_PROFILE
                   1441:   for(i=0; i<p->nOp; i++){
                   1442:     p->aOp[i].cnt = 0;
                   1443:     p->aOp[i].cycles = 0;
                   1444:   }
                   1445: #endif
                   1446: }
                   1447: 
                   1448: /*
                   1449: ** Prepare a virtual machine for execution for the first time after
                   1450: ** creating the virtual machine.  This involves things such
                   1451: ** as allocating stack space and initializing the program counter.
                   1452: ** After the VDBE has be prepped, it can be executed by one or more
                   1453: ** calls to sqlite3VdbeExec().  
                   1454: **
                   1455: ** This function may be called exact once on a each virtual machine.
                   1456: ** After this routine is called the VM has been "packaged" and is ready
                   1457: ** to run.  After this routine is called, futher calls to 
                   1458: ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
                   1459: ** the Vdbe from the Parse object that helped generate it so that the
                   1460: ** the Vdbe becomes an independent entity and the Parse object can be
                   1461: ** destroyed.
                   1462: **
                   1463: ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
                   1464: ** to its initial state after it has been run.
                   1465: */
                   1466: void sqlite3VdbeMakeReady(
                   1467:   Vdbe *p,                       /* The VDBE */
                   1468:   Parse *pParse                  /* Parsing context */
                   1469: ){
                   1470:   sqlite3 *db;                   /* The database connection */
                   1471:   int nVar;                      /* Number of parameters */
                   1472:   int nMem;                      /* Number of VM memory registers */
                   1473:   int nCursor;                   /* Number of cursors required */
                   1474:   int nArg;                      /* Number of arguments in subprograms */
                   1475:   int nOnce;                     /* Number of OP_Once instructions */
                   1476:   int n;                         /* Loop counter */
                   1477:   u8 *zCsr;                      /* Memory available for allocation */
                   1478:   u8 *zEnd;                      /* First byte past allocated memory */
                   1479:   int nByte;                     /* How much extra memory is needed */
                   1480: 
                   1481:   assert( p!=0 );
                   1482:   assert( p->nOp>0 );
                   1483:   assert( pParse!=0 );
                   1484:   assert( p->magic==VDBE_MAGIC_INIT );
                   1485:   db = p->db;
                   1486:   assert( db->mallocFailed==0 );
                   1487:   nVar = pParse->nVar;
                   1488:   nMem = pParse->nMem;
                   1489:   nCursor = pParse->nTab;
                   1490:   nArg = pParse->nMaxArg;
                   1491:   nOnce = pParse->nOnce;
                   1492:   if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
                   1493:   
                   1494:   /* For each cursor required, also allocate a memory cell. Memory
                   1495:   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
                   1496:   ** the vdbe program. Instead they are used to allocate space for
                   1497:   ** VdbeCursor/BtCursor structures. The blob of memory associated with 
                   1498:   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
                   1499:   ** stores the blob of memory associated with cursor 1, etc.
                   1500:   **
                   1501:   ** See also: allocateCursor().
                   1502:   */
                   1503:   nMem += nCursor;
                   1504: 
                   1505:   /* Allocate space for memory registers, SQL variables, VDBE cursors and 
                   1506:   ** an array to marshal SQL function arguments in.
                   1507:   */
                   1508:   zCsr = (u8*)&p->aOp[p->nOp];       /* Memory avaliable for allocation */
                   1509:   zEnd = (u8*)&p->aOp[p->nOpAlloc];  /* First byte past end of zCsr[] */
                   1510: 
                   1511:   resolveP2Values(p, &nArg);
                   1512:   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
                   1513:   if( pParse->explain && nMem<10 ){
                   1514:     nMem = 10;
                   1515:   }
                   1516:   memset(zCsr, 0, zEnd-zCsr);
                   1517:   zCsr += (zCsr - (u8*)0)&7;
                   1518:   assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
                   1519:   p->expired = 0;
                   1520: 
                   1521:   /* Memory for registers, parameters, cursor, etc, is allocated in two
                   1522:   ** passes.  On the first pass, we try to reuse unused space at the 
                   1523:   ** end of the opcode array.  If we are unable to satisfy all memory
                   1524:   ** requirements by reusing the opcode array tail, then the second
                   1525:   ** pass will fill in the rest using a fresh allocation.  
                   1526:   **
                   1527:   ** This two-pass approach that reuses as much memory as possible from
                   1528:   ** the leftover space at the end of the opcode array can significantly
                   1529:   ** reduce the amount of memory held by a prepared statement.
                   1530:   */
                   1531:   do {
                   1532:     nByte = 0;
                   1533:     p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
                   1534:     p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
                   1535:     p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
                   1536:     p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
                   1537:     p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                   1538:                           &zCsr, zEnd, &nByte);
                   1539:     p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
                   1540:     if( nByte ){
                   1541:       p->pFree = sqlite3DbMallocZero(db, nByte);
                   1542:     }
                   1543:     zCsr = p->pFree;
                   1544:     zEnd = &zCsr[nByte];
                   1545:   }while( nByte && !db->mallocFailed );
                   1546: 
                   1547:   p->nCursor = (u16)nCursor;
                   1548:   p->nOnceFlag = nOnce;
                   1549:   if( p->aVar ){
                   1550:     p->nVar = (ynVar)nVar;
                   1551:     for(n=0; n<nVar; n++){
                   1552:       p->aVar[n].flags = MEM_Null;
                   1553:       p->aVar[n].db = db;
                   1554:     }
                   1555:   }
                   1556:   if( p->azVar ){
                   1557:     p->nzVar = pParse->nzVar;
                   1558:     memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
                   1559:     memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
                   1560:   }
                   1561:   if( p->aMem ){
                   1562:     p->aMem--;                      /* aMem[] goes from 1..nMem */
                   1563:     p->nMem = nMem;                 /*       not from 0..nMem-1 */
                   1564:     for(n=1; n<=nMem; n++){
                   1565:       p->aMem[n].flags = MEM_Invalid;
                   1566:       p->aMem[n].db = db;
                   1567:     }
                   1568:   }
                   1569:   p->explain = pParse->explain;
                   1570:   sqlite3VdbeRewind(p);
                   1571: }
                   1572: 
                   1573: /*
                   1574: ** Close a VDBE cursor and release all the resources that cursor 
                   1575: ** happens to hold.
                   1576: */
                   1577: void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
                   1578:   if( pCx==0 ){
                   1579:     return;
                   1580:   }
                   1581:   sqlite3VdbeSorterClose(p->db, pCx);
                   1582:   if( pCx->pBt ){
                   1583:     sqlite3BtreeClose(pCx->pBt);
                   1584:     /* The pCx->pCursor will be close automatically, if it exists, by
                   1585:     ** the call above. */
                   1586:   }else if( pCx->pCursor ){
                   1587:     sqlite3BtreeCloseCursor(pCx->pCursor);
                   1588:   }
                   1589: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   1590:   if( pCx->pVtabCursor ){
                   1591:     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
                   1592:     const sqlite3_module *pModule = pCx->pModule;
                   1593:     p->inVtabMethod = 1;
                   1594:     pModule->xClose(pVtabCursor);
                   1595:     p->inVtabMethod = 0;
                   1596:   }
                   1597: #endif
                   1598: }
                   1599: 
                   1600: /*
                   1601: ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
                   1602: ** is used, for example, when a trigger sub-program is halted to restore
                   1603: ** control to the main program.
                   1604: */
                   1605: int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
                   1606:   Vdbe *v = pFrame->v;
                   1607:   v->aOnceFlag = pFrame->aOnceFlag;
                   1608:   v->nOnceFlag = pFrame->nOnceFlag;
                   1609:   v->aOp = pFrame->aOp;
                   1610:   v->nOp = pFrame->nOp;
                   1611:   v->aMem = pFrame->aMem;
                   1612:   v->nMem = pFrame->nMem;
                   1613:   v->apCsr = pFrame->apCsr;
                   1614:   v->nCursor = pFrame->nCursor;
                   1615:   v->db->lastRowid = pFrame->lastRowid;
                   1616:   v->nChange = pFrame->nChange;
                   1617:   return pFrame->pc;
                   1618: }
                   1619: 
                   1620: /*
                   1621: ** Close all cursors.
                   1622: **
                   1623: ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 
                   1624: ** cell array. This is necessary as the memory cell array may contain
                   1625: ** pointers to VdbeFrame objects, which may in turn contain pointers to
                   1626: ** open cursors.
                   1627: */
                   1628: static void closeAllCursors(Vdbe *p){
                   1629:   if( p->pFrame ){
                   1630:     VdbeFrame *pFrame;
                   1631:     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
                   1632:     sqlite3VdbeFrameRestore(pFrame);
                   1633:   }
                   1634:   p->pFrame = 0;
                   1635:   p->nFrame = 0;
                   1636: 
                   1637:   if( p->apCsr ){
                   1638:     int i;
                   1639:     for(i=0; i<p->nCursor; i++){
                   1640:       VdbeCursor *pC = p->apCsr[i];
                   1641:       if( pC ){
                   1642:         sqlite3VdbeFreeCursor(p, pC);
                   1643:         p->apCsr[i] = 0;
                   1644:       }
                   1645:     }
                   1646:   }
                   1647:   if( p->aMem ){
                   1648:     releaseMemArray(&p->aMem[1], p->nMem);
                   1649:   }
                   1650:   while( p->pDelFrame ){
                   1651:     VdbeFrame *pDel = p->pDelFrame;
                   1652:     p->pDelFrame = pDel->pParent;
                   1653:     sqlite3VdbeFrameDelete(pDel);
                   1654:   }
                   1655: }
                   1656: 
                   1657: /*
                   1658: ** Clean up the VM after execution.
                   1659: **
                   1660: ** This routine will automatically close any cursors, lists, and/or
                   1661: ** sorters that were left open.  It also deletes the values of
                   1662: ** variables in the aVar[] array.
                   1663: */
                   1664: static void Cleanup(Vdbe *p){
                   1665:   sqlite3 *db = p->db;
                   1666: 
                   1667: #ifdef SQLITE_DEBUG
                   1668:   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
                   1669:   ** Vdbe.aMem[] arrays have already been cleaned up.  */
                   1670:   int i;
                   1671:   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
                   1672:   if( p->aMem ){
                   1673:     for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
                   1674:   }
                   1675: #endif
                   1676: 
                   1677:   sqlite3DbFree(db, p->zErrMsg);
                   1678:   p->zErrMsg = 0;
                   1679:   p->pResultSet = 0;
                   1680: }
                   1681: 
                   1682: /*
                   1683: ** Set the number of result columns that will be returned by this SQL
                   1684: ** statement. This is now set at compile time, rather than during
                   1685: ** execution of the vdbe program so that sqlite3_column_count() can
                   1686: ** be called on an SQL statement before sqlite3_step().
                   1687: */
                   1688: void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
                   1689:   Mem *pColName;
                   1690:   int n;
                   1691:   sqlite3 *db = p->db;
                   1692: 
                   1693:   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
                   1694:   sqlite3DbFree(db, p->aColName);
                   1695:   n = nResColumn*COLNAME_N;
                   1696:   p->nResColumn = (u16)nResColumn;
                   1697:   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
                   1698:   if( p->aColName==0 ) return;
                   1699:   while( n-- > 0 ){
                   1700:     pColName->flags = MEM_Null;
                   1701:     pColName->db = p->db;
                   1702:     pColName++;
                   1703:   }
                   1704: }
                   1705: 
                   1706: /*
                   1707: ** Set the name of the idx'th column to be returned by the SQL statement.
                   1708: ** zName must be a pointer to a nul terminated string.
                   1709: **
                   1710: ** This call must be made after a call to sqlite3VdbeSetNumCols().
                   1711: **
                   1712: ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
                   1713: ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
                   1714: ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
                   1715: */
                   1716: int sqlite3VdbeSetColName(
                   1717:   Vdbe *p,                         /* Vdbe being configured */
                   1718:   int idx,                         /* Index of column zName applies to */
                   1719:   int var,                         /* One of the COLNAME_* constants */
                   1720:   const char *zName,               /* Pointer to buffer containing name */
                   1721:   void (*xDel)(void*)              /* Memory management strategy for zName */
                   1722: ){
                   1723:   int rc;
                   1724:   Mem *pColName;
                   1725:   assert( idx<p->nResColumn );
                   1726:   assert( var<COLNAME_N );
                   1727:   if( p->db->mallocFailed ){
                   1728:     assert( !zName || xDel!=SQLITE_DYNAMIC );
                   1729:     return SQLITE_NOMEM;
                   1730:   }
                   1731:   assert( p->aColName!=0 );
                   1732:   pColName = &(p->aColName[idx+var*p->nResColumn]);
                   1733:   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
                   1734:   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
                   1735:   return rc;
                   1736: }
                   1737: 
                   1738: /*
                   1739: ** A read or write transaction may or may not be active on database handle
                   1740: ** db. If a transaction is active, commit it. If there is a
                   1741: ** write-transaction spanning more than one database file, this routine
                   1742: ** takes care of the master journal trickery.
                   1743: */
                   1744: static int vdbeCommit(sqlite3 *db, Vdbe *p){
                   1745:   int i;
                   1746:   int nTrans = 0;  /* Number of databases with an active write-transaction */
                   1747:   int rc = SQLITE_OK;
                   1748:   int needXcommit = 0;
                   1749: 
                   1750: #ifdef SQLITE_OMIT_VIRTUALTABLE
                   1751:   /* With this option, sqlite3VtabSync() is defined to be simply 
                   1752:   ** SQLITE_OK so p is not used. 
                   1753:   */
                   1754:   UNUSED_PARAMETER(p);
                   1755: #endif
                   1756: 
                   1757:   /* Before doing anything else, call the xSync() callback for any
                   1758:   ** virtual module tables written in this transaction. This has to
                   1759:   ** be done before determining whether a master journal file is 
                   1760:   ** required, as an xSync() callback may add an attached database
                   1761:   ** to the transaction.
                   1762:   */
                   1763:   rc = sqlite3VtabSync(db, &p->zErrMsg);
                   1764: 
                   1765:   /* This loop determines (a) if the commit hook should be invoked and
                   1766:   ** (b) how many database files have open write transactions, not 
                   1767:   ** including the temp database. (b) is important because if more than 
                   1768:   ** one database file has an open write transaction, a master journal
                   1769:   ** file is required for an atomic commit.
                   1770:   */ 
                   1771:   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
                   1772:     Btree *pBt = db->aDb[i].pBt;
                   1773:     if( sqlite3BtreeIsInTrans(pBt) ){
                   1774:       needXcommit = 1;
                   1775:       if( i!=1 ) nTrans++;
                   1776:       rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
                   1777:     }
                   1778:   }
                   1779:   if( rc!=SQLITE_OK ){
                   1780:     return rc;
                   1781:   }
                   1782: 
                   1783:   /* If there are any write-transactions at all, invoke the commit hook */
                   1784:   if( needXcommit && db->xCommitCallback ){
                   1785:     rc = db->xCommitCallback(db->pCommitArg);
                   1786:     if( rc ){
                   1787:       return SQLITE_CONSTRAINT;
                   1788:     }
                   1789:   }
                   1790: 
                   1791:   /* The simple case - no more than one database file (not counting the
                   1792:   ** TEMP database) has a transaction active.   There is no need for the
                   1793:   ** master-journal.
                   1794:   **
                   1795:   ** If the return value of sqlite3BtreeGetFilename() is a zero length
                   1796:   ** string, it means the main database is :memory: or a temp file.  In 
                   1797:   ** that case we do not support atomic multi-file commits, so use the 
                   1798:   ** simple case then too.
                   1799:   */
                   1800:   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
                   1801:    || nTrans<=1
                   1802:   ){
                   1803:     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
                   1804:       Btree *pBt = db->aDb[i].pBt;
                   1805:       if( pBt ){
                   1806:         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
                   1807:       }
                   1808:     }
                   1809: 
                   1810:     /* Do the commit only if all databases successfully complete phase 1. 
                   1811:     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
                   1812:     ** IO error while deleting or truncating a journal file. It is unlikely,
                   1813:     ** but could happen. In this case abandon processing and return the error.
                   1814:     */
                   1815:     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
                   1816:       Btree *pBt = db->aDb[i].pBt;
                   1817:       if( pBt ){
                   1818:         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
                   1819:       }
                   1820:     }
                   1821:     if( rc==SQLITE_OK ){
                   1822:       sqlite3VtabCommit(db);
                   1823:     }
                   1824:   }
                   1825: 
                   1826:   /* The complex case - There is a multi-file write-transaction active.
                   1827:   ** This requires a master journal file to ensure the transaction is
                   1828:   ** committed atomicly.
                   1829:   */
                   1830: #ifndef SQLITE_OMIT_DISKIO
                   1831:   else{
                   1832:     sqlite3_vfs *pVfs = db->pVfs;
                   1833:     int needSync = 0;
                   1834:     char *zMaster = 0;   /* File-name for the master journal */
                   1835:     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
                   1836:     sqlite3_file *pMaster = 0;
                   1837:     i64 offset = 0;
                   1838:     int res;
                   1839:     int retryCount = 0;
                   1840:     int nMainFile;
                   1841: 
                   1842:     /* Select a master journal file name */
                   1843:     nMainFile = sqlite3Strlen30(zMainFile);
                   1844:     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
                   1845:     if( zMaster==0 ) return SQLITE_NOMEM;
                   1846:     do {
                   1847:       u32 iRandom;
                   1848:       if( retryCount ){
                   1849:         if( retryCount>100 ){
                   1850:           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
                   1851:           sqlite3OsDelete(pVfs, zMaster, 0);
                   1852:           break;
                   1853:         }else if( retryCount==1 ){
                   1854:           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
                   1855:         }
                   1856:       }
                   1857:       retryCount++;
                   1858:       sqlite3_randomness(sizeof(iRandom), &iRandom);
                   1859:       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
                   1860:                                (iRandom>>8)&0xffffff, iRandom&0xff);
                   1861:       /* The antipenultimate character of the master journal name must
                   1862:       ** be "9" to avoid name collisions when using 8+3 filenames. */
                   1863:       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
                   1864:       sqlite3FileSuffix3(zMainFile, zMaster);
                   1865:       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
                   1866:     }while( rc==SQLITE_OK && res );
                   1867:     if( rc==SQLITE_OK ){
                   1868:       /* Open the master journal. */
                   1869:       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
                   1870:           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
                   1871:           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
                   1872:       );
                   1873:     }
                   1874:     if( rc!=SQLITE_OK ){
                   1875:       sqlite3DbFree(db, zMaster);
                   1876:       return rc;
                   1877:     }
                   1878:  
                   1879:     /* Write the name of each database file in the transaction into the new
                   1880:     ** master journal file. If an error occurs at this point close
                   1881:     ** and delete the master journal file. All the individual journal files
                   1882:     ** still have 'null' as the master journal pointer, so they will roll
                   1883:     ** back independently if a failure occurs.
                   1884:     */
                   1885:     for(i=0; i<db->nDb; i++){
                   1886:       Btree *pBt = db->aDb[i].pBt;
                   1887:       if( sqlite3BtreeIsInTrans(pBt) ){
                   1888:         char const *zFile = sqlite3BtreeGetJournalname(pBt);
                   1889:         if( zFile==0 ){
                   1890:           continue;  /* Ignore TEMP and :memory: databases */
                   1891:         }
                   1892:         assert( zFile[0]!=0 );
                   1893:         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
                   1894:           needSync = 1;
                   1895:         }
                   1896:         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
                   1897:         offset += sqlite3Strlen30(zFile)+1;
                   1898:         if( rc!=SQLITE_OK ){
                   1899:           sqlite3OsCloseFree(pMaster);
                   1900:           sqlite3OsDelete(pVfs, zMaster, 0);
                   1901:           sqlite3DbFree(db, zMaster);
                   1902:           return rc;
                   1903:         }
                   1904:       }
                   1905:     }
                   1906: 
                   1907:     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
                   1908:     ** flag is set this is not required.
                   1909:     */
                   1910:     if( needSync 
                   1911:      && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
                   1912:      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
                   1913:     ){
                   1914:       sqlite3OsCloseFree(pMaster);
                   1915:       sqlite3OsDelete(pVfs, zMaster, 0);
                   1916:       sqlite3DbFree(db, zMaster);
                   1917:       return rc;
                   1918:     }
                   1919: 
                   1920:     /* Sync all the db files involved in the transaction. The same call
                   1921:     ** sets the master journal pointer in each individual journal. If
                   1922:     ** an error occurs here, do not delete the master journal file.
                   1923:     **
                   1924:     ** If the error occurs during the first call to
                   1925:     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
                   1926:     ** master journal file will be orphaned. But we cannot delete it,
                   1927:     ** in case the master journal file name was written into the journal
                   1928:     ** file before the failure occurred.
                   1929:     */
                   1930:     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
                   1931:       Btree *pBt = db->aDb[i].pBt;
                   1932:       if( pBt ){
                   1933:         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
                   1934:       }
                   1935:     }
                   1936:     sqlite3OsCloseFree(pMaster);
                   1937:     assert( rc!=SQLITE_BUSY );
                   1938:     if( rc!=SQLITE_OK ){
                   1939:       sqlite3DbFree(db, zMaster);
                   1940:       return rc;
                   1941:     }
                   1942: 
                   1943:     /* Delete the master journal file. This commits the transaction. After
                   1944:     ** doing this the directory is synced again before any individual
                   1945:     ** transaction files are deleted.
                   1946:     */
                   1947:     rc = sqlite3OsDelete(pVfs, zMaster, 1);
                   1948:     sqlite3DbFree(db, zMaster);
                   1949:     zMaster = 0;
                   1950:     if( rc ){
                   1951:       return rc;
                   1952:     }
                   1953: 
                   1954:     /* All files and directories have already been synced, so the following
                   1955:     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
                   1956:     ** deleting or truncating journals. If something goes wrong while
                   1957:     ** this is happening we don't really care. The integrity of the
                   1958:     ** transaction is already guaranteed, but some stray 'cold' journals
                   1959:     ** may be lying around. Returning an error code won't help matters.
                   1960:     */
                   1961:     disable_simulated_io_errors();
                   1962:     sqlite3BeginBenignMalloc();
                   1963:     for(i=0; i<db->nDb; i++){ 
                   1964:       Btree *pBt = db->aDb[i].pBt;
                   1965:       if( pBt ){
                   1966:         sqlite3BtreeCommitPhaseTwo(pBt, 1);
                   1967:       }
                   1968:     }
                   1969:     sqlite3EndBenignMalloc();
                   1970:     enable_simulated_io_errors();
                   1971: 
                   1972:     sqlite3VtabCommit(db);
                   1973:   }
                   1974: #endif
                   1975: 
                   1976:   return rc;
                   1977: }
                   1978: 
                   1979: /* 
                   1980: ** This routine checks that the sqlite3.activeVdbeCnt count variable
                   1981: ** matches the number of vdbe's in the list sqlite3.pVdbe that are
                   1982: ** currently active. An assertion fails if the two counts do not match.
                   1983: ** This is an internal self-check only - it is not an essential processing
                   1984: ** step.
                   1985: **
                   1986: ** This is a no-op if NDEBUG is defined.
                   1987: */
                   1988: #ifndef NDEBUG
                   1989: static void checkActiveVdbeCnt(sqlite3 *db){
                   1990:   Vdbe *p;
                   1991:   int cnt = 0;
                   1992:   int nWrite = 0;
                   1993:   p = db->pVdbe;
                   1994:   while( p ){
                   1995:     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
                   1996:       cnt++;
                   1997:       if( p->readOnly==0 ) nWrite++;
                   1998:     }
                   1999:     p = p->pNext;
                   2000:   }
                   2001:   assert( cnt==db->activeVdbeCnt );
                   2002:   assert( nWrite==db->writeVdbeCnt );
                   2003: }
                   2004: #else
                   2005: #define checkActiveVdbeCnt(x)
                   2006: #endif
                   2007: 
                   2008: /*
                   2009: ** For every Btree that in database connection db which 
                   2010: ** has been modified, "trip" or invalidate each cursor in
                   2011: ** that Btree might have been modified so that the cursor
                   2012: ** can never be used again.  This happens when a rollback
                   2013: *** occurs.  We have to trip all the other cursors, even
                   2014: ** cursor from other VMs in different database connections,
                   2015: ** so that none of them try to use the data at which they
                   2016: ** were pointing and which now may have been changed due
                   2017: ** to the rollback.
                   2018: **
                   2019: ** Remember that a rollback can delete tables complete and
                   2020: ** reorder rootpages.  So it is not sufficient just to save
                   2021: ** the state of the cursor.  We have to invalidate the cursor
                   2022: ** so that it is never used again.
                   2023: */
                   2024: static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
                   2025:   int i;
                   2026:   for(i=0; i<db->nDb; i++){
                   2027:     Btree *p = db->aDb[i].pBt;
                   2028:     if( p && sqlite3BtreeIsInTrans(p) ){
                   2029:       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
                   2030:     }
                   2031:   }
                   2032: }
                   2033: 
                   2034: /*
                   2035: ** If the Vdbe passed as the first argument opened a statement-transaction,
                   2036: ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
                   2037: ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
                   2038: ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
                   2039: ** statement transaction is commtted.
                   2040: **
                   2041: ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
                   2042: ** Otherwise SQLITE_OK.
                   2043: */
                   2044: int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
                   2045:   sqlite3 *const db = p->db;
                   2046:   int rc = SQLITE_OK;
                   2047: 
                   2048:   /* If p->iStatement is greater than zero, then this Vdbe opened a 
                   2049:   ** statement transaction that should be closed here. The only exception
                   2050:   ** is that an IO error may have occured, causing an emergency rollback.
                   2051:   ** In this case (db->nStatement==0), and there is nothing to do.
                   2052:   */
                   2053:   if( db->nStatement && p->iStatement ){
                   2054:     int i;
                   2055:     const int iSavepoint = p->iStatement-1;
                   2056: 
                   2057:     assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
                   2058:     assert( db->nStatement>0 );
                   2059:     assert( p->iStatement==(db->nStatement+db->nSavepoint) );
                   2060: 
                   2061:     for(i=0; i<db->nDb; i++){ 
                   2062:       int rc2 = SQLITE_OK;
                   2063:       Btree *pBt = db->aDb[i].pBt;
                   2064:       if( pBt ){
                   2065:         if( eOp==SAVEPOINT_ROLLBACK ){
                   2066:           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
                   2067:         }
                   2068:         if( rc2==SQLITE_OK ){
                   2069:           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
                   2070:         }
                   2071:         if( rc==SQLITE_OK ){
                   2072:           rc = rc2;
                   2073:         }
                   2074:       }
                   2075:     }
                   2076:     db->nStatement--;
                   2077:     p->iStatement = 0;
                   2078: 
                   2079:     if( rc==SQLITE_OK ){
                   2080:       if( eOp==SAVEPOINT_ROLLBACK ){
                   2081:         rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
                   2082:       }
                   2083:       if( rc==SQLITE_OK ){
                   2084:         rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
                   2085:       }
                   2086:     }
                   2087: 
                   2088:     /* If the statement transaction is being rolled back, also restore the 
                   2089:     ** database handles deferred constraint counter to the value it had when 
                   2090:     ** the statement transaction was opened.  */
                   2091:     if( eOp==SAVEPOINT_ROLLBACK ){
                   2092:       db->nDeferredCons = p->nStmtDefCons;
                   2093:     }
                   2094:   }
                   2095:   return rc;
                   2096: }
                   2097: 
                   2098: /*
                   2099: ** This function is called when a transaction opened by the database 
                   2100: ** handle associated with the VM passed as an argument is about to be 
                   2101: ** committed. If there are outstanding deferred foreign key constraint
                   2102: ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
                   2103: **
                   2104: ** If there are outstanding FK violations and this function returns 
                   2105: ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
                   2106: ** an error message to it. Then return SQLITE_ERROR.
                   2107: */
                   2108: #ifndef SQLITE_OMIT_FOREIGN_KEY
                   2109: int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
                   2110:   sqlite3 *db = p->db;
                   2111:   if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
                   2112:     p->rc = SQLITE_CONSTRAINT;
                   2113:     p->errorAction = OE_Abort;
                   2114:     sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
                   2115:     return SQLITE_ERROR;
                   2116:   }
                   2117:   return SQLITE_OK;
                   2118: }
                   2119: #endif
                   2120: 
                   2121: /*
                   2122: ** This routine is called the when a VDBE tries to halt.  If the VDBE
                   2123: ** has made changes and is in autocommit mode, then commit those
                   2124: ** changes.  If a rollback is needed, then do the rollback.
                   2125: **
                   2126: ** This routine is the only way to move the state of a VM from
                   2127: ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
                   2128: ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
                   2129: **
                   2130: ** Return an error code.  If the commit could not complete because of
                   2131: ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
                   2132: ** means the close did not happen and needs to be repeated.
                   2133: */
                   2134: int sqlite3VdbeHalt(Vdbe *p){
                   2135:   int rc;                         /* Used to store transient return codes */
                   2136:   sqlite3 *db = p->db;
                   2137: 
                   2138:   /* This function contains the logic that determines if a statement or
                   2139:   ** transaction will be committed or rolled back as a result of the
                   2140:   ** execution of this virtual machine. 
                   2141:   **
                   2142:   ** If any of the following errors occur:
                   2143:   **
                   2144:   **     SQLITE_NOMEM
                   2145:   **     SQLITE_IOERR
                   2146:   **     SQLITE_FULL
                   2147:   **     SQLITE_INTERRUPT
                   2148:   **
                   2149:   ** Then the internal cache might have been left in an inconsistent
                   2150:   ** state.  We need to rollback the statement transaction, if there is
                   2151:   ** one, or the complete transaction if there is no statement transaction.
                   2152:   */
                   2153: 
                   2154:   if( p->db->mallocFailed ){
                   2155:     p->rc = SQLITE_NOMEM;
                   2156:   }
                   2157:   if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
                   2158:   closeAllCursors(p);
                   2159:   if( p->magic!=VDBE_MAGIC_RUN ){
                   2160:     return SQLITE_OK;
                   2161:   }
                   2162:   checkActiveVdbeCnt(db);
                   2163: 
                   2164:   /* No commit or rollback needed if the program never started */
                   2165:   if( p->pc>=0 ){
                   2166:     int mrc;   /* Primary error code from p->rc */
                   2167:     int eStatementOp = 0;
                   2168:     int isSpecialError;            /* Set to true if a 'special' error */
                   2169: 
                   2170:     /* Lock all btrees used by the statement */
                   2171:     sqlite3VdbeEnter(p);
                   2172: 
                   2173:     /* Check for one of the special errors */
                   2174:     mrc = p->rc & 0xff;
                   2175:     assert( p->rc!=SQLITE_IOERR_BLOCKED );  /* This error no longer exists */
                   2176:     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
                   2177:                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
                   2178:     if( isSpecialError ){
                   2179:       /* If the query was read-only and the error code is SQLITE_INTERRUPT, 
                   2180:       ** no rollback is necessary. Otherwise, at least a savepoint 
                   2181:       ** transaction must be rolled back to restore the database to a 
                   2182:       ** consistent state.
                   2183:       **
                   2184:       ** Even if the statement is read-only, it is important to perform
                   2185:       ** a statement or transaction rollback operation. If the error 
                   2186:       ** occured while writing to the journal, sub-journal or database
                   2187:       ** file as part of an effort to free up cache space (see function
                   2188:       ** pagerStress() in pager.c), the rollback is required to restore 
                   2189:       ** the pager to a consistent state.
                   2190:       */
                   2191:       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
                   2192:         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
                   2193:           eStatementOp = SAVEPOINT_ROLLBACK;
                   2194:         }else{
                   2195:           /* We are forced to roll back the active transaction. Before doing
                   2196:           ** so, abort any other statements this handle currently has active.
                   2197:           */
                   2198:           invalidateCursorsOnModifiedBtrees(db);
                   2199:           sqlite3RollbackAll(db);
                   2200:           sqlite3CloseSavepoints(db);
                   2201:           db->autoCommit = 1;
                   2202:         }
                   2203:       }
                   2204:     }
                   2205: 
                   2206:     /* Check for immediate foreign key violations. */
                   2207:     if( p->rc==SQLITE_OK ){
                   2208:       sqlite3VdbeCheckFk(p, 0);
                   2209:     }
                   2210:   
                   2211:     /* If the auto-commit flag is set and this is the only active writer 
                   2212:     ** VM, then we do either a commit or rollback of the current transaction. 
                   2213:     **
                   2214:     ** Note: This block also runs if one of the special errors handled 
                   2215:     ** above has occurred. 
                   2216:     */
                   2217:     if( !sqlite3VtabInSync(db) 
                   2218:      && db->autoCommit 
                   2219:      && db->writeVdbeCnt==(p->readOnly==0) 
                   2220:     ){
                   2221:       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
                   2222:         rc = sqlite3VdbeCheckFk(p, 1);
                   2223:         if( rc!=SQLITE_OK ){
                   2224:           if( NEVER(p->readOnly) ){
                   2225:             sqlite3VdbeLeave(p);
                   2226:             return SQLITE_ERROR;
                   2227:           }
                   2228:           rc = SQLITE_CONSTRAINT;
                   2229:         }else{ 
                   2230:           /* The auto-commit flag is true, the vdbe program was successful 
                   2231:           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
                   2232:           ** key constraints to hold up the transaction. This means a commit 
                   2233:           ** is required. */
                   2234:           rc = vdbeCommit(db, p);
                   2235:         }
                   2236:         if( rc==SQLITE_BUSY && p->readOnly ){
                   2237:           sqlite3VdbeLeave(p);
                   2238:           return SQLITE_BUSY;
                   2239:         }else if( rc!=SQLITE_OK ){
                   2240:           p->rc = rc;
                   2241:           sqlite3RollbackAll(db);
                   2242:         }else{
                   2243:           db->nDeferredCons = 0;
                   2244:           sqlite3CommitInternalChanges(db);
                   2245:         }
                   2246:       }else{
                   2247:         sqlite3RollbackAll(db);
                   2248:       }
                   2249:       db->nStatement = 0;
                   2250:     }else if( eStatementOp==0 ){
                   2251:       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
                   2252:         eStatementOp = SAVEPOINT_RELEASE;
                   2253:       }else if( p->errorAction==OE_Abort ){
                   2254:         eStatementOp = SAVEPOINT_ROLLBACK;
                   2255:       }else{
                   2256:         invalidateCursorsOnModifiedBtrees(db);
                   2257:         sqlite3RollbackAll(db);
                   2258:         sqlite3CloseSavepoints(db);
                   2259:         db->autoCommit = 1;
                   2260:       }
                   2261:     }
                   2262:   
                   2263:     /* If eStatementOp is non-zero, then a statement transaction needs to
                   2264:     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
                   2265:     ** do so. If this operation returns an error, and the current statement
                   2266:     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
                   2267:     ** current statement error code.
                   2268:     */
                   2269:     if( eStatementOp ){
                   2270:       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
                   2271:       if( rc ){
                   2272:         if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
                   2273:           p->rc = rc;
                   2274:           sqlite3DbFree(db, p->zErrMsg);
                   2275:           p->zErrMsg = 0;
                   2276:         }
                   2277:         invalidateCursorsOnModifiedBtrees(db);
                   2278:         sqlite3RollbackAll(db);
                   2279:         sqlite3CloseSavepoints(db);
                   2280:         db->autoCommit = 1;
                   2281:       }
                   2282:     }
                   2283:   
                   2284:     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
                   2285:     ** has been rolled back, update the database connection change-counter. 
                   2286:     */
                   2287:     if( p->changeCntOn ){
                   2288:       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
                   2289:         sqlite3VdbeSetChanges(db, p->nChange);
                   2290:       }else{
                   2291:         sqlite3VdbeSetChanges(db, 0);
                   2292:       }
                   2293:       p->nChange = 0;
                   2294:     }
                   2295:   
                   2296:     /* Rollback or commit any schema changes that occurred. */
                   2297:     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
                   2298:       sqlite3ResetInternalSchema(db, -1);
                   2299:       db->flags = (db->flags | SQLITE_InternChanges);
                   2300:     }
                   2301: 
                   2302:     /* Release the locks */
                   2303:     sqlite3VdbeLeave(p);
                   2304:   }
                   2305: 
                   2306:   /* We have successfully halted and closed the VM.  Record this fact. */
                   2307:   if( p->pc>=0 ){
                   2308:     db->activeVdbeCnt--;
                   2309:     if( !p->readOnly ){
                   2310:       db->writeVdbeCnt--;
                   2311:     }
                   2312:     assert( db->activeVdbeCnt>=db->writeVdbeCnt );
                   2313:   }
                   2314:   p->magic = VDBE_MAGIC_HALT;
                   2315:   checkActiveVdbeCnt(db);
                   2316:   if( p->db->mallocFailed ){
                   2317:     p->rc = SQLITE_NOMEM;
                   2318:   }
                   2319: 
                   2320:   /* If the auto-commit flag is set to true, then any locks that were held
                   2321:   ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
                   2322:   ** to invoke any required unlock-notify callbacks.
                   2323:   */
                   2324:   if( db->autoCommit ){
                   2325:     sqlite3ConnectionUnlocked(db);
                   2326:   }
                   2327: 
                   2328:   assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
                   2329:   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
                   2330: }
                   2331: 
                   2332: 
                   2333: /*
                   2334: ** Each VDBE holds the result of the most recent sqlite3_step() call
                   2335: ** in p->rc.  This routine sets that result back to SQLITE_OK.
                   2336: */
                   2337: void sqlite3VdbeResetStepResult(Vdbe *p){
                   2338:   p->rc = SQLITE_OK;
                   2339: }
                   2340: 
                   2341: /*
                   2342: ** Copy the error code and error message belonging to the VDBE passed
                   2343: ** as the first argument to its database handle (so that they will be 
                   2344: ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
                   2345: **
                   2346: ** This function does not clear the VDBE error code or message, just
                   2347: ** copies them to the database handle.
                   2348: */
                   2349: int sqlite3VdbeTransferError(Vdbe *p){
                   2350:   sqlite3 *db = p->db;
                   2351:   int rc = p->rc;
                   2352:   if( p->zErrMsg ){
                   2353:     u8 mallocFailed = db->mallocFailed;
                   2354:     sqlite3BeginBenignMalloc();
                   2355:     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
                   2356:     sqlite3EndBenignMalloc();
                   2357:     db->mallocFailed = mallocFailed;
                   2358:     db->errCode = rc;
                   2359:   }else{
                   2360:     sqlite3Error(db, rc, 0);
                   2361:   }
                   2362:   return rc;
                   2363: }
                   2364: 
                   2365: /*
                   2366: ** Clean up a VDBE after execution but do not delete the VDBE just yet.
                   2367: ** Write any error messages into *pzErrMsg.  Return the result code.
                   2368: **
                   2369: ** After this routine is run, the VDBE should be ready to be executed
                   2370: ** again.
                   2371: **
                   2372: ** To look at it another way, this routine resets the state of the
                   2373: ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
                   2374: ** VDBE_MAGIC_INIT.
                   2375: */
                   2376: int sqlite3VdbeReset(Vdbe *p){
                   2377:   sqlite3 *db;
                   2378:   db = p->db;
                   2379: 
                   2380:   /* If the VM did not run to completion or if it encountered an
                   2381:   ** error, then it might not have been halted properly.  So halt
                   2382:   ** it now.
                   2383:   */
                   2384:   sqlite3VdbeHalt(p);
                   2385: 
                   2386:   /* If the VDBE has be run even partially, then transfer the error code
                   2387:   ** and error message from the VDBE into the main database structure.  But
                   2388:   ** if the VDBE has just been set to run but has not actually executed any
                   2389:   ** instructions yet, leave the main database error information unchanged.
                   2390:   */
                   2391:   if( p->pc>=0 ){
                   2392:     sqlite3VdbeTransferError(p);
                   2393:     sqlite3DbFree(db, p->zErrMsg);
                   2394:     p->zErrMsg = 0;
                   2395:     if( p->runOnlyOnce ) p->expired = 1;
                   2396:   }else if( p->rc && p->expired ){
                   2397:     /* The expired flag was set on the VDBE before the first call
                   2398:     ** to sqlite3_step(). For consistency (since sqlite3_step() was
                   2399:     ** called), set the database error in this case as well.
                   2400:     */
                   2401:     sqlite3Error(db, p->rc, 0);
                   2402:     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
                   2403:     sqlite3DbFree(db, p->zErrMsg);
                   2404:     p->zErrMsg = 0;
                   2405:   }
                   2406: 
                   2407:   /* Reclaim all memory used by the VDBE
                   2408:   */
                   2409:   Cleanup(p);
                   2410: 
                   2411:   /* Save profiling information from this VDBE run.
                   2412:   */
                   2413: #ifdef VDBE_PROFILE
                   2414:   {
                   2415:     FILE *out = fopen("vdbe_profile.out", "a");
                   2416:     if( out ){
                   2417:       int i;
                   2418:       fprintf(out, "---- ");
                   2419:       for(i=0; i<p->nOp; i++){
                   2420:         fprintf(out, "%02x", p->aOp[i].opcode);
                   2421:       }
                   2422:       fprintf(out, "\n");
                   2423:       for(i=0; i<p->nOp; i++){
                   2424:         fprintf(out, "%6d %10lld %8lld ",
                   2425:            p->aOp[i].cnt,
                   2426:            p->aOp[i].cycles,
                   2427:            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
                   2428:         );
                   2429:         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
                   2430:       }
                   2431:       fclose(out);
                   2432:     }
                   2433:   }
                   2434: #endif
                   2435:   p->magic = VDBE_MAGIC_INIT;
                   2436:   return p->rc & db->errMask;
                   2437: }
                   2438:  
                   2439: /*
                   2440: ** Clean up and delete a VDBE after execution.  Return an integer which is
                   2441: ** the result code.  Write any error message text into *pzErrMsg.
                   2442: */
                   2443: int sqlite3VdbeFinalize(Vdbe *p){
                   2444:   int rc = SQLITE_OK;
                   2445:   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
                   2446:     rc = sqlite3VdbeReset(p);
                   2447:     assert( (rc & p->db->errMask)==rc );
                   2448:   }
                   2449:   sqlite3VdbeDelete(p);
                   2450:   return rc;
                   2451: }
                   2452: 
                   2453: /*
                   2454: ** Call the destructor for each auxdata entry in pVdbeFunc for which
                   2455: ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
                   2456: ** are always destroyed.  To destroy all auxdata entries, call this
                   2457: ** routine with mask==0.
                   2458: */
                   2459: void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
                   2460:   int i;
                   2461:   for(i=0; i<pVdbeFunc->nAux; i++){
                   2462:     struct AuxData *pAux = &pVdbeFunc->apAux[i];
                   2463:     if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
                   2464:       if( pAux->xDelete ){
                   2465:         pAux->xDelete(pAux->pAux);
                   2466:       }
                   2467:       pAux->pAux = 0;
                   2468:     }
                   2469:   }
                   2470: }
                   2471: 
                   2472: /*
                   2473: ** Free all memory associated with the Vdbe passed as the second argument.
                   2474: ** The difference between this function and sqlite3VdbeDelete() is that
                   2475: ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
                   2476: ** the database connection.
                   2477: */
                   2478: void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
                   2479:   SubProgram *pSub, *pNext;
                   2480:   int i;
                   2481:   assert( p->db==0 || p->db==db );
                   2482:   releaseMemArray(p->aVar, p->nVar);
                   2483:   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
                   2484:   for(pSub=p->pProgram; pSub; pSub=pNext){
                   2485:     pNext = pSub->pNext;
                   2486:     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
                   2487:     sqlite3DbFree(db, pSub);
                   2488:   }
                   2489:   for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
                   2490:   vdbeFreeOpArray(db, p->aOp, p->nOp);
                   2491:   sqlite3DbFree(db, p->aLabel);
                   2492:   sqlite3DbFree(db, p->aColName);
                   2493:   sqlite3DbFree(db, p->zSql);
                   2494:   sqlite3DbFree(db, p->pFree);
                   2495: #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
                   2496:   sqlite3DbFree(db, p->zExplain);
                   2497:   sqlite3DbFree(db, p->pExplain);
                   2498: #endif
                   2499:   sqlite3DbFree(db, p);
                   2500: }
                   2501: 
                   2502: /*
                   2503: ** Delete an entire VDBE.
                   2504: */
                   2505: void sqlite3VdbeDelete(Vdbe *p){
                   2506:   sqlite3 *db;
                   2507: 
                   2508:   if( NEVER(p==0) ) return;
                   2509:   db = p->db;
                   2510:   if( p->pPrev ){
                   2511:     p->pPrev->pNext = p->pNext;
                   2512:   }else{
                   2513:     assert( db->pVdbe==p );
                   2514:     db->pVdbe = p->pNext;
                   2515:   }
                   2516:   if( p->pNext ){
                   2517:     p->pNext->pPrev = p->pPrev;
                   2518:   }
                   2519:   p->magic = VDBE_MAGIC_DEAD;
                   2520:   p->db = 0;
                   2521:   sqlite3VdbeDeleteObject(db, p);
                   2522: }
                   2523: 
                   2524: /*
                   2525: ** Make sure the cursor p is ready to read or write the row to which it
                   2526: ** was last positioned.  Return an error code if an OOM fault or I/O error
                   2527: ** prevents us from positioning the cursor to its correct position.
                   2528: **
                   2529: ** If a MoveTo operation is pending on the given cursor, then do that
                   2530: ** MoveTo now.  If no move is pending, check to see if the row has been
                   2531: ** deleted out from under the cursor and if it has, mark the row as
                   2532: ** a NULL row.
                   2533: **
                   2534: ** If the cursor is already pointing to the correct row and that row has
                   2535: ** not been deleted out from under the cursor, then this routine is a no-op.
                   2536: */
                   2537: int sqlite3VdbeCursorMoveto(VdbeCursor *p){
                   2538:   if( p->deferredMoveto ){
                   2539:     int res, rc;
                   2540: #ifdef SQLITE_TEST
                   2541:     extern int sqlite3_search_count;
                   2542: #endif
                   2543:     assert( p->isTable );
                   2544:     rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
                   2545:     if( rc ) return rc;
                   2546:     p->lastRowid = p->movetoTarget;
                   2547:     if( res!=0 ) return SQLITE_CORRUPT_BKPT;
                   2548:     p->rowidIsValid = 1;
                   2549: #ifdef SQLITE_TEST
                   2550:     sqlite3_search_count++;
                   2551: #endif
                   2552:     p->deferredMoveto = 0;
                   2553:     p->cacheStatus = CACHE_STALE;
                   2554:   }else if( ALWAYS(p->pCursor) ){
                   2555:     int hasMoved;
                   2556:     int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
                   2557:     if( rc ) return rc;
                   2558:     if( hasMoved ){
                   2559:       p->cacheStatus = CACHE_STALE;
                   2560:       p->nullRow = 1;
                   2561:     }
                   2562:   }
                   2563:   return SQLITE_OK;
                   2564: }
                   2565: 
                   2566: /*
                   2567: ** The following functions:
                   2568: **
                   2569: ** sqlite3VdbeSerialType()
                   2570: ** sqlite3VdbeSerialTypeLen()
                   2571: ** sqlite3VdbeSerialLen()
                   2572: ** sqlite3VdbeSerialPut()
                   2573: ** sqlite3VdbeSerialGet()
                   2574: **
                   2575: ** encapsulate the code that serializes values for storage in SQLite
                   2576: ** data and index records. Each serialized value consists of a
                   2577: ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
                   2578: ** integer, stored as a varint.
                   2579: **
                   2580: ** In an SQLite index record, the serial type is stored directly before
                   2581: ** the blob of data that it corresponds to. In a table record, all serial
                   2582: ** types are stored at the start of the record, and the blobs of data at
                   2583: ** the end. Hence these functions allow the caller to handle the
                   2584: ** serial-type and data blob seperately.
                   2585: **
                   2586: ** The following table describes the various storage classes for data:
                   2587: **
                   2588: **   serial type        bytes of data      type
                   2589: **   --------------     ---------------    ---------------
                   2590: **      0                     0            NULL
                   2591: **      1                     1            signed integer
                   2592: **      2                     2            signed integer
                   2593: **      3                     3            signed integer
                   2594: **      4                     4            signed integer
                   2595: **      5                     6            signed integer
                   2596: **      6                     8            signed integer
                   2597: **      7                     8            IEEE float
                   2598: **      8                     0            Integer constant 0
                   2599: **      9                     0            Integer constant 1
                   2600: **     10,11                               reserved for expansion
                   2601: **    N>=12 and even       (N-12)/2        BLOB
                   2602: **    N>=13 and odd        (N-13)/2        text
                   2603: **
                   2604: ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
                   2605: ** of SQLite will not understand those serial types.
                   2606: */
                   2607: 
                   2608: /*
                   2609: ** Return the serial-type for the value stored in pMem.
                   2610: */
                   2611: u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
                   2612:   int flags = pMem->flags;
                   2613:   int n;
                   2614: 
                   2615:   if( flags&MEM_Null ){
                   2616:     return 0;
                   2617:   }
                   2618:   if( flags&MEM_Int ){
                   2619:     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
                   2620: #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
                   2621:     i64 i = pMem->u.i;
                   2622:     u64 u;
                   2623:     if( file_format>=4 && (i&1)==i ){
                   2624:       return 8+(u32)i;
                   2625:     }
                   2626:     if( i<0 ){
                   2627:       if( i<(-MAX_6BYTE) ) return 6;
                   2628:       /* Previous test prevents:  u = -(-9223372036854775808) */
                   2629:       u = -i;
                   2630:     }else{
                   2631:       u = i;
                   2632:     }
                   2633:     if( u<=127 ) return 1;
                   2634:     if( u<=32767 ) return 2;
                   2635:     if( u<=8388607 ) return 3;
                   2636:     if( u<=2147483647 ) return 4;
                   2637:     if( u<=MAX_6BYTE ) return 5;
                   2638:     return 6;
                   2639:   }
                   2640:   if( flags&MEM_Real ){
                   2641:     return 7;
                   2642:   }
                   2643:   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
                   2644:   n = pMem->n;
                   2645:   if( flags & MEM_Zero ){
                   2646:     n += pMem->u.nZero;
                   2647:   }
                   2648:   assert( n>=0 );
                   2649:   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
                   2650: }
                   2651: 
                   2652: /*
                   2653: ** Return the length of the data corresponding to the supplied serial-type.
                   2654: */
                   2655: u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
                   2656:   if( serial_type>=12 ){
                   2657:     return (serial_type-12)/2;
                   2658:   }else{
                   2659:     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
                   2660:     return aSize[serial_type];
                   2661:   }
                   2662: }
                   2663: 
                   2664: /*
                   2665: ** If we are on an architecture with mixed-endian floating 
                   2666: ** points (ex: ARM7) then swap the lower 4 bytes with the 
                   2667: ** upper 4 bytes.  Return the result.
                   2668: **
                   2669: ** For most architectures, this is a no-op.
                   2670: **
                   2671: ** (later):  It is reported to me that the mixed-endian problem
                   2672: ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
                   2673: ** that early versions of GCC stored the two words of a 64-bit
                   2674: ** float in the wrong order.  And that error has been propagated
                   2675: ** ever since.  The blame is not necessarily with GCC, though.
                   2676: ** GCC might have just copying the problem from a prior compiler.
                   2677: ** I am also told that newer versions of GCC that follow a different
                   2678: ** ABI get the byte order right.
                   2679: **
                   2680: ** Developers using SQLite on an ARM7 should compile and run their
                   2681: ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
                   2682: ** enabled, some asserts below will ensure that the byte order of
                   2683: ** floating point values is correct.
                   2684: **
                   2685: ** (2007-08-30)  Frank van Vugt has studied this problem closely
                   2686: ** and has send his findings to the SQLite developers.  Frank
                   2687: ** writes that some Linux kernels offer floating point hardware
                   2688: ** emulation that uses only 32-bit mantissas instead of a full 
                   2689: ** 48-bits as required by the IEEE standard.  (This is the
                   2690: ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
                   2691: ** byte swapping becomes very complicated.  To avoid problems,
                   2692: ** the necessary byte swapping is carried out using a 64-bit integer
                   2693: ** rather than a 64-bit float.  Frank assures us that the code here
                   2694: ** works for him.  We, the developers, have no way to independently
                   2695: ** verify this, but Frank seems to know what he is talking about
                   2696: ** so we trust him.
                   2697: */
                   2698: #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
                   2699: static u64 floatSwap(u64 in){
                   2700:   union {
                   2701:     u64 r;
                   2702:     u32 i[2];
                   2703:   } u;
                   2704:   u32 t;
                   2705: 
                   2706:   u.r = in;
                   2707:   t = u.i[0];
                   2708:   u.i[0] = u.i[1];
                   2709:   u.i[1] = t;
                   2710:   return u.r;
                   2711: }
                   2712: # define swapMixedEndianFloat(X)  X = floatSwap(X)
                   2713: #else
                   2714: # define swapMixedEndianFloat(X)
                   2715: #endif
                   2716: 
                   2717: /*
                   2718: ** Write the serialized data blob for the value stored in pMem into 
                   2719: ** buf. It is assumed that the caller has allocated sufficient space.
                   2720: ** Return the number of bytes written.
                   2721: **
                   2722: ** nBuf is the amount of space left in buf[].  nBuf must always be
                   2723: ** large enough to hold the entire field.  Except, if the field is
                   2724: ** a blob with a zero-filled tail, then buf[] might be just the right
                   2725: ** size to hold everything except for the zero-filled tail.  If buf[]
                   2726: ** is only big enough to hold the non-zero prefix, then only write that
                   2727: ** prefix into buf[].  But if buf[] is large enough to hold both the
                   2728: ** prefix and the tail then write the prefix and set the tail to all
                   2729: ** zeros.
                   2730: **
                   2731: ** Return the number of bytes actually written into buf[].  The number
                   2732: ** of bytes in the zero-filled tail is included in the return value only
                   2733: ** if those bytes were zeroed in buf[].
                   2734: */ 
                   2735: u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
                   2736:   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
                   2737:   u32 len;
                   2738: 
                   2739:   /* Integer and Real */
                   2740:   if( serial_type<=7 && serial_type>0 ){
                   2741:     u64 v;
                   2742:     u32 i;
                   2743:     if( serial_type==7 ){
                   2744:       assert( sizeof(v)==sizeof(pMem->r) );
                   2745:       memcpy(&v, &pMem->r, sizeof(v));
                   2746:       swapMixedEndianFloat(v);
                   2747:     }else{
                   2748:       v = pMem->u.i;
                   2749:     }
                   2750:     len = i = sqlite3VdbeSerialTypeLen(serial_type);
                   2751:     assert( len<=(u32)nBuf );
                   2752:     while( i-- ){
                   2753:       buf[i] = (u8)(v&0xFF);
                   2754:       v >>= 8;
                   2755:     }
                   2756:     return len;
                   2757:   }
                   2758: 
                   2759:   /* String or blob */
                   2760:   if( serial_type>=12 ){
                   2761:     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
                   2762:              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
                   2763:     assert( pMem->n<=nBuf );
                   2764:     len = pMem->n;
                   2765:     memcpy(buf, pMem->z, len);
                   2766:     if( pMem->flags & MEM_Zero ){
                   2767:       len += pMem->u.nZero;
                   2768:       assert( nBuf>=0 );
                   2769:       if( len > (u32)nBuf ){
                   2770:         len = (u32)nBuf;
                   2771:       }
                   2772:       memset(&buf[pMem->n], 0, len-pMem->n);
                   2773:     }
                   2774:     return len;
                   2775:   }
                   2776: 
                   2777:   /* NULL or constants 0 or 1 */
                   2778:   return 0;
                   2779: }
                   2780: 
                   2781: /*
                   2782: ** Deserialize the data blob pointed to by buf as serial type serial_type
                   2783: ** and store the result in pMem.  Return the number of bytes read.
                   2784: */ 
                   2785: u32 sqlite3VdbeSerialGet(
                   2786:   const unsigned char *buf,     /* Buffer to deserialize from */
                   2787:   u32 serial_type,              /* Serial type to deserialize */
                   2788:   Mem *pMem                     /* Memory cell to write value into */
                   2789: ){
                   2790:   switch( serial_type ){
                   2791:     case 10:   /* Reserved for future use */
                   2792:     case 11:   /* Reserved for future use */
                   2793:     case 0: {  /* NULL */
                   2794:       pMem->flags = MEM_Null;
                   2795:       break;
                   2796:     }
                   2797:     case 1: { /* 1-byte signed integer */
                   2798:       pMem->u.i = (signed char)buf[0];
                   2799:       pMem->flags = MEM_Int;
                   2800:       return 1;
                   2801:     }
                   2802:     case 2: { /* 2-byte signed integer */
                   2803:       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
                   2804:       pMem->flags = MEM_Int;
                   2805:       return 2;
                   2806:     }
                   2807:     case 3: { /* 3-byte signed integer */
                   2808:       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
                   2809:       pMem->flags = MEM_Int;
                   2810:       return 3;
                   2811:     }
                   2812:     case 4: { /* 4-byte signed integer */
                   2813:       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
                   2814:       pMem->flags = MEM_Int;
                   2815:       return 4;
                   2816:     }
                   2817:     case 5: { /* 6-byte signed integer */
                   2818:       u64 x = (((signed char)buf[0])<<8) | buf[1];
                   2819:       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
                   2820:       x = (x<<32) | y;
                   2821:       pMem->u.i = *(i64*)&x;
                   2822:       pMem->flags = MEM_Int;
                   2823:       return 6;
                   2824:     }
                   2825:     case 6:   /* 8-byte signed integer */
                   2826:     case 7: { /* IEEE floating point */
                   2827:       u64 x;
                   2828:       u32 y;
                   2829: #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
                   2830:       /* Verify that integers and floating point values use the same
                   2831:       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
                   2832:       ** defined that 64-bit floating point values really are mixed
                   2833:       ** endian.
                   2834:       */
                   2835:       static const u64 t1 = ((u64)0x3ff00000)<<32;
                   2836:       static const double r1 = 1.0;
                   2837:       u64 t2 = t1;
                   2838:       swapMixedEndianFloat(t2);
                   2839:       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
                   2840: #endif
                   2841: 
                   2842:       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
                   2843:       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
                   2844:       x = (x<<32) | y;
                   2845:       if( serial_type==6 ){
                   2846:         pMem->u.i = *(i64*)&x;
                   2847:         pMem->flags = MEM_Int;
                   2848:       }else{
                   2849:         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
                   2850:         swapMixedEndianFloat(x);
                   2851:         memcpy(&pMem->r, &x, sizeof(x));
                   2852:         pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
                   2853:       }
                   2854:       return 8;
                   2855:     }
                   2856:     case 8:    /* Integer 0 */
                   2857:     case 9: {  /* Integer 1 */
                   2858:       pMem->u.i = serial_type-8;
                   2859:       pMem->flags = MEM_Int;
                   2860:       return 0;
                   2861:     }
                   2862:     default: {
                   2863:       u32 len = (serial_type-12)/2;
                   2864:       pMem->z = (char *)buf;
                   2865:       pMem->n = len;
                   2866:       pMem->xDel = 0;
                   2867:       if( serial_type&0x01 ){
                   2868:         pMem->flags = MEM_Str | MEM_Ephem;
                   2869:       }else{
                   2870:         pMem->flags = MEM_Blob | MEM_Ephem;
                   2871:       }
                   2872:       return len;
                   2873:     }
                   2874:   }
                   2875:   return 0;
                   2876: }
                   2877: 
                   2878: /*
                   2879: ** This routine is used to allocate sufficient space for an UnpackedRecord
                   2880: ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
                   2881: ** the first argument is a pointer to KeyInfo structure pKeyInfo.
                   2882: **
                   2883: ** The space is either allocated using sqlite3DbMallocRaw() or from within
                   2884: ** the unaligned buffer passed via the second and third arguments (presumably
                   2885: ** stack space). If the former, then *ppFree is set to a pointer that should
                   2886: ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 
                   2887: ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
                   2888: ** before returning.
                   2889: **
                   2890: ** If an OOM error occurs, NULL is returned.
                   2891: */
                   2892: UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
                   2893:   KeyInfo *pKeyInfo,              /* Description of the record */
                   2894:   char *pSpace,                   /* Unaligned space available */
                   2895:   int szSpace,                    /* Size of pSpace[] in bytes */
                   2896:   char **ppFree                   /* OUT: Caller should free this pointer */
                   2897: ){
                   2898:   UnpackedRecord *p;              /* Unpacked record to return */
                   2899:   int nOff;                       /* Increment pSpace by nOff to align it */
                   2900:   int nByte;                      /* Number of bytes required for *p */
                   2901: 
                   2902:   /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
                   2903:   ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 
                   2904:   ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
                   2905:   */
                   2906:   nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
                   2907:   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
                   2908:   if( nByte>szSpace+nOff ){
                   2909:     p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
                   2910:     *ppFree = (char *)p;
                   2911:     if( !p ) return 0;
                   2912:   }else{
                   2913:     p = (UnpackedRecord*)&pSpace[nOff];
                   2914:     *ppFree = 0;
                   2915:   }
                   2916: 
                   2917:   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
                   2918:   p->pKeyInfo = pKeyInfo;
                   2919:   p->nField = pKeyInfo->nField + 1;
                   2920:   return p;
                   2921: }
                   2922: 
                   2923: /*
                   2924: ** Given the nKey-byte encoding of a record in pKey[], populate the 
                   2925: ** UnpackedRecord structure indicated by the fourth argument with the
                   2926: ** contents of the decoded record.
                   2927: */ 
                   2928: void sqlite3VdbeRecordUnpack(
                   2929:   KeyInfo *pKeyInfo,     /* Information about the record format */
                   2930:   int nKey,              /* Size of the binary record */
                   2931:   const void *pKey,      /* The binary record */
                   2932:   UnpackedRecord *p      /* Populate this structure before returning. */
                   2933: ){
                   2934:   const unsigned char *aKey = (const unsigned char *)pKey;
                   2935:   int d; 
                   2936:   u32 idx;                        /* Offset in aKey[] to read from */
                   2937:   u16 u;                          /* Unsigned loop counter */
                   2938:   u32 szHdr;
                   2939:   Mem *pMem = p->aMem;
                   2940: 
                   2941:   p->flags = 0;
                   2942:   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
                   2943:   idx = getVarint32(aKey, szHdr);
                   2944:   d = szHdr;
                   2945:   u = 0;
                   2946:   while( idx<szHdr && u<p->nField && d<=nKey ){
                   2947:     u32 serial_type;
                   2948: 
                   2949:     idx += getVarint32(&aKey[idx], serial_type);
                   2950:     pMem->enc = pKeyInfo->enc;
                   2951:     pMem->db = pKeyInfo->db;
                   2952:     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
                   2953:     pMem->zMalloc = 0;
                   2954:     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
                   2955:     pMem++;
                   2956:     u++;
                   2957:   }
                   2958:   assert( u<=pKeyInfo->nField + 1 );
                   2959:   p->nField = u;
                   2960: }
                   2961: 
                   2962: /*
                   2963: ** This function compares the two table rows or index records
                   2964: ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
                   2965: ** or positive integer if key1 is less than, equal to or 
                   2966: ** greater than key2.  The {nKey1, pKey1} key must be a blob
                   2967: ** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
                   2968: ** key must be a parsed key such as obtained from
                   2969: ** sqlite3VdbeParseRecord.
                   2970: **
                   2971: ** Key1 and Key2 do not have to contain the same number of fields.
                   2972: ** The key with fewer fields is usually compares less than the 
                   2973: ** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
                   2974: ** and the common prefixes are equal, then key1 is less than key2.
                   2975: ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
                   2976: ** equal, then the keys are considered to be equal and
                   2977: ** the parts beyond the common prefix are ignored.
                   2978: */
                   2979: int sqlite3VdbeRecordCompare(
                   2980:   int nKey1, const void *pKey1, /* Left key */
                   2981:   UnpackedRecord *pPKey2        /* Right key */
                   2982: ){
                   2983:   int d1;            /* Offset into aKey[] of next data element */
                   2984:   u32 idx1;          /* Offset into aKey[] of next header element */
                   2985:   u32 szHdr1;        /* Number of bytes in header */
                   2986:   int i = 0;
                   2987:   int nField;
                   2988:   int rc = 0;
                   2989:   const unsigned char *aKey1 = (const unsigned char *)pKey1;
                   2990:   KeyInfo *pKeyInfo;
                   2991:   Mem mem1;
                   2992: 
                   2993:   pKeyInfo = pPKey2->pKeyInfo;
                   2994:   mem1.enc = pKeyInfo->enc;
                   2995:   mem1.db = pKeyInfo->db;
                   2996:   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
                   2997:   VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
                   2998: 
                   2999:   /* Compilers may complain that mem1.u.i is potentially uninitialized.
                   3000:   ** We could initialize it, as shown here, to silence those complaints.
                   3001:   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
                   3002:   ** the unnecessary initialization has a measurable negative performance
                   3003:   ** impact, since this routine is a very high runner.  And so, we choose
                   3004:   ** to ignore the compiler warnings and leave this variable uninitialized.
                   3005:   */
                   3006:   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
                   3007:   
                   3008:   idx1 = getVarint32(aKey1, szHdr1);
                   3009:   d1 = szHdr1;
                   3010:   nField = pKeyInfo->nField;
                   3011:   while( idx1<szHdr1 && i<pPKey2->nField ){
                   3012:     u32 serial_type1;
                   3013: 
                   3014:     /* Read the serial types for the next element in each key. */
                   3015:     idx1 += getVarint32( aKey1+idx1, serial_type1 );
                   3016:     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
                   3017: 
                   3018:     /* Extract the values to be compared.
                   3019:     */
                   3020:     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
                   3021: 
                   3022:     /* Do the comparison
                   3023:     */
                   3024:     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
                   3025:                            i<nField ? pKeyInfo->aColl[i] : 0);
                   3026:     if( rc!=0 ){
                   3027:       assert( mem1.zMalloc==0 );  /* See comment below */
                   3028: 
                   3029:       /* Invert the result if we are using DESC sort order. */
                   3030:       if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
                   3031:         rc = -rc;
                   3032:       }
                   3033:     
                   3034:       /* If the PREFIX_SEARCH flag is set and all fields except the final
                   3035:       ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 
                   3036:       ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
                   3037:       ** This is used by the OP_IsUnique opcode.
                   3038:       */
                   3039:       if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
                   3040:         assert( idx1==szHdr1 && rc );
                   3041:         assert( mem1.flags & MEM_Int );
                   3042:         pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
                   3043:         pPKey2->rowid = mem1.u.i;
                   3044:       }
                   3045:     
                   3046:       return rc;
                   3047:     }
                   3048:     i++;
                   3049:   }
                   3050: 
                   3051:   /* No memory allocation is ever used on mem1.  Prove this using
                   3052:   ** the following assert().  If the assert() fails, it indicates a
                   3053:   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
                   3054:   */
                   3055:   assert( mem1.zMalloc==0 );
                   3056: 
                   3057:   /* rc==0 here means that one of the keys ran out of fields and
                   3058:   ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
                   3059:   ** flag is set, then break the tie by treating key2 as larger.
                   3060:   ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
                   3061:   ** are considered to be equal.  Otherwise, the longer key is the 
                   3062:   ** larger.  As it happens, the pPKey2 will always be the longer
                   3063:   ** if there is a difference.
                   3064:   */
                   3065:   assert( rc==0 );
                   3066:   if( pPKey2->flags & UNPACKED_INCRKEY ){
                   3067:     rc = -1;
                   3068:   }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
                   3069:     /* Leave rc==0 */
                   3070:   }else if( idx1<szHdr1 ){
                   3071:     rc = 1;
                   3072:   }
                   3073:   return rc;
                   3074: }
                   3075:  
                   3076: 
                   3077: /*
                   3078: ** pCur points at an index entry created using the OP_MakeRecord opcode.
                   3079: ** Read the rowid (the last field in the record) and store it in *rowid.
                   3080: ** Return SQLITE_OK if everything works, or an error code otherwise.
                   3081: **
                   3082: ** pCur might be pointing to text obtained from a corrupt database file.
                   3083: ** So the content cannot be trusted.  Do appropriate checks on the content.
                   3084: */
                   3085: int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
                   3086:   i64 nCellKey = 0;
                   3087:   int rc;
                   3088:   u32 szHdr;        /* Size of the header */
                   3089:   u32 typeRowid;    /* Serial type of the rowid */
                   3090:   u32 lenRowid;     /* Size of the rowid */
                   3091:   Mem m, v;
                   3092: 
                   3093:   UNUSED_PARAMETER(db);
                   3094: 
                   3095:   /* Get the size of the index entry.  Only indices entries of less
                   3096:   ** than 2GiB are support - anything large must be database corruption.
                   3097:   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
                   3098:   ** this code can safely assume that nCellKey is 32-bits  
                   3099:   */
                   3100:   assert( sqlite3BtreeCursorIsValid(pCur) );
                   3101:   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
                   3102:   assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
                   3103:   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
                   3104: 
                   3105:   /* Read in the complete content of the index entry */
                   3106:   memset(&m, 0, sizeof(m));
                   3107:   rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
                   3108:   if( rc ){
                   3109:     return rc;
                   3110:   }
                   3111: 
                   3112:   /* The index entry must begin with a header size */
                   3113:   (void)getVarint32((u8*)m.z, szHdr);
                   3114:   testcase( szHdr==3 );
                   3115:   testcase( szHdr==m.n );
                   3116:   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
                   3117:     goto idx_rowid_corruption;
                   3118:   }
                   3119: 
                   3120:   /* The last field of the index should be an integer - the ROWID.
                   3121:   ** Verify that the last entry really is an integer. */
                   3122:   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
                   3123:   testcase( typeRowid==1 );
                   3124:   testcase( typeRowid==2 );
                   3125:   testcase( typeRowid==3 );
                   3126:   testcase( typeRowid==4 );
                   3127:   testcase( typeRowid==5 );
                   3128:   testcase( typeRowid==6 );
                   3129:   testcase( typeRowid==8 );
                   3130:   testcase( typeRowid==9 );
                   3131:   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
                   3132:     goto idx_rowid_corruption;
                   3133:   }
                   3134:   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
                   3135:   testcase( (u32)m.n==szHdr+lenRowid );
                   3136:   if( unlikely((u32)m.n<szHdr+lenRowid) ){
                   3137:     goto idx_rowid_corruption;
                   3138:   }
                   3139: 
                   3140:   /* Fetch the integer off the end of the index record */
                   3141:   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
                   3142:   *rowid = v.u.i;
                   3143:   sqlite3VdbeMemRelease(&m);
                   3144:   return SQLITE_OK;
                   3145: 
                   3146:   /* Jump here if database corruption is detected after m has been
                   3147:   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
                   3148: idx_rowid_corruption:
                   3149:   testcase( m.zMalloc!=0 );
                   3150:   sqlite3VdbeMemRelease(&m);
                   3151:   return SQLITE_CORRUPT_BKPT;
                   3152: }
                   3153: 
                   3154: /*
                   3155: ** Compare the key of the index entry that cursor pC is pointing to against
                   3156: ** the key string in pUnpacked.  Write into *pRes a number
                   3157: ** that is negative, zero, or positive if pC is less than, equal to,
                   3158: ** or greater than pUnpacked.  Return SQLITE_OK on success.
                   3159: **
                   3160: ** pUnpacked is either created without a rowid or is truncated so that it
                   3161: ** omits the rowid at the end.  The rowid at the end of the index entry
                   3162: ** is ignored as well.  Hence, this routine only compares the prefixes 
                   3163: ** of the keys prior to the final rowid, not the entire key.
                   3164: */
                   3165: int sqlite3VdbeIdxKeyCompare(
                   3166:   VdbeCursor *pC,             /* The cursor to compare against */
                   3167:   UnpackedRecord *pUnpacked,  /* Unpacked version of key to compare against */
                   3168:   int *res                    /* Write the comparison result here */
                   3169: ){
                   3170:   i64 nCellKey = 0;
                   3171:   int rc;
                   3172:   BtCursor *pCur = pC->pCursor;
                   3173:   Mem m;
                   3174: 
                   3175:   assert( sqlite3BtreeCursorIsValid(pCur) );
                   3176:   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
                   3177:   assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
                   3178:   /* nCellKey will always be between 0 and 0xffffffff because of the say
                   3179:   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
                   3180:   if( nCellKey<=0 || nCellKey>0x7fffffff ){
                   3181:     *res = 0;
                   3182:     return SQLITE_CORRUPT_BKPT;
                   3183:   }
                   3184:   memset(&m, 0, sizeof(m));
                   3185:   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
                   3186:   if( rc ){
                   3187:     return rc;
                   3188:   }
                   3189:   assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
                   3190:   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
                   3191:   sqlite3VdbeMemRelease(&m);
                   3192:   return SQLITE_OK;
                   3193: }
                   3194: 
                   3195: /*
                   3196: ** This routine sets the value to be returned by subsequent calls to
                   3197: ** sqlite3_changes() on the database handle 'db'. 
                   3198: */
                   3199: void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
                   3200:   assert( sqlite3_mutex_held(db->mutex) );
                   3201:   db->nChange = nChange;
                   3202:   db->nTotalChange += nChange;
                   3203: }
                   3204: 
                   3205: /*
                   3206: ** Set a flag in the vdbe to update the change counter when it is finalised
                   3207: ** or reset.
                   3208: */
                   3209: void sqlite3VdbeCountChanges(Vdbe *v){
                   3210:   v->changeCntOn = 1;
                   3211: }
                   3212: 
                   3213: /*
                   3214: ** Mark every prepared statement associated with a database connection
                   3215: ** as expired.
                   3216: **
                   3217: ** An expired statement means that recompilation of the statement is
                   3218: ** recommend.  Statements expire when things happen that make their
                   3219: ** programs obsolete.  Removing user-defined functions or collating
                   3220: ** sequences, or changing an authorization function are the types of
                   3221: ** things that make prepared statements obsolete.
                   3222: */
                   3223: void sqlite3ExpirePreparedStatements(sqlite3 *db){
                   3224:   Vdbe *p;
                   3225:   for(p = db->pVdbe; p; p=p->pNext){
                   3226:     p->expired = 1;
                   3227:   }
                   3228: }
                   3229: 
                   3230: /*
                   3231: ** Return the database associated with the Vdbe.
                   3232: */
                   3233: sqlite3 *sqlite3VdbeDb(Vdbe *v){
                   3234:   return v->db;
                   3235: }
                   3236: 
                   3237: /*
                   3238: ** Return a pointer to an sqlite3_value structure containing the value bound
                   3239: ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 
                   3240: ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
                   3241: ** constants) to the value before returning it.
                   3242: **
                   3243: ** The returned value must be freed by the caller using sqlite3ValueFree().
                   3244: */
                   3245: sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
                   3246:   assert( iVar>0 );
                   3247:   if( v ){
                   3248:     Mem *pMem = &v->aVar[iVar-1];
                   3249:     if( 0==(pMem->flags & MEM_Null) ){
                   3250:       sqlite3_value *pRet = sqlite3ValueNew(v->db);
                   3251:       if( pRet ){
                   3252:         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
                   3253:         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
                   3254:         sqlite3VdbeMemStoreType((Mem *)pRet);
                   3255:       }
                   3256:       return pRet;
                   3257:     }
                   3258:   }
                   3259:   return 0;
                   3260: }
                   3261: 
                   3262: /*
                   3263: ** Configure SQL variable iVar so that binding a new value to it signals
                   3264: ** to sqlite3_reoptimize() that re-preparing the statement may result
                   3265: ** in a better query plan.
                   3266: */
                   3267: void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
                   3268:   assert( iVar>0 );
                   3269:   if( iVar>32 ){
                   3270:     v->expmask = 0xffffffff;
                   3271:   }else{
                   3272:     v->expmask |= ((u32)1 << (iVar-1));
                   3273:   }
                   3274: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>