Annotation of embedaddon/sqlite3/src/vtab.c, revision 1.1.1.1
1.1 misho 1: /*
2: ** 2006 June 10
3: **
4: ** The author disclaims copyright to this source code. In place of
5: ** a legal notice, here is a blessing:
6: **
7: ** May you do good and not evil.
8: ** May you find forgiveness for yourself and forgive others.
9: ** May you share freely, never taking more than you give.
10: **
11: *************************************************************************
12: ** This file contains code used to help implement virtual tables.
13: */
14: #ifndef SQLITE_OMIT_VIRTUALTABLE
15: #include "sqliteInt.h"
16:
17: /*
18: ** Before a virtual table xCreate() or xConnect() method is invoked, the
19: ** sqlite3.pVtabCtx member variable is set to point to an instance of
20: ** this struct allocated on the stack. It is used by the implementation of
21: ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22: ** are invoked only from within xCreate and xConnect methods.
23: */
24: struct VtabCtx {
25: Table *pTab;
26: VTable *pVTable;
27: };
28:
29: /*
30: ** The actual function that does the work of creating a new module.
31: ** This function implements the sqlite3_create_module() and
32: ** sqlite3_create_module_v2() interfaces.
33: */
34: static int createModule(
35: sqlite3 *db, /* Database in which module is registered */
36: const char *zName, /* Name assigned to this module */
37: const sqlite3_module *pModule, /* The definition of the module */
38: void *pAux, /* Context pointer for xCreate/xConnect */
39: void (*xDestroy)(void *) /* Module destructor function */
40: ){
41: int rc, nName;
42: Module *pMod;
43:
44: sqlite3_mutex_enter(db->mutex);
45: nName = sqlite3Strlen30(zName);
46: pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
47: if( pMod ){
48: Module *pDel;
49: char *zCopy = (char *)(&pMod[1]);
50: memcpy(zCopy, zName, nName+1);
51: pMod->zName = zCopy;
52: pMod->pModule = pModule;
53: pMod->pAux = pAux;
54: pMod->xDestroy = xDestroy;
55: pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
56: if( pDel && pDel->xDestroy ){
57: sqlite3ResetInternalSchema(db, -1);
58: pDel->xDestroy(pDel->pAux);
59: }
60: sqlite3DbFree(db, pDel);
61: if( pDel==pMod ){
62: db->mallocFailed = 1;
63: }
64: }else if( xDestroy ){
65: xDestroy(pAux);
66: }
67: rc = sqlite3ApiExit(db, SQLITE_OK);
68: sqlite3_mutex_leave(db->mutex);
69: return rc;
70: }
71:
72:
73: /*
74: ** External API function used to create a new virtual-table module.
75: */
76: int sqlite3_create_module(
77: sqlite3 *db, /* Database in which module is registered */
78: const char *zName, /* Name assigned to this module */
79: const sqlite3_module *pModule, /* The definition of the module */
80: void *pAux /* Context pointer for xCreate/xConnect */
81: ){
82: return createModule(db, zName, pModule, pAux, 0);
83: }
84:
85: /*
86: ** External API function used to create a new virtual-table module.
87: */
88: int sqlite3_create_module_v2(
89: sqlite3 *db, /* Database in which module is registered */
90: const char *zName, /* Name assigned to this module */
91: const sqlite3_module *pModule, /* The definition of the module */
92: void *pAux, /* Context pointer for xCreate/xConnect */
93: void (*xDestroy)(void *) /* Module destructor function */
94: ){
95: return createModule(db, zName, pModule, pAux, xDestroy);
96: }
97:
98: /*
99: ** Lock the virtual table so that it cannot be disconnected.
100: ** Locks nest. Every lock should have a corresponding unlock.
101: ** If an unlock is omitted, resources leaks will occur.
102: **
103: ** If a disconnect is attempted while a virtual table is locked,
104: ** the disconnect is deferred until all locks have been removed.
105: */
106: void sqlite3VtabLock(VTable *pVTab){
107: pVTab->nRef++;
108: }
109:
110:
111: /*
112: ** pTab is a pointer to a Table structure representing a virtual-table.
113: ** Return a pointer to the VTable object used by connection db to access
114: ** this virtual-table, if one has been created, or NULL otherwise.
115: */
116: VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
117: VTable *pVtab;
118: assert( IsVirtual(pTab) );
119: for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
120: return pVtab;
121: }
122:
123: /*
124: ** Decrement the ref-count on a virtual table object. When the ref-count
125: ** reaches zero, call the xDisconnect() method to delete the object.
126: */
127: void sqlite3VtabUnlock(VTable *pVTab){
128: sqlite3 *db = pVTab->db;
129:
130: assert( db );
131: assert( pVTab->nRef>0 );
132: assert( sqlite3SafetyCheckOk(db) );
133:
134: pVTab->nRef--;
135: if( pVTab->nRef==0 ){
136: sqlite3_vtab *p = pVTab->pVtab;
137: if( p ){
138: p->pModule->xDisconnect(p);
139: }
140: sqlite3DbFree(db, pVTab);
141: }
142: }
143:
144: /*
145: ** Table p is a virtual table. This function moves all elements in the
146: ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
147: ** database connections to be disconnected at the next opportunity.
148: ** Except, if argument db is not NULL, then the entry associated with
149: ** connection db is left in the p->pVTable list.
150: */
151: static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
152: VTable *pRet = 0;
153: VTable *pVTable = p->pVTable;
154: p->pVTable = 0;
155:
156: /* Assert that the mutex (if any) associated with the BtShared database
157: ** that contains table p is held by the caller. See header comments
158: ** above function sqlite3VtabUnlockList() for an explanation of why
159: ** this makes it safe to access the sqlite3.pDisconnect list of any
160: ** database connection that may have an entry in the p->pVTable list.
161: */
162: assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
163:
164: while( pVTable ){
165: sqlite3 *db2 = pVTable->db;
166: VTable *pNext = pVTable->pNext;
167: assert( db2 );
168: if( db2==db ){
169: pRet = pVTable;
170: p->pVTable = pRet;
171: pRet->pNext = 0;
172: }else{
173: pVTable->pNext = db2->pDisconnect;
174: db2->pDisconnect = pVTable;
175: }
176: pVTable = pNext;
177: }
178:
179: assert( !db || pRet );
180: return pRet;
181: }
182:
183:
184: /*
185: ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
186: **
187: ** This function may only be called when the mutexes associated with all
188: ** shared b-tree databases opened using connection db are held by the
189: ** caller. This is done to protect the sqlite3.pDisconnect list. The
190: ** sqlite3.pDisconnect list is accessed only as follows:
191: **
192: ** 1) By this function. In this case, all BtShared mutexes and the mutex
193: ** associated with the database handle itself must be held.
194: **
195: ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
196: ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
197: ** associated with the database the virtual table is stored in is held
198: ** or, if the virtual table is stored in a non-sharable database, then
199: ** the database handle mutex is held.
200: **
201: ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
202: ** by multiple threads. It is thread-safe.
203: */
204: void sqlite3VtabUnlockList(sqlite3 *db){
205: VTable *p = db->pDisconnect;
206: db->pDisconnect = 0;
207:
208: assert( sqlite3BtreeHoldsAllMutexes(db) );
209: assert( sqlite3_mutex_held(db->mutex) );
210:
211: if( p ){
212: sqlite3ExpirePreparedStatements(db);
213: do {
214: VTable *pNext = p->pNext;
215: sqlite3VtabUnlock(p);
216: p = pNext;
217: }while( p );
218: }
219: }
220:
221: /*
222: ** Clear any and all virtual-table information from the Table record.
223: ** This routine is called, for example, just before deleting the Table
224: ** record.
225: **
226: ** Since it is a virtual-table, the Table structure contains a pointer
227: ** to the head of a linked list of VTable structures. Each VTable
228: ** structure is associated with a single sqlite3* user of the schema.
229: ** The reference count of the VTable structure associated with database
230: ** connection db is decremented immediately (which may lead to the
231: ** structure being xDisconnected and free). Any other VTable structures
232: ** in the list are moved to the sqlite3.pDisconnect list of the associated
233: ** database connection.
234: */
235: void sqlite3VtabClear(sqlite3 *db, Table *p){
236: if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
237: if( p->azModuleArg ){
238: int i;
239: for(i=0; i<p->nModuleArg; i++){
240: sqlite3DbFree(db, p->azModuleArg[i]);
241: }
242: sqlite3DbFree(db, p->azModuleArg);
243: }
244: }
245:
246: /*
247: ** Add a new module argument to pTable->azModuleArg[].
248: ** The string is not copied - the pointer is stored. The
249: ** string will be freed automatically when the table is
250: ** deleted.
251: */
252: static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
253: int i = pTable->nModuleArg++;
254: int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
255: char **azModuleArg;
256: azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
257: if( azModuleArg==0 ){
258: int j;
259: for(j=0; j<i; j++){
260: sqlite3DbFree(db, pTable->azModuleArg[j]);
261: }
262: sqlite3DbFree(db, zArg);
263: sqlite3DbFree(db, pTable->azModuleArg);
264: pTable->nModuleArg = 0;
265: }else{
266: azModuleArg[i] = zArg;
267: azModuleArg[i+1] = 0;
268: }
269: pTable->azModuleArg = azModuleArg;
270: }
271:
272: /*
273: ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
274: ** statement. The module name has been parsed, but the optional list
275: ** of parameters that follow the module name are still pending.
276: */
277: void sqlite3VtabBeginParse(
278: Parse *pParse, /* Parsing context */
279: Token *pName1, /* Name of new table, or database name */
280: Token *pName2, /* Name of new table or NULL */
281: Token *pModuleName /* Name of the module for the virtual table */
282: ){
283: int iDb; /* The database the table is being created in */
284: Table *pTable; /* The new virtual table */
285: sqlite3 *db; /* Database connection */
286:
287: sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
288: pTable = pParse->pNewTable;
289: if( pTable==0 ) return;
290: assert( 0==pTable->pIndex );
291:
292: db = pParse->db;
293: iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
294: assert( iDb>=0 );
295:
296: pTable->tabFlags |= TF_Virtual;
297: pTable->nModuleArg = 0;
298: addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
299: addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
300: addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
301: pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
302:
303: #ifndef SQLITE_OMIT_AUTHORIZATION
304: /* Creating a virtual table invokes the authorization callback twice.
305: ** The first invocation, to obtain permission to INSERT a row into the
306: ** sqlite_master table, has already been made by sqlite3StartTable().
307: ** The second call, to obtain permission to create the table, is made now.
308: */
309: if( pTable->azModuleArg ){
310: sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
311: pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
312: }
313: #endif
314: }
315:
316: /*
317: ** This routine takes the module argument that has been accumulating
318: ** in pParse->zArg[] and appends it to the list of arguments on the
319: ** virtual table currently under construction in pParse->pTable.
320: */
321: static void addArgumentToVtab(Parse *pParse){
322: if( pParse->sArg.z && ALWAYS(pParse->pNewTable) ){
323: const char *z = (const char*)pParse->sArg.z;
324: int n = pParse->sArg.n;
325: sqlite3 *db = pParse->db;
326: addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
327: }
328: }
329:
330: /*
331: ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
332: ** has been completely parsed.
333: */
334: void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
335: Table *pTab = pParse->pNewTable; /* The table being constructed */
336: sqlite3 *db = pParse->db; /* The database connection */
337:
338: if( pTab==0 ) return;
339: addArgumentToVtab(pParse);
340: pParse->sArg.z = 0;
341: if( pTab->nModuleArg<1 ) return;
342:
343: /* If the CREATE VIRTUAL TABLE statement is being entered for the
344: ** first time (in other words if the virtual table is actually being
345: ** created now instead of just being read out of sqlite_master) then
346: ** do additional initialization work and store the statement text
347: ** in the sqlite_master table.
348: */
349: if( !db->init.busy ){
350: char *zStmt;
351: char *zWhere;
352: int iDb;
353: Vdbe *v;
354:
355: /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
356: if( pEnd ){
357: pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
358: }
359: zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
360:
361: /* A slot for the record has already been allocated in the
362: ** SQLITE_MASTER table. We just need to update that slot with all
363: ** the information we've collected.
364: **
365: ** The VM register number pParse->regRowid holds the rowid of an
366: ** entry in the sqlite_master table tht was created for this vtab
367: ** by sqlite3StartTable().
368: */
369: iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
370: sqlite3NestedParse(pParse,
371: "UPDATE %Q.%s "
372: "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
373: "WHERE rowid=#%d",
374: db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
375: pTab->zName,
376: pTab->zName,
377: zStmt,
378: pParse->regRowid
379: );
380: sqlite3DbFree(db, zStmt);
381: v = sqlite3GetVdbe(pParse);
382: sqlite3ChangeCookie(pParse, iDb);
383:
384: sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
385: zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
386: sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
387: sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
388: pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
389: }
390:
391: /* If we are rereading the sqlite_master table create the in-memory
392: ** record of the table. The xConnect() method is not called until
393: ** the first time the virtual table is used in an SQL statement. This
394: ** allows a schema that contains virtual tables to be loaded before
395: ** the required virtual table implementations are registered. */
396: else {
397: Table *pOld;
398: Schema *pSchema = pTab->pSchema;
399: const char *zName = pTab->zName;
400: int nName = sqlite3Strlen30(zName);
401: assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
402: pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
403: if( pOld ){
404: db->mallocFailed = 1;
405: assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
406: return;
407: }
408: pParse->pNewTable = 0;
409: }
410: }
411:
412: /*
413: ** The parser calls this routine when it sees the first token
414: ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
415: */
416: void sqlite3VtabArgInit(Parse *pParse){
417: addArgumentToVtab(pParse);
418: pParse->sArg.z = 0;
419: pParse->sArg.n = 0;
420: }
421:
422: /*
423: ** The parser calls this routine for each token after the first token
424: ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
425: */
426: void sqlite3VtabArgExtend(Parse *pParse, Token *p){
427: Token *pArg = &pParse->sArg;
428: if( pArg->z==0 ){
429: pArg->z = p->z;
430: pArg->n = p->n;
431: }else{
432: assert(pArg->z < p->z);
433: pArg->n = (int)(&p->z[p->n] - pArg->z);
434: }
435: }
436:
437: /*
438: ** Invoke a virtual table constructor (either xCreate or xConnect). The
439: ** pointer to the function to invoke is passed as the fourth parameter
440: ** to this procedure.
441: */
442: static int vtabCallConstructor(
443: sqlite3 *db,
444: Table *pTab,
445: Module *pMod,
446: int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
447: char **pzErr
448: ){
449: VtabCtx sCtx;
450: VTable *pVTable;
451: int rc;
452: const char *const*azArg = (const char *const*)pTab->azModuleArg;
453: int nArg = pTab->nModuleArg;
454: char *zErr = 0;
455: char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
456:
457: if( !zModuleName ){
458: return SQLITE_NOMEM;
459: }
460:
461: pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
462: if( !pVTable ){
463: sqlite3DbFree(db, zModuleName);
464: return SQLITE_NOMEM;
465: }
466: pVTable->db = db;
467: pVTable->pMod = pMod;
468:
469: /* Invoke the virtual table constructor */
470: assert( &db->pVtabCtx );
471: assert( xConstruct );
472: sCtx.pTab = pTab;
473: sCtx.pVTable = pVTable;
474: db->pVtabCtx = &sCtx;
475: rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
476: db->pVtabCtx = 0;
477: if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
478:
479: if( SQLITE_OK!=rc ){
480: if( zErr==0 ){
481: *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
482: }else {
483: *pzErr = sqlite3MPrintf(db, "%s", zErr);
484: sqlite3_free(zErr);
485: }
486: sqlite3DbFree(db, pVTable);
487: }else if( ALWAYS(pVTable->pVtab) ){
488: /* Justification of ALWAYS(): A correct vtab constructor must allocate
489: ** the sqlite3_vtab object if successful. */
490: pVTable->pVtab->pModule = pMod->pModule;
491: pVTable->nRef = 1;
492: if( sCtx.pTab ){
493: const char *zFormat = "vtable constructor did not declare schema: %s";
494: *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
495: sqlite3VtabUnlock(pVTable);
496: rc = SQLITE_ERROR;
497: }else{
498: int iCol;
499: /* If everything went according to plan, link the new VTable structure
500: ** into the linked list headed by pTab->pVTable. Then loop through the
501: ** columns of the table to see if any of them contain the token "hidden".
502: ** If so, set the Column.isHidden flag and remove the token from
503: ** the type string. */
504: pVTable->pNext = pTab->pVTable;
505: pTab->pVTable = pVTable;
506:
507: for(iCol=0; iCol<pTab->nCol; iCol++){
508: char *zType = pTab->aCol[iCol].zType;
509: int nType;
510: int i = 0;
511: if( !zType ) continue;
512: nType = sqlite3Strlen30(zType);
513: if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
514: for(i=0; i<nType; i++){
515: if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
516: && (zType[i+7]=='\0' || zType[i+7]==' ')
517: ){
518: i++;
519: break;
520: }
521: }
522: }
523: if( i<nType ){
524: int j;
525: int nDel = 6 + (zType[i+6] ? 1 : 0);
526: for(j=i; (j+nDel)<=nType; j++){
527: zType[j] = zType[j+nDel];
528: }
529: if( zType[i]=='\0' && i>0 ){
530: assert(zType[i-1]==' ');
531: zType[i-1] = '\0';
532: }
533: pTab->aCol[iCol].isHidden = 1;
534: }
535: }
536: }
537: }
538:
539: sqlite3DbFree(db, zModuleName);
540: return rc;
541: }
542:
543: /*
544: ** This function is invoked by the parser to call the xConnect() method
545: ** of the virtual table pTab. If an error occurs, an error code is returned
546: ** and an error left in pParse.
547: **
548: ** This call is a no-op if table pTab is not a virtual table.
549: */
550: int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
551: sqlite3 *db = pParse->db;
552: const char *zMod;
553: Module *pMod;
554: int rc;
555:
556: assert( pTab );
557: if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
558: return SQLITE_OK;
559: }
560:
561: /* Locate the required virtual table module */
562: zMod = pTab->azModuleArg[0];
563: pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
564:
565: if( !pMod ){
566: const char *zModule = pTab->azModuleArg[0];
567: sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
568: rc = SQLITE_ERROR;
569: }else{
570: char *zErr = 0;
571: rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
572: if( rc!=SQLITE_OK ){
573: sqlite3ErrorMsg(pParse, "%s", zErr);
574: }
575: sqlite3DbFree(db, zErr);
576: }
577:
578: return rc;
579: }
580: /*
581: ** Grow the db->aVTrans[] array so that there is room for at least one
582: ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
583: */
584: static int growVTrans(sqlite3 *db){
585: const int ARRAY_INCR = 5;
586:
587: /* Grow the sqlite3.aVTrans array if required */
588: if( (db->nVTrans%ARRAY_INCR)==0 ){
589: VTable **aVTrans;
590: int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
591: aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
592: if( !aVTrans ){
593: return SQLITE_NOMEM;
594: }
595: memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
596: db->aVTrans = aVTrans;
597: }
598:
599: return SQLITE_OK;
600: }
601:
602: /*
603: ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
604: ** have already been reserved using growVTrans().
605: */
606: static void addToVTrans(sqlite3 *db, VTable *pVTab){
607: /* Add pVtab to the end of sqlite3.aVTrans */
608: db->aVTrans[db->nVTrans++] = pVTab;
609: sqlite3VtabLock(pVTab);
610: }
611:
612: /*
613: ** This function is invoked by the vdbe to call the xCreate method
614: ** of the virtual table named zTab in database iDb.
615: **
616: ** If an error occurs, *pzErr is set to point an an English language
617: ** description of the error and an SQLITE_XXX error code is returned.
618: ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
619: */
620: int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
621: int rc = SQLITE_OK;
622: Table *pTab;
623: Module *pMod;
624: const char *zMod;
625:
626: pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
627: assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
628:
629: /* Locate the required virtual table module */
630: zMod = pTab->azModuleArg[0];
631: pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
632:
633: /* If the module has been registered and includes a Create method,
634: ** invoke it now. If the module has not been registered, return an
635: ** error. Otherwise, do nothing.
636: */
637: if( !pMod ){
638: *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
639: rc = SQLITE_ERROR;
640: }else{
641: rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
642: }
643:
644: /* Justification of ALWAYS(): The xConstructor method is required to
645: ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
646: if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
647: rc = growVTrans(db);
648: if( rc==SQLITE_OK ){
649: addToVTrans(db, sqlite3GetVTable(db, pTab));
650: }
651: }
652:
653: return rc;
654: }
655:
656: /*
657: ** This function is used to set the schema of a virtual table. It is only
658: ** valid to call this function from within the xCreate() or xConnect() of a
659: ** virtual table module.
660: */
661: int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
662: Parse *pParse;
663:
664: int rc = SQLITE_OK;
665: Table *pTab;
666: char *zErr = 0;
667:
668: sqlite3_mutex_enter(db->mutex);
669: if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
670: sqlite3Error(db, SQLITE_MISUSE, 0);
671: sqlite3_mutex_leave(db->mutex);
672: return SQLITE_MISUSE_BKPT;
673: }
674: assert( (pTab->tabFlags & TF_Virtual)!=0 );
675:
676: pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
677: if( pParse==0 ){
678: rc = SQLITE_NOMEM;
679: }else{
680: pParse->declareVtab = 1;
681: pParse->db = db;
682: pParse->nQueryLoop = 1;
683:
684: if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
685: && pParse->pNewTable
686: && !db->mallocFailed
687: && !pParse->pNewTable->pSelect
688: && (pParse->pNewTable->tabFlags & TF_Virtual)==0
689: ){
690: if( !pTab->aCol ){
691: pTab->aCol = pParse->pNewTable->aCol;
692: pTab->nCol = pParse->pNewTable->nCol;
693: pParse->pNewTable->nCol = 0;
694: pParse->pNewTable->aCol = 0;
695: }
696: db->pVtabCtx->pTab = 0;
697: }else{
698: sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
699: sqlite3DbFree(db, zErr);
700: rc = SQLITE_ERROR;
701: }
702: pParse->declareVtab = 0;
703:
704: if( pParse->pVdbe ){
705: sqlite3VdbeFinalize(pParse->pVdbe);
706: }
707: sqlite3DeleteTable(db, pParse->pNewTable);
708: sqlite3StackFree(db, pParse);
709: }
710:
711: assert( (rc&0xff)==rc );
712: rc = sqlite3ApiExit(db, rc);
713: sqlite3_mutex_leave(db->mutex);
714: return rc;
715: }
716:
717: /*
718: ** This function is invoked by the vdbe to call the xDestroy method
719: ** of the virtual table named zTab in database iDb. This occurs
720: ** when a DROP TABLE is mentioned.
721: **
722: ** This call is a no-op if zTab is not a virtual table.
723: */
724: int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
725: int rc = SQLITE_OK;
726: Table *pTab;
727:
728: pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
729: if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
730: VTable *p = vtabDisconnectAll(db, pTab);
731:
732: assert( rc==SQLITE_OK );
733: rc = p->pMod->pModule->xDestroy(p->pVtab);
734:
735: /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
736: if( rc==SQLITE_OK ){
737: assert( pTab->pVTable==p && p->pNext==0 );
738: p->pVtab = 0;
739: pTab->pVTable = 0;
740: sqlite3VtabUnlock(p);
741: }
742: }
743:
744: return rc;
745: }
746:
747: /*
748: ** This function invokes either the xRollback or xCommit method
749: ** of each of the virtual tables in the sqlite3.aVTrans array. The method
750: ** called is identified by the second argument, "offset", which is
751: ** the offset of the method to call in the sqlite3_module structure.
752: **
753: ** The array is cleared after invoking the callbacks.
754: */
755: static void callFinaliser(sqlite3 *db, int offset){
756: int i;
757: if( db->aVTrans ){
758: for(i=0; i<db->nVTrans; i++){
759: VTable *pVTab = db->aVTrans[i];
760: sqlite3_vtab *p = pVTab->pVtab;
761: if( p ){
762: int (*x)(sqlite3_vtab *);
763: x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
764: if( x ) x(p);
765: }
766: pVTab->iSavepoint = 0;
767: sqlite3VtabUnlock(pVTab);
768: }
769: sqlite3DbFree(db, db->aVTrans);
770: db->nVTrans = 0;
771: db->aVTrans = 0;
772: }
773: }
774:
775: /*
776: ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
777: ** array. Return the error code for the first error that occurs, or
778: ** SQLITE_OK if all xSync operations are successful.
779: **
780: ** Set *pzErrmsg to point to a buffer that should be released using
781: ** sqlite3DbFree() containing an error message, if one is available.
782: */
783: int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
784: int i;
785: int rc = SQLITE_OK;
786: VTable **aVTrans = db->aVTrans;
787:
788: db->aVTrans = 0;
789: for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
790: int (*x)(sqlite3_vtab *);
791: sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
792: if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
793: rc = x(pVtab);
794: sqlite3DbFree(db, *pzErrmsg);
795: *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
796: sqlite3_free(pVtab->zErrMsg);
797: }
798: }
799: db->aVTrans = aVTrans;
800: return rc;
801: }
802:
803: /*
804: ** Invoke the xRollback method of all virtual tables in the
805: ** sqlite3.aVTrans array. Then clear the array itself.
806: */
807: int sqlite3VtabRollback(sqlite3 *db){
808: callFinaliser(db, offsetof(sqlite3_module,xRollback));
809: return SQLITE_OK;
810: }
811:
812: /*
813: ** Invoke the xCommit method of all virtual tables in the
814: ** sqlite3.aVTrans array. Then clear the array itself.
815: */
816: int sqlite3VtabCommit(sqlite3 *db){
817: callFinaliser(db, offsetof(sqlite3_module,xCommit));
818: return SQLITE_OK;
819: }
820:
821: /*
822: ** If the virtual table pVtab supports the transaction interface
823: ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
824: ** not currently open, invoke the xBegin method now.
825: **
826: ** If the xBegin call is successful, place the sqlite3_vtab pointer
827: ** in the sqlite3.aVTrans array.
828: */
829: int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
830: int rc = SQLITE_OK;
831: const sqlite3_module *pModule;
832:
833: /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
834: ** than zero, then this function is being called from within a
835: ** virtual module xSync() callback. It is illegal to write to
836: ** virtual module tables in this case, so return SQLITE_LOCKED.
837: */
838: if( sqlite3VtabInSync(db) ){
839: return SQLITE_LOCKED;
840: }
841: if( !pVTab ){
842: return SQLITE_OK;
843: }
844: pModule = pVTab->pVtab->pModule;
845:
846: if( pModule->xBegin ){
847: int i;
848:
849: /* If pVtab is already in the aVTrans array, return early */
850: for(i=0; i<db->nVTrans; i++){
851: if( db->aVTrans[i]==pVTab ){
852: return SQLITE_OK;
853: }
854: }
855:
856: /* Invoke the xBegin method. If successful, add the vtab to the
857: ** sqlite3.aVTrans[] array. */
858: rc = growVTrans(db);
859: if( rc==SQLITE_OK ){
860: rc = pModule->xBegin(pVTab->pVtab);
861: if( rc==SQLITE_OK ){
862: addToVTrans(db, pVTab);
863: }
864: }
865: }
866: return rc;
867: }
868:
869: /*
870: ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
871: ** virtual tables that currently have an open transaction. Pass iSavepoint
872: ** as the second argument to the virtual table method invoked.
873: **
874: ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
875: ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
876: ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
877: ** an open transaction is invoked.
878: **
879: ** If any virtual table method returns an error code other than SQLITE_OK,
880: ** processing is abandoned and the error returned to the caller of this
881: ** function immediately. If all calls to virtual table methods are successful,
882: ** SQLITE_OK is returned.
883: */
884: int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
885: int rc = SQLITE_OK;
886:
887: assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
888: assert( iSavepoint>=0 );
889: if( db->aVTrans ){
890: int i;
891: for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
892: VTable *pVTab = db->aVTrans[i];
893: const sqlite3_module *pMod = pVTab->pMod->pModule;
894: if( pVTab->pVtab && pMod->iVersion>=2 ){
895: int (*xMethod)(sqlite3_vtab *, int);
896: switch( op ){
897: case SAVEPOINT_BEGIN:
898: xMethod = pMod->xSavepoint;
899: pVTab->iSavepoint = iSavepoint+1;
900: break;
901: case SAVEPOINT_ROLLBACK:
902: xMethod = pMod->xRollbackTo;
903: break;
904: default:
905: xMethod = pMod->xRelease;
906: break;
907: }
908: if( xMethod && pVTab->iSavepoint>iSavepoint ){
909: rc = xMethod(pVTab->pVtab, iSavepoint);
910: }
911: }
912: }
913: }
914: return rc;
915: }
916:
917: /*
918: ** The first parameter (pDef) is a function implementation. The
919: ** second parameter (pExpr) is the first argument to this function.
920: ** If pExpr is a column in a virtual table, then let the virtual
921: ** table implementation have an opportunity to overload the function.
922: **
923: ** This routine is used to allow virtual table implementations to
924: ** overload MATCH, LIKE, GLOB, and REGEXP operators.
925: **
926: ** Return either the pDef argument (indicating no change) or a
927: ** new FuncDef structure that is marked as ephemeral using the
928: ** SQLITE_FUNC_EPHEM flag.
929: */
930: FuncDef *sqlite3VtabOverloadFunction(
931: sqlite3 *db, /* Database connection for reporting malloc problems */
932: FuncDef *pDef, /* Function to possibly overload */
933: int nArg, /* Number of arguments to the function */
934: Expr *pExpr /* First argument to the function */
935: ){
936: Table *pTab;
937: sqlite3_vtab *pVtab;
938: sqlite3_module *pMod;
939: void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
940: void *pArg = 0;
941: FuncDef *pNew;
942: int rc = 0;
943: char *zLowerName;
944: unsigned char *z;
945:
946:
947: /* Check to see the left operand is a column in a virtual table */
948: if( NEVER(pExpr==0) ) return pDef;
949: if( pExpr->op!=TK_COLUMN ) return pDef;
950: pTab = pExpr->pTab;
951: if( NEVER(pTab==0) ) return pDef;
952: if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
953: pVtab = sqlite3GetVTable(db, pTab)->pVtab;
954: assert( pVtab!=0 );
955: assert( pVtab->pModule!=0 );
956: pMod = (sqlite3_module *)pVtab->pModule;
957: if( pMod->xFindFunction==0 ) return pDef;
958:
959: /* Call the xFindFunction method on the virtual table implementation
960: ** to see if the implementation wants to overload this function
961: */
962: zLowerName = sqlite3DbStrDup(db, pDef->zName);
963: if( zLowerName ){
964: for(z=(unsigned char*)zLowerName; *z; z++){
965: *z = sqlite3UpperToLower[*z];
966: }
967: rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
968: sqlite3DbFree(db, zLowerName);
969: }
970: if( rc==0 ){
971: return pDef;
972: }
973:
974: /* Create a new ephemeral function definition for the overloaded
975: ** function */
976: pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
977: + sqlite3Strlen30(pDef->zName) + 1);
978: if( pNew==0 ){
979: return pDef;
980: }
981: *pNew = *pDef;
982: pNew->zName = (char *)&pNew[1];
983: memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
984: pNew->xFunc = xFunc;
985: pNew->pUserData = pArg;
986: pNew->flags |= SQLITE_FUNC_EPHEM;
987: return pNew;
988: }
989:
990: /*
991: ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
992: ** array so that an OP_VBegin will get generated for it. Add pTab to the
993: ** array if it is missing. If pTab is already in the array, this routine
994: ** is a no-op.
995: */
996: void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
997: Parse *pToplevel = sqlite3ParseToplevel(pParse);
998: int i, n;
999: Table **apVtabLock;
1000:
1001: assert( IsVirtual(pTab) );
1002: for(i=0; i<pToplevel->nVtabLock; i++){
1003: if( pTab==pToplevel->apVtabLock[i] ) return;
1004: }
1005: n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1006: apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
1007: if( apVtabLock ){
1008: pToplevel->apVtabLock = apVtabLock;
1009: pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1010: }else{
1011: pToplevel->db->mallocFailed = 1;
1012: }
1013: }
1014:
1015: /*
1016: ** Return the ON CONFLICT resolution mode in effect for the virtual
1017: ** table update operation currently in progress.
1018: **
1019: ** The results of this routine are undefined unless it is called from
1020: ** within an xUpdate method.
1021: */
1022: int sqlite3_vtab_on_conflict(sqlite3 *db){
1023: static const unsigned char aMap[] = {
1024: SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1025: };
1026: assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1027: assert( OE_Ignore==4 && OE_Replace==5 );
1028: assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1029: return (int)aMap[db->vtabOnConflict-1];
1030: }
1031:
1032: /*
1033: ** Call from within the xCreate() or xConnect() methods to provide
1034: ** the SQLite core with additional information about the behavior
1035: ** of the virtual table being implemented.
1036: */
1037: int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1038: va_list ap;
1039: int rc = SQLITE_OK;
1040:
1041: sqlite3_mutex_enter(db->mutex);
1042:
1043: va_start(ap, op);
1044: switch( op ){
1045: case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1046: VtabCtx *p = db->pVtabCtx;
1047: if( !p ){
1048: rc = SQLITE_MISUSE_BKPT;
1049: }else{
1050: assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
1051: p->pVTable->bConstraint = (u8)va_arg(ap, int);
1052: }
1053: break;
1054: }
1055: default:
1056: rc = SQLITE_MISUSE_BKPT;
1057: break;
1058: }
1059: va_end(ap);
1060:
1061: if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0);
1062: sqlite3_mutex_leave(db->mutex);
1063: return rc;
1064: }
1065:
1066: #endif /* SQLITE_OMIT_VIRTUALTABLE */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>