Annotation of embedaddon/sqlite3/src/wal.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2010 February 1
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: **
                     13: ** This file contains the implementation of a write-ahead log (WAL) used in 
                     14: ** "journal_mode=WAL" mode.
                     15: **
                     16: ** WRITE-AHEAD LOG (WAL) FILE FORMAT
                     17: **
                     18: ** A WAL file consists of a header followed by zero or more "frames".
                     19: ** Each frame records the revised content of a single page from the
                     20: ** database file.  All changes to the database are recorded by writing
                     21: ** frames into the WAL.  Transactions commit when a frame is written that
                     22: ** contains a commit marker.  A single WAL can and usually does record 
                     23: ** multiple transactions.  Periodically, the content of the WAL is
                     24: ** transferred back into the database file in an operation called a
                     25: ** "checkpoint".
                     26: **
                     27: ** A single WAL file can be used multiple times.  In other words, the
                     28: ** WAL can fill up with frames and then be checkpointed and then new
                     29: ** frames can overwrite the old ones.  A WAL always grows from beginning
                     30: ** toward the end.  Checksums and counters attached to each frame are
                     31: ** used to determine which frames within the WAL are valid and which
                     32: ** are leftovers from prior checkpoints.
                     33: **
                     34: ** The WAL header is 32 bytes in size and consists of the following eight
                     35: ** big-endian 32-bit unsigned integer values:
                     36: **
                     37: **     0: Magic number.  0x377f0682 or 0x377f0683
                     38: **     4: File format version.  Currently 3007000
                     39: **     8: Database page size.  Example: 1024
                     40: **    12: Checkpoint sequence number
                     41: **    16: Salt-1, random integer incremented with each checkpoint
                     42: **    20: Salt-2, a different random integer changing with each ckpt
                     43: **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
                     44: **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
                     45: **
                     46: ** Immediately following the wal-header are zero or more frames. Each
                     47: ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
                     48: ** of page data. The frame-header is six big-endian 32-bit unsigned 
                     49: ** integer values, as follows:
                     50: **
                     51: **     0: Page number.
                     52: **     4: For commit records, the size of the database image in pages 
                     53: **        after the commit. For all other records, zero.
                     54: **     8: Salt-1 (copied from the header)
                     55: **    12: Salt-2 (copied from the header)
                     56: **    16: Checksum-1.
                     57: **    20: Checksum-2.
                     58: **
                     59: ** A frame is considered valid if and only if the following conditions are
                     60: ** true:
                     61: **
                     62: **    (1) The salt-1 and salt-2 values in the frame-header match
                     63: **        salt values in the wal-header
                     64: **
                     65: **    (2) The checksum values in the final 8 bytes of the frame-header
                     66: **        exactly match the checksum computed consecutively on the
                     67: **        WAL header and the first 8 bytes and the content of all frames
                     68: **        up to and including the current frame.
                     69: **
                     70: ** The checksum is computed using 32-bit big-endian integers if the
                     71: ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
                     72: ** is computed using little-endian if the magic number is 0x377f0682.
                     73: ** The checksum values are always stored in the frame header in a
                     74: ** big-endian format regardless of which byte order is used to compute
                     75: ** the checksum.  The checksum is computed by interpreting the input as
                     76: ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
                     77: ** algorithm used for the checksum is as follows:
                     78: ** 
                     79: **   for i from 0 to n-1 step 2:
                     80: **     s0 += x[i] + s1;
                     81: **     s1 += x[i+1] + s0;
                     82: **   endfor
                     83: **
                     84: ** Note that s0 and s1 are both weighted checksums using fibonacci weights
                     85: ** in reverse order (the largest fibonacci weight occurs on the first element
                     86: ** of the sequence being summed.)  The s1 value spans all 32-bit 
                     87: ** terms of the sequence whereas s0 omits the final term.
                     88: **
                     89: ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
                     90: ** WAL is transferred into the database, then the database is VFS.xSync-ed.
                     91: ** The VFS.xSync operations serve as write barriers - all writes launched
                     92: ** before the xSync must complete before any write that launches after the
                     93: ** xSync begins.
                     94: **
                     95: ** After each checkpoint, the salt-1 value is incremented and the salt-2
                     96: ** value is randomized.  This prevents old and new frames in the WAL from
                     97: ** being considered valid at the same time and being checkpointing together
                     98: ** following a crash.
                     99: **
                    100: ** READER ALGORITHM
                    101: **
                    102: ** To read a page from the database (call it page number P), a reader
                    103: ** first checks the WAL to see if it contains page P.  If so, then the
                    104: ** last valid instance of page P that is a followed by a commit frame
                    105: ** or is a commit frame itself becomes the value read.  If the WAL
                    106: ** contains no copies of page P that are valid and which are a commit
                    107: ** frame or are followed by a commit frame, then page P is read from
                    108: ** the database file.
                    109: **
                    110: ** To start a read transaction, the reader records the index of the last
                    111: ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
                    112: ** for all subsequent read operations.  New transactions can be appended
                    113: ** to the WAL, but as long as the reader uses its original mxFrame value
                    114: ** and ignores the newly appended content, it will see a consistent snapshot
                    115: ** of the database from a single point in time.  This technique allows
                    116: ** multiple concurrent readers to view different versions of the database
                    117: ** content simultaneously.
                    118: **
                    119: ** The reader algorithm in the previous paragraphs works correctly, but 
                    120: ** because frames for page P can appear anywhere within the WAL, the
                    121: ** reader has to scan the entire WAL looking for page P frames.  If the
                    122: ** WAL is large (multiple megabytes is typical) that scan can be slow,
                    123: ** and read performance suffers.  To overcome this problem, a separate
                    124: ** data structure called the wal-index is maintained to expedite the
                    125: ** search for frames of a particular page.
                    126: ** 
                    127: ** WAL-INDEX FORMAT
                    128: **
                    129: ** Conceptually, the wal-index is shared memory, though VFS implementations
                    130: ** might choose to implement the wal-index using a mmapped file.  Because
                    131: ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 
                    132: ** on a network filesystem.  All users of the database must be able to
                    133: ** share memory.
                    134: **
                    135: ** The wal-index is transient.  After a crash, the wal-index can (and should
                    136: ** be) reconstructed from the original WAL file.  In fact, the VFS is required
                    137: ** to either truncate or zero the header of the wal-index when the last
                    138: ** connection to it closes.  Because the wal-index is transient, it can
                    139: ** use an architecture-specific format; it does not have to be cross-platform.
                    140: ** Hence, unlike the database and WAL file formats which store all values
                    141: ** as big endian, the wal-index can store multi-byte values in the native
                    142: ** byte order of the host computer.
                    143: **
                    144: ** The purpose of the wal-index is to answer this question quickly:  Given
                    145: ** a page number P, return the index of the last frame for page P in the WAL,
                    146: ** or return NULL if there are no frames for page P in the WAL.
                    147: **
                    148: ** The wal-index consists of a header region, followed by an one or
                    149: ** more index blocks.  
                    150: **
                    151: ** The wal-index header contains the total number of frames within the WAL
                    152: ** in the the mxFrame field.  
                    153: **
                    154: ** Each index block except for the first contains information on 
                    155: ** HASHTABLE_NPAGE frames. The first index block contains information on
                    156: ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 
                    157: ** HASHTABLE_NPAGE are selected so that together the wal-index header and
                    158: ** first index block are the same size as all other index blocks in the
                    159: ** wal-index.
                    160: **
                    161: ** Each index block contains two sections, a page-mapping that contains the
                    162: ** database page number associated with each wal frame, and a hash-table 
                    163: ** that allows readers to query an index block for a specific page number.
                    164: ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
                    165: ** for the first index block) 32-bit page numbers. The first entry in the 
                    166: ** first index-block contains the database page number corresponding to the
                    167: ** first frame in the WAL file. The first entry in the second index block
                    168: ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
                    169: ** the log, and so on.
                    170: **
                    171: ** The last index block in a wal-index usually contains less than the full
                    172: ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
                    173: ** depending on the contents of the WAL file. This does not change the
                    174: ** allocated size of the page-mapping array - the page-mapping array merely
                    175: ** contains unused entries.
                    176: **
                    177: ** Even without using the hash table, the last frame for page P
                    178: ** can be found by scanning the page-mapping sections of each index block
                    179: ** starting with the last index block and moving toward the first, and
                    180: ** within each index block, starting at the end and moving toward the
                    181: ** beginning.  The first entry that equals P corresponds to the frame
                    182: ** holding the content for that page.
                    183: **
                    184: ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
                    185: ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
                    186: ** hash table for each page number in the mapping section, so the hash 
                    187: ** table is never more than half full.  The expected number of collisions 
                    188: ** prior to finding a match is 1.  Each entry of the hash table is an
                    189: ** 1-based index of an entry in the mapping section of the same
                    190: ** index block.   Let K be the 1-based index of the largest entry in
                    191: ** the mapping section.  (For index blocks other than the last, K will
                    192: ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
                    193: ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
                    194: ** contain a value of 0.
                    195: **
                    196: ** To look for page P in the hash table, first compute a hash iKey on
                    197: ** P as follows:
                    198: **
                    199: **      iKey = (P * 383) % HASHTABLE_NSLOT
                    200: **
                    201: ** Then start scanning entries of the hash table, starting with iKey
                    202: ** (wrapping around to the beginning when the end of the hash table is
                    203: ** reached) until an unused hash slot is found. Let the first unused slot
                    204: ** be at index iUnused.  (iUnused might be less than iKey if there was
                    205: ** wrap-around.) Because the hash table is never more than half full,
                    206: ** the search is guaranteed to eventually hit an unused entry.  Let 
                    207: ** iMax be the value between iKey and iUnused, closest to iUnused,
                    208: ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
                    209: ** no hash slot such that aHash[i]==p) then page P is not in the
                    210: ** current index block.  Otherwise the iMax-th mapping entry of the
                    211: ** current index block corresponds to the last entry that references 
                    212: ** page P.
                    213: **
                    214: ** A hash search begins with the last index block and moves toward the
                    215: ** first index block, looking for entries corresponding to page P.  On
                    216: ** average, only two or three slots in each index block need to be
                    217: ** examined in order to either find the last entry for page P, or to
                    218: ** establish that no such entry exists in the block.  Each index block
                    219: ** holds over 4000 entries.  So two or three index blocks are sufficient
                    220: ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
                    221: ** comparisons (on average) suffice to either locate a frame in the
                    222: ** WAL or to establish that the frame does not exist in the WAL.  This
                    223: ** is much faster than scanning the entire 10MB WAL.
                    224: **
                    225: ** Note that entries are added in order of increasing K.  Hence, one
                    226: ** reader might be using some value K0 and a second reader that started
                    227: ** at a later time (after additional transactions were added to the WAL
                    228: ** and to the wal-index) might be using a different value K1, where K1>K0.
                    229: ** Both readers can use the same hash table and mapping section to get
                    230: ** the correct result.  There may be entries in the hash table with
                    231: ** K>K0 but to the first reader, those entries will appear to be unused
                    232: ** slots in the hash table and so the first reader will get an answer as
                    233: ** if no values greater than K0 had ever been inserted into the hash table
                    234: ** in the first place - which is what reader one wants.  Meanwhile, the
                    235: ** second reader using K1 will see additional values that were inserted
                    236: ** later, which is exactly what reader two wants.  
                    237: **
                    238: ** When a rollback occurs, the value of K is decreased. Hash table entries
                    239: ** that correspond to frames greater than the new K value are removed
                    240: ** from the hash table at this point.
                    241: */
                    242: #ifndef SQLITE_OMIT_WAL
                    243: 
                    244: #include "wal.h"
                    245: 
                    246: /*
                    247: ** Trace output macros
                    248: */
                    249: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
                    250: int sqlite3WalTrace = 0;
                    251: # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
                    252: #else
                    253: # define WALTRACE(X)
                    254: #endif
                    255: 
                    256: /*
                    257: ** The maximum (and only) versions of the wal and wal-index formats
                    258: ** that may be interpreted by this version of SQLite.
                    259: **
                    260: ** If a client begins recovering a WAL file and finds that (a) the checksum
                    261: ** values in the wal-header are correct and (b) the version field is not
                    262: ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
                    263: **
                    264: ** Similarly, if a client successfully reads a wal-index header (i.e. the 
                    265: ** checksum test is successful) and finds that the version field is not
                    266: ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
                    267: ** returns SQLITE_CANTOPEN.
                    268: */
                    269: #define WAL_MAX_VERSION      3007000
                    270: #define WALINDEX_MAX_VERSION 3007000
                    271: 
                    272: /*
                    273: ** Indices of various locking bytes.   WAL_NREADER is the number
                    274: ** of available reader locks and should be at least 3.
                    275: */
                    276: #define WAL_WRITE_LOCK         0
                    277: #define WAL_ALL_BUT_WRITE      1
                    278: #define WAL_CKPT_LOCK          1
                    279: #define WAL_RECOVER_LOCK       2
                    280: #define WAL_READ_LOCK(I)       (3+(I))
                    281: #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
                    282: 
                    283: 
                    284: /* Object declarations */
                    285: typedef struct WalIndexHdr WalIndexHdr;
                    286: typedef struct WalIterator WalIterator;
                    287: typedef struct WalCkptInfo WalCkptInfo;
                    288: 
                    289: 
                    290: /*
                    291: ** The following object holds a copy of the wal-index header content.
                    292: **
                    293: ** The actual header in the wal-index consists of two copies of this
                    294: ** object.
                    295: **
                    296: ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
                    297: ** Or it can be 1 to represent a 65536-byte page.  The latter case was
                    298: ** added in 3.7.1 when support for 64K pages was added.  
                    299: */
                    300: struct WalIndexHdr {
                    301:   u32 iVersion;                   /* Wal-index version */
                    302:   u32 unused;                     /* Unused (padding) field */
                    303:   u32 iChange;                    /* Counter incremented each transaction */
                    304:   u8 isInit;                      /* 1 when initialized */
                    305:   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
                    306:   u16 szPage;                     /* Database page size in bytes. 1==64K */
                    307:   u32 mxFrame;                    /* Index of last valid frame in the WAL */
                    308:   u32 nPage;                      /* Size of database in pages */
                    309:   u32 aFrameCksum[2];             /* Checksum of last frame in log */
                    310:   u32 aSalt[2];                   /* Two salt values copied from WAL header */
                    311:   u32 aCksum[2];                  /* Checksum over all prior fields */
                    312: };
                    313: 
                    314: /*
                    315: ** A copy of the following object occurs in the wal-index immediately
                    316: ** following the second copy of the WalIndexHdr.  This object stores
                    317: ** information used by checkpoint.
                    318: **
                    319: ** nBackfill is the number of frames in the WAL that have been written
                    320: ** back into the database. (We call the act of moving content from WAL to
                    321: ** database "backfilling".)  The nBackfill number is never greater than
                    322: ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
                    323: ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
                    324: ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
                    325: ** mxFrame back to zero when the WAL is reset.
                    326: **
                    327: ** There is one entry in aReadMark[] for each reader lock.  If a reader
                    328: ** holds read-lock K, then the value in aReadMark[K] is no greater than
                    329: ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
                    330: ** for any aReadMark[] means that entry is unused.  aReadMark[0] is 
                    331: ** a special case; its value is never used and it exists as a place-holder
                    332: ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
                    333: ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
                    334: ** directly from the database.
                    335: **
                    336: ** The value of aReadMark[K] may only be changed by a thread that
                    337: ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
                    338: ** aReadMark[K] cannot changed while there is a reader is using that mark
                    339: ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
                    340: **
                    341: ** The checkpointer may only transfer frames from WAL to database where
                    342: ** the frame numbers are less than or equal to every aReadMark[] that is
                    343: ** in use (that is, every aReadMark[j] for which there is a corresponding
                    344: ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
                    345: ** largest value and will increase an unused aReadMark[] to mxFrame if there
                    346: ** is not already an aReadMark[] equal to mxFrame.  The exception to the
                    347: ** previous sentence is when nBackfill equals mxFrame (meaning that everything
                    348: ** in the WAL has been backfilled into the database) then new readers
                    349: ** will choose aReadMark[0] which has value 0 and hence such reader will
                    350: ** get all their all content directly from the database file and ignore 
                    351: ** the WAL.
                    352: **
                    353: ** Writers normally append new frames to the end of the WAL.  However,
                    354: ** if nBackfill equals mxFrame (meaning that all WAL content has been
                    355: ** written back into the database) and if no readers are using the WAL
                    356: ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
                    357: ** the writer will first "reset" the WAL back to the beginning and start
                    358: ** writing new content beginning at frame 1.
                    359: **
                    360: ** We assume that 32-bit loads are atomic and so no locks are needed in
                    361: ** order to read from any aReadMark[] entries.
                    362: */
                    363: struct WalCkptInfo {
                    364:   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
                    365:   u32 aReadMark[WAL_NREADER];     /* Reader marks */
                    366: };
                    367: #define READMARK_NOT_USED  0xffffffff
                    368: 
                    369: 
                    370: /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
                    371: ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
                    372: ** only support mandatory file-locks, we do not read or write data
                    373: ** from the region of the file on which locks are applied.
                    374: */
                    375: #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
                    376: #define WALINDEX_LOCK_RESERVED 16
                    377: #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
                    378: 
                    379: /* Size of header before each frame in wal */
                    380: #define WAL_FRAME_HDRSIZE 24
                    381: 
                    382: /* Size of write ahead log header, including checksum. */
                    383: /* #define WAL_HDRSIZE 24 */
                    384: #define WAL_HDRSIZE 32
                    385: 
                    386: /* WAL magic value. Either this value, or the same value with the least
                    387: ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
                    388: ** big-endian format in the first 4 bytes of a WAL file.
                    389: **
                    390: ** If the LSB is set, then the checksums for each frame within the WAL
                    391: ** file are calculated by treating all data as an array of 32-bit 
                    392: ** big-endian words. Otherwise, they are calculated by interpreting 
                    393: ** all data as 32-bit little-endian words.
                    394: */
                    395: #define WAL_MAGIC 0x377f0682
                    396: 
                    397: /*
                    398: ** Return the offset of frame iFrame in the write-ahead log file, 
                    399: ** assuming a database page size of szPage bytes. The offset returned
                    400: ** is to the start of the write-ahead log frame-header.
                    401: */
                    402: #define walFrameOffset(iFrame, szPage) (                               \
                    403:   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
                    404: )
                    405: 
                    406: /*
                    407: ** An open write-ahead log file is represented by an instance of the
                    408: ** following object.
                    409: */
                    410: struct Wal {
                    411:   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
                    412:   sqlite3_file *pDbFd;       /* File handle for the database file */
                    413:   sqlite3_file *pWalFd;      /* File handle for WAL file */
                    414:   u32 iCallback;             /* Value to pass to log callback (or 0) */
                    415:   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
                    416:   int nWiData;               /* Size of array apWiData */
                    417:   int szFirstBlock;          /* Size of first block written to WAL file */
                    418:   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
                    419:   u32 szPage;                /* Database page size */
                    420:   i16 readLock;              /* Which read lock is being held.  -1 for none */
                    421:   u8 syncFlags;              /* Flags to use to sync header writes */
                    422:   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
                    423:   u8 writeLock;              /* True if in a write transaction */
                    424:   u8 ckptLock;               /* True if holding a checkpoint lock */
                    425:   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
                    426:   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
                    427:   u8 syncHeader;             /* Fsync the WAL header if true */
                    428:   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
                    429:   WalIndexHdr hdr;           /* Wal-index header for current transaction */
                    430:   const char *zWalName;      /* Name of WAL file */
                    431:   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
                    432: #ifdef SQLITE_DEBUG
                    433:   u8 lockError;              /* True if a locking error has occurred */
                    434: #endif
                    435: };
                    436: 
                    437: /*
                    438: ** Candidate values for Wal.exclusiveMode.
                    439: */
                    440: #define WAL_NORMAL_MODE     0
                    441: #define WAL_EXCLUSIVE_MODE  1     
                    442: #define WAL_HEAPMEMORY_MODE 2
                    443: 
                    444: /*
                    445: ** Possible values for WAL.readOnly
                    446: */
                    447: #define WAL_RDWR        0    /* Normal read/write connection */
                    448: #define WAL_RDONLY      1    /* The WAL file is readonly */
                    449: #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
                    450: 
                    451: /*
                    452: ** Each page of the wal-index mapping contains a hash-table made up of
                    453: ** an array of HASHTABLE_NSLOT elements of the following type.
                    454: */
                    455: typedef u16 ht_slot;
                    456: 
                    457: /*
                    458: ** This structure is used to implement an iterator that loops through
                    459: ** all frames in the WAL in database page order. Where two or more frames
                    460: ** correspond to the same database page, the iterator visits only the 
                    461: ** frame most recently written to the WAL (in other words, the frame with
                    462: ** the largest index).
                    463: **
                    464: ** The internals of this structure are only accessed by:
                    465: **
                    466: **   walIteratorInit() - Create a new iterator,
                    467: **   walIteratorNext() - Step an iterator,
                    468: **   walIteratorFree() - Free an iterator.
                    469: **
                    470: ** This functionality is used by the checkpoint code (see walCheckpoint()).
                    471: */
                    472: struct WalIterator {
                    473:   int iPrior;                     /* Last result returned from the iterator */
                    474:   int nSegment;                   /* Number of entries in aSegment[] */
                    475:   struct WalSegment {
                    476:     int iNext;                    /* Next slot in aIndex[] not yet returned */
                    477:     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
                    478:     u32 *aPgno;                   /* Array of page numbers. */
                    479:     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
                    480:     int iZero;                    /* Frame number associated with aPgno[0] */
                    481:   } aSegment[1];                  /* One for every 32KB page in the wal-index */
                    482: };
                    483: 
                    484: /*
                    485: ** Define the parameters of the hash tables in the wal-index file. There
                    486: ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
                    487: ** wal-index.
                    488: **
                    489: ** Changing any of these constants will alter the wal-index format and
                    490: ** create incompatibilities.
                    491: */
                    492: #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
                    493: #define HASHTABLE_HASH_1     383                  /* Should be prime */
                    494: #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
                    495: 
                    496: /* 
                    497: ** The block of page numbers associated with the first hash-table in a
                    498: ** wal-index is smaller than usual. This is so that there is a complete
                    499: ** hash-table on each aligned 32KB page of the wal-index.
                    500: */
                    501: #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
                    502: 
                    503: /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
                    504: #define WALINDEX_PGSZ   (                                         \
                    505:     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
                    506: )
                    507: 
                    508: /*
                    509: ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
                    510: ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
                    511: ** numbered from zero.
                    512: **
                    513: ** If this call is successful, *ppPage is set to point to the wal-index
                    514: ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
                    515: ** then an SQLite error code is returned and *ppPage is set to 0.
                    516: */
                    517: static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
                    518:   int rc = SQLITE_OK;
                    519: 
                    520:   /* Enlarge the pWal->apWiData[] array if required */
                    521:   if( pWal->nWiData<=iPage ){
                    522:     int nByte = sizeof(u32*)*(iPage+1);
                    523:     volatile u32 **apNew;
                    524:     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
                    525:     if( !apNew ){
                    526:       *ppPage = 0;
                    527:       return SQLITE_NOMEM;
                    528:     }
                    529:     memset((void*)&apNew[pWal->nWiData], 0,
                    530:            sizeof(u32*)*(iPage+1-pWal->nWiData));
                    531:     pWal->apWiData = apNew;
                    532:     pWal->nWiData = iPage+1;
                    533:   }
                    534: 
                    535:   /* Request a pointer to the required page from the VFS */
                    536:   if( pWal->apWiData[iPage]==0 ){
                    537:     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
                    538:       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
                    539:       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
                    540:     }else{
                    541:       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
                    542:           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
                    543:       );
                    544:       if( rc==SQLITE_READONLY ){
                    545:         pWal->readOnly |= WAL_SHM_RDONLY;
                    546:         rc = SQLITE_OK;
                    547:       }
                    548:     }
                    549:   }
                    550: 
                    551:   *ppPage = pWal->apWiData[iPage];
                    552:   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
                    553:   return rc;
                    554: }
                    555: 
                    556: /*
                    557: ** Return a pointer to the WalCkptInfo structure in the wal-index.
                    558: */
                    559: static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
                    560:   assert( pWal->nWiData>0 && pWal->apWiData[0] );
                    561:   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
                    562: }
                    563: 
                    564: /*
                    565: ** Return a pointer to the WalIndexHdr structure in the wal-index.
                    566: */
                    567: static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
                    568:   assert( pWal->nWiData>0 && pWal->apWiData[0] );
                    569:   return (volatile WalIndexHdr*)pWal->apWiData[0];
                    570: }
                    571: 
                    572: /*
                    573: ** The argument to this macro must be of type u32. On a little-endian
                    574: ** architecture, it returns the u32 value that results from interpreting
                    575: ** the 4 bytes as a big-endian value. On a big-endian architecture, it
                    576: ** returns the value that would be produced by intepreting the 4 bytes
                    577: ** of the input value as a little-endian integer.
                    578: */
                    579: #define BYTESWAP32(x) ( \
                    580:     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
                    581:   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
                    582: )
                    583: 
                    584: /*
                    585: ** Generate or extend an 8 byte checksum based on the data in 
                    586: ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
                    587: ** initial values of 0 and 0 if aIn==NULL).
                    588: **
                    589: ** The checksum is written back into aOut[] before returning.
                    590: **
                    591: ** nByte must be a positive multiple of 8.
                    592: */
                    593: static void walChecksumBytes(
                    594:   int nativeCksum, /* True for native byte-order, false for non-native */
                    595:   u8 *a,           /* Content to be checksummed */
                    596:   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
                    597:   const u32 *aIn,  /* Initial checksum value input */
                    598:   u32 *aOut        /* OUT: Final checksum value output */
                    599: ){
                    600:   u32 s1, s2;
                    601:   u32 *aData = (u32 *)a;
                    602:   u32 *aEnd = (u32 *)&a[nByte];
                    603: 
                    604:   if( aIn ){
                    605:     s1 = aIn[0];
                    606:     s2 = aIn[1];
                    607:   }else{
                    608:     s1 = s2 = 0;
                    609:   }
                    610: 
                    611:   assert( nByte>=8 );
                    612:   assert( (nByte&0x00000007)==0 );
                    613: 
                    614:   if( nativeCksum ){
                    615:     do {
                    616:       s1 += *aData++ + s2;
                    617:       s2 += *aData++ + s1;
                    618:     }while( aData<aEnd );
                    619:   }else{
                    620:     do {
                    621:       s1 += BYTESWAP32(aData[0]) + s2;
                    622:       s2 += BYTESWAP32(aData[1]) + s1;
                    623:       aData += 2;
                    624:     }while( aData<aEnd );
                    625:   }
                    626: 
                    627:   aOut[0] = s1;
                    628:   aOut[1] = s2;
                    629: }
                    630: 
                    631: static void walShmBarrier(Wal *pWal){
                    632:   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
                    633:     sqlite3OsShmBarrier(pWal->pDbFd);
                    634:   }
                    635: }
                    636: 
                    637: /*
                    638: ** Write the header information in pWal->hdr into the wal-index.
                    639: **
                    640: ** The checksum on pWal->hdr is updated before it is written.
                    641: */
                    642: static void walIndexWriteHdr(Wal *pWal){
                    643:   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
                    644:   const int nCksum = offsetof(WalIndexHdr, aCksum);
                    645: 
                    646:   assert( pWal->writeLock );
                    647:   pWal->hdr.isInit = 1;
                    648:   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
                    649:   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
                    650:   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
                    651:   walShmBarrier(pWal);
                    652:   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
                    653: }
                    654: 
                    655: /*
                    656: ** This function encodes a single frame header and writes it to a buffer
                    657: ** supplied by the caller. A frame-header is made up of a series of 
                    658: ** 4-byte big-endian integers, as follows:
                    659: **
                    660: **     0: Page number.
                    661: **     4: For commit records, the size of the database image in pages 
                    662: **        after the commit. For all other records, zero.
                    663: **     8: Salt-1 (copied from the wal-header)
                    664: **    12: Salt-2 (copied from the wal-header)
                    665: **    16: Checksum-1.
                    666: **    20: Checksum-2.
                    667: */
                    668: static void walEncodeFrame(
                    669:   Wal *pWal,                      /* The write-ahead log */
                    670:   u32 iPage,                      /* Database page number for frame */
                    671:   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
                    672:   u8 *aData,                      /* Pointer to page data */
                    673:   u8 *aFrame                      /* OUT: Write encoded frame here */
                    674: ){
                    675:   int nativeCksum;                /* True for native byte-order checksums */
                    676:   u32 *aCksum = pWal->hdr.aFrameCksum;
                    677:   assert( WAL_FRAME_HDRSIZE==24 );
                    678:   sqlite3Put4byte(&aFrame[0], iPage);
                    679:   sqlite3Put4byte(&aFrame[4], nTruncate);
                    680:   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
                    681: 
                    682:   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
                    683:   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
                    684:   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
                    685: 
                    686:   sqlite3Put4byte(&aFrame[16], aCksum[0]);
                    687:   sqlite3Put4byte(&aFrame[20], aCksum[1]);
                    688: }
                    689: 
                    690: /*
                    691: ** Check to see if the frame with header in aFrame[] and content
                    692: ** in aData[] is valid.  If it is a valid frame, fill *piPage and
                    693: ** *pnTruncate and return true.  Return if the frame is not valid.
                    694: */
                    695: static int walDecodeFrame(
                    696:   Wal *pWal,                      /* The write-ahead log */
                    697:   u32 *piPage,                    /* OUT: Database page number for frame */
                    698:   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
                    699:   u8 *aData,                      /* Pointer to page data (for checksum) */
                    700:   u8 *aFrame                      /* Frame data */
                    701: ){
                    702:   int nativeCksum;                /* True for native byte-order checksums */
                    703:   u32 *aCksum = pWal->hdr.aFrameCksum;
                    704:   u32 pgno;                       /* Page number of the frame */
                    705:   assert( WAL_FRAME_HDRSIZE==24 );
                    706: 
                    707:   /* A frame is only valid if the salt values in the frame-header
                    708:   ** match the salt values in the wal-header. 
                    709:   */
                    710:   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
                    711:     return 0;
                    712:   }
                    713: 
                    714:   /* A frame is only valid if the page number is creater than zero.
                    715:   */
                    716:   pgno = sqlite3Get4byte(&aFrame[0]);
                    717:   if( pgno==0 ){
                    718:     return 0;
                    719:   }
                    720: 
                    721:   /* A frame is only valid if a checksum of the WAL header,
                    722:   ** all prior frams, the first 16 bytes of this frame-header, 
                    723:   ** and the frame-data matches the checksum in the last 8 
                    724:   ** bytes of this frame-header.
                    725:   */
                    726:   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
                    727:   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
                    728:   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
                    729:   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 
                    730:    || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 
                    731:   ){
                    732:     /* Checksum failed. */
                    733:     return 0;
                    734:   }
                    735: 
                    736:   /* If we reach this point, the frame is valid.  Return the page number
                    737:   ** and the new database size.
                    738:   */
                    739:   *piPage = pgno;
                    740:   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
                    741:   return 1;
                    742: }
                    743: 
                    744: 
                    745: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
                    746: /*
                    747: ** Names of locks.  This routine is used to provide debugging output and is not
                    748: ** a part of an ordinary build.
                    749: */
                    750: static const char *walLockName(int lockIdx){
                    751:   if( lockIdx==WAL_WRITE_LOCK ){
                    752:     return "WRITE-LOCK";
                    753:   }else if( lockIdx==WAL_CKPT_LOCK ){
                    754:     return "CKPT-LOCK";
                    755:   }else if( lockIdx==WAL_RECOVER_LOCK ){
                    756:     return "RECOVER-LOCK";
                    757:   }else{
                    758:     static char zName[15];
                    759:     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
                    760:                      lockIdx-WAL_READ_LOCK(0));
                    761:     return zName;
                    762:   }
                    763: }
                    764: #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
                    765:     
                    766: 
                    767: /*
                    768: ** Set or release locks on the WAL.  Locks are either shared or exclusive.
                    769: ** A lock cannot be moved directly between shared and exclusive - it must go
                    770: ** through the unlocked state first.
                    771: **
                    772: ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
                    773: */
                    774: static int walLockShared(Wal *pWal, int lockIdx){
                    775:   int rc;
                    776:   if( pWal->exclusiveMode ) return SQLITE_OK;
                    777:   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                    778:                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
                    779:   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
                    780:             walLockName(lockIdx), rc ? "failed" : "ok"));
                    781:   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
                    782:   return rc;
                    783: }
                    784: static void walUnlockShared(Wal *pWal, int lockIdx){
                    785:   if( pWal->exclusiveMode ) return;
                    786:   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                    787:                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
                    788:   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
                    789: }
                    790: static int walLockExclusive(Wal *pWal, int lockIdx, int n){
                    791:   int rc;
                    792:   if( pWal->exclusiveMode ) return SQLITE_OK;
                    793:   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                    794:                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
                    795:   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
                    796:             walLockName(lockIdx), n, rc ? "failed" : "ok"));
                    797:   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
                    798:   return rc;
                    799: }
                    800: static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
                    801:   if( pWal->exclusiveMode ) return;
                    802:   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                    803:                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
                    804:   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
                    805:              walLockName(lockIdx), n));
                    806: }
                    807: 
                    808: /*
                    809: ** Compute a hash on a page number.  The resulting hash value must land
                    810: ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
                    811: ** the hash to the next value in the event of a collision.
                    812: */
                    813: static int walHash(u32 iPage){
                    814:   assert( iPage>0 );
                    815:   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
                    816:   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
                    817: }
                    818: static int walNextHash(int iPriorHash){
                    819:   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
                    820: }
                    821: 
                    822: /* 
                    823: ** Return pointers to the hash table and page number array stored on
                    824: ** page iHash of the wal-index. The wal-index is broken into 32KB pages
                    825: ** numbered starting from 0.
                    826: **
                    827: ** Set output variable *paHash to point to the start of the hash table
                    828: ** in the wal-index file. Set *piZero to one less than the frame 
                    829: ** number of the first frame indexed by this hash table. If a
                    830: ** slot in the hash table is set to N, it refers to frame number 
                    831: ** (*piZero+N) in the log.
                    832: **
                    833: ** Finally, set *paPgno so that *paPgno[1] is the page number of the
                    834: ** first frame indexed by the hash table, frame (*piZero+1).
                    835: */
                    836: static int walHashGet(
                    837:   Wal *pWal,                      /* WAL handle */
                    838:   int iHash,                      /* Find the iHash'th table */
                    839:   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
                    840:   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
                    841:   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
                    842: ){
                    843:   int rc;                         /* Return code */
                    844:   volatile u32 *aPgno;
                    845: 
                    846:   rc = walIndexPage(pWal, iHash, &aPgno);
                    847:   assert( rc==SQLITE_OK || iHash>0 );
                    848: 
                    849:   if( rc==SQLITE_OK ){
                    850:     u32 iZero;
                    851:     volatile ht_slot *aHash;
                    852: 
                    853:     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
                    854:     if( iHash==0 ){
                    855:       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
                    856:       iZero = 0;
                    857:     }else{
                    858:       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
                    859:     }
                    860:   
                    861:     *paPgno = &aPgno[-1];
                    862:     *paHash = aHash;
                    863:     *piZero = iZero;
                    864:   }
                    865:   return rc;
                    866: }
                    867: 
                    868: /*
                    869: ** Return the number of the wal-index page that contains the hash-table
                    870: ** and page-number array that contain entries corresponding to WAL frame
                    871: ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 
                    872: ** are numbered starting from 0.
                    873: */
                    874: static int walFramePage(u32 iFrame){
                    875:   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
                    876:   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
                    877:        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
                    878:        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
                    879:        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
                    880:        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
                    881:   );
                    882:   return iHash;
                    883: }
                    884: 
                    885: /*
                    886: ** Return the page number associated with frame iFrame in this WAL.
                    887: */
                    888: static u32 walFramePgno(Wal *pWal, u32 iFrame){
                    889:   int iHash = walFramePage(iFrame);
                    890:   if( iHash==0 ){
                    891:     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
                    892:   }
                    893:   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
                    894: }
                    895: 
                    896: /*
                    897: ** Remove entries from the hash table that point to WAL slots greater
                    898: ** than pWal->hdr.mxFrame.
                    899: **
                    900: ** This function is called whenever pWal->hdr.mxFrame is decreased due
                    901: ** to a rollback or savepoint.
                    902: **
                    903: ** At most only the hash table containing pWal->hdr.mxFrame needs to be
                    904: ** updated.  Any later hash tables will be automatically cleared when
                    905: ** pWal->hdr.mxFrame advances to the point where those hash tables are
                    906: ** actually needed.
                    907: */
                    908: static void walCleanupHash(Wal *pWal){
                    909:   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
                    910:   volatile u32 *aPgno = 0;        /* Page number array for hash table */
                    911:   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
                    912:   int iLimit = 0;                 /* Zero values greater than this */
                    913:   int nByte;                      /* Number of bytes to zero in aPgno[] */
                    914:   int i;                          /* Used to iterate through aHash[] */
                    915: 
                    916:   assert( pWal->writeLock );
                    917:   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
                    918:   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
                    919:   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
                    920: 
                    921:   if( pWal->hdr.mxFrame==0 ) return;
                    922: 
                    923:   /* Obtain pointers to the hash-table and page-number array containing 
                    924:   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
                    925:   ** that the page said hash-table and array reside on is already mapped.
                    926:   */
                    927:   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
                    928:   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
                    929:   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
                    930: 
                    931:   /* Zero all hash-table entries that correspond to frame numbers greater
                    932:   ** than pWal->hdr.mxFrame.
                    933:   */
                    934:   iLimit = pWal->hdr.mxFrame - iZero;
                    935:   assert( iLimit>0 );
                    936:   for(i=0; i<HASHTABLE_NSLOT; i++){
                    937:     if( aHash[i]>iLimit ){
                    938:       aHash[i] = 0;
                    939:     }
                    940:   }
                    941:   
                    942:   /* Zero the entries in the aPgno array that correspond to frames with
                    943:   ** frame numbers greater than pWal->hdr.mxFrame. 
                    944:   */
                    945:   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
                    946:   memset((void *)&aPgno[iLimit+1], 0, nByte);
                    947: 
                    948: #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
                    949:   /* Verify that the every entry in the mapping region is still reachable
                    950:   ** via the hash table even after the cleanup.
                    951:   */
                    952:   if( iLimit ){
                    953:     int i;           /* Loop counter */
                    954:     int iKey;        /* Hash key */
                    955:     for(i=1; i<=iLimit; i++){
                    956:       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
                    957:         if( aHash[iKey]==i ) break;
                    958:       }
                    959:       assert( aHash[iKey]==i );
                    960:     }
                    961:   }
                    962: #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
                    963: }
                    964: 
                    965: 
                    966: /*
                    967: ** Set an entry in the wal-index that will map database page number
                    968: ** pPage into WAL frame iFrame.
                    969: */
                    970: static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
                    971:   int rc;                         /* Return code */
                    972:   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
                    973:   volatile u32 *aPgno = 0;        /* Page number array */
                    974:   volatile ht_slot *aHash = 0;    /* Hash table */
                    975: 
                    976:   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
                    977: 
                    978:   /* Assuming the wal-index file was successfully mapped, populate the
                    979:   ** page number array and hash table entry.
                    980:   */
                    981:   if( rc==SQLITE_OK ){
                    982:     int iKey;                     /* Hash table key */
                    983:     int idx;                      /* Value to write to hash-table slot */
                    984:     int nCollide;                 /* Number of hash collisions */
                    985: 
                    986:     idx = iFrame - iZero;
                    987:     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
                    988:     
                    989:     /* If this is the first entry to be added to this hash-table, zero the
                    990:     ** entire hash table and aPgno[] array before proceding. 
                    991:     */
                    992:     if( idx==1 ){
                    993:       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
                    994:       memset((void*)&aPgno[1], 0, nByte);
                    995:     }
                    996: 
                    997:     /* If the entry in aPgno[] is already set, then the previous writer
                    998:     ** must have exited unexpectedly in the middle of a transaction (after
                    999:     ** writing one or more dirty pages to the WAL to free up memory). 
                   1000:     ** Remove the remnants of that writers uncommitted transaction from 
                   1001:     ** the hash-table before writing any new entries.
                   1002:     */
                   1003:     if( aPgno[idx] ){
                   1004:       walCleanupHash(pWal);
                   1005:       assert( !aPgno[idx] );
                   1006:     }
                   1007: 
                   1008:     /* Write the aPgno[] array entry and the hash-table slot. */
                   1009:     nCollide = idx;
                   1010:     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
                   1011:       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
                   1012:     }
                   1013:     aPgno[idx] = iPage;
                   1014:     aHash[iKey] = (ht_slot)idx;
                   1015: 
                   1016: #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
                   1017:     /* Verify that the number of entries in the hash table exactly equals
                   1018:     ** the number of entries in the mapping region.
                   1019:     */
                   1020:     {
                   1021:       int i;           /* Loop counter */
                   1022:       int nEntry = 0;  /* Number of entries in the hash table */
                   1023:       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
                   1024:       assert( nEntry==idx );
                   1025:     }
                   1026: 
                   1027:     /* Verify that the every entry in the mapping region is reachable
                   1028:     ** via the hash table.  This turns out to be a really, really expensive
                   1029:     ** thing to check, so only do this occasionally - not on every
                   1030:     ** iteration.
                   1031:     */
                   1032:     if( (idx&0x3ff)==0 ){
                   1033:       int i;           /* Loop counter */
                   1034:       for(i=1; i<=idx; i++){
                   1035:         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
                   1036:           if( aHash[iKey]==i ) break;
                   1037:         }
                   1038:         assert( aHash[iKey]==i );
                   1039:       }
                   1040:     }
                   1041: #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
                   1042:   }
                   1043: 
                   1044: 
                   1045:   return rc;
                   1046: }
                   1047: 
                   1048: 
                   1049: /*
                   1050: ** Recover the wal-index by reading the write-ahead log file. 
                   1051: **
                   1052: ** This routine first tries to establish an exclusive lock on the
                   1053: ** wal-index to prevent other threads/processes from doing anything
                   1054: ** with the WAL or wal-index while recovery is running.  The
                   1055: ** WAL_RECOVER_LOCK is also held so that other threads will know
                   1056: ** that this thread is running recovery.  If unable to establish
                   1057: ** the necessary locks, this routine returns SQLITE_BUSY.
                   1058: */
                   1059: static int walIndexRecover(Wal *pWal){
                   1060:   int rc;                         /* Return Code */
                   1061:   i64 nSize;                      /* Size of log file */
                   1062:   u32 aFrameCksum[2] = {0, 0};
                   1063:   int iLock;                      /* Lock offset to lock for checkpoint */
                   1064:   int nLock;                      /* Number of locks to hold */
                   1065: 
                   1066:   /* Obtain an exclusive lock on all byte in the locking range not already
                   1067:   ** locked by the caller. The caller is guaranteed to have locked the
                   1068:   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
                   1069:   ** If successful, the same bytes that are locked here are unlocked before
                   1070:   ** this function returns.
                   1071:   */
                   1072:   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
                   1073:   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
                   1074:   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
                   1075:   assert( pWal->writeLock );
                   1076:   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
                   1077:   nLock = SQLITE_SHM_NLOCK - iLock;
                   1078:   rc = walLockExclusive(pWal, iLock, nLock);
                   1079:   if( rc ){
                   1080:     return rc;
                   1081:   }
                   1082:   WALTRACE(("WAL%p: recovery begin...\n", pWal));
                   1083: 
                   1084:   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
                   1085: 
                   1086:   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
                   1087:   if( rc!=SQLITE_OK ){
                   1088:     goto recovery_error;
                   1089:   }
                   1090: 
                   1091:   if( nSize>WAL_HDRSIZE ){
                   1092:     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
                   1093:     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
                   1094:     int szFrame;                  /* Number of bytes in buffer aFrame[] */
                   1095:     u8 *aData;                    /* Pointer to data part of aFrame buffer */
                   1096:     int iFrame;                   /* Index of last frame read */
                   1097:     i64 iOffset;                  /* Next offset to read from log file */
                   1098:     int szPage;                   /* Page size according to the log */
                   1099:     u32 magic;                    /* Magic value read from WAL header */
                   1100:     u32 version;                  /* Magic value read from WAL header */
                   1101:     int isValid;                  /* True if this frame is valid */
                   1102: 
                   1103:     /* Read in the WAL header. */
                   1104:     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
                   1105:     if( rc!=SQLITE_OK ){
                   1106:       goto recovery_error;
                   1107:     }
                   1108: 
                   1109:     /* If the database page size is not a power of two, or is greater than
                   1110:     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 
                   1111:     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
                   1112:     ** WAL file.
                   1113:     */
                   1114:     magic = sqlite3Get4byte(&aBuf[0]);
                   1115:     szPage = sqlite3Get4byte(&aBuf[8]);
                   1116:     if( (magic&0xFFFFFFFE)!=WAL_MAGIC 
                   1117:      || szPage&(szPage-1) 
                   1118:      || szPage>SQLITE_MAX_PAGE_SIZE 
                   1119:      || szPage<512 
                   1120:     ){
                   1121:       goto finished;
                   1122:     }
                   1123:     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
                   1124:     pWal->szPage = szPage;
                   1125:     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
                   1126:     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
                   1127: 
                   1128:     /* Verify that the WAL header checksum is correct */
                   1129:     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 
                   1130:         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
                   1131:     );
                   1132:     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
                   1133:      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
                   1134:     ){
                   1135:       goto finished;
                   1136:     }
                   1137: 
                   1138:     /* Verify that the version number on the WAL format is one that
                   1139:     ** are able to understand */
                   1140:     version = sqlite3Get4byte(&aBuf[4]);
                   1141:     if( version!=WAL_MAX_VERSION ){
                   1142:       rc = SQLITE_CANTOPEN_BKPT;
                   1143:       goto finished;
                   1144:     }
                   1145: 
                   1146:     /* Malloc a buffer to read frames into. */
                   1147:     szFrame = szPage + WAL_FRAME_HDRSIZE;
                   1148:     aFrame = (u8 *)sqlite3_malloc(szFrame);
                   1149:     if( !aFrame ){
                   1150:       rc = SQLITE_NOMEM;
                   1151:       goto recovery_error;
                   1152:     }
                   1153:     aData = &aFrame[WAL_FRAME_HDRSIZE];
                   1154: 
                   1155:     /* Read all frames from the log file. */
                   1156:     iFrame = 0;
                   1157:     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
                   1158:       u32 pgno;                   /* Database page number for frame */
                   1159:       u32 nTruncate;              /* dbsize field from frame header */
                   1160: 
                   1161:       /* Read and decode the next log frame. */
                   1162:       iFrame++;
                   1163:       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
                   1164:       if( rc!=SQLITE_OK ) break;
                   1165:       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
                   1166:       if( !isValid ) break;
                   1167:       rc = walIndexAppend(pWal, iFrame, pgno);
                   1168:       if( rc!=SQLITE_OK ) break;
                   1169: 
                   1170:       /* If nTruncate is non-zero, this is a commit record. */
                   1171:       if( nTruncate ){
                   1172:         pWal->hdr.mxFrame = iFrame;
                   1173:         pWal->hdr.nPage = nTruncate;
                   1174:         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
                   1175:         testcase( szPage<=32768 );
                   1176:         testcase( szPage>=65536 );
                   1177:         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
                   1178:         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
                   1179:       }
                   1180:     }
                   1181: 
                   1182:     sqlite3_free(aFrame);
                   1183:   }
                   1184: 
                   1185: finished:
                   1186:   if( rc==SQLITE_OK ){
                   1187:     volatile WalCkptInfo *pInfo;
                   1188:     int i;
                   1189:     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
                   1190:     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
                   1191:     walIndexWriteHdr(pWal);
                   1192: 
                   1193:     /* Reset the checkpoint-header. This is safe because this thread is 
                   1194:     ** currently holding locks that exclude all other readers, writers and
                   1195:     ** checkpointers.
                   1196:     */
                   1197:     pInfo = walCkptInfo(pWal);
                   1198:     pInfo->nBackfill = 0;
                   1199:     pInfo->aReadMark[0] = 0;
                   1200:     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
                   1201: 
                   1202:     /* If more than one frame was recovered from the log file, report an
                   1203:     ** event via sqlite3_log(). This is to help with identifying performance
                   1204:     ** problems caused by applications routinely shutting down without
                   1205:     ** checkpointing the log file.
                   1206:     */
                   1207:     if( pWal->hdr.nPage ){
                   1208:       sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
                   1209:           pWal->hdr.nPage, pWal->zWalName
                   1210:       );
                   1211:     }
                   1212:   }
                   1213: 
                   1214: recovery_error:
                   1215:   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
                   1216:   walUnlockExclusive(pWal, iLock, nLock);
                   1217:   return rc;
                   1218: }
                   1219: 
                   1220: /*
                   1221: ** Close an open wal-index.
                   1222: */
                   1223: static void walIndexClose(Wal *pWal, int isDelete){
                   1224:   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
                   1225:     int i;
                   1226:     for(i=0; i<pWal->nWiData; i++){
                   1227:       sqlite3_free((void *)pWal->apWiData[i]);
                   1228:       pWal->apWiData[i] = 0;
                   1229:     }
                   1230:   }else{
                   1231:     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
                   1232:   }
                   1233: }
                   1234: 
                   1235: /* 
                   1236: ** Open a connection to the WAL file zWalName. The database file must 
                   1237: ** already be opened on connection pDbFd. The buffer that zWalName points
                   1238: ** to must remain valid for the lifetime of the returned Wal* handle.
                   1239: **
                   1240: ** A SHARED lock should be held on the database file when this function
                   1241: ** is called. The purpose of this SHARED lock is to prevent any other
                   1242: ** client from unlinking the WAL or wal-index file. If another process
                   1243: ** were to do this just after this client opened one of these files, the
                   1244: ** system would be badly broken.
                   1245: **
                   1246: ** If the log file is successfully opened, SQLITE_OK is returned and 
                   1247: ** *ppWal is set to point to a new WAL handle. If an error occurs,
                   1248: ** an SQLite error code is returned and *ppWal is left unmodified.
                   1249: */
                   1250: int sqlite3WalOpen(
                   1251:   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
                   1252:   sqlite3_file *pDbFd,            /* The open database file */
                   1253:   const char *zWalName,           /* Name of the WAL file */
                   1254:   int bNoShm,                     /* True to run in heap-memory mode */
                   1255:   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
                   1256:   Wal **ppWal                     /* OUT: Allocated Wal handle */
                   1257: ){
                   1258:   int rc;                         /* Return Code */
                   1259:   Wal *pRet;                      /* Object to allocate and return */
                   1260:   int flags;                      /* Flags passed to OsOpen() */
                   1261: 
                   1262:   assert( zWalName && zWalName[0] );
                   1263:   assert( pDbFd );
                   1264: 
                   1265:   /* In the amalgamation, the os_unix.c and os_win.c source files come before
                   1266:   ** this source file.  Verify that the #defines of the locking byte offsets
                   1267:   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
                   1268:   */
                   1269: #ifdef WIN_SHM_BASE
                   1270:   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
                   1271: #endif
                   1272: #ifdef UNIX_SHM_BASE
                   1273:   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
                   1274: #endif
                   1275: 
                   1276: 
                   1277:   /* Allocate an instance of struct Wal to return. */
                   1278:   *ppWal = 0;
                   1279:   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
                   1280:   if( !pRet ){
                   1281:     return SQLITE_NOMEM;
                   1282:   }
                   1283: 
                   1284:   pRet->pVfs = pVfs;
                   1285:   pRet->pWalFd = (sqlite3_file *)&pRet[1];
                   1286:   pRet->pDbFd = pDbFd;
                   1287:   pRet->readLock = -1;
                   1288:   pRet->mxWalSize = mxWalSize;
                   1289:   pRet->zWalName = zWalName;
                   1290:   pRet->syncHeader = 1;
                   1291:   pRet->padToSectorBoundary = 1;
                   1292:   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
                   1293: 
                   1294:   /* Open file handle on the write-ahead log file. */
                   1295:   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
                   1296:   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
                   1297:   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
                   1298:     pRet->readOnly = WAL_RDONLY;
                   1299:   }
                   1300: 
                   1301:   if( rc!=SQLITE_OK ){
                   1302:     walIndexClose(pRet, 0);
                   1303:     sqlite3OsClose(pRet->pWalFd);
                   1304:     sqlite3_free(pRet);
                   1305:   }else{
                   1306:     int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
                   1307:     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
                   1308:     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
                   1309:       pRet->padToSectorBoundary = 0;
                   1310:     }
                   1311:     *ppWal = pRet;
                   1312:     WALTRACE(("WAL%d: opened\n", pRet));
                   1313:   }
                   1314:   return rc;
                   1315: }
                   1316: 
                   1317: /*
                   1318: ** Change the size to which the WAL file is trucated on each reset.
                   1319: */
                   1320: void sqlite3WalLimit(Wal *pWal, i64 iLimit){
                   1321:   if( pWal ) pWal->mxWalSize = iLimit;
                   1322: }
                   1323: 
                   1324: /*
                   1325: ** Find the smallest page number out of all pages held in the WAL that
                   1326: ** has not been returned by any prior invocation of this method on the
                   1327: ** same WalIterator object.   Write into *piFrame the frame index where
                   1328: ** that page was last written into the WAL.  Write into *piPage the page
                   1329: ** number.
                   1330: **
                   1331: ** Return 0 on success.  If there are no pages in the WAL with a page
                   1332: ** number larger than *piPage, then return 1.
                   1333: */
                   1334: static int walIteratorNext(
                   1335:   WalIterator *p,               /* Iterator */
                   1336:   u32 *piPage,                  /* OUT: The page number of the next page */
                   1337:   u32 *piFrame                  /* OUT: Wal frame index of next page */
                   1338: ){
                   1339:   u32 iMin;                     /* Result pgno must be greater than iMin */
                   1340:   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
                   1341:   int i;                        /* For looping through segments */
                   1342: 
                   1343:   iMin = p->iPrior;
                   1344:   assert( iMin<0xffffffff );
                   1345:   for(i=p->nSegment-1; i>=0; i--){
                   1346:     struct WalSegment *pSegment = &p->aSegment[i];
                   1347:     while( pSegment->iNext<pSegment->nEntry ){
                   1348:       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
                   1349:       if( iPg>iMin ){
                   1350:         if( iPg<iRet ){
                   1351:           iRet = iPg;
                   1352:           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
                   1353:         }
                   1354:         break;
                   1355:       }
                   1356:       pSegment->iNext++;
                   1357:     }
                   1358:   }
                   1359: 
                   1360:   *piPage = p->iPrior = iRet;
                   1361:   return (iRet==0xFFFFFFFF);
                   1362: }
                   1363: 
                   1364: /*
                   1365: ** This function merges two sorted lists into a single sorted list.
                   1366: **
                   1367: ** aLeft[] and aRight[] are arrays of indices.  The sort key is
                   1368: ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
                   1369: ** is guaranteed for all J<K:
                   1370: **
                   1371: **        aContent[aLeft[J]] < aContent[aLeft[K]]
                   1372: **        aContent[aRight[J]] < aContent[aRight[K]]
                   1373: **
                   1374: ** This routine overwrites aRight[] with a new (probably longer) sequence
                   1375: ** of indices such that the aRight[] contains every index that appears in
                   1376: ** either aLeft[] or the old aRight[] and such that the second condition
                   1377: ** above is still met.
                   1378: **
                   1379: ** The aContent[aLeft[X]] values will be unique for all X.  And the
                   1380: ** aContent[aRight[X]] values will be unique too.  But there might be
                   1381: ** one or more combinations of X and Y such that
                   1382: **
                   1383: **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
                   1384: **
                   1385: ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
                   1386: */
                   1387: static void walMerge(
                   1388:   const u32 *aContent,            /* Pages in wal - keys for the sort */
                   1389:   ht_slot *aLeft,                 /* IN: Left hand input list */
                   1390:   int nLeft,                      /* IN: Elements in array *paLeft */
                   1391:   ht_slot **paRight,              /* IN/OUT: Right hand input list */
                   1392:   int *pnRight,                   /* IN/OUT: Elements in *paRight */
                   1393:   ht_slot *aTmp                   /* Temporary buffer */
                   1394: ){
                   1395:   int iLeft = 0;                  /* Current index in aLeft */
                   1396:   int iRight = 0;                 /* Current index in aRight */
                   1397:   int iOut = 0;                   /* Current index in output buffer */
                   1398:   int nRight = *pnRight;
                   1399:   ht_slot *aRight = *paRight;
                   1400: 
                   1401:   assert( nLeft>0 && nRight>0 );
                   1402:   while( iRight<nRight || iLeft<nLeft ){
                   1403:     ht_slot logpage;
                   1404:     Pgno dbpage;
                   1405: 
                   1406:     if( (iLeft<nLeft) 
                   1407:      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
                   1408:     ){
                   1409:       logpage = aLeft[iLeft++];
                   1410:     }else{
                   1411:       logpage = aRight[iRight++];
                   1412:     }
                   1413:     dbpage = aContent[logpage];
                   1414: 
                   1415:     aTmp[iOut++] = logpage;
                   1416:     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
                   1417: 
                   1418:     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
                   1419:     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
                   1420:   }
                   1421: 
                   1422:   *paRight = aLeft;
                   1423:   *pnRight = iOut;
                   1424:   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
                   1425: }
                   1426: 
                   1427: /*
                   1428: ** Sort the elements in list aList using aContent[] as the sort key.
                   1429: ** Remove elements with duplicate keys, preferring to keep the
                   1430: ** larger aList[] values.
                   1431: **
                   1432: ** The aList[] entries are indices into aContent[].  The values in
                   1433: ** aList[] are to be sorted so that for all J<K:
                   1434: **
                   1435: **      aContent[aList[J]] < aContent[aList[K]]
                   1436: **
                   1437: ** For any X and Y such that
                   1438: **
                   1439: **      aContent[aList[X]] == aContent[aList[Y]]
                   1440: **
                   1441: ** Keep the larger of the two values aList[X] and aList[Y] and discard
                   1442: ** the smaller.
                   1443: */
                   1444: static void walMergesort(
                   1445:   const u32 *aContent,            /* Pages in wal */
                   1446:   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
                   1447:   ht_slot *aList,                 /* IN/OUT: List to sort */
                   1448:   int *pnList                     /* IN/OUT: Number of elements in aList[] */
                   1449: ){
                   1450:   struct Sublist {
                   1451:     int nList;                    /* Number of elements in aList */
                   1452:     ht_slot *aList;               /* Pointer to sub-list content */
                   1453:   };
                   1454: 
                   1455:   const int nList = *pnList;      /* Size of input list */
                   1456:   int nMerge = 0;                 /* Number of elements in list aMerge */
                   1457:   ht_slot *aMerge = 0;            /* List to be merged */
                   1458:   int iList;                      /* Index into input list */
                   1459:   int iSub = 0;                   /* Index into aSub array */
                   1460:   struct Sublist aSub[13];        /* Array of sub-lists */
                   1461: 
                   1462:   memset(aSub, 0, sizeof(aSub));
                   1463:   assert( nList<=HASHTABLE_NPAGE && nList>0 );
                   1464:   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
                   1465: 
                   1466:   for(iList=0; iList<nList; iList++){
                   1467:     nMerge = 1;
                   1468:     aMerge = &aList[iList];
                   1469:     for(iSub=0; iList & (1<<iSub); iSub++){
                   1470:       struct Sublist *p = &aSub[iSub];
                   1471:       assert( p->aList && p->nList<=(1<<iSub) );
                   1472:       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
                   1473:       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
                   1474:     }
                   1475:     aSub[iSub].aList = aMerge;
                   1476:     aSub[iSub].nList = nMerge;
                   1477:   }
                   1478: 
                   1479:   for(iSub++; iSub<ArraySize(aSub); iSub++){
                   1480:     if( nList & (1<<iSub) ){
                   1481:       struct Sublist *p = &aSub[iSub];
                   1482:       assert( p->nList<=(1<<iSub) );
                   1483:       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
                   1484:       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
                   1485:     }
                   1486:   }
                   1487:   assert( aMerge==aList );
                   1488:   *pnList = nMerge;
                   1489: 
                   1490: #ifdef SQLITE_DEBUG
                   1491:   {
                   1492:     int i;
                   1493:     for(i=1; i<*pnList; i++){
                   1494:       assert( aContent[aList[i]] > aContent[aList[i-1]] );
                   1495:     }
                   1496:   }
                   1497: #endif
                   1498: }
                   1499: 
                   1500: /* 
                   1501: ** Free an iterator allocated by walIteratorInit().
                   1502: */
                   1503: static void walIteratorFree(WalIterator *p){
                   1504:   sqlite3ScratchFree(p);
                   1505: }
                   1506: 
                   1507: /*
                   1508: ** Construct a WalInterator object that can be used to loop over all 
                   1509: ** pages in the WAL in ascending order. The caller must hold the checkpoint
                   1510: ** lock.
                   1511: **
                   1512: ** On success, make *pp point to the newly allocated WalInterator object
                   1513: ** return SQLITE_OK. Otherwise, return an error code. If this routine
                   1514: ** returns an error, the value of *pp is undefined.
                   1515: **
                   1516: ** The calling routine should invoke walIteratorFree() to destroy the
                   1517: ** WalIterator object when it has finished with it.
                   1518: */
                   1519: static int walIteratorInit(Wal *pWal, WalIterator **pp){
                   1520:   WalIterator *p;                 /* Return value */
                   1521:   int nSegment;                   /* Number of segments to merge */
                   1522:   u32 iLast;                      /* Last frame in log */
                   1523:   int nByte;                      /* Number of bytes to allocate */
                   1524:   int i;                          /* Iterator variable */
                   1525:   ht_slot *aTmp;                  /* Temp space used by merge-sort */
                   1526:   int rc = SQLITE_OK;             /* Return Code */
                   1527: 
                   1528:   /* This routine only runs while holding the checkpoint lock. And
                   1529:   ** it only runs if there is actually content in the log (mxFrame>0).
                   1530:   */
                   1531:   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
                   1532:   iLast = pWal->hdr.mxFrame;
                   1533: 
                   1534:   /* Allocate space for the WalIterator object. */
                   1535:   nSegment = walFramePage(iLast) + 1;
                   1536:   nByte = sizeof(WalIterator) 
                   1537:         + (nSegment-1)*sizeof(struct WalSegment)
                   1538:         + iLast*sizeof(ht_slot);
                   1539:   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
                   1540:   if( !p ){
                   1541:     return SQLITE_NOMEM;
                   1542:   }
                   1543:   memset(p, 0, nByte);
                   1544:   p->nSegment = nSegment;
                   1545: 
                   1546:   /* Allocate temporary space used by the merge-sort routine. This block
                   1547:   ** of memory will be freed before this function returns.
                   1548:   */
                   1549:   aTmp = (ht_slot *)sqlite3ScratchMalloc(
                   1550:       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
                   1551:   );
                   1552:   if( !aTmp ){
                   1553:     rc = SQLITE_NOMEM;
                   1554:   }
                   1555: 
                   1556:   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
                   1557:     volatile ht_slot *aHash;
                   1558:     u32 iZero;
                   1559:     volatile u32 *aPgno;
                   1560: 
                   1561:     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
                   1562:     if( rc==SQLITE_OK ){
                   1563:       int j;                      /* Counter variable */
                   1564:       int nEntry;                 /* Number of entries in this segment */
                   1565:       ht_slot *aIndex;            /* Sorted index for this segment */
                   1566: 
                   1567:       aPgno++;
                   1568:       if( (i+1)==nSegment ){
                   1569:         nEntry = (int)(iLast - iZero);
                   1570:       }else{
                   1571:         nEntry = (int)((u32*)aHash - (u32*)aPgno);
                   1572:       }
                   1573:       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
                   1574:       iZero++;
                   1575:   
                   1576:       for(j=0; j<nEntry; j++){
                   1577:         aIndex[j] = (ht_slot)j;
                   1578:       }
                   1579:       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
                   1580:       p->aSegment[i].iZero = iZero;
                   1581:       p->aSegment[i].nEntry = nEntry;
                   1582:       p->aSegment[i].aIndex = aIndex;
                   1583:       p->aSegment[i].aPgno = (u32 *)aPgno;
                   1584:     }
                   1585:   }
                   1586:   sqlite3ScratchFree(aTmp);
                   1587: 
                   1588:   if( rc!=SQLITE_OK ){
                   1589:     walIteratorFree(p);
                   1590:   }
                   1591:   *pp = p;
                   1592:   return rc;
                   1593: }
                   1594: 
                   1595: /*
                   1596: ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
                   1597: ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
                   1598: ** busy-handler function. Invoke it and retry the lock until either the
                   1599: ** lock is successfully obtained or the busy-handler returns 0.
                   1600: */
                   1601: static int walBusyLock(
                   1602:   Wal *pWal,                      /* WAL connection */
                   1603:   int (*xBusy)(void*),            /* Function to call when busy */
                   1604:   void *pBusyArg,                 /* Context argument for xBusyHandler */
                   1605:   int lockIdx,                    /* Offset of first byte to lock */
                   1606:   int n                           /* Number of bytes to lock */
                   1607: ){
                   1608:   int rc;
                   1609:   do {
                   1610:     rc = walLockExclusive(pWal, lockIdx, n);
                   1611:   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
                   1612:   return rc;
                   1613: }
                   1614: 
                   1615: /*
                   1616: ** The cache of the wal-index header must be valid to call this function.
                   1617: ** Return the page-size in bytes used by the database.
                   1618: */
                   1619: static int walPagesize(Wal *pWal){
                   1620:   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
                   1621: }
                   1622: 
                   1623: /*
                   1624: ** Copy as much content as we can from the WAL back into the database file
                   1625: ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
                   1626: **
                   1627: ** The amount of information copies from WAL to database might be limited
                   1628: ** by active readers.  This routine will never overwrite a database page
                   1629: ** that a concurrent reader might be using.
                   1630: **
                   1631: ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
                   1632: ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if 
                   1633: ** checkpoints are always run by a background thread or background 
                   1634: ** process, foreground threads will never block on a lengthy fsync call.
                   1635: **
                   1636: ** Fsync is called on the WAL before writing content out of the WAL and
                   1637: ** into the database.  This ensures that if the new content is persistent
                   1638: ** in the WAL and can be recovered following a power-loss or hard reset.
                   1639: **
                   1640: ** Fsync is also called on the database file if (and only if) the entire
                   1641: ** WAL content is copied into the database file.  This second fsync makes
                   1642: ** it safe to delete the WAL since the new content will persist in the
                   1643: ** database file.
                   1644: **
                   1645: ** This routine uses and updates the nBackfill field of the wal-index header.
                   1646: ** This is the only routine tha will increase the value of nBackfill.  
                   1647: ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
                   1648: ** its value.)
                   1649: **
                   1650: ** The caller must be holding sufficient locks to ensure that no other
                   1651: ** checkpoint is running (in any other thread or process) at the same
                   1652: ** time.
                   1653: */
                   1654: static int walCheckpoint(
                   1655:   Wal *pWal,                      /* Wal connection */
                   1656:   int eMode,                      /* One of PASSIVE, FULL or RESTART */
                   1657:   int (*xBusyCall)(void*),        /* Function to call when busy */
                   1658:   void *pBusyArg,                 /* Context argument for xBusyHandler */
                   1659:   int sync_flags,                 /* Flags for OsSync() (or 0) */
                   1660:   u8 *zBuf                        /* Temporary buffer to use */
                   1661: ){
                   1662:   int rc;                         /* Return code */
                   1663:   int szPage;                     /* Database page-size */
                   1664:   WalIterator *pIter = 0;         /* Wal iterator context */
                   1665:   u32 iDbpage = 0;                /* Next database page to write */
                   1666:   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
                   1667:   u32 mxSafeFrame;                /* Max frame that can be backfilled */
                   1668:   u32 mxPage;                     /* Max database page to write */
                   1669:   int i;                          /* Loop counter */
                   1670:   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
                   1671:   int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */
                   1672: 
                   1673:   szPage = walPagesize(pWal);
                   1674:   testcase( szPage<=32768 );
                   1675:   testcase( szPage>=65536 );
                   1676:   pInfo = walCkptInfo(pWal);
                   1677:   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
                   1678: 
                   1679:   /* Allocate the iterator */
                   1680:   rc = walIteratorInit(pWal, &pIter);
                   1681:   if( rc!=SQLITE_OK ){
                   1682:     return rc;
                   1683:   }
                   1684:   assert( pIter );
                   1685: 
                   1686:   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
                   1687: 
                   1688:   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
                   1689:   ** safe to write into the database.  Frames beyond mxSafeFrame might
                   1690:   ** overwrite database pages that are in use by active readers and thus
                   1691:   ** cannot be backfilled from the WAL.
                   1692:   */
                   1693:   mxSafeFrame = pWal->hdr.mxFrame;
                   1694:   mxPage = pWal->hdr.nPage;
                   1695:   for(i=1; i<WAL_NREADER; i++){
                   1696:     u32 y = pInfo->aReadMark[i];
                   1697:     if( mxSafeFrame>y ){
                   1698:       assert( y<=pWal->hdr.mxFrame );
                   1699:       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
                   1700:       if( rc==SQLITE_OK ){
                   1701:         pInfo->aReadMark[i] = READMARK_NOT_USED;
                   1702:         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
                   1703:       }else if( rc==SQLITE_BUSY ){
                   1704:         mxSafeFrame = y;
                   1705:         xBusy = 0;
                   1706:       }else{
                   1707:         goto walcheckpoint_out;
                   1708:       }
                   1709:     }
                   1710:   }
                   1711: 
                   1712:   if( pInfo->nBackfill<mxSafeFrame
                   1713:    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
                   1714:   ){
                   1715:     i64 nSize;                    /* Current size of database file */
                   1716:     u32 nBackfill = pInfo->nBackfill;
                   1717: 
                   1718:     /* Sync the WAL to disk */
                   1719:     if( sync_flags ){
                   1720:       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
                   1721:     }
                   1722: 
                   1723:     /* If the database file may grow as a result of this checkpoint, hint
                   1724:     ** about the eventual size of the db file to the VFS layer. 
                   1725:     */
                   1726:     if( rc==SQLITE_OK ){
                   1727:       i64 nReq = ((i64)mxPage * szPage);
                   1728:       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
                   1729:       if( rc==SQLITE_OK && nSize<nReq ){
                   1730:         sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
                   1731:       }
                   1732:     }
                   1733: 
                   1734:     /* Iterate through the contents of the WAL, copying data to the db file. */
                   1735:     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
                   1736:       i64 iOffset;
                   1737:       assert( walFramePgno(pWal, iFrame)==iDbpage );
                   1738:       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
                   1739:       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
                   1740:       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
                   1741:       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
                   1742:       if( rc!=SQLITE_OK ) break;
                   1743:       iOffset = (iDbpage-1)*(i64)szPage;
                   1744:       testcase( IS_BIG_INT(iOffset) );
                   1745:       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
                   1746:       if( rc!=SQLITE_OK ) break;
                   1747:     }
                   1748: 
                   1749:     /* If work was actually accomplished... */
                   1750:     if( rc==SQLITE_OK ){
                   1751:       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
                   1752:         i64 szDb = pWal->hdr.nPage*(i64)szPage;
                   1753:         testcase( IS_BIG_INT(szDb) );
                   1754:         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
                   1755:         if( rc==SQLITE_OK && sync_flags ){
                   1756:           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
                   1757:         }
                   1758:       }
                   1759:       if( rc==SQLITE_OK ){
                   1760:         pInfo->nBackfill = mxSafeFrame;
                   1761:       }
                   1762:     }
                   1763: 
                   1764:     /* Release the reader lock held while backfilling */
                   1765:     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
                   1766:   }
                   1767: 
                   1768:   if( rc==SQLITE_BUSY ){
                   1769:     /* Reset the return code so as not to report a checkpoint failure
                   1770:     ** just because there are active readers.  */
                   1771:     rc = SQLITE_OK;
                   1772:   }
                   1773: 
                   1774:   /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
                   1775:   ** file has been copied into the database file, then block until all
                   1776:   ** readers have finished using the wal file. This ensures that the next
                   1777:   ** process to write to the database restarts the wal file.
                   1778:   */
                   1779:   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
                   1780:     assert( pWal->writeLock );
                   1781:     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
                   1782:       rc = SQLITE_BUSY;
                   1783:     }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
                   1784:       assert( mxSafeFrame==pWal->hdr.mxFrame );
                   1785:       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
                   1786:       if( rc==SQLITE_OK ){
                   1787:         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
                   1788:       }
                   1789:     }
                   1790:   }
                   1791: 
                   1792:  walcheckpoint_out:
                   1793:   walIteratorFree(pIter);
                   1794:   return rc;
                   1795: }
                   1796: 
                   1797: /*
                   1798: ** If the WAL file is currently larger than nMax bytes in size, truncate
                   1799: ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
                   1800: */
                   1801: static void walLimitSize(Wal *pWal, i64 nMax){
                   1802:   i64 sz;
                   1803:   int rx;
                   1804:   sqlite3BeginBenignMalloc();
                   1805:   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
                   1806:   if( rx==SQLITE_OK && (sz > nMax ) ){
                   1807:     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
                   1808:   }
                   1809:   sqlite3EndBenignMalloc();
                   1810:   if( rx ){
                   1811:     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
                   1812:   }
                   1813: }
                   1814: 
                   1815: /*
                   1816: ** Close a connection to a log file.
                   1817: */
                   1818: int sqlite3WalClose(
                   1819:   Wal *pWal,                      /* Wal to close */
                   1820:   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
                   1821:   int nBuf,
                   1822:   u8 *zBuf                        /* Buffer of at least nBuf bytes */
                   1823: ){
                   1824:   int rc = SQLITE_OK;
                   1825:   if( pWal ){
                   1826:     int isDelete = 0;             /* True to unlink wal and wal-index files */
                   1827: 
                   1828:     /* If an EXCLUSIVE lock can be obtained on the database file (using the
                   1829:     ** ordinary, rollback-mode locking methods, this guarantees that the
                   1830:     ** connection associated with this log file is the only connection to
                   1831:     ** the database. In this case checkpoint the database and unlink both
                   1832:     ** the wal and wal-index files.
                   1833:     **
                   1834:     ** The EXCLUSIVE lock is not released before returning.
                   1835:     */
                   1836:     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
                   1837:     if( rc==SQLITE_OK ){
                   1838:       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
                   1839:         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
                   1840:       }
                   1841:       rc = sqlite3WalCheckpoint(
                   1842:           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
                   1843:       );
                   1844:       if( rc==SQLITE_OK ){
                   1845:         int bPersist = -1;
                   1846:         sqlite3OsFileControlHint(
                   1847:             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
                   1848:         );
                   1849:         if( bPersist!=1 ){
                   1850:           /* Try to delete the WAL file if the checkpoint completed and
                   1851:           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
                   1852:           ** mode (!bPersist) */
                   1853:           isDelete = 1;
                   1854:         }else if( pWal->mxWalSize>=0 ){
                   1855:           /* Try to truncate the WAL file to zero bytes if the checkpoint
                   1856:           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
                   1857:           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
                   1858:           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
                   1859:           ** to zero bytes as truncating to the journal_size_limit might
                   1860:           ** leave a corrupt WAL file on disk. */
                   1861:           walLimitSize(pWal, 0);
                   1862:         }
                   1863:       }
                   1864:     }
                   1865: 
                   1866:     walIndexClose(pWal, isDelete);
                   1867:     sqlite3OsClose(pWal->pWalFd);
                   1868:     if( isDelete ){
                   1869:       sqlite3BeginBenignMalloc();
                   1870:       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
                   1871:       sqlite3EndBenignMalloc();
                   1872:     }
                   1873:     WALTRACE(("WAL%p: closed\n", pWal));
                   1874:     sqlite3_free((void *)pWal->apWiData);
                   1875:     sqlite3_free(pWal);
                   1876:   }
                   1877:   return rc;
                   1878: }
                   1879: 
                   1880: /*
                   1881: ** Try to read the wal-index header.  Return 0 on success and 1 if
                   1882: ** there is a problem.
                   1883: **
                   1884: ** The wal-index is in shared memory.  Another thread or process might
                   1885: ** be writing the header at the same time this procedure is trying to
                   1886: ** read it, which might result in inconsistency.  A dirty read is detected
                   1887: ** by verifying that both copies of the header are the same and also by
                   1888: ** a checksum on the header.
                   1889: **
                   1890: ** If and only if the read is consistent and the header is different from
                   1891: ** pWal->hdr, then pWal->hdr is updated to the content of the new header
                   1892: ** and *pChanged is set to 1.
                   1893: **
                   1894: ** If the checksum cannot be verified return non-zero. If the header
                   1895: ** is read successfully and the checksum verified, return zero.
                   1896: */
                   1897: static int walIndexTryHdr(Wal *pWal, int *pChanged){
                   1898:   u32 aCksum[2];                  /* Checksum on the header content */
                   1899:   WalIndexHdr h1, h2;             /* Two copies of the header content */
                   1900:   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
                   1901: 
                   1902:   /* The first page of the wal-index must be mapped at this point. */
                   1903:   assert( pWal->nWiData>0 && pWal->apWiData[0] );
                   1904: 
                   1905:   /* Read the header. This might happen concurrently with a write to the
                   1906:   ** same area of shared memory on a different CPU in a SMP,
                   1907:   ** meaning it is possible that an inconsistent snapshot is read
                   1908:   ** from the file. If this happens, return non-zero.
                   1909:   **
                   1910:   ** There are two copies of the header at the beginning of the wal-index.
                   1911:   ** When reading, read [0] first then [1].  Writes are in the reverse order.
                   1912:   ** Memory barriers are used to prevent the compiler or the hardware from
                   1913:   ** reordering the reads and writes.
                   1914:   */
                   1915:   aHdr = walIndexHdr(pWal);
                   1916:   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
                   1917:   walShmBarrier(pWal);
                   1918:   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
                   1919: 
                   1920:   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
                   1921:     return 1;   /* Dirty read */
                   1922:   }  
                   1923:   if( h1.isInit==0 ){
                   1924:     return 1;   /* Malformed header - probably all zeros */
                   1925:   }
                   1926:   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
                   1927:   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
                   1928:     return 1;   /* Checksum does not match */
                   1929:   }
                   1930: 
                   1931:   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
                   1932:     *pChanged = 1;
                   1933:     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
                   1934:     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
                   1935:     testcase( pWal->szPage<=32768 );
                   1936:     testcase( pWal->szPage>=65536 );
                   1937:   }
                   1938: 
                   1939:   /* The header was successfully read. Return zero. */
                   1940:   return 0;
                   1941: }
                   1942: 
                   1943: /*
                   1944: ** Read the wal-index header from the wal-index and into pWal->hdr.
                   1945: ** If the wal-header appears to be corrupt, try to reconstruct the
                   1946: ** wal-index from the WAL before returning.
                   1947: **
                   1948: ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
                   1949: ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
                   1950: ** to 0.
                   1951: **
                   1952: ** If the wal-index header is successfully read, return SQLITE_OK. 
                   1953: ** Otherwise an SQLite error code.
                   1954: */
                   1955: static int walIndexReadHdr(Wal *pWal, int *pChanged){
                   1956:   int rc;                         /* Return code */
                   1957:   int badHdr;                     /* True if a header read failed */
                   1958:   volatile u32 *page0;            /* Chunk of wal-index containing header */
                   1959: 
                   1960:   /* Ensure that page 0 of the wal-index (the page that contains the 
                   1961:   ** wal-index header) is mapped. Return early if an error occurs here.
                   1962:   */
                   1963:   assert( pChanged );
                   1964:   rc = walIndexPage(pWal, 0, &page0);
                   1965:   if( rc!=SQLITE_OK ){
                   1966:     return rc;
                   1967:   };
                   1968:   assert( page0 || pWal->writeLock==0 );
                   1969: 
                   1970:   /* If the first page of the wal-index has been mapped, try to read the
                   1971:   ** wal-index header immediately, without holding any lock. This usually
                   1972:   ** works, but may fail if the wal-index header is corrupt or currently 
                   1973:   ** being modified by another thread or process.
                   1974:   */
                   1975:   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
                   1976: 
                   1977:   /* If the first attempt failed, it might have been due to a race
                   1978:   ** with a writer.  So get a WRITE lock and try again.
                   1979:   */
                   1980:   assert( badHdr==0 || pWal->writeLock==0 );
                   1981:   if( badHdr ){
                   1982:     if( pWal->readOnly & WAL_SHM_RDONLY ){
                   1983:       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
                   1984:         walUnlockShared(pWal, WAL_WRITE_LOCK);
                   1985:         rc = SQLITE_READONLY_RECOVERY;
                   1986:       }
                   1987:     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
                   1988:       pWal->writeLock = 1;
                   1989:       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
                   1990:         badHdr = walIndexTryHdr(pWal, pChanged);
                   1991:         if( badHdr ){
                   1992:           /* If the wal-index header is still malformed even while holding
                   1993:           ** a WRITE lock, it can only mean that the header is corrupted and
                   1994:           ** needs to be reconstructed.  So run recovery to do exactly that.
                   1995:           */
                   1996:           rc = walIndexRecover(pWal);
                   1997:           *pChanged = 1;
                   1998:         }
                   1999:       }
                   2000:       pWal->writeLock = 0;
                   2001:       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
                   2002:     }
                   2003:   }
                   2004: 
                   2005:   /* If the header is read successfully, check the version number to make
                   2006:   ** sure the wal-index was not constructed with some future format that
                   2007:   ** this version of SQLite cannot understand.
                   2008:   */
                   2009:   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
                   2010:     rc = SQLITE_CANTOPEN_BKPT;
                   2011:   }
                   2012: 
                   2013:   return rc;
                   2014: }
                   2015: 
                   2016: /*
                   2017: ** This is the value that walTryBeginRead returns when it needs to
                   2018: ** be retried.
                   2019: */
                   2020: #define WAL_RETRY  (-1)
                   2021: 
                   2022: /*
                   2023: ** Attempt to start a read transaction.  This might fail due to a race or
                   2024: ** other transient condition.  When that happens, it returns WAL_RETRY to
                   2025: ** indicate to the caller that it is safe to retry immediately.
                   2026: **
                   2027: ** On success return SQLITE_OK.  On a permanent failure (such an
                   2028: ** I/O error or an SQLITE_BUSY because another process is running
                   2029: ** recovery) return a positive error code.
                   2030: **
                   2031: ** The useWal parameter is true to force the use of the WAL and disable
                   2032: ** the case where the WAL is bypassed because it has been completely
                   2033: ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr() 
                   2034: ** to make a copy of the wal-index header into pWal->hdr.  If the 
                   2035: ** wal-index header has changed, *pChanged is set to 1 (as an indication 
                   2036: ** to the caller that the local paget cache is obsolete and needs to be 
                   2037: ** flushed.)  When useWal==1, the wal-index header is assumed to already
                   2038: ** be loaded and the pChanged parameter is unused.
                   2039: **
                   2040: ** The caller must set the cnt parameter to the number of prior calls to
                   2041: ** this routine during the current read attempt that returned WAL_RETRY.
                   2042: ** This routine will start taking more aggressive measures to clear the
                   2043: ** race conditions after multiple WAL_RETRY returns, and after an excessive
                   2044: ** number of errors will ultimately return SQLITE_PROTOCOL.  The
                   2045: ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
                   2046: ** and is not honoring the locking protocol.  There is a vanishingly small
                   2047: ** chance that SQLITE_PROTOCOL could be returned because of a run of really
                   2048: ** bad luck when there is lots of contention for the wal-index, but that
                   2049: ** possibility is so small that it can be safely neglected, we believe.
                   2050: **
                   2051: ** On success, this routine obtains a read lock on 
                   2052: ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
                   2053: ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
                   2054: ** that means the Wal does not hold any read lock.  The reader must not
                   2055: ** access any database page that is modified by a WAL frame up to and
                   2056: ** including frame number aReadMark[pWal->readLock].  The reader will
                   2057: ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
                   2058: ** Or if pWal->readLock==0, then the reader will ignore the WAL
                   2059: ** completely and get all content directly from the database file.
                   2060: ** If the useWal parameter is 1 then the WAL will never be ignored and
                   2061: ** this routine will always set pWal->readLock>0 on success.
                   2062: ** When the read transaction is completed, the caller must release the
                   2063: ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
                   2064: **
                   2065: ** This routine uses the nBackfill and aReadMark[] fields of the header
                   2066: ** to select a particular WAL_READ_LOCK() that strives to let the
                   2067: ** checkpoint process do as much work as possible.  This routine might
                   2068: ** update values of the aReadMark[] array in the header, but if it does
                   2069: ** so it takes care to hold an exclusive lock on the corresponding
                   2070: ** WAL_READ_LOCK() while changing values.
                   2071: */
                   2072: static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
                   2073:   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
                   2074:   u32 mxReadMark;                 /* Largest aReadMark[] value */
                   2075:   int mxI;                        /* Index of largest aReadMark[] value */
                   2076:   int i;                          /* Loop counter */
                   2077:   int rc = SQLITE_OK;             /* Return code  */
                   2078: 
                   2079:   assert( pWal->readLock<0 );     /* Not currently locked */
                   2080: 
                   2081:   /* Take steps to avoid spinning forever if there is a protocol error.
                   2082:   **
                   2083:   ** Circumstances that cause a RETRY should only last for the briefest
                   2084:   ** instances of time.  No I/O or other system calls are done while the
                   2085:   ** locks are held, so the locks should not be held for very long. But 
                   2086:   ** if we are unlucky, another process that is holding a lock might get
                   2087:   ** paged out or take a page-fault that is time-consuming to resolve, 
                   2088:   ** during the few nanoseconds that it is holding the lock.  In that case,
                   2089:   ** it might take longer than normal for the lock to free.
                   2090:   **
                   2091:   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
                   2092:   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
                   2093:   ** is more of a scheduler yield than an actual delay.  But on the 10th
                   2094:   ** an subsequent retries, the delays start becoming longer and longer, 
                   2095:   ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
                   2096:   ** The total delay time before giving up is less than 1 second.
                   2097:   */
                   2098:   if( cnt>5 ){
                   2099:     int nDelay = 1;                      /* Pause time in microseconds */
                   2100:     if( cnt>100 ){
                   2101:       VVA_ONLY( pWal->lockError = 1; )
                   2102:       return SQLITE_PROTOCOL;
                   2103:     }
                   2104:     if( cnt>=10 ) nDelay = (cnt-9)*238;  /* Max delay 21ms. Total delay 996ms */
                   2105:     sqlite3OsSleep(pWal->pVfs, nDelay);
                   2106:   }
                   2107: 
                   2108:   if( !useWal ){
                   2109:     rc = walIndexReadHdr(pWal, pChanged);
                   2110:     if( rc==SQLITE_BUSY ){
                   2111:       /* If there is not a recovery running in another thread or process
                   2112:       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
                   2113:       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
                   2114:       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
                   2115:       ** would be technically correct.  But the race is benign since with
                   2116:       ** WAL_RETRY this routine will be called again and will probably be
                   2117:       ** right on the second iteration.
                   2118:       */
                   2119:       if( pWal->apWiData[0]==0 ){
                   2120:         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
                   2121:         ** We assume this is a transient condition, so return WAL_RETRY. The
                   2122:         ** xShmMap() implementation used by the default unix and win32 VFS 
                   2123:         ** modules may return SQLITE_BUSY due to a race condition in the 
                   2124:         ** code that determines whether or not the shared-memory region 
                   2125:         ** must be zeroed before the requested page is returned.
                   2126:         */
                   2127:         rc = WAL_RETRY;
                   2128:       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
                   2129:         walUnlockShared(pWal, WAL_RECOVER_LOCK);
                   2130:         rc = WAL_RETRY;
                   2131:       }else if( rc==SQLITE_BUSY ){
                   2132:         rc = SQLITE_BUSY_RECOVERY;
                   2133:       }
                   2134:     }
                   2135:     if( rc!=SQLITE_OK ){
                   2136:       return rc;
                   2137:     }
                   2138:   }
                   2139: 
                   2140:   pInfo = walCkptInfo(pWal);
                   2141:   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
                   2142:     /* The WAL has been completely backfilled (or it is empty).
                   2143:     ** and can be safely ignored.
                   2144:     */
                   2145:     rc = walLockShared(pWal, WAL_READ_LOCK(0));
                   2146:     walShmBarrier(pWal);
                   2147:     if( rc==SQLITE_OK ){
                   2148:       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
                   2149:         /* It is not safe to allow the reader to continue here if frames
                   2150:         ** may have been appended to the log before READ_LOCK(0) was obtained.
                   2151:         ** When holding READ_LOCK(0), the reader ignores the entire log file,
                   2152:         ** which implies that the database file contains a trustworthy
                   2153:         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
                   2154:         ** happening, this is usually correct.
                   2155:         **
                   2156:         ** However, if frames have been appended to the log (or if the log 
                   2157:         ** is wrapped and written for that matter) before the READ_LOCK(0)
                   2158:         ** is obtained, that is not necessarily true. A checkpointer may
                   2159:         ** have started to backfill the appended frames but crashed before
                   2160:         ** it finished. Leaving a corrupt image in the database file.
                   2161:         */
                   2162:         walUnlockShared(pWal, WAL_READ_LOCK(0));
                   2163:         return WAL_RETRY;
                   2164:       }
                   2165:       pWal->readLock = 0;
                   2166:       return SQLITE_OK;
                   2167:     }else if( rc!=SQLITE_BUSY ){
                   2168:       return rc;
                   2169:     }
                   2170:   }
                   2171: 
                   2172:   /* If we get this far, it means that the reader will want to use
                   2173:   ** the WAL to get at content from recent commits.  The job now is
                   2174:   ** to select one of the aReadMark[] entries that is closest to
                   2175:   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
                   2176:   */
                   2177:   mxReadMark = 0;
                   2178:   mxI = 0;
                   2179:   for(i=1; i<WAL_NREADER; i++){
                   2180:     u32 thisMark = pInfo->aReadMark[i];
                   2181:     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
                   2182:       assert( thisMark!=READMARK_NOT_USED );
                   2183:       mxReadMark = thisMark;
                   2184:       mxI = i;
                   2185:     }
                   2186:   }
                   2187:   /* There was once an "if" here. The extra "{" is to preserve indentation. */
                   2188:   {
                   2189:     if( (pWal->readOnly & WAL_SHM_RDONLY)==0
                   2190:      && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
                   2191:     ){
                   2192:       for(i=1; i<WAL_NREADER; i++){
                   2193:         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
                   2194:         if( rc==SQLITE_OK ){
                   2195:           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
                   2196:           mxI = i;
                   2197:           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
                   2198:           break;
                   2199:         }else if( rc!=SQLITE_BUSY ){
                   2200:           return rc;
                   2201:         }
                   2202:       }
                   2203:     }
                   2204:     if( mxI==0 ){
                   2205:       assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
                   2206:       return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
                   2207:     }
                   2208: 
                   2209:     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
                   2210:     if( rc ){
                   2211:       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
                   2212:     }
                   2213:     /* Now that the read-lock has been obtained, check that neither the
                   2214:     ** value in the aReadMark[] array or the contents of the wal-index
                   2215:     ** header have changed.
                   2216:     **
                   2217:     ** It is necessary to check that the wal-index header did not change
                   2218:     ** between the time it was read and when the shared-lock was obtained
                   2219:     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
                   2220:     ** that the log file may have been wrapped by a writer, or that frames
                   2221:     ** that occur later in the log than pWal->hdr.mxFrame may have been
                   2222:     ** copied into the database by a checkpointer. If either of these things
                   2223:     ** happened, then reading the database with the current value of
                   2224:     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
                   2225:     ** instead.
                   2226:     **
                   2227:     ** This does not guarantee that the copy of the wal-index header is up to
                   2228:     ** date before proceeding. That would not be possible without somehow
                   2229:     ** blocking writers. It only guarantees that a dangerous checkpoint or 
                   2230:     ** log-wrap (either of which would require an exclusive lock on
                   2231:     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
                   2232:     */
                   2233:     walShmBarrier(pWal);
                   2234:     if( pInfo->aReadMark[mxI]!=mxReadMark
                   2235:      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
                   2236:     ){
                   2237:       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
                   2238:       return WAL_RETRY;
                   2239:     }else{
                   2240:       assert( mxReadMark<=pWal->hdr.mxFrame );
                   2241:       pWal->readLock = (i16)mxI;
                   2242:     }
                   2243:   }
                   2244:   return rc;
                   2245: }
                   2246: 
                   2247: /*
                   2248: ** Begin a read transaction on the database.
                   2249: **
                   2250: ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
                   2251: ** it takes a snapshot of the state of the WAL and wal-index for the current
                   2252: ** instant in time.  The current thread will continue to use this snapshot.
                   2253: ** Other threads might append new content to the WAL and wal-index but
                   2254: ** that extra content is ignored by the current thread.
                   2255: **
                   2256: ** If the database contents have changes since the previous read
                   2257: ** transaction, then *pChanged is set to 1 before returning.  The
                   2258: ** Pager layer will use this to know that is cache is stale and
                   2259: ** needs to be flushed.
                   2260: */
                   2261: int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
                   2262:   int rc;                         /* Return code */
                   2263:   int cnt = 0;                    /* Number of TryBeginRead attempts */
                   2264: 
                   2265:   do{
                   2266:     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
                   2267:   }while( rc==WAL_RETRY );
                   2268:   testcase( (rc&0xff)==SQLITE_BUSY );
                   2269:   testcase( (rc&0xff)==SQLITE_IOERR );
                   2270:   testcase( rc==SQLITE_PROTOCOL );
                   2271:   testcase( rc==SQLITE_OK );
                   2272:   return rc;
                   2273: }
                   2274: 
                   2275: /*
                   2276: ** Finish with a read transaction.  All this does is release the
                   2277: ** read-lock.
                   2278: */
                   2279: void sqlite3WalEndReadTransaction(Wal *pWal){
                   2280:   sqlite3WalEndWriteTransaction(pWal);
                   2281:   if( pWal->readLock>=0 ){
                   2282:     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
                   2283:     pWal->readLock = -1;
                   2284:   }
                   2285: }
                   2286: 
                   2287: /*
                   2288: ** Read a page from the WAL, if it is present in the WAL and if the 
                   2289: ** current read transaction is configured to use the WAL.  
                   2290: **
                   2291: ** The *pInWal is set to 1 if the requested page is in the WAL and
                   2292: ** has been loaded.  Or *pInWal is set to 0 if the page was not in 
                   2293: ** the WAL and needs to be read out of the database.
                   2294: */
                   2295: int sqlite3WalRead(
                   2296:   Wal *pWal,                      /* WAL handle */
                   2297:   Pgno pgno,                      /* Database page number to read data for */
                   2298:   int *pInWal,                    /* OUT: True if data is read from WAL */
                   2299:   int nOut,                       /* Size of buffer pOut in bytes */
                   2300:   u8 *pOut                        /* Buffer to write page data to */
                   2301: ){
                   2302:   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
                   2303:   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
                   2304:   int iHash;                      /* Used to loop through N hash tables */
                   2305: 
                   2306:   /* This routine is only be called from within a read transaction. */
                   2307:   assert( pWal->readLock>=0 || pWal->lockError );
                   2308: 
                   2309:   /* If the "last page" field of the wal-index header snapshot is 0, then
                   2310:   ** no data will be read from the wal under any circumstances. Return early
                   2311:   ** in this case as an optimization.  Likewise, if pWal->readLock==0, 
                   2312:   ** then the WAL is ignored by the reader so return early, as if the 
                   2313:   ** WAL were empty.
                   2314:   */
                   2315:   if( iLast==0 || pWal->readLock==0 ){
                   2316:     *pInWal = 0;
                   2317:     return SQLITE_OK;
                   2318:   }
                   2319: 
                   2320:   /* Search the hash table or tables for an entry matching page number
                   2321:   ** pgno. Each iteration of the following for() loop searches one
                   2322:   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
                   2323:   **
                   2324:   ** This code might run concurrently to the code in walIndexAppend()
                   2325:   ** that adds entries to the wal-index (and possibly to this hash 
                   2326:   ** table). This means the value just read from the hash 
                   2327:   ** slot (aHash[iKey]) may have been added before or after the 
                   2328:   ** current read transaction was opened. Values added after the
                   2329:   ** read transaction was opened may have been written incorrectly -
                   2330:   ** i.e. these slots may contain garbage data. However, we assume
                   2331:   ** that any slots written before the current read transaction was
                   2332:   ** opened remain unmodified.
                   2333:   **
                   2334:   ** For the reasons above, the if(...) condition featured in the inner
                   2335:   ** loop of the following block is more stringent that would be required 
                   2336:   ** if we had exclusive access to the hash-table:
                   2337:   **
                   2338:   **   (aPgno[iFrame]==pgno): 
                   2339:   **     This condition filters out normal hash-table collisions.
                   2340:   **
                   2341:   **   (iFrame<=iLast): 
                   2342:   **     This condition filters out entries that were added to the hash
                   2343:   **     table after the current read-transaction had started.
                   2344:   */
                   2345:   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
                   2346:     volatile ht_slot *aHash;      /* Pointer to hash table */
                   2347:     volatile u32 *aPgno;          /* Pointer to array of page numbers */
                   2348:     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
                   2349:     int iKey;                     /* Hash slot index */
                   2350:     int nCollide;                 /* Number of hash collisions remaining */
                   2351:     int rc;                       /* Error code */
                   2352: 
                   2353:     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
                   2354:     if( rc!=SQLITE_OK ){
                   2355:       return rc;
                   2356:     }
                   2357:     nCollide = HASHTABLE_NSLOT;
                   2358:     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
                   2359:       u32 iFrame = aHash[iKey] + iZero;
                   2360:       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
                   2361:         /* assert( iFrame>iRead ); -- not true if there is corruption */
                   2362:         iRead = iFrame;
                   2363:       }
                   2364:       if( (nCollide--)==0 ){
                   2365:         return SQLITE_CORRUPT_BKPT;
                   2366:       }
                   2367:     }
                   2368:   }
                   2369: 
                   2370: #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
                   2371:   /* If expensive assert() statements are available, do a linear search
                   2372:   ** of the wal-index file content. Make sure the results agree with the
                   2373:   ** result obtained using the hash indexes above.  */
                   2374:   {
                   2375:     u32 iRead2 = 0;
                   2376:     u32 iTest;
                   2377:     for(iTest=iLast; iTest>0; iTest--){
                   2378:       if( walFramePgno(pWal, iTest)==pgno ){
                   2379:         iRead2 = iTest;
                   2380:         break;
                   2381:       }
                   2382:     }
                   2383:     assert( iRead==iRead2 );
                   2384:   }
                   2385: #endif
                   2386: 
                   2387:   /* If iRead is non-zero, then it is the log frame number that contains the
                   2388:   ** required page. Read and return data from the log file.
                   2389:   */
                   2390:   if( iRead ){
                   2391:     int sz;
                   2392:     i64 iOffset;
                   2393:     sz = pWal->hdr.szPage;
                   2394:     sz = (sz&0xfe00) + ((sz&0x0001)<<16);
                   2395:     testcase( sz<=32768 );
                   2396:     testcase( sz>=65536 );
                   2397:     iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
                   2398:     *pInWal = 1;
                   2399:     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
                   2400:     return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
                   2401:   }
                   2402: 
                   2403:   *pInWal = 0;
                   2404:   return SQLITE_OK;
                   2405: }
                   2406: 
                   2407: 
                   2408: /* 
                   2409: ** Return the size of the database in pages (or zero, if unknown).
                   2410: */
                   2411: Pgno sqlite3WalDbsize(Wal *pWal){
                   2412:   if( pWal && ALWAYS(pWal->readLock>=0) ){
                   2413:     return pWal->hdr.nPage;
                   2414:   }
                   2415:   return 0;
                   2416: }
                   2417: 
                   2418: 
                   2419: /* 
                   2420: ** This function starts a write transaction on the WAL.
                   2421: **
                   2422: ** A read transaction must have already been started by a prior call
                   2423: ** to sqlite3WalBeginReadTransaction().
                   2424: **
                   2425: ** If another thread or process has written into the database since
                   2426: ** the read transaction was started, then it is not possible for this
                   2427: ** thread to write as doing so would cause a fork.  So this routine
                   2428: ** returns SQLITE_BUSY in that case and no write transaction is started.
                   2429: **
                   2430: ** There can only be a single writer active at a time.
                   2431: */
                   2432: int sqlite3WalBeginWriteTransaction(Wal *pWal){
                   2433:   int rc;
                   2434: 
                   2435:   /* Cannot start a write transaction without first holding a read
                   2436:   ** transaction. */
                   2437:   assert( pWal->readLock>=0 );
                   2438: 
                   2439:   if( pWal->readOnly ){
                   2440:     return SQLITE_READONLY;
                   2441:   }
                   2442: 
                   2443:   /* Only one writer allowed at a time.  Get the write lock.  Return
                   2444:   ** SQLITE_BUSY if unable.
                   2445:   */
                   2446:   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
                   2447:   if( rc ){
                   2448:     return rc;
                   2449:   }
                   2450:   pWal->writeLock = 1;
                   2451: 
                   2452:   /* If another connection has written to the database file since the
                   2453:   ** time the read transaction on this connection was started, then
                   2454:   ** the write is disallowed.
                   2455:   */
                   2456:   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
                   2457:     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
                   2458:     pWal->writeLock = 0;
                   2459:     rc = SQLITE_BUSY;
                   2460:   }
                   2461: 
                   2462:   return rc;
                   2463: }
                   2464: 
                   2465: /*
                   2466: ** End a write transaction.  The commit has already been done.  This
                   2467: ** routine merely releases the lock.
                   2468: */
                   2469: int sqlite3WalEndWriteTransaction(Wal *pWal){
                   2470:   if( pWal->writeLock ){
                   2471:     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
                   2472:     pWal->writeLock = 0;
                   2473:     pWal->truncateOnCommit = 0;
                   2474:   }
                   2475:   return SQLITE_OK;
                   2476: }
                   2477: 
                   2478: /*
                   2479: ** If any data has been written (but not committed) to the log file, this
                   2480: ** function moves the write-pointer back to the start of the transaction.
                   2481: **
                   2482: ** Additionally, the callback function is invoked for each frame written
                   2483: ** to the WAL since the start of the transaction. If the callback returns
                   2484: ** other than SQLITE_OK, it is not invoked again and the error code is
                   2485: ** returned to the caller.
                   2486: **
                   2487: ** Otherwise, if the callback function does not return an error, this
                   2488: ** function returns SQLITE_OK.
                   2489: */
                   2490: int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
                   2491:   int rc = SQLITE_OK;
                   2492:   if( ALWAYS(pWal->writeLock) ){
                   2493:     Pgno iMax = pWal->hdr.mxFrame;
                   2494:     Pgno iFrame;
                   2495:   
                   2496:     /* Restore the clients cache of the wal-index header to the state it
                   2497:     ** was in before the client began writing to the database. 
                   2498:     */
                   2499:     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
                   2500: 
                   2501:     for(iFrame=pWal->hdr.mxFrame+1; 
                   2502:         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 
                   2503:         iFrame++
                   2504:     ){
                   2505:       /* This call cannot fail. Unless the page for which the page number
                   2506:       ** is passed as the second argument is (a) in the cache and 
                   2507:       ** (b) has an outstanding reference, then xUndo is either a no-op
                   2508:       ** (if (a) is false) or simply expels the page from the cache (if (b)
                   2509:       ** is false).
                   2510:       **
                   2511:       ** If the upper layer is doing a rollback, it is guaranteed that there
                   2512:       ** are no outstanding references to any page other than page 1. And
                   2513:       ** page 1 is never written to the log until the transaction is
                   2514:       ** committed. As a result, the call to xUndo may not fail.
                   2515:       */
                   2516:       assert( walFramePgno(pWal, iFrame)!=1 );
                   2517:       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
                   2518:     }
                   2519:     walCleanupHash(pWal);
                   2520:   }
                   2521:   assert( rc==SQLITE_OK );
                   2522:   return rc;
                   2523: }
                   2524: 
                   2525: /* 
                   2526: ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 
                   2527: ** values. This function populates the array with values required to 
                   2528: ** "rollback" the write position of the WAL handle back to the current 
                   2529: ** point in the event of a savepoint rollback (via WalSavepointUndo()).
                   2530: */
                   2531: void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
                   2532:   assert( pWal->writeLock );
                   2533:   aWalData[0] = pWal->hdr.mxFrame;
                   2534:   aWalData[1] = pWal->hdr.aFrameCksum[0];
                   2535:   aWalData[2] = pWal->hdr.aFrameCksum[1];
                   2536:   aWalData[3] = pWal->nCkpt;
                   2537: }
                   2538: 
                   2539: /* 
                   2540: ** Move the write position of the WAL back to the point identified by
                   2541: ** the values in the aWalData[] array. aWalData must point to an array
                   2542: ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
                   2543: ** by a call to WalSavepoint().
                   2544: */
                   2545: int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
                   2546:   int rc = SQLITE_OK;
                   2547: 
                   2548:   assert( pWal->writeLock );
                   2549:   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
                   2550: 
                   2551:   if( aWalData[3]!=pWal->nCkpt ){
                   2552:     /* This savepoint was opened immediately after the write-transaction
                   2553:     ** was started. Right after that, the writer decided to wrap around
                   2554:     ** to the start of the log. Update the savepoint values to match.
                   2555:     */
                   2556:     aWalData[0] = 0;
                   2557:     aWalData[3] = pWal->nCkpt;
                   2558:   }
                   2559: 
                   2560:   if( aWalData[0]<pWal->hdr.mxFrame ){
                   2561:     pWal->hdr.mxFrame = aWalData[0];
                   2562:     pWal->hdr.aFrameCksum[0] = aWalData[1];
                   2563:     pWal->hdr.aFrameCksum[1] = aWalData[2];
                   2564:     walCleanupHash(pWal);
                   2565:   }
                   2566: 
                   2567:   return rc;
                   2568: }
                   2569: 
                   2570: 
                   2571: /*
                   2572: ** This function is called just before writing a set of frames to the log
                   2573: ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
                   2574: ** to the current log file, it is possible to overwrite the start of the
                   2575: ** existing log file with the new frames (i.e. "reset" the log). If so,
                   2576: ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
                   2577: ** unchanged.
                   2578: **
                   2579: ** SQLITE_OK is returned if no error is encountered (regardless of whether
                   2580: ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
                   2581: ** if an error occurs.
                   2582: */
                   2583: static int walRestartLog(Wal *pWal){
                   2584:   int rc = SQLITE_OK;
                   2585:   int cnt;
                   2586: 
                   2587:   if( pWal->readLock==0 ){
                   2588:     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
                   2589:     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
                   2590:     if( pInfo->nBackfill>0 ){
                   2591:       u32 salt1;
                   2592:       sqlite3_randomness(4, &salt1);
                   2593:       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
                   2594:       if( rc==SQLITE_OK ){
                   2595:         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
                   2596:         ** readers are currently using the WAL), then the transactions
                   2597:         ** frames will overwrite the start of the existing log. Update the
                   2598:         ** wal-index header to reflect this.
                   2599:         **
                   2600:         ** In theory it would be Ok to update the cache of the header only
                   2601:         ** at this point. But updating the actual wal-index header is also
                   2602:         ** safe and means there is no special case for sqlite3WalUndo()
                   2603:         ** to handle if this transaction is rolled back.
                   2604:         */
                   2605:         int i;                    /* Loop counter */
                   2606:         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
                   2607: 
                   2608:         pWal->nCkpt++;
                   2609:         pWal->hdr.mxFrame = 0;
                   2610:         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
                   2611:         aSalt[1] = salt1;
                   2612:         walIndexWriteHdr(pWal);
                   2613:         pInfo->nBackfill = 0;
                   2614:         for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
                   2615:         assert( pInfo->aReadMark[0]==0 );
                   2616:         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
                   2617:       }else if( rc!=SQLITE_BUSY ){
                   2618:         return rc;
                   2619:       }
                   2620:     }
                   2621:     walUnlockShared(pWal, WAL_READ_LOCK(0));
                   2622:     pWal->readLock = -1;
                   2623:     cnt = 0;
                   2624:     do{
                   2625:       int notUsed;
                   2626:       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
                   2627:     }while( rc==WAL_RETRY );
                   2628:     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
                   2629:     testcase( (rc&0xff)==SQLITE_IOERR );
                   2630:     testcase( rc==SQLITE_PROTOCOL );
                   2631:     testcase( rc==SQLITE_OK );
                   2632:   }
                   2633:   return rc;
                   2634: }
                   2635: 
                   2636: /*
                   2637: ** Information about the current state of the WAL file and where
                   2638: ** the next fsync should occur - passed from sqlite3WalFrames() into
                   2639: ** walWriteToLog().
                   2640: */
                   2641: typedef struct WalWriter {
                   2642:   Wal *pWal;                   /* The complete WAL information */
                   2643:   sqlite3_file *pFd;           /* The WAL file to which we write */
                   2644:   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
                   2645:   int syncFlags;               /* Flags for the fsync */
                   2646:   int szPage;                  /* Size of one page */
                   2647: } WalWriter;
                   2648: 
                   2649: /*
                   2650: ** Write iAmt bytes of content into the WAL file beginning at iOffset.
                   2651: ** Do a sync when crossing the p->iSyncPoint boundary.
                   2652: **
                   2653: ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
                   2654: ** first write the part before iSyncPoint, then sync, then write the
                   2655: ** rest.
                   2656: */
                   2657: static int walWriteToLog(
                   2658:   WalWriter *p,              /* WAL to write to */
                   2659:   void *pContent,            /* Content to be written */
                   2660:   int iAmt,                  /* Number of bytes to write */
                   2661:   sqlite3_int64 iOffset      /* Start writing at this offset */
                   2662: ){
                   2663:   int rc;
                   2664:   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
                   2665:     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
                   2666:     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
                   2667:     if( rc ) return rc;
                   2668:     iOffset += iFirstAmt;
                   2669:     iAmt -= iFirstAmt;
                   2670:     pContent = (void*)(iFirstAmt + (char*)pContent);
                   2671:     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
                   2672:     rc = sqlite3OsSync(p->pFd, p->syncFlags);
                   2673:     if( iAmt==0 || rc ) return rc;
                   2674:   }
                   2675:   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
                   2676:   return rc;
                   2677: }
                   2678: 
                   2679: /*
                   2680: ** Write out a single frame of the WAL
                   2681: */
                   2682: static int walWriteOneFrame(
                   2683:   WalWriter *p,               /* Where to write the frame */
                   2684:   PgHdr *pPage,               /* The page of the frame to be written */
                   2685:   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
                   2686:   sqlite3_int64 iOffset       /* Byte offset at which to write */
                   2687: ){
                   2688:   int rc;                         /* Result code from subfunctions */
                   2689:   void *pData;                    /* Data actually written */
                   2690:   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
                   2691: #if defined(SQLITE_HAS_CODEC)
                   2692:   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
                   2693: #else
                   2694:   pData = pPage->pData;
                   2695: #endif
                   2696:   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
                   2697:   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
                   2698:   if( rc ) return rc;
                   2699:   /* Write the page data */
                   2700:   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
                   2701:   return rc;
                   2702: }
                   2703: 
                   2704: /* 
                   2705: ** Write a set of frames to the log. The caller must hold the write-lock
                   2706: ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
                   2707: */
                   2708: int sqlite3WalFrames(
                   2709:   Wal *pWal,                      /* Wal handle to write to */
                   2710:   int szPage,                     /* Database page-size in bytes */
                   2711:   PgHdr *pList,                   /* List of dirty pages to write */
                   2712:   Pgno nTruncate,                 /* Database size after this commit */
                   2713:   int isCommit,                   /* True if this is a commit */
                   2714:   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
                   2715: ){
                   2716:   int rc;                         /* Used to catch return codes */
                   2717:   u32 iFrame;                     /* Next frame address */
                   2718:   PgHdr *p;                       /* Iterator to run through pList with. */
                   2719:   PgHdr *pLast = 0;               /* Last frame in list */
                   2720:   int nExtra = 0;                 /* Number of extra copies of last page */
                   2721:   int szFrame;                    /* The size of a single frame */
                   2722:   i64 iOffset;                    /* Next byte to write in WAL file */
                   2723:   WalWriter w;                    /* The writer */
                   2724: 
                   2725:   assert( pList );
                   2726:   assert( pWal->writeLock );
                   2727: 
                   2728:   /* If this frame set completes a transaction, then nTruncate>0.  If
                   2729:   ** nTruncate==0 then this frame set does not complete the transaction. */
                   2730:   assert( (isCommit!=0)==(nTruncate!=0) );
                   2731: 
                   2732: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
                   2733:   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
                   2734:     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
                   2735:               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
                   2736:   }
                   2737: #endif
                   2738: 
                   2739:   /* See if it is possible to write these frames into the start of the
                   2740:   ** log file, instead of appending to it at pWal->hdr.mxFrame.
                   2741:   */
                   2742:   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
                   2743:     return rc;
                   2744:   }
                   2745: 
                   2746:   /* If this is the first frame written into the log, write the WAL
                   2747:   ** header to the start of the WAL file. See comments at the top of
                   2748:   ** this source file for a description of the WAL header format.
                   2749:   */
                   2750:   iFrame = pWal->hdr.mxFrame;
                   2751:   if( iFrame==0 ){
                   2752:     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
                   2753:     u32 aCksum[2];                /* Checksum for wal-header */
                   2754: 
                   2755:     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
                   2756:     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
                   2757:     sqlite3Put4byte(&aWalHdr[8], szPage);
                   2758:     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
                   2759:     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
                   2760:     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
                   2761:     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
                   2762:     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
                   2763:     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
                   2764:     
                   2765:     pWal->szPage = szPage;
                   2766:     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
                   2767:     pWal->hdr.aFrameCksum[0] = aCksum[0];
                   2768:     pWal->hdr.aFrameCksum[1] = aCksum[1];
                   2769:     pWal->truncateOnCommit = 1;
                   2770: 
                   2771:     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
                   2772:     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
                   2773:     if( rc!=SQLITE_OK ){
                   2774:       return rc;
                   2775:     }
                   2776: 
                   2777:     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
                   2778:     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
                   2779:     ** an out-of-order write following a WAL restart could result in
                   2780:     ** database corruption.  See the ticket:
                   2781:     **
                   2782:     **     http://localhost:591/sqlite/info/ff5be73dee
                   2783:     */
                   2784:     if( pWal->syncHeader && sync_flags ){
                   2785:       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
                   2786:       if( rc ) return rc;
                   2787:     }
                   2788:   }
                   2789:   assert( (int)pWal->szPage==szPage );
                   2790: 
                   2791:   /* Setup information needed to write frames into the WAL */
                   2792:   w.pWal = pWal;
                   2793:   w.pFd = pWal->pWalFd;
                   2794:   w.iSyncPoint = 0;
                   2795:   w.syncFlags = sync_flags;
                   2796:   w.szPage = szPage;
                   2797:   iOffset = walFrameOffset(iFrame+1, szPage);
                   2798:   szFrame = szPage + WAL_FRAME_HDRSIZE;
                   2799: 
                   2800:   /* Write all frames into the log file exactly once */
                   2801:   for(p=pList; p; p=p->pDirty){
                   2802:     int nDbSize;   /* 0 normally.  Positive == commit flag */
                   2803:     iFrame++;
                   2804:     assert( iOffset==walFrameOffset(iFrame, szPage) );
                   2805:     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
                   2806:     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
                   2807:     if( rc ) return rc;
                   2808:     pLast = p;
                   2809:     iOffset += szFrame;
                   2810:   }
                   2811: 
                   2812:   /* If this is the end of a transaction, then we might need to pad
                   2813:   ** the transaction and/or sync the WAL file.
                   2814:   **
                   2815:   ** Padding and syncing only occur if this set of frames complete a
                   2816:   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
                   2817:   ** or synchonous==OFF, then no padding or syncing are needed.
                   2818:   **
                   2819:   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
                   2820:   ** needed and only the sync is done.  If padding is needed, then the
                   2821:   ** final frame is repeated (with its commit mark) until the next sector
                   2822:   ** boundary is crossed.  Only the part of the WAL prior to the last
                   2823:   ** sector boundary is synced; the part of the last frame that extends
                   2824:   ** past the sector boundary is written after the sync.
                   2825:   */
                   2826:   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
                   2827:     if( pWal->padToSectorBoundary ){
                   2828:       int sectorSize = sqlite3OsSectorSize(pWal->pWalFd);
                   2829:       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
                   2830:       while( iOffset<w.iSyncPoint ){
                   2831:         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
                   2832:         if( rc ) return rc;
                   2833:         iOffset += szFrame;
                   2834:         nExtra++;
                   2835:       }
                   2836:     }else{
                   2837:       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
                   2838:     }
                   2839:   }
                   2840: 
                   2841:   /* If this frame set completes the first transaction in the WAL and
                   2842:   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
                   2843:   ** journal size limit, if possible.
                   2844:   */
                   2845:   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
                   2846:     i64 sz = pWal->mxWalSize;
                   2847:     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
                   2848:       sz = walFrameOffset(iFrame+nExtra+1, szPage);
                   2849:     }
                   2850:     walLimitSize(pWal, sz);
                   2851:     pWal->truncateOnCommit = 0;
                   2852:   }
                   2853: 
                   2854:   /* Append data to the wal-index. It is not necessary to lock the 
                   2855:   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
                   2856:   ** guarantees that there are no other writers, and no data that may
                   2857:   ** be in use by existing readers is being overwritten.
                   2858:   */
                   2859:   iFrame = pWal->hdr.mxFrame;
                   2860:   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
                   2861:     iFrame++;
                   2862:     rc = walIndexAppend(pWal, iFrame, p->pgno);
                   2863:   }
                   2864:   while( rc==SQLITE_OK && nExtra>0 ){
                   2865:     iFrame++;
                   2866:     nExtra--;
                   2867:     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
                   2868:   }
                   2869: 
                   2870:   if( rc==SQLITE_OK ){
                   2871:     /* Update the private copy of the header. */
                   2872:     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
                   2873:     testcase( szPage<=32768 );
                   2874:     testcase( szPage>=65536 );
                   2875:     pWal->hdr.mxFrame = iFrame;
                   2876:     if( isCommit ){
                   2877:       pWal->hdr.iChange++;
                   2878:       pWal->hdr.nPage = nTruncate;
                   2879:     }
                   2880:     /* If this is a commit, update the wal-index header too. */
                   2881:     if( isCommit ){
                   2882:       walIndexWriteHdr(pWal);
                   2883:       pWal->iCallback = iFrame;
                   2884:     }
                   2885:   }
                   2886: 
                   2887:   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
                   2888:   return rc;
                   2889: }
                   2890: 
                   2891: /* 
                   2892: ** This routine is called to implement sqlite3_wal_checkpoint() and
                   2893: ** related interfaces.
                   2894: **
                   2895: ** Obtain a CHECKPOINT lock and then backfill as much information as
                   2896: ** we can from WAL into the database.
                   2897: **
                   2898: ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
                   2899: ** callback. In this case this function runs a blocking checkpoint.
                   2900: */
                   2901: int sqlite3WalCheckpoint(
                   2902:   Wal *pWal,                      /* Wal connection */
                   2903:   int eMode,                      /* PASSIVE, FULL or RESTART */
                   2904:   int (*xBusy)(void*),            /* Function to call when busy */
                   2905:   void *pBusyArg,                 /* Context argument for xBusyHandler */
                   2906:   int sync_flags,                 /* Flags to sync db file with (or 0) */
                   2907:   int nBuf,                       /* Size of temporary buffer */
                   2908:   u8 *zBuf,                       /* Temporary buffer to use */
                   2909:   int *pnLog,                     /* OUT: Number of frames in WAL */
                   2910:   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
                   2911: ){
                   2912:   int rc;                         /* Return code */
                   2913:   int isChanged = 0;              /* True if a new wal-index header is loaded */
                   2914:   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
                   2915: 
                   2916:   assert( pWal->ckptLock==0 );
                   2917:   assert( pWal->writeLock==0 );
                   2918: 
                   2919:   if( pWal->readOnly ) return SQLITE_READONLY;
                   2920:   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
                   2921:   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
                   2922:   if( rc ){
                   2923:     /* Usually this is SQLITE_BUSY meaning that another thread or process
                   2924:     ** is already running a checkpoint, or maybe a recovery.  But it might
                   2925:     ** also be SQLITE_IOERR. */
                   2926:     return rc;
                   2927:   }
                   2928:   pWal->ckptLock = 1;
                   2929: 
                   2930:   /* If this is a blocking-checkpoint, then obtain the write-lock as well
                   2931:   ** to prevent any writers from running while the checkpoint is underway.
                   2932:   ** This has to be done before the call to walIndexReadHdr() below.
                   2933:   **
                   2934:   ** If the writer lock cannot be obtained, then a passive checkpoint is
                   2935:   ** run instead. Since the checkpointer is not holding the writer lock,
                   2936:   ** there is no point in blocking waiting for any readers. Assuming no 
                   2937:   ** other error occurs, this function will return SQLITE_BUSY to the caller.
                   2938:   */
                   2939:   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
                   2940:     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
                   2941:     if( rc==SQLITE_OK ){
                   2942:       pWal->writeLock = 1;
                   2943:     }else if( rc==SQLITE_BUSY ){
                   2944:       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
                   2945:       rc = SQLITE_OK;
                   2946:     }
                   2947:   }
                   2948: 
                   2949:   /* Read the wal-index header. */
                   2950:   if( rc==SQLITE_OK ){
                   2951:     rc = walIndexReadHdr(pWal, &isChanged);
                   2952:   }
                   2953: 
                   2954:   /* Copy data from the log to the database file. */
                   2955:   if( rc==SQLITE_OK ){
                   2956:     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
                   2957:       rc = SQLITE_CORRUPT_BKPT;
                   2958:     }else{
                   2959:       rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
                   2960:     }
                   2961: 
                   2962:     /* If no error occurred, set the output variables. */
                   2963:     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
                   2964:       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
                   2965:       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
                   2966:     }
                   2967:   }
                   2968: 
                   2969:   if( isChanged ){
                   2970:     /* If a new wal-index header was loaded before the checkpoint was 
                   2971:     ** performed, then the pager-cache associated with pWal is now
                   2972:     ** out of date. So zero the cached wal-index header to ensure that
                   2973:     ** next time the pager opens a snapshot on this database it knows that
                   2974:     ** the cache needs to be reset.
                   2975:     */
                   2976:     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
                   2977:   }
                   2978: 
                   2979:   /* Release the locks. */
                   2980:   sqlite3WalEndWriteTransaction(pWal);
                   2981:   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
                   2982:   pWal->ckptLock = 0;
                   2983:   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
                   2984:   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
                   2985: }
                   2986: 
                   2987: /* Return the value to pass to a sqlite3_wal_hook callback, the
                   2988: ** number of frames in the WAL at the point of the last commit since
                   2989: ** sqlite3WalCallback() was called.  If no commits have occurred since
                   2990: ** the last call, then return 0.
                   2991: */
                   2992: int sqlite3WalCallback(Wal *pWal){
                   2993:   u32 ret = 0;
                   2994:   if( pWal ){
                   2995:     ret = pWal->iCallback;
                   2996:     pWal->iCallback = 0;
                   2997:   }
                   2998:   return (int)ret;
                   2999: }
                   3000: 
                   3001: /*
                   3002: ** This function is called to change the WAL subsystem into or out
                   3003: ** of locking_mode=EXCLUSIVE.
                   3004: **
                   3005: ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
                   3006: ** into locking_mode=NORMAL.  This means that we must acquire a lock
                   3007: ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
                   3008: ** or if the acquisition of the lock fails, then return 0.  If the
                   3009: ** transition out of exclusive-mode is successful, return 1.  This
                   3010: ** operation must occur while the pager is still holding the exclusive
                   3011: ** lock on the main database file.
                   3012: **
                   3013: ** If op is one, then change from locking_mode=NORMAL into 
                   3014: ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
                   3015: ** be released.  Return 1 if the transition is made and 0 if the
                   3016: ** WAL is already in exclusive-locking mode - meaning that this
                   3017: ** routine is a no-op.  The pager must already hold the exclusive lock
                   3018: ** on the main database file before invoking this operation.
                   3019: **
                   3020: ** If op is negative, then do a dry-run of the op==1 case but do
                   3021: ** not actually change anything. The pager uses this to see if it
                   3022: ** should acquire the database exclusive lock prior to invoking
                   3023: ** the op==1 case.
                   3024: */
                   3025: int sqlite3WalExclusiveMode(Wal *pWal, int op){
                   3026:   int rc;
                   3027:   assert( pWal->writeLock==0 );
                   3028:   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
                   3029: 
                   3030:   /* pWal->readLock is usually set, but might be -1 if there was a 
                   3031:   ** prior error while attempting to acquire are read-lock. This cannot 
                   3032:   ** happen if the connection is actually in exclusive mode (as no xShmLock
                   3033:   ** locks are taken in this case). Nor should the pager attempt to
                   3034:   ** upgrade to exclusive-mode following such an error.
                   3035:   */
                   3036:   assert( pWal->readLock>=0 || pWal->lockError );
                   3037:   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
                   3038: 
                   3039:   if( op==0 ){
                   3040:     if( pWal->exclusiveMode ){
                   3041:       pWal->exclusiveMode = 0;
                   3042:       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
                   3043:         pWal->exclusiveMode = 1;
                   3044:       }
                   3045:       rc = pWal->exclusiveMode==0;
                   3046:     }else{
                   3047:       /* Already in locking_mode=NORMAL */
                   3048:       rc = 0;
                   3049:     }
                   3050:   }else if( op>0 ){
                   3051:     assert( pWal->exclusiveMode==0 );
                   3052:     assert( pWal->readLock>=0 );
                   3053:     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
                   3054:     pWal->exclusiveMode = 1;
                   3055:     rc = 1;
                   3056:   }else{
                   3057:     rc = pWal->exclusiveMode==0;
                   3058:   }
                   3059:   return rc;
                   3060: }
                   3061: 
                   3062: /* 
                   3063: ** Return true if the argument is non-NULL and the WAL module is using
                   3064: ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
                   3065: ** WAL module is using shared-memory, return false. 
                   3066: */
                   3067: int sqlite3WalHeapMemory(Wal *pWal){
                   3068:   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
                   3069: }
                   3070: 
                   3071: #endif /* #ifndef SQLITE_OMIT_WAL */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>