File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / wal.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2010 February 1
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: **
   13: ** This file contains the implementation of a write-ahead log (WAL) used in 
   14: ** "journal_mode=WAL" mode.
   15: **
   16: ** WRITE-AHEAD LOG (WAL) FILE FORMAT
   17: **
   18: ** A WAL file consists of a header followed by zero or more "frames".
   19: ** Each frame records the revised content of a single page from the
   20: ** database file.  All changes to the database are recorded by writing
   21: ** frames into the WAL.  Transactions commit when a frame is written that
   22: ** contains a commit marker.  A single WAL can and usually does record 
   23: ** multiple transactions.  Periodically, the content of the WAL is
   24: ** transferred back into the database file in an operation called a
   25: ** "checkpoint".
   26: **
   27: ** A single WAL file can be used multiple times.  In other words, the
   28: ** WAL can fill up with frames and then be checkpointed and then new
   29: ** frames can overwrite the old ones.  A WAL always grows from beginning
   30: ** toward the end.  Checksums and counters attached to each frame are
   31: ** used to determine which frames within the WAL are valid and which
   32: ** are leftovers from prior checkpoints.
   33: **
   34: ** The WAL header is 32 bytes in size and consists of the following eight
   35: ** big-endian 32-bit unsigned integer values:
   36: **
   37: **     0: Magic number.  0x377f0682 or 0x377f0683
   38: **     4: File format version.  Currently 3007000
   39: **     8: Database page size.  Example: 1024
   40: **    12: Checkpoint sequence number
   41: **    16: Salt-1, random integer incremented with each checkpoint
   42: **    20: Salt-2, a different random integer changing with each ckpt
   43: **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
   44: **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
   45: **
   46: ** Immediately following the wal-header are zero or more frames. Each
   47: ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
   48: ** of page data. The frame-header is six big-endian 32-bit unsigned 
   49: ** integer values, as follows:
   50: **
   51: **     0: Page number.
   52: **     4: For commit records, the size of the database image in pages 
   53: **        after the commit. For all other records, zero.
   54: **     8: Salt-1 (copied from the header)
   55: **    12: Salt-2 (copied from the header)
   56: **    16: Checksum-1.
   57: **    20: Checksum-2.
   58: **
   59: ** A frame is considered valid if and only if the following conditions are
   60: ** true:
   61: **
   62: **    (1) The salt-1 and salt-2 values in the frame-header match
   63: **        salt values in the wal-header
   64: **
   65: **    (2) The checksum values in the final 8 bytes of the frame-header
   66: **        exactly match the checksum computed consecutively on the
   67: **        WAL header and the first 8 bytes and the content of all frames
   68: **        up to and including the current frame.
   69: **
   70: ** The checksum is computed using 32-bit big-endian integers if the
   71: ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
   72: ** is computed using little-endian if the magic number is 0x377f0682.
   73: ** The checksum values are always stored in the frame header in a
   74: ** big-endian format regardless of which byte order is used to compute
   75: ** the checksum.  The checksum is computed by interpreting the input as
   76: ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
   77: ** algorithm used for the checksum is as follows:
   78: ** 
   79: **   for i from 0 to n-1 step 2:
   80: **     s0 += x[i] + s1;
   81: **     s1 += x[i+1] + s0;
   82: **   endfor
   83: **
   84: ** Note that s0 and s1 are both weighted checksums using fibonacci weights
   85: ** in reverse order (the largest fibonacci weight occurs on the first element
   86: ** of the sequence being summed.)  The s1 value spans all 32-bit 
   87: ** terms of the sequence whereas s0 omits the final term.
   88: **
   89: ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
   90: ** WAL is transferred into the database, then the database is VFS.xSync-ed.
   91: ** The VFS.xSync operations serve as write barriers - all writes launched
   92: ** before the xSync must complete before any write that launches after the
   93: ** xSync begins.
   94: **
   95: ** After each checkpoint, the salt-1 value is incremented and the salt-2
   96: ** value is randomized.  This prevents old and new frames in the WAL from
   97: ** being considered valid at the same time and being checkpointing together
   98: ** following a crash.
   99: **
  100: ** READER ALGORITHM
  101: **
  102: ** To read a page from the database (call it page number P), a reader
  103: ** first checks the WAL to see if it contains page P.  If so, then the
  104: ** last valid instance of page P that is a followed by a commit frame
  105: ** or is a commit frame itself becomes the value read.  If the WAL
  106: ** contains no copies of page P that are valid and which are a commit
  107: ** frame or are followed by a commit frame, then page P is read from
  108: ** the database file.
  109: **
  110: ** To start a read transaction, the reader records the index of the last
  111: ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
  112: ** for all subsequent read operations.  New transactions can be appended
  113: ** to the WAL, but as long as the reader uses its original mxFrame value
  114: ** and ignores the newly appended content, it will see a consistent snapshot
  115: ** of the database from a single point in time.  This technique allows
  116: ** multiple concurrent readers to view different versions of the database
  117: ** content simultaneously.
  118: **
  119: ** The reader algorithm in the previous paragraphs works correctly, but 
  120: ** because frames for page P can appear anywhere within the WAL, the
  121: ** reader has to scan the entire WAL looking for page P frames.  If the
  122: ** WAL is large (multiple megabytes is typical) that scan can be slow,
  123: ** and read performance suffers.  To overcome this problem, a separate
  124: ** data structure called the wal-index is maintained to expedite the
  125: ** search for frames of a particular page.
  126: ** 
  127: ** WAL-INDEX FORMAT
  128: **
  129: ** Conceptually, the wal-index is shared memory, though VFS implementations
  130: ** might choose to implement the wal-index using a mmapped file.  Because
  131: ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 
  132: ** on a network filesystem.  All users of the database must be able to
  133: ** share memory.
  134: **
  135: ** The wal-index is transient.  After a crash, the wal-index can (and should
  136: ** be) reconstructed from the original WAL file.  In fact, the VFS is required
  137: ** to either truncate or zero the header of the wal-index when the last
  138: ** connection to it closes.  Because the wal-index is transient, it can
  139: ** use an architecture-specific format; it does not have to be cross-platform.
  140: ** Hence, unlike the database and WAL file formats which store all values
  141: ** as big endian, the wal-index can store multi-byte values in the native
  142: ** byte order of the host computer.
  143: **
  144: ** The purpose of the wal-index is to answer this question quickly:  Given
  145: ** a page number P, return the index of the last frame for page P in the WAL,
  146: ** or return NULL if there are no frames for page P in the WAL.
  147: **
  148: ** The wal-index consists of a header region, followed by an one or
  149: ** more index blocks.  
  150: **
  151: ** The wal-index header contains the total number of frames within the WAL
  152: ** in the the mxFrame field.  
  153: **
  154: ** Each index block except for the first contains information on 
  155: ** HASHTABLE_NPAGE frames. The first index block contains information on
  156: ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 
  157: ** HASHTABLE_NPAGE are selected so that together the wal-index header and
  158: ** first index block are the same size as all other index blocks in the
  159: ** wal-index.
  160: **
  161: ** Each index block contains two sections, a page-mapping that contains the
  162: ** database page number associated with each wal frame, and a hash-table 
  163: ** that allows readers to query an index block for a specific page number.
  164: ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
  165: ** for the first index block) 32-bit page numbers. The first entry in the 
  166: ** first index-block contains the database page number corresponding to the
  167: ** first frame in the WAL file. The first entry in the second index block
  168: ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
  169: ** the log, and so on.
  170: **
  171: ** The last index block in a wal-index usually contains less than the full
  172: ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
  173: ** depending on the contents of the WAL file. This does not change the
  174: ** allocated size of the page-mapping array - the page-mapping array merely
  175: ** contains unused entries.
  176: **
  177: ** Even without using the hash table, the last frame for page P
  178: ** can be found by scanning the page-mapping sections of each index block
  179: ** starting with the last index block and moving toward the first, and
  180: ** within each index block, starting at the end and moving toward the
  181: ** beginning.  The first entry that equals P corresponds to the frame
  182: ** holding the content for that page.
  183: **
  184: ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
  185: ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
  186: ** hash table for each page number in the mapping section, so the hash 
  187: ** table is never more than half full.  The expected number of collisions 
  188: ** prior to finding a match is 1.  Each entry of the hash table is an
  189: ** 1-based index of an entry in the mapping section of the same
  190: ** index block.   Let K be the 1-based index of the largest entry in
  191: ** the mapping section.  (For index blocks other than the last, K will
  192: ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
  193: ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
  194: ** contain a value of 0.
  195: **
  196: ** To look for page P in the hash table, first compute a hash iKey on
  197: ** P as follows:
  198: **
  199: **      iKey = (P * 383) % HASHTABLE_NSLOT
  200: **
  201: ** Then start scanning entries of the hash table, starting with iKey
  202: ** (wrapping around to the beginning when the end of the hash table is
  203: ** reached) until an unused hash slot is found. Let the first unused slot
  204: ** be at index iUnused.  (iUnused might be less than iKey if there was
  205: ** wrap-around.) Because the hash table is never more than half full,
  206: ** the search is guaranteed to eventually hit an unused entry.  Let 
  207: ** iMax be the value between iKey and iUnused, closest to iUnused,
  208: ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
  209: ** no hash slot such that aHash[i]==p) then page P is not in the
  210: ** current index block.  Otherwise the iMax-th mapping entry of the
  211: ** current index block corresponds to the last entry that references 
  212: ** page P.
  213: **
  214: ** A hash search begins with the last index block and moves toward the
  215: ** first index block, looking for entries corresponding to page P.  On
  216: ** average, only two or three slots in each index block need to be
  217: ** examined in order to either find the last entry for page P, or to
  218: ** establish that no such entry exists in the block.  Each index block
  219: ** holds over 4000 entries.  So two or three index blocks are sufficient
  220: ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
  221: ** comparisons (on average) suffice to either locate a frame in the
  222: ** WAL or to establish that the frame does not exist in the WAL.  This
  223: ** is much faster than scanning the entire 10MB WAL.
  224: **
  225: ** Note that entries are added in order of increasing K.  Hence, one
  226: ** reader might be using some value K0 and a second reader that started
  227: ** at a later time (after additional transactions were added to the WAL
  228: ** and to the wal-index) might be using a different value K1, where K1>K0.
  229: ** Both readers can use the same hash table and mapping section to get
  230: ** the correct result.  There may be entries in the hash table with
  231: ** K>K0 but to the first reader, those entries will appear to be unused
  232: ** slots in the hash table and so the first reader will get an answer as
  233: ** if no values greater than K0 had ever been inserted into the hash table
  234: ** in the first place - which is what reader one wants.  Meanwhile, the
  235: ** second reader using K1 will see additional values that were inserted
  236: ** later, which is exactly what reader two wants.  
  237: **
  238: ** When a rollback occurs, the value of K is decreased. Hash table entries
  239: ** that correspond to frames greater than the new K value are removed
  240: ** from the hash table at this point.
  241: */
  242: #ifndef SQLITE_OMIT_WAL
  243: 
  244: #include "wal.h"
  245: 
  246: /*
  247: ** Trace output macros
  248: */
  249: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  250: int sqlite3WalTrace = 0;
  251: # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
  252: #else
  253: # define WALTRACE(X)
  254: #endif
  255: 
  256: /*
  257: ** The maximum (and only) versions of the wal and wal-index formats
  258: ** that may be interpreted by this version of SQLite.
  259: **
  260: ** If a client begins recovering a WAL file and finds that (a) the checksum
  261: ** values in the wal-header are correct and (b) the version field is not
  262: ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
  263: **
  264: ** Similarly, if a client successfully reads a wal-index header (i.e. the 
  265: ** checksum test is successful) and finds that the version field is not
  266: ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
  267: ** returns SQLITE_CANTOPEN.
  268: */
  269: #define WAL_MAX_VERSION      3007000
  270: #define WALINDEX_MAX_VERSION 3007000
  271: 
  272: /*
  273: ** Indices of various locking bytes.   WAL_NREADER is the number
  274: ** of available reader locks and should be at least 3.
  275: */
  276: #define WAL_WRITE_LOCK         0
  277: #define WAL_ALL_BUT_WRITE      1
  278: #define WAL_CKPT_LOCK          1
  279: #define WAL_RECOVER_LOCK       2
  280: #define WAL_READ_LOCK(I)       (3+(I))
  281: #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
  282: 
  283: 
  284: /* Object declarations */
  285: typedef struct WalIndexHdr WalIndexHdr;
  286: typedef struct WalIterator WalIterator;
  287: typedef struct WalCkptInfo WalCkptInfo;
  288: 
  289: 
  290: /*
  291: ** The following object holds a copy of the wal-index header content.
  292: **
  293: ** The actual header in the wal-index consists of two copies of this
  294: ** object.
  295: **
  296: ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
  297: ** Or it can be 1 to represent a 65536-byte page.  The latter case was
  298: ** added in 3.7.1 when support for 64K pages was added.  
  299: */
  300: struct WalIndexHdr {
  301:   u32 iVersion;                   /* Wal-index version */
  302:   u32 unused;                     /* Unused (padding) field */
  303:   u32 iChange;                    /* Counter incremented each transaction */
  304:   u8 isInit;                      /* 1 when initialized */
  305:   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
  306:   u16 szPage;                     /* Database page size in bytes. 1==64K */
  307:   u32 mxFrame;                    /* Index of last valid frame in the WAL */
  308:   u32 nPage;                      /* Size of database in pages */
  309:   u32 aFrameCksum[2];             /* Checksum of last frame in log */
  310:   u32 aSalt[2];                   /* Two salt values copied from WAL header */
  311:   u32 aCksum[2];                  /* Checksum over all prior fields */
  312: };
  313: 
  314: /*
  315: ** A copy of the following object occurs in the wal-index immediately
  316: ** following the second copy of the WalIndexHdr.  This object stores
  317: ** information used by checkpoint.
  318: **
  319: ** nBackfill is the number of frames in the WAL that have been written
  320: ** back into the database. (We call the act of moving content from WAL to
  321: ** database "backfilling".)  The nBackfill number is never greater than
  322: ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
  323: ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
  324: ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
  325: ** mxFrame back to zero when the WAL is reset.
  326: **
  327: ** There is one entry in aReadMark[] for each reader lock.  If a reader
  328: ** holds read-lock K, then the value in aReadMark[K] is no greater than
  329: ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
  330: ** for any aReadMark[] means that entry is unused.  aReadMark[0] is 
  331: ** a special case; its value is never used and it exists as a place-holder
  332: ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
  333: ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
  334: ** directly from the database.
  335: **
  336: ** The value of aReadMark[K] may only be changed by a thread that
  337: ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
  338: ** aReadMark[K] cannot changed while there is a reader is using that mark
  339: ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
  340: **
  341: ** The checkpointer may only transfer frames from WAL to database where
  342: ** the frame numbers are less than or equal to every aReadMark[] that is
  343: ** in use (that is, every aReadMark[j] for which there is a corresponding
  344: ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
  345: ** largest value and will increase an unused aReadMark[] to mxFrame if there
  346: ** is not already an aReadMark[] equal to mxFrame.  The exception to the
  347: ** previous sentence is when nBackfill equals mxFrame (meaning that everything
  348: ** in the WAL has been backfilled into the database) then new readers
  349: ** will choose aReadMark[0] which has value 0 and hence such reader will
  350: ** get all their all content directly from the database file and ignore 
  351: ** the WAL.
  352: **
  353: ** Writers normally append new frames to the end of the WAL.  However,
  354: ** if nBackfill equals mxFrame (meaning that all WAL content has been
  355: ** written back into the database) and if no readers are using the WAL
  356: ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
  357: ** the writer will first "reset" the WAL back to the beginning and start
  358: ** writing new content beginning at frame 1.
  359: **
  360: ** We assume that 32-bit loads are atomic and so no locks are needed in
  361: ** order to read from any aReadMark[] entries.
  362: */
  363: struct WalCkptInfo {
  364:   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
  365:   u32 aReadMark[WAL_NREADER];     /* Reader marks */
  366: };
  367: #define READMARK_NOT_USED  0xffffffff
  368: 
  369: 
  370: /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
  371: ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
  372: ** only support mandatory file-locks, we do not read or write data
  373: ** from the region of the file on which locks are applied.
  374: */
  375: #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
  376: #define WALINDEX_LOCK_RESERVED 16
  377: #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
  378: 
  379: /* Size of header before each frame in wal */
  380: #define WAL_FRAME_HDRSIZE 24
  381: 
  382: /* Size of write ahead log header, including checksum. */
  383: /* #define WAL_HDRSIZE 24 */
  384: #define WAL_HDRSIZE 32
  385: 
  386: /* WAL magic value. Either this value, or the same value with the least
  387: ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
  388: ** big-endian format in the first 4 bytes of a WAL file.
  389: **
  390: ** If the LSB is set, then the checksums for each frame within the WAL
  391: ** file are calculated by treating all data as an array of 32-bit 
  392: ** big-endian words. Otherwise, they are calculated by interpreting 
  393: ** all data as 32-bit little-endian words.
  394: */
  395: #define WAL_MAGIC 0x377f0682
  396: 
  397: /*
  398: ** Return the offset of frame iFrame in the write-ahead log file, 
  399: ** assuming a database page size of szPage bytes. The offset returned
  400: ** is to the start of the write-ahead log frame-header.
  401: */
  402: #define walFrameOffset(iFrame, szPage) (                               \
  403:   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
  404: )
  405: 
  406: /*
  407: ** An open write-ahead log file is represented by an instance of the
  408: ** following object.
  409: */
  410: struct Wal {
  411:   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
  412:   sqlite3_file *pDbFd;       /* File handle for the database file */
  413:   sqlite3_file *pWalFd;      /* File handle for WAL file */
  414:   u32 iCallback;             /* Value to pass to log callback (or 0) */
  415:   i64 mxWalSize;             /* Truncate WAL to this size upon reset */
  416:   int nWiData;               /* Size of array apWiData */
  417:   int szFirstBlock;          /* Size of first block written to WAL file */
  418:   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  419:   u32 szPage;                /* Database page size */
  420:   i16 readLock;              /* Which read lock is being held.  -1 for none */
  421:   u8 syncFlags;              /* Flags to use to sync header writes */
  422:   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  423:   u8 writeLock;              /* True if in a write transaction */
  424:   u8 ckptLock;               /* True if holding a checkpoint lock */
  425:   u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  426:   u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  427:   u8 syncHeader;             /* Fsync the WAL header if true */
  428:   u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  429:   WalIndexHdr hdr;           /* Wal-index header for current transaction */
  430:   const char *zWalName;      /* Name of WAL file */
  431:   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
  432: #ifdef SQLITE_DEBUG
  433:   u8 lockError;              /* True if a locking error has occurred */
  434: #endif
  435: };
  436: 
  437: /*
  438: ** Candidate values for Wal.exclusiveMode.
  439: */
  440: #define WAL_NORMAL_MODE     0
  441: #define WAL_EXCLUSIVE_MODE  1     
  442: #define WAL_HEAPMEMORY_MODE 2
  443: 
  444: /*
  445: ** Possible values for WAL.readOnly
  446: */
  447: #define WAL_RDWR        0    /* Normal read/write connection */
  448: #define WAL_RDONLY      1    /* The WAL file is readonly */
  449: #define WAL_SHM_RDONLY  2    /* The SHM file is readonly */
  450: 
  451: /*
  452: ** Each page of the wal-index mapping contains a hash-table made up of
  453: ** an array of HASHTABLE_NSLOT elements of the following type.
  454: */
  455: typedef u16 ht_slot;
  456: 
  457: /*
  458: ** This structure is used to implement an iterator that loops through
  459: ** all frames in the WAL in database page order. Where two or more frames
  460: ** correspond to the same database page, the iterator visits only the 
  461: ** frame most recently written to the WAL (in other words, the frame with
  462: ** the largest index).
  463: **
  464: ** The internals of this structure are only accessed by:
  465: **
  466: **   walIteratorInit() - Create a new iterator,
  467: **   walIteratorNext() - Step an iterator,
  468: **   walIteratorFree() - Free an iterator.
  469: **
  470: ** This functionality is used by the checkpoint code (see walCheckpoint()).
  471: */
  472: struct WalIterator {
  473:   int iPrior;                     /* Last result returned from the iterator */
  474:   int nSegment;                   /* Number of entries in aSegment[] */
  475:   struct WalSegment {
  476:     int iNext;                    /* Next slot in aIndex[] not yet returned */
  477:     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
  478:     u32 *aPgno;                   /* Array of page numbers. */
  479:     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
  480:     int iZero;                    /* Frame number associated with aPgno[0] */
  481:   } aSegment[1];                  /* One for every 32KB page in the wal-index */
  482: };
  483: 
  484: /*
  485: ** Define the parameters of the hash tables in the wal-index file. There
  486: ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
  487: ** wal-index.
  488: **
  489: ** Changing any of these constants will alter the wal-index format and
  490: ** create incompatibilities.
  491: */
  492: #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
  493: #define HASHTABLE_HASH_1     383                  /* Should be prime */
  494: #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
  495: 
  496: /* 
  497: ** The block of page numbers associated with the first hash-table in a
  498: ** wal-index is smaller than usual. This is so that there is a complete
  499: ** hash-table on each aligned 32KB page of the wal-index.
  500: */
  501: #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
  502: 
  503: /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
  504: #define WALINDEX_PGSZ   (                                         \
  505:     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
  506: )
  507: 
  508: /*
  509: ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
  510: ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
  511: ** numbered from zero.
  512: **
  513: ** If this call is successful, *ppPage is set to point to the wal-index
  514: ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
  515: ** then an SQLite error code is returned and *ppPage is set to 0.
  516: */
  517: static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
  518:   int rc = SQLITE_OK;
  519: 
  520:   /* Enlarge the pWal->apWiData[] array if required */
  521:   if( pWal->nWiData<=iPage ){
  522:     int nByte = sizeof(u32*)*(iPage+1);
  523:     volatile u32 **apNew;
  524:     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
  525:     if( !apNew ){
  526:       *ppPage = 0;
  527:       return SQLITE_NOMEM;
  528:     }
  529:     memset((void*)&apNew[pWal->nWiData], 0,
  530:            sizeof(u32*)*(iPage+1-pWal->nWiData));
  531:     pWal->apWiData = apNew;
  532:     pWal->nWiData = iPage+1;
  533:   }
  534: 
  535:   /* Request a pointer to the required page from the VFS */
  536:   if( pWal->apWiData[iPage]==0 ){
  537:     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
  538:       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
  539:       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
  540:     }else{
  541:       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
  542:           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
  543:       );
  544:       if( rc==SQLITE_READONLY ){
  545:         pWal->readOnly |= WAL_SHM_RDONLY;
  546:         rc = SQLITE_OK;
  547:       }
  548:     }
  549:   }
  550: 
  551:   *ppPage = pWal->apWiData[iPage];
  552:   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  553:   return rc;
  554: }
  555: 
  556: /*
  557: ** Return a pointer to the WalCkptInfo structure in the wal-index.
  558: */
  559: static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
  560:   assert( pWal->nWiData>0 && pWal->apWiData[0] );
  561:   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
  562: }
  563: 
  564: /*
  565: ** Return a pointer to the WalIndexHdr structure in the wal-index.
  566: */
  567: static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
  568:   assert( pWal->nWiData>0 && pWal->apWiData[0] );
  569:   return (volatile WalIndexHdr*)pWal->apWiData[0];
  570: }
  571: 
  572: /*
  573: ** The argument to this macro must be of type u32. On a little-endian
  574: ** architecture, it returns the u32 value that results from interpreting
  575: ** the 4 bytes as a big-endian value. On a big-endian architecture, it
  576: ** returns the value that would be produced by intepreting the 4 bytes
  577: ** of the input value as a little-endian integer.
  578: */
  579: #define BYTESWAP32(x) ( \
  580:     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
  581:   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
  582: )
  583: 
  584: /*
  585: ** Generate or extend an 8 byte checksum based on the data in 
  586: ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
  587: ** initial values of 0 and 0 if aIn==NULL).
  588: **
  589: ** The checksum is written back into aOut[] before returning.
  590: **
  591: ** nByte must be a positive multiple of 8.
  592: */
  593: static void walChecksumBytes(
  594:   int nativeCksum, /* True for native byte-order, false for non-native */
  595:   u8 *a,           /* Content to be checksummed */
  596:   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
  597:   const u32 *aIn,  /* Initial checksum value input */
  598:   u32 *aOut        /* OUT: Final checksum value output */
  599: ){
  600:   u32 s1, s2;
  601:   u32 *aData = (u32 *)a;
  602:   u32 *aEnd = (u32 *)&a[nByte];
  603: 
  604:   if( aIn ){
  605:     s1 = aIn[0];
  606:     s2 = aIn[1];
  607:   }else{
  608:     s1 = s2 = 0;
  609:   }
  610: 
  611:   assert( nByte>=8 );
  612:   assert( (nByte&0x00000007)==0 );
  613: 
  614:   if( nativeCksum ){
  615:     do {
  616:       s1 += *aData++ + s2;
  617:       s2 += *aData++ + s1;
  618:     }while( aData<aEnd );
  619:   }else{
  620:     do {
  621:       s1 += BYTESWAP32(aData[0]) + s2;
  622:       s2 += BYTESWAP32(aData[1]) + s1;
  623:       aData += 2;
  624:     }while( aData<aEnd );
  625:   }
  626: 
  627:   aOut[0] = s1;
  628:   aOut[1] = s2;
  629: }
  630: 
  631: static void walShmBarrier(Wal *pWal){
  632:   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
  633:     sqlite3OsShmBarrier(pWal->pDbFd);
  634:   }
  635: }
  636: 
  637: /*
  638: ** Write the header information in pWal->hdr into the wal-index.
  639: **
  640: ** The checksum on pWal->hdr is updated before it is written.
  641: */
  642: static void walIndexWriteHdr(Wal *pWal){
  643:   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
  644:   const int nCksum = offsetof(WalIndexHdr, aCksum);
  645: 
  646:   assert( pWal->writeLock );
  647:   pWal->hdr.isInit = 1;
  648:   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
  649:   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
  650:   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
  651:   walShmBarrier(pWal);
  652:   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
  653: }
  654: 
  655: /*
  656: ** This function encodes a single frame header and writes it to a buffer
  657: ** supplied by the caller. A frame-header is made up of a series of 
  658: ** 4-byte big-endian integers, as follows:
  659: **
  660: **     0: Page number.
  661: **     4: For commit records, the size of the database image in pages 
  662: **        after the commit. For all other records, zero.
  663: **     8: Salt-1 (copied from the wal-header)
  664: **    12: Salt-2 (copied from the wal-header)
  665: **    16: Checksum-1.
  666: **    20: Checksum-2.
  667: */
  668: static void walEncodeFrame(
  669:   Wal *pWal,                      /* The write-ahead log */
  670:   u32 iPage,                      /* Database page number for frame */
  671:   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
  672:   u8 *aData,                      /* Pointer to page data */
  673:   u8 *aFrame                      /* OUT: Write encoded frame here */
  674: ){
  675:   int nativeCksum;                /* True for native byte-order checksums */
  676:   u32 *aCksum = pWal->hdr.aFrameCksum;
  677:   assert( WAL_FRAME_HDRSIZE==24 );
  678:   sqlite3Put4byte(&aFrame[0], iPage);
  679:   sqlite3Put4byte(&aFrame[4], nTruncate);
  680:   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
  681: 
  682:   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  683:   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  684:   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
  685: 
  686:   sqlite3Put4byte(&aFrame[16], aCksum[0]);
  687:   sqlite3Put4byte(&aFrame[20], aCksum[1]);
  688: }
  689: 
  690: /*
  691: ** Check to see if the frame with header in aFrame[] and content
  692: ** in aData[] is valid.  If it is a valid frame, fill *piPage and
  693: ** *pnTruncate and return true.  Return if the frame is not valid.
  694: */
  695: static int walDecodeFrame(
  696:   Wal *pWal,                      /* The write-ahead log */
  697:   u32 *piPage,                    /* OUT: Database page number for frame */
  698:   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
  699:   u8 *aData,                      /* Pointer to page data (for checksum) */
  700:   u8 *aFrame                      /* Frame data */
  701: ){
  702:   int nativeCksum;                /* True for native byte-order checksums */
  703:   u32 *aCksum = pWal->hdr.aFrameCksum;
  704:   u32 pgno;                       /* Page number of the frame */
  705:   assert( WAL_FRAME_HDRSIZE==24 );
  706: 
  707:   /* A frame is only valid if the salt values in the frame-header
  708:   ** match the salt values in the wal-header. 
  709:   */
  710:   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
  711:     return 0;
  712:   }
  713: 
  714:   /* A frame is only valid if the page number is creater than zero.
  715:   */
  716:   pgno = sqlite3Get4byte(&aFrame[0]);
  717:   if( pgno==0 ){
  718:     return 0;
  719:   }
  720: 
  721:   /* A frame is only valid if a checksum of the WAL header,
  722:   ** all prior frams, the first 16 bytes of this frame-header, 
  723:   ** and the frame-data matches the checksum in the last 8 
  724:   ** bytes of this frame-header.
  725:   */
  726:   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  727:   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  728:   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
  729:   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 
  730:    || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 
  731:   ){
  732:     /* Checksum failed. */
  733:     return 0;
  734:   }
  735: 
  736:   /* If we reach this point, the frame is valid.  Return the page number
  737:   ** and the new database size.
  738:   */
  739:   *piPage = pgno;
  740:   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
  741:   return 1;
  742: }
  743: 
  744: 
  745: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  746: /*
  747: ** Names of locks.  This routine is used to provide debugging output and is not
  748: ** a part of an ordinary build.
  749: */
  750: static const char *walLockName(int lockIdx){
  751:   if( lockIdx==WAL_WRITE_LOCK ){
  752:     return "WRITE-LOCK";
  753:   }else if( lockIdx==WAL_CKPT_LOCK ){
  754:     return "CKPT-LOCK";
  755:   }else if( lockIdx==WAL_RECOVER_LOCK ){
  756:     return "RECOVER-LOCK";
  757:   }else{
  758:     static char zName[15];
  759:     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
  760:                      lockIdx-WAL_READ_LOCK(0));
  761:     return zName;
  762:   }
  763: }
  764: #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
  765:     
  766: 
  767: /*
  768: ** Set or release locks on the WAL.  Locks are either shared or exclusive.
  769: ** A lock cannot be moved directly between shared and exclusive - it must go
  770: ** through the unlocked state first.
  771: **
  772: ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
  773: */
  774: static int walLockShared(Wal *pWal, int lockIdx){
  775:   int rc;
  776:   if( pWal->exclusiveMode ) return SQLITE_OK;
  777:   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
  778:                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
  779:   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
  780:             walLockName(lockIdx), rc ? "failed" : "ok"));
  781:   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  782:   return rc;
  783: }
  784: static void walUnlockShared(Wal *pWal, int lockIdx){
  785:   if( pWal->exclusiveMode ) return;
  786:   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
  787:                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
  788:   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
  789: }
  790: static int walLockExclusive(Wal *pWal, int lockIdx, int n){
  791:   int rc;
  792:   if( pWal->exclusiveMode ) return SQLITE_OK;
  793:   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
  794:                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  795:   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
  796:             walLockName(lockIdx), n, rc ? "failed" : "ok"));
  797:   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  798:   return rc;
  799: }
  800: static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
  801:   if( pWal->exclusiveMode ) return;
  802:   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
  803:                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
  804:   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
  805:              walLockName(lockIdx), n));
  806: }
  807: 
  808: /*
  809: ** Compute a hash on a page number.  The resulting hash value must land
  810: ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
  811: ** the hash to the next value in the event of a collision.
  812: */
  813: static int walHash(u32 iPage){
  814:   assert( iPage>0 );
  815:   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
  816:   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
  817: }
  818: static int walNextHash(int iPriorHash){
  819:   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
  820: }
  821: 
  822: /* 
  823: ** Return pointers to the hash table and page number array stored on
  824: ** page iHash of the wal-index. The wal-index is broken into 32KB pages
  825: ** numbered starting from 0.
  826: **
  827: ** Set output variable *paHash to point to the start of the hash table
  828: ** in the wal-index file. Set *piZero to one less than the frame 
  829: ** number of the first frame indexed by this hash table. If a
  830: ** slot in the hash table is set to N, it refers to frame number 
  831: ** (*piZero+N) in the log.
  832: **
  833: ** Finally, set *paPgno so that *paPgno[1] is the page number of the
  834: ** first frame indexed by the hash table, frame (*piZero+1).
  835: */
  836: static int walHashGet(
  837:   Wal *pWal,                      /* WAL handle */
  838:   int iHash,                      /* Find the iHash'th table */
  839:   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
  840:   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
  841:   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
  842: ){
  843:   int rc;                         /* Return code */
  844:   volatile u32 *aPgno;
  845: 
  846:   rc = walIndexPage(pWal, iHash, &aPgno);
  847:   assert( rc==SQLITE_OK || iHash>0 );
  848: 
  849:   if( rc==SQLITE_OK ){
  850:     u32 iZero;
  851:     volatile ht_slot *aHash;
  852: 
  853:     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
  854:     if( iHash==0 ){
  855:       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
  856:       iZero = 0;
  857:     }else{
  858:       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
  859:     }
  860:   
  861:     *paPgno = &aPgno[-1];
  862:     *paHash = aHash;
  863:     *piZero = iZero;
  864:   }
  865:   return rc;
  866: }
  867: 
  868: /*
  869: ** Return the number of the wal-index page that contains the hash-table
  870: ** and page-number array that contain entries corresponding to WAL frame
  871: ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 
  872: ** are numbered starting from 0.
  873: */
  874: static int walFramePage(u32 iFrame){
  875:   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
  876:   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
  877:        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
  878:        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
  879:        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
  880:        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
  881:   );
  882:   return iHash;
  883: }
  884: 
  885: /*
  886: ** Return the page number associated with frame iFrame in this WAL.
  887: */
  888: static u32 walFramePgno(Wal *pWal, u32 iFrame){
  889:   int iHash = walFramePage(iFrame);
  890:   if( iHash==0 ){
  891:     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
  892:   }
  893:   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
  894: }
  895: 
  896: /*
  897: ** Remove entries from the hash table that point to WAL slots greater
  898: ** than pWal->hdr.mxFrame.
  899: **
  900: ** This function is called whenever pWal->hdr.mxFrame is decreased due
  901: ** to a rollback or savepoint.
  902: **
  903: ** At most only the hash table containing pWal->hdr.mxFrame needs to be
  904: ** updated.  Any later hash tables will be automatically cleared when
  905: ** pWal->hdr.mxFrame advances to the point where those hash tables are
  906: ** actually needed.
  907: */
  908: static void walCleanupHash(Wal *pWal){
  909:   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
  910:   volatile u32 *aPgno = 0;        /* Page number array for hash table */
  911:   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
  912:   int iLimit = 0;                 /* Zero values greater than this */
  913:   int nByte;                      /* Number of bytes to zero in aPgno[] */
  914:   int i;                          /* Used to iterate through aHash[] */
  915: 
  916:   assert( pWal->writeLock );
  917:   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
  918:   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
  919:   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
  920: 
  921:   if( pWal->hdr.mxFrame==0 ) return;
  922: 
  923:   /* Obtain pointers to the hash-table and page-number array containing 
  924:   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
  925:   ** that the page said hash-table and array reside on is already mapped.
  926:   */
  927:   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
  928:   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
  929:   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
  930: 
  931:   /* Zero all hash-table entries that correspond to frame numbers greater
  932:   ** than pWal->hdr.mxFrame.
  933:   */
  934:   iLimit = pWal->hdr.mxFrame - iZero;
  935:   assert( iLimit>0 );
  936:   for(i=0; i<HASHTABLE_NSLOT; i++){
  937:     if( aHash[i]>iLimit ){
  938:       aHash[i] = 0;
  939:     }
  940:   }
  941:   
  942:   /* Zero the entries in the aPgno array that correspond to frames with
  943:   ** frame numbers greater than pWal->hdr.mxFrame. 
  944:   */
  945:   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
  946:   memset((void *)&aPgno[iLimit+1], 0, nByte);
  947: 
  948: #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  949:   /* Verify that the every entry in the mapping region is still reachable
  950:   ** via the hash table even after the cleanup.
  951:   */
  952:   if( iLimit ){
  953:     int i;           /* Loop counter */
  954:     int iKey;        /* Hash key */
  955:     for(i=1; i<=iLimit; i++){
  956:       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
  957:         if( aHash[iKey]==i ) break;
  958:       }
  959:       assert( aHash[iKey]==i );
  960:     }
  961:   }
  962: #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
  963: }
  964: 
  965: 
  966: /*
  967: ** Set an entry in the wal-index that will map database page number
  968: ** pPage into WAL frame iFrame.
  969: */
  970: static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
  971:   int rc;                         /* Return code */
  972:   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
  973:   volatile u32 *aPgno = 0;        /* Page number array */
  974:   volatile ht_slot *aHash = 0;    /* Hash table */
  975: 
  976:   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
  977: 
  978:   /* Assuming the wal-index file was successfully mapped, populate the
  979:   ** page number array and hash table entry.
  980:   */
  981:   if( rc==SQLITE_OK ){
  982:     int iKey;                     /* Hash table key */
  983:     int idx;                      /* Value to write to hash-table slot */
  984:     int nCollide;                 /* Number of hash collisions */
  985: 
  986:     idx = iFrame - iZero;
  987:     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
  988:     
  989:     /* If this is the first entry to be added to this hash-table, zero the
  990:     ** entire hash table and aPgno[] array before proceding. 
  991:     */
  992:     if( idx==1 ){
  993:       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
  994:       memset((void*)&aPgno[1], 0, nByte);
  995:     }
  996: 
  997:     /* If the entry in aPgno[] is already set, then the previous writer
  998:     ** must have exited unexpectedly in the middle of a transaction (after
  999:     ** writing one or more dirty pages to the WAL to free up memory). 
 1000:     ** Remove the remnants of that writers uncommitted transaction from 
 1001:     ** the hash-table before writing any new entries.
 1002:     */
 1003:     if( aPgno[idx] ){
 1004:       walCleanupHash(pWal);
 1005:       assert( !aPgno[idx] );
 1006:     }
 1007: 
 1008:     /* Write the aPgno[] array entry and the hash-table slot. */
 1009:     nCollide = idx;
 1010:     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
 1011:       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
 1012:     }
 1013:     aPgno[idx] = iPage;
 1014:     aHash[iKey] = (ht_slot)idx;
 1015: 
 1016: #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
 1017:     /* Verify that the number of entries in the hash table exactly equals
 1018:     ** the number of entries in the mapping region.
 1019:     */
 1020:     {
 1021:       int i;           /* Loop counter */
 1022:       int nEntry = 0;  /* Number of entries in the hash table */
 1023:       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
 1024:       assert( nEntry==idx );
 1025:     }
 1026: 
 1027:     /* Verify that the every entry in the mapping region is reachable
 1028:     ** via the hash table.  This turns out to be a really, really expensive
 1029:     ** thing to check, so only do this occasionally - not on every
 1030:     ** iteration.
 1031:     */
 1032:     if( (idx&0x3ff)==0 ){
 1033:       int i;           /* Loop counter */
 1034:       for(i=1; i<=idx; i++){
 1035:         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
 1036:           if( aHash[iKey]==i ) break;
 1037:         }
 1038:         assert( aHash[iKey]==i );
 1039:       }
 1040:     }
 1041: #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
 1042:   }
 1043: 
 1044: 
 1045:   return rc;
 1046: }
 1047: 
 1048: 
 1049: /*
 1050: ** Recover the wal-index by reading the write-ahead log file. 
 1051: **
 1052: ** This routine first tries to establish an exclusive lock on the
 1053: ** wal-index to prevent other threads/processes from doing anything
 1054: ** with the WAL or wal-index while recovery is running.  The
 1055: ** WAL_RECOVER_LOCK is also held so that other threads will know
 1056: ** that this thread is running recovery.  If unable to establish
 1057: ** the necessary locks, this routine returns SQLITE_BUSY.
 1058: */
 1059: static int walIndexRecover(Wal *pWal){
 1060:   int rc;                         /* Return Code */
 1061:   i64 nSize;                      /* Size of log file */
 1062:   u32 aFrameCksum[2] = {0, 0};
 1063:   int iLock;                      /* Lock offset to lock for checkpoint */
 1064:   int nLock;                      /* Number of locks to hold */
 1065: 
 1066:   /* Obtain an exclusive lock on all byte in the locking range not already
 1067:   ** locked by the caller. The caller is guaranteed to have locked the
 1068:   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
 1069:   ** If successful, the same bytes that are locked here are unlocked before
 1070:   ** this function returns.
 1071:   */
 1072:   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
 1073:   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
 1074:   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
 1075:   assert( pWal->writeLock );
 1076:   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
 1077:   nLock = SQLITE_SHM_NLOCK - iLock;
 1078:   rc = walLockExclusive(pWal, iLock, nLock);
 1079:   if( rc ){
 1080:     return rc;
 1081:   }
 1082:   WALTRACE(("WAL%p: recovery begin...\n", pWal));
 1083: 
 1084:   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
 1085: 
 1086:   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
 1087:   if( rc!=SQLITE_OK ){
 1088:     goto recovery_error;
 1089:   }
 1090: 
 1091:   if( nSize>WAL_HDRSIZE ){
 1092:     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
 1093:     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
 1094:     int szFrame;                  /* Number of bytes in buffer aFrame[] */
 1095:     u8 *aData;                    /* Pointer to data part of aFrame buffer */
 1096:     int iFrame;                   /* Index of last frame read */
 1097:     i64 iOffset;                  /* Next offset to read from log file */
 1098:     int szPage;                   /* Page size according to the log */
 1099:     u32 magic;                    /* Magic value read from WAL header */
 1100:     u32 version;                  /* Magic value read from WAL header */
 1101:     int isValid;                  /* True if this frame is valid */
 1102: 
 1103:     /* Read in the WAL header. */
 1104:     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
 1105:     if( rc!=SQLITE_OK ){
 1106:       goto recovery_error;
 1107:     }
 1108: 
 1109:     /* If the database page size is not a power of two, or is greater than
 1110:     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 
 1111:     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
 1112:     ** WAL file.
 1113:     */
 1114:     magic = sqlite3Get4byte(&aBuf[0]);
 1115:     szPage = sqlite3Get4byte(&aBuf[8]);
 1116:     if( (magic&0xFFFFFFFE)!=WAL_MAGIC 
 1117:      || szPage&(szPage-1) 
 1118:      || szPage>SQLITE_MAX_PAGE_SIZE 
 1119:      || szPage<512 
 1120:     ){
 1121:       goto finished;
 1122:     }
 1123:     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
 1124:     pWal->szPage = szPage;
 1125:     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
 1126:     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
 1127: 
 1128:     /* Verify that the WAL header checksum is correct */
 1129:     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 
 1130:         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
 1131:     );
 1132:     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
 1133:      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
 1134:     ){
 1135:       goto finished;
 1136:     }
 1137: 
 1138:     /* Verify that the version number on the WAL format is one that
 1139:     ** are able to understand */
 1140:     version = sqlite3Get4byte(&aBuf[4]);
 1141:     if( version!=WAL_MAX_VERSION ){
 1142:       rc = SQLITE_CANTOPEN_BKPT;
 1143:       goto finished;
 1144:     }
 1145: 
 1146:     /* Malloc a buffer to read frames into. */
 1147:     szFrame = szPage + WAL_FRAME_HDRSIZE;
 1148:     aFrame = (u8 *)sqlite3_malloc(szFrame);
 1149:     if( !aFrame ){
 1150:       rc = SQLITE_NOMEM;
 1151:       goto recovery_error;
 1152:     }
 1153:     aData = &aFrame[WAL_FRAME_HDRSIZE];
 1154: 
 1155:     /* Read all frames from the log file. */
 1156:     iFrame = 0;
 1157:     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
 1158:       u32 pgno;                   /* Database page number for frame */
 1159:       u32 nTruncate;              /* dbsize field from frame header */
 1160: 
 1161:       /* Read and decode the next log frame. */
 1162:       iFrame++;
 1163:       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
 1164:       if( rc!=SQLITE_OK ) break;
 1165:       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
 1166:       if( !isValid ) break;
 1167:       rc = walIndexAppend(pWal, iFrame, pgno);
 1168:       if( rc!=SQLITE_OK ) break;
 1169: 
 1170:       /* If nTruncate is non-zero, this is a commit record. */
 1171:       if( nTruncate ){
 1172:         pWal->hdr.mxFrame = iFrame;
 1173:         pWal->hdr.nPage = nTruncate;
 1174:         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
 1175:         testcase( szPage<=32768 );
 1176:         testcase( szPage>=65536 );
 1177:         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
 1178:         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
 1179:       }
 1180:     }
 1181: 
 1182:     sqlite3_free(aFrame);
 1183:   }
 1184: 
 1185: finished:
 1186:   if( rc==SQLITE_OK ){
 1187:     volatile WalCkptInfo *pInfo;
 1188:     int i;
 1189:     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
 1190:     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
 1191:     walIndexWriteHdr(pWal);
 1192: 
 1193:     /* Reset the checkpoint-header. This is safe because this thread is 
 1194:     ** currently holding locks that exclude all other readers, writers and
 1195:     ** checkpointers.
 1196:     */
 1197:     pInfo = walCkptInfo(pWal);
 1198:     pInfo->nBackfill = 0;
 1199:     pInfo->aReadMark[0] = 0;
 1200:     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
 1201: 
 1202:     /* If more than one frame was recovered from the log file, report an
 1203:     ** event via sqlite3_log(). This is to help with identifying performance
 1204:     ** problems caused by applications routinely shutting down without
 1205:     ** checkpointing the log file.
 1206:     */
 1207:     if( pWal->hdr.nPage ){
 1208:       sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
 1209:           pWal->hdr.nPage, pWal->zWalName
 1210:       );
 1211:     }
 1212:   }
 1213: 
 1214: recovery_error:
 1215:   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
 1216:   walUnlockExclusive(pWal, iLock, nLock);
 1217:   return rc;
 1218: }
 1219: 
 1220: /*
 1221: ** Close an open wal-index.
 1222: */
 1223: static void walIndexClose(Wal *pWal, int isDelete){
 1224:   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
 1225:     int i;
 1226:     for(i=0; i<pWal->nWiData; i++){
 1227:       sqlite3_free((void *)pWal->apWiData[i]);
 1228:       pWal->apWiData[i] = 0;
 1229:     }
 1230:   }else{
 1231:     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
 1232:   }
 1233: }
 1234: 
 1235: /* 
 1236: ** Open a connection to the WAL file zWalName. The database file must 
 1237: ** already be opened on connection pDbFd. The buffer that zWalName points
 1238: ** to must remain valid for the lifetime of the returned Wal* handle.
 1239: **
 1240: ** A SHARED lock should be held on the database file when this function
 1241: ** is called. The purpose of this SHARED lock is to prevent any other
 1242: ** client from unlinking the WAL or wal-index file. If another process
 1243: ** were to do this just after this client opened one of these files, the
 1244: ** system would be badly broken.
 1245: **
 1246: ** If the log file is successfully opened, SQLITE_OK is returned and 
 1247: ** *ppWal is set to point to a new WAL handle. If an error occurs,
 1248: ** an SQLite error code is returned and *ppWal is left unmodified.
 1249: */
 1250: int sqlite3WalOpen(
 1251:   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
 1252:   sqlite3_file *pDbFd,            /* The open database file */
 1253:   const char *zWalName,           /* Name of the WAL file */
 1254:   int bNoShm,                     /* True to run in heap-memory mode */
 1255:   i64 mxWalSize,                  /* Truncate WAL to this size on reset */
 1256:   Wal **ppWal                     /* OUT: Allocated Wal handle */
 1257: ){
 1258:   int rc;                         /* Return Code */
 1259:   Wal *pRet;                      /* Object to allocate and return */
 1260:   int flags;                      /* Flags passed to OsOpen() */
 1261: 
 1262:   assert( zWalName && zWalName[0] );
 1263:   assert( pDbFd );
 1264: 
 1265:   /* In the amalgamation, the os_unix.c and os_win.c source files come before
 1266:   ** this source file.  Verify that the #defines of the locking byte offsets
 1267:   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
 1268:   */
 1269: #ifdef WIN_SHM_BASE
 1270:   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
 1271: #endif
 1272: #ifdef UNIX_SHM_BASE
 1273:   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
 1274: #endif
 1275: 
 1276: 
 1277:   /* Allocate an instance of struct Wal to return. */
 1278:   *ppWal = 0;
 1279:   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
 1280:   if( !pRet ){
 1281:     return SQLITE_NOMEM;
 1282:   }
 1283: 
 1284:   pRet->pVfs = pVfs;
 1285:   pRet->pWalFd = (sqlite3_file *)&pRet[1];
 1286:   pRet->pDbFd = pDbFd;
 1287:   pRet->readLock = -1;
 1288:   pRet->mxWalSize = mxWalSize;
 1289:   pRet->zWalName = zWalName;
 1290:   pRet->syncHeader = 1;
 1291:   pRet->padToSectorBoundary = 1;
 1292:   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
 1293: 
 1294:   /* Open file handle on the write-ahead log file. */
 1295:   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
 1296:   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
 1297:   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
 1298:     pRet->readOnly = WAL_RDONLY;
 1299:   }
 1300: 
 1301:   if( rc!=SQLITE_OK ){
 1302:     walIndexClose(pRet, 0);
 1303:     sqlite3OsClose(pRet->pWalFd);
 1304:     sqlite3_free(pRet);
 1305:   }else{
 1306:     int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
 1307:     if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
 1308:     if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
 1309:       pRet->padToSectorBoundary = 0;
 1310:     }
 1311:     *ppWal = pRet;
 1312:     WALTRACE(("WAL%d: opened\n", pRet));
 1313:   }
 1314:   return rc;
 1315: }
 1316: 
 1317: /*
 1318: ** Change the size to which the WAL file is trucated on each reset.
 1319: */
 1320: void sqlite3WalLimit(Wal *pWal, i64 iLimit){
 1321:   if( pWal ) pWal->mxWalSize = iLimit;
 1322: }
 1323: 
 1324: /*
 1325: ** Find the smallest page number out of all pages held in the WAL that
 1326: ** has not been returned by any prior invocation of this method on the
 1327: ** same WalIterator object.   Write into *piFrame the frame index where
 1328: ** that page was last written into the WAL.  Write into *piPage the page
 1329: ** number.
 1330: **
 1331: ** Return 0 on success.  If there are no pages in the WAL with a page
 1332: ** number larger than *piPage, then return 1.
 1333: */
 1334: static int walIteratorNext(
 1335:   WalIterator *p,               /* Iterator */
 1336:   u32 *piPage,                  /* OUT: The page number of the next page */
 1337:   u32 *piFrame                  /* OUT: Wal frame index of next page */
 1338: ){
 1339:   u32 iMin;                     /* Result pgno must be greater than iMin */
 1340:   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
 1341:   int i;                        /* For looping through segments */
 1342: 
 1343:   iMin = p->iPrior;
 1344:   assert( iMin<0xffffffff );
 1345:   for(i=p->nSegment-1; i>=0; i--){
 1346:     struct WalSegment *pSegment = &p->aSegment[i];
 1347:     while( pSegment->iNext<pSegment->nEntry ){
 1348:       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
 1349:       if( iPg>iMin ){
 1350:         if( iPg<iRet ){
 1351:           iRet = iPg;
 1352:           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
 1353:         }
 1354:         break;
 1355:       }
 1356:       pSegment->iNext++;
 1357:     }
 1358:   }
 1359: 
 1360:   *piPage = p->iPrior = iRet;
 1361:   return (iRet==0xFFFFFFFF);
 1362: }
 1363: 
 1364: /*
 1365: ** This function merges two sorted lists into a single sorted list.
 1366: **
 1367: ** aLeft[] and aRight[] are arrays of indices.  The sort key is
 1368: ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
 1369: ** is guaranteed for all J<K:
 1370: **
 1371: **        aContent[aLeft[J]] < aContent[aLeft[K]]
 1372: **        aContent[aRight[J]] < aContent[aRight[K]]
 1373: **
 1374: ** This routine overwrites aRight[] with a new (probably longer) sequence
 1375: ** of indices such that the aRight[] contains every index that appears in
 1376: ** either aLeft[] or the old aRight[] and such that the second condition
 1377: ** above is still met.
 1378: **
 1379: ** The aContent[aLeft[X]] values will be unique for all X.  And the
 1380: ** aContent[aRight[X]] values will be unique too.  But there might be
 1381: ** one or more combinations of X and Y such that
 1382: **
 1383: **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
 1384: **
 1385: ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
 1386: */
 1387: static void walMerge(
 1388:   const u32 *aContent,            /* Pages in wal - keys for the sort */
 1389:   ht_slot *aLeft,                 /* IN: Left hand input list */
 1390:   int nLeft,                      /* IN: Elements in array *paLeft */
 1391:   ht_slot **paRight,              /* IN/OUT: Right hand input list */
 1392:   int *pnRight,                   /* IN/OUT: Elements in *paRight */
 1393:   ht_slot *aTmp                   /* Temporary buffer */
 1394: ){
 1395:   int iLeft = 0;                  /* Current index in aLeft */
 1396:   int iRight = 0;                 /* Current index in aRight */
 1397:   int iOut = 0;                   /* Current index in output buffer */
 1398:   int nRight = *pnRight;
 1399:   ht_slot *aRight = *paRight;
 1400: 
 1401:   assert( nLeft>0 && nRight>0 );
 1402:   while( iRight<nRight || iLeft<nLeft ){
 1403:     ht_slot logpage;
 1404:     Pgno dbpage;
 1405: 
 1406:     if( (iLeft<nLeft) 
 1407:      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
 1408:     ){
 1409:       logpage = aLeft[iLeft++];
 1410:     }else{
 1411:       logpage = aRight[iRight++];
 1412:     }
 1413:     dbpage = aContent[logpage];
 1414: 
 1415:     aTmp[iOut++] = logpage;
 1416:     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
 1417: 
 1418:     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
 1419:     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
 1420:   }
 1421: 
 1422:   *paRight = aLeft;
 1423:   *pnRight = iOut;
 1424:   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
 1425: }
 1426: 
 1427: /*
 1428: ** Sort the elements in list aList using aContent[] as the sort key.
 1429: ** Remove elements with duplicate keys, preferring to keep the
 1430: ** larger aList[] values.
 1431: **
 1432: ** The aList[] entries are indices into aContent[].  The values in
 1433: ** aList[] are to be sorted so that for all J<K:
 1434: **
 1435: **      aContent[aList[J]] < aContent[aList[K]]
 1436: **
 1437: ** For any X and Y such that
 1438: **
 1439: **      aContent[aList[X]] == aContent[aList[Y]]
 1440: **
 1441: ** Keep the larger of the two values aList[X] and aList[Y] and discard
 1442: ** the smaller.
 1443: */
 1444: static void walMergesort(
 1445:   const u32 *aContent,            /* Pages in wal */
 1446:   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
 1447:   ht_slot *aList,                 /* IN/OUT: List to sort */
 1448:   int *pnList                     /* IN/OUT: Number of elements in aList[] */
 1449: ){
 1450:   struct Sublist {
 1451:     int nList;                    /* Number of elements in aList */
 1452:     ht_slot *aList;               /* Pointer to sub-list content */
 1453:   };
 1454: 
 1455:   const int nList = *pnList;      /* Size of input list */
 1456:   int nMerge = 0;                 /* Number of elements in list aMerge */
 1457:   ht_slot *aMerge = 0;            /* List to be merged */
 1458:   int iList;                      /* Index into input list */
 1459:   int iSub = 0;                   /* Index into aSub array */
 1460:   struct Sublist aSub[13];        /* Array of sub-lists */
 1461: 
 1462:   memset(aSub, 0, sizeof(aSub));
 1463:   assert( nList<=HASHTABLE_NPAGE && nList>0 );
 1464:   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
 1465: 
 1466:   for(iList=0; iList<nList; iList++){
 1467:     nMerge = 1;
 1468:     aMerge = &aList[iList];
 1469:     for(iSub=0; iList & (1<<iSub); iSub++){
 1470:       struct Sublist *p = &aSub[iSub];
 1471:       assert( p->aList && p->nList<=(1<<iSub) );
 1472:       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
 1473:       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
 1474:     }
 1475:     aSub[iSub].aList = aMerge;
 1476:     aSub[iSub].nList = nMerge;
 1477:   }
 1478: 
 1479:   for(iSub++; iSub<ArraySize(aSub); iSub++){
 1480:     if( nList & (1<<iSub) ){
 1481:       struct Sublist *p = &aSub[iSub];
 1482:       assert( p->nList<=(1<<iSub) );
 1483:       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
 1484:       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
 1485:     }
 1486:   }
 1487:   assert( aMerge==aList );
 1488:   *pnList = nMerge;
 1489: 
 1490: #ifdef SQLITE_DEBUG
 1491:   {
 1492:     int i;
 1493:     for(i=1; i<*pnList; i++){
 1494:       assert( aContent[aList[i]] > aContent[aList[i-1]] );
 1495:     }
 1496:   }
 1497: #endif
 1498: }
 1499: 
 1500: /* 
 1501: ** Free an iterator allocated by walIteratorInit().
 1502: */
 1503: static void walIteratorFree(WalIterator *p){
 1504:   sqlite3ScratchFree(p);
 1505: }
 1506: 
 1507: /*
 1508: ** Construct a WalInterator object that can be used to loop over all 
 1509: ** pages in the WAL in ascending order. The caller must hold the checkpoint
 1510: ** lock.
 1511: **
 1512: ** On success, make *pp point to the newly allocated WalInterator object
 1513: ** return SQLITE_OK. Otherwise, return an error code. If this routine
 1514: ** returns an error, the value of *pp is undefined.
 1515: **
 1516: ** The calling routine should invoke walIteratorFree() to destroy the
 1517: ** WalIterator object when it has finished with it.
 1518: */
 1519: static int walIteratorInit(Wal *pWal, WalIterator **pp){
 1520:   WalIterator *p;                 /* Return value */
 1521:   int nSegment;                   /* Number of segments to merge */
 1522:   u32 iLast;                      /* Last frame in log */
 1523:   int nByte;                      /* Number of bytes to allocate */
 1524:   int i;                          /* Iterator variable */
 1525:   ht_slot *aTmp;                  /* Temp space used by merge-sort */
 1526:   int rc = SQLITE_OK;             /* Return Code */
 1527: 
 1528:   /* This routine only runs while holding the checkpoint lock. And
 1529:   ** it only runs if there is actually content in the log (mxFrame>0).
 1530:   */
 1531:   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
 1532:   iLast = pWal->hdr.mxFrame;
 1533: 
 1534:   /* Allocate space for the WalIterator object. */
 1535:   nSegment = walFramePage(iLast) + 1;
 1536:   nByte = sizeof(WalIterator) 
 1537:         + (nSegment-1)*sizeof(struct WalSegment)
 1538:         + iLast*sizeof(ht_slot);
 1539:   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
 1540:   if( !p ){
 1541:     return SQLITE_NOMEM;
 1542:   }
 1543:   memset(p, 0, nByte);
 1544:   p->nSegment = nSegment;
 1545: 
 1546:   /* Allocate temporary space used by the merge-sort routine. This block
 1547:   ** of memory will be freed before this function returns.
 1548:   */
 1549:   aTmp = (ht_slot *)sqlite3ScratchMalloc(
 1550:       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
 1551:   );
 1552:   if( !aTmp ){
 1553:     rc = SQLITE_NOMEM;
 1554:   }
 1555: 
 1556:   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
 1557:     volatile ht_slot *aHash;
 1558:     u32 iZero;
 1559:     volatile u32 *aPgno;
 1560: 
 1561:     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
 1562:     if( rc==SQLITE_OK ){
 1563:       int j;                      /* Counter variable */
 1564:       int nEntry;                 /* Number of entries in this segment */
 1565:       ht_slot *aIndex;            /* Sorted index for this segment */
 1566: 
 1567:       aPgno++;
 1568:       if( (i+1)==nSegment ){
 1569:         nEntry = (int)(iLast - iZero);
 1570:       }else{
 1571:         nEntry = (int)((u32*)aHash - (u32*)aPgno);
 1572:       }
 1573:       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
 1574:       iZero++;
 1575:   
 1576:       for(j=0; j<nEntry; j++){
 1577:         aIndex[j] = (ht_slot)j;
 1578:       }
 1579:       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
 1580:       p->aSegment[i].iZero = iZero;
 1581:       p->aSegment[i].nEntry = nEntry;
 1582:       p->aSegment[i].aIndex = aIndex;
 1583:       p->aSegment[i].aPgno = (u32 *)aPgno;
 1584:     }
 1585:   }
 1586:   sqlite3ScratchFree(aTmp);
 1587: 
 1588:   if( rc!=SQLITE_OK ){
 1589:     walIteratorFree(p);
 1590:   }
 1591:   *pp = p;
 1592:   return rc;
 1593: }
 1594: 
 1595: /*
 1596: ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
 1597: ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
 1598: ** busy-handler function. Invoke it and retry the lock until either the
 1599: ** lock is successfully obtained or the busy-handler returns 0.
 1600: */
 1601: static int walBusyLock(
 1602:   Wal *pWal,                      /* WAL connection */
 1603:   int (*xBusy)(void*),            /* Function to call when busy */
 1604:   void *pBusyArg,                 /* Context argument for xBusyHandler */
 1605:   int lockIdx,                    /* Offset of first byte to lock */
 1606:   int n                           /* Number of bytes to lock */
 1607: ){
 1608:   int rc;
 1609:   do {
 1610:     rc = walLockExclusive(pWal, lockIdx, n);
 1611:   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
 1612:   return rc;
 1613: }
 1614: 
 1615: /*
 1616: ** The cache of the wal-index header must be valid to call this function.
 1617: ** Return the page-size in bytes used by the database.
 1618: */
 1619: static int walPagesize(Wal *pWal){
 1620:   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
 1621: }
 1622: 
 1623: /*
 1624: ** Copy as much content as we can from the WAL back into the database file
 1625: ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
 1626: **
 1627: ** The amount of information copies from WAL to database might be limited
 1628: ** by active readers.  This routine will never overwrite a database page
 1629: ** that a concurrent reader might be using.
 1630: **
 1631: ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
 1632: ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if 
 1633: ** checkpoints are always run by a background thread or background 
 1634: ** process, foreground threads will never block on a lengthy fsync call.
 1635: **
 1636: ** Fsync is called on the WAL before writing content out of the WAL and
 1637: ** into the database.  This ensures that if the new content is persistent
 1638: ** in the WAL and can be recovered following a power-loss or hard reset.
 1639: **
 1640: ** Fsync is also called on the database file if (and only if) the entire
 1641: ** WAL content is copied into the database file.  This second fsync makes
 1642: ** it safe to delete the WAL since the new content will persist in the
 1643: ** database file.
 1644: **
 1645: ** This routine uses and updates the nBackfill field of the wal-index header.
 1646: ** This is the only routine tha will increase the value of nBackfill.  
 1647: ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
 1648: ** its value.)
 1649: **
 1650: ** The caller must be holding sufficient locks to ensure that no other
 1651: ** checkpoint is running (in any other thread or process) at the same
 1652: ** time.
 1653: */
 1654: static int walCheckpoint(
 1655:   Wal *pWal,                      /* Wal connection */
 1656:   int eMode,                      /* One of PASSIVE, FULL or RESTART */
 1657:   int (*xBusyCall)(void*),        /* Function to call when busy */
 1658:   void *pBusyArg,                 /* Context argument for xBusyHandler */
 1659:   int sync_flags,                 /* Flags for OsSync() (or 0) */
 1660:   u8 *zBuf                        /* Temporary buffer to use */
 1661: ){
 1662:   int rc;                         /* Return code */
 1663:   int szPage;                     /* Database page-size */
 1664:   WalIterator *pIter = 0;         /* Wal iterator context */
 1665:   u32 iDbpage = 0;                /* Next database page to write */
 1666:   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
 1667:   u32 mxSafeFrame;                /* Max frame that can be backfilled */
 1668:   u32 mxPage;                     /* Max database page to write */
 1669:   int i;                          /* Loop counter */
 1670:   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
 1671:   int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */
 1672: 
 1673:   szPage = walPagesize(pWal);
 1674:   testcase( szPage<=32768 );
 1675:   testcase( szPage>=65536 );
 1676:   pInfo = walCkptInfo(pWal);
 1677:   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
 1678: 
 1679:   /* Allocate the iterator */
 1680:   rc = walIteratorInit(pWal, &pIter);
 1681:   if( rc!=SQLITE_OK ){
 1682:     return rc;
 1683:   }
 1684:   assert( pIter );
 1685: 
 1686:   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
 1687: 
 1688:   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
 1689:   ** safe to write into the database.  Frames beyond mxSafeFrame might
 1690:   ** overwrite database pages that are in use by active readers and thus
 1691:   ** cannot be backfilled from the WAL.
 1692:   */
 1693:   mxSafeFrame = pWal->hdr.mxFrame;
 1694:   mxPage = pWal->hdr.nPage;
 1695:   for(i=1; i<WAL_NREADER; i++){
 1696:     u32 y = pInfo->aReadMark[i];
 1697:     if( mxSafeFrame>y ){
 1698:       assert( y<=pWal->hdr.mxFrame );
 1699:       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
 1700:       if( rc==SQLITE_OK ){
 1701:         pInfo->aReadMark[i] = READMARK_NOT_USED;
 1702:         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
 1703:       }else if( rc==SQLITE_BUSY ){
 1704:         mxSafeFrame = y;
 1705:         xBusy = 0;
 1706:       }else{
 1707:         goto walcheckpoint_out;
 1708:       }
 1709:     }
 1710:   }
 1711: 
 1712:   if( pInfo->nBackfill<mxSafeFrame
 1713:    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
 1714:   ){
 1715:     i64 nSize;                    /* Current size of database file */
 1716:     u32 nBackfill = pInfo->nBackfill;
 1717: 
 1718:     /* Sync the WAL to disk */
 1719:     if( sync_flags ){
 1720:       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
 1721:     }
 1722: 
 1723:     /* If the database file may grow as a result of this checkpoint, hint
 1724:     ** about the eventual size of the db file to the VFS layer. 
 1725:     */
 1726:     if( rc==SQLITE_OK ){
 1727:       i64 nReq = ((i64)mxPage * szPage);
 1728:       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
 1729:       if( rc==SQLITE_OK && nSize<nReq ){
 1730:         sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
 1731:       }
 1732:     }
 1733: 
 1734:     /* Iterate through the contents of the WAL, copying data to the db file. */
 1735:     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
 1736:       i64 iOffset;
 1737:       assert( walFramePgno(pWal, iFrame)==iDbpage );
 1738:       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
 1739:       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
 1740:       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
 1741:       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
 1742:       if( rc!=SQLITE_OK ) break;
 1743:       iOffset = (iDbpage-1)*(i64)szPage;
 1744:       testcase( IS_BIG_INT(iOffset) );
 1745:       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
 1746:       if( rc!=SQLITE_OK ) break;
 1747:     }
 1748: 
 1749:     /* If work was actually accomplished... */
 1750:     if( rc==SQLITE_OK ){
 1751:       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
 1752:         i64 szDb = pWal->hdr.nPage*(i64)szPage;
 1753:         testcase( IS_BIG_INT(szDb) );
 1754:         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
 1755:         if( rc==SQLITE_OK && sync_flags ){
 1756:           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
 1757:         }
 1758:       }
 1759:       if( rc==SQLITE_OK ){
 1760:         pInfo->nBackfill = mxSafeFrame;
 1761:       }
 1762:     }
 1763: 
 1764:     /* Release the reader lock held while backfilling */
 1765:     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
 1766:   }
 1767: 
 1768:   if( rc==SQLITE_BUSY ){
 1769:     /* Reset the return code so as not to report a checkpoint failure
 1770:     ** just because there are active readers.  */
 1771:     rc = SQLITE_OK;
 1772:   }
 1773: 
 1774:   /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
 1775:   ** file has been copied into the database file, then block until all
 1776:   ** readers have finished using the wal file. This ensures that the next
 1777:   ** process to write to the database restarts the wal file.
 1778:   */
 1779:   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
 1780:     assert( pWal->writeLock );
 1781:     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
 1782:       rc = SQLITE_BUSY;
 1783:     }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
 1784:       assert( mxSafeFrame==pWal->hdr.mxFrame );
 1785:       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
 1786:       if( rc==SQLITE_OK ){
 1787:         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
 1788:       }
 1789:     }
 1790:   }
 1791: 
 1792:  walcheckpoint_out:
 1793:   walIteratorFree(pIter);
 1794:   return rc;
 1795: }
 1796: 
 1797: /*
 1798: ** If the WAL file is currently larger than nMax bytes in size, truncate
 1799: ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
 1800: */
 1801: static void walLimitSize(Wal *pWal, i64 nMax){
 1802:   i64 sz;
 1803:   int rx;
 1804:   sqlite3BeginBenignMalloc();
 1805:   rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
 1806:   if( rx==SQLITE_OK && (sz > nMax ) ){
 1807:     rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
 1808:   }
 1809:   sqlite3EndBenignMalloc();
 1810:   if( rx ){
 1811:     sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
 1812:   }
 1813: }
 1814: 
 1815: /*
 1816: ** Close a connection to a log file.
 1817: */
 1818: int sqlite3WalClose(
 1819:   Wal *pWal,                      /* Wal to close */
 1820:   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
 1821:   int nBuf,
 1822:   u8 *zBuf                        /* Buffer of at least nBuf bytes */
 1823: ){
 1824:   int rc = SQLITE_OK;
 1825:   if( pWal ){
 1826:     int isDelete = 0;             /* True to unlink wal and wal-index files */
 1827: 
 1828:     /* If an EXCLUSIVE lock can be obtained on the database file (using the
 1829:     ** ordinary, rollback-mode locking methods, this guarantees that the
 1830:     ** connection associated with this log file is the only connection to
 1831:     ** the database. In this case checkpoint the database and unlink both
 1832:     ** the wal and wal-index files.
 1833:     **
 1834:     ** The EXCLUSIVE lock is not released before returning.
 1835:     */
 1836:     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
 1837:     if( rc==SQLITE_OK ){
 1838:       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
 1839:         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
 1840:       }
 1841:       rc = sqlite3WalCheckpoint(
 1842:           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
 1843:       );
 1844:       if( rc==SQLITE_OK ){
 1845:         int bPersist = -1;
 1846:         sqlite3OsFileControlHint(
 1847:             pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
 1848:         );
 1849:         if( bPersist!=1 ){
 1850:           /* Try to delete the WAL file if the checkpoint completed and
 1851:           ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
 1852:           ** mode (!bPersist) */
 1853:           isDelete = 1;
 1854:         }else if( pWal->mxWalSize>=0 ){
 1855:           /* Try to truncate the WAL file to zero bytes if the checkpoint
 1856:           ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
 1857:           ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
 1858:           ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
 1859:           ** to zero bytes as truncating to the journal_size_limit might
 1860:           ** leave a corrupt WAL file on disk. */
 1861:           walLimitSize(pWal, 0);
 1862:         }
 1863:       }
 1864:     }
 1865: 
 1866:     walIndexClose(pWal, isDelete);
 1867:     sqlite3OsClose(pWal->pWalFd);
 1868:     if( isDelete ){
 1869:       sqlite3BeginBenignMalloc();
 1870:       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
 1871:       sqlite3EndBenignMalloc();
 1872:     }
 1873:     WALTRACE(("WAL%p: closed\n", pWal));
 1874:     sqlite3_free((void *)pWal->apWiData);
 1875:     sqlite3_free(pWal);
 1876:   }
 1877:   return rc;
 1878: }
 1879: 
 1880: /*
 1881: ** Try to read the wal-index header.  Return 0 on success and 1 if
 1882: ** there is a problem.
 1883: **
 1884: ** The wal-index is in shared memory.  Another thread or process might
 1885: ** be writing the header at the same time this procedure is trying to
 1886: ** read it, which might result in inconsistency.  A dirty read is detected
 1887: ** by verifying that both copies of the header are the same and also by
 1888: ** a checksum on the header.
 1889: **
 1890: ** If and only if the read is consistent and the header is different from
 1891: ** pWal->hdr, then pWal->hdr is updated to the content of the new header
 1892: ** and *pChanged is set to 1.
 1893: **
 1894: ** If the checksum cannot be verified return non-zero. If the header
 1895: ** is read successfully and the checksum verified, return zero.
 1896: */
 1897: static int walIndexTryHdr(Wal *pWal, int *pChanged){
 1898:   u32 aCksum[2];                  /* Checksum on the header content */
 1899:   WalIndexHdr h1, h2;             /* Two copies of the header content */
 1900:   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
 1901: 
 1902:   /* The first page of the wal-index must be mapped at this point. */
 1903:   assert( pWal->nWiData>0 && pWal->apWiData[0] );
 1904: 
 1905:   /* Read the header. This might happen concurrently with a write to the
 1906:   ** same area of shared memory on a different CPU in a SMP,
 1907:   ** meaning it is possible that an inconsistent snapshot is read
 1908:   ** from the file. If this happens, return non-zero.
 1909:   **
 1910:   ** There are two copies of the header at the beginning of the wal-index.
 1911:   ** When reading, read [0] first then [1].  Writes are in the reverse order.
 1912:   ** Memory barriers are used to prevent the compiler or the hardware from
 1913:   ** reordering the reads and writes.
 1914:   */
 1915:   aHdr = walIndexHdr(pWal);
 1916:   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
 1917:   walShmBarrier(pWal);
 1918:   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
 1919: 
 1920:   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
 1921:     return 1;   /* Dirty read */
 1922:   }  
 1923:   if( h1.isInit==0 ){
 1924:     return 1;   /* Malformed header - probably all zeros */
 1925:   }
 1926:   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
 1927:   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
 1928:     return 1;   /* Checksum does not match */
 1929:   }
 1930: 
 1931:   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
 1932:     *pChanged = 1;
 1933:     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
 1934:     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
 1935:     testcase( pWal->szPage<=32768 );
 1936:     testcase( pWal->szPage>=65536 );
 1937:   }
 1938: 
 1939:   /* The header was successfully read. Return zero. */
 1940:   return 0;
 1941: }
 1942: 
 1943: /*
 1944: ** Read the wal-index header from the wal-index and into pWal->hdr.
 1945: ** If the wal-header appears to be corrupt, try to reconstruct the
 1946: ** wal-index from the WAL before returning.
 1947: **
 1948: ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
 1949: ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
 1950: ** to 0.
 1951: **
 1952: ** If the wal-index header is successfully read, return SQLITE_OK. 
 1953: ** Otherwise an SQLite error code.
 1954: */
 1955: static int walIndexReadHdr(Wal *pWal, int *pChanged){
 1956:   int rc;                         /* Return code */
 1957:   int badHdr;                     /* True if a header read failed */
 1958:   volatile u32 *page0;            /* Chunk of wal-index containing header */
 1959: 
 1960:   /* Ensure that page 0 of the wal-index (the page that contains the 
 1961:   ** wal-index header) is mapped. Return early if an error occurs here.
 1962:   */
 1963:   assert( pChanged );
 1964:   rc = walIndexPage(pWal, 0, &page0);
 1965:   if( rc!=SQLITE_OK ){
 1966:     return rc;
 1967:   };
 1968:   assert( page0 || pWal->writeLock==0 );
 1969: 
 1970:   /* If the first page of the wal-index has been mapped, try to read the
 1971:   ** wal-index header immediately, without holding any lock. This usually
 1972:   ** works, but may fail if the wal-index header is corrupt or currently 
 1973:   ** being modified by another thread or process.
 1974:   */
 1975:   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
 1976: 
 1977:   /* If the first attempt failed, it might have been due to a race
 1978:   ** with a writer.  So get a WRITE lock and try again.
 1979:   */
 1980:   assert( badHdr==0 || pWal->writeLock==0 );
 1981:   if( badHdr ){
 1982:     if( pWal->readOnly & WAL_SHM_RDONLY ){
 1983:       if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
 1984:         walUnlockShared(pWal, WAL_WRITE_LOCK);
 1985:         rc = SQLITE_READONLY_RECOVERY;
 1986:       }
 1987:     }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
 1988:       pWal->writeLock = 1;
 1989:       if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
 1990:         badHdr = walIndexTryHdr(pWal, pChanged);
 1991:         if( badHdr ){
 1992:           /* If the wal-index header is still malformed even while holding
 1993:           ** a WRITE lock, it can only mean that the header is corrupted and
 1994:           ** needs to be reconstructed.  So run recovery to do exactly that.
 1995:           */
 1996:           rc = walIndexRecover(pWal);
 1997:           *pChanged = 1;
 1998:         }
 1999:       }
 2000:       pWal->writeLock = 0;
 2001:       walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
 2002:     }
 2003:   }
 2004: 
 2005:   /* If the header is read successfully, check the version number to make
 2006:   ** sure the wal-index was not constructed with some future format that
 2007:   ** this version of SQLite cannot understand.
 2008:   */
 2009:   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
 2010:     rc = SQLITE_CANTOPEN_BKPT;
 2011:   }
 2012: 
 2013:   return rc;
 2014: }
 2015: 
 2016: /*
 2017: ** This is the value that walTryBeginRead returns when it needs to
 2018: ** be retried.
 2019: */
 2020: #define WAL_RETRY  (-1)
 2021: 
 2022: /*
 2023: ** Attempt to start a read transaction.  This might fail due to a race or
 2024: ** other transient condition.  When that happens, it returns WAL_RETRY to
 2025: ** indicate to the caller that it is safe to retry immediately.
 2026: **
 2027: ** On success return SQLITE_OK.  On a permanent failure (such an
 2028: ** I/O error or an SQLITE_BUSY because another process is running
 2029: ** recovery) return a positive error code.
 2030: **
 2031: ** The useWal parameter is true to force the use of the WAL and disable
 2032: ** the case where the WAL is bypassed because it has been completely
 2033: ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr() 
 2034: ** to make a copy of the wal-index header into pWal->hdr.  If the 
 2035: ** wal-index header has changed, *pChanged is set to 1 (as an indication 
 2036: ** to the caller that the local paget cache is obsolete and needs to be 
 2037: ** flushed.)  When useWal==1, the wal-index header is assumed to already
 2038: ** be loaded and the pChanged parameter is unused.
 2039: **
 2040: ** The caller must set the cnt parameter to the number of prior calls to
 2041: ** this routine during the current read attempt that returned WAL_RETRY.
 2042: ** This routine will start taking more aggressive measures to clear the
 2043: ** race conditions after multiple WAL_RETRY returns, and after an excessive
 2044: ** number of errors will ultimately return SQLITE_PROTOCOL.  The
 2045: ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
 2046: ** and is not honoring the locking protocol.  There is a vanishingly small
 2047: ** chance that SQLITE_PROTOCOL could be returned because of a run of really
 2048: ** bad luck when there is lots of contention for the wal-index, but that
 2049: ** possibility is so small that it can be safely neglected, we believe.
 2050: **
 2051: ** On success, this routine obtains a read lock on 
 2052: ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
 2053: ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
 2054: ** that means the Wal does not hold any read lock.  The reader must not
 2055: ** access any database page that is modified by a WAL frame up to and
 2056: ** including frame number aReadMark[pWal->readLock].  The reader will
 2057: ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
 2058: ** Or if pWal->readLock==0, then the reader will ignore the WAL
 2059: ** completely and get all content directly from the database file.
 2060: ** If the useWal parameter is 1 then the WAL will never be ignored and
 2061: ** this routine will always set pWal->readLock>0 on success.
 2062: ** When the read transaction is completed, the caller must release the
 2063: ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
 2064: **
 2065: ** This routine uses the nBackfill and aReadMark[] fields of the header
 2066: ** to select a particular WAL_READ_LOCK() that strives to let the
 2067: ** checkpoint process do as much work as possible.  This routine might
 2068: ** update values of the aReadMark[] array in the header, but if it does
 2069: ** so it takes care to hold an exclusive lock on the corresponding
 2070: ** WAL_READ_LOCK() while changing values.
 2071: */
 2072: static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
 2073:   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
 2074:   u32 mxReadMark;                 /* Largest aReadMark[] value */
 2075:   int mxI;                        /* Index of largest aReadMark[] value */
 2076:   int i;                          /* Loop counter */
 2077:   int rc = SQLITE_OK;             /* Return code  */
 2078: 
 2079:   assert( pWal->readLock<0 );     /* Not currently locked */
 2080: 
 2081:   /* Take steps to avoid spinning forever if there is a protocol error.
 2082:   **
 2083:   ** Circumstances that cause a RETRY should only last for the briefest
 2084:   ** instances of time.  No I/O or other system calls are done while the
 2085:   ** locks are held, so the locks should not be held for very long. But 
 2086:   ** if we are unlucky, another process that is holding a lock might get
 2087:   ** paged out or take a page-fault that is time-consuming to resolve, 
 2088:   ** during the few nanoseconds that it is holding the lock.  In that case,
 2089:   ** it might take longer than normal for the lock to free.
 2090:   **
 2091:   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
 2092:   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
 2093:   ** is more of a scheduler yield than an actual delay.  But on the 10th
 2094:   ** an subsequent retries, the delays start becoming longer and longer, 
 2095:   ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
 2096:   ** The total delay time before giving up is less than 1 second.
 2097:   */
 2098:   if( cnt>5 ){
 2099:     int nDelay = 1;                      /* Pause time in microseconds */
 2100:     if( cnt>100 ){
 2101:       VVA_ONLY( pWal->lockError = 1; )
 2102:       return SQLITE_PROTOCOL;
 2103:     }
 2104:     if( cnt>=10 ) nDelay = (cnt-9)*238;  /* Max delay 21ms. Total delay 996ms */
 2105:     sqlite3OsSleep(pWal->pVfs, nDelay);
 2106:   }
 2107: 
 2108:   if( !useWal ){
 2109:     rc = walIndexReadHdr(pWal, pChanged);
 2110:     if( rc==SQLITE_BUSY ){
 2111:       /* If there is not a recovery running in another thread or process
 2112:       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
 2113:       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
 2114:       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
 2115:       ** would be technically correct.  But the race is benign since with
 2116:       ** WAL_RETRY this routine will be called again and will probably be
 2117:       ** right on the second iteration.
 2118:       */
 2119:       if( pWal->apWiData[0]==0 ){
 2120:         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
 2121:         ** We assume this is a transient condition, so return WAL_RETRY. The
 2122:         ** xShmMap() implementation used by the default unix and win32 VFS 
 2123:         ** modules may return SQLITE_BUSY due to a race condition in the 
 2124:         ** code that determines whether or not the shared-memory region 
 2125:         ** must be zeroed before the requested page is returned.
 2126:         */
 2127:         rc = WAL_RETRY;
 2128:       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
 2129:         walUnlockShared(pWal, WAL_RECOVER_LOCK);
 2130:         rc = WAL_RETRY;
 2131:       }else if( rc==SQLITE_BUSY ){
 2132:         rc = SQLITE_BUSY_RECOVERY;
 2133:       }
 2134:     }
 2135:     if( rc!=SQLITE_OK ){
 2136:       return rc;
 2137:     }
 2138:   }
 2139: 
 2140:   pInfo = walCkptInfo(pWal);
 2141:   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
 2142:     /* The WAL has been completely backfilled (or it is empty).
 2143:     ** and can be safely ignored.
 2144:     */
 2145:     rc = walLockShared(pWal, WAL_READ_LOCK(0));
 2146:     walShmBarrier(pWal);
 2147:     if( rc==SQLITE_OK ){
 2148:       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
 2149:         /* It is not safe to allow the reader to continue here if frames
 2150:         ** may have been appended to the log before READ_LOCK(0) was obtained.
 2151:         ** When holding READ_LOCK(0), the reader ignores the entire log file,
 2152:         ** which implies that the database file contains a trustworthy
 2153:         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
 2154:         ** happening, this is usually correct.
 2155:         **
 2156:         ** However, if frames have been appended to the log (or if the log 
 2157:         ** is wrapped and written for that matter) before the READ_LOCK(0)
 2158:         ** is obtained, that is not necessarily true. A checkpointer may
 2159:         ** have started to backfill the appended frames but crashed before
 2160:         ** it finished. Leaving a corrupt image in the database file.
 2161:         */
 2162:         walUnlockShared(pWal, WAL_READ_LOCK(0));
 2163:         return WAL_RETRY;
 2164:       }
 2165:       pWal->readLock = 0;
 2166:       return SQLITE_OK;
 2167:     }else if( rc!=SQLITE_BUSY ){
 2168:       return rc;
 2169:     }
 2170:   }
 2171: 
 2172:   /* If we get this far, it means that the reader will want to use
 2173:   ** the WAL to get at content from recent commits.  The job now is
 2174:   ** to select one of the aReadMark[] entries that is closest to
 2175:   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
 2176:   */
 2177:   mxReadMark = 0;
 2178:   mxI = 0;
 2179:   for(i=1; i<WAL_NREADER; i++){
 2180:     u32 thisMark = pInfo->aReadMark[i];
 2181:     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
 2182:       assert( thisMark!=READMARK_NOT_USED );
 2183:       mxReadMark = thisMark;
 2184:       mxI = i;
 2185:     }
 2186:   }
 2187:   /* There was once an "if" here. The extra "{" is to preserve indentation. */
 2188:   {
 2189:     if( (pWal->readOnly & WAL_SHM_RDONLY)==0
 2190:      && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
 2191:     ){
 2192:       for(i=1; i<WAL_NREADER; i++){
 2193:         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
 2194:         if( rc==SQLITE_OK ){
 2195:           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
 2196:           mxI = i;
 2197:           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
 2198:           break;
 2199:         }else if( rc!=SQLITE_BUSY ){
 2200:           return rc;
 2201:         }
 2202:       }
 2203:     }
 2204:     if( mxI==0 ){
 2205:       assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
 2206:       return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
 2207:     }
 2208: 
 2209:     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
 2210:     if( rc ){
 2211:       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
 2212:     }
 2213:     /* Now that the read-lock has been obtained, check that neither the
 2214:     ** value in the aReadMark[] array or the contents of the wal-index
 2215:     ** header have changed.
 2216:     **
 2217:     ** It is necessary to check that the wal-index header did not change
 2218:     ** between the time it was read and when the shared-lock was obtained
 2219:     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
 2220:     ** that the log file may have been wrapped by a writer, or that frames
 2221:     ** that occur later in the log than pWal->hdr.mxFrame may have been
 2222:     ** copied into the database by a checkpointer. If either of these things
 2223:     ** happened, then reading the database with the current value of
 2224:     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
 2225:     ** instead.
 2226:     **
 2227:     ** This does not guarantee that the copy of the wal-index header is up to
 2228:     ** date before proceeding. That would not be possible without somehow
 2229:     ** blocking writers. It only guarantees that a dangerous checkpoint or 
 2230:     ** log-wrap (either of which would require an exclusive lock on
 2231:     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
 2232:     */
 2233:     walShmBarrier(pWal);
 2234:     if( pInfo->aReadMark[mxI]!=mxReadMark
 2235:      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
 2236:     ){
 2237:       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
 2238:       return WAL_RETRY;
 2239:     }else{
 2240:       assert( mxReadMark<=pWal->hdr.mxFrame );
 2241:       pWal->readLock = (i16)mxI;
 2242:     }
 2243:   }
 2244:   return rc;
 2245: }
 2246: 
 2247: /*
 2248: ** Begin a read transaction on the database.
 2249: **
 2250: ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
 2251: ** it takes a snapshot of the state of the WAL and wal-index for the current
 2252: ** instant in time.  The current thread will continue to use this snapshot.
 2253: ** Other threads might append new content to the WAL and wal-index but
 2254: ** that extra content is ignored by the current thread.
 2255: **
 2256: ** If the database contents have changes since the previous read
 2257: ** transaction, then *pChanged is set to 1 before returning.  The
 2258: ** Pager layer will use this to know that is cache is stale and
 2259: ** needs to be flushed.
 2260: */
 2261: int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
 2262:   int rc;                         /* Return code */
 2263:   int cnt = 0;                    /* Number of TryBeginRead attempts */
 2264: 
 2265:   do{
 2266:     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
 2267:   }while( rc==WAL_RETRY );
 2268:   testcase( (rc&0xff)==SQLITE_BUSY );
 2269:   testcase( (rc&0xff)==SQLITE_IOERR );
 2270:   testcase( rc==SQLITE_PROTOCOL );
 2271:   testcase( rc==SQLITE_OK );
 2272:   return rc;
 2273: }
 2274: 
 2275: /*
 2276: ** Finish with a read transaction.  All this does is release the
 2277: ** read-lock.
 2278: */
 2279: void sqlite3WalEndReadTransaction(Wal *pWal){
 2280:   sqlite3WalEndWriteTransaction(pWal);
 2281:   if( pWal->readLock>=0 ){
 2282:     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
 2283:     pWal->readLock = -1;
 2284:   }
 2285: }
 2286: 
 2287: /*
 2288: ** Read a page from the WAL, if it is present in the WAL and if the 
 2289: ** current read transaction is configured to use the WAL.  
 2290: **
 2291: ** The *pInWal is set to 1 if the requested page is in the WAL and
 2292: ** has been loaded.  Or *pInWal is set to 0 if the page was not in 
 2293: ** the WAL and needs to be read out of the database.
 2294: */
 2295: int sqlite3WalRead(
 2296:   Wal *pWal,                      /* WAL handle */
 2297:   Pgno pgno,                      /* Database page number to read data for */
 2298:   int *pInWal,                    /* OUT: True if data is read from WAL */
 2299:   int nOut,                       /* Size of buffer pOut in bytes */
 2300:   u8 *pOut                        /* Buffer to write page data to */
 2301: ){
 2302:   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
 2303:   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
 2304:   int iHash;                      /* Used to loop through N hash tables */
 2305: 
 2306:   /* This routine is only be called from within a read transaction. */
 2307:   assert( pWal->readLock>=0 || pWal->lockError );
 2308: 
 2309:   /* If the "last page" field of the wal-index header snapshot is 0, then
 2310:   ** no data will be read from the wal under any circumstances. Return early
 2311:   ** in this case as an optimization.  Likewise, if pWal->readLock==0, 
 2312:   ** then the WAL is ignored by the reader so return early, as if the 
 2313:   ** WAL were empty.
 2314:   */
 2315:   if( iLast==0 || pWal->readLock==0 ){
 2316:     *pInWal = 0;
 2317:     return SQLITE_OK;
 2318:   }
 2319: 
 2320:   /* Search the hash table or tables for an entry matching page number
 2321:   ** pgno. Each iteration of the following for() loop searches one
 2322:   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
 2323:   **
 2324:   ** This code might run concurrently to the code in walIndexAppend()
 2325:   ** that adds entries to the wal-index (and possibly to this hash 
 2326:   ** table). This means the value just read from the hash 
 2327:   ** slot (aHash[iKey]) may have been added before or after the 
 2328:   ** current read transaction was opened. Values added after the
 2329:   ** read transaction was opened may have been written incorrectly -
 2330:   ** i.e. these slots may contain garbage data. However, we assume
 2331:   ** that any slots written before the current read transaction was
 2332:   ** opened remain unmodified.
 2333:   **
 2334:   ** For the reasons above, the if(...) condition featured in the inner
 2335:   ** loop of the following block is more stringent that would be required 
 2336:   ** if we had exclusive access to the hash-table:
 2337:   **
 2338:   **   (aPgno[iFrame]==pgno): 
 2339:   **     This condition filters out normal hash-table collisions.
 2340:   **
 2341:   **   (iFrame<=iLast): 
 2342:   **     This condition filters out entries that were added to the hash
 2343:   **     table after the current read-transaction had started.
 2344:   */
 2345:   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
 2346:     volatile ht_slot *aHash;      /* Pointer to hash table */
 2347:     volatile u32 *aPgno;          /* Pointer to array of page numbers */
 2348:     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
 2349:     int iKey;                     /* Hash slot index */
 2350:     int nCollide;                 /* Number of hash collisions remaining */
 2351:     int rc;                       /* Error code */
 2352: 
 2353:     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
 2354:     if( rc!=SQLITE_OK ){
 2355:       return rc;
 2356:     }
 2357:     nCollide = HASHTABLE_NSLOT;
 2358:     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
 2359:       u32 iFrame = aHash[iKey] + iZero;
 2360:       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
 2361:         /* assert( iFrame>iRead ); -- not true if there is corruption */
 2362:         iRead = iFrame;
 2363:       }
 2364:       if( (nCollide--)==0 ){
 2365:         return SQLITE_CORRUPT_BKPT;
 2366:       }
 2367:     }
 2368:   }
 2369: 
 2370: #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
 2371:   /* If expensive assert() statements are available, do a linear search
 2372:   ** of the wal-index file content. Make sure the results agree with the
 2373:   ** result obtained using the hash indexes above.  */
 2374:   {
 2375:     u32 iRead2 = 0;
 2376:     u32 iTest;
 2377:     for(iTest=iLast; iTest>0; iTest--){
 2378:       if( walFramePgno(pWal, iTest)==pgno ){
 2379:         iRead2 = iTest;
 2380:         break;
 2381:       }
 2382:     }
 2383:     assert( iRead==iRead2 );
 2384:   }
 2385: #endif
 2386: 
 2387:   /* If iRead is non-zero, then it is the log frame number that contains the
 2388:   ** required page. Read and return data from the log file.
 2389:   */
 2390:   if( iRead ){
 2391:     int sz;
 2392:     i64 iOffset;
 2393:     sz = pWal->hdr.szPage;
 2394:     sz = (sz&0xfe00) + ((sz&0x0001)<<16);
 2395:     testcase( sz<=32768 );
 2396:     testcase( sz>=65536 );
 2397:     iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
 2398:     *pInWal = 1;
 2399:     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
 2400:     return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
 2401:   }
 2402: 
 2403:   *pInWal = 0;
 2404:   return SQLITE_OK;
 2405: }
 2406: 
 2407: 
 2408: /* 
 2409: ** Return the size of the database in pages (or zero, if unknown).
 2410: */
 2411: Pgno sqlite3WalDbsize(Wal *pWal){
 2412:   if( pWal && ALWAYS(pWal->readLock>=0) ){
 2413:     return pWal->hdr.nPage;
 2414:   }
 2415:   return 0;
 2416: }
 2417: 
 2418: 
 2419: /* 
 2420: ** This function starts a write transaction on the WAL.
 2421: **
 2422: ** A read transaction must have already been started by a prior call
 2423: ** to sqlite3WalBeginReadTransaction().
 2424: **
 2425: ** If another thread or process has written into the database since
 2426: ** the read transaction was started, then it is not possible for this
 2427: ** thread to write as doing so would cause a fork.  So this routine
 2428: ** returns SQLITE_BUSY in that case and no write transaction is started.
 2429: **
 2430: ** There can only be a single writer active at a time.
 2431: */
 2432: int sqlite3WalBeginWriteTransaction(Wal *pWal){
 2433:   int rc;
 2434: 
 2435:   /* Cannot start a write transaction without first holding a read
 2436:   ** transaction. */
 2437:   assert( pWal->readLock>=0 );
 2438: 
 2439:   if( pWal->readOnly ){
 2440:     return SQLITE_READONLY;
 2441:   }
 2442: 
 2443:   /* Only one writer allowed at a time.  Get the write lock.  Return
 2444:   ** SQLITE_BUSY if unable.
 2445:   */
 2446:   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
 2447:   if( rc ){
 2448:     return rc;
 2449:   }
 2450:   pWal->writeLock = 1;
 2451: 
 2452:   /* If another connection has written to the database file since the
 2453:   ** time the read transaction on this connection was started, then
 2454:   ** the write is disallowed.
 2455:   */
 2456:   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
 2457:     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
 2458:     pWal->writeLock = 0;
 2459:     rc = SQLITE_BUSY;
 2460:   }
 2461: 
 2462:   return rc;
 2463: }
 2464: 
 2465: /*
 2466: ** End a write transaction.  The commit has already been done.  This
 2467: ** routine merely releases the lock.
 2468: */
 2469: int sqlite3WalEndWriteTransaction(Wal *pWal){
 2470:   if( pWal->writeLock ){
 2471:     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
 2472:     pWal->writeLock = 0;
 2473:     pWal->truncateOnCommit = 0;
 2474:   }
 2475:   return SQLITE_OK;
 2476: }
 2477: 
 2478: /*
 2479: ** If any data has been written (but not committed) to the log file, this
 2480: ** function moves the write-pointer back to the start of the transaction.
 2481: **
 2482: ** Additionally, the callback function is invoked for each frame written
 2483: ** to the WAL since the start of the transaction. If the callback returns
 2484: ** other than SQLITE_OK, it is not invoked again and the error code is
 2485: ** returned to the caller.
 2486: **
 2487: ** Otherwise, if the callback function does not return an error, this
 2488: ** function returns SQLITE_OK.
 2489: */
 2490: int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
 2491:   int rc = SQLITE_OK;
 2492:   if( ALWAYS(pWal->writeLock) ){
 2493:     Pgno iMax = pWal->hdr.mxFrame;
 2494:     Pgno iFrame;
 2495:   
 2496:     /* Restore the clients cache of the wal-index header to the state it
 2497:     ** was in before the client began writing to the database. 
 2498:     */
 2499:     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
 2500: 
 2501:     for(iFrame=pWal->hdr.mxFrame+1; 
 2502:         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 
 2503:         iFrame++
 2504:     ){
 2505:       /* This call cannot fail. Unless the page for which the page number
 2506:       ** is passed as the second argument is (a) in the cache and 
 2507:       ** (b) has an outstanding reference, then xUndo is either a no-op
 2508:       ** (if (a) is false) or simply expels the page from the cache (if (b)
 2509:       ** is false).
 2510:       **
 2511:       ** If the upper layer is doing a rollback, it is guaranteed that there
 2512:       ** are no outstanding references to any page other than page 1. And
 2513:       ** page 1 is never written to the log until the transaction is
 2514:       ** committed. As a result, the call to xUndo may not fail.
 2515:       */
 2516:       assert( walFramePgno(pWal, iFrame)!=1 );
 2517:       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
 2518:     }
 2519:     walCleanupHash(pWal);
 2520:   }
 2521:   assert( rc==SQLITE_OK );
 2522:   return rc;
 2523: }
 2524: 
 2525: /* 
 2526: ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 
 2527: ** values. This function populates the array with values required to 
 2528: ** "rollback" the write position of the WAL handle back to the current 
 2529: ** point in the event of a savepoint rollback (via WalSavepointUndo()).
 2530: */
 2531: void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
 2532:   assert( pWal->writeLock );
 2533:   aWalData[0] = pWal->hdr.mxFrame;
 2534:   aWalData[1] = pWal->hdr.aFrameCksum[0];
 2535:   aWalData[2] = pWal->hdr.aFrameCksum[1];
 2536:   aWalData[3] = pWal->nCkpt;
 2537: }
 2538: 
 2539: /* 
 2540: ** Move the write position of the WAL back to the point identified by
 2541: ** the values in the aWalData[] array. aWalData must point to an array
 2542: ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
 2543: ** by a call to WalSavepoint().
 2544: */
 2545: int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
 2546:   int rc = SQLITE_OK;
 2547: 
 2548:   assert( pWal->writeLock );
 2549:   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
 2550: 
 2551:   if( aWalData[3]!=pWal->nCkpt ){
 2552:     /* This savepoint was opened immediately after the write-transaction
 2553:     ** was started. Right after that, the writer decided to wrap around
 2554:     ** to the start of the log. Update the savepoint values to match.
 2555:     */
 2556:     aWalData[0] = 0;
 2557:     aWalData[3] = pWal->nCkpt;
 2558:   }
 2559: 
 2560:   if( aWalData[0]<pWal->hdr.mxFrame ){
 2561:     pWal->hdr.mxFrame = aWalData[0];
 2562:     pWal->hdr.aFrameCksum[0] = aWalData[1];
 2563:     pWal->hdr.aFrameCksum[1] = aWalData[2];
 2564:     walCleanupHash(pWal);
 2565:   }
 2566: 
 2567:   return rc;
 2568: }
 2569: 
 2570: 
 2571: /*
 2572: ** This function is called just before writing a set of frames to the log
 2573: ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
 2574: ** to the current log file, it is possible to overwrite the start of the
 2575: ** existing log file with the new frames (i.e. "reset" the log). If so,
 2576: ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
 2577: ** unchanged.
 2578: **
 2579: ** SQLITE_OK is returned if no error is encountered (regardless of whether
 2580: ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
 2581: ** if an error occurs.
 2582: */
 2583: static int walRestartLog(Wal *pWal){
 2584:   int rc = SQLITE_OK;
 2585:   int cnt;
 2586: 
 2587:   if( pWal->readLock==0 ){
 2588:     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
 2589:     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
 2590:     if( pInfo->nBackfill>0 ){
 2591:       u32 salt1;
 2592:       sqlite3_randomness(4, &salt1);
 2593:       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
 2594:       if( rc==SQLITE_OK ){
 2595:         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
 2596:         ** readers are currently using the WAL), then the transactions
 2597:         ** frames will overwrite the start of the existing log. Update the
 2598:         ** wal-index header to reflect this.
 2599:         **
 2600:         ** In theory it would be Ok to update the cache of the header only
 2601:         ** at this point. But updating the actual wal-index header is also
 2602:         ** safe and means there is no special case for sqlite3WalUndo()
 2603:         ** to handle if this transaction is rolled back.
 2604:         */
 2605:         int i;                    /* Loop counter */
 2606:         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
 2607: 
 2608:         pWal->nCkpt++;
 2609:         pWal->hdr.mxFrame = 0;
 2610:         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
 2611:         aSalt[1] = salt1;
 2612:         walIndexWriteHdr(pWal);
 2613:         pInfo->nBackfill = 0;
 2614:         for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
 2615:         assert( pInfo->aReadMark[0]==0 );
 2616:         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
 2617:       }else if( rc!=SQLITE_BUSY ){
 2618:         return rc;
 2619:       }
 2620:     }
 2621:     walUnlockShared(pWal, WAL_READ_LOCK(0));
 2622:     pWal->readLock = -1;
 2623:     cnt = 0;
 2624:     do{
 2625:       int notUsed;
 2626:       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
 2627:     }while( rc==WAL_RETRY );
 2628:     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
 2629:     testcase( (rc&0xff)==SQLITE_IOERR );
 2630:     testcase( rc==SQLITE_PROTOCOL );
 2631:     testcase( rc==SQLITE_OK );
 2632:   }
 2633:   return rc;
 2634: }
 2635: 
 2636: /*
 2637: ** Information about the current state of the WAL file and where
 2638: ** the next fsync should occur - passed from sqlite3WalFrames() into
 2639: ** walWriteToLog().
 2640: */
 2641: typedef struct WalWriter {
 2642:   Wal *pWal;                   /* The complete WAL information */
 2643:   sqlite3_file *pFd;           /* The WAL file to which we write */
 2644:   sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
 2645:   int syncFlags;               /* Flags for the fsync */
 2646:   int szPage;                  /* Size of one page */
 2647: } WalWriter;
 2648: 
 2649: /*
 2650: ** Write iAmt bytes of content into the WAL file beginning at iOffset.
 2651: ** Do a sync when crossing the p->iSyncPoint boundary.
 2652: **
 2653: ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
 2654: ** first write the part before iSyncPoint, then sync, then write the
 2655: ** rest.
 2656: */
 2657: static int walWriteToLog(
 2658:   WalWriter *p,              /* WAL to write to */
 2659:   void *pContent,            /* Content to be written */
 2660:   int iAmt,                  /* Number of bytes to write */
 2661:   sqlite3_int64 iOffset      /* Start writing at this offset */
 2662: ){
 2663:   int rc;
 2664:   if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
 2665:     int iFirstAmt = (int)(p->iSyncPoint - iOffset);
 2666:     rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
 2667:     if( rc ) return rc;
 2668:     iOffset += iFirstAmt;
 2669:     iAmt -= iFirstAmt;
 2670:     pContent = (void*)(iFirstAmt + (char*)pContent);
 2671:     assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
 2672:     rc = sqlite3OsSync(p->pFd, p->syncFlags);
 2673:     if( iAmt==0 || rc ) return rc;
 2674:   }
 2675:   rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
 2676:   return rc;
 2677: }
 2678: 
 2679: /*
 2680: ** Write out a single frame of the WAL
 2681: */
 2682: static int walWriteOneFrame(
 2683:   WalWriter *p,               /* Where to write the frame */
 2684:   PgHdr *pPage,               /* The page of the frame to be written */
 2685:   int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
 2686:   sqlite3_int64 iOffset       /* Byte offset at which to write */
 2687: ){
 2688:   int rc;                         /* Result code from subfunctions */
 2689:   void *pData;                    /* Data actually written */
 2690:   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
 2691: #if defined(SQLITE_HAS_CODEC)
 2692:   if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
 2693: #else
 2694:   pData = pPage->pData;
 2695: #endif
 2696:   walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
 2697:   rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
 2698:   if( rc ) return rc;
 2699:   /* Write the page data */
 2700:   rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
 2701:   return rc;
 2702: }
 2703: 
 2704: /* 
 2705: ** Write a set of frames to the log. The caller must hold the write-lock
 2706: ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
 2707: */
 2708: int sqlite3WalFrames(
 2709:   Wal *pWal,                      /* Wal handle to write to */
 2710:   int szPage,                     /* Database page-size in bytes */
 2711:   PgHdr *pList,                   /* List of dirty pages to write */
 2712:   Pgno nTruncate,                 /* Database size after this commit */
 2713:   int isCommit,                   /* True if this is a commit */
 2714:   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
 2715: ){
 2716:   int rc;                         /* Used to catch return codes */
 2717:   u32 iFrame;                     /* Next frame address */
 2718:   PgHdr *p;                       /* Iterator to run through pList with. */
 2719:   PgHdr *pLast = 0;               /* Last frame in list */
 2720:   int nExtra = 0;                 /* Number of extra copies of last page */
 2721:   int szFrame;                    /* The size of a single frame */
 2722:   i64 iOffset;                    /* Next byte to write in WAL file */
 2723:   WalWriter w;                    /* The writer */
 2724: 
 2725:   assert( pList );
 2726:   assert( pWal->writeLock );
 2727: 
 2728:   /* If this frame set completes a transaction, then nTruncate>0.  If
 2729:   ** nTruncate==0 then this frame set does not complete the transaction. */
 2730:   assert( (isCommit!=0)==(nTruncate!=0) );
 2731: 
 2732: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
 2733:   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
 2734:     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
 2735:               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
 2736:   }
 2737: #endif
 2738: 
 2739:   /* See if it is possible to write these frames into the start of the
 2740:   ** log file, instead of appending to it at pWal->hdr.mxFrame.
 2741:   */
 2742:   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
 2743:     return rc;
 2744:   }
 2745: 
 2746:   /* If this is the first frame written into the log, write the WAL
 2747:   ** header to the start of the WAL file. See comments at the top of
 2748:   ** this source file for a description of the WAL header format.
 2749:   */
 2750:   iFrame = pWal->hdr.mxFrame;
 2751:   if( iFrame==0 ){
 2752:     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
 2753:     u32 aCksum[2];                /* Checksum for wal-header */
 2754: 
 2755:     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
 2756:     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
 2757:     sqlite3Put4byte(&aWalHdr[8], szPage);
 2758:     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
 2759:     if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
 2760:     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
 2761:     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
 2762:     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
 2763:     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
 2764:     
 2765:     pWal->szPage = szPage;
 2766:     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
 2767:     pWal->hdr.aFrameCksum[0] = aCksum[0];
 2768:     pWal->hdr.aFrameCksum[1] = aCksum[1];
 2769:     pWal->truncateOnCommit = 1;
 2770: 
 2771:     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
 2772:     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
 2773:     if( rc!=SQLITE_OK ){
 2774:       return rc;
 2775:     }
 2776: 
 2777:     /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
 2778:     ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
 2779:     ** an out-of-order write following a WAL restart could result in
 2780:     ** database corruption.  See the ticket:
 2781:     **
 2782:     **     http://localhost:591/sqlite/info/ff5be73dee
 2783:     */
 2784:     if( pWal->syncHeader && sync_flags ){
 2785:       rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
 2786:       if( rc ) return rc;
 2787:     }
 2788:   }
 2789:   assert( (int)pWal->szPage==szPage );
 2790: 
 2791:   /* Setup information needed to write frames into the WAL */
 2792:   w.pWal = pWal;
 2793:   w.pFd = pWal->pWalFd;
 2794:   w.iSyncPoint = 0;
 2795:   w.syncFlags = sync_flags;
 2796:   w.szPage = szPage;
 2797:   iOffset = walFrameOffset(iFrame+1, szPage);
 2798:   szFrame = szPage + WAL_FRAME_HDRSIZE;
 2799: 
 2800:   /* Write all frames into the log file exactly once */
 2801:   for(p=pList; p; p=p->pDirty){
 2802:     int nDbSize;   /* 0 normally.  Positive == commit flag */
 2803:     iFrame++;
 2804:     assert( iOffset==walFrameOffset(iFrame, szPage) );
 2805:     nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
 2806:     rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
 2807:     if( rc ) return rc;
 2808:     pLast = p;
 2809:     iOffset += szFrame;
 2810:   }
 2811: 
 2812:   /* If this is the end of a transaction, then we might need to pad
 2813:   ** the transaction and/or sync the WAL file.
 2814:   **
 2815:   ** Padding and syncing only occur if this set of frames complete a
 2816:   ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
 2817:   ** or synchonous==OFF, then no padding or syncing are needed.
 2818:   **
 2819:   ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
 2820:   ** needed and only the sync is done.  If padding is needed, then the
 2821:   ** final frame is repeated (with its commit mark) until the next sector
 2822:   ** boundary is crossed.  Only the part of the WAL prior to the last
 2823:   ** sector boundary is synced; the part of the last frame that extends
 2824:   ** past the sector boundary is written after the sync.
 2825:   */
 2826:   if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
 2827:     if( pWal->padToSectorBoundary ){
 2828:       int sectorSize = sqlite3OsSectorSize(pWal->pWalFd);
 2829:       w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
 2830:       while( iOffset<w.iSyncPoint ){
 2831:         rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
 2832:         if( rc ) return rc;
 2833:         iOffset += szFrame;
 2834:         nExtra++;
 2835:       }
 2836:     }else{
 2837:       rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
 2838:     }
 2839:   }
 2840: 
 2841:   /* If this frame set completes the first transaction in the WAL and
 2842:   ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
 2843:   ** journal size limit, if possible.
 2844:   */
 2845:   if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
 2846:     i64 sz = pWal->mxWalSize;
 2847:     if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
 2848:       sz = walFrameOffset(iFrame+nExtra+1, szPage);
 2849:     }
 2850:     walLimitSize(pWal, sz);
 2851:     pWal->truncateOnCommit = 0;
 2852:   }
 2853: 
 2854:   /* Append data to the wal-index. It is not necessary to lock the 
 2855:   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
 2856:   ** guarantees that there are no other writers, and no data that may
 2857:   ** be in use by existing readers is being overwritten.
 2858:   */
 2859:   iFrame = pWal->hdr.mxFrame;
 2860:   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
 2861:     iFrame++;
 2862:     rc = walIndexAppend(pWal, iFrame, p->pgno);
 2863:   }
 2864:   while( rc==SQLITE_OK && nExtra>0 ){
 2865:     iFrame++;
 2866:     nExtra--;
 2867:     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
 2868:   }
 2869: 
 2870:   if( rc==SQLITE_OK ){
 2871:     /* Update the private copy of the header. */
 2872:     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
 2873:     testcase( szPage<=32768 );
 2874:     testcase( szPage>=65536 );
 2875:     pWal->hdr.mxFrame = iFrame;
 2876:     if( isCommit ){
 2877:       pWal->hdr.iChange++;
 2878:       pWal->hdr.nPage = nTruncate;
 2879:     }
 2880:     /* If this is a commit, update the wal-index header too. */
 2881:     if( isCommit ){
 2882:       walIndexWriteHdr(pWal);
 2883:       pWal->iCallback = iFrame;
 2884:     }
 2885:   }
 2886: 
 2887:   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
 2888:   return rc;
 2889: }
 2890: 
 2891: /* 
 2892: ** This routine is called to implement sqlite3_wal_checkpoint() and
 2893: ** related interfaces.
 2894: **
 2895: ** Obtain a CHECKPOINT lock and then backfill as much information as
 2896: ** we can from WAL into the database.
 2897: **
 2898: ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
 2899: ** callback. In this case this function runs a blocking checkpoint.
 2900: */
 2901: int sqlite3WalCheckpoint(
 2902:   Wal *pWal,                      /* Wal connection */
 2903:   int eMode,                      /* PASSIVE, FULL or RESTART */
 2904:   int (*xBusy)(void*),            /* Function to call when busy */
 2905:   void *pBusyArg,                 /* Context argument for xBusyHandler */
 2906:   int sync_flags,                 /* Flags to sync db file with (or 0) */
 2907:   int nBuf,                       /* Size of temporary buffer */
 2908:   u8 *zBuf,                       /* Temporary buffer to use */
 2909:   int *pnLog,                     /* OUT: Number of frames in WAL */
 2910:   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
 2911: ){
 2912:   int rc;                         /* Return code */
 2913:   int isChanged = 0;              /* True if a new wal-index header is loaded */
 2914:   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
 2915: 
 2916:   assert( pWal->ckptLock==0 );
 2917:   assert( pWal->writeLock==0 );
 2918: 
 2919:   if( pWal->readOnly ) return SQLITE_READONLY;
 2920:   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
 2921:   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
 2922:   if( rc ){
 2923:     /* Usually this is SQLITE_BUSY meaning that another thread or process
 2924:     ** is already running a checkpoint, or maybe a recovery.  But it might
 2925:     ** also be SQLITE_IOERR. */
 2926:     return rc;
 2927:   }
 2928:   pWal->ckptLock = 1;
 2929: 
 2930:   /* If this is a blocking-checkpoint, then obtain the write-lock as well
 2931:   ** to prevent any writers from running while the checkpoint is underway.
 2932:   ** This has to be done before the call to walIndexReadHdr() below.
 2933:   **
 2934:   ** If the writer lock cannot be obtained, then a passive checkpoint is
 2935:   ** run instead. Since the checkpointer is not holding the writer lock,
 2936:   ** there is no point in blocking waiting for any readers. Assuming no 
 2937:   ** other error occurs, this function will return SQLITE_BUSY to the caller.
 2938:   */
 2939:   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
 2940:     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
 2941:     if( rc==SQLITE_OK ){
 2942:       pWal->writeLock = 1;
 2943:     }else if( rc==SQLITE_BUSY ){
 2944:       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
 2945:       rc = SQLITE_OK;
 2946:     }
 2947:   }
 2948: 
 2949:   /* Read the wal-index header. */
 2950:   if( rc==SQLITE_OK ){
 2951:     rc = walIndexReadHdr(pWal, &isChanged);
 2952:   }
 2953: 
 2954:   /* Copy data from the log to the database file. */
 2955:   if( rc==SQLITE_OK ){
 2956:     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
 2957:       rc = SQLITE_CORRUPT_BKPT;
 2958:     }else{
 2959:       rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
 2960:     }
 2961: 
 2962:     /* If no error occurred, set the output variables. */
 2963:     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
 2964:       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
 2965:       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
 2966:     }
 2967:   }
 2968: 
 2969:   if( isChanged ){
 2970:     /* If a new wal-index header was loaded before the checkpoint was 
 2971:     ** performed, then the pager-cache associated with pWal is now
 2972:     ** out of date. So zero the cached wal-index header to ensure that
 2973:     ** next time the pager opens a snapshot on this database it knows that
 2974:     ** the cache needs to be reset.
 2975:     */
 2976:     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
 2977:   }
 2978: 
 2979:   /* Release the locks. */
 2980:   sqlite3WalEndWriteTransaction(pWal);
 2981:   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
 2982:   pWal->ckptLock = 0;
 2983:   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
 2984:   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
 2985: }
 2986: 
 2987: /* Return the value to pass to a sqlite3_wal_hook callback, the
 2988: ** number of frames in the WAL at the point of the last commit since
 2989: ** sqlite3WalCallback() was called.  If no commits have occurred since
 2990: ** the last call, then return 0.
 2991: */
 2992: int sqlite3WalCallback(Wal *pWal){
 2993:   u32 ret = 0;
 2994:   if( pWal ){
 2995:     ret = pWal->iCallback;
 2996:     pWal->iCallback = 0;
 2997:   }
 2998:   return (int)ret;
 2999: }
 3000: 
 3001: /*
 3002: ** This function is called to change the WAL subsystem into or out
 3003: ** of locking_mode=EXCLUSIVE.
 3004: **
 3005: ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
 3006: ** into locking_mode=NORMAL.  This means that we must acquire a lock
 3007: ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
 3008: ** or if the acquisition of the lock fails, then return 0.  If the
 3009: ** transition out of exclusive-mode is successful, return 1.  This
 3010: ** operation must occur while the pager is still holding the exclusive
 3011: ** lock on the main database file.
 3012: **
 3013: ** If op is one, then change from locking_mode=NORMAL into 
 3014: ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
 3015: ** be released.  Return 1 if the transition is made and 0 if the
 3016: ** WAL is already in exclusive-locking mode - meaning that this
 3017: ** routine is a no-op.  The pager must already hold the exclusive lock
 3018: ** on the main database file before invoking this operation.
 3019: **
 3020: ** If op is negative, then do a dry-run of the op==1 case but do
 3021: ** not actually change anything. The pager uses this to see if it
 3022: ** should acquire the database exclusive lock prior to invoking
 3023: ** the op==1 case.
 3024: */
 3025: int sqlite3WalExclusiveMode(Wal *pWal, int op){
 3026:   int rc;
 3027:   assert( pWal->writeLock==0 );
 3028:   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
 3029: 
 3030:   /* pWal->readLock is usually set, but might be -1 if there was a 
 3031:   ** prior error while attempting to acquire are read-lock. This cannot 
 3032:   ** happen if the connection is actually in exclusive mode (as no xShmLock
 3033:   ** locks are taken in this case). Nor should the pager attempt to
 3034:   ** upgrade to exclusive-mode following such an error.
 3035:   */
 3036:   assert( pWal->readLock>=0 || pWal->lockError );
 3037:   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
 3038: 
 3039:   if( op==0 ){
 3040:     if( pWal->exclusiveMode ){
 3041:       pWal->exclusiveMode = 0;
 3042:       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
 3043:         pWal->exclusiveMode = 1;
 3044:       }
 3045:       rc = pWal->exclusiveMode==0;
 3046:     }else{
 3047:       /* Already in locking_mode=NORMAL */
 3048:       rc = 0;
 3049:     }
 3050:   }else if( op>0 ){
 3051:     assert( pWal->exclusiveMode==0 );
 3052:     assert( pWal->readLock>=0 );
 3053:     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
 3054:     pWal->exclusiveMode = 1;
 3055:     rc = 1;
 3056:   }else{
 3057:     rc = pWal->exclusiveMode==0;
 3058:   }
 3059:   return rc;
 3060: }
 3061: 
 3062: /* 
 3063: ** Return true if the argument is non-NULL and the WAL module is using
 3064: ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
 3065: ** WAL module is using shared-memory, return false. 
 3066: */
 3067: int sqlite3WalHeapMemory(Wal *pWal){
 3068:   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
 3069: }
 3070: 
 3071: #endif /* #ifndef SQLITE_OMIT_WAL */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>