Annotation of embedaddon/sqlite3/src/where.c, revision 1.1

1.1     ! misho       1: /*
        !             2: ** 2001 September 15
        !             3: **
        !             4: ** The author disclaims copyright to this source code.  In place of
        !             5: ** a legal notice, here is a blessing:
        !             6: **
        !             7: **    May you do good and not evil.
        !             8: **    May you find forgiveness for yourself and forgive others.
        !             9: **    May you share freely, never taking more than you give.
        !            10: **
        !            11: *************************************************************************
        !            12: ** This module contains C code that generates VDBE code used to process
        !            13: ** the WHERE clause of SQL statements.  This module is responsible for
        !            14: ** generating the code that loops through a table looking for applicable
        !            15: ** rows.  Indices are selected and used to speed the search when doing
        !            16: ** so is applicable.  Because this module is responsible for selecting
        !            17: ** indices, you might also think of this module as the "query optimizer".
        !            18: */
        !            19: #include "sqliteInt.h"
        !            20: 
        !            21: 
        !            22: /*
        !            23: ** Trace output macros
        !            24: */
        !            25: #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
        !            26: int sqlite3WhereTrace = 0;
        !            27: #endif
        !            28: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
        !            29: # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
        !            30: #else
        !            31: # define WHERETRACE(X)
        !            32: #endif
        !            33: 
        !            34: /* Forward reference
        !            35: */
        !            36: typedef struct WhereClause WhereClause;
        !            37: typedef struct WhereMaskSet WhereMaskSet;
        !            38: typedef struct WhereOrInfo WhereOrInfo;
        !            39: typedef struct WhereAndInfo WhereAndInfo;
        !            40: typedef struct WhereCost WhereCost;
        !            41: 
        !            42: /*
        !            43: ** The query generator uses an array of instances of this structure to
        !            44: ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
        !            45: ** clause subexpression is separated from the others by AND operators,
        !            46: ** usually, or sometimes subexpressions separated by OR.
        !            47: **
        !            48: ** All WhereTerms are collected into a single WhereClause structure.  
        !            49: ** The following identity holds:
        !            50: **
        !            51: **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
        !            52: **
        !            53: ** When a term is of the form:
        !            54: **
        !            55: **              X <op> <expr>
        !            56: **
        !            57: ** where X is a column name and <op> is one of certain operators,
        !            58: ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
        !            59: ** cursor number and column number for X.  WhereTerm.eOperator records
        !            60: ** the <op> using a bitmask encoding defined by WO_xxx below.  The
        !            61: ** use of a bitmask encoding for the operator allows us to search
        !            62: ** quickly for terms that match any of several different operators.
        !            63: **
        !            64: ** A WhereTerm might also be two or more subterms connected by OR:
        !            65: **
        !            66: **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
        !            67: **
        !            68: ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
        !            69: ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
        !            70: ** is collected about the
        !            71: **
        !            72: ** If a term in the WHERE clause does not match either of the two previous
        !            73: ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
        !            74: ** to the original subexpression content and wtFlags is set up appropriately
        !            75: ** but no other fields in the WhereTerm object are meaningful.
        !            76: **
        !            77: ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
        !            78: ** but they do so indirectly.  A single WhereMaskSet structure translates
        !            79: ** cursor number into bits and the translated bit is stored in the prereq
        !            80: ** fields.  The translation is used in order to maximize the number of
        !            81: ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
        !            82: ** spread out over the non-negative integers.  For example, the cursor
        !            83: ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
        !            84: ** translates these sparse cursor numbers into consecutive integers
        !            85: ** beginning with 0 in order to make the best possible use of the available
        !            86: ** bits in the Bitmask.  So, in the example above, the cursor numbers
        !            87: ** would be mapped into integers 0 through 7.
        !            88: **
        !            89: ** The number of terms in a join is limited by the number of bits
        !            90: ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
        !            91: ** is only able to process joins with 64 or fewer tables.
        !            92: */
        !            93: typedef struct WhereTerm WhereTerm;
        !            94: struct WhereTerm {
        !            95:   Expr *pExpr;            /* Pointer to the subexpression that is this term */
        !            96:   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
        !            97:   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
        !            98:   union {
        !            99:     int leftColumn;         /* Column number of X in "X <op> <expr>" */
        !           100:     WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
        !           101:     WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
        !           102:   } u;
        !           103:   u16 eOperator;          /* A WO_xx value describing <op> */
        !           104:   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
        !           105:   u8 nChild;              /* Number of children that must disable us */
        !           106:   WhereClause *pWC;       /* The clause this term is part of */
        !           107:   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
        !           108:   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
        !           109: };
        !           110: 
        !           111: /*
        !           112: ** Allowed values of WhereTerm.wtFlags
        !           113: */
        !           114: #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
        !           115: #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
        !           116: #define TERM_CODED      0x04   /* This term is already coded */
        !           117: #define TERM_COPIED     0x08   /* Has a child */
        !           118: #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
        !           119: #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
        !           120: #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
        !           121: #ifdef SQLITE_ENABLE_STAT3
        !           122: #  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
        !           123: #else
        !           124: #  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
        !           125: #endif
        !           126: 
        !           127: /*
        !           128: ** An instance of the following structure holds all information about a
        !           129: ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
        !           130: **
        !           131: ** Explanation of pOuter:  For a WHERE clause of the form
        !           132: **
        !           133: **           a AND ((b AND c) OR (d AND e)) AND f
        !           134: **
        !           135: ** There are separate WhereClause objects for the whole clause and for
        !           136: ** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
        !           137: ** subclauses points to the WhereClause object for the whole clause.
        !           138: */
        !           139: struct WhereClause {
        !           140:   Parse *pParse;           /* The parser context */
        !           141:   WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
        !           142:   Bitmask vmask;           /* Bitmask identifying virtual table cursors */
        !           143:   WhereClause *pOuter;     /* Outer conjunction */
        !           144:   u8 op;                   /* Split operator.  TK_AND or TK_OR */
        !           145:   u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
        !           146:   int nTerm;               /* Number of terms */
        !           147:   int nSlot;               /* Number of entries in a[] */
        !           148:   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
        !           149: #if defined(SQLITE_SMALL_STACK)
        !           150:   WhereTerm aStatic[1];    /* Initial static space for a[] */
        !           151: #else
        !           152:   WhereTerm aStatic[8];    /* Initial static space for a[] */
        !           153: #endif
        !           154: };
        !           155: 
        !           156: /*
        !           157: ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
        !           158: ** a dynamically allocated instance of the following structure.
        !           159: */
        !           160: struct WhereOrInfo {
        !           161:   WhereClause wc;          /* Decomposition into subterms */
        !           162:   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
        !           163: };
        !           164: 
        !           165: /*
        !           166: ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
        !           167: ** a dynamically allocated instance of the following structure.
        !           168: */
        !           169: struct WhereAndInfo {
        !           170:   WhereClause wc;          /* The subexpression broken out */
        !           171: };
        !           172: 
        !           173: /*
        !           174: ** An instance of the following structure keeps track of a mapping
        !           175: ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
        !           176: **
        !           177: ** The VDBE cursor numbers are small integers contained in 
        !           178: ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
        !           179: ** clause, the cursor numbers might not begin with 0 and they might
        !           180: ** contain gaps in the numbering sequence.  But we want to make maximum
        !           181: ** use of the bits in our bitmasks.  This structure provides a mapping
        !           182: ** from the sparse cursor numbers into consecutive integers beginning
        !           183: ** with 0.
        !           184: **
        !           185: ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
        !           186: ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
        !           187: **
        !           188: ** For example, if the WHERE clause expression used these VDBE
        !           189: ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
        !           190: ** would map those cursor numbers into bits 0 through 5.
        !           191: **
        !           192: ** Note that the mapping is not necessarily ordered.  In the example
        !           193: ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
        !           194: ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
        !           195: ** does not really matter.  What is important is that sparse cursor
        !           196: ** numbers all get mapped into bit numbers that begin with 0 and contain
        !           197: ** no gaps.
        !           198: */
        !           199: struct WhereMaskSet {
        !           200:   int n;                        /* Number of assigned cursor values */
        !           201:   int ix[BMS];                  /* Cursor assigned to each bit */
        !           202: };
        !           203: 
        !           204: /*
        !           205: ** A WhereCost object records a lookup strategy and the estimated
        !           206: ** cost of pursuing that strategy.
        !           207: */
        !           208: struct WhereCost {
        !           209:   WherePlan plan;    /* The lookup strategy */
        !           210:   double rCost;      /* Overall cost of pursuing this search strategy */
        !           211:   Bitmask used;      /* Bitmask of cursors used by this plan */
        !           212: };
        !           213: 
        !           214: /*
        !           215: ** Bitmasks for the operators that indices are able to exploit.  An
        !           216: ** OR-ed combination of these values can be used when searching for
        !           217: ** terms in the where clause.
        !           218: */
        !           219: #define WO_IN     0x001
        !           220: #define WO_EQ     0x002
        !           221: #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
        !           222: #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
        !           223: #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
        !           224: #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
        !           225: #define WO_MATCH  0x040
        !           226: #define WO_ISNULL 0x080
        !           227: #define WO_OR     0x100       /* Two or more OR-connected terms */
        !           228: #define WO_AND    0x200       /* Two or more AND-connected terms */
        !           229: #define WO_NOOP   0x800       /* This term does not restrict search space */
        !           230: 
        !           231: #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
        !           232: #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
        !           233: 
        !           234: /*
        !           235: ** Value for wsFlags returned by bestIndex() and stored in
        !           236: ** WhereLevel.wsFlags.  These flags determine which search
        !           237: ** strategies are appropriate.
        !           238: **
        !           239: ** The least significant 12 bits is reserved as a mask for WO_ values above.
        !           240: ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
        !           241: ** But if the table is the right table of a left join, WhereLevel.wsFlags
        !           242: ** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
        !           243: ** the "op" parameter to findTerm when we are resolving equality constraints.
        !           244: ** ISNULL constraints will then not be used on the right table of a left
        !           245: ** join.  Tickets #2177 and #2189.
        !           246: */
        !           247: #define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
        !           248: #define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
        !           249: #define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
        !           250: #define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
        !           251: #define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
        !           252: #define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
        !           253: #define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
        !           254: #define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
        !           255: #define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
        !           256: #define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
        !           257: #define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
        !           258: #define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
        !           259: #define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
        !           260: #define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
        !           261: #define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
        !           262: #define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
        !           263: #define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
        !           264: #define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
        !           265: #define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
        !           266: #define WHERE_DISTINCT     0x40000000  /* Correct order for DISTINCT */
        !           267: 
        !           268: /*
        !           269: ** Initialize a preallocated WhereClause structure.
        !           270: */
        !           271: static void whereClauseInit(
        !           272:   WhereClause *pWC,        /* The WhereClause to be initialized */
        !           273:   Parse *pParse,           /* The parsing context */
        !           274:   WhereMaskSet *pMaskSet,  /* Mapping from table cursor numbers to bitmasks */
        !           275:   u16 wctrlFlags           /* Might include WHERE_AND_ONLY */
        !           276: ){
        !           277:   pWC->pParse = pParse;
        !           278:   pWC->pMaskSet = pMaskSet;
        !           279:   pWC->pOuter = 0;
        !           280:   pWC->nTerm = 0;
        !           281:   pWC->nSlot = ArraySize(pWC->aStatic);
        !           282:   pWC->a = pWC->aStatic;
        !           283:   pWC->vmask = 0;
        !           284:   pWC->wctrlFlags = wctrlFlags;
        !           285: }
        !           286: 
        !           287: /* Forward reference */
        !           288: static void whereClauseClear(WhereClause*);
        !           289: 
        !           290: /*
        !           291: ** Deallocate all memory associated with a WhereOrInfo object.
        !           292: */
        !           293: static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
        !           294:   whereClauseClear(&p->wc);
        !           295:   sqlite3DbFree(db, p);
        !           296: }
        !           297: 
        !           298: /*
        !           299: ** Deallocate all memory associated with a WhereAndInfo object.
        !           300: */
        !           301: static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
        !           302:   whereClauseClear(&p->wc);
        !           303:   sqlite3DbFree(db, p);
        !           304: }
        !           305: 
        !           306: /*
        !           307: ** Deallocate a WhereClause structure.  The WhereClause structure
        !           308: ** itself is not freed.  This routine is the inverse of whereClauseInit().
        !           309: */
        !           310: static void whereClauseClear(WhereClause *pWC){
        !           311:   int i;
        !           312:   WhereTerm *a;
        !           313:   sqlite3 *db = pWC->pParse->db;
        !           314:   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
        !           315:     if( a->wtFlags & TERM_DYNAMIC ){
        !           316:       sqlite3ExprDelete(db, a->pExpr);
        !           317:     }
        !           318:     if( a->wtFlags & TERM_ORINFO ){
        !           319:       whereOrInfoDelete(db, a->u.pOrInfo);
        !           320:     }else if( a->wtFlags & TERM_ANDINFO ){
        !           321:       whereAndInfoDelete(db, a->u.pAndInfo);
        !           322:     }
        !           323:   }
        !           324:   if( pWC->a!=pWC->aStatic ){
        !           325:     sqlite3DbFree(db, pWC->a);
        !           326:   }
        !           327: }
        !           328: 
        !           329: /*
        !           330: ** Add a single new WhereTerm entry to the WhereClause object pWC.
        !           331: ** The new WhereTerm object is constructed from Expr p and with wtFlags.
        !           332: ** The index in pWC->a[] of the new WhereTerm is returned on success.
        !           333: ** 0 is returned if the new WhereTerm could not be added due to a memory
        !           334: ** allocation error.  The memory allocation failure will be recorded in
        !           335: ** the db->mallocFailed flag so that higher-level functions can detect it.
        !           336: **
        !           337: ** This routine will increase the size of the pWC->a[] array as necessary.
        !           338: **
        !           339: ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
        !           340: ** for freeing the expression p is assumed by the WhereClause object pWC.
        !           341: ** This is true even if this routine fails to allocate a new WhereTerm.
        !           342: **
        !           343: ** WARNING:  This routine might reallocate the space used to store
        !           344: ** WhereTerms.  All pointers to WhereTerms should be invalidated after
        !           345: ** calling this routine.  Such pointers may be reinitialized by referencing
        !           346: ** the pWC->a[] array.
        !           347: */
        !           348: static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
        !           349:   WhereTerm *pTerm;
        !           350:   int idx;
        !           351:   testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
        !           352:   if( pWC->nTerm>=pWC->nSlot ){
        !           353:     WhereTerm *pOld = pWC->a;
        !           354:     sqlite3 *db = pWC->pParse->db;
        !           355:     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
        !           356:     if( pWC->a==0 ){
        !           357:       if( wtFlags & TERM_DYNAMIC ){
        !           358:         sqlite3ExprDelete(db, p);
        !           359:       }
        !           360:       pWC->a = pOld;
        !           361:       return 0;
        !           362:     }
        !           363:     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
        !           364:     if( pOld!=pWC->aStatic ){
        !           365:       sqlite3DbFree(db, pOld);
        !           366:     }
        !           367:     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
        !           368:   }
        !           369:   pTerm = &pWC->a[idx = pWC->nTerm++];
        !           370:   pTerm->pExpr = p;
        !           371:   pTerm->wtFlags = wtFlags;
        !           372:   pTerm->pWC = pWC;
        !           373:   pTerm->iParent = -1;
        !           374:   return idx;
        !           375: }
        !           376: 
        !           377: /*
        !           378: ** This routine identifies subexpressions in the WHERE clause where
        !           379: ** each subexpression is separated by the AND operator or some other
        !           380: ** operator specified in the op parameter.  The WhereClause structure
        !           381: ** is filled with pointers to subexpressions.  For example:
        !           382: **
        !           383: **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
        !           384: **           \________/     \_______________/     \________________/
        !           385: **            slot[0]            slot[1]               slot[2]
        !           386: **
        !           387: ** The original WHERE clause in pExpr is unaltered.  All this routine
        !           388: ** does is make slot[] entries point to substructure within pExpr.
        !           389: **
        !           390: ** In the previous sentence and in the diagram, "slot[]" refers to
        !           391: ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
        !           392: ** all terms of the WHERE clause.
        !           393: */
        !           394: static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
        !           395:   pWC->op = (u8)op;
        !           396:   if( pExpr==0 ) return;
        !           397:   if( pExpr->op!=op ){
        !           398:     whereClauseInsert(pWC, pExpr, 0);
        !           399:   }else{
        !           400:     whereSplit(pWC, pExpr->pLeft, op);
        !           401:     whereSplit(pWC, pExpr->pRight, op);
        !           402:   }
        !           403: }
        !           404: 
        !           405: /*
        !           406: ** Initialize an expression mask set (a WhereMaskSet object)
        !           407: */
        !           408: #define initMaskSet(P)  memset(P, 0, sizeof(*P))
        !           409: 
        !           410: /*
        !           411: ** Return the bitmask for the given cursor number.  Return 0 if
        !           412: ** iCursor is not in the set.
        !           413: */
        !           414: static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
        !           415:   int i;
        !           416:   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
        !           417:   for(i=0; i<pMaskSet->n; i++){
        !           418:     if( pMaskSet->ix[i]==iCursor ){
        !           419:       return ((Bitmask)1)<<i;
        !           420:     }
        !           421:   }
        !           422:   return 0;
        !           423: }
        !           424: 
        !           425: /*
        !           426: ** Create a new mask for cursor iCursor.
        !           427: **
        !           428: ** There is one cursor per table in the FROM clause.  The number of
        !           429: ** tables in the FROM clause is limited by a test early in the
        !           430: ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
        !           431: ** array will never overflow.
        !           432: */
        !           433: static void createMask(WhereMaskSet *pMaskSet, int iCursor){
        !           434:   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
        !           435:   pMaskSet->ix[pMaskSet->n++] = iCursor;
        !           436: }
        !           437: 
        !           438: /*
        !           439: ** This routine walks (recursively) an expression tree and generates
        !           440: ** a bitmask indicating which tables are used in that expression
        !           441: ** tree.
        !           442: **
        !           443: ** In order for this routine to work, the calling function must have
        !           444: ** previously invoked sqlite3ResolveExprNames() on the expression.  See
        !           445: ** the header comment on that routine for additional information.
        !           446: ** The sqlite3ResolveExprNames() routines looks for column names and
        !           447: ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
        !           448: ** the VDBE cursor number of the table.  This routine just has to
        !           449: ** translate the cursor numbers into bitmask values and OR all
        !           450: ** the bitmasks together.
        !           451: */
        !           452: static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
        !           453: static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
        !           454: static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
        !           455:   Bitmask mask = 0;
        !           456:   if( p==0 ) return 0;
        !           457:   if( p->op==TK_COLUMN ){
        !           458:     mask = getMask(pMaskSet, p->iTable);
        !           459:     return mask;
        !           460:   }
        !           461:   mask = exprTableUsage(pMaskSet, p->pRight);
        !           462:   mask |= exprTableUsage(pMaskSet, p->pLeft);
        !           463:   if( ExprHasProperty(p, EP_xIsSelect) ){
        !           464:     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
        !           465:   }else{
        !           466:     mask |= exprListTableUsage(pMaskSet, p->x.pList);
        !           467:   }
        !           468:   return mask;
        !           469: }
        !           470: static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
        !           471:   int i;
        !           472:   Bitmask mask = 0;
        !           473:   if( pList ){
        !           474:     for(i=0; i<pList->nExpr; i++){
        !           475:       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
        !           476:     }
        !           477:   }
        !           478:   return mask;
        !           479: }
        !           480: static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
        !           481:   Bitmask mask = 0;
        !           482:   while( pS ){
        !           483:     SrcList *pSrc = pS->pSrc;
        !           484:     mask |= exprListTableUsage(pMaskSet, pS->pEList);
        !           485:     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
        !           486:     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
        !           487:     mask |= exprTableUsage(pMaskSet, pS->pWhere);
        !           488:     mask |= exprTableUsage(pMaskSet, pS->pHaving);
        !           489:     if( ALWAYS(pSrc!=0) ){
        !           490:       int i;
        !           491:       for(i=0; i<pSrc->nSrc; i++){
        !           492:         mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
        !           493:         mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
        !           494:       }
        !           495:     }
        !           496:     pS = pS->pPrior;
        !           497:   }
        !           498:   return mask;
        !           499: }
        !           500: 
        !           501: /*
        !           502: ** Return TRUE if the given operator is one of the operators that is
        !           503: ** allowed for an indexable WHERE clause term.  The allowed operators are
        !           504: ** "=", "<", ">", "<=", ">=", and "IN".
        !           505: **
        !           506: ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
        !           507: ** of one of the following forms: column = expression column > expression
        !           508: ** column >= expression column < expression column <= expression
        !           509: ** expression = column expression > column expression >= column
        !           510: ** expression < column expression <= column column IN
        !           511: ** (expression-list) column IN (subquery) column IS NULL
        !           512: */
        !           513: static int allowedOp(int op){
        !           514:   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
        !           515:   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
        !           516:   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
        !           517:   assert( TK_GE==TK_EQ+4 );
        !           518:   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
        !           519: }
        !           520: 
        !           521: /*
        !           522: ** Swap two objects of type TYPE.
        !           523: */
        !           524: #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
        !           525: 
        !           526: /*
        !           527: ** Commute a comparison operator.  Expressions of the form "X op Y"
        !           528: ** are converted into "Y op X".
        !           529: **
        !           530: ** If a collation sequence is associated with either the left or right
        !           531: ** side of the comparison, it remains associated with the same side after
        !           532: ** the commutation. So "Y collate NOCASE op X" becomes 
        !           533: ** "X collate NOCASE op Y". This is because any collation sequence on
        !           534: ** the left hand side of a comparison overrides any collation sequence 
        !           535: ** attached to the right. For the same reason the EP_ExpCollate flag
        !           536: ** is not commuted.
        !           537: */
        !           538: static void exprCommute(Parse *pParse, Expr *pExpr){
        !           539:   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
        !           540:   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
        !           541:   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
        !           542:   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
        !           543:   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
        !           544:   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
        !           545:   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
        !           546:   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
        !           547:   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
        !           548:   if( pExpr->op>=TK_GT ){
        !           549:     assert( TK_LT==TK_GT+2 );
        !           550:     assert( TK_GE==TK_LE+2 );
        !           551:     assert( TK_GT>TK_EQ );
        !           552:     assert( TK_GT<TK_LE );
        !           553:     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
        !           554:     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
        !           555:   }
        !           556: }
        !           557: 
        !           558: /*
        !           559: ** Translate from TK_xx operator to WO_xx bitmask.
        !           560: */
        !           561: static u16 operatorMask(int op){
        !           562:   u16 c;
        !           563:   assert( allowedOp(op) );
        !           564:   if( op==TK_IN ){
        !           565:     c = WO_IN;
        !           566:   }else if( op==TK_ISNULL ){
        !           567:     c = WO_ISNULL;
        !           568:   }else{
        !           569:     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
        !           570:     c = (u16)(WO_EQ<<(op-TK_EQ));
        !           571:   }
        !           572:   assert( op!=TK_ISNULL || c==WO_ISNULL );
        !           573:   assert( op!=TK_IN || c==WO_IN );
        !           574:   assert( op!=TK_EQ || c==WO_EQ );
        !           575:   assert( op!=TK_LT || c==WO_LT );
        !           576:   assert( op!=TK_LE || c==WO_LE );
        !           577:   assert( op!=TK_GT || c==WO_GT );
        !           578:   assert( op!=TK_GE || c==WO_GE );
        !           579:   return c;
        !           580: }
        !           581: 
        !           582: /*
        !           583: ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
        !           584: ** where X is a reference to the iColumn of table iCur and <op> is one of
        !           585: ** the WO_xx operator codes specified by the op parameter.
        !           586: ** Return a pointer to the term.  Return 0 if not found.
        !           587: */
        !           588: static WhereTerm *findTerm(
        !           589:   WhereClause *pWC,     /* The WHERE clause to be searched */
        !           590:   int iCur,             /* Cursor number of LHS */
        !           591:   int iColumn,          /* Column number of LHS */
        !           592:   Bitmask notReady,     /* RHS must not overlap with this mask */
        !           593:   u32 op,               /* Mask of WO_xx values describing operator */
        !           594:   Index *pIdx           /* Must be compatible with this index, if not NULL */
        !           595: ){
        !           596:   WhereTerm *pTerm;
        !           597:   int k;
        !           598:   assert( iCur>=0 );
        !           599:   op &= WO_ALL;
        !           600:   for(; pWC; pWC=pWC->pOuter){
        !           601:     for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
        !           602:       if( pTerm->leftCursor==iCur
        !           603:          && (pTerm->prereqRight & notReady)==0
        !           604:          && pTerm->u.leftColumn==iColumn
        !           605:          && (pTerm->eOperator & op)!=0
        !           606:       ){
        !           607:         if( iColumn>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
        !           608:           Expr *pX = pTerm->pExpr;
        !           609:           CollSeq *pColl;
        !           610:           char idxaff;
        !           611:           int j;
        !           612:           Parse *pParse = pWC->pParse;
        !           613:   
        !           614:           idxaff = pIdx->pTable->aCol[iColumn].affinity;
        !           615:           if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
        !           616:   
        !           617:           /* Figure out the collation sequence required from an index for
        !           618:           ** it to be useful for optimising expression pX. Store this
        !           619:           ** value in variable pColl.
        !           620:           */
        !           621:           assert(pX->pLeft);
        !           622:           pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        !           623:           assert(pColl || pParse->nErr);
        !           624:   
        !           625:           for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
        !           626:             if( NEVER(j>=pIdx->nColumn) ) return 0;
        !           627:           }
        !           628:           if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
        !           629:         }
        !           630:         return pTerm;
        !           631:       }
        !           632:     }
        !           633:   }
        !           634:   return 0;
        !           635: }
        !           636: 
        !           637: /* Forward reference */
        !           638: static void exprAnalyze(SrcList*, WhereClause*, int);
        !           639: 
        !           640: /*
        !           641: ** Call exprAnalyze on all terms in a WHERE clause.  
        !           642: **
        !           643: **
        !           644: */
        !           645: static void exprAnalyzeAll(
        !           646:   SrcList *pTabList,       /* the FROM clause */
        !           647:   WhereClause *pWC         /* the WHERE clause to be analyzed */
        !           648: ){
        !           649:   int i;
        !           650:   for(i=pWC->nTerm-1; i>=0; i--){
        !           651:     exprAnalyze(pTabList, pWC, i);
        !           652:   }
        !           653: }
        !           654: 
        !           655: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
        !           656: /*
        !           657: ** Check to see if the given expression is a LIKE or GLOB operator that
        !           658: ** can be optimized using inequality constraints.  Return TRUE if it is
        !           659: ** so and false if not.
        !           660: **
        !           661: ** In order for the operator to be optimizible, the RHS must be a string
        !           662: ** literal that does not begin with a wildcard.  
        !           663: */
        !           664: static int isLikeOrGlob(
        !           665:   Parse *pParse,    /* Parsing and code generating context */
        !           666:   Expr *pExpr,      /* Test this expression */
        !           667:   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
        !           668:   int *pisComplete, /* True if the only wildcard is % in the last character */
        !           669:   int *pnoCase      /* True if uppercase is equivalent to lowercase */
        !           670: ){
        !           671:   const char *z = 0;         /* String on RHS of LIKE operator */
        !           672:   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
        !           673:   ExprList *pList;           /* List of operands to the LIKE operator */
        !           674:   int c;                     /* One character in z[] */
        !           675:   int cnt;                   /* Number of non-wildcard prefix characters */
        !           676:   char wc[3];                /* Wildcard characters */
        !           677:   sqlite3 *db = pParse->db;  /* Database connection */
        !           678:   sqlite3_value *pVal = 0;
        !           679:   int op;                    /* Opcode of pRight */
        !           680: 
        !           681:   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
        !           682:     return 0;
        !           683:   }
        !           684: #ifdef SQLITE_EBCDIC
        !           685:   if( *pnoCase ) return 0;
        !           686: #endif
        !           687:   pList = pExpr->x.pList;
        !           688:   pLeft = pList->a[1].pExpr;
        !           689:   if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
        !           690:     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
        !           691:     ** be the name of an indexed column with TEXT affinity. */
        !           692:     return 0;
        !           693:   }
        !           694:   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
        !           695: 
        !           696:   pRight = pList->a[0].pExpr;
        !           697:   op = pRight->op;
        !           698:   if( op==TK_REGISTER ){
        !           699:     op = pRight->op2;
        !           700:   }
        !           701:   if( op==TK_VARIABLE ){
        !           702:     Vdbe *pReprepare = pParse->pReprepare;
        !           703:     int iCol = pRight->iColumn;
        !           704:     pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
        !           705:     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
        !           706:       z = (char *)sqlite3_value_text(pVal);
        !           707:     }
        !           708:     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
        !           709:     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
        !           710:   }else if( op==TK_STRING ){
        !           711:     z = pRight->u.zToken;
        !           712:   }
        !           713:   if( z ){
        !           714:     cnt = 0;
        !           715:     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
        !           716:       cnt++;
        !           717:     }
        !           718:     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
        !           719:       Expr *pPrefix;
        !           720:       *pisComplete = c==wc[0] && z[cnt+1]==0;
        !           721:       pPrefix = sqlite3Expr(db, TK_STRING, z);
        !           722:       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
        !           723:       *ppPrefix = pPrefix;
        !           724:       if( op==TK_VARIABLE ){
        !           725:         Vdbe *v = pParse->pVdbe;
        !           726:         sqlite3VdbeSetVarmask(v, pRight->iColumn);
        !           727:         if( *pisComplete && pRight->u.zToken[1] ){
        !           728:           /* If the rhs of the LIKE expression is a variable, and the current
        !           729:           ** value of the variable means there is no need to invoke the LIKE
        !           730:           ** function, then no OP_Variable will be added to the program.
        !           731:           ** This causes problems for the sqlite3_bind_parameter_name()
        !           732:           ** API. To workaround them, add a dummy OP_Variable here.
        !           733:           */ 
        !           734:           int r1 = sqlite3GetTempReg(pParse);
        !           735:           sqlite3ExprCodeTarget(pParse, pRight, r1);
        !           736:           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
        !           737:           sqlite3ReleaseTempReg(pParse, r1);
        !           738:         }
        !           739:       }
        !           740:     }else{
        !           741:       z = 0;
        !           742:     }
        !           743:   }
        !           744: 
        !           745:   sqlite3ValueFree(pVal);
        !           746:   return (z!=0);
        !           747: }
        !           748: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
        !           749: 
        !           750: 
        !           751: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !           752: /*
        !           753: ** Check to see if the given expression is of the form
        !           754: **
        !           755: **         column MATCH expr
        !           756: **
        !           757: ** If it is then return TRUE.  If not, return FALSE.
        !           758: */
        !           759: static int isMatchOfColumn(
        !           760:   Expr *pExpr      /* Test this expression */
        !           761: ){
        !           762:   ExprList *pList;
        !           763: 
        !           764:   if( pExpr->op!=TK_FUNCTION ){
        !           765:     return 0;
        !           766:   }
        !           767:   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
        !           768:     return 0;
        !           769:   }
        !           770:   pList = pExpr->x.pList;
        !           771:   if( pList->nExpr!=2 ){
        !           772:     return 0;
        !           773:   }
        !           774:   if( pList->a[1].pExpr->op != TK_COLUMN ){
        !           775:     return 0;
        !           776:   }
        !           777:   return 1;
        !           778: }
        !           779: #endif /* SQLITE_OMIT_VIRTUALTABLE */
        !           780: 
        !           781: /*
        !           782: ** If the pBase expression originated in the ON or USING clause of
        !           783: ** a join, then transfer the appropriate markings over to derived.
        !           784: */
        !           785: static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
        !           786:   pDerived->flags |= pBase->flags & EP_FromJoin;
        !           787:   pDerived->iRightJoinTable = pBase->iRightJoinTable;
        !           788: }
        !           789: 
        !           790: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
        !           791: /*
        !           792: ** Analyze a term that consists of two or more OR-connected
        !           793: ** subterms.  So in:
        !           794: **
        !           795: **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
        !           796: **                          ^^^^^^^^^^^^^^^^^^^^
        !           797: **
        !           798: ** This routine analyzes terms such as the middle term in the above example.
        !           799: ** A WhereOrTerm object is computed and attached to the term under
        !           800: ** analysis, regardless of the outcome of the analysis.  Hence:
        !           801: **
        !           802: **     WhereTerm.wtFlags   |=  TERM_ORINFO
        !           803: **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
        !           804: **
        !           805: ** The term being analyzed must have two or more of OR-connected subterms.
        !           806: ** A single subterm might be a set of AND-connected sub-subterms.
        !           807: ** Examples of terms under analysis:
        !           808: **
        !           809: **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
        !           810: **     (B)     x=expr1 OR expr2=x OR x=expr3
        !           811: **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
        !           812: **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
        !           813: **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
        !           814: **
        !           815: ** CASE 1:
        !           816: **
        !           817: ** If all subterms are of the form T.C=expr for some single column of C
        !           818: ** a single table T (as shown in example B above) then create a new virtual
        !           819: ** term that is an equivalent IN expression.  In other words, if the term
        !           820: ** being analyzed is:
        !           821: **
        !           822: **      x = expr1  OR  expr2 = x  OR  x = expr3
        !           823: **
        !           824: ** then create a new virtual term like this:
        !           825: **
        !           826: **      x IN (expr1,expr2,expr3)
        !           827: **
        !           828: ** CASE 2:
        !           829: **
        !           830: ** If all subterms are indexable by a single table T, then set
        !           831: **
        !           832: **     WhereTerm.eOperator              =  WO_OR
        !           833: **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
        !           834: **
        !           835: ** A subterm is "indexable" if it is of the form
        !           836: ** "T.C <op> <expr>" where C is any column of table T and 
        !           837: ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
        !           838: ** A subterm is also indexable if it is an AND of two or more
        !           839: ** subsubterms at least one of which is indexable.  Indexable AND 
        !           840: ** subterms have their eOperator set to WO_AND and they have
        !           841: ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
        !           842: **
        !           843: ** From another point of view, "indexable" means that the subterm could
        !           844: ** potentially be used with an index if an appropriate index exists.
        !           845: ** This analysis does not consider whether or not the index exists; that
        !           846: ** is something the bestIndex() routine will determine.  This analysis
        !           847: ** only looks at whether subterms appropriate for indexing exist.
        !           848: **
        !           849: ** All examples A through E above all satisfy case 2.  But if a term
        !           850: ** also statisfies case 1 (such as B) we know that the optimizer will
        !           851: ** always prefer case 1, so in that case we pretend that case 2 is not
        !           852: ** satisfied.
        !           853: **
        !           854: ** It might be the case that multiple tables are indexable.  For example,
        !           855: ** (E) above is indexable on tables P, Q, and R.
        !           856: **
        !           857: ** Terms that satisfy case 2 are candidates for lookup by using
        !           858: ** separate indices to find rowids for each subterm and composing
        !           859: ** the union of all rowids using a RowSet object.  This is similar
        !           860: ** to "bitmap indices" in other database engines.
        !           861: **
        !           862: ** OTHERWISE:
        !           863: **
        !           864: ** If neither case 1 nor case 2 apply, then leave the eOperator set to
        !           865: ** zero.  This term is not useful for search.
        !           866: */
        !           867: static void exprAnalyzeOrTerm(
        !           868:   SrcList *pSrc,            /* the FROM clause */
        !           869:   WhereClause *pWC,         /* the complete WHERE clause */
        !           870:   int idxTerm               /* Index of the OR-term to be analyzed */
        !           871: ){
        !           872:   Parse *pParse = pWC->pParse;            /* Parser context */
        !           873:   sqlite3 *db = pParse->db;               /* Database connection */
        !           874:   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
        !           875:   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
        !           876:   WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
        !           877:   int i;                                  /* Loop counters */
        !           878:   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
        !           879:   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
        !           880:   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
        !           881:   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
        !           882:   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
        !           883: 
        !           884:   /*
        !           885:   ** Break the OR clause into its separate subterms.  The subterms are
        !           886:   ** stored in a WhereClause structure containing within the WhereOrInfo
        !           887:   ** object that is attached to the original OR clause term.
        !           888:   */
        !           889:   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
        !           890:   assert( pExpr->op==TK_OR );
        !           891:   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
        !           892:   if( pOrInfo==0 ) return;
        !           893:   pTerm->wtFlags |= TERM_ORINFO;
        !           894:   pOrWc = &pOrInfo->wc;
        !           895:   whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags);
        !           896:   whereSplit(pOrWc, pExpr, TK_OR);
        !           897:   exprAnalyzeAll(pSrc, pOrWc);
        !           898:   if( db->mallocFailed ) return;
        !           899:   assert( pOrWc->nTerm>=2 );
        !           900: 
        !           901:   /*
        !           902:   ** Compute the set of tables that might satisfy cases 1 or 2.
        !           903:   */
        !           904:   indexable = ~(Bitmask)0;
        !           905:   chngToIN = ~(pWC->vmask);
        !           906:   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
        !           907:     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
        !           908:       WhereAndInfo *pAndInfo;
        !           909:       assert( pOrTerm->eOperator==0 );
        !           910:       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
        !           911:       chngToIN = 0;
        !           912:       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
        !           913:       if( pAndInfo ){
        !           914:         WhereClause *pAndWC;
        !           915:         WhereTerm *pAndTerm;
        !           916:         int j;
        !           917:         Bitmask b = 0;
        !           918:         pOrTerm->u.pAndInfo = pAndInfo;
        !           919:         pOrTerm->wtFlags |= TERM_ANDINFO;
        !           920:         pOrTerm->eOperator = WO_AND;
        !           921:         pAndWC = &pAndInfo->wc;
        !           922:         whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags);
        !           923:         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        !           924:         exprAnalyzeAll(pSrc, pAndWC);
        !           925:         pAndWC->pOuter = pWC;
        !           926:         testcase( db->mallocFailed );
        !           927:         if( !db->mallocFailed ){
        !           928:           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
        !           929:             assert( pAndTerm->pExpr );
        !           930:             if( allowedOp(pAndTerm->pExpr->op) ){
        !           931:               b |= getMask(pMaskSet, pAndTerm->leftCursor);
        !           932:             }
        !           933:           }
        !           934:         }
        !           935:         indexable &= b;
        !           936:       }
        !           937:     }else if( pOrTerm->wtFlags & TERM_COPIED ){
        !           938:       /* Skip this term for now.  We revisit it when we process the
        !           939:       ** corresponding TERM_VIRTUAL term */
        !           940:     }else{
        !           941:       Bitmask b;
        !           942:       b = getMask(pMaskSet, pOrTerm->leftCursor);
        !           943:       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        !           944:         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        !           945:         b |= getMask(pMaskSet, pOther->leftCursor);
        !           946:       }
        !           947:       indexable &= b;
        !           948:       if( pOrTerm->eOperator!=WO_EQ ){
        !           949:         chngToIN = 0;
        !           950:       }else{
        !           951:         chngToIN &= b;
        !           952:       }
        !           953:     }
        !           954:   }
        !           955: 
        !           956:   /*
        !           957:   ** Record the set of tables that satisfy case 2.  The set might be
        !           958:   ** empty.
        !           959:   */
        !           960:   pOrInfo->indexable = indexable;
        !           961:   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
        !           962: 
        !           963:   /*
        !           964:   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
        !           965:   ** we have to do some additional checking to see if case 1 really
        !           966:   ** is satisfied.
        !           967:   **
        !           968:   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
        !           969:   ** that there is no possibility of transforming the OR clause into an
        !           970:   ** IN operator because one or more terms in the OR clause contain
        !           971:   ** something other than == on a column in the single table.  The 1-bit
        !           972:   ** case means that every term of the OR clause is of the form
        !           973:   ** "table.column=expr" for some single table.  The one bit that is set
        !           974:   ** will correspond to the common table.  We still need to check to make
        !           975:   ** sure the same column is used on all terms.  The 2-bit case is when
        !           976:   ** the all terms are of the form "table1.column=table2.column".  It
        !           977:   ** might be possible to form an IN operator with either table1.column
        !           978:   ** or table2.column as the LHS if either is common to every term of
        !           979:   ** the OR clause.
        !           980:   **
        !           981:   ** Note that terms of the form "table.column1=table.column2" (the
        !           982:   ** same table on both sizes of the ==) cannot be optimized.
        !           983:   */
        !           984:   if( chngToIN ){
        !           985:     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
        !           986:     int iColumn = -1;         /* Column index on lhs of IN operator */
        !           987:     int iCursor = -1;         /* Table cursor common to all terms */
        !           988:     int j = 0;                /* Loop counter */
        !           989: 
        !           990:     /* Search for a table and column that appears on one side or the
        !           991:     ** other of the == operator in every subterm.  That table and column
        !           992:     ** will be recorded in iCursor and iColumn.  There might not be any
        !           993:     ** such table and column.  Set okToChngToIN if an appropriate table
        !           994:     ** and column is found but leave okToChngToIN false if not found.
        !           995:     */
        !           996:     for(j=0; j<2 && !okToChngToIN; j++){
        !           997:       pOrTerm = pOrWc->a;
        !           998:       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
        !           999:         assert( pOrTerm->eOperator==WO_EQ );
        !          1000:         pOrTerm->wtFlags &= ~TERM_OR_OK;
        !          1001:         if( pOrTerm->leftCursor==iCursor ){
        !          1002:           /* This is the 2-bit case and we are on the second iteration and
        !          1003:           ** current term is from the first iteration.  So skip this term. */
        !          1004:           assert( j==1 );
        !          1005:           continue;
        !          1006:         }
        !          1007:         if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
        !          1008:           /* This term must be of the form t1.a==t2.b where t2 is in the
        !          1009:           ** chngToIN set but t1 is not.  This term will be either preceeded
        !          1010:           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
        !          1011:           ** and use its inversion. */
        !          1012:           testcase( pOrTerm->wtFlags & TERM_COPIED );
        !          1013:           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
        !          1014:           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
        !          1015:           continue;
        !          1016:         }
        !          1017:         iColumn = pOrTerm->u.leftColumn;
        !          1018:         iCursor = pOrTerm->leftCursor;
        !          1019:         break;
        !          1020:       }
        !          1021:       if( i<0 ){
        !          1022:         /* No candidate table+column was found.  This can only occur
        !          1023:         ** on the second iteration */
        !          1024:         assert( j==1 );
        !          1025:         assert( (chngToIN&(chngToIN-1))==0 );
        !          1026:         assert( chngToIN==getMask(pMaskSet, iCursor) );
        !          1027:         break;
        !          1028:       }
        !          1029:       testcase( j==1 );
        !          1030: 
        !          1031:       /* We have found a candidate table and column.  Check to see if that
        !          1032:       ** table and column is common to every term in the OR clause */
        !          1033:       okToChngToIN = 1;
        !          1034:       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
        !          1035:         assert( pOrTerm->eOperator==WO_EQ );
        !          1036:         if( pOrTerm->leftCursor!=iCursor ){
        !          1037:           pOrTerm->wtFlags &= ~TERM_OR_OK;
        !          1038:         }else if( pOrTerm->u.leftColumn!=iColumn ){
        !          1039:           okToChngToIN = 0;
        !          1040:         }else{
        !          1041:           int affLeft, affRight;
        !          1042:           /* If the right-hand side is also a column, then the affinities
        !          1043:           ** of both right and left sides must be such that no type
        !          1044:           ** conversions are required on the right.  (Ticket #2249)
        !          1045:           */
        !          1046:           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
        !          1047:           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
        !          1048:           if( affRight!=0 && affRight!=affLeft ){
        !          1049:             okToChngToIN = 0;
        !          1050:           }else{
        !          1051:             pOrTerm->wtFlags |= TERM_OR_OK;
        !          1052:           }
        !          1053:         }
        !          1054:       }
        !          1055:     }
        !          1056: 
        !          1057:     /* At this point, okToChngToIN is true if original pTerm satisfies
        !          1058:     ** case 1.  In that case, construct a new virtual term that is 
        !          1059:     ** pTerm converted into an IN operator.
        !          1060:     **
        !          1061:     ** EV: R-00211-15100
        !          1062:     */
        !          1063:     if( okToChngToIN ){
        !          1064:       Expr *pDup;            /* A transient duplicate expression */
        !          1065:       ExprList *pList = 0;   /* The RHS of the IN operator */
        !          1066:       Expr *pLeft = 0;       /* The LHS of the IN operator */
        !          1067:       Expr *pNew;            /* The complete IN operator */
        !          1068: 
        !          1069:       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        !          1070:         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        !          1071:         assert( pOrTerm->eOperator==WO_EQ );
        !          1072:         assert( pOrTerm->leftCursor==iCursor );
        !          1073:         assert( pOrTerm->u.leftColumn==iColumn );
        !          1074:         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        !          1075:         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        !          1076:         pLeft = pOrTerm->pExpr->pLeft;
        !          1077:       }
        !          1078:       assert( pLeft!=0 );
        !          1079:       pDup = sqlite3ExprDup(db, pLeft, 0);
        !          1080:       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
        !          1081:       if( pNew ){
        !          1082:         int idxNew;
        !          1083:         transferJoinMarkings(pNew, pExpr);
        !          1084:         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
        !          1085:         pNew->x.pList = pList;
        !          1086:         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
        !          1087:         testcase( idxNew==0 );
        !          1088:         exprAnalyze(pSrc, pWC, idxNew);
        !          1089:         pTerm = &pWC->a[idxTerm];
        !          1090:         pWC->a[idxNew].iParent = idxTerm;
        !          1091:         pTerm->nChild = 1;
        !          1092:       }else{
        !          1093:         sqlite3ExprListDelete(db, pList);
        !          1094:       }
        !          1095:       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
        !          1096:     }
        !          1097:   }
        !          1098: }
        !          1099: #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
        !          1100: 
        !          1101: 
        !          1102: /*
        !          1103: ** The input to this routine is an WhereTerm structure with only the
        !          1104: ** "pExpr" field filled in.  The job of this routine is to analyze the
        !          1105: ** subexpression and populate all the other fields of the WhereTerm
        !          1106: ** structure.
        !          1107: **
        !          1108: ** If the expression is of the form "<expr> <op> X" it gets commuted
        !          1109: ** to the standard form of "X <op> <expr>".
        !          1110: **
        !          1111: ** If the expression is of the form "X <op> Y" where both X and Y are
        !          1112: ** columns, then the original expression is unchanged and a new virtual
        !          1113: ** term of the form "Y <op> X" is added to the WHERE clause and
        !          1114: ** analyzed separately.  The original term is marked with TERM_COPIED
        !          1115: ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
        !          1116: ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
        !          1117: ** is a commuted copy of a prior term.)  The original term has nChild=1
        !          1118: ** and the copy has idxParent set to the index of the original term.
        !          1119: */
        !          1120: static void exprAnalyze(
        !          1121:   SrcList *pSrc,            /* the FROM clause */
        !          1122:   WhereClause *pWC,         /* the WHERE clause */
        !          1123:   int idxTerm               /* Index of the term to be analyzed */
        !          1124: ){
        !          1125:   WhereTerm *pTerm;                /* The term to be analyzed */
        !          1126:   WhereMaskSet *pMaskSet;          /* Set of table index masks */
        !          1127:   Expr *pExpr;                     /* The expression to be analyzed */
        !          1128:   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
        !          1129:   Bitmask prereqAll;               /* Prerequesites of pExpr */
        !          1130:   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
        !          1131:   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
        !          1132:   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
        !          1133:   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
        !          1134:   int op;                          /* Top-level operator.  pExpr->op */
        !          1135:   Parse *pParse = pWC->pParse;     /* Parsing context */
        !          1136:   sqlite3 *db = pParse->db;        /* Database connection */
        !          1137: 
        !          1138:   if( db->mallocFailed ){
        !          1139:     return;
        !          1140:   }
        !          1141:   pTerm = &pWC->a[idxTerm];
        !          1142:   pMaskSet = pWC->pMaskSet;
        !          1143:   pExpr = pTerm->pExpr;
        !          1144:   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
        !          1145:   op = pExpr->op;
        !          1146:   if( op==TK_IN ){
        !          1147:     assert( pExpr->pRight==0 );
        !          1148:     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        !          1149:       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
        !          1150:     }else{
        !          1151:       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
        !          1152:     }
        !          1153:   }else if( op==TK_ISNULL ){
        !          1154:     pTerm->prereqRight = 0;
        !          1155:   }else{
        !          1156:     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
        !          1157:   }
        !          1158:   prereqAll = exprTableUsage(pMaskSet, pExpr);
        !          1159:   if( ExprHasProperty(pExpr, EP_FromJoin) ){
        !          1160:     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
        !          1161:     prereqAll |= x;
        !          1162:     extraRight = x-1;  /* ON clause terms may not be used with an index
        !          1163:                        ** on left table of a LEFT JOIN.  Ticket #3015 */
        !          1164:   }
        !          1165:   pTerm->prereqAll = prereqAll;
        !          1166:   pTerm->leftCursor = -1;
        !          1167:   pTerm->iParent = -1;
        !          1168:   pTerm->eOperator = 0;
        !          1169:   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
        !          1170:     Expr *pLeft = pExpr->pLeft;
        !          1171:     Expr *pRight = pExpr->pRight;
        !          1172:     if( pLeft->op==TK_COLUMN ){
        !          1173:       pTerm->leftCursor = pLeft->iTable;
        !          1174:       pTerm->u.leftColumn = pLeft->iColumn;
        !          1175:       pTerm->eOperator = operatorMask(op);
        !          1176:     }
        !          1177:     if( pRight && pRight->op==TK_COLUMN ){
        !          1178:       WhereTerm *pNew;
        !          1179:       Expr *pDup;
        !          1180:       if( pTerm->leftCursor>=0 ){
        !          1181:         int idxNew;
        !          1182:         pDup = sqlite3ExprDup(db, pExpr, 0);
        !          1183:         if( db->mallocFailed ){
        !          1184:           sqlite3ExprDelete(db, pDup);
        !          1185:           return;
        !          1186:         }
        !          1187:         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        !          1188:         if( idxNew==0 ) return;
        !          1189:         pNew = &pWC->a[idxNew];
        !          1190:         pNew->iParent = idxTerm;
        !          1191:         pTerm = &pWC->a[idxTerm];
        !          1192:         pTerm->nChild = 1;
        !          1193:         pTerm->wtFlags |= TERM_COPIED;
        !          1194:       }else{
        !          1195:         pDup = pExpr;
        !          1196:         pNew = pTerm;
        !          1197:       }
        !          1198:       exprCommute(pParse, pDup);
        !          1199:       pLeft = pDup->pLeft;
        !          1200:       pNew->leftCursor = pLeft->iTable;
        !          1201:       pNew->u.leftColumn = pLeft->iColumn;
        !          1202:       testcase( (prereqLeft | extraRight) != prereqLeft );
        !          1203:       pNew->prereqRight = prereqLeft | extraRight;
        !          1204:       pNew->prereqAll = prereqAll;
        !          1205:       pNew->eOperator = operatorMask(pDup->op);
        !          1206:     }
        !          1207:   }
        !          1208: 
        !          1209: #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
        !          1210:   /* If a term is the BETWEEN operator, create two new virtual terms
        !          1211:   ** that define the range that the BETWEEN implements.  For example:
        !          1212:   **
        !          1213:   **      a BETWEEN b AND c
        !          1214:   **
        !          1215:   ** is converted into:
        !          1216:   **
        !          1217:   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
        !          1218:   **
        !          1219:   ** The two new terms are added onto the end of the WhereClause object.
        !          1220:   ** The new terms are "dynamic" and are children of the original BETWEEN
        !          1221:   ** term.  That means that if the BETWEEN term is coded, the children are
        !          1222:   ** skipped.  Or, if the children are satisfied by an index, the original
        !          1223:   ** BETWEEN term is skipped.
        !          1224:   */
        !          1225:   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
        !          1226:     ExprList *pList = pExpr->x.pList;
        !          1227:     int i;
        !          1228:     static const u8 ops[] = {TK_GE, TK_LE};
        !          1229:     assert( pList!=0 );
        !          1230:     assert( pList->nExpr==2 );
        !          1231:     for(i=0; i<2; i++){
        !          1232:       Expr *pNewExpr;
        !          1233:       int idxNew;
        !          1234:       pNewExpr = sqlite3PExpr(pParse, ops[i], 
        !          1235:                              sqlite3ExprDup(db, pExpr->pLeft, 0),
        !          1236:                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
        !          1237:       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
        !          1238:       testcase( idxNew==0 );
        !          1239:       exprAnalyze(pSrc, pWC, idxNew);
        !          1240:       pTerm = &pWC->a[idxTerm];
        !          1241:       pWC->a[idxNew].iParent = idxTerm;
        !          1242:     }
        !          1243:     pTerm->nChild = 2;
        !          1244:   }
        !          1245: #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
        !          1246: 
        !          1247: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
        !          1248:   /* Analyze a term that is composed of two or more subterms connected by
        !          1249:   ** an OR operator.
        !          1250:   */
        !          1251:   else if( pExpr->op==TK_OR ){
        !          1252:     assert( pWC->op==TK_AND );
        !          1253:     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
        !          1254:     pTerm = &pWC->a[idxTerm];
        !          1255:   }
        !          1256: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
        !          1257: 
        !          1258: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
        !          1259:   /* Add constraints to reduce the search space on a LIKE or GLOB
        !          1260:   ** operator.
        !          1261:   **
        !          1262:   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
        !          1263:   **
        !          1264:   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
        !          1265:   **
        !          1266:   ** The last character of the prefix "abc" is incremented to form the
        !          1267:   ** termination condition "abd".
        !          1268:   */
        !          1269:   if( pWC->op==TK_AND 
        !          1270:    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
        !          1271:   ){
        !          1272:     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
        !          1273:     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
        !          1274:     Expr *pNewExpr1;
        !          1275:     Expr *pNewExpr2;
        !          1276:     int idxNew1;
        !          1277:     int idxNew2;
        !          1278:     CollSeq *pColl;    /* Collating sequence to use */
        !          1279: 
        !          1280:     pLeft = pExpr->x.pList->a[1].pExpr;
        !          1281:     pStr2 = sqlite3ExprDup(db, pStr1, 0);
        !          1282:     if( !db->mallocFailed ){
        !          1283:       u8 c, *pC;       /* Last character before the first wildcard */
        !          1284:       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
        !          1285:       c = *pC;
        !          1286:       if( noCase ){
        !          1287:         /* The point is to increment the last character before the first
        !          1288:         ** wildcard.  But if we increment '@', that will push it into the
        !          1289:         ** alphabetic range where case conversions will mess up the 
        !          1290:         ** inequality.  To avoid this, make sure to also run the full
        !          1291:         ** LIKE on all candidate expressions by clearing the isComplete flag
        !          1292:         */
        !          1293:         if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */
        !          1294: 
        !          1295: 
        !          1296:         c = sqlite3UpperToLower[c];
        !          1297:       }
        !          1298:       *pC = c + 1;
        !          1299:     }
        !          1300:     pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
        !          1301:     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 
        !          1302:                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
        !          1303:                      pStr1, 0);
        !          1304:     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
        !          1305:     testcase( idxNew1==0 );
        !          1306:     exprAnalyze(pSrc, pWC, idxNew1);
        !          1307:     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
        !          1308:                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
        !          1309:                      pStr2, 0);
        !          1310:     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
        !          1311:     testcase( idxNew2==0 );
        !          1312:     exprAnalyze(pSrc, pWC, idxNew2);
        !          1313:     pTerm = &pWC->a[idxTerm];
        !          1314:     if( isComplete ){
        !          1315:       pWC->a[idxNew1].iParent = idxTerm;
        !          1316:       pWC->a[idxNew2].iParent = idxTerm;
        !          1317:       pTerm->nChild = 2;
        !          1318:     }
        !          1319:   }
        !          1320: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
        !          1321: 
        !          1322: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          1323:   /* Add a WO_MATCH auxiliary term to the constraint set if the
        !          1324:   ** current expression is of the form:  column MATCH expr.
        !          1325:   ** This information is used by the xBestIndex methods of
        !          1326:   ** virtual tables.  The native query optimizer does not attempt
        !          1327:   ** to do anything with MATCH functions.
        !          1328:   */
        !          1329:   if( isMatchOfColumn(pExpr) ){
        !          1330:     int idxNew;
        !          1331:     Expr *pRight, *pLeft;
        !          1332:     WhereTerm *pNewTerm;
        !          1333:     Bitmask prereqColumn, prereqExpr;
        !          1334: 
        !          1335:     pRight = pExpr->x.pList->a[0].pExpr;
        !          1336:     pLeft = pExpr->x.pList->a[1].pExpr;
        !          1337:     prereqExpr = exprTableUsage(pMaskSet, pRight);
        !          1338:     prereqColumn = exprTableUsage(pMaskSet, pLeft);
        !          1339:     if( (prereqExpr & prereqColumn)==0 ){
        !          1340:       Expr *pNewExpr;
        !          1341:       pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
        !          1342:                               0, sqlite3ExprDup(db, pRight, 0), 0);
        !          1343:       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
        !          1344:       testcase( idxNew==0 );
        !          1345:       pNewTerm = &pWC->a[idxNew];
        !          1346:       pNewTerm->prereqRight = prereqExpr;
        !          1347:       pNewTerm->leftCursor = pLeft->iTable;
        !          1348:       pNewTerm->u.leftColumn = pLeft->iColumn;
        !          1349:       pNewTerm->eOperator = WO_MATCH;
        !          1350:       pNewTerm->iParent = idxTerm;
        !          1351:       pTerm = &pWC->a[idxTerm];
        !          1352:       pTerm->nChild = 1;
        !          1353:       pTerm->wtFlags |= TERM_COPIED;
        !          1354:       pNewTerm->prereqAll = pTerm->prereqAll;
        !          1355:     }
        !          1356:   }
        !          1357: #endif /* SQLITE_OMIT_VIRTUALTABLE */
        !          1358: 
        !          1359: #ifdef SQLITE_ENABLE_STAT3
        !          1360:   /* When sqlite_stat3 histogram data is available an operator of the
        !          1361:   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
        !          1362:   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
        !          1363:   ** virtual term of that form.
        !          1364:   **
        !          1365:   ** Note that the virtual term must be tagged with TERM_VNULL.  This
        !          1366:   ** TERM_VNULL tag will suppress the not-null check at the beginning
        !          1367:   ** of the loop.  Without the TERM_VNULL flag, the not-null check at
        !          1368:   ** the start of the loop will prevent any results from being returned.
        !          1369:   */
        !          1370:   if( pExpr->op==TK_NOTNULL
        !          1371:    && pExpr->pLeft->op==TK_COLUMN
        !          1372:    && pExpr->pLeft->iColumn>=0
        !          1373:   ){
        !          1374:     Expr *pNewExpr;
        !          1375:     Expr *pLeft = pExpr->pLeft;
        !          1376:     int idxNew;
        !          1377:     WhereTerm *pNewTerm;
        !          1378: 
        !          1379:     pNewExpr = sqlite3PExpr(pParse, TK_GT,
        !          1380:                             sqlite3ExprDup(db, pLeft, 0),
        !          1381:                             sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
        !          1382: 
        !          1383:     idxNew = whereClauseInsert(pWC, pNewExpr,
        !          1384:                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
        !          1385:     if( idxNew ){
        !          1386:       pNewTerm = &pWC->a[idxNew];
        !          1387:       pNewTerm->prereqRight = 0;
        !          1388:       pNewTerm->leftCursor = pLeft->iTable;
        !          1389:       pNewTerm->u.leftColumn = pLeft->iColumn;
        !          1390:       pNewTerm->eOperator = WO_GT;
        !          1391:       pNewTerm->iParent = idxTerm;
        !          1392:       pTerm = &pWC->a[idxTerm];
        !          1393:       pTerm->nChild = 1;
        !          1394:       pTerm->wtFlags |= TERM_COPIED;
        !          1395:       pNewTerm->prereqAll = pTerm->prereqAll;
        !          1396:     }
        !          1397:   }
        !          1398: #endif /* SQLITE_ENABLE_STAT */
        !          1399: 
        !          1400:   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
        !          1401:   ** an index for tables to the left of the join.
        !          1402:   */
        !          1403:   pTerm->prereqRight |= extraRight;
        !          1404: }
        !          1405: 
        !          1406: /*
        !          1407: ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
        !          1408: ** a reference to any table other than the iBase table.
        !          1409: */
        !          1410: static int referencesOtherTables(
        !          1411:   ExprList *pList,          /* Search expressions in ths list */
        !          1412:   WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */
        !          1413:   int iFirst,               /* Be searching with the iFirst-th expression */
        !          1414:   int iBase                 /* Ignore references to this table */
        !          1415: ){
        !          1416:   Bitmask allowed = ~getMask(pMaskSet, iBase);
        !          1417:   while( iFirst<pList->nExpr ){
        !          1418:     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
        !          1419:       return 1;
        !          1420:     }
        !          1421:   }
        !          1422:   return 0;
        !          1423: }
        !          1424: 
        !          1425: /*
        !          1426: ** This function searches the expression list passed as the second argument
        !          1427: ** for an expression of type TK_COLUMN that refers to the same column and
        !          1428: ** uses the same collation sequence as the iCol'th column of index pIdx.
        !          1429: ** Argument iBase is the cursor number used for the table that pIdx refers
        !          1430: ** to.
        !          1431: **
        !          1432: ** If such an expression is found, its index in pList->a[] is returned. If
        !          1433: ** no expression is found, -1 is returned.
        !          1434: */
        !          1435: static int findIndexCol(
        !          1436:   Parse *pParse,                  /* Parse context */
        !          1437:   ExprList *pList,                /* Expression list to search */
        !          1438:   int iBase,                      /* Cursor for table associated with pIdx */
        !          1439:   Index *pIdx,                    /* Index to match column of */
        !          1440:   int iCol                        /* Column of index to match */
        !          1441: ){
        !          1442:   int i;
        !          1443:   const char *zColl = pIdx->azColl[iCol];
        !          1444: 
        !          1445:   for(i=0; i<pList->nExpr; i++){
        !          1446:     Expr *p = pList->a[i].pExpr;
        !          1447:     if( p->op==TK_COLUMN
        !          1448:      && p->iColumn==pIdx->aiColumn[iCol]
        !          1449:      && p->iTable==iBase
        !          1450:     ){
        !          1451:       CollSeq *pColl = sqlite3ExprCollSeq(pParse, p);
        !          1452:       if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
        !          1453:         return i;
        !          1454:       }
        !          1455:     }
        !          1456:   }
        !          1457: 
        !          1458:   return -1;
        !          1459: }
        !          1460: 
        !          1461: /*
        !          1462: ** This routine determines if pIdx can be used to assist in processing a
        !          1463: ** DISTINCT qualifier. In other words, it tests whether or not using this
        !          1464: ** index for the outer loop guarantees that rows with equal values for
        !          1465: ** all expressions in the pDistinct list are delivered grouped together.
        !          1466: **
        !          1467: ** For example, the query 
        !          1468: **
        !          1469: **   SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
        !          1470: **
        !          1471: ** can benefit from any index on columns "b" and "c".
        !          1472: */
        !          1473: static int isDistinctIndex(
        !          1474:   Parse *pParse,                  /* Parsing context */
        !          1475:   WhereClause *pWC,               /* The WHERE clause */
        !          1476:   Index *pIdx,                    /* The index being considered */
        !          1477:   int base,                       /* Cursor number for the table pIdx is on */
        !          1478:   ExprList *pDistinct,            /* The DISTINCT expressions */
        !          1479:   int nEqCol                      /* Number of index columns with == */
        !          1480: ){
        !          1481:   Bitmask mask = 0;               /* Mask of unaccounted for pDistinct exprs */
        !          1482:   int i;                          /* Iterator variable */
        !          1483: 
        !          1484:   if( pIdx->zName==0 || pDistinct==0 || pDistinct->nExpr>=BMS ) return 0;
        !          1485:   testcase( pDistinct->nExpr==BMS-1 );
        !          1486: 
        !          1487:   /* Loop through all the expressions in the distinct list. If any of them
        !          1488:   ** are not simple column references, return early. Otherwise, test if the
        !          1489:   ** WHERE clause contains a "col=X" clause. If it does, the expression
        !          1490:   ** can be ignored. If it does not, and the column does not belong to the
        !          1491:   ** same table as index pIdx, return early. Finally, if there is no
        !          1492:   ** matching "col=X" expression and the column is on the same table as pIdx,
        !          1493:   ** set the corresponding bit in variable mask.
        !          1494:   */
        !          1495:   for(i=0; i<pDistinct->nExpr; i++){
        !          1496:     WhereTerm *pTerm;
        !          1497:     Expr *p = pDistinct->a[i].pExpr;
        !          1498:     if( p->op!=TK_COLUMN ) return 0;
        !          1499:     pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
        !          1500:     if( pTerm ){
        !          1501:       Expr *pX = pTerm->pExpr;
        !          1502:       CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        !          1503:       CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
        !          1504:       if( p1==p2 ) continue;
        !          1505:     }
        !          1506:     if( p->iTable!=base ) return 0;
        !          1507:     mask |= (((Bitmask)1) << i);
        !          1508:   }
        !          1509: 
        !          1510:   for(i=nEqCol; mask && i<pIdx->nColumn; i++){
        !          1511:     int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
        !          1512:     if( iExpr<0 ) break;
        !          1513:     mask &= ~(((Bitmask)1) << iExpr);
        !          1514:   }
        !          1515: 
        !          1516:   return (mask==0);
        !          1517: }
        !          1518: 
        !          1519: 
        !          1520: /*
        !          1521: ** Return true if the DISTINCT expression-list passed as the third argument
        !          1522: ** is redundant. A DISTINCT list is redundant if the database contains a
        !          1523: ** UNIQUE index that guarantees that the result of the query will be distinct
        !          1524: ** anyway.
        !          1525: */
        !          1526: static int isDistinctRedundant(
        !          1527:   Parse *pParse,
        !          1528:   SrcList *pTabList,
        !          1529:   WhereClause *pWC,
        !          1530:   ExprList *pDistinct
        !          1531: ){
        !          1532:   Table *pTab;
        !          1533:   Index *pIdx;
        !          1534:   int i;                          
        !          1535:   int iBase;
        !          1536: 
        !          1537:   /* If there is more than one table or sub-select in the FROM clause of
        !          1538:   ** this query, then it will not be possible to show that the DISTINCT 
        !          1539:   ** clause is redundant. */
        !          1540:   if( pTabList->nSrc!=1 ) return 0;
        !          1541:   iBase = pTabList->a[0].iCursor;
        !          1542:   pTab = pTabList->a[0].pTab;
        !          1543: 
        !          1544:   /* If any of the expressions is an IPK column on table iBase, then return 
        !          1545:   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
        !          1546:   ** current SELECT is a correlated sub-query.
        !          1547:   */
        !          1548:   for(i=0; i<pDistinct->nExpr; i++){
        !          1549:     Expr *p = pDistinct->a[i].pExpr;
        !          1550:     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
        !          1551:   }
        !          1552: 
        !          1553:   /* Loop through all indices on the table, checking each to see if it makes
        !          1554:   ** the DISTINCT qualifier redundant. It does so if:
        !          1555:   **
        !          1556:   **   1. The index is itself UNIQUE, and
        !          1557:   **
        !          1558:   **   2. All of the columns in the index are either part of the pDistinct
        !          1559:   **      list, or else the WHERE clause contains a term of the form "col=X",
        !          1560:   **      where X is a constant value. The collation sequences of the
        !          1561:   **      comparison and select-list expressions must match those of the index.
        !          1562:   */
        !          1563:   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        !          1564:     if( pIdx->onError==OE_None ) continue;
        !          1565:     for(i=0; i<pIdx->nColumn; i++){
        !          1566:       int iCol = pIdx->aiColumn[i];
        !          1567:       if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) 
        !          1568:        && 0>findIndexCol(pParse, pDistinct, iBase, pIdx, i)
        !          1569:       ){
        !          1570:         break;
        !          1571:       }
        !          1572:     }
        !          1573:     if( i==pIdx->nColumn ){
        !          1574:       /* This index implies that the DISTINCT qualifier is redundant. */
        !          1575:       return 1;
        !          1576:     }
        !          1577:   }
        !          1578: 
        !          1579:   return 0;
        !          1580: }
        !          1581: 
        !          1582: /*
        !          1583: ** This routine decides if pIdx can be used to satisfy the ORDER BY
        !          1584: ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
        !          1585: ** ORDER BY clause, this routine returns 0.
        !          1586: **
        !          1587: ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
        !          1588: ** left-most table in the FROM clause of that same SELECT statement and
        !          1589: ** the table has a cursor number of "base".  pIdx is an index on pTab.
        !          1590: **
        !          1591: ** nEqCol is the number of columns of pIdx that are used as equality
        !          1592: ** constraints.  Any of these columns may be missing from the ORDER BY
        !          1593: ** clause and the match can still be a success.
        !          1594: **
        !          1595: ** All terms of the ORDER BY that match against the index must be either
        !          1596: ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
        !          1597: ** index do not need to satisfy this constraint.)  The *pbRev value is
        !          1598: ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
        !          1599: ** the ORDER BY clause is all ASC.
        !          1600: */
        !          1601: static int isSortingIndex(
        !          1602:   Parse *pParse,          /* Parsing context */
        !          1603:   WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
        !          1604:   Index *pIdx,            /* The index we are testing */
        !          1605:   int base,               /* Cursor number for the table to be sorted */
        !          1606:   ExprList *pOrderBy,     /* The ORDER BY clause */
        !          1607:   int nEqCol,             /* Number of index columns with == constraints */
        !          1608:   int wsFlags,            /* Index usages flags */
        !          1609:   int *pbRev              /* Set to 1 if ORDER BY is DESC */
        !          1610: ){
        !          1611:   int i, j;                       /* Loop counters */
        !          1612:   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
        !          1613:   int nTerm;                      /* Number of ORDER BY terms */
        !          1614:   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
        !          1615:   sqlite3 *db = pParse->db;
        !          1616: 
        !          1617:   if( !pOrderBy ) return 0;
        !          1618:   if( wsFlags & WHERE_COLUMN_IN ) return 0;
        !          1619:   if( pIdx->bUnordered ) return 0;
        !          1620: 
        !          1621:   nTerm = pOrderBy->nExpr;
        !          1622:   assert( nTerm>0 );
        !          1623: 
        !          1624:   /* Argument pIdx must either point to a 'real' named index structure, 
        !          1625:   ** or an index structure allocated on the stack by bestBtreeIndex() to
        !          1626:   ** represent the rowid index that is part of every table.  */
        !          1627:   assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
        !          1628: 
        !          1629:   /* Match terms of the ORDER BY clause against columns of
        !          1630:   ** the index.
        !          1631:   **
        !          1632:   ** Note that indices have pIdx->nColumn regular columns plus
        !          1633:   ** one additional column containing the rowid.  The rowid column
        !          1634:   ** of the index is also allowed to match against the ORDER BY
        !          1635:   ** clause.
        !          1636:   */
        !          1637:   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
        !          1638:     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
        !          1639:     CollSeq *pColl;    /* The collating sequence of pExpr */
        !          1640:     int termSortOrder; /* Sort order for this term */
        !          1641:     int iColumn;       /* The i-th column of the index.  -1 for rowid */
        !          1642:     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
        !          1643:     const char *zColl; /* Name of the collating sequence for i-th index term */
        !          1644: 
        !          1645:     pExpr = pTerm->pExpr;
        !          1646:     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
        !          1647:       /* Can not use an index sort on anything that is not a column in the
        !          1648:       ** left-most table of the FROM clause */
        !          1649:       break;
        !          1650:     }
        !          1651:     pColl = sqlite3ExprCollSeq(pParse, pExpr);
        !          1652:     if( !pColl ){
        !          1653:       pColl = db->pDfltColl;
        !          1654:     }
        !          1655:     if( pIdx->zName && i<pIdx->nColumn ){
        !          1656:       iColumn = pIdx->aiColumn[i];
        !          1657:       if( iColumn==pIdx->pTable->iPKey ){
        !          1658:         iColumn = -1;
        !          1659:       }
        !          1660:       iSortOrder = pIdx->aSortOrder[i];
        !          1661:       zColl = pIdx->azColl[i];
        !          1662:     }else{
        !          1663:       iColumn = -1;
        !          1664:       iSortOrder = 0;
        !          1665:       zColl = pColl->zName;
        !          1666:     }
        !          1667:     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
        !          1668:       /* Term j of the ORDER BY clause does not match column i of the index */
        !          1669:       if( i<nEqCol ){
        !          1670:         /* If an index column that is constrained by == fails to match an
        !          1671:         ** ORDER BY term, that is OK.  Just ignore that column of the index
        !          1672:         */
        !          1673:         continue;
        !          1674:       }else if( i==pIdx->nColumn ){
        !          1675:         /* Index column i is the rowid.  All other terms match. */
        !          1676:         break;
        !          1677:       }else{
        !          1678:         /* If an index column fails to match and is not constrained by ==
        !          1679:         ** then the index cannot satisfy the ORDER BY constraint.
        !          1680:         */
        !          1681:         return 0;
        !          1682:       }
        !          1683:     }
        !          1684:     assert( pIdx->aSortOrder!=0 || iColumn==-1 );
        !          1685:     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
        !          1686:     assert( iSortOrder==0 || iSortOrder==1 );
        !          1687:     termSortOrder = iSortOrder ^ pTerm->sortOrder;
        !          1688:     if( i>nEqCol ){
        !          1689:       if( termSortOrder!=sortOrder ){
        !          1690:         /* Indices can only be used if all ORDER BY terms past the
        !          1691:         ** equality constraints are all either DESC or ASC. */
        !          1692:         return 0;
        !          1693:       }
        !          1694:     }else{
        !          1695:       sortOrder = termSortOrder;
        !          1696:     }
        !          1697:     j++;
        !          1698:     pTerm++;
        !          1699:     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
        !          1700:       /* If the indexed column is the primary key and everything matches
        !          1701:       ** so far and none of the ORDER BY terms to the right reference other
        !          1702:       ** tables in the join, then we are assured that the index can be used 
        !          1703:       ** to sort because the primary key is unique and so none of the other
        !          1704:       ** columns will make any difference
        !          1705:       */
        !          1706:       j = nTerm;
        !          1707:     }
        !          1708:   }
        !          1709: 
        !          1710:   *pbRev = sortOrder!=0;
        !          1711:   if( j>=nTerm ){
        !          1712:     /* All terms of the ORDER BY clause are covered by this index so
        !          1713:     ** this index can be used for sorting. */
        !          1714:     return 1;
        !          1715:   }
        !          1716:   if( pIdx->onError!=OE_None && i==pIdx->nColumn
        !          1717:       && (wsFlags & WHERE_COLUMN_NULL)==0
        !          1718:       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
        !          1719:     /* All terms of this index match some prefix of the ORDER BY clause
        !          1720:     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
        !          1721:     ** clause reference other tables in a join.  If this is all true then
        !          1722:     ** the order by clause is superfluous.  Not that if the matching
        !          1723:     ** condition is IS NULL then the result is not necessarily unique
        !          1724:     ** even on a UNIQUE index, so disallow those cases. */
        !          1725:     return 1;
        !          1726:   }
        !          1727:   return 0;
        !          1728: }
        !          1729: 
        !          1730: /*
        !          1731: ** Prepare a crude estimate of the logarithm of the input value.
        !          1732: ** The results need not be exact.  This is only used for estimating
        !          1733: ** the total cost of performing operations with O(logN) or O(NlogN)
        !          1734: ** complexity.  Because N is just a guess, it is no great tragedy if
        !          1735: ** logN is a little off.
        !          1736: */
        !          1737: static double estLog(double N){
        !          1738:   double logN = 1;
        !          1739:   double x = 10;
        !          1740:   while( N>x ){
        !          1741:     logN += 1;
        !          1742:     x *= 10;
        !          1743:   }
        !          1744:   return logN;
        !          1745: }
        !          1746: 
        !          1747: /*
        !          1748: ** Two routines for printing the content of an sqlite3_index_info
        !          1749: ** structure.  Used for testing and debugging only.  If neither
        !          1750: ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
        !          1751: ** are no-ops.
        !          1752: */
        !          1753: #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
        !          1754: static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
        !          1755:   int i;
        !          1756:   if( !sqlite3WhereTrace ) return;
        !          1757:   for(i=0; i<p->nConstraint; i++){
        !          1758:     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
        !          1759:        i,
        !          1760:        p->aConstraint[i].iColumn,
        !          1761:        p->aConstraint[i].iTermOffset,
        !          1762:        p->aConstraint[i].op,
        !          1763:        p->aConstraint[i].usable);
        !          1764:   }
        !          1765:   for(i=0; i<p->nOrderBy; i++){
        !          1766:     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
        !          1767:        i,
        !          1768:        p->aOrderBy[i].iColumn,
        !          1769:        p->aOrderBy[i].desc);
        !          1770:   }
        !          1771: }
        !          1772: static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
        !          1773:   int i;
        !          1774:   if( !sqlite3WhereTrace ) return;
        !          1775:   for(i=0; i<p->nConstraint; i++){
        !          1776:     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
        !          1777:        i,
        !          1778:        p->aConstraintUsage[i].argvIndex,
        !          1779:        p->aConstraintUsage[i].omit);
        !          1780:   }
        !          1781:   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
        !          1782:   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
        !          1783:   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
        !          1784:   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
        !          1785: }
        !          1786: #else
        !          1787: #define TRACE_IDX_INPUTS(A)
        !          1788: #define TRACE_IDX_OUTPUTS(A)
        !          1789: #endif
        !          1790: 
        !          1791: /* 
        !          1792: ** Required because bestIndex() is called by bestOrClauseIndex() 
        !          1793: */
        !          1794: static void bestIndex(
        !          1795:     Parse*, WhereClause*, struct SrcList_item*,
        !          1796:     Bitmask, Bitmask, ExprList*, WhereCost*);
        !          1797: 
        !          1798: /*
        !          1799: ** This routine attempts to find an scanning strategy that can be used 
        !          1800: ** to optimize an 'OR' expression that is part of a WHERE clause. 
        !          1801: **
        !          1802: ** The table associated with FROM clause term pSrc may be either a
        !          1803: ** regular B-Tree table or a virtual table.
        !          1804: */
        !          1805: static void bestOrClauseIndex(
        !          1806:   Parse *pParse,              /* The parsing context */
        !          1807:   WhereClause *pWC,           /* The WHERE clause */
        !          1808:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
        !          1809:   Bitmask notReady,           /* Mask of cursors not available for indexing */
        !          1810:   Bitmask notValid,           /* Cursors not available for any purpose */
        !          1811:   ExprList *pOrderBy,         /* The ORDER BY clause */
        !          1812:   WhereCost *pCost            /* Lowest cost query plan */
        !          1813: ){
        !          1814: #ifndef SQLITE_OMIT_OR_OPTIMIZATION
        !          1815:   const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
        !          1816:   const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
        !          1817:   WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
        !          1818:   WhereTerm *pTerm;                 /* A single term of the WHERE clause */
        !          1819: 
        !          1820:   /* The OR-clause optimization is disallowed if the INDEXED BY or
        !          1821:   ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
        !          1822:   if( pSrc->notIndexed || pSrc->pIndex!=0 ){
        !          1823:     return;
        !          1824:   }
        !          1825:   if( pWC->wctrlFlags & WHERE_AND_ONLY ){
        !          1826:     return;
        !          1827:   }
        !          1828: 
        !          1829:   /* Search the WHERE clause terms for a usable WO_OR term. */
        !          1830:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
        !          1831:     if( pTerm->eOperator==WO_OR 
        !          1832:      && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
        !          1833:      && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
        !          1834:     ){
        !          1835:       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
        !          1836:       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
        !          1837:       WhereTerm *pOrTerm;
        !          1838:       int flags = WHERE_MULTI_OR;
        !          1839:       double rTotal = 0;
        !          1840:       double nRow = 0;
        !          1841:       Bitmask used = 0;
        !          1842: 
        !          1843:       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        !          1844:         WhereCost sTermCost;
        !          1845:         WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
        !          1846:           (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        !          1847:         ));
        !          1848:         if( pOrTerm->eOperator==WO_AND ){
        !          1849:           WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
        !          1850:           bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
        !          1851:         }else if( pOrTerm->leftCursor==iCur ){
        !          1852:           WhereClause tempWC;
        !          1853:           tempWC.pParse = pWC->pParse;
        !          1854:           tempWC.pMaskSet = pWC->pMaskSet;
        !          1855:           tempWC.pOuter = pWC;
        !          1856:           tempWC.op = TK_AND;
        !          1857:           tempWC.a = pOrTerm;
        !          1858:           tempWC.wctrlFlags = 0;
        !          1859:           tempWC.nTerm = 1;
        !          1860:           bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
        !          1861:         }else{
        !          1862:           continue;
        !          1863:         }
        !          1864:         rTotal += sTermCost.rCost;
        !          1865:         nRow += sTermCost.plan.nRow;
        !          1866:         used |= sTermCost.used;
        !          1867:         if( rTotal>=pCost->rCost ) break;
        !          1868:       }
        !          1869: 
        !          1870:       /* If there is an ORDER BY clause, increase the scan cost to account 
        !          1871:       ** for the cost of the sort. */
        !          1872:       if( pOrderBy!=0 ){
        !          1873:         WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
        !          1874:                     rTotal, rTotal+nRow*estLog(nRow)));
        !          1875:         rTotal += nRow*estLog(nRow);
        !          1876:       }
        !          1877: 
        !          1878:       /* If the cost of scanning using this OR term for optimization is
        !          1879:       ** less than the current cost stored in pCost, replace the contents
        !          1880:       ** of pCost. */
        !          1881:       WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
        !          1882:       if( rTotal<pCost->rCost ){
        !          1883:         pCost->rCost = rTotal;
        !          1884:         pCost->used = used;
        !          1885:         pCost->plan.nRow = nRow;
        !          1886:         pCost->plan.wsFlags = flags;
        !          1887:         pCost->plan.u.pTerm = pTerm;
        !          1888:       }
        !          1889:     }
        !          1890:   }
        !          1891: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
        !          1892: }
        !          1893: 
        !          1894: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
        !          1895: /*
        !          1896: ** Return TRUE if the WHERE clause term pTerm is of a form where it
        !          1897: ** could be used with an index to access pSrc, assuming an appropriate
        !          1898: ** index existed.
        !          1899: */
        !          1900: static int termCanDriveIndex(
        !          1901:   WhereTerm *pTerm,              /* WHERE clause term to check */
        !          1902:   struct SrcList_item *pSrc,     /* Table we are trying to access */
        !          1903:   Bitmask notReady               /* Tables in outer loops of the join */
        !          1904: ){
        !          1905:   char aff;
        !          1906:   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
        !          1907:   if( pTerm->eOperator!=WO_EQ ) return 0;
        !          1908:   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
        !          1909:   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
        !          1910:   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
        !          1911:   return 1;
        !          1912: }
        !          1913: #endif
        !          1914: 
        !          1915: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
        !          1916: /*
        !          1917: ** If the query plan for pSrc specified in pCost is a full table scan
        !          1918: ** and indexing is allows (if there is no NOT INDEXED clause) and it
        !          1919: ** possible to construct a transient index that would perform better
        !          1920: ** than a full table scan even when the cost of constructing the index
        !          1921: ** is taken into account, then alter the query plan to use the
        !          1922: ** transient index.
        !          1923: */
        !          1924: static void bestAutomaticIndex(
        !          1925:   Parse *pParse,              /* The parsing context */
        !          1926:   WhereClause *pWC,           /* The WHERE clause */
        !          1927:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
        !          1928:   Bitmask notReady,           /* Mask of cursors that are not available */
        !          1929:   WhereCost *pCost            /* Lowest cost query plan */
        !          1930: ){
        !          1931:   double nTableRow;           /* Rows in the input table */
        !          1932:   double logN;                /* log(nTableRow) */
        !          1933:   double costTempIdx;         /* per-query cost of the transient index */
        !          1934:   WhereTerm *pTerm;           /* A single term of the WHERE clause */
        !          1935:   WhereTerm *pWCEnd;          /* End of pWC->a[] */
        !          1936:   Table *pTable;              /* Table tht might be indexed */
        !          1937: 
        !          1938:   if( pParse->nQueryLoop<=(double)1 ){
        !          1939:     /* There is no point in building an automatic index for a single scan */
        !          1940:     return;
        !          1941:   }
        !          1942:   if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
        !          1943:     /* Automatic indices are disabled at run-time */
        !          1944:     return;
        !          1945:   }
        !          1946:   if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
        !          1947:     /* We already have some kind of index in use for this query. */
        !          1948:     return;
        !          1949:   }
        !          1950:   if( pSrc->notIndexed ){
        !          1951:     /* The NOT INDEXED clause appears in the SQL. */
        !          1952:     return;
        !          1953:   }
        !          1954:   if( pSrc->isCorrelated ){
        !          1955:     /* The source is a correlated sub-query. No point in indexing it. */
        !          1956:     return;
        !          1957:   }
        !          1958: 
        !          1959:   assert( pParse->nQueryLoop >= (double)1 );
        !          1960:   pTable = pSrc->pTab;
        !          1961:   nTableRow = pTable->nRowEst;
        !          1962:   logN = estLog(nTableRow);
        !          1963:   costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
        !          1964:   if( costTempIdx>=pCost->rCost ){
        !          1965:     /* The cost of creating the transient table would be greater than
        !          1966:     ** doing the full table scan */
        !          1967:     return;
        !          1968:   }
        !          1969: 
        !          1970:   /* Search for any equality comparison term */
        !          1971:   pWCEnd = &pWC->a[pWC->nTerm];
        !          1972:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
        !          1973:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
        !          1974:       WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
        !          1975:                     pCost->rCost, costTempIdx));
        !          1976:       pCost->rCost = costTempIdx;
        !          1977:       pCost->plan.nRow = logN + 1;
        !          1978:       pCost->plan.wsFlags = WHERE_TEMP_INDEX;
        !          1979:       pCost->used = pTerm->prereqRight;
        !          1980:       break;
        !          1981:     }
        !          1982:   }
        !          1983: }
        !          1984: #else
        !          1985: # define bestAutomaticIndex(A,B,C,D,E)  /* no-op */
        !          1986: #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
        !          1987: 
        !          1988: 
        !          1989: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
        !          1990: /*
        !          1991: ** Generate code to construct the Index object for an automatic index
        !          1992: ** and to set up the WhereLevel object pLevel so that the code generator
        !          1993: ** makes use of the automatic index.
        !          1994: */
        !          1995: static void constructAutomaticIndex(
        !          1996:   Parse *pParse,              /* The parsing context */
        !          1997:   WhereClause *pWC,           /* The WHERE clause */
        !          1998:   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
        !          1999:   Bitmask notReady,           /* Mask of cursors that are not available */
        !          2000:   WhereLevel *pLevel          /* Write new index here */
        !          2001: ){
        !          2002:   int nColumn;                /* Number of columns in the constructed index */
        !          2003:   WhereTerm *pTerm;           /* A single term of the WHERE clause */
        !          2004:   WhereTerm *pWCEnd;          /* End of pWC->a[] */
        !          2005:   int nByte;                  /* Byte of memory needed for pIdx */
        !          2006:   Index *pIdx;                /* Object describing the transient index */
        !          2007:   Vdbe *v;                    /* Prepared statement under construction */
        !          2008:   int addrInit;               /* Address of the initialization bypass jump */
        !          2009:   Table *pTable;              /* The table being indexed */
        !          2010:   KeyInfo *pKeyinfo;          /* Key information for the index */   
        !          2011:   int addrTop;                /* Top of the index fill loop */
        !          2012:   int regRecord;              /* Register holding an index record */
        !          2013:   int n;                      /* Column counter */
        !          2014:   int i;                      /* Loop counter */
        !          2015:   int mxBitCol;               /* Maximum column in pSrc->colUsed */
        !          2016:   CollSeq *pColl;             /* Collating sequence to on a column */
        !          2017:   Bitmask idxCols;            /* Bitmap of columns used for indexing */
        !          2018:   Bitmask extraCols;          /* Bitmap of additional columns */
        !          2019: 
        !          2020:   /* Generate code to skip over the creation and initialization of the
        !          2021:   ** transient index on 2nd and subsequent iterations of the loop. */
        !          2022:   v = pParse->pVdbe;
        !          2023:   assert( v!=0 );
        !          2024:   addrInit = sqlite3CodeOnce(pParse);
        !          2025: 
        !          2026:   /* Count the number of columns that will be added to the index
        !          2027:   ** and used to match WHERE clause constraints */
        !          2028:   nColumn = 0;
        !          2029:   pTable = pSrc->pTab;
        !          2030:   pWCEnd = &pWC->a[pWC->nTerm];
        !          2031:   idxCols = 0;
        !          2032:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
        !          2033:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
        !          2034:       int iCol = pTerm->u.leftColumn;
        !          2035:       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
        !          2036:       testcase( iCol==BMS );
        !          2037:       testcase( iCol==BMS-1 );
        !          2038:       if( (idxCols & cMask)==0 ){
        !          2039:         nColumn++;
        !          2040:         idxCols |= cMask;
        !          2041:       }
        !          2042:     }
        !          2043:   }
        !          2044:   assert( nColumn>0 );
        !          2045:   pLevel->plan.nEq = nColumn;
        !          2046: 
        !          2047:   /* Count the number of additional columns needed to create a
        !          2048:   ** covering index.  A "covering index" is an index that contains all
        !          2049:   ** columns that are needed by the query.  With a covering index, the
        !          2050:   ** original table never needs to be accessed.  Automatic indices must
        !          2051:   ** be a covering index because the index will not be updated if the
        !          2052:   ** original table changes and the index and table cannot both be used
        !          2053:   ** if they go out of sync.
        !          2054:   */
        !          2055:   extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
        !          2056:   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
        !          2057:   testcase( pTable->nCol==BMS-1 );
        !          2058:   testcase( pTable->nCol==BMS-2 );
        !          2059:   for(i=0; i<mxBitCol; i++){
        !          2060:     if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
        !          2061:   }
        !          2062:   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
        !          2063:     nColumn += pTable->nCol - BMS + 1;
        !          2064:   }
        !          2065:   pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
        !          2066: 
        !          2067:   /* Construct the Index object to describe this index */
        !          2068:   nByte = sizeof(Index);
        !          2069:   nByte += nColumn*sizeof(int);     /* Index.aiColumn */
        !          2070:   nByte += nColumn*sizeof(char*);   /* Index.azColl */
        !          2071:   nByte += nColumn;                 /* Index.aSortOrder */
        !          2072:   pIdx = sqlite3DbMallocZero(pParse->db, nByte);
        !          2073:   if( pIdx==0 ) return;
        !          2074:   pLevel->plan.u.pIdx = pIdx;
        !          2075:   pIdx->azColl = (char**)&pIdx[1];
        !          2076:   pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
        !          2077:   pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
        !          2078:   pIdx->zName = "auto-index";
        !          2079:   pIdx->nColumn = nColumn;
        !          2080:   pIdx->pTable = pTable;
        !          2081:   n = 0;
        !          2082:   idxCols = 0;
        !          2083:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
        !          2084:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
        !          2085:       int iCol = pTerm->u.leftColumn;
        !          2086:       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
        !          2087:       if( (idxCols & cMask)==0 ){
        !          2088:         Expr *pX = pTerm->pExpr;
        !          2089:         idxCols |= cMask;
        !          2090:         pIdx->aiColumn[n] = pTerm->u.leftColumn;
        !          2091:         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        !          2092:         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
        !          2093:         n++;
        !          2094:       }
        !          2095:     }
        !          2096:   }
        !          2097:   assert( (u32)n==pLevel->plan.nEq );
        !          2098: 
        !          2099:   /* Add additional columns needed to make the automatic index into
        !          2100:   ** a covering index */
        !          2101:   for(i=0; i<mxBitCol; i++){
        !          2102:     if( extraCols & (((Bitmask)1)<<i) ){
        !          2103:       pIdx->aiColumn[n] = i;
        !          2104:       pIdx->azColl[n] = "BINARY";
        !          2105:       n++;
        !          2106:     }
        !          2107:   }
        !          2108:   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
        !          2109:     for(i=BMS-1; i<pTable->nCol; i++){
        !          2110:       pIdx->aiColumn[n] = i;
        !          2111:       pIdx->azColl[n] = "BINARY";
        !          2112:       n++;
        !          2113:     }
        !          2114:   }
        !          2115:   assert( n==nColumn );
        !          2116: 
        !          2117:   /* Create the automatic index */
        !          2118:   pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
        !          2119:   assert( pLevel->iIdxCur>=0 );
        !          2120:   sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
        !          2121:                     (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
        !          2122:   VdbeComment((v, "for %s", pTable->zName));
        !          2123: 
        !          2124:   /* Fill the automatic index with content */
        !          2125:   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
        !          2126:   regRecord = sqlite3GetTempReg(pParse);
        !          2127:   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
        !          2128:   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
        !          2129:   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
        !          2130:   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
        !          2131:   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
        !          2132:   sqlite3VdbeJumpHere(v, addrTop);
        !          2133:   sqlite3ReleaseTempReg(pParse, regRecord);
        !          2134:   
        !          2135:   /* Jump here when skipping the initialization */
        !          2136:   sqlite3VdbeJumpHere(v, addrInit);
        !          2137: }
        !          2138: #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
        !          2139: 
        !          2140: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          2141: /*
        !          2142: ** Allocate and populate an sqlite3_index_info structure. It is the 
        !          2143: ** responsibility of the caller to eventually release the structure
        !          2144: ** by passing the pointer returned by this function to sqlite3_free().
        !          2145: */
        !          2146: static sqlite3_index_info *allocateIndexInfo(
        !          2147:   Parse *pParse, 
        !          2148:   WhereClause *pWC,
        !          2149:   struct SrcList_item *pSrc,
        !          2150:   ExprList *pOrderBy
        !          2151: ){
        !          2152:   int i, j;
        !          2153:   int nTerm;
        !          2154:   struct sqlite3_index_constraint *pIdxCons;
        !          2155:   struct sqlite3_index_orderby *pIdxOrderBy;
        !          2156:   struct sqlite3_index_constraint_usage *pUsage;
        !          2157:   WhereTerm *pTerm;
        !          2158:   int nOrderBy;
        !          2159:   sqlite3_index_info *pIdxInfo;
        !          2160: 
        !          2161:   WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
        !          2162: 
        !          2163:   /* Count the number of possible WHERE clause constraints referring
        !          2164:   ** to this virtual table */
        !          2165:   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
        !          2166:     if( pTerm->leftCursor != pSrc->iCursor ) continue;
        !          2167:     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
        !          2168:     testcase( pTerm->eOperator==WO_IN );
        !          2169:     testcase( pTerm->eOperator==WO_ISNULL );
        !          2170:     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
        !          2171:     if( pTerm->wtFlags & TERM_VNULL ) continue;
        !          2172:     nTerm++;
        !          2173:   }
        !          2174: 
        !          2175:   /* If the ORDER BY clause contains only columns in the current 
        !          2176:   ** virtual table then allocate space for the aOrderBy part of
        !          2177:   ** the sqlite3_index_info structure.
        !          2178:   */
        !          2179:   nOrderBy = 0;
        !          2180:   if( pOrderBy ){
        !          2181:     for(i=0; i<pOrderBy->nExpr; i++){
        !          2182:       Expr *pExpr = pOrderBy->a[i].pExpr;
        !          2183:       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
        !          2184:     }
        !          2185:     if( i==pOrderBy->nExpr ){
        !          2186:       nOrderBy = pOrderBy->nExpr;
        !          2187:     }
        !          2188:   }
        !          2189: 
        !          2190:   /* Allocate the sqlite3_index_info structure
        !          2191:   */
        !          2192:   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
        !          2193:                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
        !          2194:                            + sizeof(*pIdxOrderBy)*nOrderBy );
        !          2195:   if( pIdxInfo==0 ){
        !          2196:     sqlite3ErrorMsg(pParse, "out of memory");
        !          2197:     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
        !          2198:     return 0;
        !          2199:   }
        !          2200: 
        !          2201:   /* Initialize the structure.  The sqlite3_index_info structure contains
        !          2202:   ** many fields that are declared "const" to prevent xBestIndex from
        !          2203:   ** changing them.  We have to do some funky casting in order to
        !          2204:   ** initialize those fields.
        !          2205:   */
        !          2206:   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
        !          2207:   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
        !          2208:   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
        !          2209:   *(int*)&pIdxInfo->nConstraint = nTerm;
        !          2210:   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
        !          2211:   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
        !          2212:   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
        !          2213:   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
        !          2214:                                                                    pUsage;
        !          2215: 
        !          2216:   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
        !          2217:     if( pTerm->leftCursor != pSrc->iCursor ) continue;
        !          2218:     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
        !          2219:     testcase( pTerm->eOperator==WO_IN );
        !          2220:     testcase( pTerm->eOperator==WO_ISNULL );
        !          2221:     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
        !          2222:     if( pTerm->wtFlags & TERM_VNULL ) continue;
        !          2223:     pIdxCons[j].iColumn = pTerm->u.leftColumn;
        !          2224:     pIdxCons[j].iTermOffset = i;
        !          2225:     pIdxCons[j].op = (u8)pTerm->eOperator;
        !          2226:     /* The direct assignment in the previous line is possible only because
        !          2227:     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
        !          2228:     ** following asserts verify this fact. */
        !          2229:     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
        !          2230:     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
        !          2231:     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
        !          2232:     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
        !          2233:     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
        !          2234:     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
        !          2235:     assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
        !          2236:     j++;
        !          2237:   }
        !          2238:   for(i=0; i<nOrderBy; i++){
        !          2239:     Expr *pExpr = pOrderBy->a[i].pExpr;
        !          2240:     pIdxOrderBy[i].iColumn = pExpr->iColumn;
        !          2241:     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
        !          2242:   }
        !          2243: 
        !          2244:   return pIdxInfo;
        !          2245: }
        !          2246: 
        !          2247: /*
        !          2248: ** The table object reference passed as the second argument to this function
        !          2249: ** must represent a virtual table. This function invokes the xBestIndex()
        !          2250: ** method of the virtual table with the sqlite3_index_info pointer passed
        !          2251: ** as the argument.
        !          2252: **
        !          2253: ** If an error occurs, pParse is populated with an error message and a
        !          2254: ** non-zero value is returned. Otherwise, 0 is returned and the output
        !          2255: ** part of the sqlite3_index_info structure is left populated.
        !          2256: **
        !          2257: ** Whether or not an error is returned, it is the responsibility of the
        !          2258: ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
        !          2259: ** that this is required.
        !          2260: */
        !          2261: static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
        !          2262:   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
        !          2263:   int i;
        !          2264:   int rc;
        !          2265: 
        !          2266:   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
        !          2267:   TRACE_IDX_INPUTS(p);
        !          2268:   rc = pVtab->pModule->xBestIndex(pVtab, p);
        !          2269:   TRACE_IDX_OUTPUTS(p);
        !          2270: 
        !          2271:   if( rc!=SQLITE_OK ){
        !          2272:     if( rc==SQLITE_NOMEM ){
        !          2273:       pParse->db->mallocFailed = 1;
        !          2274:     }else if( !pVtab->zErrMsg ){
        !          2275:       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
        !          2276:     }else{
        !          2277:       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
        !          2278:     }
        !          2279:   }
        !          2280:   sqlite3_free(pVtab->zErrMsg);
        !          2281:   pVtab->zErrMsg = 0;
        !          2282: 
        !          2283:   for(i=0; i<p->nConstraint; i++){
        !          2284:     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
        !          2285:       sqlite3ErrorMsg(pParse, 
        !          2286:           "table %s: xBestIndex returned an invalid plan", pTab->zName);
        !          2287:     }
        !          2288:   }
        !          2289: 
        !          2290:   return pParse->nErr;
        !          2291: }
        !          2292: 
        !          2293: 
        !          2294: /*
        !          2295: ** Compute the best index for a virtual table.
        !          2296: **
        !          2297: ** The best index is computed by the xBestIndex method of the virtual
        !          2298: ** table module.  This routine is really just a wrapper that sets up
        !          2299: ** the sqlite3_index_info structure that is used to communicate with
        !          2300: ** xBestIndex.
        !          2301: **
        !          2302: ** In a join, this routine might be called multiple times for the
        !          2303: ** same virtual table.  The sqlite3_index_info structure is created
        !          2304: ** and initialized on the first invocation and reused on all subsequent
        !          2305: ** invocations.  The sqlite3_index_info structure is also used when
        !          2306: ** code is generated to access the virtual table.  The whereInfoDelete() 
        !          2307: ** routine takes care of freeing the sqlite3_index_info structure after
        !          2308: ** everybody has finished with it.
        !          2309: */
        !          2310: static void bestVirtualIndex(
        !          2311:   Parse *pParse,                  /* The parsing context */
        !          2312:   WhereClause *pWC,               /* The WHERE clause */
        !          2313:   struct SrcList_item *pSrc,      /* The FROM clause term to search */
        !          2314:   Bitmask notReady,               /* Mask of cursors not available for index */
        !          2315:   Bitmask notValid,               /* Cursors not valid for any purpose */
        !          2316:   ExprList *pOrderBy,             /* The order by clause */
        !          2317:   WhereCost *pCost,               /* Lowest cost query plan */
        !          2318:   sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */
        !          2319: ){
        !          2320:   Table *pTab = pSrc->pTab;
        !          2321:   sqlite3_index_info *pIdxInfo;
        !          2322:   struct sqlite3_index_constraint *pIdxCons;
        !          2323:   struct sqlite3_index_constraint_usage *pUsage;
        !          2324:   WhereTerm *pTerm;
        !          2325:   int i, j;
        !          2326:   int nOrderBy;
        !          2327:   double rCost;
        !          2328: 
        !          2329:   /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
        !          2330:   ** malloc in allocateIndexInfo() fails and this function returns leaving
        !          2331:   ** wsFlags in an uninitialized state, the caller may behave unpredictably.
        !          2332:   */
        !          2333:   memset(pCost, 0, sizeof(*pCost));
        !          2334:   pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
        !          2335: 
        !          2336:   /* If the sqlite3_index_info structure has not been previously
        !          2337:   ** allocated and initialized, then allocate and initialize it now.
        !          2338:   */
        !          2339:   pIdxInfo = *ppIdxInfo;
        !          2340:   if( pIdxInfo==0 ){
        !          2341:     *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
        !          2342:   }
        !          2343:   if( pIdxInfo==0 ){
        !          2344:     return;
        !          2345:   }
        !          2346: 
        !          2347:   /* At this point, the sqlite3_index_info structure that pIdxInfo points
        !          2348:   ** to will have been initialized, either during the current invocation or
        !          2349:   ** during some prior invocation.  Now we just have to customize the
        !          2350:   ** details of pIdxInfo for the current invocation and pass it to
        !          2351:   ** xBestIndex.
        !          2352:   */
        !          2353: 
        !          2354:   /* The module name must be defined. Also, by this point there must
        !          2355:   ** be a pointer to an sqlite3_vtab structure. Otherwise
        !          2356:   ** sqlite3ViewGetColumnNames() would have picked up the error. 
        !          2357:   */
        !          2358:   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
        !          2359:   assert( sqlite3GetVTable(pParse->db, pTab) );
        !          2360: 
        !          2361:   /* Set the aConstraint[].usable fields and initialize all 
        !          2362:   ** output variables to zero.
        !          2363:   **
        !          2364:   ** aConstraint[].usable is true for constraints where the right-hand
        !          2365:   ** side contains only references to tables to the left of the current
        !          2366:   ** table.  In other words, if the constraint is of the form:
        !          2367:   **
        !          2368:   **           column = expr
        !          2369:   **
        !          2370:   ** and we are evaluating a join, then the constraint on column is 
        !          2371:   ** only valid if all tables referenced in expr occur to the left
        !          2372:   ** of the table containing column.
        !          2373:   **
        !          2374:   ** The aConstraints[] array contains entries for all constraints
        !          2375:   ** on the current table.  That way we only have to compute it once
        !          2376:   ** even though we might try to pick the best index multiple times.
        !          2377:   ** For each attempt at picking an index, the order of tables in the
        !          2378:   ** join might be different so we have to recompute the usable flag
        !          2379:   ** each time.
        !          2380:   */
        !          2381:   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
        !          2382:   pUsage = pIdxInfo->aConstraintUsage;
        !          2383:   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
        !          2384:     j = pIdxCons->iTermOffset;
        !          2385:     pTerm = &pWC->a[j];
        !          2386:     pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
        !          2387:   }
        !          2388:   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
        !          2389:   if( pIdxInfo->needToFreeIdxStr ){
        !          2390:     sqlite3_free(pIdxInfo->idxStr);
        !          2391:   }
        !          2392:   pIdxInfo->idxStr = 0;
        !          2393:   pIdxInfo->idxNum = 0;
        !          2394:   pIdxInfo->needToFreeIdxStr = 0;
        !          2395:   pIdxInfo->orderByConsumed = 0;
        !          2396:   /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
        !          2397:   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
        !          2398:   nOrderBy = pIdxInfo->nOrderBy;
        !          2399:   if( !pOrderBy ){
        !          2400:     pIdxInfo->nOrderBy = 0;
        !          2401:   }
        !          2402: 
        !          2403:   if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
        !          2404:     return;
        !          2405:   }
        !          2406: 
        !          2407:   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
        !          2408:   for(i=0; i<pIdxInfo->nConstraint; i++){
        !          2409:     if( pUsage[i].argvIndex>0 ){
        !          2410:       pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
        !          2411:     }
        !          2412:   }
        !          2413: 
        !          2414:   /* If there is an ORDER BY clause, and the selected virtual table index
        !          2415:   ** does not satisfy it, increase the cost of the scan accordingly. This
        !          2416:   ** matches the processing for non-virtual tables in bestBtreeIndex().
        !          2417:   */
        !          2418:   rCost = pIdxInfo->estimatedCost;
        !          2419:   if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
        !          2420:     rCost += estLog(rCost)*rCost;
        !          2421:   }
        !          2422: 
        !          2423:   /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
        !          2424:   ** inital value of lowestCost in this loop. If it is, then the
        !          2425:   ** (cost<lowestCost) test below will never be true.
        !          2426:   ** 
        !          2427:   ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
        !          2428:   ** is defined.
        !          2429:   */
        !          2430:   if( (SQLITE_BIG_DBL/((double)2))<rCost ){
        !          2431:     pCost->rCost = (SQLITE_BIG_DBL/((double)2));
        !          2432:   }else{
        !          2433:     pCost->rCost = rCost;
        !          2434:   }
        !          2435:   pCost->plan.u.pVtabIdx = pIdxInfo;
        !          2436:   if( pIdxInfo->orderByConsumed ){
        !          2437:     pCost->plan.wsFlags |= WHERE_ORDERBY;
        !          2438:   }
        !          2439:   pCost->plan.nEq = 0;
        !          2440:   pIdxInfo->nOrderBy = nOrderBy;
        !          2441: 
        !          2442:   /* Try to find a more efficient access pattern by using multiple indexes
        !          2443:   ** to optimize an OR expression within the WHERE clause. 
        !          2444:   */
        !          2445:   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
        !          2446: }
        !          2447: #endif /* SQLITE_OMIT_VIRTUALTABLE */
        !          2448: 
        !          2449: #ifdef SQLITE_ENABLE_STAT3
        !          2450: /*
        !          2451: ** Estimate the location of a particular key among all keys in an
        !          2452: ** index.  Store the results in aStat as follows:
        !          2453: **
        !          2454: **    aStat[0]      Est. number of rows less than pVal
        !          2455: **    aStat[1]      Est. number of rows equal to pVal
        !          2456: **
        !          2457: ** Return SQLITE_OK on success.
        !          2458: */
        !          2459: static int whereKeyStats(
        !          2460:   Parse *pParse,              /* Database connection */
        !          2461:   Index *pIdx,                /* Index to consider domain of */
        !          2462:   sqlite3_value *pVal,        /* Value to consider */
        !          2463:   int roundUp,                /* Round up if true.  Round down if false */
        !          2464:   tRowcnt *aStat              /* OUT: stats written here */
        !          2465: ){
        !          2466:   tRowcnt n;
        !          2467:   IndexSample *aSample;
        !          2468:   int i, eType;
        !          2469:   int isEq = 0;
        !          2470:   i64 v;
        !          2471:   double r, rS;
        !          2472: 
        !          2473:   assert( roundUp==0 || roundUp==1 );
        !          2474:   assert( pIdx->nSample>0 );
        !          2475:   if( pVal==0 ) return SQLITE_ERROR;
        !          2476:   n = pIdx->aiRowEst[0];
        !          2477:   aSample = pIdx->aSample;
        !          2478:   eType = sqlite3_value_type(pVal);
        !          2479: 
        !          2480:   if( eType==SQLITE_INTEGER ){
        !          2481:     v = sqlite3_value_int64(pVal);
        !          2482:     r = (i64)v;
        !          2483:     for(i=0; i<pIdx->nSample; i++){
        !          2484:       if( aSample[i].eType==SQLITE_NULL ) continue;
        !          2485:       if( aSample[i].eType>=SQLITE_TEXT ) break;
        !          2486:       if( aSample[i].eType==SQLITE_INTEGER ){
        !          2487:         if( aSample[i].u.i>=v ){
        !          2488:           isEq = aSample[i].u.i==v;
        !          2489:           break;
        !          2490:         }
        !          2491:       }else{
        !          2492:         assert( aSample[i].eType==SQLITE_FLOAT );
        !          2493:         if( aSample[i].u.r>=r ){
        !          2494:           isEq = aSample[i].u.r==r;
        !          2495:           break;
        !          2496:         }
        !          2497:       }
        !          2498:     }
        !          2499:   }else if( eType==SQLITE_FLOAT ){
        !          2500:     r = sqlite3_value_double(pVal);
        !          2501:     for(i=0; i<pIdx->nSample; i++){
        !          2502:       if( aSample[i].eType==SQLITE_NULL ) continue;
        !          2503:       if( aSample[i].eType>=SQLITE_TEXT ) break;
        !          2504:       if( aSample[i].eType==SQLITE_FLOAT ){
        !          2505:         rS = aSample[i].u.r;
        !          2506:       }else{
        !          2507:         rS = aSample[i].u.i;
        !          2508:       }
        !          2509:       if( rS>=r ){
        !          2510:         isEq = rS==r;
        !          2511:         break;
        !          2512:       }
        !          2513:     }
        !          2514:   }else if( eType==SQLITE_NULL ){
        !          2515:     i = 0;
        !          2516:     if( aSample[0].eType==SQLITE_NULL ) isEq = 1;
        !          2517:   }else{
        !          2518:     assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
        !          2519:     for(i=0; i<pIdx->nSample; i++){
        !          2520:       if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
        !          2521:         break;
        !          2522:       }
        !          2523:     }
        !          2524:     if( i<pIdx->nSample ){      
        !          2525:       sqlite3 *db = pParse->db;
        !          2526:       CollSeq *pColl;
        !          2527:       const u8 *z;
        !          2528:       if( eType==SQLITE_BLOB ){
        !          2529:         z = (const u8 *)sqlite3_value_blob(pVal);
        !          2530:         pColl = db->pDfltColl;
        !          2531:         assert( pColl->enc==SQLITE_UTF8 );
        !          2532:       }else{
        !          2533:         pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
        !          2534:         if( pColl==0 ){
        !          2535:           sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
        !          2536:                           *pIdx->azColl);
        !          2537:           return SQLITE_ERROR;
        !          2538:         }
        !          2539:         z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        !          2540:         if( !z ){
        !          2541:           return SQLITE_NOMEM;
        !          2542:         }
        !          2543:         assert( z && pColl && pColl->xCmp );
        !          2544:       }
        !          2545:       n = sqlite3ValueBytes(pVal, pColl->enc);
        !          2546:   
        !          2547:       for(; i<pIdx->nSample; i++){
        !          2548:         int c;
        !          2549:         int eSampletype = aSample[i].eType;
        !          2550:         if( eSampletype<eType ) continue;
        !          2551:         if( eSampletype!=eType ) break;
        !          2552: #ifndef SQLITE_OMIT_UTF16
        !          2553:         if( pColl->enc!=SQLITE_UTF8 ){
        !          2554:           int nSample;
        !          2555:           char *zSample = sqlite3Utf8to16(
        !          2556:               db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
        !          2557:           );
        !          2558:           if( !zSample ){
        !          2559:             assert( db->mallocFailed );
        !          2560:             return SQLITE_NOMEM;
        !          2561:           }
        !          2562:           c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
        !          2563:           sqlite3DbFree(db, zSample);
        !          2564:         }else
        !          2565: #endif
        !          2566:         {
        !          2567:           c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        !          2568:         }
        !          2569:         if( c>=0 ){
        !          2570:           if( c==0 ) isEq = 1;
        !          2571:           break;
        !          2572:         }
        !          2573:       }
        !          2574:     }
        !          2575:   }
        !          2576: 
        !          2577:   /* At this point, aSample[i] is the first sample that is greater than
        !          2578:   ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
        !          2579:   ** than pVal.  If aSample[i]==pVal, then isEq==1.
        !          2580:   */
        !          2581:   if( isEq ){
        !          2582:     assert( i<pIdx->nSample );
        !          2583:     aStat[0] = aSample[i].nLt;
        !          2584:     aStat[1] = aSample[i].nEq;
        !          2585:   }else{
        !          2586:     tRowcnt iLower, iUpper, iGap;
        !          2587:     if( i==0 ){
        !          2588:       iLower = 0;
        !          2589:       iUpper = aSample[0].nLt;
        !          2590:     }else{
        !          2591:       iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
        !          2592:       iLower = aSample[i-1].nEq + aSample[i-1].nLt;
        !          2593:     }
        !          2594:     aStat[1] = pIdx->avgEq;
        !          2595:     if( iLower>=iUpper ){
        !          2596:       iGap = 0;
        !          2597:     }else{
        !          2598:       iGap = iUpper - iLower;
        !          2599:     }
        !          2600:     if( roundUp ){
        !          2601:       iGap = (iGap*2)/3;
        !          2602:     }else{
        !          2603:       iGap = iGap/3;
        !          2604:     }
        !          2605:     aStat[0] = iLower + iGap;
        !          2606:   }
        !          2607:   return SQLITE_OK;
        !          2608: }
        !          2609: #endif /* SQLITE_ENABLE_STAT3 */
        !          2610: 
        !          2611: /*
        !          2612: ** If expression pExpr represents a literal value, set *pp to point to
        !          2613: ** an sqlite3_value structure containing the same value, with affinity
        !          2614: ** aff applied to it, before returning. It is the responsibility of the 
        !          2615: ** caller to eventually release this structure by passing it to 
        !          2616: ** sqlite3ValueFree().
        !          2617: **
        !          2618: ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
        !          2619: ** is an SQL variable that currently has a non-NULL value bound to it,
        !          2620: ** create an sqlite3_value structure containing this value, again with
        !          2621: ** affinity aff applied to it, instead.
        !          2622: **
        !          2623: ** If neither of the above apply, set *pp to NULL.
        !          2624: **
        !          2625: ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
        !          2626: */
        !          2627: #ifdef SQLITE_ENABLE_STAT3
        !          2628: static int valueFromExpr(
        !          2629:   Parse *pParse, 
        !          2630:   Expr *pExpr, 
        !          2631:   u8 aff, 
        !          2632:   sqlite3_value **pp
        !          2633: ){
        !          2634:   if( pExpr->op==TK_VARIABLE
        !          2635:    || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
        !          2636:   ){
        !          2637:     int iVar = pExpr->iColumn;
        !          2638:     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
        !          2639:     *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
        !          2640:     return SQLITE_OK;
        !          2641:   }
        !          2642:   return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
        !          2643: }
        !          2644: #endif
        !          2645: 
        !          2646: /*
        !          2647: ** This function is used to estimate the number of rows that will be visited
        !          2648: ** by scanning an index for a range of values. The range may have an upper
        !          2649: ** bound, a lower bound, or both. The WHERE clause terms that set the upper
        !          2650: ** and lower bounds are represented by pLower and pUpper respectively. For
        !          2651: ** example, assuming that index p is on t1(a):
        !          2652: **
        !          2653: **   ... FROM t1 WHERE a > ? AND a < ? ...
        !          2654: **                    |_____|   |_____|
        !          2655: **                       |         |
        !          2656: **                     pLower    pUpper
        !          2657: **
        !          2658: ** If either of the upper or lower bound is not present, then NULL is passed in
        !          2659: ** place of the corresponding WhereTerm.
        !          2660: **
        !          2661: ** The nEq parameter is passed the index of the index column subject to the
        !          2662: ** range constraint. Or, equivalently, the number of equality constraints
        !          2663: ** optimized by the proposed index scan. For example, assuming index p is
        !          2664: ** on t1(a, b), and the SQL query is:
        !          2665: **
        !          2666: **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
        !          2667: **
        !          2668: ** then nEq should be passed the value 1 (as the range restricted column,
        !          2669: ** b, is the second left-most column of the index). Or, if the query is:
        !          2670: **
        !          2671: **   ... FROM t1 WHERE a > ? AND a < ? ...
        !          2672: **
        !          2673: ** then nEq should be passed 0.
        !          2674: **
        !          2675: ** The returned value is an integer divisor to reduce the estimated
        !          2676: ** search space.  A return value of 1 means that range constraints are
        !          2677: ** no help at all.  A return value of 2 means range constraints are
        !          2678: ** expected to reduce the search space by half.  And so forth...
        !          2679: **
        !          2680: ** In the absence of sqlite_stat3 ANALYZE data, each range inequality
        !          2681: ** reduces the search space by a factor of 4.  Hence a single constraint (x>?)
        !          2682: ** results in a return of 4 and a range constraint (x>? AND x<?) results
        !          2683: ** in a return of 16.
        !          2684: */
        !          2685: static int whereRangeScanEst(
        !          2686:   Parse *pParse,       /* Parsing & code generating context */
        !          2687:   Index *p,            /* The index containing the range-compared column; "x" */
        !          2688:   int nEq,             /* index into p->aCol[] of the range-compared column */
        !          2689:   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
        !          2690:   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
        !          2691:   double *pRangeDiv   /* OUT: Reduce search space by this divisor */
        !          2692: ){
        !          2693:   int rc = SQLITE_OK;
        !          2694: 
        !          2695: #ifdef SQLITE_ENABLE_STAT3
        !          2696: 
        !          2697:   if( nEq==0 && p->nSample ){
        !          2698:     sqlite3_value *pRangeVal;
        !          2699:     tRowcnt iLower = 0;
        !          2700:     tRowcnt iUpper = p->aiRowEst[0];
        !          2701:     tRowcnt a[2];
        !          2702:     u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
        !          2703: 
        !          2704:     if( pLower ){
        !          2705:       Expr *pExpr = pLower->pExpr->pRight;
        !          2706:       rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
        !          2707:       assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
        !          2708:       if( rc==SQLITE_OK
        !          2709:        && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
        !          2710:       ){
        !          2711:         iLower = a[0];
        !          2712:         if( pLower->eOperator==WO_GT ) iLower += a[1];
        !          2713:       }
        !          2714:       sqlite3ValueFree(pRangeVal);
        !          2715:     }
        !          2716:     if( rc==SQLITE_OK && pUpper ){
        !          2717:       Expr *pExpr = pUpper->pExpr->pRight;
        !          2718:       rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
        !          2719:       assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
        !          2720:       if( rc==SQLITE_OK
        !          2721:        && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
        !          2722:       ){
        !          2723:         iUpper = a[0];
        !          2724:         if( pUpper->eOperator==WO_LE ) iUpper += a[1];
        !          2725:       }
        !          2726:       sqlite3ValueFree(pRangeVal);
        !          2727:     }
        !          2728:     if( rc==SQLITE_OK ){
        !          2729:       if( iUpper<=iLower ){
        !          2730:         *pRangeDiv = (double)p->aiRowEst[0];
        !          2731:       }else{
        !          2732:         *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
        !          2733:       }
        !          2734:       WHERETRACE(("range scan regions: %u..%u  div=%g\n",
        !          2735:                   (u32)iLower, (u32)iUpper, *pRangeDiv));
        !          2736:       return SQLITE_OK;
        !          2737:     }
        !          2738:   }
        !          2739: #else
        !          2740:   UNUSED_PARAMETER(pParse);
        !          2741:   UNUSED_PARAMETER(p);
        !          2742:   UNUSED_PARAMETER(nEq);
        !          2743: #endif
        !          2744:   assert( pLower || pUpper );
        !          2745:   *pRangeDiv = (double)1;
        !          2746:   if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;
        !          2747:   if( pUpper ) *pRangeDiv *= (double)4;
        !          2748:   return rc;
        !          2749: }
        !          2750: 
        !          2751: #ifdef SQLITE_ENABLE_STAT3
        !          2752: /*
        !          2753: ** Estimate the number of rows that will be returned based on
        !          2754: ** an equality constraint x=VALUE and where that VALUE occurs in
        !          2755: ** the histogram data.  This only works when x is the left-most
        !          2756: ** column of an index and sqlite_stat3 histogram data is available
        !          2757: ** for that index.  When pExpr==NULL that means the constraint is
        !          2758: ** "x IS NULL" instead of "x=VALUE".
        !          2759: **
        !          2760: ** Write the estimated row count into *pnRow and return SQLITE_OK. 
        !          2761: ** If unable to make an estimate, leave *pnRow unchanged and return
        !          2762: ** non-zero.
        !          2763: **
        !          2764: ** This routine can fail if it is unable to load a collating sequence
        !          2765: ** required for string comparison, or if unable to allocate memory
        !          2766: ** for a UTF conversion required for comparison.  The error is stored
        !          2767: ** in the pParse structure.
        !          2768: */
        !          2769: static int whereEqualScanEst(
        !          2770:   Parse *pParse,       /* Parsing & code generating context */
        !          2771:   Index *p,            /* The index whose left-most column is pTerm */
        !          2772:   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
        !          2773:   double *pnRow        /* Write the revised row estimate here */
        !          2774: ){
        !          2775:   sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
        !          2776:   u8 aff;                   /* Column affinity */
        !          2777:   int rc;                   /* Subfunction return code */
        !          2778:   tRowcnt a[2];             /* Statistics */
        !          2779: 
        !          2780:   assert( p->aSample!=0 );
        !          2781:   assert( p->nSample>0 );
        !          2782:   aff = p->pTable->aCol[p->aiColumn[0]].affinity;
        !          2783:   if( pExpr ){
        !          2784:     rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
        !          2785:     if( rc ) goto whereEqualScanEst_cancel;
        !          2786:   }else{
        !          2787:     pRhs = sqlite3ValueNew(pParse->db);
        !          2788:   }
        !          2789:   if( pRhs==0 ) return SQLITE_NOTFOUND;
        !          2790:   rc = whereKeyStats(pParse, p, pRhs, 0, a);
        !          2791:   if( rc==SQLITE_OK ){
        !          2792:     WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
        !          2793:     *pnRow = a[1];
        !          2794:   }
        !          2795: whereEqualScanEst_cancel:
        !          2796:   sqlite3ValueFree(pRhs);
        !          2797:   return rc;
        !          2798: }
        !          2799: #endif /* defined(SQLITE_ENABLE_STAT3) */
        !          2800: 
        !          2801: #ifdef SQLITE_ENABLE_STAT3
        !          2802: /*
        !          2803: ** Estimate the number of rows that will be returned based on
        !          2804: ** an IN constraint where the right-hand side of the IN operator
        !          2805: ** is a list of values.  Example:
        !          2806: **
        !          2807: **        WHERE x IN (1,2,3,4)
        !          2808: **
        !          2809: ** Write the estimated row count into *pnRow and return SQLITE_OK. 
        !          2810: ** If unable to make an estimate, leave *pnRow unchanged and return
        !          2811: ** non-zero.
        !          2812: **
        !          2813: ** This routine can fail if it is unable to load a collating sequence
        !          2814: ** required for string comparison, or if unable to allocate memory
        !          2815: ** for a UTF conversion required for comparison.  The error is stored
        !          2816: ** in the pParse structure.
        !          2817: */
        !          2818: static int whereInScanEst(
        !          2819:   Parse *pParse,       /* Parsing & code generating context */
        !          2820:   Index *p,            /* The index whose left-most column is pTerm */
        !          2821:   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
        !          2822:   double *pnRow        /* Write the revised row estimate here */
        !          2823: ){
        !          2824:   int rc = SQLITE_OK;         /* Subfunction return code */
        !          2825:   double nEst;                /* Number of rows for a single term */
        !          2826:   double nRowEst = (double)0; /* New estimate of the number of rows */
        !          2827:   int i;                      /* Loop counter */
        !          2828: 
        !          2829:   assert( p->aSample!=0 );
        !          2830:   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
        !          2831:     nEst = p->aiRowEst[0];
        !          2832:     rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
        !          2833:     nRowEst += nEst;
        !          2834:   }
        !          2835:   if( rc==SQLITE_OK ){
        !          2836:     if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
        !          2837:     *pnRow = nRowEst;
        !          2838:     WHERETRACE(("IN row estimate: est=%g\n", nRowEst));
        !          2839:   }
        !          2840:   return rc;
        !          2841: }
        !          2842: #endif /* defined(SQLITE_ENABLE_STAT3) */
        !          2843: 
        !          2844: 
        !          2845: /*
        !          2846: ** Find the best query plan for accessing a particular table.  Write the
        !          2847: ** best query plan and its cost into the WhereCost object supplied as the
        !          2848: ** last parameter.
        !          2849: **
        !          2850: ** The lowest cost plan wins.  The cost is an estimate of the amount of
        !          2851: ** CPU and disk I/O needed to process the requested result.
        !          2852: ** Factors that influence cost include:
        !          2853: **
        !          2854: **    *  The estimated number of rows that will be retrieved.  (The
        !          2855: **       fewer the better.)
        !          2856: **
        !          2857: **    *  Whether or not sorting must occur.
        !          2858: **
        !          2859: **    *  Whether or not there must be separate lookups in the
        !          2860: **       index and in the main table.
        !          2861: **
        !          2862: ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
        !          2863: ** the SQL statement, then this function only considers plans using the 
        !          2864: ** named index. If no such plan is found, then the returned cost is
        !          2865: ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 
        !          2866: ** then the cost is calculated in the usual way.
        !          2867: **
        !          2868: ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 
        !          2869: ** in the SELECT statement, then no indexes are considered. However, the 
        !          2870: ** selected plan may still take advantage of the built-in rowid primary key
        !          2871: ** index.
        !          2872: */
        !          2873: static void bestBtreeIndex(
        !          2874:   Parse *pParse,              /* The parsing context */
        !          2875:   WhereClause *pWC,           /* The WHERE clause */
        !          2876:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
        !          2877:   Bitmask notReady,           /* Mask of cursors not available for indexing */
        !          2878:   Bitmask notValid,           /* Cursors not available for any purpose */
        !          2879:   ExprList *pOrderBy,         /* The ORDER BY clause */
        !          2880:   ExprList *pDistinct,        /* The select-list if query is DISTINCT */
        !          2881:   WhereCost *pCost            /* Lowest cost query plan */
        !          2882: ){
        !          2883:   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
        !          2884:   Index *pProbe;              /* An index we are evaluating */
        !          2885:   Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
        !          2886:   int eqTermMask;             /* Current mask of valid equality operators */
        !          2887:   int idxEqTermMask;          /* Index mask of valid equality operators */
        !          2888:   Index sPk;                  /* A fake index object for the primary key */
        !          2889:   tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
        !          2890:   int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
        !          2891:   int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */
        !          2892: 
        !          2893:   /* Initialize the cost to a worst-case value */
        !          2894:   memset(pCost, 0, sizeof(*pCost));
        !          2895:   pCost->rCost = SQLITE_BIG_DBL;
        !          2896: 
        !          2897:   /* If the pSrc table is the right table of a LEFT JOIN then we may not
        !          2898:   ** use an index to satisfy IS NULL constraints on that table.  This is
        !          2899:   ** because columns might end up being NULL if the table does not match -
        !          2900:   ** a circumstance which the index cannot help us discover.  Ticket #2177.
        !          2901:   */
        !          2902:   if( pSrc->jointype & JT_LEFT ){
        !          2903:     idxEqTermMask = WO_EQ|WO_IN;
        !          2904:   }else{
        !          2905:     idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
        !          2906:   }
        !          2907: 
        !          2908:   if( pSrc->pIndex ){
        !          2909:     /* An INDEXED BY clause specifies a particular index to use */
        !          2910:     pIdx = pProbe = pSrc->pIndex;
        !          2911:     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
        !          2912:     eqTermMask = idxEqTermMask;
        !          2913:   }else{
        !          2914:     /* There is no INDEXED BY clause.  Create a fake Index object in local
        !          2915:     ** variable sPk to represent the rowid primary key index.  Make this
        !          2916:     ** fake index the first in a chain of Index objects with all of the real
        !          2917:     ** indices to follow */
        !          2918:     Index *pFirst;                  /* First of real indices on the table */
        !          2919:     memset(&sPk, 0, sizeof(Index));
        !          2920:     sPk.nColumn = 1;
        !          2921:     sPk.aiColumn = &aiColumnPk;
        !          2922:     sPk.aiRowEst = aiRowEstPk;
        !          2923:     sPk.onError = OE_Replace;
        !          2924:     sPk.pTable = pSrc->pTab;
        !          2925:     aiRowEstPk[0] = pSrc->pTab->nRowEst;
        !          2926:     aiRowEstPk[1] = 1;
        !          2927:     pFirst = pSrc->pTab->pIndex;
        !          2928:     if( pSrc->notIndexed==0 ){
        !          2929:       /* The real indices of the table are only considered if the
        !          2930:       ** NOT INDEXED qualifier is omitted from the FROM clause */
        !          2931:       sPk.pNext = pFirst;
        !          2932:     }
        !          2933:     pProbe = &sPk;
        !          2934:     wsFlagMask = ~(
        !          2935:         WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
        !          2936:     );
        !          2937:     eqTermMask = WO_EQ|WO_IN;
        !          2938:     pIdx = 0;
        !          2939:   }
        !          2940: 
        !          2941:   /* Loop over all indices looking for the best one to use
        !          2942:   */
        !          2943:   for(; pProbe; pIdx=pProbe=pProbe->pNext){
        !          2944:     const tRowcnt * const aiRowEst = pProbe->aiRowEst;
        !          2945:     double cost;                /* Cost of using pProbe */
        !          2946:     double nRow;                /* Estimated number of rows in result set */
        !          2947:     double log10N = (double)1;  /* base-10 logarithm of nRow (inexact) */
        !          2948:     int rev;                    /* True to scan in reverse order */
        !          2949:     int wsFlags = 0;
        !          2950:     Bitmask used = 0;
        !          2951: 
        !          2952:     /* The following variables are populated based on the properties of
        !          2953:     ** index being evaluated. They are then used to determine the expected
        !          2954:     ** cost and number of rows returned.
        !          2955:     **
        !          2956:     **  nEq: 
        !          2957:     **    Number of equality terms that can be implemented using the index.
        !          2958:     **    In other words, the number of initial fields in the index that
        !          2959:     **    are used in == or IN or NOT NULL constraints of the WHERE clause.
        !          2960:     **
        !          2961:     **  nInMul:  
        !          2962:     **    The "in-multiplier". This is an estimate of how many seek operations 
        !          2963:     **    SQLite must perform on the index in question. For example, if the 
        !          2964:     **    WHERE clause is:
        !          2965:     **
        !          2966:     **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
        !          2967:     **
        !          2968:     **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is 
        !          2969:     **    set to 9. Given the same schema and either of the following WHERE 
        !          2970:     **    clauses:
        !          2971:     **
        !          2972:     **      WHERE a =  1
        !          2973:     **      WHERE a >= 2
        !          2974:     **
        !          2975:     **    nInMul is set to 1.
        !          2976:     **
        !          2977:     **    If there exists a WHERE term of the form "x IN (SELECT ...)", then 
        !          2978:     **    the sub-select is assumed to return 25 rows for the purposes of 
        !          2979:     **    determining nInMul.
        !          2980:     **
        !          2981:     **  bInEst:  
        !          2982:     **    Set to true if there was at least one "x IN (SELECT ...)" term used 
        !          2983:     **    in determining the value of nInMul.  Note that the RHS of the
        !          2984:     **    IN operator must be a SELECT, not a value list, for this variable
        !          2985:     **    to be true.
        !          2986:     **
        !          2987:     **  rangeDiv:
        !          2988:     **    An estimate of a divisor by which to reduce the search space due
        !          2989:     **    to inequality constraints.  In the absence of sqlite_stat3 ANALYZE
        !          2990:     **    data, a single inequality reduces the search space to 1/4rd its
        !          2991:     **    original size (rangeDiv==4).  Two inequalities reduce the search
        !          2992:     **    space to 1/16th of its original size (rangeDiv==16).
        !          2993:     **
        !          2994:     **  bSort:   
        !          2995:     **    Boolean. True if there is an ORDER BY clause that will require an 
        !          2996:     **    external sort (i.e. scanning the index being evaluated will not 
        !          2997:     **    correctly order records).
        !          2998:     **
        !          2999:     **  bLookup: 
        !          3000:     **    Boolean. True if a table lookup is required for each index entry
        !          3001:     **    visited.  In other words, true if this is not a covering index.
        !          3002:     **    This is always false for the rowid primary key index of a table.
        !          3003:     **    For other indexes, it is true unless all the columns of the table
        !          3004:     **    used by the SELECT statement are present in the index (such an
        !          3005:     **    index is sometimes described as a covering index).
        !          3006:     **    For example, given the index on (a, b), the second of the following 
        !          3007:     **    two queries requires table b-tree lookups in order to find the value
        !          3008:     **    of column c, but the first does not because columns a and b are
        !          3009:     **    both available in the index.
        !          3010:     **
        !          3011:     **             SELECT a, b    FROM tbl WHERE a = 1;
        !          3012:     **             SELECT a, b, c FROM tbl WHERE a = 1;
        !          3013:     */
        !          3014:     int nEq;                      /* Number of == or IN terms matching index */
        !          3015:     int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
        !          3016:     int nInMul = 1;               /* Number of distinct equalities to lookup */
        !          3017:     double rangeDiv = (double)1;  /* Estimated reduction in search space */
        !          3018:     int nBound = 0;               /* Number of range constraints seen */
        !          3019:     int bSort = !!pOrderBy;       /* True if external sort required */
        !          3020:     int bDist = !!pDistinct;      /* True if index cannot help with DISTINCT */
        !          3021:     int bLookup = 0;              /* True if not a covering index */
        !          3022:     WhereTerm *pTerm;             /* A single term of the WHERE clause */
        !          3023: #ifdef SQLITE_ENABLE_STAT3
        !          3024:     WhereTerm *pFirstTerm = 0;    /* First term matching the index */
        !          3025: #endif
        !          3026: 
        !          3027:     /* Determine the values of nEq and nInMul */
        !          3028:     for(nEq=0; nEq<pProbe->nColumn; nEq++){
        !          3029:       int j = pProbe->aiColumn[nEq];
        !          3030:       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
        !          3031:       if( pTerm==0 ) break;
        !          3032:       wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
        !          3033:       testcase( pTerm->pWC!=pWC );
        !          3034:       if( pTerm->eOperator & WO_IN ){
        !          3035:         Expr *pExpr = pTerm->pExpr;
        !          3036:         wsFlags |= WHERE_COLUMN_IN;
        !          3037:         if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        !          3038:           /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */
        !          3039:           nInMul *= 25;
        !          3040:           bInEst = 1;
        !          3041:         }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        !          3042:           /* "x IN (value, value, ...)" */
        !          3043:           nInMul *= pExpr->x.pList->nExpr;
        !          3044:         }
        !          3045:       }else if( pTerm->eOperator & WO_ISNULL ){
        !          3046:         wsFlags |= WHERE_COLUMN_NULL;
        !          3047:       }
        !          3048: #ifdef SQLITE_ENABLE_STAT3
        !          3049:       if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
        !          3050: #endif
        !          3051:       used |= pTerm->prereqRight;
        !          3052:     }
        !          3053:  
        !          3054:     /* If the index being considered is UNIQUE, and there is an equality 
        !          3055:     ** constraint for all columns in the index, then this search will find
        !          3056:     ** at most a single row. In this case set the WHERE_UNIQUE flag to 
        !          3057:     ** indicate this to the caller.
        !          3058:     **
        !          3059:     ** Otherwise, if the search may find more than one row, test to see if
        !          3060:     ** there is a range constraint on indexed column (nEq+1) that can be 
        !          3061:     ** optimized using the index. 
        !          3062:     */
        !          3063:     if( nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
        !          3064:       testcase( wsFlags & WHERE_COLUMN_IN );
        !          3065:       testcase( wsFlags & WHERE_COLUMN_NULL );
        !          3066:       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        !          3067:         wsFlags |= WHERE_UNIQUE;
        !          3068:       }
        !          3069:     }else if( pProbe->bUnordered==0 ){
        !          3070:       int j = (nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[nEq]);
        !          3071:       if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        !          3072:         WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        !          3073:         WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
        !          3074:         whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &rangeDiv);
        !          3075:         if( pTop ){
        !          3076:           nBound = 1;
        !          3077:           wsFlags |= WHERE_TOP_LIMIT;
        !          3078:           used |= pTop->prereqRight;
        !          3079:           testcase( pTop->pWC!=pWC );
        !          3080:         }
        !          3081:         if( pBtm ){
        !          3082:           nBound++;
        !          3083:           wsFlags |= WHERE_BTM_LIMIT;
        !          3084:           used |= pBtm->prereqRight;
        !          3085:           testcase( pBtm->pWC!=pWC );
        !          3086:         }
        !          3087:         wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
        !          3088:       }
        !          3089:     }
        !          3090: 
        !          3091:     /* If there is an ORDER BY clause and the index being considered will
        !          3092:     ** naturally scan rows in the required order, set the appropriate flags
        !          3093:     ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
        !          3094:     ** will scan rows in a different order, set the bSort variable.  */
        !          3095:     if( isSortingIndex(
        !          3096:           pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev)
        !          3097:     ){
        !          3098:       bSort = 0;
        !          3099:       wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
        !          3100:       wsFlags |= (rev ? WHERE_REVERSE : 0);
        !          3101:     }
        !          3102: 
        !          3103:     /* If there is a DISTINCT qualifier and this index will scan rows in
        !          3104:     ** order of the DISTINCT expressions, clear bDist and set the appropriate
        !          3105:     ** flags in wsFlags. */
        !          3106:     if( isDistinctIndex(pParse, pWC, pProbe, iCur, pDistinct, nEq) ){
        !          3107:       bDist = 0;
        !          3108:       wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
        !          3109:     }
        !          3110: 
        !          3111:     /* If currently calculating the cost of using an index (not the IPK
        !          3112:     ** index), determine if all required column data may be obtained without 
        !          3113:     ** using the main table (i.e. if the index is a covering
        !          3114:     ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
        !          3115:     ** wsFlags. Otherwise, set the bLookup variable to true.  */
        !          3116:     if( pIdx && wsFlags ){
        !          3117:       Bitmask m = pSrc->colUsed;
        !          3118:       int j;
        !          3119:       for(j=0; j<pIdx->nColumn; j++){
        !          3120:         int x = pIdx->aiColumn[j];
        !          3121:         if( x<BMS-1 ){
        !          3122:           m &= ~(((Bitmask)1)<<x);
        !          3123:         }
        !          3124:       }
        !          3125:       if( m==0 ){
        !          3126:         wsFlags |= WHERE_IDX_ONLY;
        !          3127:       }else{
        !          3128:         bLookup = 1;
        !          3129:       }
        !          3130:     }
        !          3131: 
        !          3132:     /*
        !          3133:     ** Estimate the number of rows of output.  For an "x IN (SELECT...)"
        !          3134:     ** constraint, do not let the estimate exceed half the rows in the table.
        !          3135:     */
        !          3136:     nRow = (double)(aiRowEst[nEq] * nInMul);
        !          3137:     if( bInEst && nRow*2>aiRowEst[0] ){
        !          3138:       nRow = aiRowEst[0]/2;
        !          3139:       nInMul = (int)(nRow / aiRowEst[nEq]);
        !          3140:     }
        !          3141: 
        !          3142: #ifdef SQLITE_ENABLE_STAT3
        !          3143:     /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
        !          3144:     ** and we do not think that values of x are unique and if histogram
        !          3145:     ** data is available for column x, then it might be possible
        !          3146:     ** to get a better estimate on the number of rows based on
        !          3147:     ** VALUE and how common that value is according to the histogram.
        !          3148:     */
        !          3149:     if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
        !          3150:       assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
        !          3151:       if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        !          3152:         testcase( pFirstTerm->eOperator==WO_EQ );
        !          3153:         testcase( pFirstTerm->eOperator==WO_ISNULL );
        !          3154:         whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
        !          3155:       }else if( bInEst==0 ){
        !          3156:         assert( pFirstTerm->eOperator==WO_IN );
        !          3157:         whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
        !          3158:       }
        !          3159:     }
        !          3160: #endif /* SQLITE_ENABLE_STAT3 */
        !          3161: 
        !          3162:     /* Adjust the number of output rows and downward to reflect rows
        !          3163:     ** that are excluded by range constraints.
        !          3164:     */
        !          3165:     nRow = nRow/rangeDiv;
        !          3166:     if( nRow<1 ) nRow = 1;
        !          3167: 
        !          3168:     /* Experiments run on real SQLite databases show that the time needed
        !          3169:     ** to do a binary search to locate a row in a table or index is roughly
        !          3170:     ** log10(N) times the time to move from one row to the next row within
        !          3171:     ** a table or index.  The actual times can vary, with the size of
        !          3172:     ** records being an important factor.  Both moves and searches are
        !          3173:     ** slower with larger records, presumably because fewer records fit
        !          3174:     ** on one page and hence more pages have to be fetched.
        !          3175:     **
        !          3176:     ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
        !          3177:     ** not give us data on the relative sizes of table and index records.
        !          3178:     ** So this computation assumes table records are about twice as big
        !          3179:     ** as index records
        !          3180:     */
        !          3181:     if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
        !          3182:       /* The cost of a full table scan is a number of move operations equal
        !          3183:       ** to the number of rows in the table.
        !          3184:       **
        !          3185:       ** We add an additional 4x penalty to full table scans.  This causes
        !          3186:       ** the cost function to err on the side of choosing an index over
        !          3187:       ** choosing a full scan.  This 4x full-scan penalty is an arguable
        !          3188:       ** decision and one which we expect to revisit in the future.  But
        !          3189:       ** it seems to be working well enough at the moment.
        !          3190:       */
        !          3191:       cost = aiRowEst[0]*4;
        !          3192:     }else{
        !          3193:       log10N = estLog(aiRowEst[0]);
        !          3194:       cost = nRow;
        !          3195:       if( pIdx ){
        !          3196:         if( bLookup ){
        !          3197:           /* For an index lookup followed by a table lookup:
        !          3198:           **    nInMul index searches to find the start of each index range
        !          3199:           **  + nRow steps through the index
        !          3200:           **  + nRow table searches to lookup the table entry using the rowid
        !          3201:           */
        !          3202:           cost += (nInMul + nRow)*log10N;
        !          3203:         }else{
        !          3204:           /* For a covering index:
        !          3205:           **     nInMul index searches to find the initial entry 
        !          3206:           **   + nRow steps through the index
        !          3207:           */
        !          3208:           cost += nInMul*log10N;
        !          3209:         }
        !          3210:       }else{
        !          3211:         /* For a rowid primary key lookup:
        !          3212:         **    nInMult table searches to find the initial entry for each range
        !          3213:         **  + nRow steps through the table
        !          3214:         */
        !          3215:         cost += nInMul*log10N;
        !          3216:       }
        !          3217:     }
        !          3218: 
        !          3219:     /* Add in the estimated cost of sorting the result.  Actual experimental
        !          3220:     ** measurements of sorting performance in SQLite show that sorting time
        !          3221:     ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
        !          3222:     ** sorted and C is a factor between 1.95 and 4.3.  We will split the
        !          3223:     ** difference and select C of 3.0.
        !          3224:     */
        !          3225:     if( bSort ){
        !          3226:       cost += nRow*estLog(nRow)*3;
        !          3227:     }
        !          3228:     if( bDist ){
        !          3229:       cost += nRow*estLog(nRow)*3;
        !          3230:     }
        !          3231: 
        !          3232:     /**** Cost of using this index has now been computed ****/
        !          3233: 
        !          3234:     /* If there are additional constraints on this table that cannot
        !          3235:     ** be used with the current index, but which might lower the number
        !          3236:     ** of output rows, adjust the nRow value accordingly.  This only 
        !          3237:     ** matters if the current index is the least costly, so do not bother
        !          3238:     ** with this step if we already know this index will not be chosen.
        !          3239:     ** Also, never reduce the output row count below 2 using this step.
        !          3240:     **
        !          3241:     ** It is critical that the notValid mask be used here instead of
        !          3242:     ** the notReady mask.  When computing an "optimal" index, the notReady
        !          3243:     ** mask will only have one bit set - the bit for the current table.
        !          3244:     ** The notValid mask, on the other hand, always has all bits set for
        !          3245:     ** tables that are not in outer loops.  If notReady is used here instead
        !          3246:     ** of notValid, then a optimal index that depends on inner joins loops
        !          3247:     ** might be selected even when there exists an optimal index that has
        !          3248:     ** no such dependency.
        !          3249:     */
        !          3250:     if( nRow>2 && cost<=pCost->rCost ){
        !          3251:       int k;                       /* Loop counter */
        !          3252:       int nSkipEq = nEq;           /* Number of == constraints to skip */
        !          3253:       int nSkipRange = nBound;     /* Number of < constraints to skip */
        !          3254:       Bitmask thisTab;             /* Bitmap for pSrc */
        !          3255: 
        !          3256:       thisTab = getMask(pWC->pMaskSet, iCur);
        !          3257:       for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
        !          3258:         if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
        !          3259:         if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
        !          3260:         if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
        !          3261:           if( nSkipEq ){
        !          3262:             /* Ignore the first nEq equality matches since the index
        !          3263:             ** has already accounted for these */
        !          3264:             nSkipEq--;
        !          3265:           }else{
        !          3266:             /* Assume each additional equality match reduces the result
        !          3267:             ** set size by a factor of 10 */
        !          3268:             nRow /= 10;
        !          3269:           }
        !          3270:         }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
        !          3271:           if( nSkipRange ){
        !          3272:             /* Ignore the first nSkipRange range constraints since the index
        !          3273:             ** has already accounted for these */
        !          3274:             nSkipRange--;
        !          3275:           }else{
        !          3276:             /* Assume each additional range constraint reduces the result
        !          3277:             ** set size by a factor of 3.  Indexed range constraints reduce
        !          3278:             ** the search space by a larger factor: 4.  We make indexed range
        !          3279:             ** more selective intentionally because of the subjective 
        !          3280:             ** observation that indexed range constraints really are more
        !          3281:             ** selective in practice, on average. */
        !          3282:             nRow /= 3;
        !          3283:           }
        !          3284:         }else if( pTerm->eOperator!=WO_NOOP ){
        !          3285:           /* Any other expression lowers the output row count by half */
        !          3286:           nRow /= 2;
        !          3287:         }
        !          3288:       }
        !          3289:       if( nRow<2 ) nRow = 2;
        !          3290:     }
        !          3291: 
        !          3292: 
        !          3293:     WHERETRACE((
        !          3294:       "%s(%s): nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
        !          3295:       "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
        !          3296:       pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 
        !          3297:       nEq, nInMul, (int)rangeDiv, bSort, bLookup, wsFlags,
        !          3298:       notReady, log10N, nRow, cost, used
        !          3299:     ));
        !          3300: 
        !          3301:     /* If this index is the best we have seen so far, then record this
        !          3302:     ** index and its cost in the pCost structure.
        !          3303:     */
        !          3304:     if( (!pIdx || wsFlags)
        !          3305:      && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
        !          3306:     ){
        !          3307:       pCost->rCost = cost;
        !          3308:       pCost->used = used;
        !          3309:       pCost->plan.nRow = nRow;
        !          3310:       pCost->plan.wsFlags = (wsFlags&wsFlagMask);
        !          3311:       pCost->plan.nEq = nEq;
        !          3312:       pCost->plan.u.pIdx = pIdx;
        !          3313:     }
        !          3314: 
        !          3315:     /* If there was an INDEXED BY clause, then only that one index is
        !          3316:     ** considered. */
        !          3317:     if( pSrc->pIndex ) break;
        !          3318: 
        !          3319:     /* Reset masks for the next index in the loop */
        !          3320:     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
        !          3321:     eqTermMask = idxEqTermMask;
        !          3322:   }
        !          3323: 
        !          3324:   /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
        !          3325:   ** is set, then reverse the order that the index will be scanned
        !          3326:   ** in. This is used for application testing, to help find cases
        !          3327:   ** where application behaviour depends on the (undefined) order that
        !          3328:   ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
        !          3329:   if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
        !          3330:     pCost->plan.wsFlags |= WHERE_REVERSE;
        !          3331:   }
        !          3332: 
        !          3333:   assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
        !          3334:   assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
        !          3335:   assert( pSrc->pIndex==0 
        !          3336:        || pCost->plan.u.pIdx==0 
        !          3337:        || pCost->plan.u.pIdx==pSrc->pIndex 
        !          3338:   );
        !          3339: 
        !          3340:   WHERETRACE(("best index is: %s\n", 
        !          3341:     ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : 
        !          3342:          pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
        !          3343:   ));
        !          3344:   
        !          3345:   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
        !          3346:   bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
        !          3347:   pCost->plan.wsFlags |= eqTermMask;
        !          3348: }
        !          3349: 
        !          3350: /*
        !          3351: ** Find the query plan for accessing table pSrc->pTab. Write the
        !          3352: ** best query plan and its cost into the WhereCost object supplied 
        !          3353: ** as the last parameter. This function may calculate the cost of
        !          3354: ** both real and virtual table scans.
        !          3355: */
        !          3356: static void bestIndex(
        !          3357:   Parse *pParse,              /* The parsing context */
        !          3358:   WhereClause *pWC,           /* The WHERE clause */
        !          3359:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
        !          3360:   Bitmask notReady,           /* Mask of cursors not available for indexing */
        !          3361:   Bitmask notValid,           /* Cursors not available for any purpose */
        !          3362:   ExprList *pOrderBy,         /* The ORDER BY clause */
        !          3363:   WhereCost *pCost            /* Lowest cost query plan */
        !          3364: ){
        !          3365: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          3366:   if( IsVirtual(pSrc->pTab) ){
        !          3367:     sqlite3_index_info *p = 0;
        !          3368:     bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
        !          3369:     if( p->needToFreeIdxStr ){
        !          3370:       sqlite3_free(p->idxStr);
        !          3371:     }
        !          3372:     sqlite3DbFree(pParse->db, p);
        !          3373:   }else
        !          3374: #endif
        !          3375:   {
        !          3376:     bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
        !          3377:   }
        !          3378: }
        !          3379: 
        !          3380: /*
        !          3381: ** Disable a term in the WHERE clause.  Except, do not disable the term
        !          3382: ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
        !          3383: ** or USING clause of that join.
        !          3384: **
        !          3385: ** Consider the term t2.z='ok' in the following queries:
        !          3386: **
        !          3387: **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
        !          3388: **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
        !          3389: **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
        !          3390: **
        !          3391: ** The t2.z='ok' is disabled in the in (2) because it originates
        !          3392: ** in the ON clause.  The term is disabled in (3) because it is not part
        !          3393: ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
        !          3394: **
        !          3395: ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
        !          3396: ** completely satisfied by indices.
        !          3397: **
        !          3398: ** Disabling a term causes that term to not be tested in the inner loop
        !          3399: ** of the join.  Disabling is an optimization.  When terms are satisfied
        !          3400: ** by indices, we disable them to prevent redundant tests in the inner
        !          3401: ** loop.  We would get the correct results if nothing were ever disabled,
        !          3402: ** but joins might run a little slower.  The trick is to disable as much
        !          3403: ** as we can without disabling too much.  If we disabled in (1), we'd get
        !          3404: ** the wrong answer.  See ticket #813.
        !          3405: */
        !          3406: static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
        !          3407:   if( pTerm
        !          3408:       && (pTerm->wtFlags & TERM_CODED)==0
        !          3409:       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
        !          3410:   ){
        !          3411:     pTerm->wtFlags |= TERM_CODED;
        !          3412:     if( pTerm->iParent>=0 ){
        !          3413:       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
        !          3414:       if( (--pOther->nChild)==0 ){
        !          3415:         disableTerm(pLevel, pOther);
        !          3416:       }
        !          3417:     }
        !          3418:   }
        !          3419: }
        !          3420: 
        !          3421: /*
        !          3422: ** Code an OP_Affinity opcode to apply the column affinity string zAff
        !          3423: ** to the n registers starting at base. 
        !          3424: **
        !          3425: ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
        !          3426: ** beginning and end of zAff are ignored.  If all entries in zAff are
        !          3427: ** SQLITE_AFF_NONE, then no code gets generated.
        !          3428: **
        !          3429: ** This routine makes its own copy of zAff so that the caller is free
        !          3430: ** to modify zAff after this routine returns.
        !          3431: */
        !          3432: static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
        !          3433:   Vdbe *v = pParse->pVdbe;
        !          3434:   if( zAff==0 ){
        !          3435:     assert( pParse->db->mallocFailed );
        !          3436:     return;
        !          3437:   }
        !          3438:   assert( v!=0 );
        !          3439: 
        !          3440:   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
        !          3441:   ** and end of the affinity string.
        !          3442:   */
        !          3443:   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
        !          3444:     n--;
        !          3445:     base++;
        !          3446:     zAff++;
        !          3447:   }
        !          3448:   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
        !          3449:     n--;
        !          3450:   }
        !          3451: 
        !          3452:   /* Code the OP_Affinity opcode if there is anything left to do. */
        !          3453:   if( n>0 ){
        !          3454:     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
        !          3455:     sqlite3VdbeChangeP4(v, -1, zAff, n);
        !          3456:     sqlite3ExprCacheAffinityChange(pParse, base, n);
        !          3457:   }
        !          3458: }
        !          3459: 
        !          3460: 
        !          3461: /*
        !          3462: ** Generate code for a single equality term of the WHERE clause.  An equality
        !          3463: ** term can be either X=expr or X IN (...).   pTerm is the term to be 
        !          3464: ** coded.
        !          3465: **
        !          3466: ** The current value for the constraint is left in register iReg.
        !          3467: **
        !          3468: ** For a constraint of the form X=expr, the expression is evaluated and its
        !          3469: ** result is left on the stack.  For constraints of the form X IN (...)
        !          3470: ** this routine sets up a loop that will iterate over all values of X.
        !          3471: */
        !          3472: static int codeEqualityTerm(
        !          3473:   Parse *pParse,      /* The parsing context */
        !          3474:   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
        !          3475:   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
        !          3476:   int iTarget         /* Attempt to leave results in this register */
        !          3477: ){
        !          3478:   Expr *pX = pTerm->pExpr;
        !          3479:   Vdbe *v = pParse->pVdbe;
        !          3480:   int iReg;                  /* Register holding results */
        !          3481: 
        !          3482:   assert( iTarget>0 );
        !          3483:   if( pX->op==TK_EQ ){
        !          3484:     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
        !          3485:   }else if( pX->op==TK_ISNULL ){
        !          3486:     iReg = iTarget;
        !          3487:     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
        !          3488: #ifndef SQLITE_OMIT_SUBQUERY
        !          3489:   }else{
        !          3490:     int eType;
        !          3491:     int iTab;
        !          3492:     struct InLoop *pIn;
        !          3493: 
        !          3494:     assert( pX->op==TK_IN );
        !          3495:     iReg = iTarget;
        !          3496:     eType = sqlite3FindInIndex(pParse, pX, 0);
        !          3497:     iTab = pX->iTable;
        !          3498:     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
        !          3499:     assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
        !          3500:     if( pLevel->u.in.nIn==0 ){
        !          3501:       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
        !          3502:     }
        !          3503:     pLevel->u.in.nIn++;
        !          3504:     pLevel->u.in.aInLoop =
        !          3505:        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
        !          3506:                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
        !          3507:     pIn = pLevel->u.in.aInLoop;
        !          3508:     if( pIn ){
        !          3509:       pIn += pLevel->u.in.nIn - 1;
        !          3510:       pIn->iCur = iTab;
        !          3511:       if( eType==IN_INDEX_ROWID ){
        !          3512:         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
        !          3513:       }else{
        !          3514:         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
        !          3515:       }
        !          3516:       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
        !          3517:     }else{
        !          3518:       pLevel->u.in.nIn = 0;
        !          3519:     }
        !          3520: #endif
        !          3521:   }
        !          3522:   disableTerm(pLevel, pTerm);
        !          3523:   return iReg;
        !          3524: }
        !          3525: 
        !          3526: /*
        !          3527: ** Generate code that will evaluate all == and IN constraints for an
        !          3528: ** index.
        !          3529: **
        !          3530: ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
        !          3531: ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
        !          3532: ** The index has as many as three equality constraints, but in this
        !          3533: ** example, the third "c" value is an inequality.  So only two 
        !          3534: ** constraints are coded.  This routine will generate code to evaluate
        !          3535: ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
        !          3536: ** in consecutive registers and the index of the first register is returned.
        !          3537: **
        !          3538: ** In the example above nEq==2.  But this subroutine works for any value
        !          3539: ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
        !          3540: ** The only thing it does is allocate the pLevel->iMem memory cell and
        !          3541: ** compute the affinity string.
        !          3542: **
        !          3543: ** This routine always allocates at least one memory cell and returns
        !          3544: ** the index of that memory cell. The code that
        !          3545: ** calls this routine will use that memory cell to store the termination
        !          3546: ** key value of the loop.  If one or more IN operators appear, then
        !          3547: ** this routine allocates an additional nEq memory cells for internal
        !          3548: ** use.
        !          3549: **
        !          3550: ** Before returning, *pzAff is set to point to a buffer containing a
        !          3551: ** copy of the column affinity string of the index allocated using
        !          3552: ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
        !          3553: ** with equality constraints that use NONE affinity are set to
        !          3554: ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
        !          3555: **
        !          3556: **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
        !          3557: **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
        !          3558: **
        !          3559: ** In the example above, the index on t1(a) has TEXT affinity. But since
        !          3560: ** the right hand side of the equality constraint (t2.b) has NONE affinity,
        !          3561: ** no conversion should be attempted before using a t2.b value as part of
        !          3562: ** a key to search the index. Hence the first byte in the returned affinity
        !          3563: ** string in this example would be set to SQLITE_AFF_NONE.
        !          3564: */
        !          3565: static int codeAllEqualityTerms(
        !          3566:   Parse *pParse,        /* Parsing context */
        !          3567:   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
        !          3568:   WhereClause *pWC,     /* The WHERE clause */
        !          3569:   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
        !          3570:   int nExtraReg,        /* Number of extra registers to allocate */
        !          3571:   char **pzAff          /* OUT: Set to point to affinity string */
        !          3572: ){
        !          3573:   int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
        !          3574:   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
        !          3575:   Index *pIdx;                  /* The index being used for this loop */
        !          3576:   int iCur = pLevel->iTabCur;   /* The cursor of the table */
        !          3577:   WhereTerm *pTerm;             /* A single constraint term */
        !          3578:   int j;                        /* Loop counter */
        !          3579:   int regBase;                  /* Base register */
        !          3580:   int nReg;                     /* Number of registers to allocate */
        !          3581:   char *zAff;                   /* Affinity string to return */
        !          3582: 
        !          3583:   /* This module is only called on query plans that use an index. */
        !          3584:   assert( pLevel->plan.wsFlags & WHERE_INDEXED );
        !          3585:   pIdx = pLevel->plan.u.pIdx;
        !          3586: 
        !          3587:   /* Figure out how many memory cells we will need then allocate them.
        !          3588:   */
        !          3589:   regBase = pParse->nMem + 1;
        !          3590:   nReg = pLevel->plan.nEq + nExtraReg;
        !          3591:   pParse->nMem += nReg;
        !          3592: 
        !          3593:   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
        !          3594:   if( !zAff ){
        !          3595:     pParse->db->mallocFailed = 1;
        !          3596:   }
        !          3597: 
        !          3598:   /* Evaluate the equality constraints
        !          3599:   */
        !          3600:   assert( pIdx->nColumn>=nEq );
        !          3601:   for(j=0; j<nEq; j++){
        !          3602:     int r1;
        !          3603:     int k = pIdx->aiColumn[j];
        !          3604:     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
        !          3605:     if( NEVER(pTerm==0) ) break;
        !          3606:     /* The following true for indices with redundant columns. 
        !          3607:     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
        !          3608:     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
        !          3609:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
        !          3610:     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
        !          3611:     if( r1!=regBase+j ){
        !          3612:       if( nReg==1 ){
        !          3613:         sqlite3ReleaseTempReg(pParse, regBase);
        !          3614:         regBase = r1;
        !          3615:       }else{
        !          3616:         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
        !          3617:       }
        !          3618:     }
        !          3619:     testcase( pTerm->eOperator & WO_ISNULL );
        !          3620:     testcase( pTerm->eOperator & WO_IN );
        !          3621:     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
        !          3622:       Expr *pRight = pTerm->pExpr->pRight;
        !          3623:       sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
        !          3624:       if( zAff ){
        !          3625:         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
        !          3626:           zAff[j] = SQLITE_AFF_NONE;
        !          3627:         }
        !          3628:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
        !          3629:           zAff[j] = SQLITE_AFF_NONE;
        !          3630:         }
        !          3631:       }
        !          3632:     }
        !          3633:   }
        !          3634:   *pzAff = zAff;
        !          3635:   return regBase;
        !          3636: }
        !          3637: 
        !          3638: #ifndef SQLITE_OMIT_EXPLAIN
        !          3639: /*
        !          3640: ** This routine is a helper for explainIndexRange() below
        !          3641: **
        !          3642: ** pStr holds the text of an expression that we are building up one term
        !          3643: ** at a time.  This routine adds a new term to the end of the expression.
        !          3644: ** Terms are separated by AND so add the "AND" text for second and subsequent
        !          3645: ** terms only.
        !          3646: */
        !          3647: static void explainAppendTerm(
        !          3648:   StrAccum *pStr,             /* The text expression being built */
        !          3649:   int iTerm,                  /* Index of this term.  First is zero */
        !          3650:   const char *zColumn,        /* Name of the column */
        !          3651:   const char *zOp             /* Name of the operator */
        !          3652: ){
        !          3653:   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
        !          3654:   sqlite3StrAccumAppend(pStr, zColumn, -1);
        !          3655:   sqlite3StrAccumAppend(pStr, zOp, 1);
        !          3656:   sqlite3StrAccumAppend(pStr, "?", 1);
        !          3657: }
        !          3658: 
        !          3659: /*
        !          3660: ** Argument pLevel describes a strategy for scanning table pTab. This 
        !          3661: ** function returns a pointer to a string buffer containing a description
        !          3662: ** of the subset of table rows scanned by the strategy in the form of an
        !          3663: ** SQL expression. Or, if all rows are scanned, NULL is returned.
        !          3664: **
        !          3665: ** For example, if the query:
        !          3666: **
        !          3667: **   SELECT * FROM t1 WHERE a=1 AND b>2;
        !          3668: **
        !          3669: ** is run and there is an index on (a, b), then this function returns a
        !          3670: ** string similar to:
        !          3671: **
        !          3672: **   "a=? AND b>?"
        !          3673: **
        !          3674: ** The returned pointer points to memory obtained from sqlite3DbMalloc().
        !          3675: ** It is the responsibility of the caller to free the buffer when it is
        !          3676: ** no longer required.
        !          3677: */
        !          3678: static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
        !          3679:   WherePlan *pPlan = &pLevel->plan;
        !          3680:   Index *pIndex = pPlan->u.pIdx;
        !          3681:   int nEq = pPlan->nEq;
        !          3682:   int i, j;
        !          3683:   Column *aCol = pTab->aCol;
        !          3684:   int *aiColumn = pIndex->aiColumn;
        !          3685:   StrAccum txt;
        !          3686: 
        !          3687:   if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
        !          3688:     return 0;
        !          3689:   }
        !          3690:   sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
        !          3691:   txt.db = db;
        !          3692:   sqlite3StrAccumAppend(&txt, " (", 2);
        !          3693:   for(i=0; i<nEq; i++){
        !          3694:     explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
        !          3695:   }
        !          3696: 
        !          3697:   j = i;
        !          3698:   if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
        !          3699:     char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
        !          3700:     explainAppendTerm(&txt, i++, z, ">");
        !          3701:   }
        !          3702:   if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
        !          3703:     char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
        !          3704:     explainAppendTerm(&txt, i, z, "<");
        !          3705:   }
        !          3706:   sqlite3StrAccumAppend(&txt, ")", 1);
        !          3707:   return sqlite3StrAccumFinish(&txt);
        !          3708: }
        !          3709: 
        !          3710: /*
        !          3711: ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
        !          3712: ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
        !          3713: ** record is added to the output to describe the table scan strategy in 
        !          3714: ** pLevel.
        !          3715: */
        !          3716: static void explainOneScan(
        !          3717:   Parse *pParse,                  /* Parse context */
        !          3718:   SrcList *pTabList,              /* Table list this loop refers to */
        !          3719:   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
        !          3720:   int iLevel,                     /* Value for "level" column of output */
        !          3721:   int iFrom,                      /* Value for "from" column of output */
        !          3722:   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
        !          3723: ){
        !          3724:   if( pParse->explain==2 ){
        !          3725:     u32 flags = pLevel->plan.wsFlags;
        !          3726:     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
        !          3727:     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
        !          3728:     sqlite3 *db = pParse->db;     /* Database handle */
        !          3729:     char *zMsg;                   /* Text to add to EQP output */
        !          3730:     sqlite3_int64 nRow;           /* Expected number of rows visited by scan */
        !          3731:     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
        !          3732:     int isSearch;                 /* True for a SEARCH. False for SCAN. */
        !          3733: 
        !          3734:     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
        !          3735: 
        !          3736:     isSearch = (pLevel->plan.nEq>0)
        !          3737:              || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
        !          3738:              || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
        !          3739: 
        !          3740:     zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
        !          3741:     if( pItem->pSelect ){
        !          3742:       zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
        !          3743:     }else{
        !          3744:       zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
        !          3745:     }
        !          3746: 
        !          3747:     if( pItem->zAlias ){
        !          3748:       zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
        !          3749:     }
        !          3750:     if( (flags & WHERE_INDEXED)!=0 ){
        !          3751:       char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
        !          3752:       zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 
        !          3753:           ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
        !          3754:           ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
        !          3755:           ((flags & WHERE_TEMP_INDEX)?"":" "),
        !          3756:           ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
        !          3757:           zWhere
        !          3758:       );
        !          3759:       sqlite3DbFree(db, zWhere);
        !          3760:     }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
        !          3761:       zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
        !          3762: 
        !          3763:       if( flags&WHERE_ROWID_EQ ){
        !          3764:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
        !          3765:       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        !          3766:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
        !          3767:       }else if( flags&WHERE_BTM_LIMIT ){
        !          3768:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
        !          3769:       }else if( flags&WHERE_TOP_LIMIT ){
        !          3770:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
        !          3771:       }
        !          3772:     }
        !          3773: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          3774:     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
        !          3775:       sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
        !          3776:       zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
        !          3777:                   pVtabIdx->idxNum, pVtabIdx->idxStr);
        !          3778:     }
        !          3779: #endif
        !          3780:     if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
        !          3781:       testcase( wctrlFlags & WHERE_ORDERBY_MIN );
        !          3782:       nRow = 1;
        !          3783:     }else{
        !          3784:       nRow = (sqlite3_int64)pLevel->plan.nRow;
        !          3785:     }
        !          3786:     zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
        !          3787:     sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
        !          3788:   }
        !          3789: }
        !          3790: #else
        !          3791: # define explainOneScan(u,v,w,x,y,z)
        !          3792: #endif /* SQLITE_OMIT_EXPLAIN */
        !          3793: 
        !          3794: 
        !          3795: /*
        !          3796: ** Generate code for the start of the iLevel-th loop in the WHERE clause
        !          3797: ** implementation described by pWInfo.
        !          3798: */
        !          3799: static Bitmask codeOneLoopStart(
        !          3800:   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
        !          3801:   int iLevel,          /* Which level of pWInfo->a[] should be coded */
        !          3802:   u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
        !          3803:   Bitmask notReady,    /* Which tables are currently available */
        !          3804:   Expr *pWhere         /* Complete WHERE clause */
        !          3805: ){
        !          3806:   int j, k;            /* Loop counters */
        !          3807:   int iCur;            /* The VDBE cursor for the table */
        !          3808:   int addrNxt;         /* Where to jump to continue with the next IN case */
        !          3809:   int omitTable;       /* True if we use the index only */
        !          3810:   int bRev;            /* True if we need to scan in reverse order */
        !          3811:   WhereLevel *pLevel;  /* The where level to be coded */
        !          3812:   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
        !          3813:   WhereTerm *pTerm;               /* A WHERE clause term */
        !          3814:   Parse *pParse;                  /* Parsing context */
        !          3815:   Vdbe *v;                        /* The prepared stmt under constructions */
        !          3816:   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
        !          3817:   int addrBrk;                    /* Jump here to break out of the loop */
        !          3818:   int addrCont;                   /* Jump here to continue with next cycle */
        !          3819:   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
        !          3820:   int iReleaseReg = 0;      /* Temp register to free before returning */
        !          3821: 
        !          3822:   pParse = pWInfo->pParse;
        !          3823:   v = pParse->pVdbe;
        !          3824:   pWC = pWInfo->pWC;
        !          3825:   pLevel = &pWInfo->a[iLevel];
        !          3826:   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
        !          3827:   iCur = pTabItem->iCursor;
        !          3828:   bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
        !          3829:   omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 
        !          3830:            && (wctrlFlags & WHERE_FORCE_TABLE)==0;
        !          3831: 
        !          3832:   /* Create labels for the "break" and "continue" instructions
        !          3833:   ** for the current loop.  Jump to addrBrk to break out of a loop.
        !          3834:   ** Jump to cont to go immediately to the next iteration of the
        !          3835:   ** loop.
        !          3836:   **
        !          3837:   ** When there is an IN operator, we also have a "addrNxt" label that
        !          3838:   ** means to continue with the next IN value combination.  When
        !          3839:   ** there are no IN operators in the constraints, the "addrNxt" label
        !          3840:   ** is the same as "addrBrk".
        !          3841:   */
        !          3842:   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
        !          3843:   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
        !          3844: 
        !          3845:   /* If this is the right table of a LEFT OUTER JOIN, allocate and
        !          3846:   ** initialize a memory cell that records if this table matches any
        !          3847:   ** row of the left table of the join.
        !          3848:   */
        !          3849:   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
        !          3850:     pLevel->iLeftJoin = ++pParse->nMem;
        !          3851:     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
        !          3852:     VdbeComment((v, "init LEFT JOIN no-match flag"));
        !          3853:   }
        !          3854: 
        !          3855: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          3856:   if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
        !          3857:     /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
        !          3858:     **          to access the data.
        !          3859:     */
        !          3860:     int iReg;   /* P3 Value for OP_VFilter */
        !          3861:     sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
        !          3862:     int nConstraint = pVtabIdx->nConstraint;
        !          3863:     struct sqlite3_index_constraint_usage *aUsage =
        !          3864:                                                 pVtabIdx->aConstraintUsage;
        !          3865:     const struct sqlite3_index_constraint *aConstraint =
        !          3866:                                                 pVtabIdx->aConstraint;
        !          3867: 
        !          3868:     sqlite3ExprCachePush(pParse);
        !          3869:     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
        !          3870:     for(j=1; j<=nConstraint; j++){
        !          3871:       for(k=0; k<nConstraint; k++){
        !          3872:         if( aUsage[k].argvIndex==j ){
        !          3873:           int iTerm = aConstraint[k].iTermOffset;
        !          3874:           sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
        !          3875:           break;
        !          3876:         }
        !          3877:       }
        !          3878:       if( k==nConstraint ) break;
        !          3879:     }
        !          3880:     sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
        !          3881:     sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
        !          3882:     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
        !          3883:                       pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
        !          3884:     pVtabIdx->needToFreeIdxStr = 0;
        !          3885:     for(j=0; j<nConstraint; j++){
        !          3886:       if( aUsage[j].omit ){
        !          3887:         int iTerm = aConstraint[j].iTermOffset;
        !          3888:         disableTerm(pLevel, &pWC->a[iTerm]);
        !          3889:       }
        !          3890:     }
        !          3891:     pLevel->op = OP_VNext;
        !          3892:     pLevel->p1 = iCur;
        !          3893:     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
        !          3894:     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
        !          3895:     sqlite3ExprCachePop(pParse, 1);
        !          3896:   }else
        !          3897: #endif /* SQLITE_OMIT_VIRTUALTABLE */
        !          3898: 
        !          3899:   if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
        !          3900:     /* Case 1:  We can directly reference a single row using an
        !          3901:     **          equality comparison against the ROWID field.  Or
        !          3902:     **          we reference multiple rows using a "rowid IN (...)"
        !          3903:     **          construct.
        !          3904:     */
        !          3905:     iReleaseReg = sqlite3GetTempReg(pParse);
        !          3906:     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
        !          3907:     assert( pTerm!=0 );
        !          3908:     assert( pTerm->pExpr!=0 );
        !          3909:     assert( pTerm->leftCursor==iCur );
        !          3910:     assert( omitTable==0 );
        !          3911:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
        !          3912:     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
        !          3913:     addrNxt = pLevel->addrNxt;
        !          3914:     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
        !          3915:     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
        !          3916:     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
        !          3917:     VdbeComment((v, "pk"));
        !          3918:     pLevel->op = OP_Noop;
        !          3919:   }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
        !          3920:     /* Case 2:  We have an inequality comparison against the ROWID field.
        !          3921:     */
        !          3922:     int testOp = OP_Noop;
        !          3923:     int start;
        !          3924:     int memEndValue = 0;
        !          3925:     WhereTerm *pStart, *pEnd;
        !          3926: 
        !          3927:     assert( omitTable==0 );
        !          3928:     pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
        !          3929:     pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
        !          3930:     if( bRev ){
        !          3931:       pTerm = pStart;
        !          3932:       pStart = pEnd;
        !          3933:       pEnd = pTerm;
        !          3934:     }
        !          3935:     if( pStart ){
        !          3936:       Expr *pX;             /* The expression that defines the start bound */
        !          3937:       int r1, rTemp;        /* Registers for holding the start boundary */
        !          3938: 
        !          3939:       /* The following constant maps TK_xx codes into corresponding 
        !          3940:       ** seek opcodes.  It depends on a particular ordering of TK_xx
        !          3941:       */
        !          3942:       const u8 aMoveOp[] = {
        !          3943:            /* TK_GT */  OP_SeekGt,
        !          3944:            /* TK_LE */  OP_SeekLe,
        !          3945:            /* TK_LT */  OP_SeekLt,
        !          3946:            /* TK_GE */  OP_SeekGe
        !          3947:       };
        !          3948:       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
        !          3949:       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
        !          3950:       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
        !          3951: 
        !          3952:       testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
        !          3953:       pX = pStart->pExpr;
        !          3954:       assert( pX!=0 );
        !          3955:       assert( pStart->leftCursor==iCur );
        !          3956:       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
        !          3957:       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
        !          3958:       VdbeComment((v, "pk"));
        !          3959:       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
        !          3960:       sqlite3ReleaseTempReg(pParse, rTemp);
        !          3961:       disableTerm(pLevel, pStart);
        !          3962:     }else{
        !          3963:       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
        !          3964:     }
        !          3965:     if( pEnd ){
        !          3966:       Expr *pX;
        !          3967:       pX = pEnd->pExpr;
        !          3968:       assert( pX!=0 );
        !          3969:       assert( pEnd->leftCursor==iCur );
        !          3970:       testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
        !          3971:       memEndValue = ++pParse->nMem;
        !          3972:       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
        !          3973:       if( pX->op==TK_LT || pX->op==TK_GT ){
        !          3974:         testOp = bRev ? OP_Le : OP_Ge;
        !          3975:       }else{
        !          3976:         testOp = bRev ? OP_Lt : OP_Gt;
        !          3977:       }
        !          3978:       disableTerm(pLevel, pEnd);
        !          3979:     }
        !          3980:     start = sqlite3VdbeCurrentAddr(v);
        !          3981:     pLevel->op = bRev ? OP_Prev : OP_Next;
        !          3982:     pLevel->p1 = iCur;
        !          3983:     pLevel->p2 = start;
        !          3984:     if( pStart==0 && pEnd==0 ){
        !          3985:       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
        !          3986:     }else{
        !          3987:       assert( pLevel->p5==0 );
        !          3988:     }
        !          3989:     if( testOp!=OP_Noop ){
        !          3990:       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
        !          3991:       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
        !          3992:       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
        !          3993:       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
        !          3994:       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
        !          3995:     }
        !          3996:   }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
        !          3997:     /* Case 3: A scan using an index.
        !          3998:     **
        !          3999:     **         The WHERE clause may contain zero or more equality 
        !          4000:     **         terms ("==" or "IN" operators) that refer to the N
        !          4001:     **         left-most columns of the index. It may also contain
        !          4002:     **         inequality constraints (>, <, >= or <=) on the indexed
        !          4003:     **         column that immediately follows the N equalities. Only 
        !          4004:     **         the right-most column can be an inequality - the rest must
        !          4005:     **         use the "==" and "IN" operators. For example, if the 
        !          4006:     **         index is on (x,y,z), then the following clauses are all 
        !          4007:     **         optimized:
        !          4008:     **
        !          4009:     **            x=5
        !          4010:     **            x=5 AND y=10
        !          4011:     **            x=5 AND y<10
        !          4012:     **            x=5 AND y>5 AND y<10
        !          4013:     **            x=5 AND y=5 AND z<=10
        !          4014:     **
        !          4015:     **         The z<10 term of the following cannot be used, only
        !          4016:     **         the x=5 term:
        !          4017:     **
        !          4018:     **            x=5 AND z<10
        !          4019:     **
        !          4020:     **         N may be zero if there are inequality constraints.
        !          4021:     **         If there are no inequality constraints, then N is at
        !          4022:     **         least one.
        !          4023:     **
        !          4024:     **         This case is also used when there are no WHERE clause
        !          4025:     **         constraints but an index is selected anyway, in order
        !          4026:     **         to force the output order to conform to an ORDER BY.
        !          4027:     */  
        !          4028:     static const u8 aStartOp[] = {
        !          4029:       0,
        !          4030:       0,
        !          4031:       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
        !          4032:       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
        !          4033:       OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */
        !          4034:       OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
        !          4035:       OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
        !          4036:       OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
        !          4037:     };
        !          4038:     static const u8 aEndOp[] = {
        !          4039:       OP_Noop,             /* 0: (!end_constraints) */
        !          4040:       OP_IdxGE,            /* 1: (end_constraints && !bRev) */
        !          4041:       OP_IdxLT             /* 2: (end_constraints && bRev) */
        !          4042:     };
        !          4043:     int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
        !          4044:     int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
        !          4045:     int regBase;                 /* Base register holding constraint values */
        !          4046:     int r1;                      /* Temp register */
        !          4047:     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
        !          4048:     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
        !          4049:     int startEq;                 /* True if range start uses ==, >= or <= */
        !          4050:     int endEq;                   /* True if range end uses ==, >= or <= */
        !          4051:     int start_constraints;       /* Start of range is constrained */
        !          4052:     int nConstraint;             /* Number of constraint terms */
        !          4053:     Index *pIdx;                 /* The index we will be using */
        !          4054:     int iIdxCur;                 /* The VDBE cursor for the index */
        !          4055:     int nExtraReg = 0;           /* Number of extra registers needed */
        !          4056:     int op;                      /* Instruction opcode */
        !          4057:     char *zStartAff;             /* Affinity for start of range constraint */
        !          4058:     char *zEndAff;               /* Affinity for end of range constraint */
        !          4059: 
        !          4060:     pIdx = pLevel->plan.u.pIdx;
        !          4061:     iIdxCur = pLevel->iIdxCur;
        !          4062:     k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]);
        !          4063: 
        !          4064:     /* If this loop satisfies a sort order (pOrderBy) request that 
        !          4065:     ** was passed to this function to implement a "SELECT min(x) ..." 
        !          4066:     ** query, then the caller will only allow the loop to run for
        !          4067:     ** a single iteration. This means that the first row returned
        !          4068:     ** should not have a NULL value stored in 'x'. If column 'x' is
        !          4069:     ** the first one after the nEq equality constraints in the index,
        !          4070:     ** this requires some special handling.
        !          4071:     */
        !          4072:     if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
        !          4073:      && (pLevel->plan.wsFlags&WHERE_ORDERBY)
        !          4074:      && (pIdx->nColumn>nEq)
        !          4075:     ){
        !          4076:       /* assert( pOrderBy->nExpr==1 ); */
        !          4077:       /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
        !          4078:       isMinQuery = 1;
        !          4079:       nExtraReg = 1;
        !          4080:     }
        !          4081: 
        !          4082:     /* Find any inequality constraint terms for the start and end 
        !          4083:     ** of the range. 
        !          4084:     */
        !          4085:     if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
        !          4086:       pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
        !          4087:       nExtraReg = 1;
        !          4088:     }
        !          4089:     if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
        !          4090:       pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
        !          4091:       nExtraReg = 1;
        !          4092:     }
        !          4093: 
        !          4094:     /* Generate code to evaluate all constraint terms using == or IN
        !          4095:     ** and store the values of those terms in an array of registers
        !          4096:     ** starting at regBase.
        !          4097:     */
        !          4098:     regBase = codeAllEqualityTerms(
        !          4099:         pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
        !          4100:     );
        !          4101:     zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
        !          4102:     addrNxt = pLevel->addrNxt;
        !          4103: 
        !          4104:     /* If we are doing a reverse order scan on an ascending index, or
        !          4105:     ** a forward order scan on a descending index, interchange the 
        !          4106:     ** start and end terms (pRangeStart and pRangeEnd).
        !          4107:     */
        !          4108:     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
        !          4109:      || (bRev && pIdx->nColumn==nEq)
        !          4110:     ){
        !          4111:       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
        !          4112:     }
        !          4113: 
        !          4114:     testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
        !          4115:     testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
        !          4116:     testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
        !          4117:     testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
        !          4118:     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
        !          4119:     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
        !          4120:     start_constraints = pRangeStart || nEq>0;
        !          4121: 
        !          4122:     /* Seek the index cursor to the start of the range. */
        !          4123:     nConstraint = nEq;
        !          4124:     if( pRangeStart ){
        !          4125:       Expr *pRight = pRangeStart->pExpr->pRight;
        !          4126:       sqlite3ExprCode(pParse, pRight, regBase+nEq);
        !          4127:       if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
        !          4128:         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
        !          4129:       }
        !          4130:       if( zStartAff ){
        !          4131:         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
        !          4132:           /* Since the comparison is to be performed with no conversions
        !          4133:           ** applied to the operands, set the affinity to apply to pRight to 
        !          4134:           ** SQLITE_AFF_NONE.  */
        !          4135:           zStartAff[nEq] = SQLITE_AFF_NONE;
        !          4136:         }
        !          4137:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
        !          4138:           zStartAff[nEq] = SQLITE_AFF_NONE;
        !          4139:         }
        !          4140:       }  
        !          4141:       nConstraint++;
        !          4142:       testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
        !          4143:     }else if( isMinQuery ){
        !          4144:       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
        !          4145:       nConstraint++;
        !          4146:       startEq = 0;
        !          4147:       start_constraints = 1;
        !          4148:     }
        !          4149:     codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
        !          4150:     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
        !          4151:     assert( op!=0 );
        !          4152:     testcase( op==OP_Rewind );
        !          4153:     testcase( op==OP_Last );
        !          4154:     testcase( op==OP_SeekGt );
        !          4155:     testcase( op==OP_SeekGe );
        !          4156:     testcase( op==OP_SeekLe );
        !          4157:     testcase( op==OP_SeekLt );
        !          4158:     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
        !          4159: 
        !          4160:     /* Load the value for the inequality constraint at the end of the
        !          4161:     ** range (if any).
        !          4162:     */
        !          4163:     nConstraint = nEq;
        !          4164:     if( pRangeEnd ){
        !          4165:       Expr *pRight = pRangeEnd->pExpr->pRight;
        !          4166:       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
        !          4167:       sqlite3ExprCode(pParse, pRight, regBase+nEq);
        !          4168:       if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
        !          4169:         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
        !          4170:       }
        !          4171:       if( zEndAff ){
        !          4172:         if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
        !          4173:           /* Since the comparison is to be performed with no conversions
        !          4174:           ** applied to the operands, set the affinity to apply to pRight to 
        !          4175:           ** SQLITE_AFF_NONE.  */
        !          4176:           zEndAff[nEq] = SQLITE_AFF_NONE;
        !          4177:         }
        !          4178:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
        !          4179:           zEndAff[nEq] = SQLITE_AFF_NONE;
        !          4180:         }
        !          4181:       }  
        !          4182:       codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
        !          4183:       nConstraint++;
        !          4184:       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
        !          4185:     }
        !          4186:     sqlite3DbFree(pParse->db, zStartAff);
        !          4187:     sqlite3DbFree(pParse->db, zEndAff);
        !          4188: 
        !          4189:     /* Top of the loop body */
        !          4190:     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
        !          4191: 
        !          4192:     /* Check if the index cursor is past the end of the range. */
        !          4193:     op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
        !          4194:     testcase( op==OP_Noop );
        !          4195:     testcase( op==OP_IdxGE );
        !          4196:     testcase( op==OP_IdxLT );
        !          4197:     if( op!=OP_Noop ){
        !          4198:       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
        !          4199:       sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
        !          4200:     }
        !          4201: 
        !          4202:     /* If there are inequality constraints, check that the value
        !          4203:     ** of the table column that the inequality contrains is not NULL.
        !          4204:     ** If it is, jump to the next iteration of the loop.
        !          4205:     */
        !          4206:     r1 = sqlite3GetTempReg(pParse);
        !          4207:     testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
        !          4208:     testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
        !          4209:     if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
        !          4210:       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
        !          4211:       sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
        !          4212:     }
        !          4213:     sqlite3ReleaseTempReg(pParse, r1);
        !          4214: 
        !          4215:     /* Seek the table cursor, if required */
        !          4216:     disableTerm(pLevel, pRangeStart);
        !          4217:     disableTerm(pLevel, pRangeEnd);
        !          4218:     if( !omitTable ){
        !          4219:       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
        !          4220:       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
        !          4221:       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
        !          4222:       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
        !          4223:     }
        !          4224: 
        !          4225:     /* Record the instruction used to terminate the loop. Disable 
        !          4226:     ** WHERE clause terms made redundant by the index range scan.
        !          4227:     */
        !          4228:     if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
        !          4229:       pLevel->op = OP_Noop;
        !          4230:     }else if( bRev ){
        !          4231:       pLevel->op = OP_Prev;
        !          4232:     }else{
        !          4233:       pLevel->op = OP_Next;
        !          4234:     }
        !          4235:     pLevel->p1 = iIdxCur;
        !          4236:   }else
        !          4237: 
        !          4238: #ifndef SQLITE_OMIT_OR_OPTIMIZATION
        !          4239:   if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
        !          4240:     /* Case 4:  Two or more separately indexed terms connected by OR
        !          4241:     **
        !          4242:     ** Example:
        !          4243:     **
        !          4244:     **   CREATE TABLE t1(a,b,c,d);
        !          4245:     **   CREATE INDEX i1 ON t1(a);
        !          4246:     **   CREATE INDEX i2 ON t1(b);
        !          4247:     **   CREATE INDEX i3 ON t1(c);
        !          4248:     **
        !          4249:     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
        !          4250:     **
        !          4251:     ** In the example, there are three indexed terms connected by OR.
        !          4252:     ** The top of the loop looks like this:
        !          4253:     **
        !          4254:     **          Null       1                # Zero the rowset in reg 1
        !          4255:     **
        !          4256:     ** Then, for each indexed term, the following. The arguments to
        !          4257:     ** RowSetTest are such that the rowid of the current row is inserted
        !          4258:     ** into the RowSet. If it is already present, control skips the
        !          4259:     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
        !          4260:     **
        !          4261:     **        sqlite3WhereBegin(<term>)
        !          4262:     **          RowSetTest                  # Insert rowid into rowset
        !          4263:     **          Gosub      2 A
        !          4264:     **        sqlite3WhereEnd()
        !          4265:     **
        !          4266:     ** Following the above, code to terminate the loop. Label A, the target
        !          4267:     ** of the Gosub above, jumps to the instruction right after the Goto.
        !          4268:     **
        !          4269:     **          Null       1                # Zero the rowset in reg 1
        !          4270:     **          Goto       B                # The loop is finished.
        !          4271:     **
        !          4272:     **       A: <loop body>                 # Return data, whatever.
        !          4273:     **
        !          4274:     **          Return     2                # Jump back to the Gosub
        !          4275:     **
        !          4276:     **       B: <after the loop>
        !          4277:     **
        !          4278:     */
        !          4279:     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
        !          4280:     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
        !          4281: 
        !          4282:     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
        !          4283:     int regRowset = 0;                        /* Register for RowSet object */
        !          4284:     int regRowid = 0;                         /* Register holding rowid */
        !          4285:     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
        !          4286:     int iRetInit;                             /* Address of regReturn init */
        !          4287:     int untestedTerms = 0;             /* Some terms not completely tested */
        !          4288:     int ii;                            /* Loop counter */
        !          4289:     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
        !          4290:    
        !          4291:     pTerm = pLevel->plan.u.pTerm;
        !          4292:     assert( pTerm!=0 );
        !          4293:     assert( pTerm->eOperator==WO_OR );
        !          4294:     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
        !          4295:     pOrWc = &pTerm->u.pOrInfo->wc;
        !          4296:     pLevel->op = OP_Return;
        !          4297:     pLevel->p1 = regReturn;
        !          4298: 
        !          4299:     /* Set up a new SrcList ni pOrTab containing the table being scanned
        !          4300:     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
        !          4301:     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
        !          4302:     */
        !          4303:     if( pWInfo->nLevel>1 ){
        !          4304:       int nNotReady;                 /* The number of notReady tables */
        !          4305:       struct SrcList_item *origSrc;     /* Original list of tables */
        !          4306:       nNotReady = pWInfo->nLevel - iLevel - 1;
        !          4307:       pOrTab = sqlite3StackAllocRaw(pParse->db,
        !          4308:                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
        !          4309:       if( pOrTab==0 ) return notReady;
        !          4310:       pOrTab->nAlloc = (i16)(nNotReady + 1);
        !          4311:       pOrTab->nSrc = pOrTab->nAlloc;
        !          4312:       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
        !          4313:       origSrc = pWInfo->pTabList->a;
        !          4314:       for(k=1; k<=nNotReady; k++){
        !          4315:         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
        !          4316:       }
        !          4317:     }else{
        !          4318:       pOrTab = pWInfo->pTabList;
        !          4319:     }
        !          4320: 
        !          4321:     /* Initialize the rowset register to contain NULL. An SQL NULL is 
        !          4322:     ** equivalent to an empty rowset.
        !          4323:     **
        !          4324:     ** Also initialize regReturn to contain the address of the instruction 
        !          4325:     ** immediately following the OP_Return at the bottom of the loop. This
        !          4326:     ** is required in a few obscure LEFT JOIN cases where control jumps
        !          4327:     ** over the top of the loop into the body of it. In this case the 
        !          4328:     ** correct response for the end-of-loop code (the OP_Return) is to 
        !          4329:     ** fall through to the next instruction, just as an OP_Next does if
        !          4330:     ** called on an uninitialized cursor.
        !          4331:     */
        !          4332:     if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
        !          4333:       regRowset = ++pParse->nMem;
        !          4334:       regRowid = ++pParse->nMem;
        !          4335:       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
        !          4336:     }
        !          4337:     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
        !          4338: 
        !          4339:     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
        !          4340:     ** Then for every term xN, evaluate as the subexpression: xN AND z
        !          4341:     ** That way, terms in y that are factored into the disjunction will
        !          4342:     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
        !          4343:     */
        !          4344:     if( pWC->nTerm>1 ){
        !          4345:       pAndExpr = sqlite3ExprAlloc(pParse->db, TK_AND, 0, 0);
        !          4346:       pAndExpr->pRight = pWhere;
        !          4347:     }
        !          4348: 
        !          4349:     for(ii=0; ii<pOrWc->nTerm; ii++){
        !          4350:       WhereTerm *pOrTerm = &pOrWc->a[ii];
        !          4351:       if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        !          4352:         WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        !          4353:         Expr *pOrExpr = pOrTerm->pExpr;
        !          4354:         if( pAndExpr ){
        !          4355:           pAndExpr->pLeft = pOrExpr;
        !          4356:           pOrExpr = pAndExpr;
        !          4357:         }
        !          4358:         /* Loop through table entries that match term pOrTerm. */
        !          4359:         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
        !          4360:                         WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
        !          4361:                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
        !          4362:         if( pSubWInfo ){
        !          4363:           explainOneScan(
        !          4364:               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
        !          4365:           );
        !          4366:           if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
        !          4367:             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
        !          4368:             int r;
        !          4369:             r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
        !          4370:                                          regRowid);
        !          4371:             sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
        !          4372:                                  sqlite3VdbeCurrentAddr(v)+2, r, iSet);
        !          4373:           }
        !          4374:           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
        !          4375: 
        !          4376:           /* The pSubWInfo->untestedTerms flag means that this OR term
        !          4377:           ** contained one or more AND term from a notReady table.  The
        !          4378:           ** terms from the notReady table could not be tested and will
        !          4379:           ** need to be tested later.
        !          4380:           */
        !          4381:           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
        !          4382: 
        !          4383:           /* Finish the loop through table entries that match term pOrTerm. */
        !          4384:           sqlite3WhereEnd(pSubWInfo);
        !          4385:         }
        !          4386:       }
        !          4387:     }
        !          4388:     sqlite3DbFree(pParse->db, pAndExpr);
        !          4389:     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
        !          4390:     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
        !          4391:     sqlite3VdbeResolveLabel(v, iLoopBody);
        !          4392: 
        !          4393:     if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
        !          4394:     if( !untestedTerms ) disableTerm(pLevel, pTerm);
        !          4395:   }else
        !          4396: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
        !          4397: 
        !          4398:   {
        !          4399:     /* Case 5:  There is no usable index.  We must do a complete
        !          4400:     **          scan of the entire table.
        !          4401:     */
        !          4402:     static const u8 aStep[] = { OP_Next, OP_Prev };
        !          4403:     static const u8 aStart[] = { OP_Rewind, OP_Last };
        !          4404:     assert( bRev==0 || bRev==1 );
        !          4405:     assert( omitTable==0 );
        !          4406:     pLevel->op = aStep[bRev];
        !          4407:     pLevel->p1 = iCur;
        !          4408:     pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
        !          4409:     pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
        !          4410:   }
        !          4411:   notReady &= ~getMask(pWC->pMaskSet, iCur);
        !          4412: 
        !          4413:   /* Insert code to test every subexpression that can be completely
        !          4414:   ** computed using the current set of tables.
        !          4415:   **
        !          4416:   ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
        !          4417:   ** the use of indices become tests that are evaluated against each row of
        !          4418:   ** the relevant input tables.
        !          4419:   */
        !          4420:   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
        !          4421:     Expr *pE;
        !          4422:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
        !          4423:     testcase( pTerm->wtFlags & TERM_CODED );
        !          4424:     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        !          4425:     if( (pTerm->prereqAll & notReady)!=0 ){
        !          4426:       testcase( pWInfo->untestedTerms==0
        !          4427:                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
        !          4428:       pWInfo->untestedTerms = 1;
        !          4429:       continue;
        !          4430:     }
        !          4431:     pE = pTerm->pExpr;
        !          4432:     assert( pE!=0 );
        !          4433:     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        !          4434:       continue;
        !          4435:     }
        !          4436:     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
        !          4437:     pTerm->wtFlags |= TERM_CODED;
        !          4438:   }
        !          4439: 
        !          4440:   /* For a LEFT OUTER JOIN, generate code that will record the fact that
        !          4441:   ** at least one row of the right table has matched the left table.  
        !          4442:   */
        !          4443:   if( pLevel->iLeftJoin ){
        !          4444:     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
        !          4445:     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
        !          4446:     VdbeComment((v, "record LEFT JOIN hit"));
        !          4447:     sqlite3ExprCacheClear(pParse);
        !          4448:     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
        !          4449:       testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */
        !          4450:       testcase( pTerm->wtFlags & TERM_CODED );
        !          4451:       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        !          4452:       if( (pTerm->prereqAll & notReady)!=0 ){
        !          4453:         assert( pWInfo->untestedTerms );
        !          4454:         continue;
        !          4455:       }
        !          4456:       assert( pTerm->pExpr );
        !          4457:       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
        !          4458:       pTerm->wtFlags |= TERM_CODED;
        !          4459:     }
        !          4460:   }
        !          4461:   sqlite3ReleaseTempReg(pParse, iReleaseReg);
        !          4462: 
        !          4463:   return notReady;
        !          4464: }
        !          4465: 
        !          4466: #if defined(SQLITE_TEST)
        !          4467: /*
        !          4468: ** The following variable holds a text description of query plan generated
        !          4469: ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
        !          4470: ** overwrites the previous.  This information is used for testing and
        !          4471: ** analysis only.
        !          4472: */
        !          4473: char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
        !          4474: static int nQPlan = 0;              /* Next free slow in _query_plan[] */
        !          4475: 
        !          4476: #endif /* SQLITE_TEST */
        !          4477: 
        !          4478: 
        !          4479: /*
        !          4480: ** Free a WhereInfo structure
        !          4481: */
        !          4482: static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
        !          4483:   if( ALWAYS(pWInfo) ){
        !          4484:     int i;
        !          4485:     for(i=0; i<pWInfo->nLevel; i++){
        !          4486:       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
        !          4487:       if( pInfo ){
        !          4488:         /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
        !          4489:         if( pInfo->needToFreeIdxStr ){
        !          4490:           sqlite3_free(pInfo->idxStr);
        !          4491:         }
        !          4492:         sqlite3DbFree(db, pInfo);
        !          4493:       }
        !          4494:       if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
        !          4495:         Index *pIdx = pWInfo->a[i].plan.u.pIdx;
        !          4496:         if( pIdx ){
        !          4497:           sqlite3DbFree(db, pIdx->zColAff);
        !          4498:           sqlite3DbFree(db, pIdx);
        !          4499:         }
        !          4500:       }
        !          4501:     }
        !          4502:     whereClauseClear(pWInfo->pWC);
        !          4503:     sqlite3DbFree(db, pWInfo);
        !          4504:   }
        !          4505: }
        !          4506: 
        !          4507: 
        !          4508: /*
        !          4509: ** Generate the beginning of the loop used for WHERE clause processing.
        !          4510: ** The return value is a pointer to an opaque structure that contains
        !          4511: ** information needed to terminate the loop.  Later, the calling routine
        !          4512: ** should invoke sqlite3WhereEnd() with the return value of this function
        !          4513: ** in order to complete the WHERE clause processing.
        !          4514: **
        !          4515: ** If an error occurs, this routine returns NULL.
        !          4516: **
        !          4517: ** The basic idea is to do a nested loop, one loop for each table in
        !          4518: ** the FROM clause of a select.  (INSERT and UPDATE statements are the
        !          4519: ** same as a SELECT with only a single table in the FROM clause.)  For
        !          4520: ** example, if the SQL is this:
        !          4521: **
        !          4522: **       SELECT * FROM t1, t2, t3 WHERE ...;
        !          4523: **
        !          4524: ** Then the code generated is conceptually like the following:
        !          4525: **
        !          4526: **      foreach row1 in t1 do       \    Code generated
        !          4527: **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
        !          4528: **          foreach row3 in t3 do   /
        !          4529: **            ...
        !          4530: **          end                     \    Code generated
        !          4531: **        end                        |-- by sqlite3WhereEnd()
        !          4532: **      end                         /
        !          4533: **
        !          4534: ** Note that the loops might not be nested in the order in which they
        !          4535: ** appear in the FROM clause if a different order is better able to make
        !          4536: ** use of indices.  Note also that when the IN operator appears in
        !          4537: ** the WHERE clause, it might result in additional nested loops for
        !          4538: ** scanning through all values on the right-hand side of the IN.
        !          4539: **
        !          4540: ** There are Btree cursors associated with each table.  t1 uses cursor
        !          4541: ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
        !          4542: ** And so forth.  This routine generates code to open those VDBE cursors
        !          4543: ** and sqlite3WhereEnd() generates the code to close them.
        !          4544: **
        !          4545: ** The code that sqlite3WhereBegin() generates leaves the cursors named
        !          4546: ** in pTabList pointing at their appropriate entries.  The [...] code
        !          4547: ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
        !          4548: ** data from the various tables of the loop.
        !          4549: **
        !          4550: ** If the WHERE clause is empty, the foreach loops must each scan their
        !          4551: ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
        !          4552: ** the tables have indices and there are terms in the WHERE clause that
        !          4553: ** refer to those indices, a complete table scan can be avoided and the
        !          4554: ** code will run much faster.  Most of the work of this routine is checking
        !          4555: ** to see if there are indices that can be used to speed up the loop.
        !          4556: **
        !          4557: ** Terms of the WHERE clause are also used to limit which rows actually
        !          4558: ** make it to the "..." in the middle of the loop.  After each "foreach",
        !          4559: ** terms of the WHERE clause that use only terms in that loop and outer
        !          4560: ** loops are evaluated and if false a jump is made around all subsequent
        !          4561: ** inner loops (or around the "..." if the test occurs within the inner-
        !          4562: ** most loop)
        !          4563: **
        !          4564: ** OUTER JOINS
        !          4565: **
        !          4566: ** An outer join of tables t1 and t2 is conceptally coded as follows:
        !          4567: **
        !          4568: **    foreach row1 in t1 do
        !          4569: **      flag = 0
        !          4570: **      foreach row2 in t2 do
        !          4571: **        start:
        !          4572: **          ...
        !          4573: **          flag = 1
        !          4574: **      end
        !          4575: **      if flag==0 then
        !          4576: **        move the row2 cursor to a null row
        !          4577: **        goto start
        !          4578: **      fi
        !          4579: **    end
        !          4580: **
        !          4581: ** ORDER BY CLAUSE PROCESSING
        !          4582: **
        !          4583: ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
        !          4584: ** if there is one.  If there is no ORDER BY clause or if this routine
        !          4585: ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
        !          4586: **
        !          4587: ** If an index can be used so that the natural output order of the table
        !          4588: ** scan is correct for the ORDER BY clause, then that index is used and
        !          4589: ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
        !          4590: ** unnecessary sort of the result set if an index appropriate for the
        !          4591: ** ORDER BY clause already exists.
        !          4592: **
        !          4593: ** If the where clause loops cannot be arranged to provide the correct
        !          4594: ** output order, then the *ppOrderBy is unchanged.
        !          4595: */
        !          4596: WhereInfo *sqlite3WhereBegin(
        !          4597:   Parse *pParse,        /* The parser context */
        !          4598:   SrcList *pTabList,    /* A list of all tables to be scanned */
        !          4599:   Expr *pWhere,         /* The WHERE clause */
        !          4600:   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
        !          4601:   ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
        !          4602:   u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
        !          4603: ){
        !          4604:   int i;                     /* Loop counter */
        !          4605:   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
        !          4606:   int nTabList;              /* Number of elements in pTabList */
        !          4607:   WhereInfo *pWInfo;         /* Will become the return value of this function */
        !          4608:   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
        !          4609:   Bitmask notReady;          /* Cursors that are not yet positioned */
        !          4610:   WhereMaskSet *pMaskSet;    /* The expression mask set */
        !          4611:   WhereClause *pWC;               /* Decomposition of the WHERE clause */
        !          4612:   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
        !          4613:   WhereLevel *pLevel;             /* A single level in the pWInfo list */
        !          4614:   int iFrom;                      /* First unused FROM clause element */
        !          4615:   int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
        !          4616:   sqlite3 *db;               /* Database connection */
        !          4617: 
        !          4618:   /* The number of tables in the FROM clause is limited by the number of
        !          4619:   ** bits in a Bitmask 
        !          4620:   */
        !          4621:   testcase( pTabList->nSrc==BMS );
        !          4622:   if( pTabList->nSrc>BMS ){
        !          4623:     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
        !          4624:     return 0;
        !          4625:   }
        !          4626: 
        !          4627:   /* This function normally generates a nested loop for all tables in 
        !          4628:   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
        !          4629:   ** only generate code for the first table in pTabList and assume that
        !          4630:   ** any cursors associated with subsequent tables are uninitialized.
        !          4631:   */
        !          4632:   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
        !          4633: 
        !          4634:   /* Allocate and initialize the WhereInfo structure that will become the
        !          4635:   ** return value. A single allocation is used to store the WhereInfo
        !          4636:   ** struct, the contents of WhereInfo.a[], the WhereClause structure
        !          4637:   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
        !          4638:   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
        !          4639:   ** some architectures. Hence the ROUND8() below.
        !          4640:   */
        !          4641:   db = pParse->db;
        !          4642:   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
        !          4643:   pWInfo = sqlite3DbMallocZero(db, 
        !          4644:       nByteWInfo + 
        !          4645:       sizeof(WhereClause) +
        !          4646:       sizeof(WhereMaskSet)
        !          4647:   );
        !          4648:   if( db->mallocFailed ){
        !          4649:     sqlite3DbFree(db, pWInfo);
        !          4650:     pWInfo = 0;
        !          4651:     goto whereBeginError;
        !          4652:   }
        !          4653:   pWInfo->nLevel = nTabList;
        !          4654:   pWInfo->pParse = pParse;
        !          4655:   pWInfo->pTabList = pTabList;
        !          4656:   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
        !          4657:   pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
        !          4658:   pWInfo->wctrlFlags = wctrlFlags;
        !          4659:   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
        !          4660:   pMaskSet = (WhereMaskSet*)&pWC[1];
        !          4661: 
        !          4662:   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
        !          4663:   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
        !          4664:   if( db->flags & SQLITE_DistinctOpt ) pDistinct = 0;
        !          4665: 
        !          4666:   /* Split the WHERE clause into separate subexpressions where each
        !          4667:   ** subexpression is separated by an AND operator.
        !          4668:   */
        !          4669:   initMaskSet(pMaskSet);
        !          4670:   whereClauseInit(pWC, pParse, pMaskSet, wctrlFlags);
        !          4671:   sqlite3ExprCodeConstants(pParse, pWhere);
        !          4672:   whereSplit(pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
        !          4673:     
        !          4674:   /* Special case: a WHERE clause that is constant.  Evaluate the
        !          4675:   ** expression and either jump over all of the code or fall thru.
        !          4676:   */
        !          4677:   if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
        !          4678:     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
        !          4679:     pWhere = 0;
        !          4680:   }
        !          4681: 
        !          4682:   /* Assign a bit from the bitmask to every term in the FROM clause.
        !          4683:   **
        !          4684:   ** When assigning bitmask values to FROM clause cursors, it must be
        !          4685:   ** the case that if X is the bitmask for the N-th FROM clause term then
        !          4686:   ** the bitmask for all FROM clause terms to the left of the N-th term
        !          4687:   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
        !          4688:   ** its Expr.iRightJoinTable value to find the bitmask of the right table
        !          4689:   ** of the join.  Subtracting one from the right table bitmask gives a
        !          4690:   ** bitmask for all tables to the left of the join.  Knowing the bitmask
        !          4691:   ** for all tables to the left of a left join is important.  Ticket #3015.
        !          4692:   **
        !          4693:   ** Configure the WhereClause.vmask variable so that bits that correspond
        !          4694:   ** to virtual table cursors are set. This is used to selectively disable 
        !          4695:   ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
        !          4696:   ** with virtual tables.
        !          4697:   **
        !          4698:   ** Note that bitmasks are created for all pTabList->nSrc tables in
        !          4699:   ** pTabList, not just the first nTabList tables.  nTabList is normally
        !          4700:   ** equal to pTabList->nSrc but might be shortened to 1 if the
        !          4701:   ** WHERE_ONETABLE_ONLY flag is set.
        !          4702:   */
        !          4703:   assert( pWC->vmask==0 && pMaskSet->n==0 );
        !          4704:   for(i=0; i<pTabList->nSrc; i++){
        !          4705:     createMask(pMaskSet, pTabList->a[i].iCursor);
        !          4706: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          4707:     if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
        !          4708:       pWC->vmask |= ((Bitmask)1 << i);
        !          4709:     }
        !          4710: #endif
        !          4711:   }
        !          4712: #ifndef NDEBUG
        !          4713:   {
        !          4714:     Bitmask toTheLeft = 0;
        !          4715:     for(i=0; i<pTabList->nSrc; i++){
        !          4716:       Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
        !          4717:       assert( (m-1)==toTheLeft );
        !          4718:       toTheLeft |= m;
        !          4719:     }
        !          4720:   }
        !          4721: #endif
        !          4722: 
        !          4723:   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
        !          4724:   ** add new virtual terms onto the end of the WHERE clause.  We do not
        !          4725:   ** want to analyze these virtual terms, so start analyzing at the end
        !          4726:   ** and work forward so that the added virtual terms are never processed.
        !          4727:   */
        !          4728:   exprAnalyzeAll(pTabList, pWC);
        !          4729:   if( db->mallocFailed ){
        !          4730:     goto whereBeginError;
        !          4731:   }
        !          4732: 
        !          4733:   /* Check if the DISTINCT qualifier, if there is one, is redundant. 
        !          4734:   ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
        !          4735:   ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
        !          4736:   */
        !          4737:   if( pDistinct && isDistinctRedundant(pParse, pTabList, pWC, pDistinct) ){
        !          4738:     pDistinct = 0;
        !          4739:     pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
        !          4740:   }
        !          4741: 
        !          4742:   /* Chose the best index to use for each table in the FROM clause.
        !          4743:   **
        !          4744:   ** This loop fills in the following fields:
        !          4745:   **
        !          4746:   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
        !          4747:   **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
        !          4748:   **   pWInfo->a[].nEq       The number of == and IN constraints
        !          4749:   **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
        !          4750:   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
        !          4751:   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
        !          4752:   **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
        !          4753:   **
        !          4754:   ** This loop also figures out the nesting order of tables in the FROM
        !          4755:   ** clause.
        !          4756:   */
        !          4757:   notReady = ~(Bitmask)0;
        !          4758:   andFlags = ~0;
        !          4759:   WHERETRACE(("*** Optimizer Start ***\n"));
        !          4760:   for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
        !          4761:     WhereCost bestPlan;         /* Most efficient plan seen so far */
        !          4762:     Index *pIdx;                /* Index for FROM table at pTabItem */
        !          4763:     int j;                      /* For looping over FROM tables */
        !          4764:     int bestJ = -1;             /* The value of j */
        !          4765:     Bitmask m;                  /* Bitmask value for j or bestJ */
        !          4766:     int isOptimal;              /* Iterator for optimal/non-optimal search */
        !          4767:     int nUnconstrained;         /* Number tables without INDEXED BY */
        !          4768:     Bitmask notIndexed;         /* Mask of tables that cannot use an index */
        !          4769: 
        !          4770:     memset(&bestPlan, 0, sizeof(bestPlan));
        !          4771:     bestPlan.rCost = SQLITE_BIG_DBL;
        !          4772:     WHERETRACE(("*** Begin search for loop %d ***\n", i));
        !          4773: 
        !          4774:     /* Loop through the remaining entries in the FROM clause to find the
        !          4775:     ** next nested loop. The loop tests all FROM clause entries
        !          4776:     ** either once or twice. 
        !          4777:     **
        !          4778:     ** The first test is always performed if there are two or more entries
        !          4779:     ** remaining and never performed if there is only one FROM clause entry
        !          4780:     ** to choose from.  The first test looks for an "optimal" scan.  In
        !          4781:     ** this context an optimal scan is one that uses the same strategy
        !          4782:     ** for the given FROM clause entry as would be selected if the entry
        !          4783:     ** were used as the innermost nested loop.  In other words, a table
        !          4784:     ** is chosen such that the cost of running that table cannot be reduced
        !          4785:     ** by waiting for other tables to run first.  This "optimal" test works
        !          4786:     ** by first assuming that the FROM clause is on the inner loop and finding
        !          4787:     ** its query plan, then checking to see if that query plan uses any
        !          4788:     ** other FROM clause terms that are notReady.  If no notReady terms are
        !          4789:     ** used then the "optimal" query plan works.
        !          4790:     **
        !          4791:     ** Note that the WhereCost.nRow parameter for an optimal scan might
        !          4792:     ** not be as small as it would be if the table really were the innermost
        !          4793:     ** join.  The nRow value can be reduced by WHERE clause constraints
        !          4794:     ** that do not use indices.  But this nRow reduction only happens if the
        !          4795:     ** table really is the innermost join.  
        !          4796:     **
        !          4797:     ** The second loop iteration is only performed if no optimal scan
        !          4798:     ** strategies were found by the first iteration. This second iteration
        !          4799:     ** is used to search for the lowest cost scan overall.
        !          4800:     **
        !          4801:     ** Previous versions of SQLite performed only the second iteration -
        !          4802:     ** the next outermost loop was always that with the lowest overall
        !          4803:     ** cost. However, this meant that SQLite could select the wrong plan
        !          4804:     ** for scripts such as the following:
        !          4805:     **   
        !          4806:     **   CREATE TABLE t1(a, b); 
        !          4807:     **   CREATE TABLE t2(c, d);
        !          4808:     **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
        !          4809:     **
        !          4810:     ** The best strategy is to iterate through table t1 first. However it
        !          4811:     ** is not possible to determine this with a simple greedy algorithm.
        !          4812:     ** Since the cost of a linear scan through table t2 is the same 
        !          4813:     ** as the cost of a linear scan through table t1, a simple greedy 
        !          4814:     ** algorithm may choose to use t2 for the outer loop, which is a much
        !          4815:     ** costlier approach.
        !          4816:     */
        !          4817:     nUnconstrained = 0;
        !          4818:     notIndexed = 0;
        !          4819:     for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
        !          4820:       Bitmask mask;             /* Mask of tables not yet ready */
        !          4821:       for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
        !          4822:         int doNotReorder;    /* True if this table should not be reordered */
        !          4823:         WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        !          4824:         ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
        !          4825:         ExprList *pDist;     /* DISTINCT clause for index to optimize */
        !          4826:   
        !          4827:         doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
        !          4828:         if( j!=iFrom && doNotReorder ) break;
        !          4829:         m = getMask(pMaskSet, pTabItem->iCursor);
        !          4830:         if( (m & notReady)==0 ){
        !          4831:           if( j==iFrom ) iFrom++;
        !          4832:           continue;
        !          4833:         }
        !          4834:         mask = (isOptimal ? m : notReady);
        !          4835:         pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
        !          4836:         pDist = (i==0 ? pDistinct : 0);
        !          4837:         if( pTabItem->pIndex==0 ) nUnconstrained++;
        !          4838:   
        !          4839:         WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
        !          4840:                     j, isOptimal));
        !          4841:         assert( pTabItem->pTab );
        !          4842: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          4843:         if( IsVirtual(pTabItem->pTab) ){
        !          4844:           sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
        !          4845:           bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
        !          4846:                            &sCost, pp);
        !          4847:         }else 
        !          4848: #endif
        !          4849:         {
        !          4850:           bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
        !          4851:               pDist, &sCost);
        !          4852:         }
        !          4853:         assert( isOptimal || (sCost.used&notReady)==0 );
        !          4854: 
        !          4855:         /* If an INDEXED BY clause is present, then the plan must use that
        !          4856:         ** index if it uses any index at all */
        !          4857:         assert( pTabItem->pIndex==0 
        !          4858:                   || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
        !          4859:                   || sCost.plan.u.pIdx==pTabItem->pIndex );
        !          4860: 
        !          4861:         if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
        !          4862:           notIndexed |= m;
        !          4863:         }
        !          4864: 
        !          4865:         /* Conditions under which this table becomes the best so far:
        !          4866:         **
        !          4867:         **   (1) The table must not depend on other tables that have not
        !          4868:         **       yet run.
        !          4869:         **
        !          4870:         **   (2) A full-table-scan plan cannot supercede indexed plan unless
        !          4871:         **       the full-table-scan is an "optimal" plan as defined above.
        !          4872:         **
        !          4873:         **   (3) All tables have an INDEXED BY clause or this table lacks an
        !          4874:         **       INDEXED BY clause or this table uses the specific
        !          4875:         **       index specified by its INDEXED BY clause.  This rule ensures
        !          4876:         **       that a best-so-far is always selected even if an impossible
        !          4877:         **       combination of INDEXED BY clauses are given.  The error
        !          4878:         **       will be detected and relayed back to the application later.
        !          4879:         **       The NEVER() comes about because rule (2) above prevents
        !          4880:         **       An indexable full-table-scan from reaching rule (3).
        !          4881:         **
        !          4882:         **   (4) The plan cost must be lower than prior plans or else the
        !          4883:         **       cost must be the same and the number of rows must be lower.
        !          4884:         */
        !          4885:         if( (sCost.used&notReady)==0                       /* (1) */
        !          4886:             && (bestJ<0 || (notIndexed&m)!=0               /* (2) */
        !          4887:                 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
        !          4888:                 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
        !          4889:             && (nUnconstrained==0 || pTabItem->pIndex==0   /* (3) */
        !          4890:                 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
        !          4891:             && (bestJ<0 || sCost.rCost<bestPlan.rCost      /* (4) */
        !          4892:                 || (sCost.rCost<=bestPlan.rCost 
        !          4893:                  && sCost.plan.nRow<bestPlan.plan.nRow))
        !          4894:         ){
        !          4895:           WHERETRACE(("=== table %d is best so far"
        !          4896:                       " with cost=%g and nRow=%g\n",
        !          4897:                       j, sCost.rCost, sCost.plan.nRow));
        !          4898:           bestPlan = sCost;
        !          4899:           bestJ = j;
        !          4900:         }
        !          4901:         if( doNotReorder ) break;
        !          4902:       }
        !          4903:     }
        !          4904:     assert( bestJ>=0 );
        !          4905:     assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
        !          4906:     WHERETRACE(("*** Optimizer selects table %d for loop %d"
        !          4907:                 " with cost=%g and nRow=%g\n",
        !          4908:                 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
        !          4909:     /* The ALWAYS() that follows was added to hush up clang scan-build */
        !          4910:     if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 && ALWAYS(ppOrderBy) ){
        !          4911:       *ppOrderBy = 0;
        !          4912:     }
        !          4913:     if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
        !          4914:       assert( pWInfo->eDistinct==0 );
        !          4915:       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
        !          4916:     }
        !          4917:     andFlags &= bestPlan.plan.wsFlags;
        !          4918:     pLevel->plan = bestPlan.plan;
        !          4919:     testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
        !          4920:     testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
        !          4921:     if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
        !          4922:       pLevel->iIdxCur = pParse->nTab++;
        !          4923:     }else{
        !          4924:       pLevel->iIdxCur = -1;
        !          4925:     }
        !          4926:     notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
        !          4927:     pLevel->iFrom = (u8)bestJ;
        !          4928:     if( bestPlan.plan.nRow>=(double)1 ){
        !          4929:       pParse->nQueryLoop *= bestPlan.plan.nRow;
        !          4930:     }
        !          4931: 
        !          4932:     /* Check that if the table scanned by this loop iteration had an
        !          4933:     ** INDEXED BY clause attached to it, that the named index is being
        !          4934:     ** used for the scan. If not, then query compilation has failed.
        !          4935:     ** Return an error.
        !          4936:     */
        !          4937:     pIdx = pTabList->a[bestJ].pIndex;
        !          4938:     if( pIdx ){
        !          4939:       if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
        !          4940:         sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
        !          4941:         goto whereBeginError;
        !          4942:       }else{
        !          4943:         /* If an INDEXED BY clause is used, the bestIndex() function is
        !          4944:         ** guaranteed to find the index specified in the INDEXED BY clause
        !          4945:         ** if it find an index at all. */
        !          4946:         assert( bestPlan.plan.u.pIdx==pIdx );
        !          4947:       }
        !          4948:     }
        !          4949:   }
        !          4950:   WHERETRACE(("*** Optimizer Finished ***\n"));
        !          4951:   if( pParse->nErr || db->mallocFailed ){
        !          4952:     goto whereBeginError;
        !          4953:   }
        !          4954: 
        !          4955:   /* If the total query only selects a single row, then the ORDER BY
        !          4956:   ** clause is irrelevant.
        !          4957:   */
        !          4958:   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
        !          4959:     *ppOrderBy = 0;
        !          4960:   }
        !          4961: 
        !          4962:   /* If the caller is an UPDATE or DELETE statement that is requesting
        !          4963:   ** to use a one-pass algorithm, determine if this is appropriate.
        !          4964:   ** The one-pass algorithm only works if the WHERE clause constraints
        !          4965:   ** the statement to update a single row.
        !          4966:   */
        !          4967:   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
        !          4968:   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
        !          4969:     pWInfo->okOnePass = 1;
        !          4970:     pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
        !          4971:   }
        !          4972: 
        !          4973:   /* Open all tables in the pTabList and any indices selected for
        !          4974:   ** searching those tables.
        !          4975:   */
        !          4976:   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
        !          4977:   notReady = ~(Bitmask)0;
        !          4978:   pWInfo->nRowOut = (double)1;
        !          4979:   for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
        !          4980:     Table *pTab;     /* Table to open */
        !          4981:     int iDb;         /* Index of database containing table/index */
        !          4982: 
        !          4983:     pTabItem = &pTabList->a[pLevel->iFrom];
        !          4984:     pTab = pTabItem->pTab;
        !          4985:     pLevel->iTabCur = pTabItem->iCursor;
        !          4986:     pWInfo->nRowOut *= pLevel->plan.nRow;
        !          4987:     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        !          4988:     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
        !          4989:       /* Do nothing */
        !          4990:     }else
        !          4991: #ifndef SQLITE_OMIT_VIRTUALTABLE
        !          4992:     if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
        !          4993:       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
        !          4994:       int iCur = pTabItem->iCursor;
        !          4995:       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
        !          4996:     }else
        !          4997: #endif
        !          4998:     if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
        !          4999:          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
        !          5000:       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
        !          5001:       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
        !          5002:       testcase( pTab->nCol==BMS-1 );
        !          5003:       testcase( pTab->nCol==BMS );
        !          5004:       if( !pWInfo->okOnePass && pTab->nCol<BMS ){
        !          5005:         Bitmask b = pTabItem->colUsed;
        !          5006:         int n = 0;
        !          5007:         for(; b; b=b>>1, n++){}
        !          5008:         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
        !          5009:                             SQLITE_INT_TO_PTR(n), P4_INT32);
        !          5010:         assert( n<=pTab->nCol );
        !          5011:       }
        !          5012:     }else{
        !          5013:       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
        !          5014:     }
        !          5015: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
        !          5016:     if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
        !          5017:       constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
        !          5018:     }else
        !          5019: #endif
        !          5020:     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
        !          5021:       Index *pIx = pLevel->plan.u.pIdx;
        !          5022:       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
        !          5023:       int iIdxCur = pLevel->iIdxCur;
        !          5024:       assert( pIx->pSchema==pTab->pSchema );
        !          5025:       assert( iIdxCur>=0 );
        !          5026:       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
        !          5027:                         (char*)pKey, P4_KEYINFO_HANDOFF);
        !          5028:       VdbeComment((v, "%s", pIx->zName));
        !          5029:     }
        !          5030:     sqlite3CodeVerifySchema(pParse, iDb);
        !          5031:     notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
        !          5032:   }
        !          5033:   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
        !          5034:   if( db->mallocFailed ) goto whereBeginError;
        !          5035: 
        !          5036:   /* Generate the code to do the search.  Each iteration of the for
        !          5037:   ** loop below generates code for a single nested loop of the VM
        !          5038:   ** program.
        !          5039:   */
        !          5040:   notReady = ~(Bitmask)0;
        !          5041:   for(i=0; i<nTabList; i++){
        !          5042:     pLevel = &pWInfo->a[i];
        !          5043:     explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
        !          5044:     notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady, pWhere);
        !          5045:     pWInfo->iContinue = pLevel->addrCont;
        !          5046:   }
        !          5047: 
        !          5048: #ifdef SQLITE_TEST  /* For testing and debugging use only */
        !          5049:   /* Record in the query plan information about the current table
        !          5050:   ** and the index used to access it (if any).  If the table itself
        !          5051:   ** is not used, its name is just '{}'.  If no index is used
        !          5052:   ** the index is listed as "{}".  If the primary key is used the
        !          5053:   ** index name is '*'.
        !          5054:   */
        !          5055:   for(i=0; i<nTabList; i++){
        !          5056:     char *z;
        !          5057:     int n;
        !          5058:     pLevel = &pWInfo->a[i];
        !          5059:     pTabItem = &pTabList->a[pLevel->iFrom];
        !          5060:     z = pTabItem->zAlias;
        !          5061:     if( z==0 ) z = pTabItem->pTab->zName;
        !          5062:     n = sqlite3Strlen30(z);
        !          5063:     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
        !          5064:       if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
        !          5065:         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
        !          5066:         nQPlan += 2;
        !          5067:       }else{
        !          5068:         memcpy(&sqlite3_query_plan[nQPlan], z, n);
        !          5069:         nQPlan += n;
        !          5070:       }
        !          5071:       sqlite3_query_plan[nQPlan++] = ' ';
        !          5072:     }
        !          5073:     testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
        !          5074:     testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
        !          5075:     if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
        !          5076:       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
        !          5077:       nQPlan += 2;
        !          5078:     }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
        !          5079:       n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
        !          5080:       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
        !          5081:         memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
        !          5082:         nQPlan += n;
        !          5083:         sqlite3_query_plan[nQPlan++] = ' ';
        !          5084:       }
        !          5085:     }else{
        !          5086:       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
        !          5087:       nQPlan += 3;
        !          5088:     }
        !          5089:   }
        !          5090:   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
        !          5091:     sqlite3_query_plan[--nQPlan] = 0;
        !          5092:   }
        !          5093:   sqlite3_query_plan[nQPlan] = 0;
        !          5094:   nQPlan = 0;
        !          5095: #endif /* SQLITE_TEST // Testing and debugging use only */
        !          5096: 
        !          5097:   /* Record the continuation address in the WhereInfo structure.  Then
        !          5098:   ** clean up and return.
        !          5099:   */
        !          5100:   return pWInfo;
        !          5101: 
        !          5102:   /* Jump here if malloc fails */
        !          5103: whereBeginError:
        !          5104:   if( pWInfo ){
        !          5105:     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
        !          5106:     whereInfoFree(db, pWInfo);
        !          5107:   }
        !          5108:   return 0;
        !          5109: }
        !          5110: 
        !          5111: /*
        !          5112: ** Generate the end of the WHERE loop.  See comments on 
        !          5113: ** sqlite3WhereBegin() for additional information.
        !          5114: */
        !          5115: void sqlite3WhereEnd(WhereInfo *pWInfo){
        !          5116:   Parse *pParse = pWInfo->pParse;
        !          5117:   Vdbe *v = pParse->pVdbe;
        !          5118:   int i;
        !          5119:   WhereLevel *pLevel;
        !          5120:   SrcList *pTabList = pWInfo->pTabList;
        !          5121:   sqlite3 *db = pParse->db;
        !          5122: 
        !          5123:   /* Generate loop termination code.
        !          5124:   */
        !          5125:   sqlite3ExprCacheClear(pParse);
        !          5126:   for(i=pWInfo->nLevel-1; i>=0; i--){
        !          5127:     pLevel = &pWInfo->a[i];
        !          5128:     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
        !          5129:     if( pLevel->op!=OP_Noop ){
        !          5130:       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
        !          5131:       sqlite3VdbeChangeP5(v, pLevel->p5);
        !          5132:     }
        !          5133:     if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
        !          5134:       struct InLoop *pIn;
        !          5135:       int j;
        !          5136:       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
        !          5137:       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        !          5138:         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        !          5139:         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
        !          5140:         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
        !          5141:       }
        !          5142:       sqlite3DbFree(db, pLevel->u.in.aInLoop);
        !          5143:     }
        !          5144:     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
        !          5145:     if( pLevel->iLeftJoin ){
        !          5146:       int addr;
        !          5147:       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
        !          5148:       assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
        !          5149:            || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
        !          5150:       if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
        !          5151:         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
        !          5152:       }
        !          5153:       if( pLevel->iIdxCur>=0 ){
        !          5154:         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
        !          5155:       }
        !          5156:       if( pLevel->op==OP_Return ){
        !          5157:         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
        !          5158:       }else{
        !          5159:         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
        !          5160:       }
        !          5161:       sqlite3VdbeJumpHere(v, addr);
        !          5162:     }
        !          5163:   }
        !          5164: 
        !          5165:   /* The "break" point is here, just past the end of the outer loop.
        !          5166:   ** Set it.
        !          5167:   */
        !          5168:   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
        !          5169: 
        !          5170:   /* Close all of the cursors that were opened by sqlite3WhereBegin.
        !          5171:   */
        !          5172:   assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
        !          5173:   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
        !          5174:     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
        !          5175:     Table *pTab = pTabItem->pTab;
        !          5176:     assert( pTab!=0 );
        !          5177:     if( (pTab->tabFlags & TF_Ephemeral)==0
        !          5178:      && pTab->pSelect==0
        !          5179:      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
        !          5180:     ){
        !          5181:       int ws = pLevel->plan.wsFlags;
        !          5182:       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
        !          5183:         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
        !          5184:       }
        !          5185:       if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
        !          5186:         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
        !          5187:       }
        !          5188:     }
        !          5189: 
        !          5190:     /* If this scan uses an index, make code substitutions to read data
        !          5191:     ** from the index in preference to the table. Sometimes, this means
        !          5192:     ** the table need never be read from. This is a performance boost,
        !          5193:     ** as the vdbe level waits until the table is read before actually
        !          5194:     ** seeking the table cursor to the record corresponding to the current
        !          5195:     ** position in the index.
        !          5196:     ** 
        !          5197:     ** Calls to the code generator in between sqlite3WhereBegin and
        !          5198:     ** sqlite3WhereEnd will have created code that references the table
        !          5199:     ** directly.  This loop scans all that code looking for opcodes
        !          5200:     ** that reference the table and converts them into opcodes that
        !          5201:     ** reference the index.
        !          5202:     */
        !          5203:     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
        !          5204:       int k, j, last;
        !          5205:       VdbeOp *pOp;
        !          5206:       Index *pIdx = pLevel->plan.u.pIdx;
        !          5207: 
        !          5208:       assert( pIdx!=0 );
        !          5209:       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
        !          5210:       last = sqlite3VdbeCurrentAddr(v);
        !          5211:       for(k=pWInfo->iTop; k<last; k++, pOp++){
        !          5212:         if( pOp->p1!=pLevel->iTabCur ) continue;
        !          5213:         if( pOp->opcode==OP_Column ){
        !          5214:           for(j=0; j<pIdx->nColumn; j++){
        !          5215:             if( pOp->p2==pIdx->aiColumn[j] ){
        !          5216:               pOp->p2 = j;
        !          5217:               pOp->p1 = pLevel->iIdxCur;
        !          5218:               break;
        !          5219:             }
        !          5220:           }
        !          5221:           assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
        !          5222:                || j<pIdx->nColumn );
        !          5223:         }else if( pOp->opcode==OP_Rowid ){
        !          5224:           pOp->p1 = pLevel->iIdxCur;
        !          5225:           pOp->opcode = OP_IdxRowid;
        !          5226:         }
        !          5227:       }
        !          5228:     }
        !          5229:   }
        !          5230: 
        !          5231:   /* Final cleanup
        !          5232:   */
        !          5233:   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
        !          5234:   whereInfoFree(db, pWInfo);
        !          5235:   return;
        !          5236: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>