Annotation of embedaddon/sqlite3/src/where.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** 2001 September 15
                      3: **
                      4: ** The author disclaims copyright to this source code.  In place of
                      5: ** a legal notice, here is a blessing:
                      6: **
                      7: **    May you do good and not evil.
                      8: **    May you find forgiveness for yourself and forgive others.
                      9: **    May you share freely, never taking more than you give.
                     10: **
                     11: *************************************************************************
                     12: ** This module contains C code that generates VDBE code used to process
                     13: ** the WHERE clause of SQL statements.  This module is responsible for
                     14: ** generating the code that loops through a table looking for applicable
                     15: ** rows.  Indices are selected and used to speed the search when doing
                     16: ** so is applicable.  Because this module is responsible for selecting
                     17: ** indices, you might also think of this module as the "query optimizer".
                     18: */
                     19: #include "sqliteInt.h"
                     20: 
                     21: 
                     22: /*
                     23: ** Trace output macros
                     24: */
                     25: #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
                     26: int sqlite3WhereTrace = 0;
                     27: #endif
                     28: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
                     29: # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
                     30: #else
                     31: # define WHERETRACE(X)
                     32: #endif
                     33: 
                     34: /* Forward reference
                     35: */
                     36: typedef struct WhereClause WhereClause;
                     37: typedef struct WhereMaskSet WhereMaskSet;
                     38: typedef struct WhereOrInfo WhereOrInfo;
                     39: typedef struct WhereAndInfo WhereAndInfo;
                     40: typedef struct WhereCost WhereCost;
                     41: 
                     42: /*
                     43: ** The query generator uses an array of instances of this structure to
                     44: ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
                     45: ** clause subexpression is separated from the others by AND operators,
                     46: ** usually, or sometimes subexpressions separated by OR.
                     47: **
                     48: ** All WhereTerms are collected into a single WhereClause structure.  
                     49: ** The following identity holds:
                     50: **
                     51: **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
                     52: **
                     53: ** When a term is of the form:
                     54: **
                     55: **              X <op> <expr>
                     56: **
                     57: ** where X is a column name and <op> is one of certain operators,
                     58: ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
                     59: ** cursor number and column number for X.  WhereTerm.eOperator records
                     60: ** the <op> using a bitmask encoding defined by WO_xxx below.  The
                     61: ** use of a bitmask encoding for the operator allows us to search
                     62: ** quickly for terms that match any of several different operators.
                     63: **
                     64: ** A WhereTerm might also be two or more subterms connected by OR:
                     65: **
                     66: **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
                     67: **
                     68: ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
                     69: ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
                     70: ** is collected about the
                     71: **
                     72: ** If a term in the WHERE clause does not match either of the two previous
                     73: ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
                     74: ** to the original subexpression content and wtFlags is set up appropriately
                     75: ** but no other fields in the WhereTerm object are meaningful.
                     76: **
                     77: ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
                     78: ** but they do so indirectly.  A single WhereMaskSet structure translates
                     79: ** cursor number into bits and the translated bit is stored in the prereq
                     80: ** fields.  The translation is used in order to maximize the number of
                     81: ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
                     82: ** spread out over the non-negative integers.  For example, the cursor
                     83: ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
                     84: ** translates these sparse cursor numbers into consecutive integers
                     85: ** beginning with 0 in order to make the best possible use of the available
                     86: ** bits in the Bitmask.  So, in the example above, the cursor numbers
                     87: ** would be mapped into integers 0 through 7.
                     88: **
                     89: ** The number of terms in a join is limited by the number of bits
                     90: ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
                     91: ** is only able to process joins with 64 or fewer tables.
                     92: */
                     93: typedef struct WhereTerm WhereTerm;
                     94: struct WhereTerm {
                     95:   Expr *pExpr;            /* Pointer to the subexpression that is this term */
                     96:   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
                     97:   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
                     98:   union {
                     99:     int leftColumn;         /* Column number of X in "X <op> <expr>" */
                    100:     WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
                    101:     WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
                    102:   } u;
                    103:   u16 eOperator;          /* A WO_xx value describing <op> */
                    104:   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
                    105:   u8 nChild;              /* Number of children that must disable us */
                    106:   WhereClause *pWC;       /* The clause this term is part of */
                    107:   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
                    108:   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
                    109: };
                    110: 
                    111: /*
                    112: ** Allowed values of WhereTerm.wtFlags
                    113: */
                    114: #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
                    115: #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
                    116: #define TERM_CODED      0x04   /* This term is already coded */
                    117: #define TERM_COPIED     0x08   /* Has a child */
                    118: #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
                    119: #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
                    120: #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
                    121: #ifdef SQLITE_ENABLE_STAT3
                    122: #  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
                    123: #else
                    124: #  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
                    125: #endif
                    126: 
                    127: /*
                    128: ** An instance of the following structure holds all information about a
                    129: ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
                    130: **
                    131: ** Explanation of pOuter:  For a WHERE clause of the form
                    132: **
                    133: **           a AND ((b AND c) OR (d AND e)) AND f
                    134: **
                    135: ** There are separate WhereClause objects for the whole clause and for
                    136: ** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
                    137: ** subclauses points to the WhereClause object for the whole clause.
                    138: */
                    139: struct WhereClause {
                    140:   Parse *pParse;           /* The parser context */
                    141:   WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
                    142:   Bitmask vmask;           /* Bitmask identifying virtual table cursors */
                    143:   WhereClause *pOuter;     /* Outer conjunction */
                    144:   u8 op;                   /* Split operator.  TK_AND or TK_OR */
                    145:   u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
                    146:   int nTerm;               /* Number of terms */
                    147:   int nSlot;               /* Number of entries in a[] */
                    148:   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
                    149: #if defined(SQLITE_SMALL_STACK)
                    150:   WhereTerm aStatic[1];    /* Initial static space for a[] */
                    151: #else
                    152:   WhereTerm aStatic[8];    /* Initial static space for a[] */
                    153: #endif
                    154: };
                    155: 
                    156: /*
                    157: ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
                    158: ** a dynamically allocated instance of the following structure.
                    159: */
                    160: struct WhereOrInfo {
                    161:   WhereClause wc;          /* Decomposition into subterms */
                    162:   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
                    163: };
                    164: 
                    165: /*
                    166: ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
                    167: ** a dynamically allocated instance of the following structure.
                    168: */
                    169: struct WhereAndInfo {
                    170:   WhereClause wc;          /* The subexpression broken out */
                    171: };
                    172: 
                    173: /*
                    174: ** An instance of the following structure keeps track of a mapping
                    175: ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
                    176: **
                    177: ** The VDBE cursor numbers are small integers contained in 
                    178: ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
                    179: ** clause, the cursor numbers might not begin with 0 and they might
                    180: ** contain gaps in the numbering sequence.  But we want to make maximum
                    181: ** use of the bits in our bitmasks.  This structure provides a mapping
                    182: ** from the sparse cursor numbers into consecutive integers beginning
                    183: ** with 0.
                    184: **
                    185: ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
                    186: ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
                    187: **
                    188: ** For example, if the WHERE clause expression used these VDBE
                    189: ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
                    190: ** would map those cursor numbers into bits 0 through 5.
                    191: **
                    192: ** Note that the mapping is not necessarily ordered.  In the example
                    193: ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
                    194: ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
                    195: ** does not really matter.  What is important is that sparse cursor
                    196: ** numbers all get mapped into bit numbers that begin with 0 and contain
                    197: ** no gaps.
                    198: */
                    199: struct WhereMaskSet {
                    200:   int n;                        /* Number of assigned cursor values */
                    201:   int ix[BMS];                  /* Cursor assigned to each bit */
                    202: };
                    203: 
                    204: /*
                    205: ** A WhereCost object records a lookup strategy and the estimated
                    206: ** cost of pursuing that strategy.
                    207: */
                    208: struct WhereCost {
                    209:   WherePlan plan;    /* The lookup strategy */
                    210:   double rCost;      /* Overall cost of pursuing this search strategy */
                    211:   Bitmask used;      /* Bitmask of cursors used by this plan */
                    212: };
                    213: 
                    214: /*
                    215: ** Bitmasks for the operators that indices are able to exploit.  An
                    216: ** OR-ed combination of these values can be used when searching for
                    217: ** terms in the where clause.
                    218: */
                    219: #define WO_IN     0x001
                    220: #define WO_EQ     0x002
                    221: #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
                    222: #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
                    223: #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
                    224: #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
                    225: #define WO_MATCH  0x040
                    226: #define WO_ISNULL 0x080
                    227: #define WO_OR     0x100       /* Two or more OR-connected terms */
                    228: #define WO_AND    0x200       /* Two or more AND-connected terms */
                    229: #define WO_NOOP   0x800       /* This term does not restrict search space */
                    230: 
                    231: #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
                    232: #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
                    233: 
                    234: /*
                    235: ** Value for wsFlags returned by bestIndex() and stored in
                    236: ** WhereLevel.wsFlags.  These flags determine which search
                    237: ** strategies are appropriate.
                    238: **
                    239: ** The least significant 12 bits is reserved as a mask for WO_ values above.
                    240: ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
                    241: ** But if the table is the right table of a left join, WhereLevel.wsFlags
                    242: ** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
                    243: ** the "op" parameter to findTerm when we are resolving equality constraints.
                    244: ** ISNULL constraints will then not be used on the right table of a left
                    245: ** join.  Tickets #2177 and #2189.
                    246: */
                    247: #define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
                    248: #define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
                    249: #define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
                    250: #define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
                    251: #define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
                    252: #define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
                    253: #define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
                    254: #define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
                    255: #define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
                    256: #define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
                    257: #define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
                    258: #define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
                    259: #define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
                    260: #define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
                    261: #define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
                    262: #define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
                    263: #define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
                    264: #define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
                    265: #define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
                    266: #define WHERE_DISTINCT     0x40000000  /* Correct order for DISTINCT */
                    267: 
                    268: /*
                    269: ** Initialize a preallocated WhereClause structure.
                    270: */
                    271: static void whereClauseInit(
                    272:   WhereClause *pWC,        /* The WhereClause to be initialized */
                    273:   Parse *pParse,           /* The parsing context */
                    274:   WhereMaskSet *pMaskSet,  /* Mapping from table cursor numbers to bitmasks */
                    275:   u16 wctrlFlags           /* Might include WHERE_AND_ONLY */
                    276: ){
                    277:   pWC->pParse = pParse;
                    278:   pWC->pMaskSet = pMaskSet;
                    279:   pWC->pOuter = 0;
                    280:   pWC->nTerm = 0;
                    281:   pWC->nSlot = ArraySize(pWC->aStatic);
                    282:   pWC->a = pWC->aStatic;
                    283:   pWC->vmask = 0;
                    284:   pWC->wctrlFlags = wctrlFlags;
                    285: }
                    286: 
                    287: /* Forward reference */
                    288: static void whereClauseClear(WhereClause*);
                    289: 
                    290: /*
                    291: ** Deallocate all memory associated with a WhereOrInfo object.
                    292: */
                    293: static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
                    294:   whereClauseClear(&p->wc);
                    295:   sqlite3DbFree(db, p);
                    296: }
                    297: 
                    298: /*
                    299: ** Deallocate all memory associated with a WhereAndInfo object.
                    300: */
                    301: static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
                    302:   whereClauseClear(&p->wc);
                    303:   sqlite3DbFree(db, p);
                    304: }
                    305: 
                    306: /*
                    307: ** Deallocate a WhereClause structure.  The WhereClause structure
                    308: ** itself is not freed.  This routine is the inverse of whereClauseInit().
                    309: */
                    310: static void whereClauseClear(WhereClause *pWC){
                    311:   int i;
                    312:   WhereTerm *a;
                    313:   sqlite3 *db = pWC->pParse->db;
                    314:   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
                    315:     if( a->wtFlags & TERM_DYNAMIC ){
                    316:       sqlite3ExprDelete(db, a->pExpr);
                    317:     }
                    318:     if( a->wtFlags & TERM_ORINFO ){
                    319:       whereOrInfoDelete(db, a->u.pOrInfo);
                    320:     }else if( a->wtFlags & TERM_ANDINFO ){
                    321:       whereAndInfoDelete(db, a->u.pAndInfo);
                    322:     }
                    323:   }
                    324:   if( pWC->a!=pWC->aStatic ){
                    325:     sqlite3DbFree(db, pWC->a);
                    326:   }
                    327: }
                    328: 
                    329: /*
                    330: ** Add a single new WhereTerm entry to the WhereClause object pWC.
                    331: ** The new WhereTerm object is constructed from Expr p and with wtFlags.
                    332: ** The index in pWC->a[] of the new WhereTerm is returned on success.
                    333: ** 0 is returned if the new WhereTerm could not be added due to a memory
                    334: ** allocation error.  The memory allocation failure will be recorded in
                    335: ** the db->mallocFailed flag so that higher-level functions can detect it.
                    336: **
                    337: ** This routine will increase the size of the pWC->a[] array as necessary.
                    338: **
                    339: ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
                    340: ** for freeing the expression p is assumed by the WhereClause object pWC.
                    341: ** This is true even if this routine fails to allocate a new WhereTerm.
                    342: **
                    343: ** WARNING:  This routine might reallocate the space used to store
                    344: ** WhereTerms.  All pointers to WhereTerms should be invalidated after
                    345: ** calling this routine.  Such pointers may be reinitialized by referencing
                    346: ** the pWC->a[] array.
                    347: */
                    348: static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
                    349:   WhereTerm *pTerm;
                    350:   int idx;
                    351:   testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
                    352:   if( pWC->nTerm>=pWC->nSlot ){
                    353:     WhereTerm *pOld = pWC->a;
                    354:     sqlite3 *db = pWC->pParse->db;
                    355:     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
                    356:     if( pWC->a==0 ){
                    357:       if( wtFlags & TERM_DYNAMIC ){
                    358:         sqlite3ExprDelete(db, p);
                    359:       }
                    360:       pWC->a = pOld;
                    361:       return 0;
                    362:     }
                    363:     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
                    364:     if( pOld!=pWC->aStatic ){
                    365:       sqlite3DbFree(db, pOld);
                    366:     }
                    367:     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
                    368:   }
                    369:   pTerm = &pWC->a[idx = pWC->nTerm++];
                    370:   pTerm->pExpr = p;
                    371:   pTerm->wtFlags = wtFlags;
                    372:   pTerm->pWC = pWC;
                    373:   pTerm->iParent = -1;
                    374:   return idx;
                    375: }
                    376: 
                    377: /*
                    378: ** This routine identifies subexpressions in the WHERE clause where
                    379: ** each subexpression is separated by the AND operator or some other
                    380: ** operator specified in the op parameter.  The WhereClause structure
                    381: ** is filled with pointers to subexpressions.  For example:
                    382: **
                    383: **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
                    384: **           \________/     \_______________/     \________________/
                    385: **            slot[0]            slot[1]               slot[2]
                    386: **
                    387: ** The original WHERE clause in pExpr is unaltered.  All this routine
                    388: ** does is make slot[] entries point to substructure within pExpr.
                    389: **
                    390: ** In the previous sentence and in the diagram, "slot[]" refers to
                    391: ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
                    392: ** all terms of the WHERE clause.
                    393: */
                    394: static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
                    395:   pWC->op = (u8)op;
                    396:   if( pExpr==0 ) return;
                    397:   if( pExpr->op!=op ){
                    398:     whereClauseInsert(pWC, pExpr, 0);
                    399:   }else{
                    400:     whereSplit(pWC, pExpr->pLeft, op);
                    401:     whereSplit(pWC, pExpr->pRight, op);
                    402:   }
                    403: }
                    404: 
                    405: /*
                    406: ** Initialize an expression mask set (a WhereMaskSet object)
                    407: */
                    408: #define initMaskSet(P)  memset(P, 0, sizeof(*P))
                    409: 
                    410: /*
                    411: ** Return the bitmask for the given cursor number.  Return 0 if
                    412: ** iCursor is not in the set.
                    413: */
                    414: static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
                    415:   int i;
                    416:   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
                    417:   for(i=0; i<pMaskSet->n; i++){
                    418:     if( pMaskSet->ix[i]==iCursor ){
                    419:       return ((Bitmask)1)<<i;
                    420:     }
                    421:   }
                    422:   return 0;
                    423: }
                    424: 
                    425: /*
                    426: ** Create a new mask for cursor iCursor.
                    427: **
                    428: ** There is one cursor per table in the FROM clause.  The number of
                    429: ** tables in the FROM clause is limited by a test early in the
                    430: ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
                    431: ** array will never overflow.
                    432: */
                    433: static void createMask(WhereMaskSet *pMaskSet, int iCursor){
                    434:   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
                    435:   pMaskSet->ix[pMaskSet->n++] = iCursor;
                    436: }
                    437: 
                    438: /*
                    439: ** This routine walks (recursively) an expression tree and generates
                    440: ** a bitmask indicating which tables are used in that expression
                    441: ** tree.
                    442: **
                    443: ** In order for this routine to work, the calling function must have
                    444: ** previously invoked sqlite3ResolveExprNames() on the expression.  See
                    445: ** the header comment on that routine for additional information.
                    446: ** The sqlite3ResolveExprNames() routines looks for column names and
                    447: ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
                    448: ** the VDBE cursor number of the table.  This routine just has to
                    449: ** translate the cursor numbers into bitmask values and OR all
                    450: ** the bitmasks together.
                    451: */
                    452: static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
                    453: static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
                    454: static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
                    455:   Bitmask mask = 0;
                    456:   if( p==0 ) return 0;
                    457:   if( p->op==TK_COLUMN ){
                    458:     mask = getMask(pMaskSet, p->iTable);
                    459:     return mask;
                    460:   }
                    461:   mask = exprTableUsage(pMaskSet, p->pRight);
                    462:   mask |= exprTableUsage(pMaskSet, p->pLeft);
                    463:   if( ExprHasProperty(p, EP_xIsSelect) ){
                    464:     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
                    465:   }else{
                    466:     mask |= exprListTableUsage(pMaskSet, p->x.pList);
                    467:   }
                    468:   return mask;
                    469: }
                    470: static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
                    471:   int i;
                    472:   Bitmask mask = 0;
                    473:   if( pList ){
                    474:     for(i=0; i<pList->nExpr; i++){
                    475:       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
                    476:     }
                    477:   }
                    478:   return mask;
                    479: }
                    480: static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
                    481:   Bitmask mask = 0;
                    482:   while( pS ){
                    483:     SrcList *pSrc = pS->pSrc;
                    484:     mask |= exprListTableUsage(pMaskSet, pS->pEList);
                    485:     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
                    486:     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
                    487:     mask |= exprTableUsage(pMaskSet, pS->pWhere);
                    488:     mask |= exprTableUsage(pMaskSet, pS->pHaving);
                    489:     if( ALWAYS(pSrc!=0) ){
                    490:       int i;
                    491:       for(i=0; i<pSrc->nSrc; i++){
                    492:         mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
                    493:         mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
                    494:       }
                    495:     }
                    496:     pS = pS->pPrior;
                    497:   }
                    498:   return mask;
                    499: }
                    500: 
                    501: /*
                    502: ** Return TRUE if the given operator is one of the operators that is
                    503: ** allowed for an indexable WHERE clause term.  The allowed operators are
                    504: ** "=", "<", ">", "<=", ">=", and "IN".
                    505: **
                    506: ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
                    507: ** of one of the following forms: column = expression column > expression
                    508: ** column >= expression column < expression column <= expression
                    509: ** expression = column expression > column expression >= column
                    510: ** expression < column expression <= column column IN
                    511: ** (expression-list) column IN (subquery) column IS NULL
                    512: */
                    513: static int allowedOp(int op){
                    514:   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
                    515:   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
                    516:   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
                    517:   assert( TK_GE==TK_EQ+4 );
                    518:   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
                    519: }
                    520: 
                    521: /*
                    522: ** Swap two objects of type TYPE.
                    523: */
                    524: #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
                    525: 
                    526: /*
                    527: ** Commute a comparison operator.  Expressions of the form "X op Y"
                    528: ** are converted into "Y op X".
                    529: **
                    530: ** If a collation sequence is associated with either the left or right
                    531: ** side of the comparison, it remains associated with the same side after
                    532: ** the commutation. So "Y collate NOCASE op X" becomes 
                    533: ** "X collate NOCASE op Y". This is because any collation sequence on
                    534: ** the left hand side of a comparison overrides any collation sequence 
                    535: ** attached to the right. For the same reason the EP_ExpCollate flag
                    536: ** is not commuted.
                    537: */
                    538: static void exprCommute(Parse *pParse, Expr *pExpr){
                    539:   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
                    540:   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
                    541:   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
                    542:   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
                    543:   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
                    544:   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
                    545:   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
                    546:   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
                    547:   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
                    548:   if( pExpr->op>=TK_GT ){
                    549:     assert( TK_LT==TK_GT+2 );
                    550:     assert( TK_GE==TK_LE+2 );
                    551:     assert( TK_GT>TK_EQ );
                    552:     assert( TK_GT<TK_LE );
                    553:     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
                    554:     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
                    555:   }
                    556: }
                    557: 
                    558: /*
                    559: ** Translate from TK_xx operator to WO_xx bitmask.
                    560: */
                    561: static u16 operatorMask(int op){
                    562:   u16 c;
                    563:   assert( allowedOp(op) );
                    564:   if( op==TK_IN ){
                    565:     c = WO_IN;
                    566:   }else if( op==TK_ISNULL ){
                    567:     c = WO_ISNULL;
                    568:   }else{
                    569:     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
                    570:     c = (u16)(WO_EQ<<(op-TK_EQ));
                    571:   }
                    572:   assert( op!=TK_ISNULL || c==WO_ISNULL );
                    573:   assert( op!=TK_IN || c==WO_IN );
                    574:   assert( op!=TK_EQ || c==WO_EQ );
                    575:   assert( op!=TK_LT || c==WO_LT );
                    576:   assert( op!=TK_LE || c==WO_LE );
                    577:   assert( op!=TK_GT || c==WO_GT );
                    578:   assert( op!=TK_GE || c==WO_GE );
                    579:   return c;
                    580: }
                    581: 
                    582: /*
                    583: ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
                    584: ** where X is a reference to the iColumn of table iCur and <op> is one of
                    585: ** the WO_xx operator codes specified by the op parameter.
                    586: ** Return a pointer to the term.  Return 0 if not found.
                    587: */
                    588: static WhereTerm *findTerm(
                    589:   WhereClause *pWC,     /* The WHERE clause to be searched */
                    590:   int iCur,             /* Cursor number of LHS */
                    591:   int iColumn,          /* Column number of LHS */
                    592:   Bitmask notReady,     /* RHS must not overlap with this mask */
                    593:   u32 op,               /* Mask of WO_xx values describing operator */
                    594:   Index *pIdx           /* Must be compatible with this index, if not NULL */
                    595: ){
                    596:   WhereTerm *pTerm;
                    597:   int k;
                    598:   assert( iCur>=0 );
                    599:   op &= WO_ALL;
                    600:   for(; pWC; pWC=pWC->pOuter){
                    601:     for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
                    602:       if( pTerm->leftCursor==iCur
                    603:          && (pTerm->prereqRight & notReady)==0
                    604:          && pTerm->u.leftColumn==iColumn
                    605:          && (pTerm->eOperator & op)!=0
                    606:       ){
                    607:         if( iColumn>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
                    608:           Expr *pX = pTerm->pExpr;
                    609:           CollSeq *pColl;
                    610:           char idxaff;
                    611:           int j;
                    612:           Parse *pParse = pWC->pParse;
                    613:   
                    614:           idxaff = pIdx->pTable->aCol[iColumn].affinity;
                    615:           if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
                    616:   
                    617:           /* Figure out the collation sequence required from an index for
                    618:           ** it to be useful for optimising expression pX. Store this
                    619:           ** value in variable pColl.
                    620:           */
                    621:           assert(pX->pLeft);
                    622:           pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
                    623:           assert(pColl || pParse->nErr);
                    624:   
                    625:           for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
                    626:             if( NEVER(j>=pIdx->nColumn) ) return 0;
                    627:           }
                    628:           if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
                    629:         }
                    630:         return pTerm;
                    631:       }
                    632:     }
                    633:   }
                    634:   return 0;
                    635: }
                    636: 
                    637: /* Forward reference */
                    638: static void exprAnalyze(SrcList*, WhereClause*, int);
                    639: 
                    640: /*
                    641: ** Call exprAnalyze on all terms in a WHERE clause.  
                    642: **
                    643: **
                    644: */
                    645: static void exprAnalyzeAll(
                    646:   SrcList *pTabList,       /* the FROM clause */
                    647:   WhereClause *pWC         /* the WHERE clause to be analyzed */
                    648: ){
                    649:   int i;
                    650:   for(i=pWC->nTerm-1; i>=0; i--){
                    651:     exprAnalyze(pTabList, pWC, i);
                    652:   }
                    653: }
                    654: 
                    655: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
                    656: /*
                    657: ** Check to see if the given expression is a LIKE or GLOB operator that
                    658: ** can be optimized using inequality constraints.  Return TRUE if it is
                    659: ** so and false if not.
                    660: **
                    661: ** In order for the operator to be optimizible, the RHS must be a string
                    662: ** literal that does not begin with a wildcard.  
                    663: */
                    664: static int isLikeOrGlob(
                    665:   Parse *pParse,    /* Parsing and code generating context */
                    666:   Expr *pExpr,      /* Test this expression */
                    667:   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
                    668:   int *pisComplete, /* True if the only wildcard is % in the last character */
                    669:   int *pnoCase      /* True if uppercase is equivalent to lowercase */
                    670: ){
                    671:   const char *z = 0;         /* String on RHS of LIKE operator */
                    672:   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
                    673:   ExprList *pList;           /* List of operands to the LIKE operator */
                    674:   int c;                     /* One character in z[] */
                    675:   int cnt;                   /* Number of non-wildcard prefix characters */
                    676:   char wc[3];                /* Wildcard characters */
                    677:   sqlite3 *db = pParse->db;  /* Database connection */
                    678:   sqlite3_value *pVal = 0;
                    679:   int op;                    /* Opcode of pRight */
                    680: 
                    681:   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
                    682:     return 0;
                    683:   }
                    684: #ifdef SQLITE_EBCDIC
                    685:   if( *pnoCase ) return 0;
                    686: #endif
                    687:   pList = pExpr->x.pList;
                    688:   pLeft = pList->a[1].pExpr;
                    689:   if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
                    690:     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
                    691:     ** be the name of an indexed column with TEXT affinity. */
                    692:     return 0;
                    693:   }
                    694:   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
                    695: 
                    696:   pRight = pList->a[0].pExpr;
                    697:   op = pRight->op;
                    698:   if( op==TK_REGISTER ){
                    699:     op = pRight->op2;
                    700:   }
                    701:   if( op==TK_VARIABLE ){
                    702:     Vdbe *pReprepare = pParse->pReprepare;
                    703:     int iCol = pRight->iColumn;
                    704:     pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
                    705:     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
                    706:       z = (char *)sqlite3_value_text(pVal);
                    707:     }
                    708:     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
                    709:     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
                    710:   }else if( op==TK_STRING ){
                    711:     z = pRight->u.zToken;
                    712:   }
                    713:   if( z ){
                    714:     cnt = 0;
                    715:     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
                    716:       cnt++;
                    717:     }
                    718:     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
                    719:       Expr *pPrefix;
                    720:       *pisComplete = c==wc[0] && z[cnt+1]==0;
                    721:       pPrefix = sqlite3Expr(db, TK_STRING, z);
                    722:       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
                    723:       *ppPrefix = pPrefix;
                    724:       if( op==TK_VARIABLE ){
                    725:         Vdbe *v = pParse->pVdbe;
                    726:         sqlite3VdbeSetVarmask(v, pRight->iColumn);
                    727:         if( *pisComplete && pRight->u.zToken[1] ){
                    728:           /* If the rhs of the LIKE expression is a variable, and the current
                    729:           ** value of the variable means there is no need to invoke the LIKE
                    730:           ** function, then no OP_Variable will be added to the program.
                    731:           ** This causes problems for the sqlite3_bind_parameter_name()
                    732:           ** API. To workaround them, add a dummy OP_Variable here.
                    733:           */ 
                    734:           int r1 = sqlite3GetTempReg(pParse);
                    735:           sqlite3ExprCodeTarget(pParse, pRight, r1);
                    736:           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
                    737:           sqlite3ReleaseTempReg(pParse, r1);
                    738:         }
                    739:       }
                    740:     }else{
                    741:       z = 0;
                    742:     }
                    743:   }
                    744: 
                    745:   sqlite3ValueFree(pVal);
                    746:   return (z!=0);
                    747: }
                    748: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
                    749: 
                    750: 
                    751: #ifndef SQLITE_OMIT_VIRTUALTABLE
                    752: /*
                    753: ** Check to see if the given expression is of the form
                    754: **
                    755: **         column MATCH expr
                    756: **
                    757: ** If it is then return TRUE.  If not, return FALSE.
                    758: */
                    759: static int isMatchOfColumn(
                    760:   Expr *pExpr      /* Test this expression */
                    761: ){
                    762:   ExprList *pList;
                    763: 
                    764:   if( pExpr->op!=TK_FUNCTION ){
                    765:     return 0;
                    766:   }
                    767:   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
                    768:     return 0;
                    769:   }
                    770:   pList = pExpr->x.pList;
                    771:   if( pList->nExpr!=2 ){
                    772:     return 0;
                    773:   }
                    774:   if( pList->a[1].pExpr->op != TK_COLUMN ){
                    775:     return 0;
                    776:   }
                    777:   return 1;
                    778: }
                    779: #endif /* SQLITE_OMIT_VIRTUALTABLE */
                    780: 
                    781: /*
                    782: ** If the pBase expression originated in the ON or USING clause of
                    783: ** a join, then transfer the appropriate markings over to derived.
                    784: */
                    785: static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
                    786:   pDerived->flags |= pBase->flags & EP_FromJoin;
                    787:   pDerived->iRightJoinTable = pBase->iRightJoinTable;
                    788: }
                    789: 
                    790: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
                    791: /*
                    792: ** Analyze a term that consists of two or more OR-connected
                    793: ** subterms.  So in:
                    794: **
                    795: **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
                    796: **                          ^^^^^^^^^^^^^^^^^^^^
                    797: **
                    798: ** This routine analyzes terms such as the middle term in the above example.
                    799: ** A WhereOrTerm object is computed and attached to the term under
                    800: ** analysis, regardless of the outcome of the analysis.  Hence:
                    801: **
                    802: **     WhereTerm.wtFlags   |=  TERM_ORINFO
                    803: **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
                    804: **
                    805: ** The term being analyzed must have two or more of OR-connected subterms.
                    806: ** A single subterm might be a set of AND-connected sub-subterms.
                    807: ** Examples of terms under analysis:
                    808: **
                    809: **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
                    810: **     (B)     x=expr1 OR expr2=x OR x=expr3
                    811: **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
                    812: **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
                    813: **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
                    814: **
                    815: ** CASE 1:
                    816: **
                    817: ** If all subterms are of the form T.C=expr for some single column of C
                    818: ** a single table T (as shown in example B above) then create a new virtual
                    819: ** term that is an equivalent IN expression.  In other words, if the term
                    820: ** being analyzed is:
                    821: **
                    822: **      x = expr1  OR  expr2 = x  OR  x = expr3
                    823: **
                    824: ** then create a new virtual term like this:
                    825: **
                    826: **      x IN (expr1,expr2,expr3)
                    827: **
                    828: ** CASE 2:
                    829: **
                    830: ** If all subterms are indexable by a single table T, then set
                    831: **
                    832: **     WhereTerm.eOperator              =  WO_OR
                    833: **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
                    834: **
                    835: ** A subterm is "indexable" if it is of the form
                    836: ** "T.C <op> <expr>" where C is any column of table T and 
                    837: ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
                    838: ** A subterm is also indexable if it is an AND of two or more
                    839: ** subsubterms at least one of which is indexable.  Indexable AND 
                    840: ** subterms have their eOperator set to WO_AND and they have
                    841: ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
                    842: **
                    843: ** From another point of view, "indexable" means that the subterm could
                    844: ** potentially be used with an index if an appropriate index exists.
                    845: ** This analysis does not consider whether or not the index exists; that
                    846: ** is something the bestIndex() routine will determine.  This analysis
                    847: ** only looks at whether subterms appropriate for indexing exist.
                    848: **
                    849: ** All examples A through E above all satisfy case 2.  But if a term
                    850: ** also statisfies case 1 (such as B) we know that the optimizer will
                    851: ** always prefer case 1, so in that case we pretend that case 2 is not
                    852: ** satisfied.
                    853: **
                    854: ** It might be the case that multiple tables are indexable.  For example,
                    855: ** (E) above is indexable on tables P, Q, and R.
                    856: **
                    857: ** Terms that satisfy case 2 are candidates for lookup by using
                    858: ** separate indices to find rowids for each subterm and composing
                    859: ** the union of all rowids using a RowSet object.  This is similar
                    860: ** to "bitmap indices" in other database engines.
                    861: **
                    862: ** OTHERWISE:
                    863: **
                    864: ** If neither case 1 nor case 2 apply, then leave the eOperator set to
                    865: ** zero.  This term is not useful for search.
                    866: */
                    867: static void exprAnalyzeOrTerm(
                    868:   SrcList *pSrc,            /* the FROM clause */
                    869:   WhereClause *pWC,         /* the complete WHERE clause */
                    870:   int idxTerm               /* Index of the OR-term to be analyzed */
                    871: ){
                    872:   Parse *pParse = pWC->pParse;            /* Parser context */
                    873:   sqlite3 *db = pParse->db;               /* Database connection */
                    874:   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
                    875:   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
                    876:   WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
                    877:   int i;                                  /* Loop counters */
                    878:   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
                    879:   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
                    880:   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
                    881:   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
                    882:   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
                    883: 
                    884:   /*
                    885:   ** Break the OR clause into its separate subterms.  The subterms are
                    886:   ** stored in a WhereClause structure containing within the WhereOrInfo
                    887:   ** object that is attached to the original OR clause term.
                    888:   */
                    889:   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
                    890:   assert( pExpr->op==TK_OR );
                    891:   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
                    892:   if( pOrInfo==0 ) return;
                    893:   pTerm->wtFlags |= TERM_ORINFO;
                    894:   pOrWc = &pOrInfo->wc;
                    895:   whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags);
                    896:   whereSplit(pOrWc, pExpr, TK_OR);
                    897:   exprAnalyzeAll(pSrc, pOrWc);
                    898:   if( db->mallocFailed ) return;
                    899:   assert( pOrWc->nTerm>=2 );
                    900: 
                    901:   /*
                    902:   ** Compute the set of tables that might satisfy cases 1 or 2.
                    903:   */
                    904:   indexable = ~(Bitmask)0;
                    905:   chngToIN = ~(pWC->vmask);
                    906:   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
                    907:     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
                    908:       WhereAndInfo *pAndInfo;
                    909:       assert( pOrTerm->eOperator==0 );
                    910:       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
                    911:       chngToIN = 0;
                    912:       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
                    913:       if( pAndInfo ){
                    914:         WhereClause *pAndWC;
                    915:         WhereTerm *pAndTerm;
                    916:         int j;
                    917:         Bitmask b = 0;
                    918:         pOrTerm->u.pAndInfo = pAndInfo;
                    919:         pOrTerm->wtFlags |= TERM_ANDINFO;
                    920:         pOrTerm->eOperator = WO_AND;
                    921:         pAndWC = &pAndInfo->wc;
                    922:         whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags);
                    923:         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
                    924:         exprAnalyzeAll(pSrc, pAndWC);
                    925:         pAndWC->pOuter = pWC;
                    926:         testcase( db->mallocFailed );
                    927:         if( !db->mallocFailed ){
                    928:           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
                    929:             assert( pAndTerm->pExpr );
                    930:             if( allowedOp(pAndTerm->pExpr->op) ){
                    931:               b |= getMask(pMaskSet, pAndTerm->leftCursor);
                    932:             }
                    933:           }
                    934:         }
                    935:         indexable &= b;
                    936:       }
                    937:     }else if( pOrTerm->wtFlags & TERM_COPIED ){
                    938:       /* Skip this term for now.  We revisit it when we process the
                    939:       ** corresponding TERM_VIRTUAL term */
                    940:     }else{
                    941:       Bitmask b;
                    942:       b = getMask(pMaskSet, pOrTerm->leftCursor);
                    943:       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
                    944:         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
                    945:         b |= getMask(pMaskSet, pOther->leftCursor);
                    946:       }
                    947:       indexable &= b;
                    948:       if( pOrTerm->eOperator!=WO_EQ ){
                    949:         chngToIN = 0;
                    950:       }else{
                    951:         chngToIN &= b;
                    952:       }
                    953:     }
                    954:   }
                    955: 
                    956:   /*
                    957:   ** Record the set of tables that satisfy case 2.  The set might be
                    958:   ** empty.
                    959:   */
                    960:   pOrInfo->indexable = indexable;
                    961:   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
                    962: 
                    963:   /*
                    964:   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
                    965:   ** we have to do some additional checking to see if case 1 really
                    966:   ** is satisfied.
                    967:   **
                    968:   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
                    969:   ** that there is no possibility of transforming the OR clause into an
                    970:   ** IN operator because one or more terms in the OR clause contain
                    971:   ** something other than == on a column in the single table.  The 1-bit
                    972:   ** case means that every term of the OR clause is of the form
                    973:   ** "table.column=expr" for some single table.  The one bit that is set
                    974:   ** will correspond to the common table.  We still need to check to make
                    975:   ** sure the same column is used on all terms.  The 2-bit case is when
                    976:   ** the all terms are of the form "table1.column=table2.column".  It
                    977:   ** might be possible to form an IN operator with either table1.column
                    978:   ** or table2.column as the LHS if either is common to every term of
                    979:   ** the OR clause.
                    980:   **
                    981:   ** Note that terms of the form "table.column1=table.column2" (the
                    982:   ** same table on both sizes of the ==) cannot be optimized.
                    983:   */
                    984:   if( chngToIN ){
                    985:     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
                    986:     int iColumn = -1;         /* Column index on lhs of IN operator */
                    987:     int iCursor = -1;         /* Table cursor common to all terms */
                    988:     int j = 0;                /* Loop counter */
                    989: 
                    990:     /* Search for a table and column that appears on one side or the
                    991:     ** other of the == operator in every subterm.  That table and column
                    992:     ** will be recorded in iCursor and iColumn.  There might not be any
                    993:     ** such table and column.  Set okToChngToIN if an appropriate table
                    994:     ** and column is found but leave okToChngToIN false if not found.
                    995:     */
                    996:     for(j=0; j<2 && !okToChngToIN; j++){
                    997:       pOrTerm = pOrWc->a;
                    998:       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
                    999:         assert( pOrTerm->eOperator==WO_EQ );
                   1000:         pOrTerm->wtFlags &= ~TERM_OR_OK;
                   1001:         if( pOrTerm->leftCursor==iCursor ){
                   1002:           /* This is the 2-bit case and we are on the second iteration and
                   1003:           ** current term is from the first iteration.  So skip this term. */
                   1004:           assert( j==1 );
                   1005:           continue;
                   1006:         }
                   1007:         if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
                   1008:           /* This term must be of the form t1.a==t2.b where t2 is in the
                   1009:           ** chngToIN set but t1 is not.  This term will be either preceeded
                   1010:           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
                   1011:           ** and use its inversion. */
                   1012:           testcase( pOrTerm->wtFlags & TERM_COPIED );
                   1013:           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
                   1014:           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
                   1015:           continue;
                   1016:         }
                   1017:         iColumn = pOrTerm->u.leftColumn;
                   1018:         iCursor = pOrTerm->leftCursor;
                   1019:         break;
                   1020:       }
                   1021:       if( i<0 ){
                   1022:         /* No candidate table+column was found.  This can only occur
                   1023:         ** on the second iteration */
                   1024:         assert( j==1 );
                   1025:         assert( (chngToIN&(chngToIN-1))==0 );
                   1026:         assert( chngToIN==getMask(pMaskSet, iCursor) );
                   1027:         break;
                   1028:       }
                   1029:       testcase( j==1 );
                   1030: 
                   1031:       /* We have found a candidate table and column.  Check to see if that
                   1032:       ** table and column is common to every term in the OR clause */
                   1033:       okToChngToIN = 1;
                   1034:       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
                   1035:         assert( pOrTerm->eOperator==WO_EQ );
                   1036:         if( pOrTerm->leftCursor!=iCursor ){
                   1037:           pOrTerm->wtFlags &= ~TERM_OR_OK;
                   1038:         }else if( pOrTerm->u.leftColumn!=iColumn ){
                   1039:           okToChngToIN = 0;
                   1040:         }else{
                   1041:           int affLeft, affRight;
                   1042:           /* If the right-hand side is also a column, then the affinities
                   1043:           ** of both right and left sides must be such that no type
                   1044:           ** conversions are required on the right.  (Ticket #2249)
                   1045:           */
                   1046:           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
                   1047:           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
                   1048:           if( affRight!=0 && affRight!=affLeft ){
                   1049:             okToChngToIN = 0;
                   1050:           }else{
                   1051:             pOrTerm->wtFlags |= TERM_OR_OK;
                   1052:           }
                   1053:         }
                   1054:       }
                   1055:     }
                   1056: 
                   1057:     /* At this point, okToChngToIN is true if original pTerm satisfies
                   1058:     ** case 1.  In that case, construct a new virtual term that is 
                   1059:     ** pTerm converted into an IN operator.
                   1060:     **
                   1061:     ** EV: R-00211-15100
                   1062:     */
                   1063:     if( okToChngToIN ){
                   1064:       Expr *pDup;            /* A transient duplicate expression */
                   1065:       ExprList *pList = 0;   /* The RHS of the IN operator */
                   1066:       Expr *pLeft = 0;       /* The LHS of the IN operator */
                   1067:       Expr *pNew;            /* The complete IN operator */
                   1068: 
                   1069:       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
                   1070:         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
                   1071:         assert( pOrTerm->eOperator==WO_EQ );
                   1072:         assert( pOrTerm->leftCursor==iCursor );
                   1073:         assert( pOrTerm->u.leftColumn==iColumn );
                   1074:         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
                   1075:         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
                   1076:         pLeft = pOrTerm->pExpr->pLeft;
                   1077:       }
                   1078:       assert( pLeft!=0 );
                   1079:       pDup = sqlite3ExprDup(db, pLeft, 0);
                   1080:       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
                   1081:       if( pNew ){
                   1082:         int idxNew;
                   1083:         transferJoinMarkings(pNew, pExpr);
                   1084:         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
                   1085:         pNew->x.pList = pList;
                   1086:         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
                   1087:         testcase( idxNew==0 );
                   1088:         exprAnalyze(pSrc, pWC, idxNew);
                   1089:         pTerm = &pWC->a[idxTerm];
                   1090:         pWC->a[idxNew].iParent = idxTerm;
                   1091:         pTerm->nChild = 1;
                   1092:       }else{
                   1093:         sqlite3ExprListDelete(db, pList);
                   1094:       }
                   1095:       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
                   1096:     }
                   1097:   }
                   1098: }
                   1099: #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
                   1100: 
                   1101: 
                   1102: /*
                   1103: ** The input to this routine is an WhereTerm structure with only the
                   1104: ** "pExpr" field filled in.  The job of this routine is to analyze the
                   1105: ** subexpression and populate all the other fields of the WhereTerm
                   1106: ** structure.
                   1107: **
                   1108: ** If the expression is of the form "<expr> <op> X" it gets commuted
                   1109: ** to the standard form of "X <op> <expr>".
                   1110: **
                   1111: ** If the expression is of the form "X <op> Y" where both X and Y are
                   1112: ** columns, then the original expression is unchanged and a new virtual
                   1113: ** term of the form "Y <op> X" is added to the WHERE clause and
                   1114: ** analyzed separately.  The original term is marked with TERM_COPIED
                   1115: ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
                   1116: ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
                   1117: ** is a commuted copy of a prior term.)  The original term has nChild=1
                   1118: ** and the copy has idxParent set to the index of the original term.
                   1119: */
                   1120: static void exprAnalyze(
                   1121:   SrcList *pSrc,            /* the FROM clause */
                   1122:   WhereClause *pWC,         /* the WHERE clause */
                   1123:   int idxTerm               /* Index of the term to be analyzed */
                   1124: ){
                   1125:   WhereTerm *pTerm;                /* The term to be analyzed */
                   1126:   WhereMaskSet *pMaskSet;          /* Set of table index masks */
                   1127:   Expr *pExpr;                     /* The expression to be analyzed */
                   1128:   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
                   1129:   Bitmask prereqAll;               /* Prerequesites of pExpr */
                   1130:   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
                   1131:   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
                   1132:   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
                   1133:   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
                   1134:   int op;                          /* Top-level operator.  pExpr->op */
                   1135:   Parse *pParse = pWC->pParse;     /* Parsing context */
                   1136:   sqlite3 *db = pParse->db;        /* Database connection */
                   1137: 
                   1138:   if( db->mallocFailed ){
                   1139:     return;
                   1140:   }
                   1141:   pTerm = &pWC->a[idxTerm];
                   1142:   pMaskSet = pWC->pMaskSet;
                   1143:   pExpr = pTerm->pExpr;
                   1144:   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
                   1145:   op = pExpr->op;
                   1146:   if( op==TK_IN ){
                   1147:     assert( pExpr->pRight==0 );
                   1148:     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
                   1149:       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
                   1150:     }else{
                   1151:       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
                   1152:     }
                   1153:   }else if( op==TK_ISNULL ){
                   1154:     pTerm->prereqRight = 0;
                   1155:   }else{
                   1156:     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
                   1157:   }
                   1158:   prereqAll = exprTableUsage(pMaskSet, pExpr);
                   1159:   if( ExprHasProperty(pExpr, EP_FromJoin) ){
                   1160:     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
                   1161:     prereqAll |= x;
                   1162:     extraRight = x-1;  /* ON clause terms may not be used with an index
                   1163:                        ** on left table of a LEFT JOIN.  Ticket #3015 */
                   1164:   }
                   1165:   pTerm->prereqAll = prereqAll;
                   1166:   pTerm->leftCursor = -1;
                   1167:   pTerm->iParent = -1;
                   1168:   pTerm->eOperator = 0;
                   1169:   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
                   1170:     Expr *pLeft = pExpr->pLeft;
                   1171:     Expr *pRight = pExpr->pRight;
                   1172:     if( pLeft->op==TK_COLUMN ){
                   1173:       pTerm->leftCursor = pLeft->iTable;
                   1174:       pTerm->u.leftColumn = pLeft->iColumn;
                   1175:       pTerm->eOperator = operatorMask(op);
                   1176:     }
                   1177:     if( pRight && pRight->op==TK_COLUMN ){
                   1178:       WhereTerm *pNew;
                   1179:       Expr *pDup;
                   1180:       if( pTerm->leftCursor>=0 ){
                   1181:         int idxNew;
                   1182:         pDup = sqlite3ExprDup(db, pExpr, 0);
                   1183:         if( db->mallocFailed ){
                   1184:           sqlite3ExprDelete(db, pDup);
                   1185:           return;
                   1186:         }
                   1187:         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
                   1188:         if( idxNew==0 ) return;
                   1189:         pNew = &pWC->a[idxNew];
                   1190:         pNew->iParent = idxTerm;
                   1191:         pTerm = &pWC->a[idxTerm];
                   1192:         pTerm->nChild = 1;
                   1193:         pTerm->wtFlags |= TERM_COPIED;
                   1194:       }else{
                   1195:         pDup = pExpr;
                   1196:         pNew = pTerm;
                   1197:       }
                   1198:       exprCommute(pParse, pDup);
                   1199:       pLeft = pDup->pLeft;
                   1200:       pNew->leftCursor = pLeft->iTable;
                   1201:       pNew->u.leftColumn = pLeft->iColumn;
                   1202:       testcase( (prereqLeft | extraRight) != prereqLeft );
                   1203:       pNew->prereqRight = prereqLeft | extraRight;
                   1204:       pNew->prereqAll = prereqAll;
                   1205:       pNew->eOperator = operatorMask(pDup->op);
                   1206:     }
                   1207:   }
                   1208: 
                   1209: #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
                   1210:   /* If a term is the BETWEEN operator, create two new virtual terms
                   1211:   ** that define the range that the BETWEEN implements.  For example:
                   1212:   **
                   1213:   **      a BETWEEN b AND c
                   1214:   **
                   1215:   ** is converted into:
                   1216:   **
                   1217:   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
                   1218:   **
                   1219:   ** The two new terms are added onto the end of the WhereClause object.
                   1220:   ** The new terms are "dynamic" and are children of the original BETWEEN
                   1221:   ** term.  That means that if the BETWEEN term is coded, the children are
                   1222:   ** skipped.  Or, if the children are satisfied by an index, the original
                   1223:   ** BETWEEN term is skipped.
                   1224:   */
                   1225:   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
                   1226:     ExprList *pList = pExpr->x.pList;
                   1227:     int i;
                   1228:     static const u8 ops[] = {TK_GE, TK_LE};
                   1229:     assert( pList!=0 );
                   1230:     assert( pList->nExpr==2 );
                   1231:     for(i=0; i<2; i++){
                   1232:       Expr *pNewExpr;
                   1233:       int idxNew;
                   1234:       pNewExpr = sqlite3PExpr(pParse, ops[i], 
                   1235:                              sqlite3ExprDup(db, pExpr->pLeft, 0),
                   1236:                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
                   1237:       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
                   1238:       testcase( idxNew==0 );
                   1239:       exprAnalyze(pSrc, pWC, idxNew);
                   1240:       pTerm = &pWC->a[idxTerm];
                   1241:       pWC->a[idxNew].iParent = idxTerm;
                   1242:     }
                   1243:     pTerm->nChild = 2;
                   1244:   }
                   1245: #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
                   1246: 
                   1247: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
                   1248:   /* Analyze a term that is composed of two or more subterms connected by
                   1249:   ** an OR operator.
                   1250:   */
                   1251:   else if( pExpr->op==TK_OR ){
                   1252:     assert( pWC->op==TK_AND );
                   1253:     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
                   1254:     pTerm = &pWC->a[idxTerm];
                   1255:   }
                   1256: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
                   1257: 
                   1258: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
                   1259:   /* Add constraints to reduce the search space on a LIKE or GLOB
                   1260:   ** operator.
                   1261:   **
                   1262:   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
                   1263:   **
                   1264:   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
                   1265:   **
                   1266:   ** The last character of the prefix "abc" is incremented to form the
                   1267:   ** termination condition "abd".
                   1268:   */
                   1269:   if( pWC->op==TK_AND 
                   1270:    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
                   1271:   ){
                   1272:     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
                   1273:     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
                   1274:     Expr *pNewExpr1;
                   1275:     Expr *pNewExpr2;
                   1276:     int idxNew1;
                   1277:     int idxNew2;
                   1278:     CollSeq *pColl;    /* Collating sequence to use */
                   1279: 
                   1280:     pLeft = pExpr->x.pList->a[1].pExpr;
                   1281:     pStr2 = sqlite3ExprDup(db, pStr1, 0);
                   1282:     if( !db->mallocFailed ){
                   1283:       u8 c, *pC;       /* Last character before the first wildcard */
                   1284:       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
                   1285:       c = *pC;
                   1286:       if( noCase ){
                   1287:         /* The point is to increment the last character before the first
                   1288:         ** wildcard.  But if we increment '@', that will push it into the
                   1289:         ** alphabetic range where case conversions will mess up the 
                   1290:         ** inequality.  To avoid this, make sure to also run the full
                   1291:         ** LIKE on all candidate expressions by clearing the isComplete flag
                   1292:         */
                   1293:         if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */
                   1294: 
                   1295: 
                   1296:         c = sqlite3UpperToLower[c];
                   1297:       }
                   1298:       *pC = c + 1;
                   1299:     }
                   1300:     pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
                   1301:     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 
                   1302:                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
                   1303:                      pStr1, 0);
                   1304:     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
                   1305:     testcase( idxNew1==0 );
                   1306:     exprAnalyze(pSrc, pWC, idxNew1);
                   1307:     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
                   1308:                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
                   1309:                      pStr2, 0);
                   1310:     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
                   1311:     testcase( idxNew2==0 );
                   1312:     exprAnalyze(pSrc, pWC, idxNew2);
                   1313:     pTerm = &pWC->a[idxTerm];
                   1314:     if( isComplete ){
                   1315:       pWC->a[idxNew1].iParent = idxTerm;
                   1316:       pWC->a[idxNew2].iParent = idxTerm;
                   1317:       pTerm->nChild = 2;
                   1318:     }
                   1319:   }
                   1320: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
                   1321: 
                   1322: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   1323:   /* Add a WO_MATCH auxiliary term to the constraint set if the
                   1324:   ** current expression is of the form:  column MATCH expr.
                   1325:   ** This information is used by the xBestIndex methods of
                   1326:   ** virtual tables.  The native query optimizer does not attempt
                   1327:   ** to do anything with MATCH functions.
                   1328:   */
                   1329:   if( isMatchOfColumn(pExpr) ){
                   1330:     int idxNew;
                   1331:     Expr *pRight, *pLeft;
                   1332:     WhereTerm *pNewTerm;
                   1333:     Bitmask prereqColumn, prereqExpr;
                   1334: 
                   1335:     pRight = pExpr->x.pList->a[0].pExpr;
                   1336:     pLeft = pExpr->x.pList->a[1].pExpr;
                   1337:     prereqExpr = exprTableUsage(pMaskSet, pRight);
                   1338:     prereqColumn = exprTableUsage(pMaskSet, pLeft);
                   1339:     if( (prereqExpr & prereqColumn)==0 ){
                   1340:       Expr *pNewExpr;
                   1341:       pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
                   1342:                               0, sqlite3ExprDup(db, pRight, 0), 0);
                   1343:       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
                   1344:       testcase( idxNew==0 );
                   1345:       pNewTerm = &pWC->a[idxNew];
                   1346:       pNewTerm->prereqRight = prereqExpr;
                   1347:       pNewTerm->leftCursor = pLeft->iTable;
                   1348:       pNewTerm->u.leftColumn = pLeft->iColumn;
                   1349:       pNewTerm->eOperator = WO_MATCH;
                   1350:       pNewTerm->iParent = idxTerm;
                   1351:       pTerm = &pWC->a[idxTerm];
                   1352:       pTerm->nChild = 1;
                   1353:       pTerm->wtFlags |= TERM_COPIED;
                   1354:       pNewTerm->prereqAll = pTerm->prereqAll;
                   1355:     }
                   1356:   }
                   1357: #endif /* SQLITE_OMIT_VIRTUALTABLE */
                   1358: 
                   1359: #ifdef SQLITE_ENABLE_STAT3
                   1360:   /* When sqlite_stat3 histogram data is available an operator of the
                   1361:   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
                   1362:   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
                   1363:   ** virtual term of that form.
                   1364:   **
                   1365:   ** Note that the virtual term must be tagged with TERM_VNULL.  This
                   1366:   ** TERM_VNULL tag will suppress the not-null check at the beginning
                   1367:   ** of the loop.  Without the TERM_VNULL flag, the not-null check at
                   1368:   ** the start of the loop will prevent any results from being returned.
                   1369:   */
                   1370:   if( pExpr->op==TK_NOTNULL
                   1371:    && pExpr->pLeft->op==TK_COLUMN
                   1372:    && pExpr->pLeft->iColumn>=0
                   1373:   ){
                   1374:     Expr *pNewExpr;
                   1375:     Expr *pLeft = pExpr->pLeft;
                   1376:     int idxNew;
                   1377:     WhereTerm *pNewTerm;
                   1378: 
                   1379:     pNewExpr = sqlite3PExpr(pParse, TK_GT,
                   1380:                             sqlite3ExprDup(db, pLeft, 0),
                   1381:                             sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
                   1382: 
                   1383:     idxNew = whereClauseInsert(pWC, pNewExpr,
                   1384:                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
                   1385:     if( idxNew ){
                   1386:       pNewTerm = &pWC->a[idxNew];
                   1387:       pNewTerm->prereqRight = 0;
                   1388:       pNewTerm->leftCursor = pLeft->iTable;
                   1389:       pNewTerm->u.leftColumn = pLeft->iColumn;
                   1390:       pNewTerm->eOperator = WO_GT;
                   1391:       pNewTerm->iParent = idxTerm;
                   1392:       pTerm = &pWC->a[idxTerm];
                   1393:       pTerm->nChild = 1;
                   1394:       pTerm->wtFlags |= TERM_COPIED;
                   1395:       pNewTerm->prereqAll = pTerm->prereqAll;
                   1396:     }
                   1397:   }
                   1398: #endif /* SQLITE_ENABLE_STAT */
                   1399: 
                   1400:   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
                   1401:   ** an index for tables to the left of the join.
                   1402:   */
                   1403:   pTerm->prereqRight |= extraRight;
                   1404: }
                   1405: 
                   1406: /*
                   1407: ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
                   1408: ** a reference to any table other than the iBase table.
                   1409: */
                   1410: static int referencesOtherTables(
                   1411:   ExprList *pList,          /* Search expressions in ths list */
                   1412:   WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */
                   1413:   int iFirst,               /* Be searching with the iFirst-th expression */
                   1414:   int iBase                 /* Ignore references to this table */
                   1415: ){
                   1416:   Bitmask allowed = ~getMask(pMaskSet, iBase);
                   1417:   while( iFirst<pList->nExpr ){
                   1418:     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
                   1419:       return 1;
                   1420:     }
                   1421:   }
                   1422:   return 0;
                   1423: }
                   1424: 
                   1425: /*
                   1426: ** This function searches the expression list passed as the second argument
                   1427: ** for an expression of type TK_COLUMN that refers to the same column and
                   1428: ** uses the same collation sequence as the iCol'th column of index pIdx.
                   1429: ** Argument iBase is the cursor number used for the table that pIdx refers
                   1430: ** to.
                   1431: **
                   1432: ** If such an expression is found, its index in pList->a[] is returned. If
                   1433: ** no expression is found, -1 is returned.
                   1434: */
                   1435: static int findIndexCol(
                   1436:   Parse *pParse,                  /* Parse context */
                   1437:   ExprList *pList,                /* Expression list to search */
                   1438:   int iBase,                      /* Cursor for table associated with pIdx */
                   1439:   Index *pIdx,                    /* Index to match column of */
                   1440:   int iCol                        /* Column of index to match */
                   1441: ){
                   1442:   int i;
                   1443:   const char *zColl = pIdx->azColl[iCol];
                   1444: 
                   1445:   for(i=0; i<pList->nExpr; i++){
                   1446:     Expr *p = pList->a[i].pExpr;
                   1447:     if( p->op==TK_COLUMN
                   1448:      && p->iColumn==pIdx->aiColumn[iCol]
                   1449:      && p->iTable==iBase
                   1450:     ){
                   1451:       CollSeq *pColl = sqlite3ExprCollSeq(pParse, p);
                   1452:       if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
                   1453:         return i;
                   1454:       }
                   1455:     }
                   1456:   }
                   1457: 
                   1458:   return -1;
                   1459: }
                   1460: 
                   1461: /*
                   1462: ** This routine determines if pIdx can be used to assist in processing a
                   1463: ** DISTINCT qualifier. In other words, it tests whether or not using this
                   1464: ** index for the outer loop guarantees that rows with equal values for
                   1465: ** all expressions in the pDistinct list are delivered grouped together.
                   1466: **
                   1467: ** For example, the query 
                   1468: **
                   1469: **   SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
                   1470: **
                   1471: ** can benefit from any index on columns "b" and "c".
                   1472: */
                   1473: static int isDistinctIndex(
                   1474:   Parse *pParse,                  /* Parsing context */
                   1475:   WhereClause *pWC,               /* The WHERE clause */
                   1476:   Index *pIdx,                    /* The index being considered */
                   1477:   int base,                       /* Cursor number for the table pIdx is on */
                   1478:   ExprList *pDistinct,            /* The DISTINCT expressions */
                   1479:   int nEqCol                      /* Number of index columns with == */
                   1480: ){
                   1481:   Bitmask mask = 0;               /* Mask of unaccounted for pDistinct exprs */
                   1482:   int i;                          /* Iterator variable */
                   1483: 
                   1484:   if( pIdx->zName==0 || pDistinct==0 || pDistinct->nExpr>=BMS ) return 0;
                   1485:   testcase( pDistinct->nExpr==BMS-1 );
                   1486: 
                   1487:   /* Loop through all the expressions in the distinct list. If any of them
                   1488:   ** are not simple column references, return early. Otherwise, test if the
                   1489:   ** WHERE clause contains a "col=X" clause. If it does, the expression
                   1490:   ** can be ignored. If it does not, and the column does not belong to the
                   1491:   ** same table as index pIdx, return early. Finally, if there is no
                   1492:   ** matching "col=X" expression and the column is on the same table as pIdx,
                   1493:   ** set the corresponding bit in variable mask.
                   1494:   */
                   1495:   for(i=0; i<pDistinct->nExpr; i++){
                   1496:     WhereTerm *pTerm;
                   1497:     Expr *p = pDistinct->a[i].pExpr;
                   1498:     if( p->op!=TK_COLUMN ) return 0;
                   1499:     pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
                   1500:     if( pTerm ){
                   1501:       Expr *pX = pTerm->pExpr;
                   1502:       CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
                   1503:       CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
                   1504:       if( p1==p2 ) continue;
                   1505:     }
                   1506:     if( p->iTable!=base ) return 0;
                   1507:     mask |= (((Bitmask)1) << i);
                   1508:   }
                   1509: 
                   1510:   for(i=nEqCol; mask && i<pIdx->nColumn; i++){
                   1511:     int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
                   1512:     if( iExpr<0 ) break;
                   1513:     mask &= ~(((Bitmask)1) << iExpr);
                   1514:   }
                   1515: 
                   1516:   return (mask==0);
                   1517: }
                   1518: 
                   1519: 
                   1520: /*
                   1521: ** Return true if the DISTINCT expression-list passed as the third argument
                   1522: ** is redundant. A DISTINCT list is redundant if the database contains a
                   1523: ** UNIQUE index that guarantees that the result of the query will be distinct
                   1524: ** anyway.
                   1525: */
                   1526: static int isDistinctRedundant(
                   1527:   Parse *pParse,
                   1528:   SrcList *pTabList,
                   1529:   WhereClause *pWC,
                   1530:   ExprList *pDistinct
                   1531: ){
                   1532:   Table *pTab;
                   1533:   Index *pIdx;
                   1534:   int i;                          
                   1535:   int iBase;
                   1536: 
                   1537:   /* If there is more than one table or sub-select in the FROM clause of
                   1538:   ** this query, then it will not be possible to show that the DISTINCT 
                   1539:   ** clause is redundant. */
                   1540:   if( pTabList->nSrc!=1 ) return 0;
                   1541:   iBase = pTabList->a[0].iCursor;
                   1542:   pTab = pTabList->a[0].pTab;
                   1543: 
                   1544:   /* If any of the expressions is an IPK column on table iBase, then return 
                   1545:   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
                   1546:   ** current SELECT is a correlated sub-query.
                   1547:   */
                   1548:   for(i=0; i<pDistinct->nExpr; i++){
                   1549:     Expr *p = pDistinct->a[i].pExpr;
                   1550:     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
                   1551:   }
                   1552: 
                   1553:   /* Loop through all indices on the table, checking each to see if it makes
                   1554:   ** the DISTINCT qualifier redundant. It does so if:
                   1555:   **
                   1556:   **   1. The index is itself UNIQUE, and
                   1557:   **
                   1558:   **   2. All of the columns in the index are either part of the pDistinct
                   1559:   **      list, or else the WHERE clause contains a term of the form "col=X",
                   1560:   **      where X is a constant value. The collation sequences of the
                   1561:   **      comparison and select-list expressions must match those of the index.
                   1562:   */
                   1563:   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
                   1564:     if( pIdx->onError==OE_None ) continue;
                   1565:     for(i=0; i<pIdx->nColumn; i++){
                   1566:       int iCol = pIdx->aiColumn[i];
                   1567:       if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) 
                   1568:        && 0>findIndexCol(pParse, pDistinct, iBase, pIdx, i)
                   1569:       ){
                   1570:         break;
                   1571:       }
                   1572:     }
                   1573:     if( i==pIdx->nColumn ){
                   1574:       /* This index implies that the DISTINCT qualifier is redundant. */
                   1575:       return 1;
                   1576:     }
                   1577:   }
                   1578: 
                   1579:   return 0;
                   1580: }
                   1581: 
                   1582: /*
                   1583: ** This routine decides if pIdx can be used to satisfy the ORDER BY
                   1584: ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
                   1585: ** ORDER BY clause, this routine returns 0.
                   1586: **
                   1587: ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
                   1588: ** left-most table in the FROM clause of that same SELECT statement and
                   1589: ** the table has a cursor number of "base".  pIdx is an index on pTab.
                   1590: **
                   1591: ** nEqCol is the number of columns of pIdx that are used as equality
                   1592: ** constraints.  Any of these columns may be missing from the ORDER BY
                   1593: ** clause and the match can still be a success.
                   1594: **
                   1595: ** All terms of the ORDER BY that match against the index must be either
                   1596: ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
                   1597: ** index do not need to satisfy this constraint.)  The *pbRev value is
                   1598: ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
                   1599: ** the ORDER BY clause is all ASC.
                   1600: */
                   1601: static int isSortingIndex(
                   1602:   Parse *pParse,          /* Parsing context */
                   1603:   WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
                   1604:   Index *pIdx,            /* The index we are testing */
                   1605:   int base,               /* Cursor number for the table to be sorted */
                   1606:   ExprList *pOrderBy,     /* The ORDER BY clause */
                   1607:   int nEqCol,             /* Number of index columns with == constraints */
                   1608:   int wsFlags,            /* Index usages flags */
                   1609:   int *pbRev              /* Set to 1 if ORDER BY is DESC */
                   1610: ){
                   1611:   int i, j;                       /* Loop counters */
                   1612:   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
                   1613:   int nTerm;                      /* Number of ORDER BY terms */
                   1614:   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
                   1615:   sqlite3 *db = pParse->db;
                   1616: 
                   1617:   if( !pOrderBy ) return 0;
                   1618:   if( wsFlags & WHERE_COLUMN_IN ) return 0;
                   1619:   if( pIdx->bUnordered ) return 0;
                   1620: 
                   1621:   nTerm = pOrderBy->nExpr;
                   1622:   assert( nTerm>0 );
                   1623: 
                   1624:   /* Argument pIdx must either point to a 'real' named index structure, 
                   1625:   ** or an index structure allocated on the stack by bestBtreeIndex() to
                   1626:   ** represent the rowid index that is part of every table.  */
                   1627:   assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
                   1628: 
                   1629:   /* Match terms of the ORDER BY clause against columns of
                   1630:   ** the index.
                   1631:   **
                   1632:   ** Note that indices have pIdx->nColumn regular columns plus
                   1633:   ** one additional column containing the rowid.  The rowid column
                   1634:   ** of the index is also allowed to match against the ORDER BY
                   1635:   ** clause.
                   1636:   */
                   1637:   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
                   1638:     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
                   1639:     CollSeq *pColl;    /* The collating sequence of pExpr */
                   1640:     int termSortOrder; /* Sort order for this term */
                   1641:     int iColumn;       /* The i-th column of the index.  -1 for rowid */
                   1642:     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
                   1643:     const char *zColl; /* Name of the collating sequence for i-th index term */
                   1644: 
                   1645:     pExpr = pTerm->pExpr;
                   1646:     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
                   1647:       /* Can not use an index sort on anything that is not a column in the
                   1648:       ** left-most table of the FROM clause */
                   1649:       break;
                   1650:     }
                   1651:     pColl = sqlite3ExprCollSeq(pParse, pExpr);
                   1652:     if( !pColl ){
                   1653:       pColl = db->pDfltColl;
                   1654:     }
                   1655:     if( pIdx->zName && i<pIdx->nColumn ){
                   1656:       iColumn = pIdx->aiColumn[i];
                   1657:       if( iColumn==pIdx->pTable->iPKey ){
                   1658:         iColumn = -1;
                   1659:       }
                   1660:       iSortOrder = pIdx->aSortOrder[i];
                   1661:       zColl = pIdx->azColl[i];
                   1662:     }else{
                   1663:       iColumn = -1;
                   1664:       iSortOrder = 0;
                   1665:       zColl = pColl->zName;
                   1666:     }
                   1667:     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
                   1668:       /* Term j of the ORDER BY clause does not match column i of the index */
                   1669:       if( i<nEqCol ){
                   1670:         /* If an index column that is constrained by == fails to match an
                   1671:         ** ORDER BY term, that is OK.  Just ignore that column of the index
                   1672:         */
                   1673:         continue;
                   1674:       }else if( i==pIdx->nColumn ){
                   1675:         /* Index column i is the rowid.  All other terms match. */
                   1676:         break;
                   1677:       }else{
                   1678:         /* If an index column fails to match and is not constrained by ==
                   1679:         ** then the index cannot satisfy the ORDER BY constraint.
                   1680:         */
                   1681:         return 0;
                   1682:       }
                   1683:     }
                   1684:     assert( pIdx->aSortOrder!=0 || iColumn==-1 );
                   1685:     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
                   1686:     assert( iSortOrder==0 || iSortOrder==1 );
                   1687:     termSortOrder = iSortOrder ^ pTerm->sortOrder;
                   1688:     if( i>nEqCol ){
                   1689:       if( termSortOrder!=sortOrder ){
                   1690:         /* Indices can only be used if all ORDER BY terms past the
                   1691:         ** equality constraints are all either DESC or ASC. */
                   1692:         return 0;
                   1693:       }
                   1694:     }else{
                   1695:       sortOrder = termSortOrder;
                   1696:     }
                   1697:     j++;
                   1698:     pTerm++;
                   1699:     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
                   1700:       /* If the indexed column is the primary key and everything matches
                   1701:       ** so far and none of the ORDER BY terms to the right reference other
                   1702:       ** tables in the join, then we are assured that the index can be used 
                   1703:       ** to sort because the primary key is unique and so none of the other
                   1704:       ** columns will make any difference
                   1705:       */
                   1706:       j = nTerm;
                   1707:     }
                   1708:   }
                   1709: 
                   1710:   *pbRev = sortOrder!=0;
                   1711:   if( j>=nTerm ){
                   1712:     /* All terms of the ORDER BY clause are covered by this index so
                   1713:     ** this index can be used for sorting. */
                   1714:     return 1;
                   1715:   }
                   1716:   if( pIdx->onError!=OE_None && i==pIdx->nColumn
                   1717:       && (wsFlags & WHERE_COLUMN_NULL)==0
                   1718:       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
                   1719:     /* All terms of this index match some prefix of the ORDER BY clause
                   1720:     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
                   1721:     ** clause reference other tables in a join.  If this is all true then
                   1722:     ** the order by clause is superfluous.  Not that if the matching
                   1723:     ** condition is IS NULL then the result is not necessarily unique
                   1724:     ** even on a UNIQUE index, so disallow those cases. */
                   1725:     return 1;
                   1726:   }
                   1727:   return 0;
                   1728: }
                   1729: 
                   1730: /*
                   1731: ** Prepare a crude estimate of the logarithm of the input value.
                   1732: ** The results need not be exact.  This is only used for estimating
                   1733: ** the total cost of performing operations with O(logN) or O(NlogN)
                   1734: ** complexity.  Because N is just a guess, it is no great tragedy if
                   1735: ** logN is a little off.
                   1736: */
                   1737: static double estLog(double N){
                   1738:   double logN = 1;
                   1739:   double x = 10;
                   1740:   while( N>x ){
                   1741:     logN += 1;
                   1742:     x *= 10;
                   1743:   }
                   1744:   return logN;
                   1745: }
                   1746: 
                   1747: /*
                   1748: ** Two routines for printing the content of an sqlite3_index_info
                   1749: ** structure.  Used for testing and debugging only.  If neither
                   1750: ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
                   1751: ** are no-ops.
                   1752: */
                   1753: #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
                   1754: static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
                   1755:   int i;
                   1756:   if( !sqlite3WhereTrace ) return;
                   1757:   for(i=0; i<p->nConstraint; i++){
                   1758:     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
                   1759:        i,
                   1760:        p->aConstraint[i].iColumn,
                   1761:        p->aConstraint[i].iTermOffset,
                   1762:        p->aConstraint[i].op,
                   1763:        p->aConstraint[i].usable);
                   1764:   }
                   1765:   for(i=0; i<p->nOrderBy; i++){
                   1766:     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
                   1767:        i,
                   1768:        p->aOrderBy[i].iColumn,
                   1769:        p->aOrderBy[i].desc);
                   1770:   }
                   1771: }
                   1772: static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
                   1773:   int i;
                   1774:   if( !sqlite3WhereTrace ) return;
                   1775:   for(i=0; i<p->nConstraint; i++){
                   1776:     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
                   1777:        i,
                   1778:        p->aConstraintUsage[i].argvIndex,
                   1779:        p->aConstraintUsage[i].omit);
                   1780:   }
                   1781:   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
                   1782:   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
                   1783:   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
                   1784:   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
                   1785: }
                   1786: #else
                   1787: #define TRACE_IDX_INPUTS(A)
                   1788: #define TRACE_IDX_OUTPUTS(A)
                   1789: #endif
                   1790: 
                   1791: /* 
                   1792: ** Required because bestIndex() is called by bestOrClauseIndex() 
                   1793: */
                   1794: static void bestIndex(
                   1795:     Parse*, WhereClause*, struct SrcList_item*,
                   1796:     Bitmask, Bitmask, ExprList*, WhereCost*);
                   1797: 
                   1798: /*
                   1799: ** This routine attempts to find an scanning strategy that can be used 
                   1800: ** to optimize an 'OR' expression that is part of a WHERE clause. 
                   1801: **
                   1802: ** The table associated with FROM clause term pSrc may be either a
                   1803: ** regular B-Tree table or a virtual table.
                   1804: */
                   1805: static void bestOrClauseIndex(
                   1806:   Parse *pParse,              /* The parsing context */
                   1807:   WhereClause *pWC,           /* The WHERE clause */
                   1808:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
                   1809:   Bitmask notReady,           /* Mask of cursors not available for indexing */
                   1810:   Bitmask notValid,           /* Cursors not available for any purpose */
                   1811:   ExprList *pOrderBy,         /* The ORDER BY clause */
                   1812:   WhereCost *pCost            /* Lowest cost query plan */
                   1813: ){
                   1814: #ifndef SQLITE_OMIT_OR_OPTIMIZATION
                   1815:   const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
                   1816:   const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
                   1817:   WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
                   1818:   WhereTerm *pTerm;                 /* A single term of the WHERE clause */
                   1819: 
                   1820:   /* The OR-clause optimization is disallowed if the INDEXED BY or
                   1821:   ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
                   1822:   if( pSrc->notIndexed || pSrc->pIndex!=0 ){
                   1823:     return;
                   1824:   }
                   1825:   if( pWC->wctrlFlags & WHERE_AND_ONLY ){
                   1826:     return;
                   1827:   }
                   1828: 
                   1829:   /* Search the WHERE clause terms for a usable WO_OR term. */
                   1830:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
                   1831:     if( pTerm->eOperator==WO_OR 
                   1832:      && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
                   1833:      && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
                   1834:     ){
                   1835:       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
                   1836:       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
                   1837:       WhereTerm *pOrTerm;
                   1838:       int flags = WHERE_MULTI_OR;
                   1839:       double rTotal = 0;
                   1840:       double nRow = 0;
                   1841:       Bitmask used = 0;
                   1842: 
                   1843:       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
                   1844:         WhereCost sTermCost;
                   1845:         WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
                   1846:           (pOrTerm - pOrWC->a), (pTerm - pWC->a)
                   1847:         ));
                   1848:         if( pOrTerm->eOperator==WO_AND ){
                   1849:           WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
                   1850:           bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
                   1851:         }else if( pOrTerm->leftCursor==iCur ){
                   1852:           WhereClause tempWC;
                   1853:           tempWC.pParse = pWC->pParse;
                   1854:           tempWC.pMaskSet = pWC->pMaskSet;
                   1855:           tempWC.pOuter = pWC;
                   1856:           tempWC.op = TK_AND;
                   1857:           tempWC.a = pOrTerm;
                   1858:           tempWC.wctrlFlags = 0;
                   1859:           tempWC.nTerm = 1;
                   1860:           bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
                   1861:         }else{
                   1862:           continue;
                   1863:         }
                   1864:         rTotal += sTermCost.rCost;
                   1865:         nRow += sTermCost.plan.nRow;
                   1866:         used |= sTermCost.used;
                   1867:         if( rTotal>=pCost->rCost ) break;
                   1868:       }
                   1869: 
                   1870:       /* If there is an ORDER BY clause, increase the scan cost to account 
                   1871:       ** for the cost of the sort. */
                   1872:       if( pOrderBy!=0 ){
                   1873:         WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
                   1874:                     rTotal, rTotal+nRow*estLog(nRow)));
                   1875:         rTotal += nRow*estLog(nRow);
                   1876:       }
                   1877: 
                   1878:       /* If the cost of scanning using this OR term for optimization is
                   1879:       ** less than the current cost stored in pCost, replace the contents
                   1880:       ** of pCost. */
                   1881:       WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
                   1882:       if( rTotal<pCost->rCost ){
                   1883:         pCost->rCost = rTotal;
                   1884:         pCost->used = used;
                   1885:         pCost->plan.nRow = nRow;
                   1886:         pCost->plan.wsFlags = flags;
                   1887:         pCost->plan.u.pTerm = pTerm;
                   1888:       }
                   1889:     }
                   1890:   }
                   1891: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
                   1892: }
                   1893: 
                   1894: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
                   1895: /*
                   1896: ** Return TRUE if the WHERE clause term pTerm is of a form where it
                   1897: ** could be used with an index to access pSrc, assuming an appropriate
                   1898: ** index existed.
                   1899: */
                   1900: static int termCanDriveIndex(
                   1901:   WhereTerm *pTerm,              /* WHERE clause term to check */
                   1902:   struct SrcList_item *pSrc,     /* Table we are trying to access */
                   1903:   Bitmask notReady               /* Tables in outer loops of the join */
                   1904: ){
                   1905:   char aff;
                   1906:   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
                   1907:   if( pTerm->eOperator!=WO_EQ ) return 0;
                   1908:   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
                   1909:   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
                   1910:   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
                   1911:   return 1;
                   1912: }
                   1913: #endif
                   1914: 
                   1915: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
                   1916: /*
                   1917: ** If the query plan for pSrc specified in pCost is a full table scan
                   1918: ** and indexing is allows (if there is no NOT INDEXED clause) and it
                   1919: ** possible to construct a transient index that would perform better
                   1920: ** than a full table scan even when the cost of constructing the index
                   1921: ** is taken into account, then alter the query plan to use the
                   1922: ** transient index.
                   1923: */
                   1924: static void bestAutomaticIndex(
                   1925:   Parse *pParse,              /* The parsing context */
                   1926:   WhereClause *pWC,           /* The WHERE clause */
                   1927:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
                   1928:   Bitmask notReady,           /* Mask of cursors that are not available */
                   1929:   WhereCost *pCost            /* Lowest cost query plan */
                   1930: ){
                   1931:   double nTableRow;           /* Rows in the input table */
                   1932:   double logN;                /* log(nTableRow) */
                   1933:   double costTempIdx;         /* per-query cost of the transient index */
                   1934:   WhereTerm *pTerm;           /* A single term of the WHERE clause */
                   1935:   WhereTerm *pWCEnd;          /* End of pWC->a[] */
                   1936:   Table *pTable;              /* Table tht might be indexed */
                   1937: 
                   1938:   if( pParse->nQueryLoop<=(double)1 ){
                   1939:     /* There is no point in building an automatic index for a single scan */
                   1940:     return;
                   1941:   }
                   1942:   if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
                   1943:     /* Automatic indices are disabled at run-time */
                   1944:     return;
                   1945:   }
                   1946:   if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
                   1947:     /* We already have some kind of index in use for this query. */
                   1948:     return;
                   1949:   }
                   1950:   if( pSrc->notIndexed ){
                   1951:     /* The NOT INDEXED clause appears in the SQL. */
                   1952:     return;
                   1953:   }
                   1954:   if( pSrc->isCorrelated ){
                   1955:     /* The source is a correlated sub-query. No point in indexing it. */
                   1956:     return;
                   1957:   }
                   1958: 
                   1959:   assert( pParse->nQueryLoop >= (double)1 );
                   1960:   pTable = pSrc->pTab;
                   1961:   nTableRow = pTable->nRowEst;
                   1962:   logN = estLog(nTableRow);
                   1963:   costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
                   1964:   if( costTempIdx>=pCost->rCost ){
                   1965:     /* The cost of creating the transient table would be greater than
                   1966:     ** doing the full table scan */
                   1967:     return;
                   1968:   }
                   1969: 
                   1970:   /* Search for any equality comparison term */
                   1971:   pWCEnd = &pWC->a[pWC->nTerm];
                   1972:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
                   1973:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
                   1974:       WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
                   1975:                     pCost->rCost, costTempIdx));
                   1976:       pCost->rCost = costTempIdx;
                   1977:       pCost->plan.nRow = logN + 1;
                   1978:       pCost->plan.wsFlags = WHERE_TEMP_INDEX;
                   1979:       pCost->used = pTerm->prereqRight;
                   1980:       break;
                   1981:     }
                   1982:   }
                   1983: }
                   1984: #else
                   1985: # define bestAutomaticIndex(A,B,C,D,E)  /* no-op */
                   1986: #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
                   1987: 
                   1988: 
                   1989: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
                   1990: /*
                   1991: ** Generate code to construct the Index object for an automatic index
                   1992: ** and to set up the WhereLevel object pLevel so that the code generator
                   1993: ** makes use of the automatic index.
                   1994: */
                   1995: static void constructAutomaticIndex(
                   1996:   Parse *pParse,              /* The parsing context */
                   1997:   WhereClause *pWC,           /* The WHERE clause */
                   1998:   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
                   1999:   Bitmask notReady,           /* Mask of cursors that are not available */
                   2000:   WhereLevel *pLevel          /* Write new index here */
                   2001: ){
                   2002:   int nColumn;                /* Number of columns in the constructed index */
                   2003:   WhereTerm *pTerm;           /* A single term of the WHERE clause */
                   2004:   WhereTerm *pWCEnd;          /* End of pWC->a[] */
                   2005:   int nByte;                  /* Byte of memory needed for pIdx */
                   2006:   Index *pIdx;                /* Object describing the transient index */
                   2007:   Vdbe *v;                    /* Prepared statement under construction */
                   2008:   int addrInit;               /* Address of the initialization bypass jump */
                   2009:   Table *pTable;              /* The table being indexed */
                   2010:   KeyInfo *pKeyinfo;          /* Key information for the index */   
                   2011:   int addrTop;                /* Top of the index fill loop */
                   2012:   int regRecord;              /* Register holding an index record */
                   2013:   int n;                      /* Column counter */
                   2014:   int i;                      /* Loop counter */
                   2015:   int mxBitCol;               /* Maximum column in pSrc->colUsed */
                   2016:   CollSeq *pColl;             /* Collating sequence to on a column */
                   2017:   Bitmask idxCols;            /* Bitmap of columns used for indexing */
                   2018:   Bitmask extraCols;          /* Bitmap of additional columns */
                   2019: 
                   2020:   /* Generate code to skip over the creation and initialization of the
                   2021:   ** transient index on 2nd and subsequent iterations of the loop. */
                   2022:   v = pParse->pVdbe;
                   2023:   assert( v!=0 );
                   2024:   addrInit = sqlite3CodeOnce(pParse);
                   2025: 
                   2026:   /* Count the number of columns that will be added to the index
                   2027:   ** and used to match WHERE clause constraints */
                   2028:   nColumn = 0;
                   2029:   pTable = pSrc->pTab;
                   2030:   pWCEnd = &pWC->a[pWC->nTerm];
                   2031:   idxCols = 0;
                   2032:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
                   2033:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
                   2034:       int iCol = pTerm->u.leftColumn;
                   2035:       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
                   2036:       testcase( iCol==BMS );
                   2037:       testcase( iCol==BMS-1 );
                   2038:       if( (idxCols & cMask)==0 ){
                   2039:         nColumn++;
                   2040:         idxCols |= cMask;
                   2041:       }
                   2042:     }
                   2043:   }
                   2044:   assert( nColumn>0 );
                   2045:   pLevel->plan.nEq = nColumn;
                   2046: 
                   2047:   /* Count the number of additional columns needed to create a
                   2048:   ** covering index.  A "covering index" is an index that contains all
                   2049:   ** columns that are needed by the query.  With a covering index, the
                   2050:   ** original table never needs to be accessed.  Automatic indices must
                   2051:   ** be a covering index because the index will not be updated if the
                   2052:   ** original table changes and the index and table cannot both be used
                   2053:   ** if they go out of sync.
                   2054:   */
                   2055:   extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
                   2056:   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
                   2057:   testcase( pTable->nCol==BMS-1 );
                   2058:   testcase( pTable->nCol==BMS-2 );
                   2059:   for(i=0; i<mxBitCol; i++){
                   2060:     if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
                   2061:   }
                   2062:   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
                   2063:     nColumn += pTable->nCol - BMS + 1;
                   2064:   }
                   2065:   pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
                   2066: 
                   2067:   /* Construct the Index object to describe this index */
                   2068:   nByte = sizeof(Index);
                   2069:   nByte += nColumn*sizeof(int);     /* Index.aiColumn */
                   2070:   nByte += nColumn*sizeof(char*);   /* Index.azColl */
                   2071:   nByte += nColumn;                 /* Index.aSortOrder */
                   2072:   pIdx = sqlite3DbMallocZero(pParse->db, nByte);
                   2073:   if( pIdx==0 ) return;
                   2074:   pLevel->plan.u.pIdx = pIdx;
                   2075:   pIdx->azColl = (char**)&pIdx[1];
                   2076:   pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
                   2077:   pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
                   2078:   pIdx->zName = "auto-index";
                   2079:   pIdx->nColumn = nColumn;
                   2080:   pIdx->pTable = pTable;
                   2081:   n = 0;
                   2082:   idxCols = 0;
                   2083:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
                   2084:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
                   2085:       int iCol = pTerm->u.leftColumn;
                   2086:       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
                   2087:       if( (idxCols & cMask)==0 ){
                   2088:         Expr *pX = pTerm->pExpr;
                   2089:         idxCols |= cMask;
                   2090:         pIdx->aiColumn[n] = pTerm->u.leftColumn;
                   2091:         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
                   2092:         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
                   2093:         n++;
                   2094:       }
                   2095:     }
                   2096:   }
                   2097:   assert( (u32)n==pLevel->plan.nEq );
                   2098: 
                   2099:   /* Add additional columns needed to make the automatic index into
                   2100:   ** a covering index */
                   2101:   for(i=0; i<mxBitCol; i++){
                   2102:     if( extraCols & (((Bitmask)1)<<i) ){
                   2103:       pIdx->aiColumn[n] = i;
                   2104:       pIdx->azColl[n] = "BINARY";
                   2105:       n++;
                   2106:     }
                   2107:   }
                   2108:   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
                   2109:     for(i=BMS-1; i<pTable->nCol; i++){
                   2110:       pIdx->aiColumn[n] = i;
                   2111:       pIdx->azColl[n] = "BINARY";
                   2112:       n++;
                   2113:     }
                   2114:   }
                   2115:   assert( n==nColumn );
                   2116: 
                   2117:   /* Create the automatic index */
                   2118:   pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
                   2119:   assert( pLevel->iIdxCur>=0 );
                   2120:   sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
                   2121:                     (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
                   2122:   VdbeComment((v, "for %s", pTable->zName));
                   2123: 
                   2124:   /* Fill the automatic index with content */
                   2125:   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
                   2126:   regRecord = sqlite3GetTempReg(pParse);
                   2127:   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
                   2128:   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
                   2129:   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
                   2130:   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
                   2131:   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
                   2132:   sqlite3VdbeJumpHere(v, addrTop);
                   2133:   sqlite3ReleaseTempReg(pParse, regRecord);
                   2134:   
                   2135:   /* Jump here when skipping the initialization */
                   2136:   sqlite3VdbeJumpHere(v, addrInit);
                   2137: }
                   2138: #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
                   2139: 
                   2140: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   2141: /*
                   2142: ** Allocate and populate an sqlite3_index_info structure. It is the 
                   2143: ** responsibility of the caller to eventually release the structure
                   2144: ** by passing the pointer returned by this function to sqlite3_free().
                   2145: */
                   2146: static sqlite3_index_info *allocateIndexInfo(
                   2147:   Parse *pParse, 
                   2148:   WhereClause *pWC,
                   2149:   struct SrcList_item *pSrc,
                   2150:   ExprList *pOrderBy
                   2151: ){
                   2152:   int i, j;
                   2153:   int nTerm;
                   2154:   struct sqlite3_index_constraint *pIdxCons;
                   2155:   struct sqlite3_index_orderby *pIdxOrderBy;
                   2156:   struct sqlite3_index_constraint_usage *pUsage;
                   2157:   WhereTerm *pTerm;
                   2158:   int nOrderBy;
                   2159:   sqlite3_index_info *pIdxInfo;
                   2160: 
                   2161:   WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
                   2162: 
                   2163:   /* Count the number of possible WHERE clause constraints referring
                   2164:   ** to this virtual table */
                   2165:   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
                   2166:     if( pTerm->leftCursor != pSrc->iCursor ) continue;
                   2167:     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
                   2168:     testcase( pTerm->eOperator==WO_IN );
                   2169:     testcase( pTerm->eOperator==WO_ISNULL );
                   2170:     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
                   2171:     if( pTerm->wtFlags & TERM_VNULL ) continue;
                   2172:     nTerm++;
                   2173:   }
                   2174: 
                   2175:   /* If the ORDER BY clause contains only columns in the current 
                   2176:   ** virtual table then allocate space for the aOrderBy part of
                   2177:   ** the sqlite3_index_info structure.
                   2178:   */
                   2179:   nOrderBy = 0;
                   2180:   if( pOrderBy ){
                   2181:     for(i=0; i<pOrderBy->nExpr; i++){
                   2182:       Expr *pExpr = pOrderBy->a[i].pExpr;
                   2183:       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
                   2184:     }
                   2185:     if( i==pOrderBy->nExpr ){
                   2186:       nOrderBy = pOrderBy->nExpr;
                   2187:     }
                   2188:   }
                   2189: 
                   2190:   /* Allocate the sqlite3_index_info structure
                   2191:   */
                   2192:   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                   2193:                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                   2194:                            + sizeof(*pIdxOrderBy)*nOrderBy );
                   2195:   if( pIdxInfo==0 ){
                   2196:     sqlite3ErrorMsg(pParse, "out of memory");
                   2197:     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
                   2198:     return 0;
                   2199:   }
                   2200: 
                   2201:   /* Initialize the structure.  The sqlite3_index_info structure contains
                   2202:   ** many fields that are declared "const" to prevent xBestIndex from
                   2203:   ** changing them.  We have to do some funky casting in order to
                   2204:   ** initialize those fields.
                   2205:   */
                   2206:   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
                   2207:   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
                   2208:   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
                   2209:   *(int*)&pIdxInfo->nConstraint = nTerm;
                   2210:   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
                   2211:   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
                   2212:   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
                   2213:   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                   2214:                                                                    pUsage;
                   2215: 
                   2216:   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
                   2217:     if( pTerm->leftCursor != pSrc->iCursor ) continue;
                   2218:     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
                   2219:     testcase( pTerm->eOperator==WO_IN );
                   2220:     testcase( pTerm->eOperator==WO_ISNULL );
                   2221:     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
                   2222:     if( pTerm->wtFlags & TERM_VNULL ) continue;
                   2223:     pIdxCons[j].iColumn = pTerm->u.leftColumn;
                   2224:     pIdxCons[j].iTermOffset = i;
                   2225:     pIdxCons[j].op = (u8)pTerm->eOperator;
                   2226:     /* The direct assignment in the previous line is possible only because
                   2227:     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
                   2228:     ** following asserts verify this fact. */
                   2229:     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
                   2230:     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
                   2231:     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
                   2232:     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
                   2233:     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
                   2234:     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
                   2235:     assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
                   2236:     j++;
                   2237:   }
                   2238:   for(i=0; i<nOrderBy; i++){
                   2239:     Expr *pExpr = pOrderBy->a[i].pExpr;
                   2240:     pIdxOrderBy[i].iColumn = pExpr->iColumn;
                   2241:     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
                   2242:   }
                   2243: 
                   2244:   return pIdxInfo;
                   2245: }
                   2246: 
                   2247: /*
                   2248: ** The table object reference passed as the second argument to this function
                   2249: ** must represent a virtual table. This function invokes the xBestIndex()
                   2250: ** method of the virtual table with the sqlite3_index_info pointer passed
                   2251: ** as the argument.
                   2252: **
                   2253: ** If an error occurs, pParse is populated with an error message and a
                   2254: ** non-zero value is returned. Otherwise, 0 is returned and the output
                   2255: ** part of the sqlite3_index_info structure is left populated.
                   2256: **
                   2257: ** Whether or not an error is returned, it is the responsibility of the
                   2258: ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
                   2259: ** that this is required.
                   2260: */
                   2261: static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
                   2262:   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
                   2263:   int i;
                   2264:   int rc;
                   2265: 
                   2266:   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
                   2267:   TRACE_IDX_INPUTS(p);
                   2268:   rc = pVtab->pModule->xBestIndex(pVtab, p);
                   2269:   TRACE_IDX_OUTPUTS(p);
                   2270: 
                   2271:   if( rc!=SQLITE_OK ){
                   2272:     if( rc==SQLITE_NOMEM ){
                   2273:       pParse->db->mallocFailed = 1;
                   2274:     }else if( !pVtab->zErrMsg ){
                   2275:       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
                   2276:     }else{
                   2277:       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
                   2278:     }
                   2279:   }
                   2280:   sqlite3_free(pVtab->zErrMsg);
                   2281:   pVtab->zErrMsg = 0;
                   2282: 
                   2283:   for(i=0; i<p->nConstraint; i++){
                   2284:     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
                   2285:       sqlite3ErrorMsg(pParse, 
                   2286:           "table %s: xBestIndex returned an invalid plan", pTab->zName);
                   2287:     }
                   2288:   }
                   2289: 
                   2290:   return pParse->nErr;
                   2291: }
                   2292: 
                   2293: 
                   2294: /*
                   2295: ** Compute the best index for a virtual table.
                   2296: **
                   2297: ** The best index is computed by the xBestIndex method of the virtual
                   2298: ** table module.  This routine is really just a wrapper that sets up
                   2299: ** the sqlite3_index_info structure that is used to communicate with
                   2300: ** xBestIndex.
                   2301: **
                   2302: ** In a join, this routine might be called multiple times for the
                   2303: ** same virtual table.  The sqlite3_index_info structure is created
                   2304: ** and initialized on the first invocation and reused on all subsequent
                   2305: ** invocations.  The sqlite3_index_info structure is also used when
                   2306: ** code is generated to access the virtual table.  The whereInfoDelete() 
                   2307: ** routine takes care of freeing the sqlite3_index_info structure after
                   2308: ** everybody has finished with it.
                   2309: */
                   2310: static void bestVirtualIndex(
                   2311:   Parse *pParse,                  /* The parsing context */
                   2312:   WhereClause *pWC,               /* The WHERE clause */
                   2313:   struct SrcList_item *pSrc,      /* The FROM clause term to search */
                   2314:   Bitmask notReady,               /* Mask of cursors not available for index */
                   2315:   Bitmask notValid,               /* Cursors not valid for any purpose */
                   2316:   ExprList *pOrderBy,             /* The order by clause */
                   2317:   WhereCost *pCost,               /* Lowest cost query plan */
                   2318:   sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */
                   2319: ){
                   2320:   Table *pTab = pSrc->pTab;
                   2321:   sqlite3_index_info *pIdxInfo;
                   2322:   struct sqlite3_index_constraint *pIdxCons;
                   2323:   struct sqlite3_index_constraint_usage *pUsage;
                   2324:   WhereTerm *pTerm;
                   2325:   int i, j;
                   2326:   int nOrderBy;
                   2327:   double rCost;
                   2328: 
                   2329:   /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
                   2330:   ** malloc in allocateIndexInfo() fails and this function returns leaving
                   2331:   ** wsFlags in an uninitialized state, the caller may behave unpredictably.
                   2332:   */
                   2333:   memset(pCost, 0, sizeof(*pCost));
                   2334:   pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
                   2335: 
                   2336:   /* If the sqlite3_index_info structure has not been previously
                   2337:   ** allocated and initialized, then allocate and initialize it now.
                   2338:   */
                   2339:   pIdxInfo = *ppIdxInfo;
                   2340:   if( pIdxInfo==0 ){
                   2341:     *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
                   2342:   }
                   2343:   if( pIdxInfo==0 ){
                   2344:     return;
                   2345:   }
                   2346: 
                   2347:   /* At this point, the sqlite3_index_info structure that pIdxInfo points
                   2348:   ** to will have been initialized, either during the current invocation or
                   2349:   ** during some prior invocation.  Now we just have to customize the
                   2350:   ** details of pIdxInfo for the current invocation and pass it to
                   2351:   ** xBestIndex.
                   2352:   */
                   2353: 
                   2354:   /* The module name must be defined. Also, by this point there must
                   2355:   ** be a pointer to an sqlite3_vtab structure. Otherwise
                   2356:   ** sqlite3ViewGetColumnNames() would have picked up the error. 
                   2357:   */
                   2358:   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
                   2359:   assert( sqlite3GetVTable(pParse->db, pTab) );
                   2360: 
                   2361:   /* Set the aConstraint[].usable fields and initialize all 
                   2362:   ** output variables to zero.
                   2363:   **
                   2364:   ** aConstraint[].usable is true for constraints where the right-hand
                   2365:   ** side contains only references to tables to the left of the current
                   2366:   ** table.  In other words, if the constraint is of the form:
                   2367:   **
                   2368:   **           column = expr
                   2369:   **
                   2370:   ** and we are evaluating a join, then the constraint on column is 
                   2371:   ** only valid if all tables referenced in expr occur to the left
                   2372:   ** of the table containing column.
                   2373:   **
                   2374:   ** The aConstraints[] array contains entries for all constraints
                   2375:   ** on the current table.  That way we only have to compute it once
                   2376:   ** even though we might try to pick the best index multiple times.
                   2377:   ** For each attempt at picking an index, the order of tables in the
                   2378:   ** join might be different so we have to recompute the usable flag
                   2379:   ** each time.
                   2380:   */
                   2381:   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
                   2382:   pUsage = pIdxInfo->aConstraintUsage;
                   2383:   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
                   2384:     j = pIdxCons->iTermOffset;
                   2385:     pTerm = &pWC->a[j];
                   2386:     pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
                   2387:   }
                   2388:   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
                   2389:   if( pIdxInfo->needToFreeIdxStr ){
                   2390:     sqlite3_free(pIdxInfo->idxStr);
                   2391:   }
                   2392:   pIdxInfo->idxStr = 0;
                   2393:   pIdxInfo->idxNum = 0;
                   2394:   pIdxInfo->needToFreeIdxStr = 0;
                   2395:   pIdxInfo->orderByConsumed = 0;
                   2396:   /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
                   2397:   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
                   2398:   nOrderBy = pIdxInfo->nOrderBy;
                   2399:   if( !pOrderBy ){
                   2400:     pIdxInfo->nOrderBy = 0;
                   2401:   }
                   2402: 
                   2403:   if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
                   2404:     return;
                   2405:   }
                   2406: 
                   2407:   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
                   2408:   for(i=0; i<pIdxInfo->nConstraint; i++){
                   2409:     if( pUsage[i].argvIndex>0 ){
                   2410:       pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
                   2411:     }
                   2412:   }
                   2413: 
                   2414:   /* If there is an ORDER BY clause, and the selected virtual table index
                   2415:   ** does not satisfy it, increase the cost of the scan accordingly. This
                   2416:   ** matches the processing for non-virtual tables in bestBtreeIndex().
                   2417:   */
                   2418:   rCost = pIdxInfo->estimatedCost;
                   2419:   if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
                   2420:     rCost += estLog(rCost)*rCost;
                   2421:   }
                   2422: 
                   2423:   /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
                   2424:   ** inital value of lowestCost in this loop. If it is, then the
                   2425:   ** (cost<lowestCost) test below will never be true.
                   2426:   ** 
                   2427:   ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
                   2428:   ** is defined.
                   2429:   */
                   2430:   if( (SQLITE_BIG_DBL/((double)2))<rCost ){
                   2431:     pCost->rCost = (SQLITE_BIG_DBL/((double)2));
                   2432:   }else{
                   2433:     pCost->rCost = rCost;
                   2434:   }
                   2435:   pCost->plan.u.pVtabIdx = pIdxInfo;
                   2436:   if( pIdxInfo->orderByConsumed ){
                   2437:     pCost->plan.wsFlags |= WHERE_ORDERBY;
                   2438:   }
                   2439:   pCost->plan.nEq = 0;
                   2440:   pIdxInfo->nOrderBy = nOrderBy;
                   2441: 
                   2442:   /* Try to find a more efficient access pattern by using multiple indexes
                   2443:   ** to optimize an OR expression within the WHERE clause. 
                   2444:   */
                   2445:   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
                   2446: }
                   2447: #endif /* SQLITE_OMIT_VIRTUALTABLE */
                   2448: 
                   2449: #ifdef SQLITE_ENABLE_STAT3
                   2450: /*
                   2451: ** Estimate the location of a particular key among all keys in an
                   2452: ** index.  Store the results in aStat as follows:
                   2453: **
                   2454: **    aStat[0]      Est. number of rows less than pVal
                   2455: **    aStat[1]      Est. number of rows equal to pVal
                   2456: **
                   2457: ** Return SQLITE_OK on success.
                   2458: */
                   2459: static int whereKeyStats(
                   2460:   Parse *pParse,              /* Database connection */
                   2461:   Index *pIdx,                /* Index to consider domain of */
                   2462:   sqlite3_value *pVal,        /* Value to consider */
                   2463:   int roundUp,                /* Round up if true.  Round down if false */
                   2464:   tRowcnt *aStat              /* OUT: stats written here */
                   2465: ){
                   2466:   tRowcnt n;
                   2467:   IndexSample *aSample;
                   2468:   int i, eType;
                   2469:   int isEq = 0;
                   2470:   i64 v;
                   2471:   double r, rS;
                   2472: 
                   2473:   assert( roundUp==0 || roundUp==1 );
                   2474:   assert( pIdx->nSample>0 );
                   2475:   if( pVal==0 ) return SQLITE_ERROR;
                   2476:   n = pIdx->aiRowEst[0];
                   2477:   aSample = pIdx->aSample;
                   2478:   eType = sqlite3_value_type(pVal);
                   2479: 
                   2480:   if( eType==SQLITE_INTEGER ){
                   2481:     v = sqlite3_value_int64(pVal);
                   2482:     r = (i64)v;
                   2483:     for(i=0; i<pIdx->nSample; i++){
                   2484:       if( aSample[i].eType==SQLITE_NULL ) continue;
                   2485:       if( aSample[i].eType>=SQLITE_TEXT ) break;
                   2486:       if( aSample[i].eType==SQLITE_INTEGER ){
                   2487:         if( aSample[i].u.i>=v ){
                   2488:           isEq = aSample[i].u.i==v;
                   2489:           break;
                   2490:         }
                   2491:       }else{
                   2492:         assert( aSample[i].eType==SQLITE_FLOAT );
                   2493:         if( aSample[i].u.r>=r ){
                   2494:           isEq = aSample[i].u.r==r;
                   2495:           break;
                   2496:         }
                   2497:       }
                   2498:     }
                   2499:   }else if( eType==SQLITE_FLOAT ){
                   2500:     r = sqlite3_value_double(pVal);
                   2501:     for(i=0; i<pIdx->nSample; i++){
                   2502:       if( aSample[i].eType==SQLITE_NULL ) continue;
                   2503:       if( aSample[i].eType>=SQLITE_TEXT ) break;
                   2504:       if( aSample[i].eType==SQLITE_FLOAT ){
                   2505:         rS = aSample[i].u.r;
                   2506:       }else{
                   2507:         rS = aSample[i].u.i;
                   2508:       }
                   2509:       if( rS>=r ){
                   2510:         isEq = rS==r;
                   2511:         break;
                   2512:       }
                   2513:     }
                   2514:   }else if( eType==SQLITE_NULL ){
                   2515:     i = 0;
                   2516:     if( aSample[0].eType==SQLITE_NULL ) isEq = 1;
                   2517:   }else{
                   2518:     assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
                   2519:     for(i=0; i<pIdx->nSample; i++){
                   2520:       if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
                   2521:         break;
                   2522:       }
                   2523:     }
                   2524:     if( i<pIdx->nSample ){      
                   2525:       sqlite3 *db = pParse->db;
                   2526:       CollSeq *pColl;
                   2527:       const u8 *z;
                   2528:       if( eType==SQLITE_BLOB ){
                   2529:         z = (const u8 *)sqlite3_value_blob(pVal);
                   2530:         pColl = db->pDfltColl;
                   2531:         assert( pColl->enc==SQLITE_UTF8 );
                   2532:       }else{
                   2533:         pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
                   2534:         if( pColl==0 ){
                   2535:           sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
                   2536:                           *pIdx->azColl);
                   2537:           return SQLITE_ERROR;
                   2538:         }
                   2539:         z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
                   2540:         if( !z ){
                   2541:           return SQLITE_NOMEM;
                   2542:         }
                   2543:         assert( z && pColl && pColl->xCmp );
                   2544:       }
                   2545:       n = sqlite3ValueBytes(pVal, pColl->enc);
                   2546:   
                   2547:       for(; i<pIdx->nSample; i++){
                   2548:         int c;
                   2549:         int eSampletype = aSample[i].eType;
                   2550:         if( eSampletype<eType ) continue;
                   2551:         if( eSampletype!=eType ) break;
                   2552: #ifndef SQLITE_OMIT_UTF16
                   2553:         if( pColl->enc!=SQLITE_UTF8 ){
                   2554:           int nSample;
                   2555:           char *zSample = sqlite3Utf8to16(
                   2556:               db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
                   2557:           );
                   2558:           if( !zSample ){
                   2559:             assert( db->mallocFailed );
                   2560:             return SQLITE_NOMEM;
                   2561:           }
                   2562:           c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
                   2563:           sqlite3DbFree(db, zSample);
                   2564:         }else
                   2565: #endif
                   2566:         {
                   2567:           c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
                   2568:         }
                   2569:         if( c>=0 ){
                   2570:           if( c==0 ) isEq = 1;
                   2571:           break;
                   2572:         }
                   2573:       }
                   2574:     }
                   2575:   }
                   2576: 
                   2577:   /* At this point, aSample[i] is the first sample that is greater than
                   2578:   ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
                   2579:   ** than pVal.  If aSample[i]==pVal, then isEq==1.
                   2580:   */
                   2581:   if( isEq ){
                   2582:     assert( i<pIdx->nSample );
                   2583:     aStat[0] = aSample[i].nLt;
                   2584:     aStat[1] = aSample[i].nEq;
                   2585:   }else{
                   2586:     tRowcnt iLower, iUpper, iGap;
                   2587:     if( i==0 ){
                   2588:       iLower = 0;
                   2589:       iUpper = aSample[0].nLt;
                   2590:     }else{
                   2591:       iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
                   2592:       iLower = aSample[i-1].nEq + aSample[i-1].nLt;
                   2593:     }
                   2594:     aStat[1] = pIdx->avgEq;
                   2595:     if( iLower>=iUpper ){
                   2596:       iGap = 0;
                   2597:     }else{
                   2598:       iGap = iUpper - iLower;
                   2599:     }
                   2600:     if( roundUp ){
                   2601:       iGap = (iGap*2)/3;
                   2602:     }else{
                   2603:       iGap = iGap/3;
                   2604:     }
                   2605:     aStat[0] = iLower + iGap;
                   2606:   }
                   2607:   return SQLITE_OK;
                   2608: }
                   2609: #endif /* SQLITE_ENABLE_STAT3 */
                   2610: 
                   2611: /*
                   2612: ** If expression pExpr represents a literal value, set *pp to point to
                   2613: ** an sqlite3_value structure containing the same value, with affinity
                   2614: ** aff applied to it, before returning. It is the responsibility of the 
                   2615: ** caller to eventually release this structure by passing it to 
                   2616: ** sqlite3ValueFree().
                   2617: **
                   2618: ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
                   2619: ** is an SQL variable that currently has a non-NULL value bound to it,
                   2620: ** create an sqlite3_value structure containing this value, again with
                   2621: ** affinity aff applied to it, instead.
                   2622: **
                   2623: ** If neither of the above apply, set *pp to NULL.
                   2624: **
                   2625: ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
                   2626: */
                   2627: #ifdef SQLITE_ENABLE_STAT3
                   2628: static int valueFromExpr(
                   2629:   Parse *pParse, 
                   2630:   Expr *pExpr, 
                   2631:   u8 aff, 
                   2632:   sqlite3_value **pp
                   2633: ){
                   2634:   if( pExpr->op==TK_VARIABLE
                   2635:    || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
                   2636:   ){
                   2637:     int iVar = pExpr->iColumn;
                   2638:     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
                   2639:     *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
                   2640:     return SQLITE_OK;
                   2641:   }
                   2642:   return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
                   2643: }
                   2644: #endif
                   2645: 
                   2646: /*
                   2647: ** This function is used to estimate the number of rows that will be visited
                   2648: ** by scanning an index for a range of values. The range may have an upper
                   2649: ** bound, a lower bound, or both. The WHERE clause terms that set the upper
                   2650: ** and lower bounds are represented by pLower and pUpper respectively. For
                   2651: ** example, assuming that index p is on t1(a):
                   2652: **
                   2653: **   ... FROM t1 WHERE a > ? AND a < ? ...
                   2654: **                    |_____|   |_____|
                   2655: **                       |         |
                   2656: **                     pLower    pUpper
                   2657: **
                   2658: ** If either of the upper or lower bound is not present, then NULL is passed in
                   2659: ** place of the corresponding WhereTerm.
                   2660: **
                   2661: ** The nEq parameter is passed the index of the index column subject to the
                   2662: ** range constraint. Or, equivalently, the number of equality constraints
                   2663: ** optimized by the proposed index scan. For example, assuming index p is
                   2664: ** on t1(a, b), and the SQL query is:
                   2665: **
                   2666: **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
                   2667: **
                   2668: ** then nEq should be passed the value 1 (as the range restricted column,
                   2669: ** b, is the second left-most column of the index). Or, if the query is:
                   2670: **
                   2671: **   ... FROM t1 WHERE a > ? AND a < ? ...
                   2672: **
                   2673: ** then nEq should be passed 0.
                   2674: **
                   2675: ** The returned value is an integer divisor to reduce the estimated
                   2676: ** search space.  A return value of 1 means that range constraints are
                   2677: ** no help at all.  A return value of 2 means range constraints are
                   2678: ** expected to reduce the search space by half.  And so forth...
                   2679: **
                   2680: ** In the absence of sqlite_stat3 ANALYZE data, each range inequality
                   2681: ** reduces the search space by a factor of 4.  Hence a single constraint (x>?)
                   2682: ** results in a return of 4 and a range constraint (x>? AND x<?) results
                   2683: ** in a return of 16.
                   2684: */
                   2685: static int whereRangeScanEst(
                   2686:   Parse *pParse,       /* Parsing & code generating context */
                   2687:   Index *p,            /* The index containing the range-compared column; "x" */
                   2688:   int nEq,             /* index into p->aCol[] of the range-compared column */
                   2689:   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
                   2690:   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
                   2691:   double *pRangeDiv   /* OUT: Reduce search space by this divisor */
                   2692: ){
                   2693:   int rc = SQLITE_OK;
                   2694: 
                   2695: #ifdef SQLITE_ENABLE_STAT3
                   2696: 
                   2697:   if( nEq==0 && p->nSample ){
                   2698:     sqlite3_value *pRangeVal;
                   2699:     tRowcnt iLower = 0;
                   2700:     tRowcnt iUpper = p->aiRowEst[0];
                   2701:     tRowcnt a[2];
                   2702:     u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
                   2703: 
                   2704:     if( pLower ){
                   2705:       Expr *pExpr = pLower->pExpr->pRight;
                   2706:       rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
                   2707:       assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
                   2708:       if( rc==SQLITE_OK
                   2709:        && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
                   2710:       ){
                   2711:         iLower = a[0];
                   2712:         if( pLower->eOperator==WO_GT ) iLower += a[1];
                   2713:       }
                   2714:       sqlite3ValueFree(pRangeVal);
                   2715:     }
                   2716:     if( rc==SQLITE_OK && pUpper ){
                   2717:       Expr *pExpr = pUpper->pExpr->pRight;
                   2718:       rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
                   2719:       assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
                   2720:       if( rc==SQLITE_OK
                   2721:        && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
                   2722:       ){
                   2723:         iUpper = a[0];
                   2724:         if( pUpper->eOperator==WO_LE ) iUpper += a[1];
                   2725:       }
                   2726:       sqlite3ValueFree(pRangeVal);
                   2727:     }
                   2728:     if( rc==SQLITE_OK ){
                   2729:       if( iUpper<=iLower ){
                   2730:         *pRangeDiv = (double)p->aiRowEst[0];
                   2731:       }else{
                   2732:         *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
                   2733:       }
                   2734:       WHERETRACE(("range scan regions: %u..%u  div=%g\n",
                   2735:                   (u32)iLower, (u32)iUpper, *pRangeDiv));
                   2736:       return SQLITE_OK;
                   2737:     }
                   2738:   }
                   2739: #else
                   2740:   UNUSED_PARAMETER(pParse);
                   2741:   UNUSED_PARAMETER(p);
                   2742:   UNUSED_PARAMETER(nEq);
                   2743: #endif
                   2744:   assert( pLower || pUpper );
                   2745:   *pRangeDiv = (double)1;
                   2746:   if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;
                   2747:   if( pUpper ) *pRangeDiv *= (double)4;
                   2748:   return rc;
                   2749: }
                   2750: 
                   2751: #ifdef SQLITE_ENABLE_STAT3
                   2752: /*
                   2753: ** Estimate the number of rows that will be returned based on
                   2754: ** an equality constraint x=VALUE and where that VALUE occurs in
                   2755: ** the histogram data.  This only works when x is the left-most
                   2756: ** column of an index and sqlite_stat3 histogram data is available
                   2757: ** for that index.  When pExpr==NULL that means the constraint is
                   2758: ** "x IS NULL" instead of "x=VALUE".
                   2759: **
                   2760: ** Write the estimated row count into *pnRow and return SQLITE_OK. 
                   2761: ** If unable to make an estimate, leave *pnRow unchanged and return
                   2762: ** non-zero.
                   2763: **
                   2764: ** This routine can fail if it is unable to load a collating sequence
                   2765: ** required for string comparison, or if unable to allocate memory
                   2766: ** for a UTF conversion required for comparison.  The error is stored
                   2767: ** in the pParse structure.
                   2768: */
                   2769: static int whereEqualScanEst(
                   2770:   Parse *pParse,       /* Parsing & code generating context */
                   2771:   Index *p,            /* The index whose left-most column is pTerm */
                   2772:   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
                   2773:   double *pnRow        /* Write the revised row estimate here */
                   2774: ){
                   2775:   sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
                   2776:   u8 aff;                   /* Column affinity */
                   2777:   int rc;                   /* Subfunction return code */
                   2778:   tRowcnt a[2];             /* Statistics */
                   2779: 
                   2780:   assert( p->aSample!=0 );
                   2781:   assert( p->nSample>0 );
                   2782:   aff = p->pTable->aCol[p->aiColumn[0]].affinity;
                   2783:   if( pExpr ){
                   2784:     rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
                   2785:     if( rc ) goto whereEqualScanEst_cancel;
                   2786:   }else{
                   2787:     pRhs = sqlite3ValueNew(pParse->db);
                   2788:   }
                   2789:   if( pRhs==0 ) return SQLITE_NOTFOUND;
                   2790:   rc = whereKeyStats(pParse, p, pRhs, 0, a);
                   2791:   if( rc==SQLITE_OK ){
                   2792:     WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
                   2793:     *pnRow = a[1];
                   2794:   }
                   2795: whereEqualScanEst_cancel:
                   2796:   sqlite3ValueFree(pRhs);
                   2797:   return rc;
                   2798: }
                   2799: #endif /* defined(SQLITE_ENABLE_STAT3) */
                   2800: 
                   2801: #ifdef SQLITE_ENABLE_STAT3
                   2802: /*
                   2803: ** Estimate the number of rows that will be returned based on
                   2804: ** an IN constraint where the right-hand side of the IN operator
                   2805: ** is a list of values.  Example:
                   2806: **
                   2807: **        WHERE x IN (1,2,3,4)
                   2808: **
                   2809: ** Write the estimated row count into *pnRow and return SQLITE_OK. 
                   2810: ** If unable to make an estimate, leave *pnRow unchanged and return
                   2811: ** non-zero.
                   2812: **
                   2813: ** This routine can fail if it is unable to load a collating sequence
                   2814: ** required for string comparison, or if unable to allocate memory
                   2815: ** for a UTF conversion required for comparison.  The error is stored
                   2816: ** in the pParse structure.
                   2817: */
                   2818: static int whereInScanEst(
                   2819:   Parse *pParse,       /* Parsing & code generating context */
                   2820:   Index *p,            /* The index whose left-most column is pTerm */
                   2821:   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
                   2822:   double *pnRow        /* Write the revised row estimate here */
                   2823: ){
                   2824:   int rc = SQLITE_OK;         /* Subfunction return code */
                   2825:   double nEst;                /* Number of rows for a single term */
                   2826:   double nRowEst = (double)0; /* New estimate of the number of rows */
                   2827:   int i;                      /* Loop counter */
                   2828: 
                   2829:   assert( p->aSample!=0 );
                   2830:   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
                   2831:     nEst = p->aiRowEst[0];
                   2832:     rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
                   2833:     nRowEst += nEst;
                   2834:   }
                   2835:   if( rc==SQLITE_OK ){
                   2836:     if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
                   2837:     *pnRow = nRowEst;
                   2838:     WHERETRACE(("IN row estimate: est=%g\n", nRowEst));
                   2839:   }
                   2840:   return rc;
                   2841: }
                   2842: #endif /* defined(SQLITE_ENABLE_STAT3) */
                   2843: 
                   2844: 
                   2845: /*
                   2846: ** Find the best query plan for accessing a particular table.  Write the
                   2847: ** best query plan and its cost into the WhereCost object supplied as the
                   2848: ** last parameter.
                   2849: **
                   2850: ** The lowest cost plan wins.  The cost is an estimate of the amount of
                   2851: ** CPU and disk I/O needed to process the requested result.
                   2852: ** Factors that influence cost include:
                   2853: **
                   2854: **    *  The estimated number of rows that will be retrieved.  (The
                   2855: **       fewer the better.)
                   2856: **
                   2857: **    *  Whether or not sorting must occur.
                   2858: **
                   2859: **    *  Whether or not there must be separate lookups in the
                   2860: **       index and in the main table.
                   2861: **
                   2862: ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
                   2863: ** the SQL statement, then this function only considers plans using the 
                   2864: ** named index. If no such plan is found, then the returned cost is
                   2865: ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 
                   2866: ** then the cost is calculated in the usual way.
                   2867: **
                   2868: ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 
                   2869: ** in the SELECT statement, then no indexes are considered. However, the 
                   2870: ** selected plan may still take advantage of the built-in rowid primary key
                   2871: ** index.
                   2872: */
                   2873: static void bestBtreeIndex(
                   2874:   Parse *pParse,              /* The parsing context */
                   2875:   WhereClause *pWC,           /* The WHERE clause */
                   2876:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
                   2877:   Bitmask notReady,           /* Mask of cursors not available for indexing */
                   2878:   Bitmask notValid,           /* Cursors not available for any purpose */
                   2879:   ExprList *pOrderBy,         /* The ORDER BY clause */
                   2880:   ExprList *pDistinct,        /* The select-list if query is DISTINCT */
                   2881:   WhereCost *pCost            /* Lowest cost query plan */
                   2882: ){
                   2883:   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
                   2884:   Index *pProbe;              /* An index we are evaluating */
                   2885:   Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
                   2886:   int eqTermMask;             /* Current mask of valid equality operators */
                   2887:   int idxEqTermMask;          /* Index mask of valid equality operators */
                   2888:   Index sPk;                  /* A fake index object for the primary key */
                   2889:   tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
                   2890:   int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
                   2891:   int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */
                   2892: 
                   2893:   /* Initialize the cost to a worst-case value */
                   2894:   memset(pCost, 0, sizeof(*pCost));
                   2895:   pCost->rCost = SQLITE_BIG_DBL;
                   2896: 
                   2897:   /* If the pSrc table is the right table of a LEFT JOIN then we may not
                   2898:   ** use an index to satisfy IS NULL constraints on that table.  This is
                   2899:   ** because columns might end up being NULL if the table does not match -
                   2900:   ** a circumstance which the index cannot help us discover.  Ticket #2177.
                   2901:   */
                   2902:   if( pSrc->jointype & JT_LEFT ){
                   2903:     idxEqTermMask = WO_EQ|WO_IN;
                   2904:   }else{
                   2905:     idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
                   2906:   }
                   2907: 
                   2908:   if( pSrc->pIndex ){
                   2909:     /* An INDEXED BY clause specifies a particular index to use */
                   2910:     pIdx = pProbe = pSrc->pIndex;
                   2911:     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
                   2912:     eqTermMask = idxEqTermMask;
                   2913:   }else{
                   2914:     /* There is no INDEXED BY clause.  Create a fake Index object in local
                   2915:     ** variable sPk to represent the rowid primary key index.  Make this
                   2916:     ** fake index the first in a chain of Index objects with all of the real
                   2917:     ** indices to follow */
                   2918:     Index *pFirst;                  /* First of real indices on the table */
                   2919:     memset(&sPk, 0, sizeof(Index));
                   2920:     sPk.nColumn = 1;
                   2921:     sPk.aiColumn = &aiColumnPk;
                   2922:     sPk.aiRowEst = aiRowEstPk;
                   2923:     sPk.onError = OE_Replace;
                   2924:     sPk.pTable = pSrc->pTab;
                   2925:     aiRowEstPk[0] = pSrc->pTab->nRowEst;
                   2926:     aiRowEstPk[1] = 1;
                   2927:     pFirst = pSrc->pTab->pIndex;
                   2928:     if( pSrc->notIndexed==0 ){
                   2929:       /* The real indices of the table are only considered if the
                   2930:       ** NOT INDEXED qualifier is omitted from the FROM clause */
                   2931:       sPk.pNext = pFirst;
                   2932:     }
                   2933:     pProbe = &sPk;
                   2934:     wsFlagMask = ~(
                   2935:         WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
                   2936:     );
                   2937:     eqTermMask = WO_EQ|WO_IN;
                   2938:     pIdx = 0;
                   2939:   }
                   2940: 
                   2941:   /* Loop over all indices looking for the best one to use
                   2942:   */
                   2943:   for(; pProbe; pIdx=pProbe=pProbe->pNext){
                   2944:     const tRowcnt * const aiRowEst = pProbe->aiRowEst;
                   2945:     double cost;                /* Cost of using pProbe */
                   2946:     double nRow;                /* Estimated number of rows in result set */
                   2947:     double log10N = (double)1;  /* base-10 logarithm of nRow (inexact) */
                   2948:     int rev;                    /* True to scan in reverse order */
                   2949:     int wsFlags = 0;
                   2950:     Bitmask used = 0;
                   2951: 
                   2952:     /* The following variables are populated based on the properties of
                   2953:     ** index being evaluated. They are then used to determine the expected
                   2954:     ** cost and number of rows returned.
                   2955:     **
                   2956:     **  nEq: 
                   2957:     **    Number of equality terms that can be implemented using the index.
                   2958:     **    In other words, the number of initial fields in the index that
                   2959:     **    are used in == or IN or NOT NULL constraints of the WHERE clause.
                   2960:     **
                   2961:     **  nInMul:  
                   2962:     **    The "in-multiplier". This is an estimate of how many seek operations 
                   2963:     **    SQLite must perform on the index in question. For example, if the 
                   2964:     **    WHERE clause is:
                   2965:     **
                   2966:     **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
                   2967:     **
                   2968:     **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is 
                   2969:     **    set to 9. Given the same schema and either of the following WHERE 
                   2970:     **    clauses:
                   2971:     **
                   2972:     **      WHERE a =  1
                   2973:     **      WHERE a >= 2
                   2974:     **
                   2975:     **    nInMul is set to 1.
                   2976:     **
                   2977:     **    If there exists a WHERE term of the form "x IN (SELECT ...)", then 
                   2978:     **    the sub-select is assumed to return 25 rows for the purposes of 
                   2979:     **    determining nInMul.
                   2980:     **
                   2981:     **  bInEst:  
                   2982:     **    Set to true if there was at least one "x IN (SELECT ...)" term used 
                   2983:     **    in determining the value of nInMul.  Note that the RHS of the
                   2984:     **    IN operator must be a SELECT, not a value list, for this variable
                   2985:     **    to be true.
                   2986:     **
                   2987:     **  rangeDiv:
                   2988:     **    An estimate of a divisor by which to reduce the search space due
                   2989:     **    to inequality constraints.  In the absence of sqlite_stat3 ANALYZE
                   2990:     **    data, a single inequality reduces the search space to 1/4rd its
                   2991:     **    original size (rangeDiv==4).  Two inequalities reduce the search
                   2992:     **    space to 1/16th of its original size (rangeDiv==16).
                   2993:     **
                   2994:     **  bSort:   
                   2995:     **    Boolean. True if there is an ORDER BY clause that will require an 
                   2996:     **    external sort (i.e. scanning the index being evaluated will not 
                   2997:     **    correctly order records).
                   2998:     **
                   2999:     **  bLookup: 
                   3000:     **    Boolean. True if a table lookup is required for each index entry
                   3001:     **    visited.  In other words, true if this is not a covering index.
                   3002:     **    This is always false for the rowid primary key index of a table.
                   3003:     **    For other indexes, it is true unless all the columns of the table
                   3004:     **    used by the SELECT statement are present in the index (such an
                   3005:     **    index is sometimes described as a covering index).
                   3006:     **    For example, given the index on (a, b), the second of the following 
                   3007:     **    two queries requires table b-tree lookups in order to find the value
                   3008:     **    of column c, but the first does not because columns a and b are
                   3009:     **    both available in the index.
                   3010:     **
                   3011:     **             SELECT a, b    FROM tbl WHERE a = 1;
                   3012:     **             SELECT a, b, c FROM tbl WHERE a = 1;
                   3013:     */
                   3014:     int nEq;                      /* Number of == or IN terms matching index */
                   3015:     int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
                   3016:     int nInMul = 1;               /* Number of distinct equalities to lookup */
                   3017:     double rangeDiv = (double)1;  /* Estimated reduction in search space */
                   3018:     int nBound = 0;               /* Number of range constraints seen */
                   3019:     int bSort = !!pOrderBy;       /* True if external sort required */
                   3020:     int bDist = !!pDistinct;      /* True if index cannot help with DISTINCT */
                   3021:     int bLookup = 0;              /* True if not a covering index */
                   3022:     WhereTerm *pTerm;             /* A single term of the WHERE clause */
                   3023: #ifdef SQLITE_ENABLE_STAT3
                   3024:     WhereTerm *pFirstTerm = 0;    /* First term matching the index */
                   3025: #endif
                   3026: 
                   3027:     /* Determine the values of nEq and nInMul */
                   3028:     for(nEq=0; nEq<pProbe->nColumn; nEq++){
                   3029:       int j = pProbe->aiColumn[nEq];
                   3030:       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
                   3031:       if( pTerm==0 ) break;
                   3032:       wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
                   3033:       testcase( pTerm->pWC!=pWC );
                   3034:       if( pTerm->eOperator & WO_IN ){
                   3035:         Expr *pExpr = pTerm->pExpr;
                   3036:         wsFlags |= WHERE_COLUMN_IN;
                   3037:         if( ExprHasProperty(pExpr, EP_xIsSelect) ){
                   3038:           /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */
                   3039:           nInMul *= 25;
                   3040:           bInEst = 1;
                   3041:         }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
                   3042:           /* "x IN (value, value, ...)" */
                   3043:           nInMul *= pExpr->x.pList->nExpr;
                   3044:         }
                   3045:       }else if( pTerm->eOperator & WO_ISNULL ){
                   3046:         wsFlags |= WHERE_COLUMN_NULL;
                   3047:       }
                   3048: #ifdef SQLITE_ENABLE_STAT3
                   3049:       if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
                   3050: #endif
                   3051:       used |= pTerm->prereqRight;
                   3052:     }
                   3053:  
                   3054:     /* If the index being considered is UNIQUE, and there is an equality 
                   3055:     ** constraint for all columns in the index, then this search will find
                   3056:     ** at most a single row. In this case set the WHERE_UNIQUE flag to 
                   3057:     ** indicate this to the caller.
                   3058:     **
                   3059:     ** Otherwise, if the search may find more than one row, test to see if
                   3060:     ** there is a range constraint on indexed column (nEq+1) that can be 
                   3061:     ** optimized using the index. 
                   3062:     */
                   3063:     if( nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
                   3064:       testcase( wsFlags & WHERE_COLUMN_IN );
                   3065:       testcase( wsFlags & WHERE_COLUMN_NULL );
                   3066:       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
                   3067:         wsFlags |= WHERE_UNIQUE;
                   3068:       }
                   3069:     }else if( pProbe->bUnordered==0 ){
                   3070:       int j = (nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[nEq]);
                   3071:       if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
                   3072:         WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
                   3073:         WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
                   3074:         whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &rangeDiv);
                   3075:         if( pTop ){
                   3076:           nBound = 1;
                   3077:           wsFlags |= WHERE_TOP_LIMIT;
                   3078:           used |= pTop->prereqRight;
                   3079:           testcase( pTop->pWC!=pWC );
                   3080:         }
                   3081:         if( pBtm ){
                   3082:           nBound++;
                   3083:           wsFlags |= WHERE_BTM_LIMIT;
                   3084:           used |= pBtm->prereqRight;
                   3085:           testcase( pBtm->pWC!=pWC );
                   3086:         }
                   3087:         wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
                   3088:       }
                   3089:     }
                   3090: 
                   3091:     /* If there is an ORDER BY clause and the index being considered will
                   3092:     ** naturally scan rows in the required order, set the appropriate flags
                   3093:     ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
                   3094:     ** will scan rows in a different order, set the bSort variable.  */
                   3095:     if( isSortingIndex(
                   3096:           pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev)
                   3097:     ){
                   3098:       bSort = 0;
                   3099:       wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
                   3100:       wsFlags |= (rev ? WHERE_REVERSE : 0);
                   3101:     }
                   3102: 
                   3103:     /* If there is a DISTINCT qualifier and this index will scan rows in
                   3104:     ** order of the DISTINCT expressions, clear bDist and set the appropriate
                   3105:     ** flags in wsFlags. */
                   3106:     if( isDistinctIndex(pParse, pWC, pProbe, iCur, pDistinct, nEq) ){
                   3107:       bDist = 0;
                   3108:       wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
                   3109:     }
                   3110: 
                   3111:     /* If currently calculating the cost of using an index (not the IPK
                   3112:     ** index), determine if all required column data may be obtained without 
                   3113:     ** using the main table (i.e. if the index is a covering
                   3114:     ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
                   3115:     ** wsFlags. Otherwise, set the bLookup variable to true.  */
                   3116:     if( pIdx && wsFlags ){
                   3117:       Bitmask m = pSrc->colUsed;
                   3118:       int j;
                   3119:       for(j=0; j<pIdx->nColumn; j++){
                   3120:         int x = pIdx->aiColumn[j];
                   3121:         if( x<BMS-1 ){
                   3122:           m &= ~(((Bitmask)1)<<x);
                   3123:         }
                   3124:       }
                   3125:       if( m==0 ){
                   3126:         wsFlags |= WHERE_IDX_ONLY;
                   3127:       }else{
                   3128:         bLookup = 1;
                   3129:       }
                   3130:     }
                   3131: 
                   3132:     /*
                   3133:     ** Estimate the number of rows of output.  For an "x IN (SELECT...)"
                   3134:     ** constraint, do not let the estimate exceed half the rows in the table.
                   3135:     */
                   3136:     nRow = (double)(aiRowEst[nEq] * nInMul);
                   3137:     if( bInEst && nRow*2>aiRowEst[0] ){
                   3138:       nRow = aiRowEst[0]/2;
                   3139:       nInMul = (int)(nRow / aiRowEst[nEq]);
                   3140:     }
                   3141: 
                   3142: #ifdef SQLITE_ENABLE_STAT3
                   3143:     /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
                   3144:     ** and we do not think that values of x are unique and if histogram
                   3145:     ** data is available for column x, then it might be possible
                   3146:     ** to get a better estimate on the number of rows based on
                   3147:     ** VALUE and how common that value is according to the histogram.
                   3148:     */
                   3149:     if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
                   3150:       assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
                   3151:       if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
                   3152:         testcase( pFirstTerm->eOperator==WO_EQ );
                   3153:         testcase( pFirstTerm->eOperator==WO_ISNULL );
                   3154:         whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
                   3155:       }else if( bInEst==0 ){
                   3156:         assert( pFirstTerm->eOperator==WO_IN );
                   3157:         whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
                   3158:       }
                   3159:     }
                   3160: #endif /* SQLITE_ENABLE_STAT3 */
                   3161: 
                   3162:     /* Adjust the number of output rows and downward to reflect rows
                   3163:     ** that are excluded by range constraints.
                   3164:     */
                   3165:     nRow = nRow/rangeDiv;
                   3166:     if( nRow<1 ) nRow = 1;
                   3167: 
                   3168:     /* Experiments run on real SQLite databases show that the time needed
                   3169:     ** to do a binary search to locate a row in a table or index is roughly
                   3170:     ** log10(N) times the time to move from one row to the next row within
                   3171:     ** a table or index.  The actual times can vary, with the size of
                   3172:     ** records being an important factor.  Both moves and searches are
                   3173:     ** slower with larger records, presumably because fewer records fit
                   3174:     ** on one page and hence more pages have to be fetched.
                   3175:     **
                   3176:     ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
                   3177:     ** not give us data on the relative sizes of table and index records.
                   3178:     ** So this computation assumes table records are about twice as big
                   3179:     ** as index records
                   3180:     */
                   3181:     if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
                   3182:       /* The cost of a full table scan is a number of move operations equal
                   3183:       ** to the number of rows in the table.
                   3184:       **
                   3185:       ** We add an additional 4x penalty to full table scans.  This causes
                   3186:       ** the cost function to err on the side of choosing an index over
                   3187:       ** choosing a full scan.  This 4x full-scan penalty is an arguable
                   3188:       ** decision and one which we expect to revisit in the future.  But
                   3189:       ** it seems to be working well enough at the moment.
                   3190:       */
                   3191:       cost = aiRowEst[0]*4;
                   3192:     }else{
                   3193:       log10N = estLog(aiRowEst[0]);
                   3194:       cost = nRow;
                   3195:       if( pIdx ){
                   3196:         if( bLookup ){
                   3197:           /* For an index lookup followed by a table lookup:
                   3198:           **    nInMul index searches to find the start of each index range
                   3199:           **  + nRow steps through the index
                   3200:           **  + nRow table searches to lookup the table entry using the rowid
                   3201:           */
                   3202:           cost += (nInMul + nRow)*log10N;
                   3203:         }else{
                   3204:           /* For a covering index:
                   3205:           **     nInMul index searches to find the initial entry 
                   3206:           **   + nRow steps through the index
                   3207:           */
                   3208:           cost += nInMul*log10N;
                   3209:         }
                   3210:       }else{
                   3211:         /* For a rowid primary key lookup:
                   3212:         **    nInMult table searches to find the initial entry for each range
                   3213:         **  + nRow steps through the table
                   3214:         */
                   3215:         cost += nInMul*log10N;
                   3216:       }
                   3217:     }
                   3218: 
                   3219:     /* Add in the estimated cost of sorting the result.  Actual experimental
                   3220:     ** measurements of sorting performance in SQLite show that sorting time
                   3221:     ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
                   3222:     ** sorted and C is a factor between 1.95 and 4.3.  We will split the
                   3223:     ** difference and select C of 3.0.
                   3224:     */
                   3225:     if( bSort ){
                   3226:       cost += nRow*estLog(nRow)*3;
                   3227:     }
                   3228:     if( bDist ){
                   3229:       cost += nRow*estLog(nRow)*3;
                   3230:     }
                   3231: 
                   3232:     /**** Cost of using this index has now been computed ****/
                   3233: 
                   3234:     /* If there are additional constraints on this table that cannot
                   3235:     ** be used with the current index, but which might lower the number
                   3236:     ** of output rows, adjust the nRow value accordingly.  This only 
                   3237:     ** matters if the current index is the least costly, so do not bother
                   3238:     ** with this step if we already know this index will not be chosen.
                   3239:     ** Also, never reduce the output row count below 2 using this step.
                   3240:     **
                   3241:     ** It is critical that the notValid mask be used here instead of
                   3242:     ** the notReady mask.  When computing an "optimal" index, the notReady
                   3243:     ** mask will only have one bit set - the bit for the current table.
                   3244:     ** The notValid mask, on the other hand, always has all bits set for
                   3245:     ** tables that are not in outer loops.  If notReady is used here instead
                   3246:     ** of notValid, then a optimal index that depends on inner joins loops
                   3247:     ** might be selected even when there exists an optimal index that has
                   3248:     ** no such dependency.
                   3249:     */
                   3250:     if( nRow>2 && cost<=pCost->rCost ){
                   3251:       int k;                       /* Loop counter */
                   3252:       int nSkipEq = nEq;           /* Number of == constraints to skip */
                   3253:       int nSkipRange = nBound;     /* Number of < constraints to skip */
                   3254:       Bitmask thisTab;             /* Bitmap for pSrc */
                   3255: 
                   3256:       thisTab = getMask(pWC->pMaskSet, iCur);
                   3257:       for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
                   3258:         if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
                   3259:         if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
                   3260:         if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
                   3261:           if( nSkipEq ){
                   3262:             /* Ignore the first nEq equality matches since the index
                   3263:             ** has already accounted for these */
                   3264:             nSkipEq--;
                   3265:           }else{
                   3266:             /* Assume each additional equality match reduces the result
                   3267:             ** set size by a factor of 10 */
                   3268:             nRow /= 10;
                   3269:           }
                   3270:         }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
                   3271:           if( nSkipRange ){
                   3272:             /* Ignore the first nSkipRange range constraints since the index
                   3273:             ** has already accounted for these */
                   3274:             nSkipRange--;
                   3275:           }else{
                   3276:             /* Assume each additional range constraint reduces the result
                   3277:             ** set size by a factor of 3.  Indexed range constraints reduce
                   3278:             ** the search space by a larger factor: 4.  We make indexed range
                   3279:             ** more selective intentionally because of the subjective 
                   3280:             ** observation that indexed range constraints really are more
                   3281:             ** selective in practice, on average. */
                   3282:             nRow /= 3;
                   3283:           }
                   3284:         }else if( pTerm->eOperator!=WO_NOOP ){
                   3285:           /* Any other expression lowers the output row count by half */
                   3286:           nRow /= 2;
                   3287:         }
                   3288:       }
                   3289:       if( nRow<2 ) nRow = 2;
                   3290:     }
                   3291: 
                   3292: 
                   3293:     WHERETRACE((
                   3294:       "%s(%s): nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
                   3295:       "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
                   3296:       pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 
                   3297:       nEq, nInMul, (int)rangeDiv, bSort, bLookup, wsFlags,
                   3298:       notReady, log10N, nRow, cost, used
                   3299:     ));
                   3300: 
                   3301:     /* If this index is the best we have seen so far, then record this
                   3302:     ** index and its cost in the pCost structure.
                   3303:     */
                   3304:     if( (!pIdx || wsFlags)
                   3305:      && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
                   3306:     ){
                   3307:       pCost->rCost = cost;
                   3308:       pCost->used = used;
                   3309:       pCost->plan.nRow = nRow;
                   3310:       pCost->plan.wsFlags = (wsFlags&wsFlagMask);
                   3311:       pCost->plan.nEq = nEq;
                   3312:       pCost->plan.u.pIdx = pIdx;
                   3313:     }
                   3314: 
                   3315:     /* If there was an INDEXED BY clause, then only that one index is
                   3316:     ** considered. */
                   3317:     if( pSrc->pIndex ) break;
                   3318: 
                   3319:     /* Reset masks for the next index in the loop */
                   3320:     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
                   3321:     eqTermMask = idxEqTermMask;
                   3322:   }
                   3323: 
                   3324:   /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
                   3325:   ** is set, then reverse the order that the index will be scanned
                   3326:   ** in. This is used for application testing, to help find cases
                   3327:   ** where application behaviour depends on the (undefined) order that
                   3328:   ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
                   3329:   if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
                   3330:     pCost->plan.wsFlags |= WHERE_REVERSE;
                   3331:   }
                   3332: 
                   3333:   assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
                   3334:   assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
                   3335:   assert( pSrc->pIndex==0 
                   3336:        || pCost->plan.u.pIdx==0 
                   3337:        || pCost->plan.u.pIdx==pSrc->pIndex 
                   3338:   );
                   3339: 
                   3340:   WHERETRACE(("best index is: %s\n", 
                   3341:     ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : 
                   3342:          pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
                   3343:   ));
                   3344:   
                   3345:   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
                   3346:   bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
                   3347:   pCost->plan.wsFlags |= eqTermMask;
                   3348: }
                   3349: 
                   3350: /*
                   3351: ** Find the query plan for accessing table pSrc->pTab. Write the
                   3352: ** best query plan and its cost into the WhereCost object supplied 
                   3353: ** as the last parameter. This function may calculate the cost of
                   3354: ** both real and virtual table scans.
                   3355: */
                   3356: static void bestIndex(
                   3357:   Parse *pParse,              /* The parsing context */
                   3358:   WhereClause *pWC,           /* The WHERE clause */
                   3359:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
                   3360:   Bitmask notReady,           /* Mask of cursors not available for indexing */
                   3361:   Bitmask notValid,           /* Cursors not available for any purpose */
                   3362:   ExprList *pOrderBy,         /* The ORDER BY clause */
                   3363:   WhereCost *pCost            /* Lowest cost query plan */
                   3364: ){
                   3365: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   3366:   if( IsVirtual(pSrc->pTab) ){
                   3367:     sqlite3_index_info *p = 0;
                   3368:     bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
                   3369:     if( p->needToFreeIdxStr ){
                   3370:       sqlite3_free(p->idxStr);
                   3371:     }
                   3372:     sqlite3DbFree(pParse->db, p);
                   3373:   }else
                   3374: #endif
                   3375:   {
                   3376:     bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
                   3377:   }
                   3378: }
                   3379: 
                   3380: /*
                   3381: ** Disable a term in the WHERE clause.  Except, do not disable the term
                   3382: ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
                   3383: ** or USING clause of that join.
                   3384: **
                   3385: ** Consider the term t2.z='ok' in the following queries:
                   3386: **
                   3387: **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
                   3388: **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
                   3389: **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
                   3390: **
                   3391: ** The t2.z='ok' is disabled in the in (2) because it originates
                   3392: ** in the ON clause.  The term is disabled in (3) because it is not part
                   3393: ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
                   3394: **
                   3395: ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
                   3396: ** completely satisfied by indices.
                   3397: **
                   3398: ** Disabling a term causes that term to not be tested in the inner loop
                   3399: ** of the join.  Disabling is an optimization.  When terms are satisfied
                   3400: ** by indices, we disable them to prevent redundant tests in the inner
                   3401: ** loop.  We would get the correct results if nothing were ever disabled,
                   3402: ** but joins might run a little slower.  The trick is to disable as much
                   3403: ** as we can without disabling too much.  If we disabled in (1), we'd get
                   3404: ** the wrong answer.  See ticket #813.
                   3405: */
                   3406: static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
                   3407:   if( pTerm
                   3408:       && (pTerm->wtFlags & TERM_CODED)==0
                   3409:       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
                   3410:   ){
                   3411:     pTerm->wtFlags |= TERM_CODED;
                   3412:     if( pTerm->iParent>=0 ){
                   3413:       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
                   3414:       if( (--pOther->nChild)==0 ){
                   3415:         disableTerm(pLevel, pOther);
                   3416:       }
                   3417:     }
                   3418:   }
                   3419: }
                   3420: 
                   3421: /*
                   3422: ** Code an OP_Affinity opcode to apply the column affinity string zAff
                   3423: ** to the n registers starting at base. 
                   3424: **
                   3425: ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
                   3426: ** beginning and end of zAff are ignored.  If all entries in zAff are
                   3427: ** SQLITE_AFF_NONE, then no code gets generated.
                   3428: **
                   3429: ** This routine makes its own copy of zAff so that the caller is free
                   3430: ** to modify zAff after this routine returns.
                   3431: */
                   3432: static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
                   3433:   Vdbe *v = pParse->pVdbe;
                   3434:   if( zAff==0 ){
                   3435:     assert( pParse->db->mallocFailed );
                   3436:     return;
                   3437:   }
                   3438:   assert( v!=0 );
                   3439: 
                   3440:   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
                   3441:   ** and end of the affinity string.
                   3442:   */
                   3443:   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
                   3444:     n--;
                   3445:     base++;
                   3446:     zAff++;
                   3447:   }
                   3448:   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
                   3449:     n--;
                   3450:   }
                   3451: 
                   3452:   /* Code the OP_Affinity opcode if there is anything left to do. */
                   3453:   if( n>0 ){
                   3454:     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
                   3455:     sqlite3VdbeChangeP4(v, -1, zAff, n);
                   3456:     sqlite3ExprCacheAffinityChange(pParse, base, n);
                   3457:   }
                   3458: }
                   3459: 
                   3460: 
                   3461: /*
                   3462: ** Generate code for a single equality term of the WHERE clause.  An equality
                   3463: ** term can be either X=expr or X IN (...).   pTerm is the term to be 
                   3464: ** coded.
                   3465: **
                   3466: ** The current value for the constraint is left in register iReg.
                   3467: **
                   3468: ** For a constraint of the form X=expr, the expression is evaluated and its
                   3469: ** result is left on the stack.  For constraints of the form X IN (...)
                   3470: ** this routine sets up a loop that will iterate over all values of X.
                   3471: */
                   3472: static int codeEqualityTerm(
                   3473:   Parse *pParse,      /* The parsing context */
                   3474:   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
                   3475:   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
                   3476:   int iTarget         /* Attempt to leave results in this register */
                   3477: ){
                   3478:   Expr *pX = pTerm->pExpr;
                   3479:   Vdbe *v = pParse->pVdbe;
                   3480:   int iReg;                  /* Register holding results */
                   3481: 
                   3482:   assert( iTarget>0 );
                   3483:   if( pX->op==TK_EQ ){
                   3484:     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
                   3485:   }else if( pX->op==TK_ISNULL ){
                   3486:     iReg = iTarget;
                   3487:     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
                   3488: #ifndef SQLITE_OMIT_SUBQUERY
                   3489:   }else{
                   3490:     int eType;
                   3491:     int iTab;
                   3492:     struct InLoop *pIn;
                   3493: 
                   3494:     assert( pX->op==TK_IN );
                   3495:     iReg = iTarget;
                   3496:     eType = sqlite3FindInIndex(pParse, pX, 0);
                   3497:     iTab = pX->iTable;
                   3498:     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
                   3499:     assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
                   3500:     if( pLevel->u.in.nIn==0 ){
                   3501:       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
                   3502:     }
                   3503:     pLevel->u.in.nIn++;
                   3504:     pLevel->u.in.aInLoop =
                   3505:        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                   3506:                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
                   3507:     pIn = pLevel->u.in.aInLoop;
                   3508:     if( pIn ){
                   3509:       pIn += pLevel->u.in.nIn - 1;
                   3510:       pIn->iCur = iTab;
                   3511:       if( eType==IN_INDEX_ROWID ){
                   3512:         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
                   3513:       }else{
                   3514:         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
                   3515:       }
                   3516:       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
                   3517:     }else{
                   3518:       pLevel->u.in.nIn = 0;
                   3519:     }
                   3520: #endif
                   3521:   }
                   3522:   disableTerm(pLevel, pTerm);
                   3523:   return iReg;
                   3524: }
                   3525: 
                   3526: /*
                   3527: ** Generate code that will evaluate all == and IN constraints for an
                   3528: ** index.
                   3529: **
                   3530: ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
                   3531: ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
                   3532: ** The index has as many as three equality constraints, but in this
                   3533: ** example, the third "c" value is an inequality.  So only two 
                   3534: ** constraints are coded.  This routine will generate code to evaluate
                   3535: ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
                   3536: ** in consecutive registers and the index of the first register is returned.
                   3537: **
                   3538: ** In the example above nEq==2.  But this subroutine works for any value
                   3539: ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
                   3540: ** The only thing it does is allocate the pLevel->iMem memory cell and
                   3541: ** compute the affinity string.
                   3542: **
                   3543: ** This routine always allocates at least one memory cell and returns
                   3544: ** the index of that memory cell. The code that
                   3545: ** calls this routine will use that memory cell to store the termination
                   3546: ** key value of the loop.  If one or more IN operators appear, then
                   3547: ** this routine allocates an additional nEq memory cells for internal
                   3548: ** use.
                   3549: **
                   3550: ** Before returning, *pzAff is set to point to a buffer containing a
                   3551: ** copy of the column affinity string of the index allocated using
                   3552: ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
                   3553: ** with equality constraints that use NONE affinity are set to
                   3554: ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
                   3555: **
                   3556: **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
                   3557: **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
                   3558: **
                   3559: ** In the example above, the index on t1(a) has TEXT affinity. But since
                   3560: ** the right hand side of the equality constraint (t2.b) has NONE affinity,
                   3561: ** no conversion should be attempted before using a t2.b value as part of
                   3562: ** a key to search the index. Hence the first byte in the returned affinity
                   3563: ** string in this example would be set to SQLITE_AFF_NONE.
                   3564: */
                   3565: static int codeAllEqualityTerms(
                   3566:   Parse *pParse,        /* Parsing context */
                   3567:   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
                   3568:   WhereClause *pWC,     /* The WHERE clause */
                   3569:   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
                   3570:   int nExtraReg,        /* Number of extra registers to allocate */
                   3571:   char **pzAff          /* OUT: Set to point to affinity string */
                   3572: ){
                   3573:   int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
                   3574:   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
                   3575:   Index *pIdx;                  /* The index being used for this loop */
                   3576:   int iCur = pLevel->iTabCur;   /* The cursor of the table */
                   3577:   WhereTerm *pTerm;             /* A single constraint term */
                   3578:   int j;                        /* Loop counter */
                   3579:   int regBase;                  /* Base register */
                   3580:   int nReg;                     /* Number of registers to allocate */
                   3581:   char *zAff;                   /* Affinity string to return */
                   3582: 
                   3583:   /* This module is only called on query plans that use an index. */
                   3584:   assert( pLevel->plan.wsFlags & WHERE_INDEXED );
                   3585:   pIdx = pLevel->plan.u.pIdx;
                   3586: 
                   3587:   /* Figure out how many memory cells we will need then allocate them.
                   3588:   */
                   3589:   regBase = pParse->nMem + 1;
                   3590:   nReg = pLevel->plan.nEq + nExtraReg;
                   3591:   pParse->nMem += nReg;
                   3592: 
                   3593:   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
                   3594:   if( !zAff ){
                   3595:     pParse->db->mallocFailed = 1;
                   3596:   }
                   3597: 
                   3598:   /* Evaluate the equality constraints
                   3599:   */
                   3600:   assert( pIdx->nColumn>=nEq );
                   3601:   for(j=0; j<nEq; j++){
                   3602:     int r1;
                   3603:     int k = pIdx->aiColumn[j];
                   3604:     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
                   3605:     if( NEVER(pTerm==0) ) break;
                   3606:     /* The following true for indices with redundant columns. 
                   3607:     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
                   3608:     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
                   3609:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
                   3610:     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
                   3611:     if( r1!=regBase+j ){
                   3612:       if( nReg==1 ){
                   3613:         sqlite3ReleaseTempReg(pParse, regBase);
                   3614:         regBase = r1;
                   3615:       }else{
                   3616:         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
                   3617:       }
                   3618:     }
                   3619:     testcase( pTerm->eOperator & WO_ISNULL );
                   3620:     testcase( pTerm->eOperator & WO_IN );
                   3621:     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
                   3622:       Expr *pRight = pTerm->pExpr->pRight;
                   3623:       sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
                   3624:       if( zAff ){
                   3625:         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
                   3626:           zAff[j] = SQLITE_AFF_NONE;
                   3627:         }
                   3628:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
                   3629:           zAff[j] = SQLITE_AFF_NONE;
                   3630:         }
                   3631:       }
                   3632:     }
                   3633:   }
                   3634:   *pzAff = zAff;
                   3635:   return regBase;
                   3636: }
                   3637: 
                   3638: #ifndef SQLITE_OMIT_EXPLAIN
                   3639: /*
                   3640: ** This routine is a helper for explainIndexRange() below
                   3641: **
                   3642: ** pStr holds the text of an expression that we are building up one term
                   3643: ** at a time.  This routine adds a new term to the end of the expression.
                   3644: ** Terms are separated by AND so add the "AND" text for second and subsequent
                   3645: ** terms only.
                   3646: */
                   3647: static void explainAppendTerm(
                   3648:   StrAccum *pStr,             /* The text expression being built */
                   3649:   int iTerm,                  /* Index of this term.  First is zero */
                   3650:   const char *zColumn,        /* Name of the column */
                   3651:   const char *zOp             /* Name of the operator */
                   3652: ){
                   3653:   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
                   3654:   sqlite3StrAccumAppend(pStr, zColumn, -1);
                   3655:   sqlite3StrAccumAppend(pStr, zOp, 1);
                   3656:   sqlite3StrAccumAppend(pStr, "?", 1);
                   3657: }
                   3658: 
                   3659: /*
                   3660: ** Argument pLevel describes a strategy for scanning table pTab. This 
                   3661: ** function returns a pointer to a string buffer containing a description
                   3662: ** of the subset of table rows scanned by the strategy in the form of an
                   3663: ** SQL expression. Or, if all rows are scanned, NULL is returned.
                   3664: **
                   3665: ** For example, if the query:
                   3666: **
                   3667: **   SELECT * FROM t1 WHERE a=1 AND b>2;
                   3668: **
                   3669: ** is run and there is an index on (a, b), then this function returns a
                   3670: ** string similar to:
                   3671: **
                   3672: **   "a=? AND b>?"
                   3673: **
                   3674: ** The returned pointer points to memory obtained from sqlite3DbMalloc().
                   3675: ** It is the responsibility of the caller to free the buffer when it is
                   3676: ** no longer required.
                   3677: */
                   3678: static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
                   3679:   WherePlan *pPlan = &pLevel->plan;
                   3680:   Index *pIndex = pPlan->u.pIdx;
                   3681:   int nEq = pPlan->nEq;
                   3682:   int i, j;
                   3683:   Column *aCol = pTab->aCol;
                   3684:   int *aiColumn = pIndex->aiColumn;
                   3685:   StrAccum txt;
                   3686: 
                   3687:   if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
                   3688:     return 0;
                   3689:   }
                   3690:   sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
                   3691:   txt.db = db;
                   3692:   sqlite3StrAccumAppend(&txt, " (", 2);
                   3693:   for(i=0; i<nEq; i++){
                   3694:     explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
                   3695:   }
                   3696: 
                   3697:   j = i;
                   3698:   if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
                   3699:     char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
                   3700:     explainAppendTerm(&txt, i++, z, ">");
                   3701:   }
                   3702:   if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
                   3703:     char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
                   3704:     explainAppendTerm(&txt, i, z, "<");
                   3705:   }
                   3706:   sqlite3StrAccumAppend(&txt, ")", 1);
                   3707:   return sqlite3StrAccumFinish(&txt);
                   3708: }
                   3709: 
                   3710: /*
                   3711: ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
                   3712: ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
                   3713: ** record is added to the output to describe the table scan strategy in 
                   3714: ** pLevel.
                   3715: */
                   3716: static void explainOneScan(
                   3717:   Parse *pParse,                  /* Parse context */
                   3718:   SrcList *pTabList,              /* Table list this loop refers to */
                   3719:   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
                   3720:   int iLevel,                     /* Value for "level" column of output */
                   3721:   int iFrom,                      /* Value for "from" column of output */
                   3722:   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
                   3723: ){
                   3724:   if( pParse->explain==2 ){
                   3725:     u32 flags = pLevel->plan.wsFlags;
                   3726:     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
                   3727:     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
                   3728:     sqlite3 *db = pParse->db;     /* Database handle */
                   3729:     char *zMsg;                   /* Text to add to EQP output */
                   3730:     sqlite3_int64 nRow;           /* Expected number of rows visited by scan */
                   3731:     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
                   3732:     int isSearch;                 /* True for a SEARCH. False for SCAN. */
                   3733: 
                   3734:     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
                   3735: 
                   3736:     isSearch = (pLevel->plan.nEq>0)
                   3737:              || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
                   3738:              || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
                   3739: 
                   3740:     zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
                   3741:     if( pItem->pSelect ){
                   3742:       zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
                   3743:     }else{
                   3744:       zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
                   3745:     }
                   3746: 
                   3747:     if( pItem->zAlias ){
                   3748:       zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
                   3749:     }
                   3750:     if( (flags & WHERE_INDEXED)!=0 ){
                   3751:       char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
                   3752:       zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 
                   3753:           ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
                   3754:           ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
                   3755:           ((flags & WHERE_TEMP_INDEX)?"":" "),
                   3756:           ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
                   3757:           zWhere
                   3758:       );
                   3759:       sqlite3DbFree(db, zWhere);
                   3760:     }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
                   3761:       zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
                   3762: 
                   3763:       if( flags&WHERE_ROWID_EQ ){
                   3764:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
                   3765:       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
                   3766:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
                   3767:       }else if( flags&WHERE_BTM_LIMIT ){
                   3768:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
                   3769:       }else if( flags&WHERE_TOP_LIMIT ){
                   3770:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
                   3771:       }
                   3772:     }
                   3773: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   3774:     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
                   3775:       sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
                   3776:       zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
                   3777:                   pVtabIdx->idxNum, pVtabIdx->idxStr);
                   3778:     }
                   3779: #endif
                   3780:     if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
                   3781:       testcase( wctrlFlags & WHERE_ORDERBY_MIN );
                   3782:       nRow = 1;
                   3783:     }else{
                   3784:       nRow = (sqlite3_int64)pLevel->plan.nRow;
                   3785:     }
                   3786:     zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
                   3787:     sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
                   3788:   }
                   3789: }
                   3790: #else
                   3791: # define explainOneScan(u,v,w,x,y,z)
                   3792: #endif /* SQLITE_OMIT_EXPLAIN */
                   3793: 
                   3794: 
                   3795: /*
                   3796: ** Generate code for the start of the iLevel-th loop in the WHERE clause
                   3797: ** implementation described by pWInfo.
                   3798: */
                   3799: static Bitmask codeOneLoopStart(
                   3800:   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
                   3801:   int iLevel,          /* Which level of pWInfo->a[] should be coded */
                   3802:   u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
                   3803:   Bitmask notReady,    /* Which tables are currently available */
                   3804:   Expr *pWhere         /* Complete WHERE clause */
                   3805: ){
                   3806:   int j, k;            /* Loop counters */
                   3807:   int iCur;            /* The VDBE cursor for the table */
                   3808:   int addrNxt;         /* Where to jump to continue with the next IN case */
                   3809:   int omitTable;       /* True if we use the index only */
                   3810:   int bRev;            /* True if we need to scan in reverse order */
                   3811:   WhereLevel *pLevel;  /* The where level to be coded */
                   3812:   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
                   3813:   WhereTerm *pTerm;               /* A WHERE clause term */
                   3814:   Parse *pParse;                  /* Parsing context */
                   3815:   Vdbe *v;                        /* The prepared stmt under constructions */
                   3816:   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
                   3817:   int addrBrk;                    /* Jump here to break out of the loop */
                   3818:   int addrCont;                   /* Jump here to continue with next cycle */
                   3819:   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
                   3820:   int iReleaseReg = 0;      /* Temp register to free before returning */
                   3821: 
                   3822:   pParse = pWInfo->pParse;
                   3823:   v = pParse->pVdbe;
                   3824:   pWC = pWInfo->pWC;
                   3825:   pLevel = &pWInfo->a[iLevel];
                   3826:   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
                   3827:   iCur = pTabItem->iCursor;
                   3828:   bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
                   3829:   omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 
                   3830:            && (wctrlFlags & WHERE_FORCE_TABLE)==0;
                   3831: 
                   3832:   /* Create labels for the "break" and "continue" instructions
                   3833:   ** for the current loop.  Jump to addrBrk to break out of a loop.
                   3834:   ** Jump to cont to go immediately to the next iteration of the
                   3835:   ** loop.
                   3836:   **
                   3837:   ** When there is an IN operator, we also have a "addrNxt" label that
                   3838:   ** means to continue with the next IN value combination.  When
                   3839:   ** there are no IN operators in the constraints, the "addrNxt" label
                   3840:   ** is the same as "addrBrk".
                   3841:   */
                   3842:   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
                   3843:   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
                   3844: 
                   3845:   /* If this is the right table of a LEFT OUTER JOIN, allocate and
                   3846:   ** initialize a memory cell that records if this table matches any
                   3847:   ** row of the left table of the join.
                   3848:   */
                   3849:   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
                   3850:     pLevel->iLeftJoin = ++pParse->nMem;
                   3851:     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
                   3852:     VdbeComment((v, "init LEFT JOIN no-match flag"));
                   3853:   }
                   3854: 
                   3855: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   3856:   if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
                   3857:     /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
                   3858:     **          to access the data.
                   3859:     */
                   3860:     int iReg;   /* P3 Value for OP_VFilter */
                   3861:     sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
                   3862:     int nConstraint = pVtabIdx->nConstraint;
                   3863:     struct sqlite3_index_constraint_usage *aUsage =
                   3864:                                                 pVtabIdx->aConstraintUsage;
                   3865:     const struct sqlite3_index_constraint *aConstraint =
                   3866:                                                 pVtabIdx->aConstraint;
                   3867: 
                   3868:     sqlite3ExprCachePush(pParse);
                   3869:     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
                   3870:     for(j=1; j<=nConstraint; j++){
                   3871:       for(k=0; k<nConstraint; k++){
                   3872:         if( aUsage[k].argvIndex==j ){
                   3873:           int iTerm = aConstraint[k].iTermOffset;
                   3874:           sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
                   3875:           break;
                   3876:         }
                   3877:       }
                   3878:       if( k==nConstraint ) break;
                   3879:     }
                   3880:     sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
                   3881:     sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
                   3882:     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
                   3883:                       pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
                   3884:     pVtabIdx->needToFreeIdxStr = 0;
                   3885:     for(j=0; j<nConstraint; j++){
                   3886:       if( aUsage[j].omit ){
                   3887:         int iTerm = aConstraint[j].iTermOffset;
                   3888:         disableTerm(pLevel, &pWC->a[iTerm]);
                   3889:       }
                   3890:     }
                   3891:     pLevel->op = OP_VNext;
                   3892:     pLevel->p1 = iCur;
                   3893:     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
                   3894:     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
                   3895:     sqlite3ExprCachePop(pParse, 1);
                   3896:   }else
                   3897: #endif /* SQLITE_OMIT_VIRTUALTABLE */
                   3898: 
                   3899:   if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
                   3900:     /* Case 1:  We can directly reference a single row using an
                   3901:     **          equality comparison against the ROWID field.  Or
                   3902:     **          we reference multiple rows using a "rowid IN (...)"
                   3903:     **          construct.
                   3904:     */
                   3905:     iReleaseReg = sqlite3GetTempReg(pParse);
                   3906:     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
                   3907:     assert( pTerm!=0 );
                   3908:     assert( pTerm->pExpr!=0 );
                   3909:     assert( pTerm->leftCursor==iCur );
                   3910:     assert( omitTable==0 );
                   3911:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
                   3912:     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
                   3913:     addrNxt = pLevel->addrNxt;
                   3914:     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
                   3915:     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
                   3916:     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
                   3917:     VdbeComment((v, "pk"));
                   3918:     pLevel->op = OP_Noop;
                   3919:   }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
                   3920:     /* Case 2:  We have an inequality comparison against the ROWID field.
                   3921:     */
                   3922:     int testOp = OP_Noop;
                   3923:     int start;
                   3924:     int memEndValue = 0;
                   3925:     WhereTerm *pStart, *pEnd;
                   3926: 
                   3927:     assert( omitTable==0 );
                   3928:     pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
                   3929:     pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
                   3930:     if( bRev ){
                   3931:       pTerm = pStart;
                   3932:       pStart = pEnd;
                   3933:       pEnd = pTerm;
                   3934:     }
                   3935:     if( pStart ){
                   3936:       Expr *pX;             /* The expression that defines the start bound */
                   3937:       int r1, rTemp;        /* Registers for holding the start boundary */
                   3938: 
                   3939:       /* The following constant maps TK_xx codes into corresponding 
                   3940:       ** seek opcodes.  It depends on a particular ordering of TK_xx
                   3941:       */
                   3942:       const u8 aMoveOp[] = {
                   3943:            /* TK_GT */  OP_SeekGt,
                   3944:            /* TK_LE */  OP_SeekLe,
                   3945:            /* TK_LT */  OP_SeekLt,
                   3946:            /* TK_GE */  OP_SeekGe
                   3947:       };
                   3948:       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
                   3949:       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
                   3950:       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
                   3951: 
                   3952:       testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
                   3953:       pX = pStart->pExpr;
                   3954:       assert( pX!=0 );
                   3955:       assert( pStart->leftCursor==iCur );
                   3956:       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
                   3957:       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
                   3958:       VdbeComment((v, "pk"));
                   3959:       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
                   3960:       sqlite3ReleaseTempReg(pParse, rTemp);
                   3961:       disableTerm(pLevel, pStart);
                   3962:     }else{
                   3963:       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
                   3964:     }
                   3965:     if( pEnd ){
                   3966:       Expr *pX;
                   3967:       pX = pEnd->pExpr;
                   3968:       assert( pX!=0 );
                   3969:       assert( pEnd->leftCursor==iCur );
                   3970:       testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
                   3971:       memEndValue = ++pParse->nMem;
                   3972:       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
                   3973:       if( pX->op==TK_LT || pX->op==TK_GT ){
                   3974:         testOp = bRev ? OP_Le : OP_Ge;
                   3975:       }else{
                   3976:         testOp = bRev ? OP_Lt : OP_Gt;
                   3977:       }
                   3978:       disableTerm(pLevel, pEnd);
                   3979:     }
                   3980:     start = sqlite3VdbeCurrentAddr(v);
                   3981:     pLevel->op = bRev ? OP_Prev : OP_Next;
                   3982:     pLevel->p1 = iCur;
                   3983:     pLevel->p2 = start;
                   3984:     if( pStart==0 && pEnd==0 ){
                   3985:       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
                   3986:     }else{
                   3987:       assert( pLevel->p5==0 );
                   3988:     }
                   3989:     if( testOp!=OP_Noop ){
                   3990:       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
                   3991:       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
                   3992:       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
                   3993:       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
                   3994:       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
                   3995:     }
                   3996:   }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
                   3997:     /* Case 3: A scan using an index.
                   3998:     **
                   3999:     **         The WHERE clause may contain zero or more equality 
                   4000:     **         terms ("==" or "IN" operators) that refer to the N
                   4001:     **         left-most columns of the index. It may also contain
                   4002:     **         inequality constraints (>, <, >= or <=) on the indexed
                   4003:     **         column that immediately follows the N equalities. Only 
                   4004:     **         the right-most column can be an inequality - the rest must
                   4005:     **         use the "==" and "IN" operators. For example, if the 
                   4006:     **         index is on (x,y,z), then the following clauses are all 
                   4007:     **         optimized:
                   4008:     **
                   4009:     **            x=5
                   4010:     **            x=5 AND y=10
                   4011:     **            x=5 AND y<10
                   4012:     **            x=5 AND y>5 AND y<10
                   4013:     **            x=5 AND y=5 AND z<=10
                   4014:     **
                   4015:     **         The z<10 term of the following cannot be used, only
                   4016:     **         the x=5 term:
                   4017:     **
                   4018:     **            x=5 AND z<10
                   4019:     **
                   4020:     **         N may be zero if there are inequality constraints.
                   4021:     **         If there are no inequality constraints, then N is at
                   4022:     **         least one.
                   4023:     **
                   4024:     **         This case is also used when there are no WHERE clause
                   4025:     **         constraints but an index is selected anyway, in order
                   4026:     **         to force the output order to conform to an ORDER BY.
                   4027:     */  
                   4028:     static const u8 aStartOp[] = {
                   4029:       0,
                   4030:       0,
                   4031:       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
                   4032:       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
                   4033:       OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */
                   4034:       OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
                   4035:       OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
                   4036:       OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
                   4037:     };
                   4038:     static const u8 aEndOp[] = {
                   4039:       OP_Noop,             /* 0: (!end_constraints) */
                   4040:       OP_IdxGE,            /* 1: (end_constraints && !bRev) */
                   4041:       OP_IdxLT             /* 2: (end_constraints && bRev) */
                   4042:     };
                   4043:     int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
                   4044:     int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
                   4045:     int regBase;                 /* Base register holding constraint values */
                   4046:     int r1;                      /* Temp register */
                   4047:     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
                   4048:     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
                   4049:     int startEq;                 /* True if range start uses ==, >= or <= */
                   4050:     int endEq;                   /* True if range end uses ==, >= or <= */
                   4051:     int start_constraints;       /* Start of range is constrained */
                   4052:     int nConstraint;             /* Number of constraint terms */
                   4053:     Index *pIdx;                 /* The index we will be using */
                   4054:     int iIdxCur;                 /* The VDBE cursor for the index */
                   4055:     int nExtraReg = 0;           /* Number of extra registers needed */
                   4056:     int op;                      /* Instruction opcode */
                   4057:     char *zStartAff;             /* Affinity for start of range constraint */
                   4058:     char *zEndAff;               /* Affinity for end of range constraint */
                   4059: 
                   4060:     pIdx = pLevel->plan.u.pIdx;
                   4061:     iIdxCur = pLevel->iIdxCur;
                   4062:     k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]);
                   4063: 
                   4064:     /* If this loop satisfies a sort order (pOrderBy) request that 
                   4065:     ** was passed to this function to implement a "SELECT min(x) ..." 
                   4066:     ** query, then the caller will only allow the loop to run for
                   4067:     ** a single iteration. This means that the first row returned
                   4068:     ** should not have a NULL value stored in 'x'. If column 'x' is
                   4069:     ** the first one after the nEq equality constraints in the index,
                   4070:     ** this requires some special handling.
                   4071:     */
                   4072:     if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
                   4073:      && (pLevel->plan.wsFlags&WHERE_ORDERBY)
                   4074:      && (pIdx->nColumn>nEq)
                   4075:     ){
                   4076:       /* assert( pOrderBy->nExpr==1 ); */
                   4077:       /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
                   4078:       isMinQuery = 1;
                   4079:       nExtraReg = 1;
                   4080:     }
                   4081: 
                   4082:     /* Find any inequality constraint terms for the start and end 
                   4083:     ** of the range. 
                   4084:     */
                   4085:     if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
                   4086:       pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
                   4087:       nExtraReg = 1;
                   4088:     }
                   4089:     if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
                   4090:       pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
                   4091:       nExtraReg = 1;
                   4092:     }
                   4093: 
                   4094:     /* Generate code to evaluate all constraint terms using == or IN
                   4095:     ** and store the values of those terms in an array of registers
                   4096:     ** starting at regBase.
                   4097:     */
                   4098:     regBase = codeAllEqualityTerms(
                   4099:         pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
                   4100:     );
                   4101:     zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
                   4102:     addrNxt = pLevel->addrNxt;
                   4103: 
                   4104:     /* If we are doing a reverse order scan on an ascending index, or
                   4105:     ** a forward order scan on a descending index, interchange the 
                   4106:     ** start and end terms (pRangeStart and pRangeEnd).
                   4107:     */
                   4108:     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
                   4109:      || (bRev && pIdx->nColumn==nEq)
                   4110:     ){
                   4111:       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
                   4112:     }
                   4113: 
                   4114:     testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
                   4115:     testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
                   4116:     testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
                   4117:     testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
                   4118:     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
                   4119:     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
                   4120:     start_constraints = pRangeStart || nEq>0;
                   4121: 
                   4122:     /* Seek the index cursor to the start of the range. */
                   4123:     nConstraint = nEq;
                   4124:     if( pRangeStart ){
                   4125:       Expr *pRight = pRangeStart->pExpr->pRight;
                   4126:       sqlite3ExprCode(pParse, pRight, regBase+nEq);
                   4127:       if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
                   4128:         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
                   4129:       }
                   4130:       if( zStartAff ){
                   4131:         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
                   4132:           /* Since the comparison is to be performed with no conversions
                   4133:           ** applied to the operands, set the affinity to apply to pRight to 
                   4134:           ** SQLITE_AFF_NONE.  */
                   4135:           zStartAff[nEq] = SQLITE_AFF_NONE;
                   4136:         }
                   4137:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
                   4138:           zStartAff[nEq] = SQLITE_AFF_NONE;
                   4139:         }
                   4140:       }  
                   4141:       nConstraint++;
                   4142:       testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
                   4143:     }else if( isMinQuery ){
                   4144:       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
                   4145:       nConstraint++;
                   4146:       startEq = 0;
                   4147:       start_constraints = 1;
                   4148:     }
                   4149:     codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
                   4150:     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
                   4151:     assert( op!=0 );
                   4152:     testcase( op==OP_Rewind );
                   4153:     testcase( op==OP_Last );
                   4154:     testcase( op==OP_SeekGt );
                   4155:     testcase( op==OP_SeekGe );
                   4156:     testcase( op==OP_SeekLe );
                   4157:     testcase( op==OP_SeekLt );
                   4158:     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
                   4159: 
                   4160:     /* Load the value for the inequality constraint at the end of the
                   4161:     ** range (if any).
                   4162:     */
                   4163:     nConstraint = nEq;
                   4164:     if( pRangeEnd ){
                   4165:       Expr *pRight = pRangeEnd->pExpr->pRight;
                   4166:       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
                   4167:       sqlite3ExprCode(pParse, pRight, regBase+nEq);
                   4168:       if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
                   4169:         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
                   4170:       }
                   4171:       if( zEndAff ){
                   4172:         if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
                   4173:           /* Since the comparison is to be performed with no conversions
                   4174:           ** applied to the operands, set the affinity to apply to pRight to 
                   4175:           ** SQLITE_AFF_NONE.  */
                   4176:           zEndAff[nEq] = SQLITE_AFF_NONE;
                   4177:         }
                   4178:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
                   4179:           zEndAff[nEq] = SQLITE_AFF_NONE;
                   4180:         }
                   4181:       }  
                   4182:       codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
                   4183:       nConstraint++;
                   4184:       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
                   4185:     }
                   4186:     sqlite3DbFree(pParse->db, zStartAff);
                   4187:     sqlite3DbFree(pParse->db, zEndAff);
                   4188: 
                   4189:     /* Top of the loop body */
                   4190:     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
                   4191: 
                   4192:     /* Check if the index cursor is past the end of the range. */
                   4193:     op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
                   4194:     testcase( op==OP_Noop );
                   4195:     testcase( op==OP_IdxGE );
                   4196:     testcase( op==OP_IdxLT );
                   4197:     if( op!=OP_Noop ){
                   4198:       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
                   4199:       sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
                   4200:     }
                   4201: 
                   4202:     /* If there are inequality constraints, check that the value
                   4203:     ** of the table column that the inequality contrains is not NULL.
                   4204:     ** If it is, jump to the next iteration of the loop.
                   4205:     */
                   4206:     r1 = sqlite3GetTempReg(pParse);
                   4207:     testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
                   4208:     testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
                   4209:     if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
                   4210:       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
                   4211:       sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
                   4212:     }
                   4213:     sqlite3ReleaseTempReg(pParse, r1);
                   4214: 
                   4215:     /* Seek the table cursor, if required */
                   4216:     disableTerm(pLevel, pRangeStart);
                   4217:     disableTerm(pLevel, pRangeEnd);
                   4218:     if( !omitTable ){
                   4219:       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
                   4220:       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
                   4221:       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
                   4222:       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
                   4223:     }
                   4224: 
                   4225:     /* Record the instruction used to terminate the loop. Disable 
                   4226:     ** WHERE clause terms made redundant by the index range scan.
                   4227:     */
                   4228:     if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
                   4229:       pLevel->op = OP_Noop;
                   4230:     }else if( bRev ){
                   4231:       pLevel->op = OP_Prev;
                   4232:     }else{
                   4233:       pLevel->op = OP_Next;
                   4234:     }
                   4235:     pLevel->p1 = iIdxCur;
                   4236:   }else
                   4237: 
                   4238: #ifndef SQLITE_OMIT_OR_OPTIMIZATION
                   4239:   if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
                   4240:     /* Case 4:  Two or more separately indexed terms connected by OR
                   4241:     **
                   4242:     ** Example:
                   4243:     **
                   4244:     **   CREATE TABLE t1(a,b,c,d);
                   4245:     **   CREATE INDEX i1 ON t1(a);
                   4246:     **   CREATE INDEX i2 ON t1(b);
                   4247:     **   CREATE INDEX i3 ON t1(c);
                   4248:     **
                   4249:     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
                   4250:     **
                   4251:     ** In the example, there are three indexed terms connected by OR.
                   4252:     ** The top of the loop looks like this:
                   4253:     **
                   4254:     **          Null       1                # Zero the rowset in reg 1
                   4255:     **
                   4256:     ** Then, for each indexed term, the following. The arguments to
                   4257:     ** RowSetTest are such that the rowid of the current row is inserted
                   4258:     ** into the RowSet. If it is already present, control skips the
                   4259:     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
                   4260:     **
                   4261:     **        sqlite3WhereBegin(<term>)
                   4262:     **          RowSetTest                  # Insert rowid into rowset
                   4263:     **          Gosub      2 A
                   4264:     **        sqlite3WhereEnd()
                   4265:     **
                   4266:     ** Following the above, code to terminate the loop. Label A, the target
                   4267:     ** of the Gosub above, jumps to the instruction right after the Goto.
                   4268:     **
                   4269:     **          Null       1                # Zero the rowset in reg 1
                   4270:     **          Goto       B                # The loop is finished.
                   4271:     **
                   4272:     **       A: <loop body>                 # Return data, whatever.
                   4273:     **
                   4274:     **          Return     2                # Jump back to the Gosub
                   4275:     **
                   4276:     **       B: <after the loop>
                   4277:     **
                   4278:     */
                   4279:     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
                   4280:     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
                   4281: 
                   4282:     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
                   4283:     int regRowset = 0;                        /* Register for RowSet object */
                   4284:     int regRowid = 0;                         /* Register holding rowid */
                   4285:     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
                   4286:     int iRetInit;                             /* Address of regReturn init */
                   4287:     int untestedTerms = 0;             /* Some terms not completely tested */
                   4288:     int ii;                            /* Loop counter */
                   4289:     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
                   4290:    
                   4291:     pTerm = pLevel->plan.u.pTerm;
                   4292:     assert( pTerm!=0 );
                   4293:     assert( pTerm->eOperator==WO_OR );
                   4294:     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
                   4295:     pOrWc = &pTerm->u.pOrInfo->wc;
                   4296:     pLevel->op = OP_Return;
                   4297:     pLevel->p1 = regReturn;
                   4298: 
                   4299:     /* Set up a new SrcList ni pOrTab containing the table being scanned
                   4300:     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
                   4301:     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
                   4302:     */
                   4303:     if( pWInfo->nLevel>1 ){
                   4304:       int nNotReady;                 /* The number of notReady tables */
                   4305:       struct SrcList_item *origSrc;     /* Original list of tables */
                   4306:       nNotReady = pWInfo->nLevel - iLevel - 1;
                   4307:       pOrTab = sqlite3StackAllocRaw(pParse->db,
                   4308:                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
                   4309:       if( pOrTab==0 ) return notReady;
                   4310:       pOrTab->nAlloc = (i16)(nNotReady + 1);
                   4311:       pOrTab->nSrc = pOrTab->nAlloc;
                   4312:       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
                   4313:       origSrc = pWInfo->pTabList->a;
                   4314:       for(k=1; k<=nNotReady; k++){
                   4315:         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
                   4316:       }
                   4317:     }else{
                   4318:       pOrTab = pWInfo->pTabList;
                   4319:     }
                   4320: 
                   4321:     /* Initialize the rowset register to contain NULL. An SQL NULL is 
                   4322:     ** equivalent to an empty rowset.
                   4323:     **
                   4324:     ** Also initialize regReturn to contain the address of the instruction 
                   4325:     ** immediately following the OP_Return at the bottom of the loop. This
                   4326:     ** is required in a few obscure LEFT JOIN cases where control jumps
                   4327:     ** over the top of the loop into the body of it. In this case the 
                   4328:     ** correct response for the end-of-loop code (the OP_Return) is to 
                   4329:     ** fall through to the next instruction, just as an OP_Next does if
                   4330:     ** called on an uninitialized cursor.
                   4331:     */
                   4332:     if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
                   4333:       regRowset = ++pParse->nMem;
                   4334:       regRowid = ++pParse->nMem;
                   4335:       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
                   4336:     }
                   4337:     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
                   4338: 
                   4339:     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
                   4340:     ** Then for every term xN, evaluate as the subexpression: xN AND z
                   4341:     ** That way, terms in y that are factored into the disjunction will
                   4342:     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
                   4343:     */
                   4344:     if( pWC->nTerm>1 ){
                   4345:       pAndExpr = sqlite3ExprAlloc(pParse->db, TK_AND, 0, 0);
                   4346:       pAndExpr->pRight = pWhere;
                   4347:     }
                   4348: 
                   4349:     for(ii=0; ii<pOrWc->nTerm; ii++){
                   4350:       WhereTerm *pOrTerm = &pOrWc->a[ii];
                   4351:       if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
                   4352:         WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
                   4353:         Expr *pOrExpr = pOrTerm->pExpr;
                   4354:         if( pAndExpr ){
                   4355:           pAndExpr->pLeft = pOrExpr;
                   4356:           pOrExpr = pAndExpr;
                   4357:         }
                   4358:         /* Loop through table entries that match term pOrTerm. */
                   4359:         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                   4360:                         WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                   4361:                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
                   4362:         if( pSubWInfo ){
                   4363:           explainOneScan(
                   4364:               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
                   4365:           );
                   4366:           if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
                   4367:             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
                   4368:             int r;
                   4369:             r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                   4370:                                          regRowid);
                   4371:             sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                   4372:                                  sqlite3VdbeCurrentAddr(v)+2, r, iSet);
                   4373:           }
                   4374:           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
                   4375: 
                   4376:           /* The pSubWInfo->untestedTerms flag means that this OR term
                   4377:           ** contained one or more AND term from a notReady table.  The
                   4378:           ** terms from the notReady table could not be tested and will
                   4379:           ** need to be tested later.
                   4380:           */
                   4381:           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
                   4382: 
                   4383:           /* Finish the loop through table entries that match term pOrTerm. */
                   4384:           sqlite3WhereEnd(pSubWInfo);
                   4385:         }
                   4386:       }
                   4387:     }
                   4388:     sqlite3DbFree(pParse->db, pAndExpr);
                   4389:     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
                   4390:     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
                   4391:     sqlite3VdbeResolveLabel(v, iLoopBody);
                   4392: 
                   4393:     if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
                   4394:     if( !untestedTerms ) disableTerm(pLevel, pTerm);
                   4395:   }else
                   4396: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
                   4397: 
                   4398:   {
                   4399:     /* Case 5:  There is no usable index.  We must do a complete
                   4400:     **          scan of the entire table.
                   4401:     */
                   4402:     static const u8 aStep[] = { OP_Next, OP_Prev };
                   4403:     static const u8 aStart[] = { OP_Rewind, OP_Last };
                   4404:     assert( bRev==0 || bRev==1 );
                   4405:     assert( omitTable==0 );
                   4406:     pLevel->op = aStep[bRev];
                   4407:     pLevel->p1 = iCur;
                   4408:     pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
                   4409:     pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
                   4410:   }
                   4411:   notReady &= ~getMask(pWC->pMaskSet, iCur);
                   4412: 
                   4413:   /* Insert code to test every subexpression that can be completely
                   4414:   ** computed using the current set of tables.
                   4415:   **
                   4416:   ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
                   4417:   ** the use of indices become tests that are evaluated against each row of
                   4418:   ** the relevant input tables.
                   4419:   */
                   4420:   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
                   4421:     Expr *pE;
                   4422:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
                   4423:     testcase( pTerm->wtFlags & TERM_CODED );
                   4424:     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
                   4425:     if( (pTerm->prereqAll & notReady)!=0 ){
                   4426:       testcase( pWInfo->untestedTerms==0
                   4427:                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
                   4428:       pWInfo->untestedTerms = 1;
                   4429:       continue;
                   4430:     }
                   4431:     pE = pTerm->pExpr;
                   4432:     assert( pE!=0 );
                   4433:     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
                   4434:       continue;
                   4435:     }
                   4436:     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
                   4437:     pTerm->wtFlags |= TERM_CODED;
                   4438:   }
                   4439: 
                   4440:   /* For a LEFT OUTER JOIN, generate code that will record the fact that
                   4441:   ** at least one row of the right table has matched the left table.  
                   4442:   */
                   4443:   if( pLevel->iLeftJoin ){
                   4444:     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
                   4445:     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
                   4446:     VdbeComment((v, "record LEFT JOIN hit"));
                   4447:     sqlite3ExprCacheClear(pParse);
                   4448:     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
                   4449:       testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */
                   4450:       testcase( pTerm->wtFlags & TERM_CODED );
                   4451:       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
                   4452:       if( (pTerm->prereqAll & notReady)!=0 ){
                   4453:         assert( pWInfo->untestedTerms );
                   4454:         continue;
                   4455:       }
                   4456:       assert( pTerm->pExpr );
                   4457:       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
                   4458:       pTerm->wtFlags |= TERM_CODED;
                   4459:     }
                   4460:   }
                   4461:   sqlite3ReleaseTempReg(pParse, iReleaseReg);
                   4462: 
                   4463:   return notReady;
                   4464: }
                   4465: 
                   4466: #if defined(SQLITE_TEST)
                   4467: /*
                   4468: ** The following variable holds a text description of query plan generated
                   4469: ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
                   4470: ** overwrites the previous.  This information is used for testing and
                   4471: ** analysis only.
                   4472: */
                   4473: char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
                   4474: static int nQPlan = 0;              /* Next free slow in _query_plan[] */
                   4475: 
                   4476: #endif /* SQLITE_TEST */
                   4477: 
                   4478: 
                   4479: /*
                   4480: ** Free a WhereInfo structure
                   4481: */
                   4482: static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
                   4483:   if( ALWAYS(pWInfo) ){
                   4484:     int i;
                   4485:     for(i=0; i<pWInfo->nLevel; i++){
                   4486:       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
                   4487:       if( pInfo ){
                   4488:         /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
                   4489:         if( pInfo->needToFreeIdxStr ){
                   4490:           sqlite3_free(pInfo->idxStr);
                   4491:         }
                   4492:         sqlite3DbFree(db, pInfo);
                   4493:       }
                   4494:       if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
                   4495:         Index *pIdx = pWInfo->a[i].plan.u.pIdx;
                   4496:         if( pIdx ){
                   4497:           sqlite3DbFree(db, pIdx->zColAff);
                   4498:           sqlite3DbFree(db, pIdx);
                   4499:         }
                   4500:       }
                   4501:     }
                   4502:     whereClauseClear(pWInfo->pWC);
                   4503:     sqlite3DbFree(db, pWInfo);
                   4504:   }
                   4505: }
                   4506: 
                   4507: 
                   4508: /*
                   4509: ** Generate the beginning of the loop used for WHERE clause processing.
                   4510: ** The return value is a pointer to an opaque structure that contains
                   4511: ** information needed to terminate the loop.  Later, the calling routine
                   4512: ** should invoke sqlite3WhereEnd() with the return value of this function
                   4513: ** in order to complete the WHERE clause processing.
                   4514: **
                   4515: ** If an error occurs, this routine returns NULL.
                   4516: **
                   4517: ** The basic idea is to do a nested loop, one loop for each table in
                   4518: ** the FROM clause of a select.  (INSERT and UPDATE statements are the
                   4519: ** same as a SELECT with only a single table in the FROM clause.)  For
                   4520: ** example, if the SQL is this:
                   4521: **
                   4522: **       SELECT * FROM t1, t2, t3 WHERE ...;
                   4523: **
                   4524: ** Then the code generated is conceptually like the following:
                   4525: **
                   4526: **      foreach row1 in t1 do       \    Code generated
                   4527: **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
                   4528: **          foreach row3 in t3 do   /
                   4529: **            ...
                   4530: **          end                     \    Code generated
                   4531: **        end                        |-- by sqlite3WhereEnd()
                   4532: **      end                         /
                   4533: **
                   4534: ** Note that the loops might not be nested in the order in which they
                   4535: ** appear in the FROM clause if a different order is better able to make
                   4536: ** use of indices.  Note also that when the IN operator appears in
                   4537: ** the WHERE clause, it might result in additional nested loops for
                   4538: ** scanning through all values on the right-hand side of the IN.
                   4539: **
                   4540: ** There are Btree cursors associated with each table.  t1 uses cursor
                   4541: ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
                   4542: ** And so forth.  This routine generates code to open those VDBE cursors
                   4543: ** and sqlite3WhereEnd() generates the code to close them.
                   4544: **
                   4545: ** The code that sqlite3WhereBegin() generates leaves the cursors named
                   4546: ** in pTabList pointing at their appropriate entries.  The [...] code
                   4547: ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
                   4548: ** data from the various tables of the loop.
                   4549: **
                   4550: ** If the WHERE clause is empty, the foreach loops must each scan their
                   4551: ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
                   4552: ** the tables have indices and there are terms in the WHERE clause that
                   4553: ** refer to those indices, a complete table scan can be avoided and the
                   4554: ** code will run much faster.  Most of the work of this routine is checking
                   4555: ** to see if there are indices that can be used to speed up the loop.
                   4556: **
                   4557: ** Terms of the WHERE clause are also used to limit which rows actually
                   4558: ** make it to the "..." in the middle of the loop.  After each "foreach",
                   4559: ** terms of the WHERE clause that use only terms in that loop and outer
                   4560: ** loops are evaluated and if false a jump is made around all subsequent
                   4561: ** inner loops (or around the "..." if the test occurs within the inner-
                   4562: ** most loop)
                   4563: **
                   4564: ** OUTER JOINS
                   4565: **
                   4566: ** An outer join of tables t1 and t2 is conceptally coded as follows:
                   4567: **
                   4568: **    foreach row1 in t1 do
                   4569: **      flag = 0
                   4570: **      foreach row2 in t2 do
                   4571: **        start:
                   4572: **          ...
                   4573: **          flag = 1
                   4574: **      end
                   4575: **      if flag==0 then
                   4576: **        move the row2 cursor to a null row
                   4577: **        goto start
                   4578: **      fi
                   4579: **    end
                   4580: **
                   4581: ** ORDER BY CLAUSE PROCESSING
                   4582: **
                   4583: ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
                   4584: ** if there is one.  If there is no ORDER BY clause or if this routine
                   4585: ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
                   4586: **
                   4587: ** If an index can be used so that the natural output order of the table
                   4588: ** scan is correct for the ORDER BY clause, then that index is used and
                   4589: ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
                   4590: ** unnecessary sort of the result set if an index appropriate for the
                   4591: ** ORDER BY clause already exists.
                   4592: **
                   4593: ** If the where clause loops cannot be arranged to provide the correct
                   4594: ** output order, then the *ppOrderBy is unchanged.
                   4595: */
                   4596: WhereInfo *sqlite3WhereBegin(
                   4597:   Parse *pParse,        /* The parser context */
                   4598:   SrcList *pTabList,    /* A list of all tables to be scanned */
                   4599:   Expr *pWhere,         /* The WHERE clause */
                   4600:   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
                   4601:   ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
                   4602:   u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
                   4603: ){
                   4604:   int i;                     /* Loop counter */
                   4605:   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
                   4606:   int nTabList;              /* Number of elements in pTabList */
                   4607:   WhereInfo *pWInfo;         /* Will become the return value of this function */
                   4608:   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
                   4609:   Bitmask notReady;          /* Cursors that are not yet positioned */
                   4610:   WhereMaskSet *pMaskSet;    /* The expression mask set */
                   4611:   WhereClause *pWC;               /* Decomposition of the WHERE clause */
                   4612:   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
                   4613:   WhereLevel *pLevel;             /* A single level in the pWInfo list */
                   4614:   int iFrom;                      /* First unused FROM clause element */
                   4615:   int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
                   4616:   sqlite3 *db;               /* Database connection */
                   4617: 
                   4618:   /* The number of tables in the FROM clause is limited by the number of
                   4619:   ** bits in a Bitmask 
                   4620:   */
                   4621:   testcase( pTabList->nSrc==BMS );
                   4622:   if( pTabList->nSrc>BMS ){
                   4623:     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
                   4624:     return 0;
                   4625:   }
                   4626: 
                   4627:   /* This function normally generates a nested loop for all tables in 
                   4628:   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
                   4629:   ** only generate code for the first table in pTabList and assume that
                   4630:   ** any cursors associated with subsequent tables are uninitialized.
                   4631:   */
                   4632:   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
                   4633: 
                   4634:   /* Allocate and initialize the WhereInfo structure that will become the
                   4635:   ** return value. A single allocation is used to store the WhereInfo
                   4636:   ** struct, the contents of WhereInfo.a[], the WhereClause structure
                   4637:   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
                   4638:   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
                   4639:   ** some architectures. Hence the ROUND8() below.
                   4640:   */
                   4641:   db = pParse->db;
                   4642:   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
                   4643:   pWInfo = sqlite3DbMallocZero(db, 
                   4644:       nByteWInfo + 
                   4645:       sizeof(WhereClause) +
                   4646:       sizeof(WhereMaskSet)
                   4647:   );
                   4648:   if( db->mallocFailed ){
                   4649:     sqlite3DbFree(db, pWInfo);
                   4650:     pWInfo = 0;
                   4651:     goto whereBeginError;
                   4652:   }
                   4653:   pWInfo->nLevel = nTabList;
                   4654:   pWInfo->pParse = pParse;
                   4655:   pWInfo->pTabList = pTabList;
                   4656:   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
                   4657:   pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
                   4658:   pWInfo->wctrlFlags = wctrlFlags;
                   4659:   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
                   4660:   pMaskSet = (WhereMaskSet*)&pWC[1];
                   4661: 
                   4662:   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
                   4663:   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
                   4664:   if( db->flags & SQLITE_DistinctOpt ) pDistinct = 0;
                   4665: 
                   4666:   /* Split the WHERE clause into separate subexpressions where each
                   4667:   ** subexpression is separated by an AND operator.
                   4668:   */
                   4669:   initMaskSet(pMaskSet);
                   4670:   whereClauseInit(pWC, pParse, pMaskSet, wctrlFlags);
                   4671:   sqlite3ExprCodeConstants(pParse, pWhere);
                   4672:   whereSplit(pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
                   4673:     
                   4674:   /* Special case: a WHERE clause that is constant.  Evaluate the
                   4675:   ** expression and either jump over all of the code or fall thru.
                   4676:   */
                   4677:   if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
                   4678:     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
                   4679:     pWhere = 0;
                   4680:   }
                   4681: 
                   4682:   /* Assign a bit from the bitmask to every term in the FROM clause.
                   4683:   **
                   4684:   ** When assigning bitmask values to FROM clause cursors, it must be
                   4685:   ** the case that if X is the bitmask for the N-th FROM clause term then
                   4686:   ** the bitmask for all FROM clause terms to the left of the N-th term
                   4687:   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
                   4688:   ** its Expr.iRightJoinTable value to find the bitmask of the right table
                   4689:   ** of the join.  Subtracting one from the right table bitmask gives a
                   4690:   ** bitmask for all tables to the left of the join.  Knowing the bitmask
                   4691:   ** for all tables to the left of a left join is important.  Ticket #3015.
                   4692:   **
                   4693:   ** Configure the WhereClause.vmask variable so that bits that correspond
                   4694:   ** to virtual table cursors are set. This is used to selectively disable 
                   4695:   ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
                   4696:   ** with virtual tables.
                   4697:   **
                   4698:   ** Note that bitmasks are created for all pTabList->nSrc tables in
                   4699:   ** pTabList, not just the first nTabList tables.  nTabList is normally
                   4700:   ** equal to pTabList->nSrc but might be shortened to 1 if the
                   4701:   ** WHERE_ONETABLE_ONLY flag is set.
                   4702:   */
                   4703:   assert( pWC->vmask==0 && pMaskSet->n==0 );
                   4704:   for(i=0; i<pTabList->nSrc; i++){
                   4705:     createMask(pMaskSet, pTabList->a[i].iCursor);
                   4706: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   4707:     if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
                   4708:       pWC->vmask |= ((Bitmask)1 << i);
                   4709:     }
                   4710: #endif
                   4711:   }
                   4712: #ifndef NDEBUG
                   4713:   {
                   4714:     Bitmask toTheLeft = 0;
                   4715:     for(i=0; i<pTabList->nSrc; i++){
                   4716:       Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
                   4717:       assert( (m-1)==toTheLeft );
                   4718:       toTheLeft |= m;
                   4719:     }
                   4720:   }
                   4721: #endif
                   4722: 
                   4723:   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
                   4724:   ** add new virtual terms onto the end of the WHERE clause.  We do not
                   4725:   ** want to analyze these virtual terms, so start analyzing at the end
                   4726:   ** and work forward so that the added virtual terms are never processed.
                   4727:   */
                   4728:   exprAnalyzeAll(pTabList, pWC);
                   4729:   if( db->mallocFailed ){
                   4730:     goto whereBeginError;
                   4731:   }
                   4732: 
                   4733:   /* Check if the DISTINCT qualifier, if there is one, is redundant. 
                   4734:   ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
                   4735:   ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
                   4736:   */
                   4737:   if( pDistinct && isDistinctRedundant(pParse, pTabList, pWC, pDistinct) ){
                   4738:     pDistinct = 0;
                   4739:     pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
                   4740:   }
                   4741: 
                   4742:   /* Chose the best index to use for each table in the FROM clause.
                   4743:   **
                   4744:   ** This loop fills in the following fields:
                   4745:   **
                   4746:   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
                   4747:   **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
                   4748:   **   pWInfo->a[].nEq       The number of == and IN constraints
                   4749:   **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
                   4750:   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
                   4751:   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
                   4752:   **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
                   4753:   **
                   4754:   ** This loop also figures out the nesting order of tables in the FROM
                   4755:   ** clause.
                   4756:   */
                   4757:   notReady = ~(Bitmask)0;
                   4758:   andFlags = ~0;
                   4759:   WHERETRACE(("*** Optimizer Start ***\n"));
                   4760:   for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
                   4761:     WhereCost bestPlan;         /* Most efficient plan seen so far */
                   4762:     Index *pIdx;                /* Index for FROM table at pTabItem */
                   4763:     int j;                      /* For looping over FROM tables */
                   4764:     int bestJ = -1;             /* The value of j */
                   4765:     Bitmask m;                  /* Bitmask value for j or bestJ */
                   4766:     int isOptimal;              /* Iterator for optimal/non-optimal search */
                   4767:     int nUnconstrained;         /* Number tables without INDEXED BY */
                   4768:     Bitmask notIndexed;         /* Mask of tables that cannot use an index */
                   4769: 
                   4770:     memset(&bestPlan, 0, sizeof(bestPlan));
                   4771:     bestPlan.rCost = SQLITE_BIG_DBL;
                   4772:     WHERETRACE(("*** Begin search for loop %d ***\n", i));
                   4773: 
                   4774:     /* Loop through the remaining entries in the FROM clause to find the
                   4775:     ** next nested loop. The loop tests all FROM clause entries
                   4776:     ** either once or twice. 
                   4777:     **
                   4778:     ** The first test is always performed if there are two or more entries
                   4779:     ** remaining and never performed if there is only one FROM clause entry
                   4780:     ** to choose from.  The first test looks for an "optimal" scan.  In
                   4781:     ** this context an optimal scan is one that uses the same strategy
                   4782:     ** for the given FROM clause entry as would be selected if the entry
                   4783:     ** were used as the innermost nested loop.  In other words, a table
                   4784:     ** is chosen such that the cost of running that table cannot be reduced
                   4785:     ** by waiting for other tables to run first.  This "optimal" test works
                   4786:     ** by first assuming that the FROM clause is on the inner loop and finding
                   4787:     ** its query plan, then checking to see if that query plan uses any
                   4788:     ** other FROM clause terms that are notReady.  If no notReady terms are
                   4789:     ** used then the "optimal" query plan works.
                   4790:     **
                   4791:     ** Note that the WhereCost.nRow parameter for an optimal scan might
                   4792:     ** not be as small as it would be if the table really were the innermost
                   4793:     ** join.  The nRow value can be reduced by WHERE clause constraints
                   4794:     ** that do not use indices.  But this nRow reduction only happens if the
                   4795:     ** table really is the innermost join.  
                   4796:     **
                   4797:     ** The second loop iteration is only performed if no optimal scan
                   4798:     ** strategies were found by the first iteration. This second iteration
                   4799:     ** is used to search for the lowest cost scan overall.
                   4800:     **
                   4801:     ** Previous versions of SQLite performed only the second iteration -
                   4802:     ** the next outermost loop was always that with the lowest overall
                   4803:     ** cost. However, this meant that SQLite could select the wrong plan
                   4804:     ** for scripts such as the following:
                   4805:     **   
                   4806:     **   CREATE TABLE t1(a, b); 
                   4807:     **   CREATE TABLE t2(c, d);
                   4808:     **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
                   4809:     **
                   4810:     ** The best strategy is to iterate through table t1 first. However it
                   4811:     ** is not possible to determine this with a simple greedy algorithm.
                   4812:     ** Since the cost of a linear scan through table t2 is the same 
                   4813:     ** as the cost of a linear scan through table t1, a simple greedy 
                   4814:     ** algorithm may choose to use t2 for the outer loop, which is a much
                   4815:     ** costlier approach.
                   4816:     */
                   4817:     nUnconstrained = 0;
                   4818:     notIndexed = 0;
                   4819:     for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
                   4820:       Bitmask mask;             /* Mask of tables not yet ready */
                   4821:       for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
                   4822:         int doNotReorder;    /* True if this table should not be reordered */
                   4823:         WhereCost sCost;     /* Cost information from best[Virtual]Index() */
                   4824:         ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
                   4825:         ExprList *pDist;     /* DISTINCT clause for index to optimize */
                   4826:   
                   4827:         doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
                   4828:         if( j!=iFrom && doNotReorder ) break;
                   4829:         m = getMask(pMaskSet, pTabItem->iCursor);
                   4830:         if( (m & notReady)==0 ){
                   4831:           if( j==iFrom ) iFrom++;
                   4832:           continue;
                   4833:         }
                   4834:         mask = (isOptimal ? m : notReady);
                   4835:         pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
                   4836:         pDist = (i==0 ? pDistinct : 0);
                   4837:         if( pTabItem->pIndex==0 ) nUnconstrained++;
                   4838:   
                   4839:         WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
                   4840:                     j, isOptimal));
                   4841:         assert( pTabItem->pTab );
                   4842: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   4843:         if( IsVirtual(pTabItem->pTab) ){
                   4844:           sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
                   4845:           bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                   4846:                            &sCost, pp);
                   4847:         }else 
                   4848: #endif
                   4849:         {
                   4850:           bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                   4851:               pDist, &sCost);
                   4852:         }
                   4853:         assert( isOptimal || (sCost.used&notReady)==0 );
                   4854: 
                   4855:         /* If an INDEXED BY clause is present, then the plan must use that
                   4856:         ** index if it uses any index at all */
                   4857:         assert( pTabItem->pIndex==0 
                   4858:                   || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
                   4859:                   || sCost.plan.u.pIdx==pTabItem->pIndex );
                   4860: 
                   4861:         if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
                   4862:           notIndexed |= m;
                   4863:         }
                   4864: 
                   4865:         /* Conditions under which this table becomes the best so far:
                   4866:         **
                   4867:         **   (1) The table must not depend on other tables that have not
                   4868:         **       yet run.
                   4869:         **
                   4870:         **   (2) A full-table-scan plan cannot supercede indexed plan unless
                   4871:         **       the full-table-scan is an "optimal" plan as defined above.
                   4872:         **
                   4873:         **   (3) All tables have an INDEXED BY clause or this table lacks an
                   4874:         **       INDEXED BY clause or this table uses the specific
                   4875:         **       index specified by its INDEXED BY clause.  This rule ensures
                   4876:         **       that a best-so-far is always selected even if an impossible
                   4877:         **       combination of INDEXED BY clauses are given.  The error
                   4878:         **       will be detected and relayed back to the application later.
                   4879:         **       The NEVER() comes about because rule (2) above prevents
                   4880:         **       An indexable full-table-scan from reaching rule (3).
                   4881:         **
                   4882:         **   (4) The plan cost must be lower than prior plans or else the
                   4883:         **       cost must be the same and the number of rows must be lower.
                   4884:         */
                   4885:         if( (sCost.used&notReady)==0                       /* (1) */
                   4886:             && (bestJ<0 || (notIndexed&m)!=0               /* (2) */
                   4887:                 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
                   4888:                 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
                   4889:             && (nUnconstrained==0 || pTabItem->pIndex==0   /* (3) */
                   4890:                 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
                   4891:             && (bestJ<0 || sCost.rCost<bestPlan.rCost      /* (4) */
                   4892:                 || (sCost.rCost<=bestPlan.rCost 
                   4893:                  && sCost.plan.nRow<bestPlan.plan.nRow))
                   4894:         ){
                   4895:           WHERETRACE(("=== table %d is best so far"
                   4896:                       " with cost=%g and nRow=%g\n",
                   4897:                       j, sCost.rCost, sCost.plan.nRow));
                   4898:           bestPlan = sCost;
                   4899:           bestJ = j;
                   4900:         }
                   4901:         if( doNotReorder ) break;
                   4902:       }
                   4903:     }
                   4904:     assert( bestJ>=0 );
                   4905:     assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
                   4906:     WHERETRACE(("*** Optimizer selects table %d for loop %d"
                   4907:                 " with cost=%g and nRow=%g\n",
                   4908:                 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
                   4909:     /* The ALWAYS() that follows was added to hush up clang scan-build */
                   4910:     if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 && ALWAYS(ppOrderBy) ){
                   4911:       *ppOrderBy = 0;
                   4912:     }
                   4913:     if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
                   4914:       assert( pWInfo->eDistinct==0 );
                   4915:       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
                   4916:     }
                   4917:     andFlags &= bestPlan.plan.wsFlags;
                   4918:     pLevel->plan = bestPlan.plan;
                   4919:     testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
                   4920:     testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
                   4921:     if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
                   4922:       pLevel->iIdxCur = pParse->nTab++;
                   4923:     }else{
                   4924:       pLevel->iIdxCur = -1;
                   4925:     }
                   4926:     notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
                   4927:     pLevel->iFrom = (u8)bestJ;
                   4928:     if( bestPlan.plan.nRow>=(double)1 ){
                   4929:       pParse->nQueryLoop *= bestPlan.plan.nRow;
                   4930:     }
                   4931: 
                   4932:     /* Check that if the table scanned by this loop iteration had an
                   4933:     ** INDEXED BY clause attached to it, that the named index is being
                   4934:     ** used for the scan. If not, then query compilation has failed.
                   4935:     ** Return an error.
                   4936:     */
                   4937:     pIdx = pTabList->a[bestJ].pIndex;
                   4938:     if( pIdx ){
                   4939:       if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
                   4940:         sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
                   4941:         goto whereBeginError;
                   4942:       }else{
                   4943:         /* If an INDEXED BY clause is used, the bestIndex() function is
                   4944:         ** guaranteed to find the index specified in the INDEXED BY clause
                   4945:         ** if it find an index at all. */
                   4946:         assert( bestPlan.plan.u.pIdx==pIdx );
                   4947:       }
                   4948:     }
                   4949:   }
                   4950:   WHERETRACE(("*** Optimizer Finished ***\n"));
                   4951:   if( pParse->nErr || db->mallocFailed ){
                   4952:     goto whereBeginError;
                   4953:   }
                   4954: 
                   4955:   /* If the total query only selects a single row, then the ORDER BY
                   4956:   ** clause is irrelevant.
                   4957:   */
                   4958:   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
                   4959:     *ppOrderBy = 0;
                   4960:   }
                   4961: 
                   4962:   /* If the caller is an UPDATE or DELETE statement that is requesting
                   4963:   ** to use a one-pass algorithm, determine if this is appropriate.
                   4964:   ** The one-pass algorithm only works if the WHERE clause constraints
                   4965:   ** the statement to update a single row.
                   4966:   */
                   4967:   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
                   4968:   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
                   4969:     pWInfo->okOnePass = 1;
                   4970:     pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
                   4971:   }
                   4972: 
                   4973:   /* Open all tables in the pTabList and any indices selected for
                   4974:   ** searching those tables.
                   4975:   */
                   4976:   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
                   4977:   notReady = ~(Bitmask)0;
                   4978:   pWInfo->nRowOut = (double)1;
                   4979:   for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
                   4980:     Table *pTab;     /* Table to open */
                   4981:     int iDb;         /* Index of database containing table/index */
                   4982: 
                   4983:     pTabItem = &pTabList->a[pLevel->iFrom];
                   4984:     pTab = pTabItem->pTab;
                   4985:     pLevel->iTabCur = pTabItem->iCursor;
                   4986:     pWInfo->nRowOut *= pLevel->plan.nRow;
                   4987:     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
                   4988:     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
                   4989:       /* Do nothing */
                   4990:     }else
                   4991: #ifndef SQLITE_OMIT_VIRTUALTABLE
                   4992:     if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
                   4993:       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
                   4994:       int iCur = pTabItem->iCursor;
                   4995:       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
                   4996:     }else
                   4997: #endif
                   4998:     if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
                   4999:          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
                   5000:       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
                   5001:       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
                   5002:       testcase( pTab->nCol==BMS-1 );
                   5003:       testcase( pTab->nCol==BMS );
                   5004:       if( !pWInfo->okOnePass && pTab->nCol<BMS ){
                   5005:         Bitmask b = pTabItem->colUsed;
                   5006:         int n = 0;
                   5007:         for(; b; b=b>>1, n++){}
                   5008:         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                   5009:                             SQLITE_INT_TO_PTR(n), P4_INT32);
                   5010:         assert( n<=pTab->nCol );
                   5011:       }
                   5012:     }else{
                   5013:       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
                   5014:     }
                   5015: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
                   5016:     if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
                   5017:       constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
                   5018:     }else
                   5019: #endif
                   5020:     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
                   5021:       Index *pIx = pLevel->plan.u.pIdx;
                   5022:       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
                   5023:       int iIdxCur = pLevel->iIdxCur;
                   5024:       assert( pIx->pSchema==pTab->pSchema );
                   5025:       assert( iIdxCur>=0 );
                   5026:       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
                   5027:                         (char*)pKey, P4_KEYINFO_HANDOFF);
                   5028:       VdbeComment((v, "%s", pIx->zName));
                   5029:     }
                   5030:     sqlite3CodeVerifySchema(pParse, iDb);
                   5031:     notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
                   5032:   }
                   5033:   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
                   5034:   if( db->mallocFailed ) goto whereBeginError;
                   5035: 
                   5036:   /* Generate the code to do the search.  Each iteration of the for
                   5037:   ** loop below generates code for a single nested loop of the VM
                   5038:   ** program.
                   5039:   */
                   5040:   notReady = ~(Bitmask)0;
                   5041:   for(i=0; i<nTabList; i++){
                   5042:     pLevel = &pWInfo->a[i];
                   5043:     explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
                   5044:     notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady, pWhere);
                   5045:     pWInfo->iContinue = pLevel->addrCont;
                   5046:   }
                   5047: 
                   5048: #ifdef SQLITE_TEST  /* For testing and debugging use only */
                   5049:   /* Record in the query plan information about the current table
                   5050:   ** and the index used to access it (if any).  If the table itself
                   5051:   ** is not used, its name is just '{}'.  If no index is used
                   5052:   ** the index is listed as "{}".  If the primary key is used the
                   5053:   ** index name is '*'.
                   5054:   */
                   5055:   for(i=0; i<nTabList; i++){
                   5056:     char *z;
                   5057:     int n;
                   5058:     pLevel = &pWInfo->a[i];
                   5059:     pTabItem = &pTabList->a[pLevel->iFrom];
                   5060:     z = pTabItem->zAlias;
                   5061:     if( z==0 ) z = pTabItem->pTab->zName;
                   5062:     n = sqlite3Strlen30(z);
                   5063:     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
                   5064:       if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
                   5065:         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
                   5066:         nQPlan += 2;
                   5067:       }else{
                   5068:         memcpy(&sqlite3_query_plan[nQPlan], z, n);
                   5069:         nQPlan += n;
                   5070:       }
                   5071:       sqlite3_query_plan[nQPlan++] = ' ';
                   5072:     }
                   5073:     testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
                   5074:     testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
                   5075:     if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
                   5076:       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
                   5077:       nQPlan += 2;
                   5078:     }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
                   5079:       n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
                   5080:       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
                   5081:         memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
                   5082:         nQPlan += n;
                   5083:         sqlite3_query_plan[nQPlan++] = ' ';
                   5084:       }
                   5085:     }else{
                   5086:       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
                   5087:       nQPlan += 3;
                   5088:     }
                   5089:   }
                   5090:   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
                   5091:     sqlite3_query_plan[--nQPlan] = 0;
                   5092:   }
                   5093:   sqlite3_query_plan[nQPlan] = 0;
                   5094:   nQPlan = 0;
                   5095: #endif /* SQLITE_TEST // Testing and debugging use only */
                   5096: 
                   5097:   /* Record the continuation address in the WhereInfo structure.  Then
                   5098:   ** clean up and return.
                   5099:   */
                   5100:   return pWInfo;
                   5101: 
                   5102:   /* Jump here if malloc fails */
                   5103: whereBeginError:
                   5104:   if( pWInfo ){
                   5105:     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
                   5106:     whereInfoFree(db, pWInfo);
                   5107:   }
                   5108:   return 0;
                   5109: }
                   5110: 
                   5111: /*
                   5112: ** Generate the end of the WHERE loop.  See comments on 
                   5113: ** sqlite3WhereBegin() for additional information.
                   5114: */
                   5115: void sqlite3WhereEnd(WhereInfo *pWInfo){
                   5116:   Parse *pParse = pWInfo->pParse;
                   5117:   Vdbe *v = pParse->pVdbe;
                   5118:   int i;
                   5119:   WhereLevel *pLevel;
                   5120:   SrcList *pTabList = pWInfo->pTabList;
                   5121:   sqlite3 *db = pParse->db;
                   5122: 
                   5123:   /* Generate loop termination code.
                   5124:   */
                   5125:   sqlite3ExprCacheClear(pParse);
                   5126:   for(i=pWInfo->nLevel-1; i>=0; i--){
                   5127:     pLevel = &pWInfo->a[i];
                   5128:     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
                   5129:     if( pLevel->op!=OP_Noop ){
                   5130:       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
                   5131:       sqlite3VdbeChangeP5(v, pLevel->p5);
                   5132:     }
                   5133:     if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
                   5134:       struct InLoop *pIn;
                   5135:       int j;
                   5136:       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
                   5137:       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
                   5138:         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
                   5139:         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
                   5140:         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
                   5141:       }
                   5142:       sqlite3DbFree(db, pLevel->u.in.aInLoop);
                   5143:     }
                   5144:     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
                   5145:     if( pLevel->iLeftJoin ){
                   5146:       int addr;
                   5147:       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
                   5148:       assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
                   5149:            || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
                   5150:       if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
                   5151:         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
                   5152:       }
                   5153:       if( pLevel->iIdxCur>=0 ){
                   5154:         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
                   5155:       }
                   5156:       if( pLevel->op==OP_Return ){
                   5157:         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
                   5158:       }else{
                   5159:         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
                   5160:       }
                   5161:       sqlite3VdbeJumpHere(v, addr);
                   5162:     }
                   5163:   }
                   5164: 
                   5165:   /* The "break" point is here, just past the end of the outer loop.
                   5166:   ** Set it.
                   5167:   */
                   5168:   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
                   5169: 
                   5170:   /* Close all of the cursors that were opened by sqlite3WhereBegin.
                   5171:   */
                   5172:   assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
                   5173:   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
                   5174:     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
                   5175:     Table *pTab = pTabItem->pTab;
                   5176:     assert( pTab!=0 );
                   5177:     if( (pTab->tabFlags & TF_Ephemeral)==0
                   5178:      && pTab->pSelect==0
                   5179:      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
                   5180:     ){
                   5181:       int ws = pLevel->plan.wsFlags;
                   5182:       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
                   5183:         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
                   5184:       }
                   5185:       if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
                   5186:         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
                   5187:       }
                   5188:     }
                   5189: 
                   5190:     /* If this scan uses an index, make code substitutions to read data
                   5191:     ** from the index in preference to the table. Sometimes, this means
                   5192:     ** the table need never be read from. This is a performance boost,
                   5193:     ** as the vdbe level waits until the table is read before actually
                   5194:     ** seeking the table cursor to the record corresponding to the current
                   5195:     ** position in the index.
                   5196:     ** 
                   5197:     ** Calls to the code generator in between sqlite3WhereBegin and
                   5198:     ** sqlite3WhereEnd will have created code that references the table
                   5199:     ** directly.  This loop scans all that code looking for opcodes
                   5200:     ** that reference the table and converts them into opcodes that
                   5201:     ** reference the index.
                   5202:     */
                   5203:     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
                   5204:       int k, j, last;
                   5205:       VdbeOp *pOp;
                   5206:       Index *pIdx = pLevel->plan.u.pIdx;
                   5207: 
                   5208:       assert( pIdx!=0 );
                   5209:       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
                   5210:       last = sqlite3VdbeCurrentAddr(v);
                   5211:       for(k=pWInfo->iTop; k<last; k++, pOp++){
                   5212:         if( pOp->p1!=pLevel->iTabCur ) continue;
                   5213:         if( pOp->opcode==OP_Column ){
                   5214:           for(j=0; j<pIdx->nColumn; j++){
                   5215:             if( pOp->p2==pIdx->aiColumn[j] ){
                   5216:               pOp->p2 = j;
                   5217:               pOp->p1 = pLevel->iIdxCur;
                   5218:               break;
                   5219:             }
                   5220:           }
                   5221:           assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
                   5222:                || j<pIdx->nColumn );
                   5223:         }else if( pOp->opcode==OP_Rowid ){
                   5224:           pOp->p1 = pLevel->iIdxCur;
                   5225:           pOp->opcode = OP_IdxRowid;
                   5226:         }
                   5227:       }
                   5228:     }
                   5229:   }
                   5230: 
                   5231:   /* Final cleanup
                   5232:   */
                   5233:   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
                   5234:   whereInfoFree(db, pWInfo);
                   5235:   return;
                   5236: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>