File:  [ELWIX - Embedded LightWeight unIX -] / embedaddon / sqlite3 / src / where.c
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Feb 21 17:04:17 2012 UTC (12 years, 8 months ago) by misho
Branches: sqlite3, MAIN
CVS tags: v3_7_10, HEAD
sqlite3

    1: /*
    2: ** 2001 September 15
    3: **
    4: ** The author disclaims copyright to this source code.  In place of
    5: ** a legal notice, here is a blessing:
    6: **
    7: **    May you do good and not evil.
    8: **    May you find forgiveness for yourself and forgive others.
    9: **    May you share freely, never taking more than you give.
   10: **
   11: *************************************************************************
   12: ** This module contains C code that generates VDBE code used to process
   13: ** the WHERE clause of SQL statements.  This module is responsible for
   14: ** generating the code that loops through a table looking for applicable
   15: ** rows.  Indices are selected and used to speed the search when doing
   16: ** so is applicable.  Because this module is responsible for selecting
   17: ** indices, you might also think of this module as the "query optimizer".
   18: */
   19: #include "sqliteInt.h"
   20: 
   21: 
   22: /*
   23: ** Trace output macros
   24: */
   25: #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
   26: int sqlite3WhereTrace = 0;
   27: #endif
   28: #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
   29: # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
   30: #else
   31: # define WHERETRACE(X)
   32: #endif
   33: 
   34: /* Forward reference
   35: */
   36: typedef struct WhereClause WhereClause;
   37: typedef struct WhereMaskSet WhereMaskSet;
   38: typedef struct WhereOrInfo WhereOrInfo;
   39: typedef struct WhereAndInfo WhereAndInfo;
   40: typedef struct WhereCost WhereCost;
   41: 
   42: /*
   43: ** The query generator uses an array of instances of this structure to
   44: ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
   45: ** clause subexpression is separated from the others by AND operators,
   46: ** usually, or sometimes subexpressions separated by OR.
   47: **
   48: ** All WhereTerms are collected into a single WhereClause structure.  
   49: ** The following identity holds:
   50: **
   51: **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
   52: **
   53: ** When a term is of the form:
   54: **
   55: **              X <op> <expr>
   56: **
   57: ** where X is a column name and <op> is one of certain operators,
   58: ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
   59: ** cursor number and column number for X.  WhereTerm.eOperator records
   60: ** the <op> using a bitmask encoding defined by WO_xxx below.  The
   61: ** use of a bitmask encoding for the operator allows us to search
   62: ** quickly for terms that match any of several different operators.
   63: **
   64: ** A WhereTerm might also be two or more subterms connected by OR:
   65: **
   66: **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
   67: **
   68: ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
   69: ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
   70: ** is collected about the
   71: **
   72: ** If a term in the WHERE clause does not match either of the two previous
   73: ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
   74: ** to the original subexpression content and wtFlags is set up appropriately
   75: ** but no other fields in the WhereTerm object are meaningful.
   76: **
   77: ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
   78: ** but they do so indirectly.  A single WhereMaskSet structure translates
   79: ** cursor number into bits and the translated bit is stored in the prereq
   80: ** fields.  The translation is used in order to maximize the number of
   81: ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
   82: ** spread out over the non-negative integers.  For example, the cursor
   83: ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
   84: ** translates these sparse cursor numbers into consecutive integers
   85: ** beginning with 0 in order to make the best possible use of the available
   86: ** bits in the Bitmask.  So, in the example above, the cursor numbers
   87: ** would be mapped into integers 0 through 7.
   88: **
   89: ** The number of terms in a join is limited by the number of bits
   90: ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
   91: ** is only able to process joins with 64 or fewer tables.
   92: */
   93: typedef struct WhereTerm WhereTerm;
   94: struct WhereTerm {
   95:   Expr *pExpr;            /* Pointer to the subexpression that is this term */
   96:   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
   97:   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
   98:   union {
   99:     int leftColumn;         /* Column number of X in "X <op> <expr>" */
  100:     WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
  101:     WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
  102:   } u;
  103:   u16 eOperator;          /* A WO_xx value describing <op> */
  104:   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
  105:   u8 nChild;              /* Number of children that must disable us */
  106:   WhereClause *pWC;       /* The clause this term is part of */
  107:   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  108:   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
  109: };
  110: 
  111: /*
  112: ** Allowed values of WhereTerm.wtFlags
  113: */
  114: #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
  115: #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
  116: #define TERM_CODED      0x04   /* This term is already coded */
  117: #define TERM_COPIED     0x08   /* Has a child */
  118: #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
  119: #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
  120: #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
  121: #ifdef SQLITE_ENABLE_STAT3
  122: #  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
  123: #else
  124: #  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
  125: #endif
  126: 
  127: /*
  128: ** An instance of the following structure holds all information about a
  129: ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
  130: **
  131: ** Explanation of pOuter:  For a WHERE clause of the form
  132: **
  133: **           a AND ((b AND c) OR (d AND e)) AND f
  134: **
  135: ** There are separate WhereClause objects for the whole clause and for
  136: ** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
  137: ** subclauses points to the WhereClause object for the whole clause.
  138: */
  139: struct WhereClause {
  140:   Parse *pParse;           /* The parser context */
  141:   WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
  142:   Bitmask vmask;           /* Bitmask identifying virtual table cursors */
  143:   WhereClause *pOuter;     /* Outer conjunction */
  144:   u8 op;                   /* Split operator.  TK_AND or TK_OR */
  145:   u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  146:   int nTerm;               /* Number of terms */
  147:   int nSlot;               /* Number of entries in a[] */
  148:   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
  149: #if defined(SQLITE_SMALL_STACK)
  150:   WhereTerm aStatic[1];    /* Initial static space for a[] */
  151: #else
  152:   WhereTerm aStatic[8];    /* Initial static space for a[] */
  153: #endif
  154: };
  155: 
  156: /*
  157: ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
  158: ** a dynamically allocated instance of the following structure.
  159: */
  160: struct WhereOrInfo {
  161:   WhereClause wc;          /* Decomposition into subterms */
  162:   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
  163: };
  164: 
  165: /*
  166: ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
  167: ** a dynamically allocated instance of the following structure.
  168: */
  169: struct WhereAndInfo {
  170:   WhereClause wc;          /* The subexpression broken out */
  171: };
  172: 
  173: /*
  174: ** An instance of the following structure keeps track of a mapping
  175: ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
  176: **
  177: ** The VDBE cursor numbers are small integers contained in 
  178: ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
  179: ** clause, the cursor numbers might not begin with 0 and they might
  180: ** contain gaps in the numbering sequence.  But we want to make maximum
  181: ** use of the bits in our bitmasks.  This structure provides a mapping
  182: ** from the sparse cursor numbers into consecutive integers beginning
  183: ** with 0.
  184: **
  185: ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
  186: ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
  187: **
  188: ** For example, if the WHERE clause expression used these VDBE
  189: ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
  190: ** would map those cursor numbers into bits 0 through 5.
  191: **
  192: ** Note that the mapping is not necessarily ordered.  In the example
  193: ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
  194: ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
  195: ** does not really matter.  What is important is that sparse cursor
  196: ** numbers all get mapped into bit numbers that begin with 0 and contain
  197: ** no gaps.
  198: */
  199: struct WhereMaskSet {
  200:   int n;                        /* Number of assigned cursor values */
  201:   int ix[BMS];                  /* Cursor assigned to each bit */
  202: };
  203: 
  204: /*
  205: ** A WhereCost object records a lookup strategy and the estimated
  206: ** cost of pursuing that strategy.
  207: */
  208: struct WhereCost {
  209:   WherePlan plan;    /* The lookup strategy */
  210:   double rCost;      /* Overall cost of pursuing this search strategy */
  211:   Bitmask used;      /* Bitmask of cursors used by this plan */
  212: };
  213: 
  214: /*
  215: ** Bitmasks for the operators that indices are able to exploit.  An
  216: ** OR-ed combination of these values can be used when searching for
  217: ** terms in the where clause.
  218: */
  219: #define WO_IN     0x001
  220: #define WO_EQ     0x002
  221: #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
  222: #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
  223: #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
  224: #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
  225: #define WO_MATCH  0x040
  226: #define WO_ISNULL 0x080
  227: #define WO_OR     0x100       /* Two or more OR-connected terms */
  228: #define WO_AND    0x200       /* Two or more AND-connected terms */
  229: #define WO_NOOP   0x800       /* This term does not restrict search space */
  230: 
  231: #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
  232: #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
  233: 
  234: /*
  235: ** Value for wsFlags returned by bestIndex() and stored in
  236: ** WhereLevel.wsFlags.  These flags determine which search
  237: ** strategies are appropriate.
  238: **
  239: ** The least significant 12 bits is reserved as a mask for WO_ values above.
  240: ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
  241: ** But if the table is the right table of a left join, WhereLevel.wsFlags
  242: ** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
  243: ** the "op" parameter to findTerm when we are resolving equality constraints.
  244: ** ISNULL constraints will then not be used on the right table of a left
  245: ** join.  Tickets #2177 and #2189.
  246: */
  247: #define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
  248: #define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
  249: #define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
  250: #define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
  251: #define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
  252: #define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
  253: #define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
  254: #define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
  255: #define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
  256: #define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
  257: #define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
  258: #define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
  259: #define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
  260: #define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
  261: #define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
  262: #define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
  263: #define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
  264: #define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
  265: #define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
  266: #define WHERE_DISTINCT     0x40000000  /* Correct order for DISTINCT */
  267: 
  268: /*
  269: ** Initialize a preallocated WhereClause structure.
  270: */
  271: static void whereClauseInit(
  272:   WhereClause *pWC,        /* The WhereClause to be initialized */
  273:   Parse *pParse,           /* The parsing context */
  274:   WhereMaskSet *pMaskSet,  /* Mapping from table cursor numbers to bitmasks */
  275:   u16 wctrlFlags           /* Might include WHERE_AND_ONLY */
  276: ){
  277:   pWC->pParse = pParse;
  278:   pWC->pMaskSet = pMaskSet;
  279:   pWC->pOuter = 0;
  280:   pWC->nTerm = 0;
  281:   pWC->nSlot = ArraySize(pWC->aStatic);
  282:   pWC->a = pWC->aStatic;
  283:   pWC->vmask = 0;
  284:   pWC->wctrlFlags = wctrlFlags;
  285: }
  286: 
  287: /* Forward reference */
  288: static void whereClauseClear(WhereClause*);
  289: 
  290: /*
  291: ** Deallocate all memory associated with a WhereOrInfo object.
  292: */
  293: static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
  294:   whereClauseClear(&p->wc);
  295:   sqlite3DbFree(db, p);
  296: }
  297: 
  298: /*
  299: ** Deallocate all memory associated with a WhereAndInfo object.
  300: */
  301: static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
  302:   whereClauseClear(&p->wc);
  303:   sqlite3DbFree(db, p);
  304: }
  305: 
  306: /*
  307: ** Deallocate a WhereClause structure.  The WhereClause structure
  308: ** itself is not freed.  This routine is the inverse of whereClauseInit().
  309: */
  310: static void whereClauseClear(WhereClause *pWC){
  311:   int i;
  312:   WhereTerm *a;
  313:   sqlite3 *db = pWC->pParse->db;
  314:   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
  315:     if( a->wtFlags & TERM_DYNAMIC ){
  316:       sqlite3ExprDelete(db, a->pExpr);
  317:     }
  318:     if( a->wtFlags & TERM_ORINFO ){
  319:       whereOrInfoDelete(db, a->u.pOrInfo);
  320:     }else if( a->wtFlags & TERM_ANDINFO ){
  321:       whereAndInfoDelete(db, a->u.pAndInfo);
  322:     }
  323:   }
  324:   if( pWC->a!=pWC->aStatic ){
  325:     sqlite3DbFree(db, pWC->a);
  326:   }
  327: }
  328: 
  329: /*
  330: ** Add a single new WhereTerm entry to the WhereClause object pWC.
  331: ** The new WhereTerm object is constructed from Expr p and with wtFlags.
  332: ** The index in pWC->a[] of the new WhereTerm is returned on success.
  333: ** 0 is returned if the new WhereTerm could not be added due to a memory
  334: ** allocation error.  The memory allocation failure will be recorded in
  335: ** the db->mallocFailed flag so that higher-level functions can detect it.
  336: **
  337: ** This routine will increase the size of the pWC->a[] array as necessary.
  338: **
  339: ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
  340: ** for freeing the expression p is assumed by the WhereClause object pWC.
  341: ** This is true even if this routine fails to allocate a new WhereTerm.
  342: **
  343: ** WARNING:  This routine might reallocate the space used to store
  344: ** WhereTerms.  All pointers to WhereTerms should be invalidated after
  345: ** calling this routine.  Such pointers may be reinitialized by referencing
  346: ** the pWC->a[] array.
  347: */
  348: static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
  349:   WhereTerm *pTerm;
  350:   int idx;
  351:   testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
  352:   if( pWC->nTerm>=pWC->nSlot ){
  353:     WhereTerm *pOld = pWC->a;
  354:     sqlite3 *db = pWC->pParse->db;
  355:     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
  356:     if( pWC->a==0 ){
  357:       if( wtFlags & TERM_DYNAMIC ){
  358:         sqlite3ExprDelete(db, p);
  359:       }
  360:       pWC->a = pOld;
  361:       return 0;
  362:     }
  363:     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
  364:     if( pOld!=pWC->aStatic ){
  365:       sqlite3DbFree(db, pOld);
  366:     }
  367:     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
  368:   }
  369:   pTerm = &pWC->a[idx = pWC->nTerm++];
  370:   pTerm->pExpr = p;
  371:   pTerm->wtFlags = wtFlags;
  372:   pTerm->pWC = pWC;
  373:   pTerm->iParent = -1;
  374:   return idx;
  375: }
  376: 
  377: /*
  378: ** This routine identifies subexpressions in the WHERE clause where
  379: ** each subexpression is separated by the AND operator or some other
  380: ** operator specified in the op parameter.  The WhereClause structure
  381: ** is filled with pointers to subexpressions.  For example:
  382: **
  383: **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
  384: **           \________/     \_______________/     \________________/
  385: **            slot[0]            slot[1]               slot[2]
  386: **
  387: ** The original WHERE clause in pExpr is unaltered.  All this routine
  388: ** does is make slot[] entries point to substructure within pExpr.
  389: **
  390: ** In the previous sentence and in the diagram, "slot[]" refers to
  391: ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
  392: ** all terms of the WHERE clause.
  393: */
  394: static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
  395:   pWC->op = (u8)op;
  396:   if( pExpr==0 ) return;
  397:   if( pExpr->op!=op ){
  398:     whereClauseInsert(pWC, pExpr, 0);
  399:   }else{
  400:     whereSplit(pWC, pExpr->pLeft, op);
  401:     whereSplit(pWC, pExpr->pRight, op);
  402:   }
  403: }
  404: 
  405: /*
  406: ** Initialize an expression mask set (a WhereMaskSet object)
  407: */
  408: #define initMaskSet(P)  memset(P, 0, sizeof(*P))
  409: 
  410: /*
  411: ** Return the bitmask for the given cursor number.  Return 0 if
  412: ** iCursor is not in the set.
  413: */
  414: static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
  415:   int i;
  416:   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
  417:   for(i=0; i<pMaskSet->n; i++){
  418:     if( pMaskSet->ix[i]==iCursor ){
  419:       return ((Bitmask)1)<<i;
  420:     }
  421:   }
  422:   return 0;
  423: }
  424: 
  425: /*
  426: ** Create a new mask for cursor iCursor.
  427: **
  428: ** There is one cursor per table in the FROM clause.  The number of
  429: ** tables in the FROM clause is limited by a test early in the
  430: ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
  431: ** array will never overflow.
  432: */
  433: static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  434:   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  435:   pMaskSet->ix[pMaskSet->n++] = iCursor;
  436: }
  437: 
  438: /*
  439: ** This routine walks (recursively) an expression tree and generates
  440: ** a bitmask indicating which tables are used in that expression
  441: ** tree.
  442: **
  443: ** In order for this routine to work, the calling function must have
  444: ** previously invoked sqlite3ResolveExprNames() on the expression.  See
  445: ** the header comment on that routine for additional information.
  446: ** The sqlite3ResolveExprNames() routines looks for column names and
  447: ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
  448: ** the VDBE cursor number of the table.  This routine just has to
  449: ** translate the cursor numbers into bitmask values and OR all
  450: ** the bitmasks together.
  451: */
  452: static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
  453: static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
  454: static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  455:   Bitmask mask = 0;
  456:   if( p==0 ) return 0;
  457:   if( p->op==TK_COLUMN ){
  458:     mask = getMask(pMaskSet, p->iTable);
  459:     return mask;
  460:   }
  461:   mask = exprTableUsage(pMaskSet, p->pRight);
  462:   mask |= exprTableUsage(pMaskSet, p->pLeft);
  463:   if( ExprHasProperty(p, EP_xIsSelect) ){
  464:     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
  465:   }else{
  466:     mask |= exprListTableUsage(pMaskSet, p->x.pList);
  467:   }
  468:   return mask;
  469: }
  470: static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
  471:   int i;
  472:   Bitmask mask = 0;
  473:   if( pList ){
  474:     for(i=0; i<pList->nExpr; i++){
  475:       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
  476:     }
  477:   }
  478:   return mask;
  479: }
  480: static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
  481:   Bitmask mask = 0;
  482:   while( pS ){
  483:     SrcList *pSrc = pS->pSrc;
  484:     mask |= exprListTableUsage(pMaskSet, pS->pEList);
  485:     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
  486:     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
  487:     mask |= exprTableUsage(pMaskSet, pS->pWhere);
  488:     mask |= exprTableUsage(pMaskSet, pS->pHaving);
  489:     if( ALWAYS(pSrc!=0) ){
  490:       int i;
  491:       for(i=0; i<pSrc->nSrc; i++){
  492:         mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
  493:         mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
  494:       }
  495:     }
  496:     pS = pS->pPrior;
  497:   }
  498:   return mask;
  499: }
  500: 
  501: /*
  502: ** Return TRUE if the given operator is one of the operators that is
  503: ** allowed for an indexable WHERE clause term.  The allowed operators are
  504: ** "=", "<", ">", "<=", ">=", and "IN".
  505: **
  506: ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
  507: ** of one of the following forms: column = expression column > expression
  508: ** column >= expression column < expression column <= expression
  509: ** expression = column expression > column expression >= column
  510: ** expression < column expression <= column column IN
  511: ** (expression-list) column IN (subquery) column IS NULL
  512: */
  513: static int allowedOp(int op){
  514:   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  515:   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  516:   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  517:   assert( TK_GE==TK_EQ+4 );
  518:   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
  519: }
  520: 
  521: /*
  522: ** Swap two objects of type TYPE.
  523: */
  524: #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
  525: 
  526: /*
  527: ** Commute a comparison operator.  Expressions of the form "X op Y"
  528: ** are converted into "Y op X".
  529: **
  530: ** If a collation sequence is associated with either the left or right
  531: ** side of the comparison, it remains associated with the same side after
  532: ** the commutation. So "Y collate NOCASE op X" becomes 
  533: ** "X collate NOCASE op Y". This is because any collation sequence on
  534: ** the left hand side of a comparison overrides any collation sequence 
  535: ** attached to the right. For the same reason the EP_ExpCollate flag
  536: ** is not commuted.
  537: */
  538: static void exprCommute(Parse *pParse, Expr *pExpr){
  539:   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
  540:   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
  541:   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
  542:   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
  543:   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
  544:   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
  545:   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
  546:   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
  547:   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
  548:   if( pExpr->op>=TK_GT ){
  549:     assert( TK_LT==TK_GT+2 );
  550:     assert( TK_GE==TK_LE+2 );
  551:     assert( TK_GT>TK_EQ );
  552:     assert( TK_GT<TK_LE );
  553:     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
  554:     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
  555:   }
  556: }
  557: 
  558: /*
  559: ** Translate from TK_xx operator to WO_xx bitmask.
  560: */
  561: static u16 operatorMask(int op){
  562:   u16 c;
  563:   assert( allowedOp(op) );
  564:   if( op==TK_IN ){
  565:     c = WO_IN;
  566:   }else if( op==TK_ISNULL ){
  567:     c = WO_ISNULL;
  568:   }else{
  569:     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
  570:     c = (u16)(WO_EQ<<(op-TK_EQ));
  571:   }
  572:   assert( op!=TK_ISNULL || c==WO_ISNULL );
  573:   assert( op!=TK_IN || c==WO_IN );
  574:   assert( op!=TK_EQ || c==WO_EQ );
  575:   assert( op!=TK_LT || c==WO_LT );
  576:   assert( op!=TK_LE || c==WO_LE );
  577:   assert( op!=TK_GT || c==WO_GT );
  578:   assert( op!=TK_GE || c==WO_GE );
  579:   return c;
  580: }
  581: 
  582: /*
  583: ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
  584: ** where X is a reference to the iColumn of table iCur and <op> is one of
  585: ** the WO_xx operator codes specified by the op parameter.
  586: ** Return a pointer to the term.  Return 0 if not found.
  587: */
  588: static WhereTerm *findTerm(
  589:   WhereClause *pWC,     /* The WHERE clause to be searched */
  590:   int iCur,             /* Cursor number of LHS */
  591:   int iColumn,          /* Column number of LHS */
  592:   Bitmask notReady,     /* RHS must not overlap with this mask */
  593:   u32 op,               /* Mask of WO_xx values describing operator */
  594:   Index *pIdx           /* Must be compatible with this index, if not NULL */
  595: ){
  596:   WhereTerm *pTerm;
  597:   int k;
  598:   assert( iCur>=0 );
  599:   op &= WO_ALL;
  600:   for(; pWC; pWC=pWC->pOuter){
  601:     for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
  602:       if( pTerm->leftCursor==iCur
  603:          && (pTerm->prereqRight & notReady)==0
  604:          && pTerm->u.leftColumn==iColumn
  605:          && (pTerm->eOperator & op)!=0
  606:       ){
  607:         if( iColumn>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
  608:           Expr *pX = pTerm->pExpr;
  609:           CollSeq *pColl;
  610:           char idxaff;
  611:           int j;
  612:           Parse *pParse = pWC->pParse;
  613:   
  614:           idxaff = pIdx->pTable->aCol[iColumn].affinity;
  615:           if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
  616:   
  617:           /* Figure out the collation sequence required from an index for
  618:           ** it to be useful for optimising expression pX. Store this
  619:           ** value in variable pColl.
  620:           */
  621:           assert(pX->pLeft);
  622:           pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
  623:           assert(pColl || pParse->nErr);
  624:   
  625:           for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
  626:             if( NEVER(j>=pIdx->nColumn) ) return 0;
  627:           }
  628:           if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
  629:         }
  630:         return pTerm;
  631:       }
  632:     }
  633:   }
  634:   return 0;
  635: }
  636: 
  637: /* Forward reference */
  638: static void exprAnalyze(SrcList*, WhereClause*, int);
  639: 
  640: /*
  641: ** Call exprAnalyze on all terms in a WHERE clause.  
  642: **
  643: **
  644: */
  645: static void exprAnalyzeAll(
  646:   SrcList *pTabList,       /* the FROM clause */
  647:   WhereClause *pWC         /* the WHERE clause to be analyzed */
  648: ){
  649:   int i;
  650:   for(i=pWC->nTerm-1; i>=0; i--){
  651:     exprAnalyze(pTabList, pWC, i);
  652:   }
  653: }
  654: 
  655: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
  656: /*
  657: ** Check to see if the given expression is a LIKE or GLOB operator that
  658: ** can be optimized using inequality constraints.  Return TRUE if it is
  659: ** so and false if not.
  660: **
  661: ** In order for the operator to be optimizible, the RHS must be a string
  662: ** literal that does not begin with a wildcard.  
  663: */
  664: static int isLikeOrGlob(
  665:   Parse *pParse,    /* Parsing and code generating context */
  666:   Expr *pExpr,      /* Test this expression */
  667:   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
  668:   int *pisComplete, /* True if the only wildcard is % in the last character */
  669:   int *pnoCase      /* True if uppercase is equivalent to lowercase */
  670: ){
  671:   const char *z = 0;         /* String on RHS of LIKE operator */
  672:   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
  673:   ExprList *pList;           /* List of operands to the LIKE operator */
  674:   int c;                     /* One character in z[] */
  675:   int cnt;                   /* Number of non-wildcard prefix characters */
  676:   char wc[3];                /* Wildcard characters */
  677:   sqlite3 *db = pParse->db;  /* Database connection */
  678:   sqlite3_value *pVal = 0;
  679:   int op;                    /* Opcode of pRight */
  680: 
  681:   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
  682:     return 0;
  683:   }
  684: #ifdef SQLITE_EBCDIC
  685:   if( *pnoCase ) return 0;
  686: #endif
  687:   pList = pExpr->x.pList;
  688:   pLeft = pList->a[1].pExpr;
  689:   if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
  690:     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
  691:     ** be the name of an indexed column with TEXT affinity. */
  692:     return 0;
  693:   }
  694:   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
  695: 
  696:   pRight = pList->a[0].pExpr;
  697:   op = pRight->op;
  698:   if( op==TK_REGISTER ){
  699:     op = pRight->op2;
  700:   }
  701:   if( op==TK_VARIABLE ){
  702:     Vdbe *pReprepare = pParse->pReprepare;
  703:     int iCol = pRight->iColumn;
  704:     pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
  705:     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
  706:       z = (char *)sqlite3_value_text(pVal);
  707:     }
  708:     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
  709:     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
  710:   }else if( op==TK_STRING ){
  711:     z = pRight->u.zToken;
  712:   }
  713:   if( z ){
  714:     cnt = 0;
  715:     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
  716:       cnt++;
  717:     }
  718:     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
  719:       Expr *pPrefix;
  720:       *pisComplete = c==wc[0] && z[cnt+1]==0;
  721:       pPrefix = sqlite3Expr(db, TK_STRING, z);
  722:       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
  723:       *ppPrefix = pPrefix;
  724:       if( op==TK_VARIABLE ){
  725:         Vdbe *v = pParse->pVdbe;
  726:         sqlite3VdbeSetVarmask(v, pRight->iColumn);
  727:         if( *pisComplete && pRight->u.zToken[1] ){
  728:           /* If the rhs of the LIKE expression is a variable, and the current
  729:           ** value of the variable means there is no need to invoke the LIKE
  730:           ** function, then no OP_Variable will be added to the program.
  731:           ** This causes problems for the sqlite3_bind_parameter_name()
  732:           ** API. To workaround them, add a dummy OP_Variable here.
  733:           */ 
  734:           int r1 = sqlite3GetTempReg(pParse);
  735:           sqlite3ExprCodeTarget(pParse, pRight, r1);
  736:           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
  737:           sqlite3ReleaseTempReg(pParse, r1);
  738:         }
  739:       }
  740:     }else{
  741:       z = 0;
  742:     }
  743:   }
  744: 
  745:   sqlite3ValueFree(pVal);
  746:   return (z!=0);
  747: }
  748: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
  749: 
  750: 
  751: #ifndef SQLITE_OMIT_VIRTUALTABLE
  752: /*
  753: ** Check to see if the given expression is of the form
  754: **
  755: **         column MATCH expr
  756: **
  757: ** If it is then return TRUE.  If not, return FALSE.
  758: */
  759: static int isMatchOfColumn(
  760:   Expr *pExpr      /* Test this expression */
  761: ){
  762:   ExprList *pList;
  763: 
  764:   if( pExpr->op!=TK_FUNCTION ){
  765:     return 0;
  766:   }
  767:   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
  768:     return 0;
  769:   }
  770:   pList = pExpr->x.pList;
  771:   if( pList->nExpr!=2 ){
  772:     return 0;
  773:   }
  774:   if( pList->a[1].pExpr->op != TK_COLUMN ){
  775:     return 0;
  776:   }
  777:   return 1;
  778: }
  779: #endif /* SQLITE_OMIT_VIRTUALTABLE */
  780: 
  781: /*
  782: ** If the pBase expression originated in the ON or USING clause of
  783: ** a join, then transfer the appropriate markings over to derived.
  784: */
  785: static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
  786:   pDerived->flags |= pBase->flags & EP_FromJoin;
  787:   pDerived->iRightJoinTable = pBase->iRightJoinTable;
  788: }
  789: 
  790: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
  791: /*
  792: ** Analyze a term that consists of two or more OR-connected
  793: ** subterms.  So in:
  794: **
  795: **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
  796: **                          ^^^^^^^^^^^^^^^^^^^^
  797: **
  798: ** This routine analyzes terms such as the middle term in the above example.
  799: ** A WhereOrTerm object is computed and attached to the term under
  800: ** analysis, regardless of the outcome of the analysis.  Hence:
  801: **
  802: **     WhereTerm.wtFlags   |=  TERM_ORINFO
  803: **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
  804: **
  805: ** The term being analyzed must have two or more of OR-connected subterms.
  806: ** A single subterm might be a set of AND-connected sub-subterms.
  807: ** Examples of terms under analysis:
  808: **
  809: **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
  810: **     (B)     x=expr1 OR expr2=x OR x=expr3
  811: **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
  812: **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
  813: **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
  814: **
  815: ** CASE 1:
  816: **
  817: ** If all subterms are of the form T.C=expr for some single column of C
  818: ** a single table T (as shown in example B above) then create a new virtual
  819: ** term that is an equivalent IN expression.  In other words, if the term
  820: ** being analyzed is:
  821: **
  822: **      x = expr1  OR  expr2 = x  OR  x = expr3
  823: **
  824: ** then create a new virtual term like this:
  825: **
  826: **      x IN (expr1,expr2,expr3)
  827: **
  828: ** CASE 2:
  829: **
  830: ** If all subterms are indexable by a single table T, then set
  831: **
  832: **     WhereTerm.eOperator              =  WO_OR
  833: **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
  834: **
  835: ** A subterm is "indexable" if it is of the form
  836: ** "T.C <op> <expr>" where C is any column of table T and 
  837: ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
  838: ** A subterm is also indexable if it is an AND of two or more
  839: ** subsubterms at least one of which is indexable.  Indexable AND 
  840: ** subterms have their eOperator set to WO_AND and they have
  841: ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
  842: **
  843: ** From another point of view, "indexable" means that the subterm could
  844: ** potentially be used with an index if an appropriate index exists.
  845: ** This analysis does not consider whether or not the index exists; that
  846: ** is something the bestIndex() routine will determine.  This analysis
  847: ** only looks at whether subterms appropriate for indexing exist.
  848: **
  849: ** All examples A through E above all satisfy case 2.  But if a term
  850: ** also statisfies case 1 (such as B) we know that the optimizer will
  851: ** always prefer case 1, so in that case we pretend that case 2 is not
  852: ** satisfied.
  853: **
  854: ** It might be the case that multiple tables are indexable.  For example,
  855: ** (E) above is indexable on tables P, Q, and R.
  856: **
  857: ** Terms that satisfy case 2 are candidates for lookup by using
  858: ** separate indices to find rowids for each subterm and composing
  859: ** the union of all rowids using a RowSet object.  This is similar
  860: ** to "bitmap indices" in other database engines.
  861: **
  862: ** OTHERWISE:
  863: **
  864: ** If neither case 1 nor case 2 apply, then leave the eOperator set to
  865: ** zero.  This term is not useful for search.
  866: */
  867: static void exprAnalyzeOrTerm(
  868:   SrcList *pSrc,            /* the FROM clause */
  869:   WhereClause *pWC,         /* the complete WHERE clause */
  870:   int idxTerm               /* Index of the OR-term to be analyzed */
  871: ){
  872:   Parse *pParse = pWC->pParse;            /* Parser context */
  873:   sqlite3 *db = pParse->db;               /* Database connection */
  874:   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
  875:   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
  876:   WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
  877:   int i;                                  /* Loop counters */
  878:   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
  879:   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
  880:   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
  881:   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
  882:   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
  883: 
  884:   /*
  885:   ** Break the OR clause into its separate subterms.  The subterms are
  886:   ** stored in a WhereClause structure containing within the WhereOrInfo
  887:   ** object that is attached to the original OR clause term.
  888:   */
  889:   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
  890:   assert( pExpr->op==TK_OR );
  891:   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
  892:   if( pOrInfo==0 ) return;
  893:   pTerm->wtFlags |= TERM_ORINFO;
  894:   pOrWc = &pOrInfo->wc;
  895:   whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags);
  896:   whereSplit(pOrWc, pExpr, TK_OR);
  897:   exprAnalyzeAll(pSrc, pOrWc);
  898:   if( db->mallocFailed ) return;
  899:   assert( pOrWc->nTerm>=2 );
  900: 
  901:   /*
  902:   ** Compute the set of tables that might satisfy cases 1 or 2.
  903:   */
  904:   indexable = ~(Bitmask)0;
  905:   chngToIN = ~(pWC->vmask);
  906:   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
  907:     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
  908:       WhereAndInfo *pAndInfo;
  909:       assert( pOrTerm->eOperator==0 );
  910:       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
  911:       chngToIN = 0;
  912:       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
  913:       if( pAndInfo ){
  914:         WhereClause *pAndWC;
  915:         WhereTerm *pAndTerm;
  916:         int j;
  917:         Bitmask b = 0;
  918:         pOrTerm->u.pAndInfo = pAndInfo;
  919:         pOrTerm->wtFlags |= TERM_ANDINFO;
  920:         pOrTerm->eOperator = WO_AND;
  921:         pAndWC = &pAndInfo->wc;
  922:         whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags);
  923:         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
  924:         exprAnalyzeAll(pSrc, pAndWC);
  925:         pAndWC->pOuter = pWC;
  926:         testcase( db->mallocFailed );
  927:         if( !db->mallocFailed ){
  928:           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
  929:             assert( pAndTerm->pExpr );
  930:             if( allowedOp(pAndTerm->pExpr->op) ){
  931:               b |= getMask(pMaskSet, pAndTerm->leftCursor);
  932:             }
  933:           }
  934:         }
  935:         indexable &= b;
  936:       }
  937:     }else if( pOrTerm->wtFlags & TERM_COPIED ){
  938:       /* Skip this term for now.  We revisit it when we process the
  939:       ** corresponding TERM_VIRTUAL term */
  940:     }else{
  941:       Bitmask b;
  942:       b = getMask(pMaskSet, pOrTerm->leftCursor);
  943:       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
  944:         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
  945:         b |= getMask(pMaskSet, pOther->leftCursor);
  946:       }
  947:       indexable &= b;
  948:       if( pOrTerm->eOperator!=WO_EQ ){
  949:         chngToIN = 0;
  950:       }else{
  951:         chngToIN &= b;
  952:       }
  953:     }
  954:   }
  955: 
  956:   /*
  957:   ** Record the set of tables that satisfy case 2.  The set might be
  958:   ** empty.
  959:   */
  960:   pOrInfo->indexable = indexable;
  961:   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
  962: 
  963:   /*
  964:   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
  965:   ** we have to do some additional checking to see if case 1 really
  966:   ** is satisfied.
  967:   **
  968:   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
  969:   ** that there is no possibility of transforming the OR clause into an
  970:   ** IN operator because one or more terms in the OR clause contain
  971:   ** something other than == on a column in the single table.  The 1-bit
  972:   ** case means that every term of the OR clause is of the form
  973:   ** "table.column=expr" for some single table.  The one bit that is set
  974:   ** will correspond to the common table.  We still need to check to make
  975:   ** sure the same column is used on all terms.  The 2-bit case is when
  976:   ** the all terms are of the form "table1.column=table2.column".  It
  977:   ** might be possible to form an IN operator with either table1.column
  978:   ** or table2.column as the LHS if either is common to every term of
  979:   ** the OR clause.
  980:   **
  981:   ** Note that terms of the form "table.column1=table.column2" (the
  982:   ** same table on both sizes of the ==) cannot be optimized.
  983:   */
  984:   if( chngToIN ){
  985:     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
  986:     int iColumn = -1;         /* Column index on lhs of IN operator */
  987:     int iCursor = -1;         /* Table cursor common to all terms */
  988:     int j = 0;                /* Loop counter */
  989: 
  990:     /* Search for a table and column that appears on one side or the
  991:     ** other of the == operator in every subterm.  That table and column
  992:     ** will be recorded in iCursor and iColumn.  There might not be any
  993:     ** such table and column.  Set okToChngToIN if an appropriate table
  994:     ** and column is found but leave okToChngToIN false if not found.
  995:     */
  996:     for(j=0; j<2 && !okToChngToIN; j++){
  997:       pOrTerm = pOrWc->a;
  998:       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
  999:         assert( pOrTerm->eOperator==WO_EQ );
 1000:         pOrTerm->wtFlags &= ~TERM_OR_OK;
 1001:         if( pOrTerm->leftCursor==iCursor ){
 1002:           /* This is the 2-bit case and we are on the second iteration and
 1003:           ** current term is from the first iteration.  So skip this term. */
 1004:           assert( j==1 );
 1005:           continue;
 1006:         }
 1007:         if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
 1008:           /* This term must be of the form t1.a==t2.b where t2 is in the
 1009:           ** chngToIN set but t1 is not.  This term will be either preceeded
 1010:           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
 1011:           ** and use its inversion. */
 1012:           testcase( pOrTerm->wtFlags & TERM_COPIED );
 1013:           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
 1014:           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
 1015:           continue;
 1016:         }
 1017:         iColumn = pOrTerm->u.leftColumn;
 1018:         iCursor = pOrTerm->leftCursor;
 1019:         break;
 1020:       }
 1021:       if( i<0 ){
 1022:         /* No candidate table+column was found.  This can only occur
 1023:         ** on the second iteration */
 1024:         assert( j==1 );
 1025:         assert( (chngToIN&(chngToIN-1))==0 );
 1026:         assert( chngToIN==getMask(pMaskSet, iCursor) );
 1027:         break;
 1028:       }
 1029:       testcase( j==1 );
 1030: 
 1031:       /* We have found a candidate table and column.  Check to see if that
 1032:       ** table and column is common to every term in the OR clause */
 1033:       okToChngToIN = 1;
 1034:       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
 1035:         assert( pOrTerm->eOperator==WO_EQ );
 1036:         if( pOrTerm->leftCursor!=iCursor ){
 1037:           pOrTerm->wtFlags &= ~TERM_OR_OK;
 1038:         }else if( pOrTerm->u.leftColumn!=iColumn ){
 1039:           okToChngToIN = 0;
 1040:         }else{
 1041:           int affLeft, affRight;
 1042:           /* If the right-hand side is also a column, then the affinities
 1043:           ** of both right and left sides must be such that no type
 1044:           ** conversions are required on the right.  (Ticket #2249)
 1045:           */
 1046:           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
 1047:           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
 1048:           if( affRight!=0 && affRight!=affLeft ){
 1049:             okToChngToIN = 0;
 1050:           }else{
 1051:             pOrTerm->wtFlags |= TERM_OR_OK;
 1052:           }
 1053:         }
 1054:       }
 1055:     }
 1056: 
 1057:     /* At this point, okToChngToIN is true if original pTerm satisfies
 1058:     ** case 1.  In that case, construct a new virtual term that is 
 1059:     ** pTerm converted into an IN operator.
 1060:     **
 1061:     ** EV: R-00211-15100
 1062:     */
 1063:     if( okToChngToIN ){
 1064:       Expr *pDup;            /* A transient duplicate expression */
 1065:       ExprList *pList = 0;   /* The RHS of the IN operator */
 1066:       Expr *pLeft = 0;       /* The LHS of the IN operator */
 1067:       Expr *pNew;            /* The complete IN operator */
 1068: 
 1069:       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
 1070:         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
 1071:         assert( pOrTerm->eOperator==WO_EQ );
 1072:         assert( pOrTerm->leftCursor==iCursor );
 1073:         assert( pOrTerm->u.leftColumn==iColumn );
 1074:         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
 1075:         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
 1076:         pLeft = pOrTerm->pExpr->pLeft;
 1077:       }
 1078:       assert( pLeft!=0 );
 1079:       pDup = sqlite3ExprDup(db, pLeft, 0);
 1080:       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
 1081:       if( pNew ){
 1082:         int idxNew;
 1083:         transferJoinMarkings(pNew, pExpr);
 1084:         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
 1085:         pNew->x.pList = pList;
 1086:         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
 1087:         testcase( idxNew==0 );
 1088:         exprAnalyze(pSrc, pWC, idxNew);
 1089:         pTerm = &pWC->a[idxTerm];
 1090:         pWC->a[idxNew].iParent = idxTerm;
 1091:         pTerm->nChild = 1;
 1092:       }else{
 1093:         sqlite3ExprListDelete(db, pList);
 1094:       }
 1095:       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
 1096:     }
 1097:   }
 1098: }
 1099: #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
 1100: 
 1101: 
 1102: /*
 1103: ** The input to this routine is an WhereTerm structure with only the
 1104: ** "pExpr" field filled in.  The job of this routine is to analyze the
 1105: ** subexpression and populate all the other fields of the WhereTerm
 1106: ** structure.
 1107: **
 1108: ** If the expression is of the form "<expr> <op> X" it gets commuted
 1109: ** to the standard form of "X <op> <expr>".
 1110: **
 1111: ** If the expression is of the form "X <op> Y" where both X and Y are
 1112: ** columns, then the original expression is unchanged and a new virtual
 1113: ** term of the form "Y <op> X" is added to the WHERE clause and
 1114: ** analyzed separately.  The original term is marked with TERM_COPIED
 1115: ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
 1116: ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
 1117: ** is a commuted copy of a prior term.)  The original term has nChild=1
 1118: ** and the copy has idxParent set to the index of the original term.
 1119: */
 1120: static void exprAnalyze(
 1121:   SrcList *pSrc,            /* the FROM clause */
 1122:   WhereClause *pWC,         /* the WHERE clause */
 1123:   int idxTerm               /* Index of the term to be analyzed */
 1124: ){
 1125:   WhereTerm *pTerm;                /* The term to be analyzed */
 1126:   WhereMaskSet *pMaskSet;          /* Set of table index masks */
 1127:   Expr *pExpr;                     /* The expression to be analyzed */
 1128:   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
 1129:   Bitmask prereqAll;               /* Prerequesites of pExpr */
 1130:   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
 1131:   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
 1132:   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
 1133:   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
 1134:   int op;                          /* Top-level operator.  pExpr->op */
 1135:   Parse *pParse = pWC->pParse;     /* Parsing context */
 1136:   sqlite3 *db = pParse->db;        /* Database connection */
 1137: 
 1138:   if( db->mallocFailed ){
 1139:     return;
 1140:   }
 1141:   pTerm = &pWC->a[idxTerm];
 1142:   pMaskSet = pWC->pMaskSet;
 1143:   pExpr = pTerm->pExpr;
 1144:   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
 1145:   op = pExpr->op;
 1146:   if( op==TK_IN ){
 1147:     assert( pExpr->pRight==0 );
 1148:     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
 1149:       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
 1150:     }else{
 1151:       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
 1152:     }
 1153:   }else if( op==TK_ISNULL ){
 1154:     pTerm->prereqRight = 0;
 1155:   }else{
 1156:     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
 1157:   }
 1158:   prereqAll = exprTableUsage(pMaskSet, pExpr);
 1159:   if( ExprHasProperty(pExpr, EP_FromJoin) ){
 1160:     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
 1161:     prereqAll |= x;
 1162:     extraRight = x-1;  /* ON clause terms may not be used with an index
 1163:                        ** on left table of a LEFT JOIN.  Ticket #3015 */
 1164:   }
 1165:   pTerm->prereqAll = prereqAll;
 1166:   pTerm->leftCursor = -1;
 1167:   pTerm->iParent = -1;
 1168:   pTerm->eOperator = 0;
 1169:   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
 1170:     Expr *pLeft = pExpr->pLeft;
 1171:     Expr *pRight = pExpr->pRight;
 1172:     if( pLeft->op==TK_COLUMN ){
 1173:       pTerm->leftCursor = pLeft->iTable;
 1174:       pTerm->u.leftColumn = pLeft->iColumn;
 1175:       pTerm->eOperator = operatorMask(op);
 1176:     }
 1177:     if( pRight && pRight->op==TK_COLUMN ){
 1178:       WhereTerm *pNew;
 1179:       Expr *pDup;
 1180:       if( pTerm->leftCursor>=0 ){
 1181:         int idxNew;
 1182:         pDup = sqlite3ExprDup(db, pExpr, 0);
 1183:         if( db->mallocFailed ){
 1184:           sqlite3ExprDelete(db, pDup);
 1185:           return;
 1186:         }
 1187:         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
 1188:         if( idxNew==0 ) return;
 1189:         pNew = &pWC->a[idxNew];
 1190:         pNew->iParent = idxTerm;
 1191:         pTerm = &pWC->a[idxTerm];
 1192:         pTerm->nChild = 1;
 1193:         pTerm->wtFlags |= TERM_COPIED;
 1194:       }else{
 1195:         pDup = pExpr;
 1196:         pNew = pTerm;
 1197:       }
 1198:       exprCommute(pParse, pDup);
 1199:       pLeft = pDup->pLeft;
 1200:       pNew->leftCursor = pLeft->iTable;
 1201:       pNew->u.leftColumn = pLeft->iColumn;
 1202:       testcase( (prereqLeft | extraRight) != prereqLeft );
 1203:       pNew->prereqRight = prereqLeft | extraRight;
 1204:       pNew->prereqAll = prereqAll;
 1205:       pNew->eOperator = operatorMask(pDup->op);
 1206:     }
 1207:   }
 1208: 
 1209: #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
 1210:   /* If a term is the BETWEEN operator, create two new virtual terms
 1211:   ** that define the range that the BETWEEN implements.  For example:
 1212:   **
 1213:   **      a BETWEEN b AND c
 1214:   **
 1215:   ** is converted into:
 1216:   **
 1217:   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
 1218:   **
 1219:   ** The two new terms are added onto the end of the WhereClause object.
 1220:   ** The new terms are "dynamic" and are children of the original BETWEEN
 1221:   ** term.  That means that if the BETWEEN term is coded, the children are
 1222:   ** skipped.  Or, if the children are satisfied by an index, the original
 1223:   ** BETWEEN term is skipped.
 1224:   */
 1225:   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
 1226:     ExprList *pList = pExpr->x.pList;
 1227:     int i;
 1228:     static const u8 ops[] = {TK_GE, TK_LE};
 1229:     assert( pList!=0 );
 1230:     assert( pList->nExpr==2 );
 1231:     for(i=0; i<2; i++){
 1232:       Expr *pNewExpr;
 1233:       int idxNew;
 1234:       pNewExpr = sqlite3PExpr(pParse, ops[i], 
 1235:                              sqlite3ExprDup(db, pExpr->pLeft, 0),
 1236:                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
 1237:       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 1238:       testcase( idxNew==0 );
 1239:       exprAnalyze(pSrc, pWC, idxNew);
 1240:       pTerm = &pWC->a[idxTerm];
 1241:       pWC->a[idxNew].iParent = idxTerm;
 1242:     }
 1243:     pTerm->nChild = 2;
 1244:   }
 1245: #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
 1246: 
 1247: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 1248:   /* Analyze a term that is composed of two or more subterms connected by
 1249:   ** an OR operator.
 1250:   */
 1251:   else if( pExpr->op==TK_OR ){
 1252:     assert( pWC->op==TK_AND );
 1253:     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
 1254:     pTerm = &pWC->a[idxTerm];
 1255:   }
 1256: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 1257: 
 1258: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 1259:   /* Add constraints to reduce the search space on a LIKE or GLOB
 1260:   ** operator.
 1261:   **
 1262:   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
 1263:   **
 1264:   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
 1265:   **
 1266:   ** The last character of the prefix "abc" is incremented to form the
 1267:   ** termination condition "abd".
 1268:   */
 1269:   if( pWC->op==TK_AND 
 1270:    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
 1271:   ){
 1272:     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
 1273:     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
 1274:     Expr *pNewExpr1;
 1275:     Expr *pNewExpr2;
 1276:     int idxNew1;
 1277:     int idxNew2;
 1278:     CollSeq *pColl;    /* Collating sequence to use */
 1279: 
 1280:     pLeft = pExpr->x.pList->a[1].pExpr;
 1281:     pStr2 = sqlite3ExprDup(db, pStr1, 0);
 1282:     if( !db->mallocFailed ){
 1283:       u8 c, *pC;       /* Last character before the first wildcard */
 1284:       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
 1285:       c = *pC;
 1286:       if( noCase ){
 1287:         /* The point is to increment the last character before the first
 1288:         ** wildcard.  But if we increment '@', that will push it into the
 1289:         ** alphabetic range where case conversions will mess up the 
 1290:         ** inequality.  To avoid this, make sure to also run the full
 1291:         ** LIKE on all candidate expressions by clearing the isComplete flag
 1292:         */
 1293:         if( c=='A'-1 ) isComplete = 0;   /* EV: R-64339-08207 */
 1294: 
 1295: 
 1296:         c = sqlite3UpperToLower[c];
 1297:       }
 1298:       *pC = c + 1;
 1299:     }
 1300:     pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
 1301:     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 
 1302:                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
 1303:                      pStr1, 0);
 1304:     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
 1305:     testcase( idxNew1==0 );
 1306:     exprAnalyze(pSrc, pWC, idxNew1);
 1307:     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
 1308:                      sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
 1309:                      pStr2, 0);
 1310:     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
 1311:     testcase( idxNew2==0 );
 1312:     exprAnalyze(pSrc, pWC, idxNew2);
 1313:     pTerm = &pWC->a[idxTerm];
 1314:     if( isComplete ){
 1315:       pWC->a[idxNew1].iParent = idxTerm;
 1316:       pWC->a[idxNew2].iParent = idxTerm;
 1317:       pTerm->nChild = 2;
 1318:     }
 1319:   }
 1320: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 1321: 
 1322: #ifndef SQLITE_OMIT_VIRTUALTABLE
 1323:   /* Add a WO_MATCH auxiliary term to the constraint set if the
 1324:   ** current expression is of the form:  column MATCH expr.
 1325:   ** This information is used by the xBestIndex methods of
 1326:   ** virtual tables.  The native query optimizer does not attempt
 1327:   ** to do anything with MATCH functions.
 1328:   */
 1329:   if( isMatchOfColumn(pExpr) ){
 1330:     int idxNew;
 1331:     Expr *pRight, *pLeft;
 1332:     WhereTerm *pNewTerm;
 1333:     Bitmask prereqColumn, prereqExpr;
 1334: 
 1335:     pRight = pExpr->x.pList->a[0].pExpr;
 1336:     pLeft = pExpr->x.pList->a[1].pExpr;
 1337:     prereqExpr = exprTableUsage(pMaskSet, pRight);
 1338:     prereqColumn = exprTableUsage(pMaskSet, pLeft);
 1339:     if( (prereqExpr & prereqColumn)==0 ){
 1340:       Expr *pNewExpr;
 1341:       pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
 1342:                               0, sqlite3ExprDup(db, pRight, 0), 0);
 1343:       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 1344:       testcase( idxNew==0 );
 1345:       pNewTerm = &pWC->a[idxNew];
 1346:       pNewTerm->prereqRight = prereqExpr;
 1347:       pNewTerm->leftCursor = pLeft->iTable;
 1348:       pNewTerm->u.leftColumn = pLeft->iColumn;
 1349:       pNewTerm->eOperator = WO_MATCH;
 1350:       pNewTerm->iParent = idxTerm;
 1351:       pTerm = &pWC->a[idxTerm];
 1352:       pTerm->nChild = 1;
 1353:       pTerm->wtFlags |= TERM_COPIED;
 1354:       pNewTerm->prereqAll = pTerm->prereqAll;
 1355:     }
 1356:   }
 1357: #endif /* SQLITE_OMIT_VIRTUALTABLE */
 1358: 
 1359: #ifdef SQLITE_ENABLE_STAT3
 1360:   /* When sqlite_stat3 histogram data is available an operator of the
 1361:   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
 1362:   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
 1363:   ** virtual term of that form.
 1364:   **
 1365:   ** Note that the virtual term must be tagged with TERM_VNULL.  This
 1366:   ** TERM_VNULL tag will suppress the not-null check at the beginning
 1367:   ** of the loop.  Without the TERM_VNULL flag, the not-null check at
 1368:   ** the start of the loop will prevent any results from being returned.
 1369:   */
 1370:   if( pExpr->op==TK_NOTNULL
 1371:    && pExpr->pLeft->op==TK_COLUMN
 1372:    && pExpr->pLeft->iColumn>=0
 1373:   ){
 1374:     Expr *pNewExpr;
 1375:     Expr *pLeft = pExpr->pLeft;
 1376:     int idxNew;
 1377:     WhereTerm *pNewTerm;
 1378: 
 1379:     pNewExpr = sqlite3PExpr(pParse, TK_GT,
 1380:                             sqlite3ExprDup(db, pLeft, 0),
 1381:                             sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
 1382: 
 1383:     idxNew = whereClauseInsert(pWC, pNewExpr,
 1384:                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
 1385:     if( idxNew ){
 1386:       pNewTerm = &pWC->a[idxNew];
 1387:       pNewTerm->prereqRight = 0;
 1388:       pNewTerm->leftCursor = pLeft->iTable;
 1389:       pNewTerm->u.leftColumn = pLeft->iColumn;
 1390:       pNewTerm->eOperator = WO_GT;
 1391:       pNewTerm->iParent = idxTerm;
 1392:       pTerm = &pWC->a[idxTerm];
 1393:       pTerm->nChild = 1;
 1394:       pTerm->wtFlags |= TERM_COPIED;
 1395:       pNewTerm->prereqAll = pTerm->prereqAll;
 1396:     }
 1397:   }
 1398: #endif /* SQLITE_ENABLE_STAT */
 1399: 
 1400:   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
 1401:   ** an index for tables to the left of the join.
 1402:   */
 1403:   pTerm->prereqRight |= extraRight;
 1404: }
 1405: 
 1406: /*
 1407: ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
 1408: ** a reference to any table other than the iBase table.
 1409: */
 1410: static int referencesOtherTables(
 1411:   ExprList *pList,          /* Search expressions in ths list */
 1412:   WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */
 1413:   int iFirst,               /* Be searching with the iFirst-th expression */
 1414:   int iBase                 /* Ignore references to this table */
 1415: ){
 1416:   Bitmask allowed = ~getMask(pMaskSet, iBase);
 1417:   while( iFirst<pList->nExpr ){
 1418:     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
 1419:       return 1;
 1420:     }
 1421:   }
 1422:   return 0;
 1423: }
 1424: 
 1425: /*
 1426: ** This function searches the expression list passed as the second argument
 1427: ** for an expression of type TK_COLUMN that refers to the same column and
 1428: ** uses the same collation sequence as the iCol'th column of index pIdx.
 1429: ** Argument iBase is the cursor number used for the table that pIdx refers
 1430: ** to.
 1431: **
 1432: ** If such an expression is found, its index in pList->a[] is returned. If
 1433: ** no expression is found, -1 is returned.
 1434: */
 1435: static int findIndexCol(
 1436:   Parse *pParse,                  /* Parse context */
 1437:   ExprList *pList,                /* Expression list to search */
 1438:   int iBase,                      /* Cursor for table associated with pIdx */
 1439:   Index *pIdx,                    /* Index to match column of */
 1440:   int iCol                        /* Column of index to match */
 1441: ){
 1442:   int i;
 1443:   const char *zColl = pIdx->azColl[iCol];
 1444: 
 1445:   for(i=0; i<pList->nExpr; i++){
 1446:     Expr *p = pList->a[i].pExpr;
 1447:     if( p->op==TK_COLUMN
 1448:      && p->iColumn==pIdx->aiColumn[iCol]
 1449:      && p->iTable==iBase
 1450:     ){
 1451:       CollSeq *pColl = sqlite3ExprCollSeq(pParse, p);
 1452:       if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
 1453:         return i;
 1454:       }
 1455:     }
 1456:   }
 1457: 
 1458:   return -1;
 1459: }
 1460: 
 1461: /*
 1462: ** This routine determines if pIdx can be used to assist in processing a
 1463: ** DISTINCT qualifier. In other words, it tests whether or not using this
 1464: ** index for the outer loop guarantees that rows with equal values for
 1465: ** all expressions in the pDistinct list are delivered grouped together.
 1466: **
 1467: ** For example, the query 
 1468: **
 1469: **   SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
 1470: **
 1471: ** can benefit from any index on columns "b" and "c".
 1472: */
 1473: static int isDistinctIndex(
 1474:   Parse *pParse,                  /* Parsing context */
 1475:   WhereClause *pWC,               /* The WHERE clause */
 1476:   Index *pIdx,                    /* The index being considered */
 1477:   int base,                       /* Cursor number for the table pIdx is on */
 1478:   ExprList *pDistinct,            /* The DISTINCT expressions */
 1479:   int nEqCol                      /* Number of index columns with == */
 1480: ){
 1481:   Bitmask mask = 0;               /* Mask of unaccounted for pDistinct exprs */
 1482:   int i;                          /* Iterator variable */
 1483: 
 1484:   if( pIdx->zName==0 || pDistinct==0 || pDistinct->nExpr>=BMS ) return 0;
 1485:   testcase( pDistinct->nExpr==BMS-1 );
 1486: 
 1487:   /* Loop through all the expressions in the distinct list. If any of them
 1488:   ** are not simple column references, return early. Otherwise, test if the
 1489:   ** WHERE clause contains a "col=X" clause. If it does, the expression
 1490:   ** can be ignored. If it does not, and the column does not belong to the
 1491:   ** same table as index pIdx, return early. Finally, if there is no
 1492:   ** matching "col=X" expression and the column is on the same table as pIdx,
 1493:   ** set the corresponding bit in variable mask.
 1494:   */
 1495:   for(i=0; i<pDistinct->nExpr; i++){
 1496:     WhereTerm *pTerm;
 1497:     Expr *p = pDistinct->a[i].pExpr;
 1498:     if( p->op!=TK_COLUMN ) return 0;
 1499:     pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
 1500:     if( pTerm ){
 1501:       Expr *pX = pTerm->pExpr;
 1502:       CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
 1503:       CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
 1504:       if( p1==p2 ) continue;
 1505:     }
 1506:     if( p->iTable!=base ) return 0;
 1507:     mask |= (((Bitmask)1) << i);
 1508:   }
 1509: 
 1510:   for(i=nEqCol; mask && i<pIdx->nColumn; i++){
 1511:     int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
 1512:     if( iExpr<0 ) break;
 1513:     mask &= ~(((Bitmask)1) << iExpr);
 1514:   }
 1515: 
 1516:   return (mask==0);
 1517: }
 1518: 
 1519: 
 1520: /*
 1521: ** Return true if the DISTINCT expression-list passed as the third argument
 1522: ** is redundant. A DISTINCT list is redundant if the database contains a
 1523: ** UNIQUE index that guarantees that the result of the query will be distinct
 1524: ** anyway.
 1525: */
 1526: static int isDistinctRedundant(
 1527:   Parse *pParse,
 1528:   SrcList *pTabList,
 1529:   WhereClause *pWC,
 1530:   ExprList *pDistinct
 1531: ){
 1532:   Table *pTab;
 1533:   Index *pIdx;
 1534:   int i;                          
 1535:   int iBase;
 1536: 
 1537:   /* If there is more than one table or sub-select in the FROM clause of
 1538:   ** this query, then it will not be possible to show that the DISTINCT 
 1539:   ** clause is redundant. */
 1540:   if( pTabList->nSrc!=1 ) return 0;
 1541:   iBase = pTabList->a[0].iCursor;
 1542:   pTab = pTabList->a[0].pTab;
 1543: 
 1544:   /* If any of the expressions is an IPK column on table iBase, then return 
 1545:   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
 1546:   ** current SELECT is a correlated sub-query.
 1547:   */
 1548:   for(i=0; i<pDistinct->nExpr; i++){
 1549:     Expr *p = pDistinct->a[i].pExpr;
 1550:     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
 1551:   }
 1552: 
 1553:   /* Loop through all indices on the table, checking each to see if it makes
 1554:   ** the DISTINCT qualifier redundant. It does so if:
 1555:   **
 1556:   **   1. The index is itself UNIQUE, and
 1557:   **
 1558:   **   2. All of the columns in the index are either part of the pDistinct
 1559:   **      list, or else the WHERE clause contains a term of the form "col=X",
 1560:   **      where X is a constant value. The collation sequences of the
 1561:   **      comparison and select-list expressions must match those of the index.
 1562:   */
 1563:   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 1564:     if( pIdx->onError==OE_None ) continue;
 1565:     for(i=0; i<pIdx->nColumn; i++){
 1566:       int iCol = pIdx->aiColumn[i];
 1567:       if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) 
 1568:        && 0>findIndexCol(pParse, pDistinct, iBase, pIdx, i)
 1569:       ){
 1570:         break;
 1571:       }
 1572:     }
 1573:     if( i==pIdx->nColumn ){
 1574:       /* This index implies that the DISTINCT qualifier is redundant. */
 1575:       return 1;
 1576:     }
 1577:   }
 1578: 
 1579:   return 0;
 1580: }
 1581: 
 1582: /*
 1583: ** This routine decides if pIdx can be used to satisfy the ORDER BY
 1584: ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
 1585: ** ORDER BY clause, this routine returns 0.
 1586: **
 1587: ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
 1588: ** left-most table in the FROM clause of that same SELECT statement and
 1589: ** the table has a cursor number of "base".  pIdx is an index on pTab.
 1590: **
 1591: ** nEqCol is the number of columns of pIdx that are used as equality
 1592: ** constraints.  Any of these columns may be missing from the ORDER BY
 1593: ** clause and the match can still be a success.
 1594: **
 1595: ** All terms of the ORDER BY that match against the index must be either
 1596: ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
 1597: ** index do not need to satisfy this constraint.)  The *pbRev value is
 1598: ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
 1599: ** the ORDER BY clause is all ASC.
 1600: */
 1601: static int isSortingIndex(
 1602:   Parse *pParse,          /* Parsing context */
 1603:   WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
 1604:   Index *pIdx,            /* The index we are testing */
 1605:   int base,               /* Cursor number for the table to be sorted */
 1606:   ExprList *pOrderBy,     /* The ORDER BY clause */
 1607:   int nEqCol,             /* Number of index columns with == constraints */
 1608:   int wsFlags,            /* Index usages flags */
 1609:   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 1610: ){
 1611:   int i, j;                       /* Loop counters */
 1612:   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
 1613:   int nTerm;                      /* Number of ORDER BY terms */
 1614:   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
 1615:   sqlite3 *db = pParse->db;
 1616: 
 1617:   if( !pOrderBy ) return 0;
 1618:   if( wsFlags & WHERE_COLUMN_IN ) return 0;
 1619:   if( pIdx->bUnordered ) return 0;
 1620: 
 1621:   nTerm = pOrderBy->nExpr;
 1622:   assert( nTerm>0 );
 1623: 
 1624:   /* Argument pIdx must either point to a 'real' named index structure, 
 1625:   ** or an index structure allocated on the stack by bestBtreeIndex() to
 1626:   ** represent the rowid index that is part of every table.  */
 1627:   assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
 1628: 
 1629:   /* Match terms of the ORDER BY clause against columns of
 1630:   ** the index.
 1631:   **
 1632:   ** Note that indices have pIdx->nColumn regular columns plus
 1633:   ** one additional column containing the rowid.  The rowid column
 1634:   ** of the index is also allowed to match against the ORDER BY
 1635:   ** clause.
 1636:   */
 1637:   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
 1638:     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
 1639:     CollSeq *pColl;    /* The collating sequence of pExpr */
 1640:     int termSortOrder; /* Sort order for this term */
 1641:     int iColumn;       /* The i-th column of the index.  -1 for rowid */
 1642:     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
 1643:     const char *zColl; /* Name of the collating sequence for i-th index term */
 1644: 
 1645:     pExpr = pTerm->pExpr;
 1646:     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
 1647:       /* Can not use an index sort on anything that is not a column in the
 1648:       ** left-most table of the FROM clause */
 1649:       break;
 1650:     }
 1651:     pColl = sqlite3ExprCollSeq(pParse, pExpr);
 1652:     if( !pColl ){
 1653:       pColl = db->pDfltColl;
 1654:     }
 1655:     if( pIdx->zName && i<pIdx->nColumn ){
 1656:       iColumn = pIdx->aiColumn[i];
 1657:       if( iColumn==pIdx->pTable->iPKey ){
 1658:         iColumn = -1;
 1659:       }
 1660:       iSortOrder = pIdx->aSortOrder[i];
 1661:       zColl = pIdx->azColl[i];
 1662:     }else{
 1663:       iColumn = -1;
 1664:       iSortOrder = 0;
 1665:       zColl = pColl->zName;
 1666:     }
 1667:     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
 1668:       /* Term j of the ORDER BY clause does not match column i of the index */
 1669:       if( i<nEqCol ){
 1670:         /* If an index column that is constrained by == fails to match an
 1671:         ** ORDER BY term, that is OK.  Just ignore that column of the index
 1672:         */
 1673:         continue;
 1674:       }else if( i==pIdx->nColumn ){
 1675:         /* Index column i is the rowid.  All other terms match. */
 1676:         break;
 1677:       }else{
 1678:         /* If an index column fails to match and is not constrained by ==
 1679:         ** then the index cannot satisfy the ORDER BY constraint.
 1680:         */
 1681:         return 0;
 1682:       }
 1683:     }
 1684:     assert( pIdx->aSortOrder!=0 || iColumn==-1 );
 1685:     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
 1686:     assert( iSortOrder==0 || iSortOrder==1 );
 1687:     termSortOrder = iSortOrder ^ pTerm->sortOrder;
 1688:     if( i>nEqCol ){
 1689:       if( termSortOrder!=sortOrder ){
 1690:         /* Indices can only be used if all ORDER BY terms past the
 1691:         ** equality constraints are all either DESC or ASC. */
 1692:         return 0;
 1693:       }
 1694:     }else{
 1695:       sortOrder = termSortOrder;
 1696:     }
 1697:     j++;
 1698:     pTerm++;
 1699:     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 1700:       /* If the indexed column is the primary key and everything matches
 1701:       ** so far and none of the ORDER BY terms to the right reference other
 1702:       ** tables in the join, then we are assured that the index can be used 
 1703:       ** to sort because the primary key is unique and so none of the other
 1704:       ** columns will make any difference
 1705:       */
 1706:       j = nTerm;
 1707:     }
 1708:   }
 1709: 
 1710:   *pbRev = sortOrder!=0;
 1711:   if( j>=nTerm ){
 1712:     /* All terms of the ORDER BY clause are covered by this index so
 1713:     ** this index can be used for sorting. */
 1714:     return 1;
 1715:   }
 1716:   if( pIdx->onError!=OE_None && i==pIdx->nColumn
 1717:       && (wsFlags & WHERE_COLUMN_NULL)==0
 1718:       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 1719:     /* All terms of this index match some prefix of the ORDER BY clause
 1720:     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
 1721:     ** clause reference other tables in a join.  If this is all true then
 1722:     ** the order by clause is superfluous.  Not that if the matching
 1723:     ** condition is IS NULL then the result is not necessarily unique
 1724:     ** even on a UNIQUE index, so disallow those cases. */
 1725:     return 1;
 1726:   }
 1727:   return 0;
 1728: }
 1729: 
 1730: /*
 1731: ** Prepare a crude estimate of the logarithm of the input value.
 1732: ** The results need not be exact.  This is only used for estimating
 1733: ** the total cost of performing operations with O(logN) or O(NlogN)
 1734: ** complexity.  Because N is just a guess, it is no great tragedy if
 1735: ** logN is a little off.
 1736: */
 1737: static double estLog(double N){
 1738:   double logN = 1;
 1739:   double x = 10;
 1740:   while( N>x ){
 1741:     logN += 1;
 1742:     x *= 10;
 1743:   }
 1744:   return logN;
 1745: }
 1746: 
 1747: /*
 1748: ** Two routines for printing the content of an sqlite3_index_info
 1749: ** structure.  Used for testing and debugging only.  If neither
 1750: ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
 1751: ** are no-ops.
 1752: */
 1753: #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
 1754: static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
 1755:   int i;
 1756:   if( !sqlite3WhereTrace ) return;
 1757:   for(i=0; i<p->nConstraint; i++){
 1758:     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
 1759:        i,
 1760:        p->aConstraint[i].iColumn,
 1761:        p->aConstraint[i].iTermOffset,
 1762:        p->aConstraint[i].op,
 1763:        p->aConstraint[i].usable);
 1764:   }
 1765:   for(i=0; i<p->nOrderBy; i++){
 1766:     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
 1767:        i,
 1768:        p->aOrderBy[i].iColumn,
 1769:        p->aOrderBy[i].desc);
 1770:   }
 1771: }
 1772: static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
 1773:   int i;
 1774:   if( !sqlite3WhereTrace ) return;
 1775:   for(i=0; i<p->nConstraint; i++){
 1776:     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
 1777:        i,
 1778:        p->aConstraintUsage[i].argvIndex,
 1779:        p->aConstraintUsage[i].omit);
 1780:   }
 1781:   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
 1782:   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
 1783:   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
 1784:   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
 1785: }
 1786: #else
 1787: #define TRACE_IDX_INPUTS(A)
 1788: #define TRACE_IDX_OUTPUTS(A)
 1789: #endif
 1790: 
 1791: /* 
 1792: ** Required because bestIndex() is called by bestOrClauseIndex() 
 1793: */
 1794: static void bestIndex(
 1795:     Parse*, WhereClause*, struct SrcList_item*,
 1796:     Bitmask, Bitmask, ExprList*, WhereCost*);
 1797: 
 1798: /*
 1799: ** This routine attempts to find an scanning strategy that can be used 
 1800: ** to optimize an 'OR' expression that is part of a WHERE clause. 
 1801: **
 1802: ** The table associated with FROM clause term pSrc may be either a
 1803: ** regular B-Tree table or a virtual table.
 1804: */
 1805: static void bestOrClauseIndex(
 1806:   Parse *pParse,              /* The parsing context */
 1807:   WhereClause *pWC,           /* The WHERE clause */
 1808:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
 1809:   Bitmask notReady,           /* Mask of cursors not available for indexing */
 1810:   Bitmask notValid,           /* Cursors not available for any purpose */
 1811:   ExprList *pOrderBy,         /* The ORDER BY clause */
 1812:   WhereCost *pCost            /* Lowest cost query plan */
 1813: ){
 1814: #ifndef SQLITE_OMIT_OR_OPTIMIZATION
 1815:   const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
 1816:   const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
 1817:   WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
 1818:   WhereTerm *pTerm;                 /* A single term of the WHERE clause */
 1819: 
 1820:   /* The OR-clause optimization is disallowed if the INDEXED BY or
 1821:   ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
 1822:   if( pSrc->notIndexed || pSrc->pIndex!=0 ){
 1823:     return;
 1824:   }
 1825:   if( pWC->wctrlFlags & WHERE_AND_ONLY ){
 1826:     return;
 1827:   }
 1828: 
 1829:   /* Search the WHERE clause terms for a usable WO_OR term. */
 1830:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
 1831:     if( pTerm->eOperator==WO_OR 
 1832:      && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
 1833:      && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
 1834:     ){
 1835:       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
 1836:       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
 1837:       WhereTerm *pOrTerm;
 1838:       int flags = WHERE_MULTI_OR;
 1839:       double rTotal = 0;
 1840:       double nRow = 0;
 1841:       Bitmask used = 0;
 1842: 
 1843:       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
 1844:         WhereCost sTermCost;
 1845:         WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
 1846:           (pOrTerm - pOrWC->a), (pTerm - pWC->a)
 1847:         ));
 1848:         if( pOrTerm->eOperator==WO_AND ){
 1849:           WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
 1850:           bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
 1851:         }else if( pOrTerm->leftCursor==iCur ){
 1852:           WhereClause tempWC;
 1853:           tempWC.pParse = pWC->pParse;
 1854:           tempWC.pMaskSet = pWC->pMaskSet;
 1855:           tempWC.pOuter = pWC;
 1856:           tempWC.op = TK_AND;
 1857:           tempWC.a = pOrTerm;
 1858:           tempWC.wctrlFlags = 0;
 1859:           tempWC.nTerm = 1;
 1860:           bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
 1861:         }else{
 1862:           continue;
 1863:         }
 1864:         rTotal += sTermCost.rCost;
 1865:         nRow += sTermCost.plan.nRow;
 1866:         used |= sTermCost.used;
 1867:         if( rTotal>=pCost->rCost ) break;
 1868:       }
 1869: 
 1870:       /* If there is an ORDER BY clause, increase the scan cost to account 
 1871:       ** for the cost of the sort. */
 1872:       if( pOrderBy!=0 ){
 1873:         WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
 1874:                     rTotal, rTotal+nRow*estLog(nRow)));
 1875:         rTotal += nRow*estLog(nRow);
 1876:       }
 1877: 
 1878:       /* If the cost of scanning using this OR term for optimization is
 1879:       ** less than the current cost stored in pCost, replace the contents
 1880:       ** of pCost. */
 1881:       WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
 1882:       if( rTotal<pCost->rCost ){
 1883:         pCost->rCost = rTotal;
 1884:         pCost->used = used;
 1885:         pCost->plan.nRow = nRow;
 1886:         pCost->plan.wsFlags = flags;
 1887:         pCost->plan.u.pTerm = pTerm;
 1888:       }
 1889:     }
 1890:   }
 1891: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 1892: }
 1893: 
 1894: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
 1895: /*
 1896: ** Return TRUE if the WHERE clause term pTerm is of a form where it
 1897: ** could be used with an index to access pSrc, assuming an appropriate
 1898: ** index existed.
 1899: */
 1900: static int termCanDriveIndex(
 1901:   WhereTerm *pTerm,              /* WHERE clause term to check */
 1902:   struct SrcList_item *pSrc,     /* Table we are trying to access */
 1903:   Bitmask notReady               /* Tables in outer loops of the join */
 1904: ){
 1905:   char aff;
 1906:   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
 1907:   if( pTerm->eOperator!=WO_EQ ) return 0;
 1908:   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
 1909:   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
 1910:   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
 1911:   return 1;
 1912: }
 1913: #endif
 1914: 
 1915: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
 1916: /*
 1917: ** If the query plan for pSrc specified in pCost is a full table scan
 1918: ** and indexing is allows (if there is no NOT INDEXED clause) and it
 1919: ** possible to construct a transient index that would perform better
 1920: ** than a full table scan even when the cost of constructing the index
 1921: ** is taken into account, then alter the query plan to use the
 1922: ** transient index.
 1923: */
 1924: static void bestAutomaticIndex(
 1925:   Parse *pParse,              /* The parsing context */
 1926:   WhereClause *pWC,           /* The WHERE clause */
 1927:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
 1928:   Bitmask notReady,           /* Mask of cursors that are not available */
 1929:   WhereCost *pCost            /* Lowest cost query plan */
 1930: ){
 1931:   double nTableRow;           /* Rows in the input table */
 1932:   double logN;                /* log(nTableRow) */
 1933:   double costTempIdx;         /* per-query cost of the transient index */
 1934:   WhereTerm *pTerm;           /* A single term of the WHERE clause */
 1935:   WhereTerm *pWCEnd;          /* End of pWC->a[] */
 1936:   Table *pTable;              /* Table tht might be indexed */
 1937: 
 1938:   if( pParse->nQueryLoop<=(double)1 ){
 1939:     /* There is no point in building an automatic index for a single scan */
 1940:     return;
 1941:   }
 1942:   if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
 1943:     /* Automatic indices are disabled at run-time */
 1944:     return;
 1945:   }
 1946:   if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
 1947:     /* We already have some kind of index in use for this query. */
 1948:     return;
 1949:   }
 1950:   if( pSrc->notIndexed ){
 1951:     /* The NOT INDEXED clause appears in the SQL. */
 1952:     return;
 1953:   }
 1954:   if( pSrc->isCorrelated ){
 1955:     /* The source is a correlated sub-query. No point in indexing it. */
 1956:     return;
 1957:   }
 1958: 
 1959:   assert( pParse->nQueryLoop >= (double)1 );
 1960:   pTable = pSrc->pTab;
 1961:   nTableRow = pTable->nRowEst;
 1962:   logN = estLog(nTableRow);
 1963:   costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
 1964:   if( costTempIdx>=pCost->rCost ){
 1965:     /* The cost of creating the transient table would be greater than
 1966:     ** doing the full table scan */
 1967:     return;
 1968:   }
 1969: 
 1970:   /* Search for any equality comparison term */
 1971:   pWCEnd = &pWC->a[pWC->nTerm];
 1972:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
 1973:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
 1974:       WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
 1975:                     pCost->rCost, costTempIdx));
 1976:       pCost->rCost = costTempIdx;
 1977:       pCost->plan.nRow = logN + 1;
 1978:       pCost->plan.wsFlags = WHERE_TEMP_INDEX;
 1979:       pCost->used = pTerm->prereqRight;
 1980:       break;
 1981:     }
 1982:   }
 1983: }
 1984: #else
 1985: # define bestAutomaticIndex(A,B,C,D,E)  /* no-op */
 1986: #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
 1987: 
 1988: 
 1989: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
 1990: /*
 1991: ** Generate code to construct the Index object for an automatic index
 1992: ** and to set up the WhereLevel object pLevel so that the code generator
 1993: ** makes use of the automatic index.
 1994: */
 1995: static void constructAutomaticIndex(
 1996:   Parse *pParse,              /* The parsing context */
 1997:   WhereClause *pWC,           /* The WHERE clause */
 1998:   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
 1999:   Bitmask notReady,           /* Mask of cursors that are not available */
 2000:   WhereLevel *pLevel          /* Write new index here */
 2001: ){
 2002:   int nColumn;                /* Number of columns in the constructed index */
 2003:   WhereTerm *pTerm;           /* A single term of the WHERE clause */
 2004:   WhereTerm *pWCEnd;          /* End of pWC->a[] */
 2005:   int nByte;                  /* Byte of memory needed for pIdx */
 2006:   Index *pIdx;                /* Object describing the transient index */
 2007:   Vdbe *v;                    /* Prepared statement under construction */
 2008:   int addrInit;               /* Address of the initialization bypass jump */
 2009:   Table *pTable;              /* The table being indexed */
 2010:   KeyInfo *pKeyinfo;          /* Key information for the index */   
 2011:   int addrTop;                /* Top of the index fill loop */
 2012:   int regRecord;              /* Register holding an index record */
 2013:   int n;                      /* Column counter */
 2014:   int i;                      /* Loop counter */
 2015:   int mxBitCol;               /* Maximum column in pSrc->colUsed */
 2016:   CollSeq *pColl;             /* Collating sequence to on a column */
 2017:   Bitmask idxCols;            /* Bitmap of columns used for indexing */
 2018:   Bitmask extraCols;          /* Bitmap of additional columns */
 2019: 
 2020:   /* Generate code to skip over the creation and initialization of the
 2021:   ** transient index on 2nd and subsequent iterations of the loop. */
 2022:   v = pParse->pVdbe;
 2023:   assert( v!=0 );
 2024:   addrInit = sqlite3CodeOnce(pParse);
 2025: 
 2026:   /* Count the number of columns that will be added to the index
 2027:   ** and used to match WHERE clause constraints */
 2028:   nColumn = 0;
 2029:   pTable = pSrc->pTab;
 2030:   pWCEnd = &pWC->a[pWC->nTerm];
 2031:   idxCols = 0;
 2032:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
 2033:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
 2034:       int iCol = pTerm->u.leftColumn;
 2035:       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
 2036:       testcase( iCol==BMS );
 2037:       testcase( iCol==BMS-1 );
 2038:       if( (idxCols & cMask)==0 ){
 2039:         nColumn++;
 2040:         idxCols |= cMask;
 2041:       }
 2042:     }
 2043:   }
 2044:   assert( nColumn>0 );
 2045:   pLevel->plan.nEq = nColumn;
 2046: 
 2047:   /* Count the number of additional columns needed to create a
 2048:   ** covering index.  A "covering index" is an index that contains all
 2049:   ** columns that are needed by the query.  With a covering index, the
 2050:   ** original table never needs to be accessed.  Automatic indices must
 2051:   ** be a covering index because the index will not be updated if the
 2052:   ** original table changes and the index and table cannot both be used
 2053:   ** if they go out of sync.
 2054:   */
 2055:   extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
 2056:   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
 2057:   testcase( pTable->nCol==BMS-1 );
 2058:   testcase( pTable->nCol==BMS-2 );
 2059:   for(i=0; i<mxBitCol; i++){
 2060:     if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
 2061:   }
 2062:   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
 2063:     nColumn += pTable->nCol - BMS + 1;
 2064:   }
 2065:   pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
 2066: 
 2067:   /* Construct the Index object to describe this index */
 2068:   nByte = sizeof(Index);
 2069:   nByte += nColumn*sizeof(int);     /* Index.aiColumn */
 2070:   nByte += nColumn*sizeof(char*);   /* Index.azColl */
 2071:   nByte += nColumn;                 /* Index.aSortOrder */
 2072:   pIdx = sqlite3DbMallocZero(pParse->db, nByte);
 2073:   if( pIdx==0 ) return;
 2074:   pLevel->plan.u.pIdx = pIdx;
 2075:   pIdx->azColl = (char**)&pIdx[1];
 2076:   pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
 2077:   pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
 2078:   pIdx->zName = "auto-index";
 2079:   pIdx->nColumn = nColumn;
 2080:   pIdx->pTable = pTable;
 2081:   n = 0;
 2082:   idxCols = 0;
 2083:   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
 2084:     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
 2085:       int iCol = pTerm->u.leftColumn;
 2086:       Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
 2087:       if( (idxCols & cMask)==0 ){
 2088:         Expr *pX = pTerm->pExpr;
 2089:         idxCols |= cMask;
 2090:         pIdx->aiColumn[n] = pTerm->u.leftColumn;
 2091:         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
 2092:         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
 2093:         n++;
 2094:       }
 2095:     }
 2096:   }
 2097:   assert( (u32)n==pLevel->plan.nEq );
 2098: 
 2099:   /* Add additional columns needed to make the automatic index into
 2100:   ** a covering index */
 2101:   for(i=0; i<mxBitCol; i++){
 2102:     if( extraCols & (((Bitmask)1)<<i) ){
 2103:       pIdx->aiColumn[n] = i;
 2104:       pIdx->azColl[n] = "BINARY";
 2105:       n++;
 2106:     }
 2107:   }
 2108:   if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
 2109:     for(i=BMS-1; i<pTable->nCol; i++){
 2110:       pIdx->aiColumn[n] = i;
 2111:       pIdx->azColl[n] = "BINARY";
 2112:       n++;
 2113:     }
 2114:   }
 2115:   assert( n==nColumn );
 2116: 
 2117:   /* Create the automatic index */
 2118:   pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
 2119:   assert( pLevel->iIdxCur>=0 );
 2120:   sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
 2121:                     (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
 2122:   VdbeComment((v, "for %s", pTable->zName));
 2123: 
 2124:   /* Fill the automatic index with content */
 2125:   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
 2126:   regRecord = sqlite3GetTempReg(pParse);
 2127:   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
 2128:   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
 2129:   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
 2130:   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
 2131:   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
 2132:   sqlite3VdbeJumpHere(v, addrTop);
 2133:   sqlite3ReleaseTempReg(pParse, regRecord);
 2134:   
 2135:   /* Jump here when skipping the initialization */
 2136:   sqlite3VdbeJumpHere(v, addrInit);
 2137: }
 2138: #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
 2139: 
 2140: #ifndef SQLITE_OMIT_VIRTUALTABLE
 2141: /*
 2142: ** Allocate and populate an sqlite3_index_info structure. It is the 
 2143: ** responsibility of the caller to eventually release the structure
 2144: ** by passing the pointer returned by this function to sqlite3_free().
 2145: */
 2146: static sqlite3_index_info *allocateIndexInfo(
 2147:   Parse *pParse, 
 2148:   WhereClause *pWC,
 2149:   struct SrcList_item *pSrc,
 2150:   ExprList *pOrderBy
 2151: ){
 2152:   int i, j;
 2153:   int nTerm;
 2154:   struct sqlite3_index_constraint *pIdxCons;
 2155:   struct sqlite3_index_orderby *pIdxOrderBy;
 2156:   struct sqlite3_index_constraint_usage *pUsage;
 2157:   WhereTerm *pTerm;
 2158:   int nOrderBy;
 2159:   sqlite3_index_info *pIdxInfo;
 2160: 
 2161:   WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
 2162: 
 2163:   /* Count the number of possible WHERE clause constraints referring
 2164:   ** to this virtual table */
 2165:   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 2166:     if( pTerm->leftCursor != pSrc->iCursor ) continue;
 2167:     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
 2168:     testcase( pTerm->eOperator==WO_IN );
 2169:     testcase( pTerm->eOperator==WO_ISNULL );
 2170:     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
 2171:     if( pTerm->wtFlags & TERM_VNULL ) continue;
 2172:     nTerm++;
 2173:   }
 2174: 
 2175:   /* If the ORDER BY clause contains only columns in the current 
 2176:   ** virtual table then allocate space for the aOrderBy part of
 2177:   ** the sqlite3_index_info structure.
 2178:   */
 2179:   nOrderBy = 0;
 2180:   if( pOrderBy ){
 2181:     for(i=0; i<pOrderBy->nExpr; i++){
 2182:       Expr *pExpr = pOrderBy->a[i].pExpr;
 2183:       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
 2184:     }
 2185:     if( i==pOrderBy->nExpr ){
 2186:       nOrderBy = pOrderBy->nExpr;
 2187:     }
 2188:   }
 2189: 
 2190:   /* Allocate the sqlite3_index_info structure
 2191:   */
 2192:   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
 2193:                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
 2194:                            + sizeof(*pIdxOrderBy)*nOrderBy );
 2195:   if( pIdxInfo==0 ){
 2196:     sqlite3ErrorMsg(pParse, "out of memory");
 2197:     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
 2198:     return 0;
 2199:   }
 2200: 
 2201:   /* Initialize the structure.  The sqlite3_index_info structure contains
 2202:   ** many fields that are declared "const" to prevent xBestIndex from
 2203:   ** changing them.  We have to do some funky casting in order to
 2204:   ** initialize those fields.
 2205:   */
 2206:   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
 2207:   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
 2208:   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
 2209:   *(int*)&pIdxInfo->nConstraint = nTerm;
 2210:   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 2211:   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
 2212:   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
 2213:   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
 2214:                                                                    pUsage;
 2215: 
 2216:   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 2217:     if( pTerm->leftCursor != pSrc->iCursor ) continue;
 2218:     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
 2219:     testcase( pTerm->eOperator==WO_IN );
 2220:     testcase( pTerm->eOperator==WO_ISNULL );
 2221:     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
 2222:     if( pTerm->wtFlags & TERM_VNULL ) continue;
 2223:     pIdxCons[j].iColumn = pTerm->u.leftColumn;
 2224:     pIdxCons[j].iTermOffset = i;
 2225:     pIdxCons[j].op = (u8)pTerm->eOperator;
 2226:     /* The direct assignment in the previous line is possible only because
 2227:     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
 2228:     ** following asserts verify this fact. */
 2229:     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
 2230:     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
 2231:     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
 2232:     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
 2233:     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
 2234:     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
 2235:     assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
 2236:     j++;
 2237:   }
 2238:   for(i=0; i<nOrderBy; i++){
 2239:     Expr *pExpr = pOrderBy->a[i].pExpr;
 2240:     pIdxOrderBy[i].iColumn = pExpr->iColumn;
 2241:     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
 2242:   }
 2243: 
 2244:   return pIdxInfo;
 2245: }
 2246: 
 2247: /*
 2248: ** The table object reference passed as the second argument to this function
 2249: ** must represent a virtual table. This function invokes the xBestIndex()
 2250: ** method of the virtual table with the sqlite3_index_info pointer passed
 2251: ** as the argument.
 2252: **
 2253: ** If an error occurs, pParse is populated with an error message and a
 2254: ** non-zero value is returned. Otherwise, 0 is returned and the output
 2255: ** part of the sqlite3_index_info structure is left populated.
 2256: **
 2257: ** Whether or not an error is returned, it is the responsibility of the
 2258: ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
 2259: ** that this is required.
 2260: */
 2261: static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
 2262:   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
 2263:   int i;
 2264:   int rc;
 2265: 
 2266:   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
 2267:   TRACE_IDX_INPUTS(p);
 2268:   rc = pVtab->pModule->xBestIndex(pVtab, p);
 2269:   TRACE_IDX_OUTPUTS(p);
 2270: 
 2271:   if( rc!=SQLITE_OK ){
 2272:     if( rc==SQLITE_NOMEM ){
 2273:       pParse->db->mallocFailed = 1;
 2274:     }else if( !pVtab->zErrMsg ){
 2275:       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
 2276:     }else{
 2277:       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
 2278:     }
 2279:   }
 2280:   sqlite3_free(pVtab->zErrMsg);
 2281:   pVtab->zErrMsg = 0;
 2282: 
 2283:   for(i=0; i<p->nConstraint; i++){
 2284:     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
 2285:       sqlite3ErrorMsg(pParse, 
 2286:           "table %s: xBestIndex returned an invalid plan", pTab->zName);
 2287:     }
 2288:   }
 2289: 
 2290:   return pParse->nErr;
 2291: }
 2292: 
 2293: 
 2294: /*
 2295: ** Compute the best index for a virtual table.
 2296: **
 2297: ** The best index is computed by the xBestIndex method of the virtual
 2298: ** table module.  This routine is really just a wrapper that sets up
 2299: ** the sqlite3_index_info structure that is used to communicate with
 2300: ** xBestIndex.
 2301: **
 2302: ** In a join, this routine might be called multiple times for the
 2303: ** same virtual table.  The sqlite3_index_info structure is created
 2304: ** and initialized on the first invocation and reused on all subsequent
 2305: ** invocations.  The sqlite3_index_info structure is also used when
 2306: ** code is generated to access the virtual table.  The whereInfoDelete() 
 2307: ** routine takes care of freeing the sqlite3_index_info structure after
 2308: ** everybody has finished with it.
 2309: */
 2310: static void bestVirtualIndex(
 2311:   Parse *pParse,                  /* The parsing context */
 2312:   WhereClause *pWC,               /* The WHERE clause */
 2313:   struct SrcList_item *pSrc,      /* The FROM clause term to search */
 2314:   Bitmask notReady,               /* Mask of cursors not available for index */
 2315:   Bitmask notValid,               /* Cursors not valid for any purpose */
 2316:   ExprList *pOrderBy,             /* The order by clause */
 2317:   WhereCost *pCost,               /* Lowest cost query plan */
 2318:   sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */
 2319: ){
 2320:   Table *pTab = pSrc->pTab;
 2321:   sqlite3_index_info *pIdxInfo;
 2322:   struct sqlite3_index_constraint *pIdxCons;
 2323:   struct sqlite3_index_constraint_usage *pUsage;
 2324:   WhereTerm *pTerm;
 2325:   int i, j;
 2326:   int nOrderBy;
 2327:   double rCost;
 2328: 
 2329:   /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
 2330:   ** malloc in allocateIndexInfo() fails and this function returns leaving
 2331:   ** wsFlags in an uninitialized state, the caller may behave unpredictably.
 2332:   */
 2333:   memset(pCost, 0, sizeof(*pCost));
 2334:   pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
 2335: 
 2336:   /* If the sqlite3_index_info structure has not been previously
 2337:   ** allocated and initialized, then allocate and initialize it now.
 2338:   */
 2339:   pIdxInfo = *ppIdxInfo;
 2340:   if( pIdxInfo==0 ){
 2341:     *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
 2342:   }
 2343:   if( pIdxInfo==0 ){
 2344:     return;
 2345:   }
 2346: 
 2347:   /* At this point, the sqlite3_index_info structure that pIdxInfo points
 2348:   ** to will have been initialized, either during the current invocation or
 2349:   ** during some prior invocation.  Now we just have to customize the
 2350:   ** details of pIdxInfo for the current invocation and pass it to
 2351:   ** xBestIndex.
 2352:   */
 2353: 
 2354:   /* The module name must be defined. Also, by this point there must
 2355:   ** be a pointer to an sqlite3_vtab structure. Otherwise
 2356:   ** sqlite3ViewGetColumnNames() would have picked up the error. 
 2357:   */
 2358:   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
 2359:   assert( sqlite3GetVTable(pParse->db, pTab) );
 2360: 
 2361:   /* Set the aConstraint[].usable fields and initialize all 
 2362:   ** output variables to zero.
 2363:   **
 2364:   ** aConstraint[].usable is true for constraints where the right-hand
 2365:   ** side contains only references to tables to the left of the current
 2366:   ** table.  In other words, if the constraint is of the form:
 2367:   **
 2368:   **           column = expr
 2369:   **
 2370:   ** and we are evaluating a join, then the constraint on column is 
 2371:   ** only valid if all tables referenced in expr occur to the left
 2372:   ** of the table containing column.
 2373:   **
 2374:   ** The aConstraints[] array contains entries for all constraints
 2375:   ** on the current table.  That way we only have to compute it once
 2376:   ** even though we might try to pick the best index multiple times.
 2377:   ** For each attempt at picking an index, the order of tables in the
 2378:   ** join might be different so we have to recompute the usable flag
 2379:   ** each time.
 2380:   */
 2381:   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
 2382:   pUsage = pIdxInfo->aConstraintUsage;
 2383:   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
 2384:     j = pIdxCons->iTermOffset;
 2385:     pTerm = &pWC->a[j];
 2386:     pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
 2387:   }
 2388:   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
 2389:   if( pIdxInfo->needToFreeIdxStr ){
 2390:     sqlite3_free(pIdxInfo->idxStr);
 2391:   }
 2392:   pIdxInfo->idxStr = 0;
 2393:   pIdxInfo->idxNum = 0;
 2394:   pIdxInfo->needToFreeIdxStr = 0;
 2395:   pIdxInfo->orderByConsumed = 0;
 2396:   /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
 2397:   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
 2398:   nOrderBy = pIdxInfo->nOrderBy;
 2399:   if( !pOrderBy ){
 2400:     pIdxInfo->nOrderBy = 0;
 2401:   }
 2402: 
 2403:   if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
 2404:     return;
 2405:   }
 2406: 
 2407:   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
 2408:   for(i=0; i<pIdxInfo->nConstraint; i++){
 2409:     if( pUsage[i].argvIndex>0 ){
 2410:       pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
 2411:     }
 2412:   }
 2413: 
 2414:   /* If there is an ORDER BY clause, and the selected virtual table index
 2415:   ** does not satisfy it, increase the cost of the scan accordingly. This
 2416:   ** matches the processing for non-virtual tables in bestBtreeIndex().
 2417:   */
 2418:   rCost = pIdxInfo->estimatedCost;
 2419:   if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
 2420:     rCost += estLog(rCost)*rCost;
 2421:   }
 2422: 
 2423:   /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
 2424:   ** inital value of lowestCost in this loop. If it is, then the
 2425:   ** (cost<lowestCost) test below will never be true.
 2426:   ** 
 2427:   ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
 2428:   ** is defined.
 2429:   */
 2430:   if( (SQLITE_BIG_DBL/((double)2))<rCost ){
 2431:     pCost->rCost = (SQLITE_BIG_DBL/((double)2));
 2432:   }else{
 2433:     pCost->rCost = rCost;
 2434:   }
 2435:   pCost->plan.u.pVtabIdx = pIdxInfo;
 2436:   if( pIdxInfo->orderByConsumed ){
 2437:     pCost->plan.wsFlags |= WHERE_ORDERBY;
 2438:   }
 2439:   pCost->plan.nEq = 0;
 2440:   pIdxInfo->nOrderBy = nOrderBy;
 2441: 
 2442:   /* Try to find a more efficient access pattern by using multiple indexes
 2443:   ** to optimize an OR expression within the WHERE clause. 
 2444:   */
 2445:   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
 2446: }
 2447: #endif /* SQLITE_OMIT_VIRTUALTABLE */
 2448: 
 2449: #ifdef SQLITE_ENABLE_STAT3
 2450: /*
 2451: ** Estimate the location of a particular key among all keys in an
 2452: ** index.  Store the results in aStat as follows:
 2453: **
 2454: **    aStat[0]      Est. number of rows less than pVal
 2455: **    aStat[1]      Est. number of rows equal to pVal
 2456: **
 2457: ** Return SQLITE_OK on success.
 2458: */
 2459: static int whereKeyStats(
 2460:   Parse *pParse,              /* Database connection */
 2461:   Index *pIdx,                /* Index to consider domain of */
 2462:   sqlite3_value *pVal,        /* Value to consider */
 2463:   int roundUp,                /* Round up if true.  Round down if false */
 2464:   tRowcnt *aStat              /* OUT: stats written here */
 2465: ){
 2466:   tRowcnt n;
 2467:   IndexSample *aSample;
 2468:   int i, eType;
 2469:   int isEq = 0;
 2470:   i64 v;
 2471:   double r, rS;
 2472: 
 2473:   assert( roundUp==0 || roundUp==1 );
 2474:   assert( pIdx->nSample>0 );
 2475:   if( pVal==0 ) return SQLITE_ERROR;
 2476:   n = pIdx->aiRowEst[0];
 2477:   aSample = pIdx->aSample;
 2478:   eType = sqlite3_value_type(pVal);
 2479: 
 2480:   if( eType==SQLITE_INTEGER ){
 2481:     v = sqlite3_value_int64(pVal);
 2482:     r = (i64)v;
 2483:     for(i=0; i<pIdx->nSample; i++){
 2484:       if( aSample[i].eType==SQLITE_NULL ) continue;
 2485:       if( aSample[i].eType>=SQLITE_TEXT ) break;
 2486:       if( aSample[i].eType==SQLITE_INTEGER ){
 2487:         if( aSample[i].u.i>=v ){
 2488:           isEq = aSample[i].u.i==v;
 2489:           break;
 2490:         }
 2491:       }else{
 2492:         assert( aSample[i].eType==SQLITE_FLOAT );
 2493:         if( aSample[i].u.r>=r ){
 2494:           isEq = aSample[i].u.r==r;
 2495:           break;
 2496:         }
 2497:       }
 2498:     }
 2499:   }else if( eType==SQLITE_FLOAT ){
 2500:     r = sqlite3_value_double(pVal);
 2501:     for(i=0; i<pIdx->nSample; i++){
 2502:       if( aSample[i].eType==SQLITE_NULL ) continue;
 2503:       if( aSample[i].eType>=SQLITE_TEXT ) break;
 2504:       if( aSample[i].eType==SQLITE_FLOAT ){
 2505:         rS = aSample[i].u.r;
 2506:       }else{
 2507:         rS = aSample[i].u.i;
 2508:       }
 2509:       if( rS>=r ){
 2510:         isEq = rS==r;
 2511:         break;
 2512:       }
 2513:     }
 2514:   }else if( eType==SQLITE_NULL ){
 2515:     i = 0;
 2516:     if( aSample[0].eType==SQLITE_NULL ) isEq = 1;
 2517:   }else{
 2518:     assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
 2519:     for(i=0; i<pIdx->nSample; i++){
 2520:       if( aSample[i].eType==SQLITE_TEXT || aSample[i].eType==SQLITE_BLOB ){
 2521:         break;
 2522:       }
 2523:     }
 2524:     if( i<pIdx->nSample ){      
 2525:       sqlite3 *db = pParse->db;
 2526:       CollSeq *pColl;
 2527:       const u8 *z;
 2528:       if( eType==SQLITE_BLOB ){
 2529:         z = (const u8 *)sqlite3_value_blob(pVal);
 2530:         pColl = db->pDfltColl;
 2531:         assert( pColl->enc==SQLITE_UTF8 );
 2532:       }else{
 2533:         pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
 2534:         if( pColl==0 ){
 2535:           sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
 2536:                           *pIdx->azColl);
 2537:           return SQLITE_ERROR;
 2538:         }
 2539:         z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
 2540:         if( !z ){
 2541:           return SQLITE_NOMEM;
 2542:         }
 2543:         assert( z && pColl && pColl->xCmp );
 2544:       }
 2545:       n = sqlite3ValueBytes(pVal, pColl->enc);
 2546:   
 2547:       for(; i<pIdx->nSample; i++){
 2548:         int c;
 2549:         int eSampletype = aSample[i].eType;
 2550:         if( eSampletype<eType ) continue;
 2551:         if( eSampletype!=eType ) break;
 2552: #ifndef SQLITE_OMIT_UTF16
 2553:         if( pColl->enc!=SQLITE_UTF8 ){
 2554:           int nSample;
 2555:           char *zSample = sqlite3Utf8to16(
 2556:               db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
 2557:           );
 2558:           if( !zSample ){
 2559:             assert( db->mallocFailed );
 2560:             return SQLITE_NOMEM;
 2561:           }
 2562:           c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
 2563:           sqlite3DbFree(db, zSample);
 2564:         }else
 2565: #endif
 2566:         {
 2567:           c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
 2568:         }
 2569:         if( c>=0 ){
 2570:           if( c==0 ) isEq = 1;
 2571:           break;
 2572:         }
 2573:       }
 2574:     }
 2575:   }
 2576: 
 2577:   /* At this point, aSample[i] is the first sample that is greater than
 2578:   ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
 2579:   ** than pVal.  If aSample[i]==pVal, then isEq==1.
 2580:   */
 2581:   if( isEq ){
 2582:     assert( i<pIdx->nSample );
 2583:     aStat[0] = aSample[i].nLt;
 2584:     aStat[1] = aSample[i].nEq;
 2585:   }else{
 2586:     tRowcnt iLower, iUpper, iGap;
 2587:     if( i==0 ){
 2588:       iLower = 0;
 2589:       iUpper = aSample[0].nLt;
 2590:     }else{
 2591:       iUpper = i>=pIdx->nSample ? n : aSample[i].nLt;
 2592:       iLower = aSample[i-1].nEq + aSample[i-1].nLt;
 2593:     }
 2594:     aStat[1] = pIdx->avgEq;
 2595:     if( iLower>=iUpper ){
 2596:       iGap = 0;
 2597:     }else{
 2598:       iGap = iUpper - iLower;
 2599:     }
 2600:     if( roundUp ){
 2601:       iGap = (iGap*2)/3;
 2602:     }else{
 2603:       iGap = iGap/3;
 2604:     }
 2605:     aStat[0] = iLower + iGap;
 2606:   }
 2607:   return SQLITE_OK;
 2608: }
 2609: #endif /* SQLITE_ENABLE_STAT3 */
 2610: 
 2611: /*
 2612: ** If expression pExpr represents a literal value, set *pp to point to
 2613: ** an sqlite3_value structure containing the same value, with affinity
 2614: ** aff applied to it, before returning. It is the responsibility of the 
 2615: ** caller to eventually release this structure by passing it to 
 2616: ** sqlite3ValueFree().
 2617: **
 2618: ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
 2619: ** is an SQL variable that currently has a non-NULL value bound to it,
 2620: ** create an sqlite3_value structure containing this value, again with
 2621: ** affinity aff applied to it, instead.
 2622: **
 2623: ** If neither of the above apply, set *pp to NULL.
 2624: **
 2625: ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
 2626: */
 2627: #ifdef SQLITE_ENABLE_STAT3
 2628: static int valueFromExpr(
 2629:   Parse *pParse, 
 2630:   Expr *pExpr, 
 2631:   u8 aff, 
 2632:   sqlite3_value **pp
 2633: ){
 2634:   if( pExpr->op==TK_VARIABLE
 2635:    || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
 2636:   ){
 2637:     int iVar = pExpr->iColumn;
 2638:     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
 2639:     *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
 2640:     return SQLITE_OK;
 2641:   }
 2642:   return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
 2643: }
 2644: #endif
 2645: 
 2646: /*
 2647: ** This function is used to estimate the number of rows that will be visited
 2648: ** by scanning an index for a range of values. The range may have an upper
 2649: ** bound, a lower bound, or both. The WHERE clause terms that set the upper
 2650: ** and lower bounds are represented by pLower and pUpper respectively. For
 2651: ** example, assuming that index p is on t1(a):
 2652: **
 2653: **   ... FROM t1 WHERE a > ? AND a < ? ...
 2654: **                    |_____|   |_____|
 2655: **                       |         |
 2656: **                     pLower    pUpper
 2657: **
 2658: ** If either of the upper or lower bound is not present, then NULL is passed in
 2659: ** place of the corresponding WhereTerm.
 2660: **
 2661: ** The nEq parameter is passed the index of the index column subject to the
 2662: ** range constraint. Or, equivalently, the number of equality constraints
 2663: ** optimized by the proposed index scan. For example, assuming index p is
 2664: ** on t1(a, b), and the SQL query is:
 2665: **
 2666: **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
 2667: **
 2668: ** then nEq should be passed the value 1 (as the range restricted column,
 2669: ** b, is the second left-most column of the index). Or, if the query is:
 2670: **
 2671: **   ... FROM t1 WHERE a > ? AND a < ? ...
 2672: **
 2673: ** then nEq should be passed 0.
 2674: **
 2675: ** The returned value is an integer divisor to reduce the estimated
 2676: ** search space.  A return value of 1 means that range constraints are
 2677: ** no help at all.  A return value of 2 means range constraints are
 2678: ** expected to reduce the search space by half.  And so forth...
 2679: **
 2680: ** In the absence of sqlite_stat3 ANALYZE data, each range inequality
 2681: ** reduces the search space by a factor of 4.  Hence a single constraint (x>?)
 2682: ** results in a return of 4 and a range constraint (x>? AND x<?) results
 2683: ** in a return of 16.
 2684: */
 2685: static int whereRangeScanEst(
 2686:   Parse *pParse,       /* Parsing & code generating context */
 2687:   Index *p,            /* The index containing the range-compared column; "x" */
 2688:   int nEq,             /* index into p->aCol[] of the range-compared column */
 2689:   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
 2690:   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
 2691:   double *pRangeDiv   /* OUT: Reduce search space by this divisor */
 2692: ){
 2693:   int rc = SQLITE_OK;
 2694: 
 2695: #ifdef SQLITE_ENABLE_STAT3
 2696: 
 2697:   if( nEq==0 && p->nSample ){
 2698:     sqlite3_value *pRangeVal;
 2699:     tRowcnt iLower = 0;
 2700:     tRowcnt iUpper = p->aiRowEst[0];
 2701:     tRowcnt a[2];
 2702:     u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
 2703: 
 2704:     if( pLower ){
 2705:       Expr *pExpr = pLower->pExpr->pRight;
 2706:       rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
 2707:       assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
 2708:       if( rc==SQLITE_OK
 2709:        && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE_OK
 2710:       ){
 2711:         iLower = a[0];
 2712:         if( pLower->eOperator==WO_GT ) iLower += a[1];
 2713:       }
 2714:       sqlite3ValueFree(pRangeVal);
 2715:     }
 2716:     if( rc==SQLITE_OK && pUpper ){
 2717:       Expr *pExpr = pUpper->pExpr->pRight;
 2718:       rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
 2719:       assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
 2720:       if( rc==SQLITE_OK
 2721:        && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE_OK
 2722:       ){
 2723:         iUpper = a[0];
 2724:         if( pUpper->eOperator==WO_LE ) iUpper += a[1];
 2725:       }
 2726:       sqlite3ValueFree(pRangeVal);
 2727:     }
 2728:     if( rc==SQLITE_OK ){
 2729:       if( iUpper<=iLower ){
 2730:         *pRangeDiv = (double)p->aiRowEst[0];
 2731:       }else{
 2732:         *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
 2733:       }
 2734:       WHERETRACE(("range scan regions: %u..%u  div=%g\n",
 2735:                   (u32)iLower, (u32)iUpper, *pRangeDiv));
 2736:       return SQLITE_OK;
 2737:     }
 2738:   }
 2739: #else
 2740:   UNUSED_PARAMETER(pParse);
 2741:   UNUSED_PARAMETER(p);
 2742:   UNUSED_PARAMETER(nEq);
 2743: #endif
 2744:   assert( pLower || pUpper );
 2745:   *pRangeDiv = (double)1;
 2746:   if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;
 2747:   if( pUpper ) *pRangeDiv *= (double)4;
 2748:   return rc;
 2749: }
 2750: 
 2751: #ifdef SQLITE_ENABLE_STAT3
 2752: /*
 2753: ** Estimate the number of rows that will be returned based on
 2754: ** an equality constraint x=VALUE and where that VALUE occurs in
 2755: ** the histogram data.  This only works when x is the left-most
 2756: ** column of an index and sqlite_stat3 histogram data is available
 2757: ** for that index.  When pExpr==NULL that means the constraint is
 2758: ** "x IS NULL" instead of "x=VALUE".
 2759: **
 2760: ** Write the estimated row count into *pnRow and return SQLITE_OK. 
 2761: ** If unable to make an estimate, leave *pnRow unchanged and return
 2762: ** non-zero.
 2763: **
 2764: ** This routine can fail if it is unable to load a collating sequence
 2765: ** required for string comparison, or if unable to allocate memory
 2766: ** for a UTF conversion required for comparison.  The error is stored
 2767: ** in the pParse structure.
 2768: */
 2769: static int whereEqualScanEst(
 2770:   Parse *pParse,       /* Parsing & code generating context */
 2771:   Index *p,            /* The index whose left-most column is pTerm */
 2772:   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
 2773:   double *pnRow        /* Write the revised row estimate here */
 2774: ){
 2775:   sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
 2776:   u8 aff;                   /* Column affinity */
 2777:   int rc;                   /* Subfunction return code */
 2778:   tRowcnt a[2];             /* Statistics */
 2779: 
 2780:   assert( p->aSample!=0 );
 2781:   assert( p->nSample>0 );
 2782:   aff = p->pTable->aCol[p->aiColumn[0]].affinity;
 2783:   if( pExpr ){
 2784:     rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
 2785:     if( rc ) goto whereEqualScanEst_cancel;
 2786:   }else{
 2787:     pRhs = sqlite3ValueNew(pParse->db);
 2788:   }
 2789:   if( pRhs==0 ) return SQLITE_NOTFOUND;
 2790:   rc = whereKeyStats(pParse, p, pRhs, 0, a);
 2791:   if( rc==SQLITE_OK ){
 2792:     WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
 2793:     *pnRow = a[1];
 2794:   }
 2795: whereEqualScanEst_cancel:
 2796:   sqlite3ValueFree(pRhs);
 2797:   return rc;
 2798: }
 2799: #endif /* defined(SQLITE_ENABLE_STAT3) */
 2800: 
 2801: #ifdef SQLITE_ENABLE_STAT3
 2802: /*
 2803: ** Estimate the number of rows that will be returned based on
 2804: ** an IN constraint where the right-hand side of the IN operator
 2805: ** is a list of values.  Example:
 2806: **
 2807: **        WHERE x IN (1,2,3,4)
 2808: **
 2809: ** Write the estimated row count into *pnRow and return SQLITE_OK. 
 2810: ** If unable to make an estimate, leave *pnRow unchanged and return
 2811: ** non-zero.
 2812: **
 2813: ** This routine can fail if it is unable to load a collating sequence
 2814: ** required for string comparison, or if unable to allocate memory
 2815: ** for a UTF conversion required for comparison.  The error is stored
 2816: ** in the pParse structure.
 2817: */
 2818: static int whereInScanEst(
 2819:   Parse *pParse,       /* Parsing & code generating context */
 2820:   Index *p,            /* The index whose left-most column is pTerm */
 2821:   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
 2822:   double *pnRow        /* Write the revised row estimate here */
 2823: ){
 2824:   int rc = SQLITE_OK;         /* Subfunction return code */
 2825:   double nEst;                /* Number of rows for a single term */
 2826:   double nRowEst = (double)0; /* New estimate of the number of rows */
 2827:   int i;                      /* Loop counter */
 2828: 
 2829:   assert( p->aSample!=0 );
 2830:   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
 2831:     nEst = p->aiRowEst[0];
 2832:     rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
 2833:     nRowEst += nEst;
 2834:   }
 2835:   if( rc==SQLITE_OK ){
 2836:     if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
 2837:     *pnRow = nRowEst;
 2838:     WHERETRACE(("IN row estimate: est=%g\n", nRowEst));
 2839:   }
 2840:   return rc;
 2841: }
 2842: #endif /* defined(SQLITE_ENABLE_STAT3) */
 2843: 
 2844: 
 2845: /*
 2846: ** Find the best query plan for accessing a particular table.  Write the
 2847: ** best query plan and its cost into the WhereCost object supplied as the
 2848: ** last parameter.
 2849: **
 2850: ** The lowest cost plan wins.  The cost is an estimate of the amount of
 2851: ** CPU and disk I/O needed to process the requested result.
 2852: ** Factors that influence cost include:
 2853: **
 2854: **    *  The estimated number of rows that will be retrieved.  (The
 2855: **       fewer the better.)
 2856: **
 2857: **    *  Whether or not sorting must occur.
 2858: **
 2859: **    *  Whether or not there must be separate lookups in the
 2860: **       index and in the main table.
 2861: **
 2862: ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
 2863: ** the SQL statement, then this function only considers plans using the 
 2864: ** named index. If no such plan is found, then the returned cost is
 2865: ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 
 2866: ** then the cost is calculated in the usual way.
 2867: **
 2868: ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 
 2869: ** in the SELECT statement, then no indexes are considered. However, the 
 2870: ** selected plan may still take advantage of the built-in rowid primary key
 2871: ** index.
 2872: */
 2873: static void bestBtreeIndex(
 2874:   Parse *pParse,              /* The parsing context */
 2875:   WhereClause *pWC,           /* The WHERE clause */
 2876:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
 2877:   Bitmask notReady,           /* Mask of cursors not available for indexing */
 2878:   Bitmask notValid,           /* Cursors not available for any purpose */
 2879:   ExprList *pOrderBy,         /* The ORDER BY clause */
 2880:   ExprList *pDistinct,        /* The select-list if query is DISTINCT */
 2881:   WhereCost *pCost            /* Lowest cost query plan */
 2882: ){
 2883:   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
 2884:   Index *pProbe;              /* An index we are evaluating */
 2885:   Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
 2886:   int eqTermMask;             /* Current mask of valid equality operators */
 2887:   int idxEqTermMask;          /* Index mask of valid equality operators */
 2888:   Index sPk;                  /* A fake index object for the primary key */
 2889:   tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
 2890:   int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
 2891:   int wsFlagMask;             /* Allowed flags in pCost->plan.wsFlag */
 2892: 
 2893:   /* Initialize the cost to a worst-case value */
 2894:   memset(pCost, 0, sizeof(*pCost));
 2895:   pCost->rCost = SQLITE_BIG_DBL;
 2896: 
 2897:   /* If the pSrc table is the right table of a LEFT JOIN then we may not
 2898:   ** use an index to satisfy IS NULL constraints on that table.  This is
 2899:   ** because columns might end up being NULL if the table does not match -
 2900:   ** a circumstance which the index cannot help us discover.  Ticket #2177.
 2901:   */
 2902:   if( pSrc->jointype & JT_LEFT ){
 2903:     idxEqTermMask = WO_EQ|WO_IN;
 2904:   }else{
 2905:     idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
 2906:   }
 2907: 
 2908:   if( pSrc->pIndex ){
 2909:     /* An INDEXED BY clause specifies a particular index to use */
 2910:     pIdx = pProbe = pSrc->pIndex;
 2911:     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
 2912:     eqTermMask = idxEqTermMask;
 2913:   }else{
 2914:     /* There is no INDEXED BY clause.  Create a fake Index object in local
 2915:     ** variable sPk to represent the rowid primary key index.  Make this
 2916:     ** fake index the first in a chain of Index objects with all of the real
 2917:     ** indices to follow */
 2918:     Index *pFirst;                  /* First of real indices on the table */
 2919:     memset(&sPk, 0, sizeof(Index));
 2920:     sPk.nColumn = 1;
 2921:     sPk.aiColumn = &aiColumnPk;
 2922:     sPk.aiRowEst = aiRowEstPk;
 2923:     sPk.onError = OE_Replace;
 2924:     sPk.pTable = pSrc->pTab;
 2925:     aiRowEstPk[0] = pSrc->pTab->nRowEst;
 2926:     aiRowEstPk[1] = 1;
 2927:     pFirst = pSrc->pTab->pIndex;
 2928:     if( pSrc->notIndexed==0 ){
 2929:       /* The real indices of the table are only considered if the
 2930:       ** NOT INDEXED qualifier is omitted from the FROM clause */
 2931:       sPk.pNext = pFirst;
 2932:     }
 2933:     pProbe = &sPk;
 2934:     wsFlagMask = ~(
 2935:         WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
 2936:     );
 2937:     eqTermMask = WO_EQ|WO_IN;
 2938:     pIdx = 0;
 2939:   }
 2940: 
 2941:   /* Loop over all indices looking for the best one to use
 2942:   */
 2943:   for(; pProbe; pIdx=pProbe=pProbe->pNext){
 2944:     const tRowcnt * const aiRowEst = pProbe->aiRowEst;
 2945:     double cost;                /* Cost of using pProbe */
 2946:     double nRow;                /* Estimated number of rows in result set */
 2947:     double log10N = (double)1;  /* base-10 logarithm of nRow (inexact) */
 2948:     int rev;                    /* True to scan in reverse order */
 2949:     int wsFlags = 0;
 2950:     Bitmask used = 0;
 2951: 
 2952:     /* The following variables are populated based on the properties of
 2953:     ** index being evaluated. They are then used to determine the expected
 2954:     ** cost and number of rows returned.
 2955:     **
 2956:     **  nEq: 
 2957:     **    Number of equality terms that can be implemented using the index.
 2958:     **    In other words, the number of initial fields in the index that
 2959:     **    are used in == or IN or NOT NULL constraints of the WHERE clause.
 2960:     **
 2961:     **  nInMul:  
 2962:     **    The "in-multiplier". This is an estimate of how many seek operations 
 2963:     **    SQLite must perform on the index in question. For example, if the 
 2964:     **    WHERE clause is:
 2965:     **
 2966:     **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
 2967:     **
 2968:     **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is 
 2969:     **    set to 9. Given the same schema and either of the following WHERE 
 2970:     **    clauses:
 2971:     **
 2972:     **      WHERE a =  1
 2973:     **      WHERE a >= 2
 2974:     **
 2975:     **    nInMul is set to 1.
 2976:     **
 2977:     **    If there exists a WHERE term of the form "x IN (SELECT ...)", then 
 2978:     **    the sub-select is assumed to return 25 rows for the purposes of 
 2979:     **    determining nInMul.
 2980:     **
 2981:     **  bInEst:  
 2982:     **    Set to true if there was at least one "x IN (SELECT ...)" term used 
 2983:     **    in determining the value of nInMul.  Note that the RHS of the
 2984:     **    IN operator must be a SELECT, not a value list, for this variable
 2985:     **    to be true.
 2986:     **
 2987:     **  rangeDiv:
 2988:     **    An estimate of a divisor by which to reduce the search space due
 2989:     **    to inequality constraints.  In the absence of sqlite_stat3 ANALYZE
 2990:     **    data, a single inequality reduces the search space to 1/4rd its
 2991:     **    original size (rangeDiv==4).  Two inequalities reduce the search
 2992:     **    space to 1/16th of its original size (rangeDiv==16).
 2993:     **
 2994:     **  bSort:   
 2995:     **    Boolean. True if there is an ORDER BY clause that will require an 
 2996:     **    external sort (i.e. scanning the index being evaluated will not 
 2997:     **    correctly order records).
 2998:     **
 2999:     **  bLookup: 
 3000:     **    Boolean. True if a table lookup is required for each index entry
 3001:     **    visited.  In other words, true if this is not a covering index.
 3002:     **    This is always false for the rowid primary key index of a table.
 3003:     **    For other indexes, it is true unless all the columns of the table
 3004:     **    used by the SELECT statement are present in the index (such an
 3005:     **    index is sometimes described as a covering index).
 3006:     **    For example, given the index on (a, b), the second of the following 
 3007:     **    two queries requires table b-tree lookups in order to find the value
 3008:     **    of column c, but the first does not because columns a and b are
 3009:     **    both available in the index.
 3010:     **
 3011:     **             SELECT a, b    FROM tbl WHERE a = 1;
 3012:     **             SELECT a, b, c FROM tbl WHERE a = 1;
 3013:     */
 3014:     int nEq;                      /* Number of == or IN terms matching index */
 3015:     int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
 3016:     int nInMul = 1;               /* Number of distinct equalities to lookup */
 3017:     double rangeDiv = (double)1;  /* Estimated reduction in search space */
 3018:     int nBound = 0;               /* Number of range constraints seen */
 3019:     int bSort = !!pOrderBy;       /* True if external sort required */
 3020:     int bDist = !!pDistinct;      /* True if index cannot help with DISTINCT */
 3021:     int bLookup = 0;              /* True if not a covering index */
 3022:     WhereTerm *pTerm;             /* A single term of the WHERE clause */
 3023: #ifdef SQLITE_ENABLE_STAT3
 3024:     WhereTerm *pFirstTerm = 0;    /* First term matching the index */
 3025: #endif
 3026: 
 3027:     /* Determine the values of nEq and nInMul */
 3028:     for(nEq=0; nEq<pProbe->nColumn; nEq++){
 3029:       int j = pProbe->aiColumn[nEq];
 3030:       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
 3031:       if( pTerm==0 ) break;
 3032:       wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
 3033:       testcase( pTerm->pWC!=pWC );
 3034:       if( pTerm->eOperator & WO_IN ){
 3035:         Expr *pExpr = pTerm->pExpr;
 3036:         wsFlags |= WHERE_COLUMN_IN;
 3037:         if( ExprHasProperty(pExpr, EP_xIsSelect) ){
 3038:           /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */
 3039:           nInMul *= 25;
 3040:           bInEst = 1;
 3041:         }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
 3042:           /* "x IN (value, value, ...)" */
 3043:           nInMul *= pExpr->x.pList->nExpr;
 3044:         }
 3045:       }else if( pTerm->eOperator & WO_ISNULL ){
 3046:         wsFlags |= WHERE_COLUMN_NULL;
 3047:       }
 3048: #ifdef SQLITE_ENABLE_STAT3
 3049:       if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
 3050: #endif
 3051:       used |= pTerm->prereqRight;
 3052:     }
 3053:  
 3054:     /* If the index being considered is UNIQUE, and there is an equality 
 3055:     ** constraint for all columns in the index, then this search will find
 3056:     ** at most a single row. In this case set the WHERE_UNIQUE flag to 
 3057:     ** indicate this to the caller.
 3058:     **
 3059:     ** Otherwise, if the search may find more than one row, test to see if
 3060:     ** there is a range constraint on indexed column (nEq+1) that can be 
 3061:     ** optimized using the index. 
 3062:     */
 3063:     if( nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
 3064:       testcase( wsFlags & WHERE_COLUMN_IN );
 3065:       testcase( wsFlags & WHERE_COLUMN_NULL );
 3066:       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
 3067:         wsFlags |= WHERE_UNIQUE;
 3068:       }
 3069:     }else if( pProbe->bUnordered==0 ){
 3070:       int j = (nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[nEq]);
 3071:       if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
 3072:         WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
 3073:         WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
 3074:         whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &rangeDiv);
 3075:         if( pTop ){
 3076:           nBound = 1;
 3077:           wsFlags |= WHERE_TOP_LIMIT;
 3078:           used |= pTop->prereqRight;
 3079:           testcase( pTop->pWC!=pWC );
 3080:         }
 3081:         if( pBtm ){
 3082:           nBound++;
 3083:           wsFlags |= WHERE_BTM_LIMIT;
 3084:           used |= pBtm->prereqRight;
 3085:           testcase( pBtm->pWC!=pWC );
 3086:         }
 3087:         wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
 3088:       }
 3089:     }
 3090: 
 3091:     /* If there is an ORDER BY clause and the index being considered will
 3092:     ** naturally scan rows in the required order, set the appropriate flags
 3093:     ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
 3094:     ** will scan rows in a different order, set the bSort variable.  */
 3095:     if( isSortingIndex(
 3096:           pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev)
 3097:     ){
 3098:       bSort = 0;
 3099:       wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
 3100:       wsFlags |= (rev ? WHERE_REVERSE : 0);
 3101:     }
 3102: 
 3103:     /* If there is a DISTINCT qualifier and this index will scan rows in
 3104:     ** order of the DISTINCT expressions, clear bDist and set the appropriate
 3105:     ** flags in wsFlags. */
 3106:     if( isDistinctIndex(pParse, pWC, pProbe, iCur, pDistinct, nEq) ){
 3107:       bDist = 0;
 3108:       wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
 3109:     }
 3110: 
 3111:     /* If currently calculating the cost of using an index (not the IPK
 3112:     ** index), determine if all required column data may be obtained without 
 3113:     ** using the main table (i.e. if the index is a covering
 3114:     ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
 3115:     ** wsFlags. Otherwise, set the bLookup variable to true.  */
 3116:     if( pIdx && wsFlags ){
 3117:       Bitmask m = pSrc->colUsed;
 3118:       int j;
 3119:       for(j=0; j<pIdx->nColumn; j++){
 3120:         int x = pIdx->aiColumn[j];
 3121:         if( x<BMS-1 ){
 3122:           m &= ~(((Bitmask)1)<<x);
 3123:         }
 3124:       }
 3125:       if( m==0 ){
 3126:         wsFlags |= WHERE_IDX_ONLY;
 3127:       }else{
 3128:         bLookup = 1;
 3129:       }
 3130:     }
 3131: 
 3132:     /*
 3133:     ** Estimate the number of rows of output.  For an "x IN (SELECT...)"
 3134:     ** constraint, do not let the estimate exceed half the rows in the table.
 3135:     */
 3136:     nRow = (double)(aiRowEst[nEq] * nInMul);
 3137:     if( bInEst && nRow*2>aiRowEst[0] ){
 3138:       nRow = aiRowEst[0]/2;
 3139:       nInMul = (int)(nRow / aiRowEst[nEq]);
 3140:     }
 3141: 
 3142: #ifdef SQLITE_ENABLE_STAT3
 3143:     /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
 3144:     ** and we do not think that values of x are unique and if histogram
 3145:     ** data is available for column x, then it might be possible
 3146:     ** to get a better estimate on the number of rows based on
 3147:     ** VALUE and how common that value is according to the histogram.
 3148:     */
 3149:     if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
 3150:       assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
 3151:       if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
 3152:         testcase( pFirstTerm->eOperator==WO_EQ );
 3153:         testcase( pFirstTerm->eOperator==WO_ISNULL );
 3154:         whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
 3155:       }else if( bInEst==0 ){
 3156:         assert( pFirstTerm->eOperator==WO_IN );
 3157:         whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
 3158:       }
 3159:     }
 3160: #endif /* SQLITE_ENABLE_STAT3 */
 3161: 
 3162:     /* Adjust the number of output rows and downward to reflect rows
 3163:     ** that are excluded by range constraints.
 3164:     */
 3165:     nRow = nRow/rangeDiv;
 3166:     if( nRow<1 ) nRow = 1;
 3167: 
 3168:     /* Experiments run on real SQLite databases show that the time needed
 3169:     ** to do a binary search to locate a row in a table or index is roughly
 3170:     ** log10(N) times the time to move from one row to the next row within
 3171:     ** a table or index.  The actual times can vary, with the size of
 3172:     ** records being an important factor.  Both moves and searches are
 3173:     ** slower with larger records, presumably because fewer records fit
 3174:     ** on one page and hence more pages have to be fetched.
 3175:     **
 3176:     ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
 3177:     ** not give us data on the relative sizes of table and index records.
 3178:     ** So this computation assumes table records are about twice as big
 3179:     ** as index records
 3180:     */
 3181:     if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
 3182:       /* The cost of a full table scan is a number of move operations equal
 3183:       ** to the number of rows in the table.
 3184:       **
 3185:       ** We add an additional 4x penalty to full table scans.  This causes
 3186:       ** the cost function to err on the side of choosing an index over
 3187:       ** choosing a full scan.  This 4x full-scan penalty is an arguable
 3188:       ** decision and one which we expect to revisit in the future.  But
 3189:       ** it seems to be working well enough at the moment.
 3190:       */
 3191:       cost = aiRowEst[0]*4;
 3192:     }else{
 3193:       log10N = estLog(aiRowEst[0]);
 3194:       cost = nRow;
 3195:       if( pIdx ){
 3196:         if( bLookup ){
 3197:           /* For an index lookup followed by a table lookup:
 3198:           **    nInMul index searches to find the start of each index range
 3199:           **  + nRow steps through the index
 3200:           **  + nRow table searches to lookup the table entry using the rowid
 3201:           */
 3202:           cost += (nInMul + nRow)*log10N;
 3203:         }else{
 3204:           /* For a covering index:
 3205:           **     nInMul index searches to find the initial entry 
 3206:           **   + nRow steps through the index
 3207:           */
 3208:           cost += nInMul*log10N;
 3209:         }
 3210:       }else{
 3211:         /* For a rowid primary key lookup:
 3212:         **    nInMult table searches to find the initial entry for each range
 3213:         **  + nRow steps through the table
 3214:         */
 3215:         cost += nInMul*log10N;
 3216:       }
 3217:     }
 3218: 
 3219:     /* Add in the estimated cost of sorting the result.  Actual experimental
 3220:     ** measurements of sorting performance in SQLite show that sorting time
 3221:     ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
 3222:     ** sorted and C is a factor between 1.95 and 4.3.  We will split the
 3223:     ** difference and select C of 3.0.
 3224:     */
 3225:     if( bSort ){
 3226:       cost += nRow*estLog(nRow)*3;
 3227:     }
 3228:     if( bDist ){
 3229:       cost += nRow*estLog(nRow)*3;
 3230:     }
 3231: 
 3232:     /**** Cost of using this index has now been computed ****/
 3233: 
 3234:     /* If there are additional constraints on this table that cannot
 3235:     ** be used with the current index, but which might lower the number
 3236:     ** of output rows, adjust the nRow value accordingly.  This only 
 3237:     ** matters if the current index is the least costly, so do not bother
 3238:     ** with this step if we already know this index will not be chosen.
 3239:     ** Also, never reduce the output row count below 2 using this step.
 3240:     **
 3241:     ** It is critical that the notValid mask be used here instead of
 3242:     ** the notReady mask.  When computing an "optimal" index, the notReady
 3243:     ** mask will only have one bit set - the bit for the current table.
 3244:     ** The notValid mask, on the other hand, always has all bits set for
 3245:     ** tables that are not in outer loops.  If notReady is used here instead
 3246:     ** of notValid, then a optimal index that depends on inner joins loops
 3247:     ** might be selected even when there exists an optimal index that has
 3248:     ** no such dependency.
 3249:     */
 3250:     if( nRow>2 && cost<=pCost->rCost ){
 3251:       int k;                       /* Loop counter */
 3252:       int nSkipEq = nEq;           /* Number of == constraints to skip */
 3253:       int nSkipRange = nBound;     /* Number of < constraints to skip */
 3254:       Bitmask thisTab;             /* Bitmap for pSrc */
 3255: 
 3256:       thisTab = getMask(pWC->pMaskSet, iCur);
 3257:       for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
 3258:         if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
 3259:         if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
 3260:         if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
 3261:           if( nSkipEq ){
 3262:             /* Ignore the first nEq equality matches since the index
 3263:             ** has already accounted for these */
 3264:             nSkipEq--;
 3265:           }else{
 3266:             /* Assume each additional equality match reduces the result
 3267:             ** set size by a factor of 10 */
 3268:             nRow /= 10;
 3269:           }
 3270:         }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
 3271:           if( nSkipRange ){
 3272:             /* Ignore the first nSkipRange range constraints since the index
 3273:             ** has already accounted for these */
 3274:             nSkipRange--;
 3275:           }else{
 3276:             /* Assume each additional range constraint reduces the result
 3277:             ** set size by a factor of 3.  Indexed range constraints reduce
 3278:             ** the search space by a larger factor: 4.  We make indexed range
 3279:             ** more selective intentionally because of the subjective 
 3280:             ** observation that indexed range constraints really are more
 3281:             ** selective in practice, on average. */
 3282:             nRow /= 3;
 3283:           }
 3284:         }else if( pTerm->eOperator!=WO_NOOP ){
 3285:           /* Any other expression lowers the output row count by half */
 3286:           nRow /= 2;
 3287:         }
 3288:       }
 3289:       if( nRow<2 ) nRow = 2;
 3290:     }
 3291: 
 3292: 
 3293:     WHERETRACE((
 3294:       "%s(%s): nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
 3295:       "         notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
 3296:       pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 
 3297:       nEq, nInMul, (int)rangeDiv, bSort, bLookup, wsFlags,
 3298:       notReady, log10N, nRow, cost, used
 3299:     ));
 3300: 
 3301:     /* If this index is the best we have seen so far, then record this
 3302:     ** index and its cost in the pCost structure.
 3303:     */
 3304:     if( (!pIdx || wsFlags)
 3305:      && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
 3306:     ){
 3307:       pCost->rCost = cost;
 3308:       pCost->used = used;
 3309:       pCost->plan.nRow = nRow;
 3310:       pCost->plan.wsFlags = (wsFlags&wsFlagMask);
 3311:       pCost->plan.nEq = nEq;
 3312:       pCost->plan.u.pIdx = pIdx;
 3313:     }
 3314: 
 3315:     /* If there was an INDEXED BY clause, then only that one index is
 3316:     ** considered. */
 3317:     if( pSrc->pIndex ) break;
 3318: 
 3319:     /* Reset masks for the next index in the loop */
 3320:     wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
 3321:     eqTermMask = idxEqTermMask;
 3322:   }
 3323: 
 3324:   /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
 3325:   ** is set, then reverse the order that the index will be scanned
 3326:   ** in. This is used for application testing, to help find cases
 3327:   ** where application behaviour depends on the (undefined) order that
 3328:   ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
 3329:   if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
 3330:     pCost->plan.wsFlags |= WHERE_REVERSE;
 3331:   }
 3332: 
 3333:   assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
 3334:   assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
 3335:   assert( pSrc->pIndex==0 
 3336:        || pCost->plan.u.pIdx==0 
 3337:        || pCost->plan.u.pIdx==pSrc->pIndex 
 3338:   );
 3339: 
 3340:   WHERETRACE(("best index is: %s\n", 
 3341:     ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : 
 3342:          pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
 3343:   ));
 3344:   
 3345:   bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
 3346:   bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
 3347:   pCost->plan.wsFlags |= eqTermMask;
 3348: }
 3349: 
 3350: /*
 3351: ** Find the query plan for accessing table pSrc->pTab. Write the
 3352: ** best query plan and its cost into the WhereCost object supplied 
 3353: ** as the last parameter. This function may calculate the cost of
 3354: ** both real and virtual table scans.
 3355: */
 3356: static void bestIndex(
 3357:   Parse *pParse,              /* The parsing context */
 3358:   WhereClause *pWC,           /* The WHERE clause */
 3359:   struct SrcList_item *pSrc,  /* The FROM clause term to search */
 3360:   Bitmask notReady,           /* Mask of cursors not available for indexing */
 3361:   Bitmask notValid,           /* Cursors not available for any purpose */
 3362:   ExprList *pOrderBy,         /* The ORDER BY clause */
 3363:   WhereCost *pCost            /* Lowest cost query plan */
 3364: ){
 3365: #ifndef SQLITE_OMIT_VIRTUALTABLE
 3366:   if( IsVirtual(pSrc->pTab) ){
 3367:     sqlite3_index_info *p = 0;
 3368:     bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
 3369:     if( p->needToFreeIdxStr ){
 3370:       sqlite3_free(p->idxStr);
 3371:     }
 3372:     sqlite3DbFree(pParse->db, p);
 3373:   }else
 3374: #endif
 3375:   {
 3376:     bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
 3377:   }
 3378: }
 3379: 
 3380: /*
 3381: ** Disable a term in the WHERE clause.  Except, do not disable the term
 3382: ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
 3383: ** or USING clause of that join.
 3384: **
 3385: ** Consider the term t2.z='ok' in the following queries:
 3386: **
 3387: **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
 3388: **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
 3389: **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
 3390: **
 3391: ** The t2.z='ok' is disabled in the in (2) because it originates
 3392: ** in the ON clause.  The term is disabled in (3) because it is not part
 3393: ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
 3394: **
 3395: ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
 3396: ** completely satisfied by indices.
 3397: **
 3398: ** Disabling a term causes that term to not be tested in the inner loop
 3399: ** of the join.  Disabling is an optimization.  When terms are satisfied
 3400: ** by indices, we disable them to prevent redundant tests in the inner
 3401: ** loop.  We would get the correct results if nothing were ever disabled,
 3402: ** but joins might run a little slower.  The trick is to disable as much
 3403: ** as we can without disabling too much.  If we disabled in (1), we'd get
 3404: ** the wrong answer.  See ticket #813.
 3405: */
 3406: static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
 3407:   if( pTerm
 3408:       && (pTerm->wtFlags & TERM_CODED)==0
 3409:       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
 3410:   ){
 3411:     pTerm->wtFlags |= TERM_CODED;
 3412:     if( pTerm->iParent>=0 ){
 3413:       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
 3414:       if( (--pOther->nChild)==0 ){
 3415:         disableTerm(pLevel, pOther);
 3416:       }
 3417:     }
 3418:   }
 3419: }
 3420: 
 3421: /*
 3422: ** Code an OP_Affinity opcode to apply the column affinity string zAff
 3423: ** to the n registers starting at base. 
 3424: **
 3425: ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
 3426: ** beginning and end of zAff are ignored.  If all entries in zAff are
 3427: ** SQLITE_AFF_NONE, then no code gets generated.
 3428: **
 3429: ** This routine makes its own copy of zAff so that the caller is free
 3430: ** to modify zAff after this routine returns.
 3431: */
 3432: static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
 3433:   Vdbe *v = pParse->pVdbe;
 3434:   if( zAff==0 ){
 3435:     assert( pParse->db->mallocFailed );
 3436:     return;
 3437:   }
 3438:   assert( v!=0 );
 3439: 
 3440:   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
 3441:   ** and end of the affinity string.
 3442:   */
 3443:   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
 3444:     n--;
 3445:     base++;
 3446:     zAff++;
 3447:   }
 3448:   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
 3449:     n--;
 3450:   }
 3451: 
 3452:   /* Code the OP_Affinity opcode if there is anything left to do. */
 3453:   if( n>0 ){
 3454:     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
 3455:     sqlite3VdbeChangeP4(v, -1, zAff, n);
 3456:     sqlite3ExprCacheAffinityChange(pParse, base, n);
 3457:   }
 3458: }
 3459: 
 3460: 
 3461: /*
 3462: ** Generate code for a single equality term of the WHERE clause.  An equality
 3463: ** term can be either X=expr or X IN (...).   pTerm is the term to be 
 3464: ** coded.
 3465: **
 3466: ** The current value for the constraint is left in register iReg.
 3467: **
 3468: ** For a constraint of the form X=expr, the expression is evaluated and its
 3469: ** result is left on the stack.  For constraints of the form X IN (...)
 3470: ** this routine sets up a loop that will iterate over all values of X.
 3471: */
 3472: static int codeEqualityTerm(
 3473:   Parse *pParse,      /* The parsing context */
 3474:   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
 3475:   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
 3476:   int iTarget         /* Attempt to leave results in this register */
 3477: ){
 3478:   Expr *pX = pTerm->pExpr;
 3479:   Vdbe *v = pParse->pVdbe;
 3480:   int iReg;                  /* Register holding results */
 3481: 
 3482:   assert( iTarget>0 );
 3483:   if( pX->op==TK_EQ ){
 3484:     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
 3485:   }else if( pX->op==TK_ISNULL ){
 3486:     iReg = iTarget;
 3487:     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
 3488: #ifndef SQLITE_OMIT_SUBQUERY
 3489:   }else{
 3490:     int eType;
 3491:     int iTab;
 3492:     struct InLoop *pIn;
 3493: 
 3494:     assert( pX->op==TK_IN );
 3495:     iReg = iTarget;
 3496:     eType = sqlite3FindInIndex(pParse, pX, 0);
 3497:     iTab = pX->iTable;
 3498:     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
 3499:     assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
 3500:     if( pLevel->u.in.nIn==0 ){
 3501:       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
 3502:     }
 3503:     pLevel->u.in.nIn++;
 3504:     pLevel->u.in.aInLoop =
 3505:        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
 3506:                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
 3507:     pIn = pLevel->u.in.aInLoop;
 3508:     if( pIn ){
 3509:       pIn += pLevel->u.in.nIn - 1;
 3510:       pIn->iCur = iTab;
 3511:       if( eType==IN_INDEX_ROWID ){
 3512:         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
 3513:       }else{
 3514:         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
 3515:       }
 3516:       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
 3517:     }else{
 3518:       pLevel->u.in.nIn = 0;
 3519:     }
 3520: #endif
 3521:   }
 3522:   disableTerm(pLevel, pTerm);
 3523:   return iReg;
 3524: }
 3525: 
 3526: /*
 3527: ** Generate code that will evaluate all == and IN constraints for an
 3528: ** index.
 3529: **
 3530: ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
 3531: ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
 3532: ** The index has as many as three equality constraints, but in this
 3533: ** example, the third "c" value is an inequality.  So only two 
 3534: ** constraints are coded.  This routine will generate code to evaluate
 3535: ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
 3536: ** in consecutive registers and the index of the first register is returned.
 3537: **
 3538: ** In the example above nEq==2.  But this subroutine works for any value
 3539: ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
 3540: ** The only thing it does is allocate the pLevel->iMem memory cell and
 3541: ** compute the affinity string.
 3542: **
 3543: ** This routine always allocates at least one memory cell and returns
 3544: ** the index of that memory cell. The code that
 3545: ** calls this routine will use that memory cell to store the termination
 3546: ** key value of the loop.  If one or more IN operators appear, then
 3547: ** this routine allocates an additional nEq memory cells for internal
 3548: ** use.
 3549: **
 3550: ** Before returning, *pzAff is set to point to a buffer containing a
 3551: ** copy of the column affinity string of the index allocated using
 3552: ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
 3553: ** with equality constraints that use NONE affinity are set to
 3554: ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
 3555: **
 3556: **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
 3557: **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
 3558: **
 3559: ** In the example above, the index on t1(a) has TEXT affinity. But since
 3560: ** the right hand side of the equality constraint (t2.b) has NONE affinity,
 3561: ** no conversion should be attempted before using a t2.b value as part of
 3562: ** a key to search the index. Hence the first byte in the returned affinity
 3563: ** string in this example would be set to SQLITE_AFF_NONE.
 3564: */
 3565: static int codeAllEqualityTerms(
 3566:   Parse *pParse,        /* Parsing context */
 3567:   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
 3568:   WhereClause *pWC,     /* The WHERE clause */
 3569:   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
 3570:   int nExtraReg,        /* Number of extra registers to allocate */
 3571:   char **pzAff          /* OUT: Set to point to affinity string */
 3572: ){
 3573:   int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
 3574:   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
 3575:   Index *pIdx;                  /* The index being used for this loop */
 3576:   int iCur = pLevel->iTabCur;   /* The cursor of the table */
 3577:   WhereTerm *pTerm;             /* A single constraint term */
 3578:   int j;                        /* Loop counter */
 3579:   int regBase;                  /* Base register */
 3580:   int nReg;                     /* Number of registers to allocate */
 3581:   char *zAff;                   /* Affinity string to return */
 3582: 
 3583:   /* This module is only called on query plans that use an index. */
 3584:   assert( pLevel->plan.wsFlags & WHERE_INDEXED );
 3585:   pIdx = pLevel->plan.u.pIdx;
 3586: 
 3587:   /* Figure out how many memory cells we will need then allocate them.
 3588:   */
 3589:   regBase = pParse->nMem + 1;
 3590:   nReg = pLevel->plan.nEq + nExtraReg;
 3591:   pParse->nMem += nReg;
 3592: 
 3593:   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
 3594:   if( !zAff ){
 3595:     pParse->db->mallocFailed = 1;
 3596:   }
 3597: 
 3598:   /* Evaluate the equality constraints
 3599:   */
 3600:   assert( pIdx->nColumn>=nEq );
 3601:   for(j=0; j<nEq; j++){
 3602:     int r1;
 3603:     int k = pIdx->aiColumn[j];
 3604:     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
 3605:     if( NEVER(pTerm==0) ) break;
 3606:     /* The following true for indices with redundant columns. 
 3607:     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
 3608:     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
 3609:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
 3610:     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
 3611:     if( r1!=regBase+j ){
 3612:       if( nReg==1 ){
 3613:         sqlite3ReleaseTempReg(pParse, regBase);
 3614:         regBase = r1;
 3615:       }else{
 3616:         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
 3617:       }
 3618:     }
 3619:     testcase( pTerm->eOperator & WO_ISNULL );
 3620:     testcase( pTerm->eOperator & WO_IN );
 3621:     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
 3622:       Expr *pRight = pTerm->pExpr->pRight;
 3623:       sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
 3624:       if( zAff ){
 3625:         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
 3626:           zAff[j] = SQLITE_AFF_NONE;
 3627:         }
 3628:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
 3629:           zAff[j] = SQLITE_AFF_NONE;
 3630:         }
 3631:       }
 3632:     }
 3633:   }
 3634:   *pzAff = zAff;
 3635:   return regBase;
 3636: }
 3637: 
 3638: #ifndef SQLITE_OMIT_EXPLAIN
 3639: /*
 3640: ** This routine is a helper for explainIndexRange() below
 3641: **
 3642: ** pStr holds the text of an expression that we are building up one term
 3643: ** at a time.  This routine adds a new term to the end of the expression.
 3644: ** Terms are separated by AND so add the "AND" text for second and subsequent
 3645: ** terms only.
 3646: */
 3647: static void explainAppendTerm(
 3648:   StrAccum *pStr,             /* The text expression being built */
 3649:   int iTerm,                  /* Index of this term.  First is zero */
 3650:   const char *zColumn,        /* Name of the column */
 3651:   const char *zOp             /* Name of the operator */
 3652: ){
 3653:   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
 3654:   sqlite3StrAccumAppend(pStr, zColumn, -1);
 3655:   sqlite3StrAccumAppend(pStr, zOp, 1);
 3656:   sqlite3StrAccumAppend(pStr, "?", 1);
 3657: }
 3658: 
 3659: /*
 3660: ** Argument pLevel describes a strategy for scanning table pTab. This 
 3661: ** function returns a pointer to a string buffer containing a description
 3662: ** of the subset of table rows scanned by the strategy in the form of an
 3663: ** SQL expression. Or, if all rows are scanned, NULL is returned.
 3664: **
 3665: ** For example, if the query:
 3666: **
 3667: **   SELECT * FROM t1 WHERE a=1 AND b>2;
 3668: **
 3669: ** is run and there is an index on (a, b), then this function returns a
 3670: ** string similar to:
 3671: **
 3672: **   "a=? AND b>?"
 3673: **
 3674: ** The returned pointer points to memory obtained from sqlite3DbMalloc().
 3675: ** It is the responsibility of the caller to free the buffer when it is
 3676: ** no longer required.
 3677: */
 3678: static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
 3679:   WherePlan *pPlan = &pLevel->plan;
 3680:   Index *pIndex = pPlan->u.pIdx;
 3681:   int nEq = pPlan->nEq;
 3682:   int i, j;
 3683:   Column *aCol = pTab->aCol;
 3684:   int *aiColumn = pIndex->aiColumn;
 3685:   StrAccum txt;
 3686: 
 3687:   if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
 3688:     return 0;
 3689:   }
 3690:   sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
 3691:   txt.db = db;
 3692:   sqlite3StrAccumAppend(&txt, " (", 2);
 3693:   for(i=0; i<nEq; i++){
 3694:     explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
 3695:   }
 3696: 
 3697:   j = i;
 3698:   if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
 3699:     char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
 3700:     explainAppendTerm(&txt, i++, z, ">");
 3701:   }
 3702:   if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
 3703:     char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
 3704:     explainAppendTerm(&txt, i, z, "<");
 3705:   }
 3706:   sqlite3StrAccumAppend(&txt, ")", 1);
 3707:   return sqlite3StrAccumFinish(&txt);
 3708: }
 3709: 
 3710: /*
 3711: ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
 3712: ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
 3713: ** record is added to the output to describe the table scan strategy in 
 3714: ** pLevel.
 3715: */
 3716: static void explainOneScan(
 3717:   Parse *pParse,                  /* Parse context */
 3718:   SrcList *pTabList,              /* Table list this loop refers to */
 3719:   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
 3720:   int iLevel,                     /* Value for "level" column of output */
 3721:   int iFrom,                      /* Value for "from" column of output */
 3722:   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
 3723: ){
 3724:   if( pParse->explain==2 ){
 3725:     u32 flags = pLevel->plan.wsFlags;
 3726:     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
 3727:     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
 3728:     sqlite3 *db = pParse->db;     /* Database handle */
 3729:     char *zMsg;                   /* Text to add to EQP output */
 3730:     sqlite3_int64 nRow;           /* Expected number of rows visited by scan */
 3731:     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
 3732:     int isSearch;                 /* True for a SEARCH. False for SCAN. */
 3733: 
 3734:     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
 3735: 
 3736:     isSearch = (pLevel->plan.nEq>0)
 3737:              || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
 3738:              || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
 3739: 
 3740:     zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
 3741:     if( pItem->pSelect ){
 3742:       zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
 3743:     }else{
 3744:       zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
 3745:     }
 3746: 
 3747:     if( pItem->zAlias ){
 3748:       zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
 3749:     }
 3750:     if( (flags & WHERE_INDEXED)!=0 ){
 3751:       char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
 3752:       zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 
 3753:           ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
 3754:           ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
 3755:           ((flags & WHERE_TEMP_INDEX)?"":" "),
 3756:           ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
 3757:           zWhere
 3758:       );
 3759:       sqlite3DbFree(db, zWhere);
 3760:     }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 3761:       zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
 3762: 
 3763:       if( flags&WHERE_ROWID_EQ ){
 3764:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
 3765:       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
 3766:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
 3767:       }else if( flags&WHERE_BTM_LIMIT ){
 3768:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
 3769:       }else if( flags&WHERE_TOP_LIMIT ){
 3770:         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
 3771:       }
 3772:     }
 3773: #ifndef SQLITE_OMIT_VIRTUALTABLE
 3774:     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
 3775:       sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
 3776:       zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
 3777:                   pVtabIdx->idxNum, pVtabIdx->idxStr);
 3778:     }
 3779: #endif
 3780:     if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
 3781:       testcase( wctrlFlags & WHERE_ORDERBY_MIN );
 3782:       nRow = 1;
 3783:     }else{
 3784:       nRow = (sqlite3_int64)pLevel->plan.nRow;
 3785:     }
 3786:     zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
 3787:     sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
 3788:   }
 3789: }
 3790: #else
 3791: # define explainOneScan(u,v,w,x,y,z)
 3792: #endif /* SQLITE_OMIT_EXPLAIN */
 3793: 
 3794: 
 3795: /*
 3796: ** Generate code for the start of the iLevel-th loop in the WHERE clause
 3797: ** implementation described by pWInfo.
 3798: */
 3799: static Bitmask codeOneLoopStart(
 3800:   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
 3801:   int iLevel,          /* Which level of pWInfo->a[] should be coded */
 3802:   u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
 3803:   Bitmask notReady,    /* Which tables are currently available */
 3804:   Expr *pWhere         /* Complete WHERE clause */
 3805: ){
 3806:   int j, k;            /* Loop counters */
 3807:   int iCur;            /* The VDBE cursor for the table */
 3808:   int addrNxt;         /* Where to jump to continue with the next IN case */
 3809:   int omitTable;       /* True if we use the index only */
 3810:   int bRev;            /* True if we need to scan in reverse order */
 3811:   WhereLevel *pLevel;  /* The where level to be coded */
 3812:   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
 3813:   WhereTerm *pTerm;               /* A WHERE clause term */
 3814:   Parse *pParse;                  /* Parsing context */
 3815:   Vdbe *v;                        /* The prepared stmt under constructions */
 3816:   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
 3817:   int addrBrk;                    /* Jump here to break out of the loop */
 3818:   int addrCont;                   /* Jump here to continue with next cycle */
 3819:   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
 3820:   int iReleaseReg = 0;      /* Temp register to free before returning */
 3821: 
 3822:   pParse = pWInfo->pParse;
 3823:   v = pParse->pVdbe;
 3824:   pWC = pWInfo->pWC;
 3825:   pLevel = &pWInfo->a[iLevel];
 3826:   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
 3827:   iCur = pTabItem->iCursor;
 3828:   bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
 3829:   omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 
 3830:            && (wctrlFlags & WHERE_FORCE_TABLE)==0;
 3831: 
 3832:   /* Create labels for the "break" and "continue" instructions
 3833:   ** for the current loop.  Jump to addrBrk to break out of a loop.
 3834:   ** Jump to cont to go immediately to the next iteration of the
 3835:   ** loop.
 3836:   **
 3837:   ** When there is an IN operator, we also have a "addrNxt" label that
 3838:   ** means to continue with the next IN value combination.  When
 3839:   ** there are no IN operators in the constraints, the "addrNxt" label
 3840:   ** is the same as "addrBrk".
 3841:   */
 3842:   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
 3843:   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
 3844: 
 3845:   /* If this is the right table of a LEFT OUTER JOIN, allocate and
 3846:   ** initialize a memory cell that records if this table matches any
 3847:   ** row of the left table of the join.
 3848:   */
 3849:   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
 3850:     pLevel->iLeftJoin = ++pParse->nMem;
 3851:     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
 3852:     VdbeComment((v, "init LEFT JOIN no-match flag"));
 3853:   }
 3854: 
 3855: #ifndef SQLITE_OMIT_VIRTUALTABLE
 3856:   if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
 3857:     /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
 3858:     **          to access the data.
 3859:     */
 3860:     int iReg;   /* P3 Value for OP_VFilter */
 3861:     sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
 3862:     int nConstraint = pVtabIdx->nConstraint;
 3863:     struct sqlite3_index_constraint_usage *aUsage =
 3864:                                                 pVtabIdx->aConstraintUsage;
 3865:     const struct sqlite3_index_constraint *aConstraint =
 3866:                                                 pVtabIdx->aConstraint;
 3867: 
 3868:     sqlite3ExprCachePush(pParse);
 3869:     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
 3870:     for(j=1; j<=nConstraint; j++){
 3871:       for(k=0; k<nConstraint; k++){
 3872:         if( aUsage[k].argvIndex==j ){
 3873:           int iTerm = aConstraint[k].iTermOffset;
 3874:           sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
 3875:           break;
 3876:         }
 3877:       }
 3878:       if( k==nConstraint ) break;
 3879:     }
 3880:     sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
 3881:     sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
 3882:     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
 3883:                       pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
 3884:     pVtabIdx->needToFreeIdxStr = 0;
 3885:     for(j=0; j<nConstraint; j++){
 3886:       if( aUsage[j].omit ){
 3887:         int iTerm = aConstraint[j].iTermOffset;
 3888:         disableTerm(pLevel, &pWC->a[iTerm]);
 3889:       }
 3890:     }
 3891:     pLevel->op = OP_VNext;
 3892:     pLevel->p1 = iCur;
 3893:     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
 3894:     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
 3895:     sqlite3ExprCachePop(pParse, 1);
 3896:   }else
 3897: #endif /* SQLITE_OMIT_VIRTUALTABLE */
 3898: 
 3899:   if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
 3900:     /* Case 1:  We can directly reference a single row using an
 3901:     **          equality comparison against the ROWID field.  Or
 3902:     **          we reference multiple rows using a "rowid IN (...)"
 3903:     **          construct.
 3904:     */
 3905:     iReleaseReg = sqlite3GetTempReg(pParse);
 3906:     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 3907:     assert( pTerm!=0 );
 3908:     assert( pTerm->pExpr!=0 );
 3909:     assert( pTerm->leftCursor==iCur );
 3910:     assert( omitTable==0 );
 3911:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
 3912:     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
 3913:     addrNxt = pLevel->addrNxt;
 3914:     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
 3915:     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
 3916:     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
 3917:     VdbeComment((v, "pk"));
 3918:     pLevel->op = OP_Noop;
 3919:   }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
 3920:     /* Case 2:  We have an inequality comparison against the ROWID field.
 3921:     */
 3922:     int testOp = OP_Noop;
 3923:     int start;
 3924:     int memEndValue = 0;
 3925:     WhereTerm *pStart, *pEnd;
 3926: 
 3927:     assert( omitTable==0 );
 3928:     pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
 3929:     pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
 3930:     if( bRev ){
 3931:       pTerm = pStart;
 3932:       pStart = pEnd;
 3933:       pEnd = pTerm;
 3934:     }
 3935:     if( pStart ){
 3936:       Expr *pX;             /* The expression that defines the start bound */
 3937:       int r1, rTemp;        /* Registers for holding the start boundary */
 3938: 
 3939:       /* The following constant maps TK_xx codes into corresponding 
 3940:       ** seek opcodes.  It depends on a particular ordering of TK_xx
 3941:       */
 3942:       const u8 aMoveOp[] = {
 3943:            /* TK_GT */  OP_SeekGt,
 3944:            /* TK_LE */  OP_SeekLe,
 3945:            /* TK_LT */  OP_SeekLt,
 3946:            /* TK_GE */  OP_SeekGe
 3947:       };
 3948:       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
 3949:       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
 3950:       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
 3951: 
 3952:       testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
 3953:       pX = pStart->pExpr;
 3954:       assert( pX!=0 );
 3955:       assert( pStart->leftCursor==iCur );
 3956:       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
 3957:       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
 3958:       VdbeComment((v, "pk"));
 3959:       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
 3960:       sqlite3ReleaseTempReg(pParse, rTemp);
 3961:       disableTerm(pLevel, pStart);
 3962:     }else{
 3963:       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
 3964:     }
 3965:     if( pEnd ){
 3966:       Expr *pX;
 3967:       pX = pEnd->pExpr;
 3968:       assert( pX!=0 );
 3969:       assert( pEnd->leftCursor==iCur );
 3970:       testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
 3971:       memEndValue = ++pParse->nMem;
 3972:       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
 3973:       if( pX->op==TK_LT || pX->op==TK_GT ){
 3974:         testOp = bRev ? OP_Le : OP_Ge;
 3975:       }else{
 3976:         testOp = bRev ? OP_Lt : OP_Gt;
 3977:       }
 3978:       disableTerm(pLevel, pEnd);
 3979:     }
 3980:     start = sqlite3VdbeCurrentAddr(v);
 3981:     pLevel->op = bRev ? OP_Prev : OP_Next;
 3982:     pLevel->p1 = iCur;
 3983:     pLevel->p2 = start;
 3984:     if( pStart==0 && pEnd==0 ){
 3985:       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
 3986:     }else{
 3987:       assert( pLevel->p5==0 );
 3988:     }
 3989:     if( testOp!=OP_Noop ){
 3990:       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
 3991:       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
 3992:       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
 3993:       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
 3994:       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
 3995:     }
 3996:   }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
 3997:     /* Case 3: A scan using an index.
 3998:     **
 3999:     **         The WHERE clause may contain zero or more equality 
 4000:     **         terms ("==" or "IN" operators) that refer to the N
 4001:     **         left-most columns of the index. It may also contain
 4002:     **         inequality constraints (>, <, >= or <=) on the indexed
 4003:     **         column that immediately follows the N equalities. Only 
 4004:     **         the right-most column can be an inequality - the rest must
 4005:     **         use the "==" and "IN" operators. For example, if the 
 4006:     **         index is on (x,y,z), then the following clauses are all 
 4007:     **         optimized:
 4008:     **
 4009:     **            x=5
 4010:     **            x=5 AND y=10
 4011:     **            x=5 AND y<10
 4012:     **            x=5 AND y>5 AND y<10
 4013:     **            x=5 AND y=5 AND z<=10
 4014:     **
 4015:     **         The z<10 term of the following cannot be used, only
 4016:     **         the x=5 term:
 4017:     **
 4018:     **            x=5 AND z<10
 4019:     **
 4020:     **         N may be zero if there are inequality constraints.
 4021:     **         If there are no inequality constraints, then N is at
 4022:     **         least one.
 4023:     **
 4024:     **         This case is also used when there are no WHERE clause
 4025:     **         constraints but an index is selected anyway, in order
 4026:     **         to force the output order to conform to an ORDER BY.
 4027:     */  
 4028:     static const u8 aStartOp[] = {
 4029:       0,
 4030:       0,
 4031:       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
 4032:       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
 4033:       OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */
 4034:       OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
 4035:       OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
 4036:       OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
 4037:     };
 4038:     static const u8 aEndOp[] = {
 4039:       OP_Noop,             /* 0: (!end_constraints) */
 4040:       OP_IdxGE,            /* 1: (end_constraints && !bRev) */
 4041:       OP_IdxLT             /* 2: (end_constraints && bRev) */
 4042:     };
 4043:     int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
 4044:     int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
 4045:     int regBase;                 /* Base register holding constraint values */
 4046:     int r1;                      /* Temp register */
 4047:     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
 4048:     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
 4049:     int startEq;                 /* True if range start uses ==, >= or <= */
 4050:     int endEq;                   /* True if range end uses ==, >= or <= */
 4051:     int start_constraints;       /* Start of range is constrained */
 4052:     int nConstraint;             /* Number of constraint terms */
 4053:     Index *pIdx;                 /* The index we will be using */
 4054:     int iIdxCur;                 /* The VDBE cursor for the index */
 4055:     int nExtraReg = 0;           /* Number of extra registers needed */
 4056:     int op;                      /* Instruction opcode */
 4057:     char *zStartAff;             /* Affinity for start of range constraint */
 4058:     char *zEndAff;               /* Affinity for end of range constraint */
 4059: 
 4060:     pIdx = pLevel->plan.u.pIdx;
 4061:     iIdxCur = pLevel->iIdxCur;
 4062:     k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]);
 4063: 
 4064:     /* If this loop satisfies a sort order (pOrderBy) request that 
 4065:     ** was passed to this function to implement a "SELECT min(x) ..." 
 4066:     ** query, then the caller will only allow the loop to run for
 4067:     ** a single iteration. This means that the first row returned
 4068:     ** should not have a NULL value stored in 'x'. If column 'x' is
 4069:     ** the first one after the nEq equality constraints in the index,
 4070:     ** this requires some special handling.
 4071:     */
 4072:     if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
 4073:      && (pLevel->plan.wsFlags&WHERE_ORDERBY)
 4074:      && (pIdx->nColumn>nEq)
 4075:     ){
 4076:       /* assert( pOrderBy->nExpr==1 ); */
 4077:       /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
 4078:       isMinQuery = 1;
 4079:       nExtraReg = 1;
 4080:     }
 4081: 
 4082:     /* Find any inequality constraint terms for the start and end 
 4083:     ** of the range. 
 4084:     */
 4085:     if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
 4086:       pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
 4087:       nExtraReg = 1;
 4088:     }
 4089:     if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
 4090:       pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
 4091:       nExtraReg = 1;
 4092:     }
 4093: 
 4094:     /* Generate code to evaluate all constraint terms using == or IN
 4095:     ** and store the values of those terms in an array of registers
 4096:     ** starting at regBase.
 4097:     */
 4098:     regBase = codeAllEqualityTerms(
 4099:         pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
 4100:     );
 4101:     zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
 4102:     addrNxt = pLevel->addrNxt;
 4103: 
 4104:     /* If we are doing a reverse order scan on an ascending index, or
 4105:     ** a forward order scan on a descending index, interchange the 
 4106:     ** start and end terms (pRangeStart and pRangeEnd).
 4107:     */
 4108:     if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
 4109:      || (bRev && pIdx->nColumn==nEq)
 4110:     ){
 4111:       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
 4112:     }
 4113: 
 4114:     testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
 4115:     testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
 4116:     testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
 4117:     testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
 4118:     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
 4119:     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
 4120:     start_constraints = pRangeStart || nEq>0;
 4121: 
 4122:     /* Seek the index cursor to the start of the range. */
 4123:     nConstraint = nEq;
 4124:     if( pRangeStart ){
 4125:       Expr *pRight = pRangeStart->pExpr->pRight;
 4126:       sqlite3ExprCode(pParse, pRight, regBase+nEq);
 4127:       if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
 4128:         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
 4129:       }
 4130:       if( zStartAff ){
 4131:         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
 4132:           /* Since the comparison is to be performed with no conversions
 4133:           ** applied to the operands, set the affinity to apply to pRight to 
 4134:           ** SQLITE_AFF_NONE.  */
 4135:           zStartAff[nEq] = SQLITE_AFF_NONE;
 4136:         }
 4137:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
 4138:           zStartAff[nEq] = SQLITE_AFF_NONE;
 4139:         }
 4140:       }  
 4141:       nConstraint++;
 4142:       testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
 4143:     }else if( isMinQuery ){
 4144:       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
 4145:       nConstraint++;
 4146:       startEq = 0;
 4147:       start_constraints = 1;
 4148:     }
 4149:     codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
 4150:     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
 4151:     assert( op!=0 );
 4152:     testcase( op==OP_Rewind );
 4153:     testcase( op==OP_Last );
 4154:     testcase( op==OP_SeekGt );
 4155:     testcase( op==OP_SeekGe );
 4156:     testcase( op==OP_SeekLe );
 4157:     testcase( op==OP_SeekLt );
 4158:     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
 4159: 
 4160:     /* Load the value for the inequality constraint at the end of the
 4161:     ** range (if any).
 4162:     */
 4163:     nConstraint = nEq;
 4164:     if( pRangeEnd ){
 4165:       Expr *pRight = pRangeEnd->pExpr->pRight;
 4166:       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
 4167:       sqlite3ExprCode(pParse, pRight, regBase+nEq);
 4168:       if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
 4169:         sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
 4170:       }
 4171:       if( zEndAff ){
 4172:         if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
 4173:           /* Since the comparison is to be performed with no conversions
 4174:           ** applied to the operands, set the affinity to apply to pRight to 
 4175:           ** SQLITE_AFF_NONE.  */
 4176:           zEndAff[nEq] = SQLITE_AFF_NONE;
 4177:         }
 4178:         if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
 4179:           zEndAff[nEq] = SQLITE_AFF_NONE;
 4180:         }
 4181:       }  
 4182:       codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
 4183:       nConstraint++;
 4184:       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
 4185:     }
 4186:     sqlite3DbFree(pParse->db, zStartAff);
 4187:     sqlite3DbFree(pParse->db, zEndAff);
 4188: 
 4189:     /* Top of the loop body */
 4190:     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
 4191: 
 4192:     /* Check if the index cursor is past the end of the range. */
 4193:     op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
 4194:     testcase( op==OP_Noop );
 4195:     testcase( op==OP_IdxGE );
 4196:     testcase( op==OP_IdxLT );
 4197:     if( op!=OP_Noop ){
 4198:       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
 4199:       sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
 4200:     }
 4201: 
 4202:     /* If there are inequality constraints, check that the value
 4203:     ** of the table column that the inequality contrains is not NULL.
 4204:     ** If it is, jump to the next iteration of the loop.
 4205:     */
 4206:     r1 = sqlite3GetTempReg(pParse);
 4207:     testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
 4208:     testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
 4209:     if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
 4210:       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
 4211:       sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
 4212:     }
 4213:     sqlite3ReleaseTempReg(pParse, r1);
 4214: 
 4215:     /* Seek the table cursor, if required */
 4216:     disableTerm(pLevel, pRangeStart);
 4217:     disableTerm(pLevel, pRangeEnd);
 4218:     if( !omitTable ){
 4219:       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
 4220:       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
 4221:       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
 4222:       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
 4223:     }
 4224: 
 4225:     /* Record the instruction used to terminate the loop. Disable 
 4226:     ** WHERE clause terms made redundant by the index range scan.
 4227:     */
 4228:     if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
 4229:       pLevel->op = OP_Noop;
 4230:     }else if( bRev ){
 4231:       pLevel->op = OP_Prev;
 4232:     }else{
 4233:       pLevel->op = OP_Next;
 4234:     }
 4235:     pLevel->p1 = iIdxCur;
 4236:   }else
 4237: 
 4238: #ifndef SQLITE_OMIT_OR_OPTIMIZATION
 4239:   if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
 4240:     /* Case 4:  Two or more separately indexed terms connected by OR
 4241:     **
 4242:     ** Example:
 4243:     **
 4244:     **   CREATE TABLE t1(a,b,c,d);
 4245:     **   CREATE INDEX i1 ON t1(a);
 4246:     **   CREATE INDEX i2 ON t1(b);
 4247:     **   CREATE INDEX i3 ON t1(c);
 4248:     **
 4249:     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
 4250:     **
 4251:     ** In the example, there are three indexed terms connected by OR.
 4252:     ** The top of the loop looks like this:
 4253:     **
 4254:     **          Null       1                # Zero the rowset in reg 1
 4255:     **
 4256:     ** Then, for each indexed term, the following. The arguments to
 4257:     ** RowSetTest are such that the rowid of the current row is inserted
 4258:     ** into the RowSet. If it is already present, control skips the
 4259:     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
 4260:     **
 4261:     **        sqlite3WhereBegin(<term>)
 4262:     **          RowSetTest                  # Insert rowid into rowset
 4263:     **          Gosub      2 A
 4264:     **        sqlite3WhereEnd()
 4265:     **
 4266:     ** Following the above, code to terminate the loop. Label A, the target
 4267:     ** of the Gosub above, jumps to the instruction right after the Goto.
 4268:     **
 4269:     **          Null       1                # Zero the rowset in reg 1
 4270:     **          Goto       B                # The loop is finished.
 4271:     **
 4272:     **       A: <loop body>                 # Return data, whatever.
 4273:     **
 4274:     **          Return     2                # Jump back to the Gosub
 4275:     **
 4276:     **       B: <after the loop>
 4277:     **
 4278:     */
 4279:     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
 4280:     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
 4281: 
 4282:     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
 4283:     int regRowset = 0;                        /* Register for RowSet object */
 4284:     int regRowid = 0;                         /* Register holding rowid */
 4285:     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
 4286:     int iRetInit;                             /* Address of regReturn init */
 4287:     int untestedTerms = 0;             /* Some terms not completely tested */
 4288:     int ii;                            /* Loop counter */
 4289:     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
 4290:    
 4291:     pTerm = pLevel->plan.u.pTerm;
 4292:     assert( pTerm!=0 );
 4293:     assert( pTerm->eOperator==WO_OR );
 4294:     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
 4295:     pOrWc = &pTerm->u.pOrInfo->wc;
 4296:     pLevel->op = OP_Return;
 4297:     pLevel->p1 = regReturn;
 4298: 
 4299:     /* Set up a new SrcList ni pOrTab containing the table being scanned
 4300:     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
 4301:     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
 4302:     */
 4303:     if( pWInfo->nLevel>1 ){
 4304:       int nNotReady;                 /* The number of notReady tables */
 4305:       struct SrcList_item *origSrc;     /* Original list of tables */
 4306:       nNotReady = pWInfo->nLevel - iLevel - 1;
 4307:       pOrTab = sqlite3StackAllocRaw(pParse->db,
 4308:                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
 4309:       if( pOrTab==0 ) return notReady;
 4310:       pOrTab->nAlloc = (i16)(nNotReady + 1);
 4311:       pOrTab->nSrc = pOrTab->nAlloc;
 4312:       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
 4313:       origSrc = pWInfo->pTabList->a;
 4314:       for(k=1; k<=nNotReady; k++){
 4315:         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
 4316:       }
 4317:     }else{
 4318:       pOrTab = pWInfo->pTabList;
 4319:     }
 4320: 
 4321:     /* Initialize the rowset register to contain NULL. An SQL NULL is 
 4322:     ** equivalent to an empty rowset.
 4323:     **
 4324:     ** Also initialize regReturn to contain the address of the instruction 
 4325:     ** immediately following the OP_Return at the bottom of the loop. This
 4326:     ** is required in a few obscure LEFT JOIN cases where control jumps
 4327:     ** over the top of the loop into the body of it. In this case the 
 4328:     ** correct response for the end-of-loop code (the OP_Return) is to 
 4329:     ** fall through to the next instruction, just as an OP_Next does if
 4330:     ** called on an uninitialized cursor.
 4331:     */
 4332:     if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
 4333:       regRowset = ++pParse->nMem;
 4334:       regRowid = ++pParse->nMem;
 4335:       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
 4336:     }
 4337:     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
 4338: 
 4339:     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
 4340:     ** Then for every term xN, evaluate as the subexpression: xN AND z
 4341:     ** That way, terms in y that are factored into the disjunction will
 4342:     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
 4343:     */
 4344:     if( pWC->nTerm>1 ){
 4345:       pAndExpr = sqlite3ExprAlloc(pParse->db, TK_AND, 0, 0);
 4346:       pAndExpr->pRight = pWhere;
 4347:     }
 4348: 
 4349:     for(ii=0; ii<pOrWc->nTerm; ii++){
 4350:       WhereTerm *pOrTerm = &pOrWc->a[ii];
 4351:       if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
 4352:         WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
 4353:         Expr *pOrExpr = pOrTerm->pExpr;
 4354:         if( pAndExpr ){
 4355:           pAndExpr->pLeft = pOrExpr;
 4356:           pOrExpr = pAndExpr;
 4357:         }
 4358:         /* Loop through table entries that match term pOrTerm. */
 4359:         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
 4360:                         WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
 4361:                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
 4362:         if( pSubWInfo ){
 4363:           explainOneScan(
 4364:               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
 4365:           );
 4366:           if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
 4367:             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
 4368:             int r;
 4369:             r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
 4370:                                          regRowid);
 4371:             sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
 4372:                                  sqlite3VdbeCurrentAddr(v)+2, r, iSet);
 4373:           }
 4374:           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
 4375: 
 4376:           /* The pSubWInfo->untestedTerms flag means that this OR term
 4377:           ** contained one or more AND term from a notReady table.  The
 4378:           ** terms from the notReady table could not be tested and will
 4379:           ** need to be tested later.
 4380:           */
 4381:           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
 4382: 
 4383:           /* Finish the loop through table entries that match term pOrTerm. */
 4384:           sqlite3WhereEnd(pSubWInfo);
 4385:         }
 4386:       }
 4387:     }
 4388:     sqlite3DbFree(pParse->db, pAndExpr);
 4389:     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
 4390:     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
 4391:     sqlite3VdbeResolveLabel(v, iLoopBody);
 4392: 
 4393:     if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
 4394:     if( !untestedTerms ) disableTerm(pLevel, pTerm);
 4395:   }else
 4396: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 4397: 
 4398:   {
 4399:     /* Case 5:  There is no usable index.  We must do a complete
 4400:     **          scan of the entire table.
 4401:     */
 4402:     static const u8 aStep[] = { OP_Next, OP_Prev };
 4403:     static const u8 aStart[] = { OP_Rewind, OP_Last };
 4404:     assert( bRev==0 || bRev==1 );
 4405:     assert( omitTable==0 );
 4406:     pLevel->op = aStep[bRev];
 4407:     pLevel->p1 = iCur;
 4408:     pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
 4409:     pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
 4410:   }
 4411:   notReady &= ~getMask(pWC->pMaskSet, iCur);
 4412: 
 4413:   /* Insert code to test every subexpression that can be completely
 4414:   ** computed using the current set of tables.
 4415:   **
 4416:   ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
 4417:   ** the use of indices become tests that are evaluated against each row of
 4418:   ** the relevant input tables.
 4419:   */
 4420:   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
 4421:     Expr *pE;
 4422:     testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
 4423:     testcase( pTerm->wtFlags & TERM_CODED );
 4424:     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 4425:     if( (pTerm->prereqAll & notReady)!=0 ){
 4426:       testcase( pWInfo->untestedTerms==0
 4427:                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
 4428:       pWInfo->untestedTerms = 1;
 4429:       continue;
 4430:     }
 4431:     pE = pTerm->pExpr;
 4432:     assert( pE!=0 );
 4433:     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
 4434:       continue;
 4435:     }
 4436:     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
 4437:     pTerm->wtFlags |= TERM_CODED;
 4438:   }
 4439: 
 4440:   /* For a LEFT OUTER JOIN, generate code that will record the fact that
 4441:   ** at least one row of the right table has matched the left table.  
 4442:   */
 4443:   if( pLevel->iLeftJoin ){
 4444:     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
 4445:     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
 4446:     VdbeComment((v, "record LEFT JOIN hit"));
 4447:     sqlite3ExprCacheClear(pParse);
 4448:     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
 4449:       testcase( pTerm->wtFlags & TERM_VIRTUAL );  /* IMP: R-30575-11662 */
 4450:       testcase( pTerm->wtFlags & TERM_CODED );
 4451:       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 4452:       if( (pTerm->prereqAll & notReady)!=0 ){
 4453:         assert( pWInfo->untestedTerms );
 4454:         continue;
 4455:       }
 4456:       assert( pTerm->pExpr );
 4457:       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
 4458:       pTerm->wtFlags |= TERM_CODED;
 4459:     }
 4460:   }
 4461:   sqlite3ReleaseTempReg(pParse, iReleaseReg);
 4462: 
 4463:   return notReady;
 4464: }
 4465: 
 4466: #if defined(SQLITE_TEST)
 4467: /*
 4468: ** The following variable holds a text description of query plan generated
 4469: ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
 4470: ** overwrites the previous.  This information is used for testing and
 4471: ** analysis only.
 4472: */
 4473: char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
 4474: static int nQPlan = 0;              /* Next free slow in _query_plan[] */
 4475: 
 4476: #endif /* SQLITE_TEST */
 4477: 
 4478: 
 4479: /*
 4480: ** Free a WhereInfo structure
 4481: */
 4482: static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
 4483:   if( ALWAYS(pWInfo) ){
 4484:     int i;
 4485:     for(i=0; i<pWInfo->nLevel; i++){
 4486:       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
 4487:       if( pInfo ){
 4488:         /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
 4489:         if( pInfo->needToFreeIdxStr ){
 4490:           sqlite3_free(pInfo->idxStr);
 4491:         }
 4492:         sqlite3DbFree(db, pInfo);
 4493:       }
 4494:       if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
 4495:         Index *pIdx = pWInfo->a[i].plan.u.pIdx;
 4496:         if( pIdx ){
 4497:           sqlite3DbFree(db, pIdx->zColAff);
 4498:           sqlite3DbFree(db, pIdx);
 4499:         }
 4500:       }
 4501:     }
 4502:     whereClauseClear(pWInfo->pWC);
 4503:     sqlite3DbFree(db, pWInfo);
 4504:   }
 4505: }
 4506: 
 4507: 
 4508: /*
 4509: ** Generate the beginning of the loop used for WHERE clause processing.
 4510: ** The return value is a pointer to an opaque structure that contains
 4511: ** information needed to terminate the loop.  Later, the calling routine
 4512: ** should invoke sqlite3WhereEnd() with the return value of this function
 4513: ** in order to complete the WHERE clause processing.
 4514: **
 4515: ** If an error occurs, this routine returns NULL.
 4516: **
 4517: ** The basic idea is to do a nested loop, one loop for each table in
 4518: ** the FROM clause of a select.  (INSERT and UPDATE statements are the
 4519: ** same as a SELECT with only a single table in the FROM clause.)  For
 4520: ** example, if the SQL is this:
 4521: **
 4522: **       SELECT * FROM t1, t2, t3 WHERE ...;
 4523: **
 4524: ** Then the code generated is conceptually like the following:
 4525: **
 4526: **      foreach row1 in t1 do       \    Code generated
 4527: **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
 4528: **          foreach row3 in t3 do   /
 4529: **            ...
 4530: **          end                     \    Code generated
 4531: **        end                        |-- by sqlite3WhereEnd()
 4532: **      end                         /
 4533: **
 4534: ** Note that the loops might not be nested in the order in which they
 4535: ** appear in the FROM clause if a different order is better able to make
 4536: ** use of indices.  Note also that when the IN operator appears in
 4537: ** the WHERE clause, it might result in additional nested loops for
 4538: ** scanning through all values on the right-hand side of the IN.
 4539: **
 4540: ** There are Btree cursors associated with each table.  t1 uses cursor
 4541: ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
 4542: ** And so forth.  This routine generates code to open those VDBE cursors
 4543: ** and sqlite3WhereEnd() generates the code to close them.
 4544: **
 4545: ** The code that sqlite3WhereBegin() generates leaves the cursors named
 4546: ** in pTabList pointing at their appropriate entries.  The [...] code
 4547: ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
 4548: ** data from the various tables of the loop.
 4549: **
 4550: ** If the WHERE clause is empty, the foreach loops must each scan their
 4551: ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
 4552: ** the tables have indices and there are terms in the WHERE clause that
 4553: ** refer to those indices, a complete table scan can be avoided and the
 4554: ** code will run much faster.  Most of the work of this routine is checking
 4555: ** to see if there are indices that can be used to speed up the loop.
 4556: **
 4557: ** Terms of the WHERE clause are also used to limit which rows actually
 4558: ** make it to the "..." in the middle of the loop.  After each "foreach",
 4559: ** terms of the WHERE clause that use only terms in that loop and outer
 4560: ** loops are evaluated and if false a jump is made around all subsequent
 4561: ** inner loops (or around the "..." if the test occurs within the inner-
 4562: ** most loop)
 4563: **
 4564: ** OUTER JOINS
 4565: **
 4566: ** An outer join of tables t1 and t2 is conceptally coded as follows:
 4567: **
 4568: **    foreach row1 in t1 do
 4569: **      flag = 0
 4570: **      foreach row2 in t2 do
 4571: **        start:
 4572: **          ...
 4573: **          flag = 1
 4574: **      end
 4575: **      if flag==0 then
 4576: **        move the row2 cursor to a null row
 4577: **        goto start
 4578: **      fi
 4579: **    end
 4580: **
 4581: ** ORDER BY CLAUSE PROCESSING
 4582: **
 4583: ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
 4584: ** if there is one.  If there is no ORDER BY clause or if this routine
 4585: ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
 4586: **
 4587: ** If an index can be used so that the natural output order of the table
 4588: ** scan is correct for the ORDER BY clause, then that index is used and
 4589: ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
 4590: ** unnecessary sort of the result set if an index appropriate for the
 4591: ** ORDER BY clause already exists.
 4592: **
 4593: ** If the where clause loops cannot be arranged to provide the correct
 4594: ** output order, then the *ppOrderBy is unchanged.
 4595: */
 4596: WhereInfo *sqlite3WhereBegin(
 4597:   Parse *pParse,        /* The parser context */
 4598:   SrcList *pTabList,    /* A list of all tables to be scanned */
 4599:   Expr *pWhere,         /* The WHERE clause */
 4600:   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
 4601:   ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
 4602:   u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
 4603: ){
 4604:   int i;                     /* Loop counter */
 4605:   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
 4606:   int nTabList;              /* Number of elements in pTabList */
 4607:   WhereInfo *pWInfo;         /* Will become the return value of this function */
 4608:   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
 4609:   Bitmask notReady;          /* Cursors that are not yet positioned */
 4610:   WhereMaskSet *pMaskSet;    /* The expression mask set */
 4611:   WhereClause *pWC;               /* Decomposition of the WHERE clause */
 4612:   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
 4613:   WhereLevel *pLevel;             /* A single level in the pWInfo list */
 4614:   int iFrom;                      /* First unused FROM clause element */
 4615:   int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
 4616:   sqlite3 *db;               /* Database connection */
 4617: 
 4618:   /* The number of tables in the FROM clause is limited by the number of
 4619:   ** bits in a Bitmask 
 4620:   */
 4621:   testcase( pTabList->nSrc==BMS );
 4622:   if( pTabList->nSrc>BMS ){
 4623:     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
 4624:     return 0;
 4625:   }
 4626: 
 4627:   /* This function normally generates a nested loop for all tables in 
 4628:   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
 4629:   ** only generate code for the first table in pTabList and assume that
 4630:   ** any cursors associated with subsequent tables are uninitialized.
 4631:   */
 4632:   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
 4633: 
 4634:   /* Allocate and initialize the WhereInfo structure that will become the
 4635:   ** return value. A single allocation is used to store the WhereInfo
 4636:   ** struct, the contents of WhereInfo.a[], the WhereClause structure
 4637:   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
 4638:   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
 4639:   ** some architectures. Hence the ROUND8() below.
 4640:   */
 4641:   db = pParse->db;
 4642:   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
 4643:   pWInfo = sqlite3DbMallocZero(db, 
 4644:       nByteWInfo + 
 4645:       sizeof(WhereClause) +
 4646:       sizeof(WhereMaskSet)
 4647:   );
 4648:   if( db->mallocFailed ){
 4649:     sqlite3DbFree(db, pWInfo);
 4650:     pWInfo = 0;
 4651:     goto whereBeginError;
 4652:   }
 4653:   pWInfo->nLevel = nTabList;
 4654:   pWInfo->pParse = pParse;
 4655:   pWInfo->pTabList = pTabList;
 4656:   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
 4657:   pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
 4658:   pWInfo->wctrlFlags = wctrlFlags;
 4659:   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
 4660:   pMaskSet = (WhereMaskSet*)&pWC[1];
 4661: 
 4662:   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
 4663:   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
 4664:   if( db->flags & SQLITE_DistinctOpt ) pDistinct = 0;
 4665: 
 4666:   /* Split the WHERE clause into separate subexpressions where each
 4667:   ** subexpression is separated by an AND operator.
 4668:   */
 4669:   initMaskSet(pMaskSet);
 4670:   whereClauseInit(pWC, pParse, pMaskSet, wctrlFlags);
 4671:   sqlite3ExprCodeConstants(pParse, pWhere);
 4672:   whereSplit(pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
 4673:     
 4674:   /* Special case: a WHERE clause that is constant.  Evaluate the
 4675:   ** expression and either jump over all of the code or fall thru.
 4676:   */
 4677:   if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
 4678:     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
 4679:     pWhere = 0;
 4680:   }
 4681: 
 4682:   /* Assign a bit from the bitmask to every term in the FROM clause.
 4683:   **
 4684:   ** When assigning bitmask values to FROM clause cursors, it must be
 4685:   ** the case that if X is the bitmask for the N-th FROM clause term then
 4686:   ** the bitmask for all FROM clause terms to the left of the N-th term
 4687:   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
 4688:   ** its Expr.iRightJoinTable value to find the bitmask of the right table
 4689:   ** of the join.  Subtracting one from the right table bitmask gives a
 4690:   ** bitmask for all tables to the left of the join.  Knowing the bitmask
 4691:   ** for all tables to the left of a left join is important.  Ticket #3015.
 4692:   **
 4693:   ** Configure the WhereClause.vmask variable so that bits that correspond
 4694:   ** to virtual table cursors are set. This is used to selectively disable 
 4695:   ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
 4696:   ** with virtual tables.
 4697:   **
 4698:   ** Note that bitmasks are created for all pTabList->nSrc tables in
 4699:   ** pTabList, not just the first nTabList tables.  nTabList is normally
 4700:   ** equal to pTabList->nSrc but might be shortened to 1 if the
 4701:   ** WHERE_ONETABLE_ONLY flag is set.
 4702:   */
 4703:   assert( pWC->vmask==0 && pMaskSet->n==0 );
 4704:   for(i=0; i<pTabList->nSrc; i++){
 4705:     createMask(pMaskSet, pTabList->a[i].iCursor);
 4706: #ifndef SQLITE_OMIT_VIRTUALTABLE
 4707:     if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
 4708:       pWC->vmask |= ((Bitmask)1 << i);
 4709:     }
 4710: #endif
 4711:   }
 4712: #ifndef NDEBUG
 4713:   {
 4714:     Bitmask toTheLeft = 0;
 4715:     for(i=0; i<pTabList->nSrc; i++){
 4716:       Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
 4717:       assert( (m-1)==toTheLeft );
 4718:       toTheLeft |= m;
 4719:     }
 4720:   }
 4721: #endif
 4722: 
 4723:   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
 4724:   ** add new virtual terms onto the end of the WHERE clause.  We do not
 4725:   ** want to analyze these virtual terms, so start analyzing at the end
 4726:   ** and work forward so that the added virtual terms are never processed.
 4727:   */
 4728:   exprAnalyzeAll(pTabList, pWC);
 4729:   if( db->mallocFailed ){
 4730:     goto whereBeginError;
 4731:   }
 4732: 
 4733:   /* Check if the DISTINCT qualifier, if there is one, is redundant. 
 4734:   ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
 4735:   ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
 4736:   */
 4737:   if( pDistinct && isDistinctRedundant(pParse, pTabList, pWC, pDistinct) ){
 4738:     pDistinct = 0;
 4739:     pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
 4740:   }
 4741: 
 4742:   /* Chose the best index to use for each table in the FROM clause.
 4743:   **
 4744:   ** This loop fills in the following fields:
 4745:   **
 4746:   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
 4747:   **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
 4748:   **   pWInfo->a[].nEq       The number of == and IN constraints
 4749:   **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
 4750:   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
 4751:   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
 4752:   **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
 4753:   **
 4754:   ** This loop also figures out the nesting order of tables in the FROM
 4755:   ** clause.
 4756:   */
 4757:   notReady = ~(Bitmask)0;
 4758:   andFlags = ~0;
 4759:   WHERETRACE(("*** Optimizer Start ***\n"));
 4760:   for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
 4761:     WhereCost bestPlan;         /* Most efficient plan seen so far */
 4762:     Index *pIdx;                /* Index for FROM table at pTabItem */
 4763:     int j;                      /* For looping over FROM tables */
 4764:     int bestJ = -1;             /* The value of j */
 4765:     Bitmask m;                  /* Bitmask value for j or bestJ */
 4766:     int isOptimal;              /* Iterator for optimal/non-optimal search */
 4767:     int nUnconstrained;         /* Number tables without INDEXED BY */
 4768:     Bitmask notIndexed;         /* Mask of tables that cannot use an index */
 4769: 
 4770:     memset(&bestPlan, 0, sizeof(bestPlan));
 4771:     bestPlan.rCost = SQLITE_BIG_DBL;
 4772:     WHERETRACE(("*** Begin search for loop %d ***\n", i));
 4773: 
 4774:     /* Loop through the remaining entries in the FROM clause to find the
 4775:     ** next nested loop. The loop tests all FROM clause entries
 4776:     ** either once or twice. 
 4777:     **
 4778:     ** The first test is always performed if there are two or more entries
 4779:     ** remaining and never performed if there is only one FROM clause entry
 4780:     ** to choose from.  The first test looks for an "optimal" scan.  In
 4781:     ** this context an optimal scan is one that uses the same strategy
 4782:     ** for the given FROM clause entry as would be selected if the entry
 4783:     ** were used as the innermost nested loop.  In other words, a table
 4784:     ** is chosen such that the cost of running that table cannot be reduced
 4785:     ** by waiting for other tables to run first.  This "optimal" test works
 4786:     ** by first assuming that the FROM clause is on the inner loop and finding
 4787:     ** its query plan, then checking to see if that query plan uses any
 4788:     ** other FROM clause terms that are notReady.  If no notReady terms are
 4789:     ** used then the "optimal" query plan works.
 4790:     **
 4791:     ** Note that the WhereCost.nRow parameter for an optimal scan might
 4792:     ** not be as small as it would be if the table really were the innermost
 4793:     ** join.  The nRow value can be reduced by WHERE clause constraints
 4794:     ** that do not use indices.  But this nRow reduction only happens if the
 4795:     ** table really is the innermost join.  
 4796:     **
 4797:     ** The second loop iteration is only performed if no optimal scan
 4798:     ** strategies were found by the first iteration. This second iteration
 4799:     ** is used to search for the lowest cost scan overall.
 4800:     **
 4801:     ** Previous versions of SQLite performed only the second iteration -
 4802:     ** the next outermost loop was always that with the lowest overall
 4803:     ** cost. However, this meant that SQLite could select the wrong plan
 4804:     ** for scripts such as the following:
 4805:     **   
 4806:     **   CREATE TABLE t1(a, b); 
 4807:     **   CREATE TABLE t2(c, d);
 4808:     **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
 4809:     **
 4810:     ** The best strategy is to iterate through table t1 first. However it
 4811:     ** is not possible to determine this with a simple greedy algorithm.
 4812:     ** Since the cost of a linear scan through table t2 is the same 
 4813:     ** as the cost of a linear scan through table t1, a simple greedy 
 4814:     ** algorithm may choose to use t2 for the outer loop, which is a much
 4815:     ** costlier approach.
 4816:     */
 4817:     nUnconstrained = 0;
 4818:     notIndexed = 0;
 4819:     for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
 4820:       Bitmask mask;             /* Mask of tables not yet ready */
 4821:       for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
 4822:         int doNotReorder;    /* True if this table should not be reordered */
 4823:         WhereCost sCost;     /* Cost information from best[Virtual]Index() */
 4824:         ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
 4825:         ExprList *pDist;     /* DISTINCT clause for index to optimize */
 4826:   
 4827:         doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
 4828:         if( j!=iFrom && doNotReorder ) break;
 4829:         m = getMask(pMaskSet, pTabItem->iCursor);
 4830:         if( (m & notReady)==0 ){
 4831:           if( j==iFrom ) iFrom++;
 4832:           continue;
 4833:         }
 4834:         mask = (isOptimal ? m : notReady);
 4835:         pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
 4836:         pDist = (i==0 ? pDistinct : 0);
 4837:         if( pTabItem->pIndex==0 ) nUnconstrained++;
 4838:   
 4839:         WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
 4840:                     j, isOptimal));
 4841:         assert( pTabItem->pTab );
 4842: #ifndef SQLITE_OMIT_VIRTUALTABLE
 4843:         if( IsVirtual(pTabItem->pTab) ){
 4844:           sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
 4845:           bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
 4846:                            &sCost, pp);
 4847:         }else 
 4848: #endif
 4849:         {
 4850:           bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
 4851:               pDist, &sCost);
 4852:         }
 4853:         assert( isOptimal || (sCost.used&notReady)==0 );
 4854: 
 4855:         /* If an INDEXED BY clause is present, then the plan must use that
 4856:         ** index if it uses any index at all */
 4857:         assert( pTabItem->pIndex==0 
 4858:                   || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
 4859:                   || sCost.plan.u.pIdx==pTabItem->pIndex );
 4860: 
 4861:         if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
 4862:           notIndexed |= m;
 4863:         }
 4864: 
 4865:         /* Conditions under which this table becomes the best so far:
 4866:         **
 4867:         **   (1) The table must not depend on other tables that have not
 4868:         **       yet run.
 4869:         **
 4870:         **   (2) A full-table-scan plan cannot supercede indexed plan unless
 4871:         **       the full-table-scan is an "optimal" plan as defined above.
 4872:         **
 4873:         **   (3) All tables have an INDEXED BY clause or this table lacks an
 4874:         **       INDEXED BY clause or this table uses the specific
 4875:         **       index specified by its INDEXED BY clause.  This rule ensures
 4876:         **       that a best-so-far is always selected even if an impossible
 4877:         **       combination of INDEXED BY clauses are given.  The error
 4878:         **       will be detected and relayed back to the application later.
 4879:         **       The NEVER() comes about because rule (2) above prevents
 4880:         **       An indexable full-table-scan from reaching rule (3).
 4881:         **
 4882:         **   (4) The plan cost must be lower than prior plans or else the
 4883:         **       cost must be the same and the number of rows must be lower.
 4884:         */
 4885:         if( (sCost.used&notReady)==0                       /* (1) */
 4886:             && (bestJ<0 || (notIndexed&m)!=0               /* (2) */
 4887:                 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
 4888:                 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
 4889:             && (nUnconstrained==0 || pTabItem->pIndex==0   /* (3) */
 4890:                 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
 4891:             && (bestJ<0 || sCost.rCost<bestPlan.rCost      /* (4) */
 4892:                 || (sCost.rCost<=bestPlan.rCost 
 4893:                  && sCost.plan.nRow<bestPlan.plan.nRow))
 4894:         ){
 4895:           WHERETRACE(("=== table %d is best so far"
 4896:                       " with cost=%g and nRow=%g\n",
 4897:                       j, sCost.rCost, sCost.plan.nRow));
 4898:           bestPlan = sCost;
 4899:           bestJ = j;
 4900:         }
 4901:         if( doNotReorder ) break;
 4902:       }
 4903:     }
 4904:     assert( bestJ>=0 );
 4905:     assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
 4906:     WHERETRACE(("*** Optimizer selects table %d for loop %d"
 4907:                 " with cost=%g and nRow=%g\n",
 4908:                 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
 4909:     /* The ALWAYS() that follows was added to hush up clang scan-build */
 4910:     if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 && ALWAYS(ppOrderBy) ){
 4911:       *ppOrderBy = 0;
 4912:     }
 4913:     if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
 4914:       assert( pWInfo->eDistinct==0 );
 4915:       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
 4916:     }
 4917:     andFlags &= bestPlan.plan.wsFlags;
 4918:     pLevel->plan = bestPlan.plan;
 4919:     testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
 4920:     testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
 4921:     if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
 4922:       pLevel->iIdxCur = pParse->nTab++;
 4923:     }else{
 4924:       pLevel->iIdxCur = -1;
 4925:     }
 4926:     notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
 4927:     pLevel->iFrom = (u8)bestJ;
 4928:     if( bestPlan.plan.nRow>=(double)1 ){
 4929:       pParse->nQueryLoop *= bestPlan.plan.nRow;
 4930:     }
 4931: 
 4932:     /* Check that if the table scanned by this loop iteration had an
 4933:     ** INDEXED BY clause attached to it, that the named index is being
 4934:     ** used for the scan. If not, then query compilation has failed.
 4935:     ** Return an error.
 4936:     */
 4937:     pIdx = pTabList->a[bestJ].pIndex;
 4938:     if( pIdx ){
 4939:       if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
 4940:         sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
 4941:         goto whereBeginError;
 4942:       }else{
 4943:         /* If an INDEXED BY clause is used, the bestIndex() function is
 4944:         ** guaranteed to find the index specified in the INDEXED BY clause
 4945:         ** if it find an index at all. */
 4946:         assert( bestPlan.plan.u.pIdx==pIdx );
 4947:       }
 4948:     }
 4949:   }
 4950:   WHERETRACE(("*** Optimizer Finished ***\n"));
 4951:   if( pParse->nErr || db->mallocFailed ){
 4952:     goto whereBeginError;
 4953:   }
 4954: 
 4955:   /* If the total query only selects a single row, then the ORDER BY
 4956:   ** clause is irrelevant.
 4957:   */
 4958:   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
 4959:     *ppOrderBy = 0;
 4960:   }
 4961: 
 4962:   /* If the caller is an UPDATE or DELETE statement that is requesting
 4963:   ** to use a one-pass algorithm, determine if this is appropriate.
 4964:   ** The one-pass algorithm only works if the WHERE clause constraints
 4965:   ** the statement to update a single row.
 4966:   */
 4967:   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
 4968:   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
 4969:     pWInfo->okOnePass = 1;
 4970:     pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
 4971:   }
 4972: 
 4973:   /* Open all tables in the pTabList and any indices selected for
 4974:   ** searching those tables.
 4975:   */
 4976:   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
 4977:   notReady = ~(Bitmask)0;
 4978:   pWInfo->nRowOut = (double)1;
 4979:   for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
 4980:     Table *pTab;     /* Table to open */
 4981:     int iDb;         /* Index of database containing table/index */
 4982: 
 4983:     pTabItem = &pTabList->a[pLevel->iFrom];
 4984:     pTab = pTabItem->pTab;
 4985:     pLevel->iTabCur = pTabItem->iCursor;
 4986:     pWInfo->nRowOut *= pLevel->plan.nRow;
 4987:     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 4988:     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
 4989:       /* Do nothing */
 4990:     }else
 4991: #ifndef SQLITE_OMIT_VIRTUALTABLE
 4992:     if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
 4993:       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
 4994:       int iCur = pTabItem->iCursor;
 4995:       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
 4996:     }else
 4997: #endif
 4998:     if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
 4999:          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
 5000:       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
 5001:       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
 5002:       testcase( pTab->nCol==BMS-1 );
 5003:       testcase( pTab->nCol==BMS );
 5004:       if( !pWInfo->okOnePass && pTab->nCol<BMS ){
 5005:         Bitmask b = pTabItem->colUsed;
 5006:         int n = 0;
 5007:         for(; b; b=b>>1, n++){}
 5008:         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
 5009:                             SQLITE_INT_TO_PTR(n), P4_INT32);
 5010:         assert( n<=pTab->nCol );
 5011:       }
 5012:     }else{
 5013:       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 5014:     }
 5015: #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
 5016:     if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
 5017:       constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
 5018:     }else
 5019: #endif
 5020:     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
 5021:       Index *pIx = pLevel->plan.u.pIdx;
 5022:       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
 5023:       int iIdxCur = pLevel->iIdxCur;
 5024:       assert( pIx->pSchema==pTab->pSchema );
 5025:       assert( iIdxCur>=0 );
 5026:       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
 5027:                         (char*)pKey, P4_KEYINFO_HANDOFF);
 5028:       VdbeComment((v, "%s", pIx->zName));
 5029:     }
 5030:     sqlite3CodeVerifySchema(pParse, iDb);
 5031:     notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
 5032:   }
 5033:   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
 5034:   if( db->mallocFailed ) goto whereBeginError;
 5035: 
 5036:   /* Generate the code to do the search.  Each iteration of the for
 5037:   ** loop below generates code for a single nested loop of the VM
 5038:   ** program.
 5039:   */
 5040:   notReady = ~(Bitmask)0;
 5041:   for(i=0; i<nTabList; i++){
 5042:     pLevel = &pWInfo->a[i];
 5043:     explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
 5044:     notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady, pWhere);
 5045:     pWInfo->iContinue = pLevel->addrCont;
 5046:   }
 5047: 
 5048: #ifdef SQLITE_TEST  /* For testing and debugging use only */
 5049:   /* Record in the query plan information about the current table
 5050:   ** and the index used to access it (if any).  If the table itself
 5051:   ** is not used, its name is just '{}'.  If no index is used
 5052:   ** the index is listed as "{}".  If the primary key is used the
 5053:   ** index name is '*'.
 5054:   */
 5055:   for(i=0; i<nTabList; i++){
 5056:     char *z;
 5057:     int n;
 5058:     pLevel = &pWInfo->a[i];
 5059:     pTabItem = &pTabList->a[pLevel->iFrom];
 5060:     z = pTabItem->zAlias;
 5061:     if( z==0 ) z = pTabItem->pTab->zName;
 5062:     n = sqlite3Strlen30(z);
 5063:     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
 5064:       if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
 5065:         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
 5066:         nQPlan += 2;
 5067:       }else{
 5068:         memcpy(&sqlite3_query_plan[nQPlan], z, n);
 5069:         nQPlan += n;
 5070:       }
 5071:       sqlite3_query_plan[nQPlan++] = ' ';
 5072:     }
 5073:     testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
 5074:     testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
 5075:     if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 5076:       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
 5077:       nQPlan += 2;
 5078:     }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
 5079:       n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
 5080:       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
 5081:         memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
 5082:         nQPlan += n;
 5083:         sqlite3_query_plan[nQPlan++] = ' ';
 5084:       }
 5085:     }else{
 5086:       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
 5087:       nQPlan += 3;
 5088:     }
 5089:   }
 5090:   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
 5091:     sqlite3_query_plan[--nQPlan] = 0;
 5092:   }
 5093:   sqlite3_query_plan[nQPlan] = 0;
 5094:   nQPlan = 0;
 5095: #endif /* SQLITE_TEST // Testing and debugging use only */
 5096: 
 5097:   /* Record the continuation address in the WhereInfo structure.  Then
 5098:   ** clean up and return.
 5099:   */
 5100:   return pWInfo;
 5101: 
 5102:   /* Jump here if malloc fails */
 5103: whereBeginError:
 5104:   if( pWInfo ){
 5105:     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
 5106:     whereInfoFree(db, pWInfo);
 5107:   }
 5108:   return 0;
 5109: }
 5110: 
 5111: /*
 5112: ** Generate the end of the WHERE loop.  See comments on 
 5113: ** sqlite3WhereBegin() for additional information.
 5114: */
 5115: void sqlite3WhereEnd(WhereInfo *pWInfo){
 5116:   Parse *pParse = pWInfo->pParse;
 5117:   Vdbe *v = pParse->pVdbe;
 5118:   int i;
 5119:   WhereLevel *pLevel;
 5120:   SrcList *pTabList = pWInfo->pTabList;
 5121:   sqlite3 *db = pParse->db;
 5122: 
 5123:   /* Generate loop termination code.
 5124:   */
 5125:   sqlite3ExprCacheClear(pParse);
 5126:   for(i=pWInfo->nLevel-1; i>=0; i--){
 5127:     pLevel = &pWInfo->a[i];
 5128:     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
 5129:     if( pLevel->op!=OP_Noop ){
 5130:       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
 5131:       sqlite3VdbeChangeP5(v, pLevel->p5);
 5132:     }
 5133:     if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
 5134:       struct InLoop *pIn;
 5135:       int j;
 5136:       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
 5137:       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
 5138:         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
 5139:         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
 5140:         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
 5141:       }
 5142:       sqlite3DbFree(db, pLevel->u.in.aInLoop);
 5143:     }
 5144:     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
 5145:     if( pLevel->iLeftJoin ){
 5146:       int addr;
 5147:       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
 5148:       assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
 5149:            || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
 5150:       if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
 5151:         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
 5152:       }
 5153:       if( pLevel->iIdxCur>=0 ){
 5154:         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
 5155:       }
 5156:       if( pLevel->op==OP_Return ){
 5157:         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
 5158:       }else{
 5159:         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
 5160:       }
 5161:       sqlite3VdbeJumpHere(v, addr);
 5162:     }
 5163:   }
 5164: 
 5165:   /* The "break" point is here, just past the end of the outer loop.
 5166:   ** Set it.
 5167:   */
 5168:   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
 5169: 
 5170:   /* Close all of the cursors that were opened by sqlite3WhereBegin.
 5171:   */
 5172:   assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
 5173:   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
 5174:     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
 5175:     Table *pTab = pTabItem->pTab;
 5176:     assert( pTab!=0 );
 5177:     if( (pTab->tabFlags & TF_Ephemeral)==0
 5178:      && pTab->pSelect==0
 5179:      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
 5180:     ){
 5181:       int ws = pLevel->plan.wsFlags;
 5182:       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
 5183:         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
 5184:       }
 5185:       if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
 5186:         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
 5187:       }
 5188:     }
 5189: 
 5190:     /* If this scan uses an index, make code substitutions to read data
 5191:     ** from the index in preference to the table. Sometimes, this means
 5192:     ** the table need never be read from. This is a performance boost,
 5193:     ** as the vdbe level waits until the table is read before actually
 5194:     ** seeking the table cursor to the record corresponding to the current
 5195:     ** position in the index.
 5196:     ** 
 5197:     ** Calls to the code generator in between sqlite3WhereBegin and
 5198:     ** sqlite3WhereEnd will have created code that references the table
 5199:     ** directly.  This loop scans all that code looking for opcodes
 5200:     ** that reference the table and converts them into opcodes that
 5201:     ** reference the index.
 5202:     */
 5203:     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
 5204:       int k, j, last;
 5205:       VdbeOp *pOp;
 5206:       Index *pIdx = pLevel->plan.u.pIdx;
 5207: 
 5208:       assert( pIdx!=0 );
 5209:       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
 5210:       last = sqlite3VdbeCurrentAddr(v);
 5211:       for(k=pWInfo->iTop; k<last; k++, pOp++){
 5212:         if( pOp->p1!=pLevel->iTabCur ) continue;
 5213:         if( pOp->opcode==OP_Column ){
 5214:           for(j=0; j<pIdx->nColumn; j++){
 5215:             if( pOp->p2==pIdx->aiColumn[j] ){
 5216:               pOp->p2 = j;
 5217:               pOp->p1 = pLevel->iIdxCur;
 5218:               break;
 5219:             }
 5220:           }
 5221:           assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
 5222:                || j<pIdx->nColumn );
 5223:         }else if( pOp->opcode==OP_Rowid ){
 5224:           pOp->p1 = pLevel->iIdxCur;
 5225:           pOp->opcode = OP_IdxRowid;
 5226:         }
 5227:       }
 5228:     }
 5229:   }
 5230: 
 5231:   /* Final cleanup
 5232:   */
 5233:   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
 5234:   whereInfoFree(db, pWInfo);
 5235:   return;
 5236: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>