1: # 2009 March 04
2: #
3: # The author disclaims copyright to this source code. In place of
4: # a legal notice, here is a blessing:
5: #
6: # May you do good and not evil.
7: # May you find forgiveness for yourself and forgive others.
8: # May you share freely, never taking more than you give.
9: #
10: #***********************************************************************
11: #
12: # $Id: notify2.test,v 1.1.1.1 2012/02/21 17:04:16 misho Exp $
13:
14: set testdir [file dirname $argv0]
15: source $testdir/tester.tcl
16: if {[run_thread_tests]==0} { finish_test ; return }
17: ifcapable !unlock_notify||!shared_cache { finish_test ; return }
18:
19: # The tests in this file test the sqlite3_blocking_step() function in
20: # test_thread.c. sqlite3_blocking_step() is not an SQLite API function,
21: # it is just a demonstration of how the sqlite3_unlock_notify() function
22: # can be used to synchronize multi-threaded access to SQLite databases
23: # in shared-cache mode.
24: #
25: # Since the implementation of sqlite3_blocking_step() is included on the
26: # website as example code, it is important to test that it works.
27: #
28: # notify2-1.*:
29: #
30: # This test uses $nThread threads. Each thread opens the main database
31: # and attaches two other databases. Each database contains a single table.
32: #
33: # Each thread repeats transactions over and over for 20 seconds. Each
34: # transaction consists of 3 operations. Each operation is either a read
35: # or a write of one of the tables. The read operations verify an invariant
36: # to make sure that things are working as expected. If an SQLITE_LOCKED
37: # error is returned the current transaction is rolled back immediately.
38: #
39: # This exercise is repeated twice, once using sqlite3_step(), and the
40: # other using sqlite3_blocking_step(). The results are compared to ensure
41: # that sqlite3_blocking_step() resulted in higher transaction throughput.
42: #
43:
44: db close
45: set ::enable_shared_cache [sqlite3_enable_shared_cache 1]
46:
47: # Number of threads to run simultaneously.
48: #
49: set nThread 6
50: set nSecond 5
51:
52: # The Tcl script executed by each of the $nThread threads used by this test.
53: #
54: set ThreadProgram {
55:
56: # Proc used by threads to execute SQL.
57: #
58: proc execsql_blocking {db zSql} {
59: set lRes [list]
60: set rc SQLITE_OK
61:
62: set sql $zSql
63:
64: while {$rc=="SQLITE_OK" && $zSql ne ""} {
65: set STMT [$::xPrepare $db $zSql -1 zSql]
66: while {[set rc [$::xStep $STMT]] eq "SQLITE_ROW"} {
67: for {set i 0} {$i < [sqlite3_column_count $STMT]} {incr i} {
68: lappend lRes [sqlite3_column_text $STMT 0]
69: }
70: }
71: set rc [sqlite3_finalize $STMT]
72: }
73:
74: if {$rc != "SQLITE_OK"} { error "$rc $sql [sqlite3_errmsg $db]" }
75: return $lRes
76: }
77:
78: proc execsql_retry {db sql} {
79: set msg "SQLITE_LOCKED blah..."
80: while { [string match SQLITE_LOCKED* $msg] } {
81: catch { execsql_blocking $db $sql } msg
82: }
83: }
84:
85: proc select_one {args} {
86: set n [llength $args]
87: lindex $args [expr int($n*rand())]
88: }
89:
90: proc opendb {} {
91: # Open a database connection. Attach the two auxillary databases.
92: set ::DB [sqlite3_open test.db]
93: execsql_retry $::DB { ATTACH 'test2.db' AS aux2; }
94: execsql_retry $::DB { ATTACH 'test3.db' AS aux3; }
95: }
96:
97: opendb
98:
99: #after 2000
100:
101: # This loop runs for ~20 seconds.
102: #
103: set iStart [clock_seconds]
104: while { ([clock_seconds]-$iStart) < $nSecond } {
105:
106: # Each transaction does 3 operations. Each operation is either a read
107: # or write of a randomly selected table (t1, t2 or t3). Set the variables
108: # $SQL(1), $SQL(2) and $SQL(3) to the SQL commands used to implement
109: # each operation.
110: #
111: for {set ii 1} {$ii <= 3} {incr ii} {
112: foreach {tbl database} [select_one {t1 main} {t2 aux2} {t3 aux3}] {}
113:
114: set SQL($ii) [string map [list xxx $tbl yyy $database] [select_one {
115: SELECT
116: (SELECT b FROM xxx WHERE a=(SELECT max(a) FROM xxx))==total(a)
117: FROM xxx WHERE a!=(SELECT max(a) FROM xxx);
118: } {
119: DELETE FROM xxx WHERE a<(SELECT max(a)-100 FROM xxx);
120: INSERT INTO xxx SELECT NULL, total(a) FROM xxx;
121: } {
122: CREATE INDEX IF NOT EXISTS yyy.xxx_i ON xxx(b);
123: } {
124: DROP INDEX IF EXISTS yyy.xxx_i;
125: }
126: ]]
127: }
128:
129: # Execute the SQL transaction.
130: #
131: set rc [catch { execsql_blocking $::DB "
132: BEGIN;
133: $SQL(1);
134: $SQL(2);
135: $SQL(3);
136: COMMIT;
137: "
138: } msg]
139:
140: if {$rc && [string match "SQLITE_LOCKED*" $msg]
141: || [string match "SQLITE_SCHEMA*" $msg]
142: } {
143: # Hit an SQLITE_LOCKED error. Rollback the current transaction.
144: set rc [catch { execsql_blocking $::DB ROLLBACK } msg]
145: if {$rc && [string match "SQLITE_LOCKED*" $msg]} {
146: sqlite3_close $::DB
147: opendb
148: }
149: } elseif {$rc} {
150: # Hit some other kind of error. This is a malfunction.
151: error $msg
152: } else {
153: # No error occured. Check that any SELECT statements in the transaction
154: # returned "1". Otherwise, the invariant was false, indicating that
155: # some malfunction has occured.
156: foreach r $msg { if {$r != 1} { puts "Invariant check failed: $msg" } }
157: }
158: }
159:
160: # Close the database connection and return 0.
161: #
162: sqlite3_close $::DB
163: expr 0
164: }
165:
166: foreach {iTest xStep xPrepare} {
167: 1 sqlite3_blocking_step sqlite3_blocking_prepare_v2
168: 2 sqlite3_step sqlite3_nonblocking_prepare_v2
169: } {
170: forcedelete test.db test2.db test3.db
171:
172: set ThreadSetup "set xStep $xStep;set xPrepare $xPrepare;set nSecond $nSecond"
173:
174: # Set up the database schema used by this test. Each thread opens file
175: # test.db as the main database, then attaches files test2.db and test3.db
176: # as auxillary databases. Each file contains a single table (t1, t2 and t3, in
177: # files test.db, test2.db and test3.db, respectively).
178: #
179: do_test notify2-$iTest.1.1 {
180: sqlite3 db test.db
181: execsql {
182: ATTACH 'test2.db' AS aux2;
183: ATTACH 'test3.db' AS aux3;
184: CREATE TABLE main.t1(a INTEGER PRIMARY KEY, b);
185: CREATE TABLE aux2.t2(a INTEGER PRIMARY KEY, b);
186: CREATE TABLE aux3.t3(a INTEGER PRIMARY KEY, b);
187: INSERT INTO t1 SELECT NULL, 0;
188: INSERT INTO t2 SELECT NULL, 0;
189: INSERT INTO t3 SELECT NULL, 0;
190: }
191: } {}
192: do_test notify2-$iTest.1.2 {
193: db close
194: } {}
195:
196:
197: # Launch $nThread threads. Then wait for them to finish.
198: #
199: puts "Running $xStep test for $nSecond seconds"
200: unset -nocomplain finished
201: for {set ii 0} {$ii < $nThread} {incr ii} {
202: thread_spawn finished($ii) $ThreadSetup $ThreadProgram
203: }
204: for {set ii 0} {$ii < $nThread} {incr ii} {
205: do_test notify2-$iTest.2.$ii {
206: if {![info exists finished($ii)]} { vwait finished($ii) }
207: set finished($ii)
208: } {0}
209: }
210:
211: # Count the total number of succesful writes.
212: do_test notify2-$iTest.3.1 {
213: sqlite3 db test.db
214: execsql {
215: ATTACH 'test2.db' AS aux2;
216: ATTACH 'test3.db' AS aux3;
217: }
218: set anWrite($xStep) [execsql {
219: SELECT (SELECT max(a) FROM t1)
220: + (SELECT max(a) FROM t2)
221: + (SELECT max(a) FROM t3)
222: }]
223: db close
224: } {}
225: }
226:
227: # The following tests checks to make sure sqlite3_blocking_step() is
228: # faster than sqlite3_step(). blocking_step() is always faster on
229: # multi-core and is usually faster on single-core. But sometimes, by
230: # chance, step() will be faster on a single core, in which case the
231: # following test will fail.
232: #
233: puts "The following test seeks to demonstrate that the sqlite3_unlock_notify()"
234: puts "interface helps multi-core systems to run faster. This test sometimes"
235: puts "fails on single-core machines."
236: puts [array get anWrite]
237: do_test notify2-3 {
238: expr {$anWrite(sqlite3_blocking_step) > $anWrite(sqlite3_step)}
239: } {1}
240:
241: sqlite3_enable_shared_cache $::enable_shared_cache
242: finish_test
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>