Annotation of embedaddon/sqlite3/tool/lemon.c, revision 1.1.1.1
1.1 misho 1: /*
2: ** This file contains all sources (including headers) to the LEMON
3: ** LALR(1) parser generator. The sources have been combined into a
4: ** single file to make it easy to include LEMON in the source tree
5: ** and Makefile of another program.
6: **
7: ** The author of this program disclaims copyright.
8: */
9: #include <stdio.h>
10: #include <stdarg.h>
11: #include <string.h>
12: #include <ctype.h>
13: #include <stdlib.h>
14: #include <assert.h>
15:
16: #ifndef __WIN32__
17: # if defined(_WIN32) || defined(WIN32)
18: # define __WIN32__
19: # endif
20: #endif
21:
22: #ifdef __WIN32__
23: #ifdef __cplusplus
24: extern "C" {
25: #endif
26: extern int access(const char *path, int mode);
27: #ifdef __cplusplus
28: }
29: #endif
30: #else
31: #include <unistd.h>
32: #endif
33:
34: /* #define PRIVATE static */
35: #define PRIVATE
36:
37: #ifdef TEST
38: #define MAXRHS 5 /* Set low to exercise exception code */
39: #else
40: #define MAXRHS 1000
41: #endif
42:
43: static int showPrecedenceConflict = 0;
44: static char *msort(char*,char**,int(*)(const char*,const char*));
45:
46: /*
47: ** Compilers are getting increasingly pedantic about type conversions
48: ** as C evolves ever closer to Ada.... To work around the latest problems
49: ** we have to define the following variant of strlen().
50: */
51: #define lemonStrlen(X) ((int)strlen(X))
52:
53: /* a few forward declarations... */
54: struct rule;
55: struct lemon;
56: struct action;
57:
58: static struct action *Action_new(void);
59: static struct action *Action_sort(struct action *);
60:
61: /********** From the file "build.h" ************************************/
62: void FindRulePrecedences();
63: void FindFirstSets();
64: void FindStates();
65: void FindLinks();
66: void FindFollowSets();
67: void FindActions();
68:
69: /********* From the file "configlist.h" *********************************/
70: void Configlist_init(void);
71: struct config *Configlist_add(struct rule *, int);
72: struct config *Configlist_addbasis(struct rule *, int);
73: void Configlist_closure(struct lemon *);
74: void Configlist_sort(void);
75: void Configlist_sortbasis(void);
76: struct config *Configlist_return(void);
77: struct config *Configlist_basis(void);
78: void Configlist_eat(struct config *);
79: void Configlist_reset(void);
80:
81: /********* From the file "error.h" ***************************************/
82: void ErrorMsg(const char *, int,const char *, ...);
83:
84: /****** From the file "option.h" ******************************************/
85: enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
86: OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
87: struct s_options {
88: enum option_type type;
89: const char *label;
90: char *arg;
91: const char *message;
92: };
93: int OptInit(char**,struct s_options*,FILE*);
94: int OptNArgs(void);
95: char *OptArg(int);
96: void OptErr(int);
97: void OptPrint(void);
98:
99: /******** From the file "parse.h" *****************************************/
100: void Parse(struct lemon *lemp);
101:
102: /********* From the file "plink.h" ***************************************/
103: struct plink *Plink_new(void);
104: void Plink_add(struct plink **, struct config *);
105: void Plink_copy(struct plink **, struct plink *);
106: void Plink_delete(struct plink *);
107:
108: /********** From the file "report.h" *************************************/
109: void Reprint(struct lemon *);
110: void ReportOutput(struct lemon *);
111: void ReportTable(struct lemon *, int);
112: void ReportHeader(struct lemon *);
113: void CompressTables(struct lemon *);
114: void ResortStates(struct lemon *);
115:
116: /********** From the file "set.h" ****************************************/
117: void SetSize(int); /* All sets will be of size N */
118: char *SetNew(void); /* A new set for element 0..N */
119: void SetFree(char*); /* Deallocate a set */
120: int SetAdd(char*,int); /* Add element to a set */
121: int SetUnion(char *,char *); /* A <- A U B, thru element N */
122: #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
123:
124: /********** From the file "struct.h" *************************************/
125: /*
126: ** Principal data structures for the LEMON parser generator.
127: */
128:
129: typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
130:
131: /* Symbols (terminals and nonterminals) of the grammar are stored
132: ** in the following: */
133: enum symbol_type {
134: TERMINAL,
135: NONTERMINAL,
136: MULTITERMINAL
137: };
138: enum e_assoc {
139: LEFT,
140: RIGHT,
141: NONE,
142: UNK
143: };
144: struct symbol {
145: const char *name; /* Name of the symbol */
146: int index; /* Index number for this symbol */
147: enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
148: struct rule *rule; /* Linked list of rules of this (if an NT) */
149: struct symbol *fallback; /* fallback token in case this token doesn't parse */
150: int prec; /* Precedence if defined (-1 otherwise) */
151: enum e_assoc assoc; /* Associativity if precedence is defined */
152: char *firstset; /* First-set for all rules of this symbol */
153: Boolean lambda; /* True if NT and can generate an empty string */
154: int useCnt; /* Number of times used */
155: char *destructor; /* Code which executes whenever this symbol is
156: ** popped from the stack during error processing */
157: int destLineno; /* Line number for start of destructor */
158: char *datatype; /* The data type of information held by this
159: ** object. Only used if type==NONTERMINAL */
160: int dtnum; /* The data type number. In the parser, the value
161: ** stack is a union. The .yy%d element of this
162: ** union is the correct data type for this object */
163: /* The following fields are used by MULTITERMINALs only */
164: int nsubsym; /* Number of constituent symbols in the MULTI */
165: struct symbol **subsym; /* Array of constituent symbols */
166: };
167:
168: /* Each production rule in the grammar is stored in the following
169: ** structure. */
170: struct rule {
171: struct symbol *lhs; /* Left-hand side of the rule */
172: const char *lhsalias; /* Alias for the LHS (NULL if none) */
173: int lhsStart; /* True if left-hand side is the start symbol */
174: int ruleline; /* Line number for the rule */
175: int nrhs; /* Number of RHS symbols */
176: struct symbol **rhs; /* The RHS symbols */
177: const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
178: int line; /* Line number at which code begins */
179: const char *code; /* The code executed when this rule is reduced */
180: struct symbol *precsym; /* Precedence symbol for this rule */
181: int index; /* An index number for this rule */
182: Boolean canReduce; /* True if this rule is ever reduced */
183: struct rule *nextlhs; /* Next rule with the same LHS */
184: struct rule *next; /* Next rule in the global list */
185: };
186:
187: /* A configuration is a production rule of the grammar together with
188: ** a mark (dot) showing how much of that rule has been processed so far.
189: ** Configurations also contain a follow-set which is a list of terminal
190: ** symbols which are allowed to immediately follow the end of the rule.
191: ** Every configuration is recorded as an instance of the following: */
192: enum cfgstatus {
193: COMPLETE,
194: INCOMPLETE
195: };
196: struct config {
197: struct rule *rp; /* The rule upon which the configuration is based */
198: int dot; /* The parse point */
199: char *fws; /* Follow-set for this configuration only */
200: struct plink *fplp; /* Follow-set forward propagation links */
201: struct plink *bplp; /* Follow-set backwards propagation links */
202: struct state *stp; /* Pointer to state which contains this */
203: enum cfgstatus status; /* used during followset and shift computations */
204: struct config *next; /* Next configuration in the state */
205: struct config *bp; /* The next basis configuration */
206: };
207:
208: enum e_action {
209: SHIFT,
210: ACCEPT,
211: REDUCE,
212: ERROR,
213: SSCONFLICT, /* A shift/shift conflict */
214: SRCONFLICT, /* Was a reduce, but part of a conflict */
215: RRCONFLICT, /* Was a reduce, but part of a conflict */
216: SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
217: RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
218: NOT_USED /* Deleted by compression */
219: };
220:
221: /* Every shift or reduce operation is stored as one of the following */
222: struct action {
223: struct symbol *sp; /* The look-ahead symbol */
224: enum e_action type;
225: union {
226: struct state *stp; /* The new state, if a shift */
227: struct rule *rp; /* The rule, if a reduce */
228: } x;
229: struct action *next; /* Next action for this state */
230: struct action *collide; /* Next action with the same hash */
231: };
232:
233: /* Each state of the generated parser's finite state machine
234: ** is encoded as an instance of the following structure. */
235: struct state {
236: struct config *bp; /* The basis configurations for this state */
237: struct config *cfp; /* All configurations in this set */
238: int statenum; /* Sequential number for this state */
239: struct action *ap; /* Array of actions for this state */
240: int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
241: int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
242: int iDflt; /* Default action */
243: };
244: #define NO_OFFSET (-2147483647)
245:
246: /* A followset propagation link indicates that the contents of one
247: ** configuration followset should be propagated to another whenever
248: ** the first changes. */
249: struct plink {
250: struct config *cfp; /* The configuration to which linked */
251: struct plink *next; /* The next propagate link */
252: };
253:
254: /* The state vector for the entire parser generator is recorded as
255: ** follows. (LEMON uses no global variables and makes little use of
256: ** static variables. Fields in the following structure can be thought
257: ** of as begin global variables in the program.) */
258: struct lemon {
259: struct state **sorted; /* Table of states sorted by state number */
260: struct rule *rule; /* List of all rules */
261: int nstate; /* Number of states */
262: int nrule; /* Number of rules */
263: int nsymbol; /* Number of terminal and nonterminal symbols */
264: int nterminal; /* Number of terminal symbols */
265: struct symbol **symbols; /* Sorted array of pointers to symbols */
266: int errorcnt; /* Number of errors */
267: struct symbol *errsym; /* The error symbol */
268: struct symbol *wildcard; /* Token that matches anything */
269: char *name; /* Name of the generated parser */
270: char *arg; /* Declaration of the 3th argument to parser */
271: char *tokentype; /* Type of terminal symbols in the parser stack */
272: char *vartype; /* The default type of non-terminal symbols */
273: char *start; /* Name of the start symbol for the grammar */
274: char *stacksize; /* Size of the parser stack */
275: char *include; /* Code to put at the start of the C file */
276: char *error; /* Code to execute when an error is seen */
277: char *overflow; /* Code to execute on a stack overflow */
278: char *failure; /* Code to execute on parser failure */
279: char *accept; /* Code to execute when the parser excepts */
280: char *extracode; /* Code appended to the generated file */
281: char *tokendest; /* Code to execute to destroy token data */
282: char *vardest; /* Code for the default non-terminal destructor */
283: char *filename; /* Name of the input file */
284: char *outname; /* Name of the current output file */
285: char *tokenprefix; /* A prefix added to token names in the .h file */
286: int nconflict; /* Number of parsing conflicts */
287: int tablesize; /* Size of the parse tables */
288: int basisflag; /* Print only basis configurations */
289: int has_fallback; /* True if any %fallback is seen in the grammar */
290: int nolinenosflag; /* True if #line statements should not be printed */
291: char *argv0; /* Name of the program */
292: };
293:
294: #define MemoryCheck(X) if((X)==0){ \
295: extern void memory_error(); \
296: memory_error(); \
297: }
298:
299: /**************** From the file "table.h" *********************************/
300: /*
301: ** All code in this file has been automatically generated
302: ** from a specification in the file
303: ** "table.q"
304: ** by the associative array code building program "aagen".
305: ** Do not edit this file! Instead, edit the specification
306: ** file, then rerun aagen.
307: */
308: /*
309: ** Code for processing tables in the LEMON parser generator.
310: */
311: /* Routines for handling a strings */
312:
313: const char *Strsafe(const char *);
314:
315: void Strsafe_init(void);
316: int Strsafe_insert(const char *);
317: const char *Strsafe_find(const char *);
318:
319: /* Routines for handling symbols of the grammar */
320:
321: struct symbol *Symbol_new(const char *);
322: int Symbolcmpp(const void *, const void *);
323: void Symbol_init(void);
324: int Symbol_insert(struct symbol *, const char *);
325: struct symbol *Symbol_find(const char *);
326: struct symbol *Symbol_Nth(int);
327: int Symbol_count(void);
328: struct symbol **Symbol_arrayof(void);
329:
330: /* Routines to manage the state table */
331:
332: int Configcmp(const char *, const char *);
333: struct state *State_new(void);
334: void State_init(void);
335: int State_insert(struct state *, struct config *);
336: struct state *State_find(struct config *);
337: struct state **State_arrayof(/* */);
338:
339: /* Routines used for efficiency in Configlist_add */
340:
341: void Configtable_init(void);
342: int Configtable_insert(struct config *);
343: struct config *Configtable_find(struct config *);
344: void Configtable_clear(int(*)(struct config *));
345:
346: /****************** From the file "action.c" *******************************/
347: /*
348: ** Routines processing parser actions in the LEMON parser generator.
349: */
350:
351: /* Allocate a new parser action */
352: static struct action *Action_new(void){
353: static struct action *freelist = 0;
354: struct action *newaction;
355:
356: if( freelist==0 ){
357: int i;
358: int amt = 100;
359: freelist = (struct action *)calloc(amt, sizeof(struct action));
360: if( freelist==0 ){
361: fprintf(stderr,"Unable to allocate memory for a new parser action.");
362: exit(1);
363: }
364: for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
365: freelist[amt-1].next = 0;
366: }
367: newaction = freelist;
368: freelist = freelist->next;
369: return newaction;
370: }
371:
372: /* Compare two actions for sorting purposes. Return negative, zero, or
373: ** positive if the first action is less than, equal to, or greater than
374: ** the first
375: */
376: static int actioncmp(
377: struct action *ap1,
378: struct action *ap2
379: ){
380: int rc;
381: rc = ap1->sp->index - ap2->sp->index;
382: if( rc==0 ){
383: rc = (int)ap1->type - (int)ap2->type;
384: }
385: if( rc==0 && ap1->type==REDUCE ){
386: rc = ap1->x.rp->index - ap2->x.rp->index;
387: }
388: if( rc==0 ){
389: rc = (int) (ap2 - ap1);
390: }
391: return rc;
392: }
393:
394: /* Sort parser actions */
395: static struct action *Action_sort(
396: struct action *ap
397: ){
398: ap = (struct action *)msort((char *)ap,(char **)&ap->next,
399: (int(*)(const char*,const char*))actioncmp);
400: return ap;
401: }
402:
403: void Action_add(
404: struct action **app,
405: enum e_action type,
406: struct symbol *sp,
407: char *arg
408: ){
409: struct action *newaction;
410: newaction = Action_new();
411: newaction->next = *app;
412: *app = newaction;
413: newaction->type = type;
414: newaction->sp = sp;
415: if( type==SHIFT ){
416: newaction->x.stp = (struct state *)arg;
417: }else{
418: newaction->x.rp = (struct rule *)arg;
419: }
420: }
421: /********************** New code to implement the "acttab" module ***********/
422: /*
423: ** This module implements routines use to construct the yy_action[] table.
424: */
425:
426: /*
427: ** The state of the yy_action table under construction is an instance of
428: ** the following structure.
429: **
430: ** The yy_action table maps the pair (state_number, lookahead) into an
431: ** action_number. The table is an array of integers pairs. The state_number
432: ** determines an initial offset into the yy_action array. The lookahead
433: ** value is then added to this initial offset to get an index X into the
434: ** yy_action array. If the aAction[X].lookahead equals the value of the
435: ** of the lookahead input, then the value of the action_number output is
436: ** aAction[X].action. If the lookaheads do not match then the
437: ** default action for the state_number is returned.
438: **
439: ** All actions associated with a single state_number are first entered
440: ** into aLookahead[] using multiple calls to acttab_action(). Then the
441: ** actions for that single state_number are placed into the aAction[]
442: ** array with a single call to acttab_insert(). The acttab_insert() call
443: ** also resets the aLookahead[] array in preparation for the next
444: ** state number.
445: */
446: struct lookahead_action {
447: int lookahead; /* Value of the lookahead token */
448: int action; /* Action to take on the given lookahead */
449: };
450: typedef struct acttab acttab;
451: struct acttab {
452: int nAction; /* Number of used slots in aAction[] */
453: int nActionAlloc; /* Slots allocated for aAction[] */
454: struct lookahead_action
455: *aAction, /* The yy_action[] table under construction */
456: *aLookahead; /* A single new transaction set */
457: int mnLookahead; /* Minimum aLookahead[].lookahead */
458: int mnAction; /* Action associated with mnLookahead */
459: int mxLookahead; /* Maximum aLookahead[].lookahead */
460: int nLookahead; /* Used slots in aLookahead[] */
461: int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
462: };
463:
464: /* Return the number of entries in the yy_action table */
465: #define acttab_size(X) ((X)->nAction)
466:
467: /* The value for the N-th entry in yy_action */
468: #define acttab_yyaction(X,N) ((X)->aAction[N].action)
469:
470: /* The value for the N-th entry in yy_lookahead */
471: #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
472:
473: /* Free all memory associated with the given acttab */
474: void acttab_free(acttab *p){
475: free( p->aAction );
476: free( p->aLookahead );
477: free( p );
478: }
479:
480: /* Allocate a new acttab structure */
481: acttab *acttab_alloc(void){
482: acttab *p = (acttab *) calloc( 1, sizeof(*p) );
483: if( p==0 ){
484: fprintf(stderr,"Unable to allocate memory for a new acttab.");
485: exit(1);
486: }
487: memset(p, 0, sizeof(*p));
488: return p;
489: }
490:
491: /* Add a new action to the current transaction set.
492: **
493: ** This routine is called once for each lookahead for a particular
494: ** state.
495: */
496: void acttab_action(acttab *p, int lookahead, int action){
497: if( p->nLookahead>=p->nLookaheadAlloc ){
498: p->nLookaheadAlloc += 25;
499: p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
500: sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
501: if( p->aLookahead==0 ){
502: fprintf(stderr,"malloc failed\n");
503: exit(1);
504: }
505: }
506: if( p->nLookahead==0 ){
507: p->mxLookahead = lookahead;
508: p->mnLookahead = lookahead;
509: p->mnAction = action;
510: }else{
511: if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
512: if( p->mnLookahead>lookahead ){
513: p->mnLookahead = lookahead;
514: p->mnAction = action;
515: }
516: }
517: p->aLookahead[p->nLookahead].lookahead = lookahead;
518: p->aLookahead[p->nLookahead].action = action;
519: p->nLookahead++;
520: }
521:
522: /*
523: ** Add the transaction set built up with prior calls to acttab_action()
524: ** into the current action table. Then reset the transaction set back
525: ** to an empty set in preparation for a new round of acttab_action() calls.
526: **
527: ** Return the offset into the action table of the new transaction.
528: */
529: int acttab_insert(acttab *p){
530: int i, j, k, n;
531: assert( p->nLookahead>0 );
532:
533: /* Make sure we have enough space to hold the expanded action table
534: ** in the worst case. The worst case occurs if the transaction set
535: ** must be appended to the current action table
536: */
537: n = p->mxLookahead + 1;
538: if( p->nAction + n >= p->nActionAlloc ){
539: int oldAlloc = p->nActionAlloc;
540: p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
541: p->aAction = (struct lookahead_action *) realloc( p->aAction,
542: sizeof(p->aAction[0])*p->nActionAlloc);
543: if( p->aAction==0 ){
544: fprintf(stderr,"malloc failed\n");
545: exit(1);
546: }
547: for(i=oldAlloc; i<p->nActionAlloc; i++){
548: p->aAction[i].lookahead = -1;
549: p->aAction[i].action = -1;
550: }
551: }
552:
553: /* Scan the existing action table looking for an offset that is a
554: ** duplicate of the current transaction set. Fall out of the loop
555: ** if and when the duplicate is found.
556: **
557: ** i is the index in p->aAction[] where p->mnLookahead is inserted.
558: */
559: for(i=p->nAction-1; i>=0; i--){
560: if( p->aAction[i].lookahead==p->mnLookahead ){
561: /* All lookaheads and actions in the aLookahead[] transaction
562: ** must match against the candidate aAction[i] entry. */
563: if( p->aAction[i].action!=p->mnAction ) continue;
564: for(j=0; j<p->nLookahead; j++){
565: k = p->aLookahead[j].lookahead - p->mnLookahead + i;
566: if( k<0 || k>=p->nAction ) break;
567: if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
568: if( p->aLookahead[j].action!=p->aAction[k].action ) break;
569: }
570: if( j<p->nLookahead ) continue;
571:
572: /* No possible lookahead value that is not in the aLookahead[]
573: ** transaction is allowed to match aAction[i] */
574: n = 0;
575: for(j=0; j<p->nAction; j++){
576: if( p->aAction[j].lookahead<0 ) continue;
577: if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
578: }
579: if( n==p->nLookahead ){
580: break; /* An exact match is found at offset i */
581: }
582: }
583: }
584:
585: /* If no existing offsets exactly match the current transaction, find an
586: ** an empty offset in the aAction[] table in which we can add the
587: ** aLookahead[] transaction.
588: */
589: if( i<0 ){
590: /* Look for holes in the aAction[] table that fit the current
591: ** aLookahead[] transaction. Leave i set to the offset of the hole.
592: ** If no holes are found, i is left at p->nAction, which means the
593: ** transaction will be appended. */
594: for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
595: if( p->aAction[i].lookahead<0 ){
596: for(j=0; j<p->nLookahead; j++){
597: k = p->aLookahead[j].lookahead - p->mnLookahead + i;
598: if( k<0 ) break;
599: if( p->aAction[k].lookahead>=0 ) break;
600: }
601: if( j<p->nLookahead ) continue;
602: for(j=0; j<p->nAction; j++){
603: if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
604: }
605: if( j==p->nAction ){
606: break; /* Fits in empty slots */
607: }
608: }
609: }
610: }
611: /* Insert transaction set at index i. */
612: for(j=0; j<p->nLookahead; j++){
613: k = p->aLookahead[j].lookahead - p->mnLookahead + i;
614: p->aAction[k] = p->aLookahead[j];
615: if( k>=p->nAction ) p->nAction = k+1;
616: }
617: p->nLookahead = 0;
618:
619: /* Return the offset that is added to the lookahead in order to get the
620: ** index into yy_action of the action */
621: return i - p->mnLookahead;
622: }
623:
624: /********************** From the file "build.c" *****************************/
625: /*
626: ** Routines to construction the finite state machine for the LEMON
627: ** parser generator.
628: */
629:
630: /* Find a precedence symbol of every rule in the grammar.
631: **
632: ** Those rules which have a precedence symbol coded in the input
633: ** grammar using the "[symbol]" construct will already have the
634: ** rp->precsym field filled. Other rules take as their precedence
635: ** symbol the first RHS symbol with a defined precedence. If there
636: ** are not RHS symbols with a defined precedence, the precedence
637: ** symbol field is left blank.
638: */
639: void FindRulePrecedences(struct lemon *xp)
640: {
641: struct rule *rp;
642: for(rp=xp->rule; rp; rp=rp->next){
643: if( rp->precsym==0 ){
644: int i, j;
645: for(i=0; i<rp->nrhs && rp->precsym==0; i++){
646: struct symbol *sp = rp->rhs[i];
647: if( sp->type==MULTITERMINAL ){
648: for(j=0; j<sp->nsubsym; j++){
649: if( sp->subsym[j]->prec>=0 ){
650: rp->precsym = sp->subsym[j];
651: break;
652: }
653: }
654: }else if( sp->prec>=0 ){
655: rp->precsym = rp->rhs[i];
656: }
657: }
658: }
659: }
660: return;
661: }
662:
663: /* Find all nonterminals which will generate the empty string.
664: ** Then go back and compute the first sets of every nonterminal.
665: ** The first set is the set of all terminal symbols which can begin
666: ** a string generated by that nonterminal.
667: */
668: void FindFirstSets(struct lemon *lemp)
669: {
670: int i, j;
671: struct rule *rp;
672: int progress;
673:
674: for(i=0; i<lemp->nsymbol; i++){
675: lemp->symbols[i]->lambda = LEMON_FALSE;
676: }
677: for(i=lemp->nterminal; i<lemp->nsymbol; i++){
678: lemp->symbols[i]->firstset = SetNew();
679: }
680:
681: /* First compute all lambdas */
682: do{
683: progress = 0;
684: for(rp=lemp->rule; rp; rp=rp->next){
685: if( rp->lhs->lambda ) continue;
686: for(i=0; i<rp->nrhs; i++){
687: struct symbol *sp = rp->rhs[i];
688: assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
689: if( sp->lambda==LEMON_FALSE ) break;
690: }
691: if( i==rp->nrhs ){
692: rp->lhs->lambda = LEMON_TRUE;
693: progress = 1;
694: }
695: }
696: }while( progress );
697:
698: /* Now compute all first sets */
699: do{
700: struct symbol *s1, *s2;
701: progress = 0;
702: for(rp=lemp->rule; rp; rp=rp->next){
703: s1 = rp->lhs;
704: for(i=0; i<rp->nrhs; i++){
705: s2 = rp->rhs[i];
706: if( s2->type==TERMINAL ){
707: progress += SetAdd(s1->firstset,s2->index);
708: break;
709: }else if( s2->type==MULTITERMINAL ){
710: for(j=0; j<s2->nsubsym; j++){
711: progress += SetAdd(s1->firstset,s2->subsym[j]->index);
712: }
713: break;
714: }else if( s1==s2 ){
715: if( s1->lambda==LEMON_FALSE ) break;
716: }else{
717: progress += SetUnion(s1->firstset,s2->firstset);
718: if( s2->lambda==LEMON_FALSE ) break;
719: }
720: }
721: }
722: }while( progress );
723: return;
724: }
725:
726: /* Compute all LR(0) states for the grammar. Links
727: ** are added to between some states so that the LR(1) follow sets
728: ** can be computed later.
729: */
730: PRIVATE struct state *getstate(struct lemon *); /* forward reference */
731: void FindStates(struct lemon *lemp)
732: {
733: struct symbol *sp;
734: struct rule *rp;
735:
736: Configlist_init();
737:
738: /* Find the start symbol */
739: if( lemp->start ){
740: sp = Symbol_find(lemp->start);
741: if( sp==0 ){
742: ErrorMsg(lemp->filename,0,
743: "The specified start symbol \"%s\" is not \
744: in a nonterminal of the grammar. \"%s\" will be used as the start \
745: symbol instead.",lemp->start,lemp->rule->lhs->name);
746: lemp->errorcnt++;
747: sp = lemp->rule->lhs;
748: }
749: }else{
750: sp = lemp->rule->lhs;
751: }
752:
753: /* Make sure the start symbol doesn't occur on the right-hand side of
754: ** any rule. Report an error if it does. (YACC would generate a new
755: ** start symbol in this case.) */
756: for(rp=lemp->rule; rp; rp=rp->next){
757: int i;
758: for(i=0; i<rp->nrhs; i++){
759: if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
760: ErrorMsg(lemp->filename,0,
761: "The start symbol \"%s\" occurs on the \
762: right-hand side of a rule. This will result in a parser which \
763: does not work properly.",sp->name);
764: lemp->errorcnt++;
765: }
766: }
767: }
768:
769: /* The basis configuration set for the first state
770: ** is all rules which have the start symbol as their
771: ** left-hand side */
772: for(rp=sp->rule; rp; rp=rp->nextlhs){
773: struct config *newcfp;
774: rp->lhsStart = 1;
775: newcfp = Configlist_addbasis(rp,0);
776: SetAdd(newcfp->fws,0);
777: }
778:
779: /* Compute the first state. All other states will be
780: ** computed automatically during the computation of the first one.
781: ** The returned pointer to the first state is not used. */
782: (void)getstate(lemp);
783: return;
784: }
785:
786: /* Return a pointer to a state which is described by the configuration
787: ** list which has been built from calls to Configlist_add.
788: */
789: PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
790: PRIVATE struct state *getstate(struct lemon *lemp)
791: {
792: struct config *cfp, *bp;
793: struct state *stp;
794:
795: /* Extract the sorted basis of the new state. The basis was constructed
796: ** by prior calls to "Configlist_addbasis()". */
797: Configlist_sortbasis();
798: bp = Configlist_basis();
799:
800: /* Get a state with the same basis */
801: stp = State_find(bp);
802: if( stp ){
803: /* A state with the same basis already exists! Copy all the follow-set
804: ** propagation links from the state under construction into the
805: ** preexisting state, then return a pointer to the preexisting state */
806: struct config *x, *y;
807: for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
808: Plink_copy(&y->bplp,x->bplp);
809: Plink_delete(x->fplp);
810: x->fplp = x->bplp = 0;
811: }
812: cfp = Configlist_return();
813: Configlist_eat(cfp);
814: }else{
815: /* This really is a new state. Construct all the details */
816: Configlist_closure(lemp); /* Compute the configuration closure */
817: Configlist_sort(); /* Sort the configuration closure */
818: cfp = Configlist_return(); /* Get a pointer to the config list */
819: stp = State_new(); /* A new state structure */
820: MemoryCheck(stp);
821: stp->bp = bp; /* Remember the configuration basis */
822: stp->cfp = cfp; /* Remember the configuration closure */
823: stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
824: stp->ap = 0; /* No actions, yet. */
825: State_insert(stp,stp->bp); /* Add to the state table */
826: buildshifts(lemp,stp); /* Recursively compute successor states */
827: }
828: return stp;
829: }
830:
831: /*
832: ** Return true if two symbols are the same.
833: */
834: int same_symbol(struct symbol *a, struct symbol *b)
835: {
836: int i;
837: if( a==b ) return 1;
838: if( a->type!=MULTITERMINAL ) return 0;
839: if( b->type!=MULTITERMINAL ) return 0;
840: if( a->nsubsym!=b->nsubsym ) return 0;
841: for(i=0; i<a->nsubsym; i++){
842: if( a->subsym[i]!=b->subsym[i] ) return 0;
843: }
844: return 1;
845: }
846:
847: /* Construct all successor states to the given state. A "successor"
848: ** state is any state which can be reached by a shift action.
849: */
850: PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
851: {
852: struct config *cfp; /* For looping thru the config closure of "stp" */
853: struct config *bcfp; /* For the inner loop on config closure of "stp" */
854: struct config *newcfg; /* */
855: struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
856: struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
857: struct state *newstp; /* A pointer to a successor state */
858:
859: /* Each configuration becomes complete after it contibutes to a successor
860: ** state. Initially, all configurations are incomplete */
861: for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
862:
863: /* Loop through all configurations of the state "stp" */
864: for(cfp=stp->cfp; cfp; cfp=cfp->next){
865: if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
866: if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
867: Configlist_reset(); /* Reset the new config set */
868: sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
869:
870: /* For every configuration in the state "stp" which has the symbol "sp"
871: ** following its dot, add the same configuration to the basis set under
872: ** construction but with the dot shifted one symbol to the right. */
873: for(bcfp=cfp; bcfp; bcfp=bcfp->next){
874: if( bcfp->status==COMPLETE ) continue; /* Already used */
875: if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
876: bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
877: if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
878: bcfp->status = COMPLETE; /* Mark this config as used */
879: newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
880: Plink_add(&newcfg->bplp,bcfp);
881: }
882:
883: /* Get a pointer to the state described by the basis configuration set
884: ** constructed in the preceding loop */
885: newstp = getstate(lemp);
886:
887: /* The state "newstp" is reached from the state "stp" by a shift action
888: ** on the symbol "sp" */
889: if( sp->type==MULTITERMINAL ){
890: int i;
891: for(i=0; i<sp->nsubsym; i++){
892: Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
893: }
894: }else{
895: Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
896: }
897: }
898: }
899:
900: /*
901: ** Construct the propagation links
902: */
903: void FindLinks(struct lemon *lemp)
904: {
905: int i;
906: struct config *cfp, *other;
907: struct state *stp;
908: struct plink *plp;
909:
910: /* Housekeeping detail:
911: ** Add to every propagate link a pointer back to the state to
912: ** which the link is attached. */
913: for(i=0; i<lemp->nstate; i++){
914: stp = lemp->sorted[i];
915: for(cfp=stp->cfp; cfp; cfp=cfp->next){
916: cfp->stp = stp;
917: }
918: }
919:
920: /* Convert all backlinks into forward links. Only the forward
921: ** links are used in the follow-set computation. */
922: for(i=0; i<lemp->nstate; i++){
923: stp = lemp->sorted[i];
924: for(cfp=stp->cfp; cfp; cfp=cfp->next){
925: for(plp=cfp->bplp; plp; plp=plp->next){
926: other = plp->cfp;
927: Plink_add(&other->fplp,cfp);
928: }
929: }
930: }
931: }
932:
933: /* Compute all followsets.
934: **
935: ** A followset is the set of all symbols which can come immediately
936: ** after a configuration.
937: */
938: void FindFollowSets(struct lemon *lemp)
939: {
940: int i;
941: struct config *cfp;
942: struct plink *plp;
943: int progress;
944: int change;
945:
946: for(i=0; i<lemp->nstate; i++){
947: for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
948: cfp->status = INCOMPLETE;
949: }
950: }
951:
952: do{
953: progress = 0;
954: for(i=0; i<lemp->nstate; i++){
955: for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
956: if( cfp->status==COMPLETE ) continue;
957: for(plp=cfp->fplp; plp; plp=plp->next){
958: change = SetUnion(plp->cfp->fws,cfp->fws);
959: if( change ){
960: plp->cfp->status = INCOMPLETE;
961: progress = 1;
962: }
963: }
964: cfp->status = COMPLETE;
965: }
966: }
967: }while( progress );
968: }
969:
970: static int resolve_conflict(struct action *,struct action *);
971:
972: /* Compute the reduce actions, and resolve conflicts.
973: */
974: void FindActions(struct lemon *lemp)
975: {
976: int i,j;
977: struct config *cfp;
978: struct state *stp;
979: struct symbol *sp;
980: struct rule *rp;
981:
982: /* Add all of the reduce actions
983: ** A reduce action is added for each element of the followset of
984: ** a configuration which has its dot at the extreme right.
985: */
986: for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
987: stp = lemp->sorted[i];
988: for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
989: if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
990: for(j=0; j<lemp->nterminal; j++){
991: if( SetFind(cfp->fws,j) ){
992: /* Add a reduce action to the state "stp" which will reduce by the
993: ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
994: Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
995: }
996: }
997: }
998: }
999: }
1000:
1001: /* Add the accepting token */
1002: if( lemp->start ){
1003: sp = Symbol_find(lemp->start);
1004: if( sp==0 ) sp = lemp->rule->lhs;
1005: }else{
1006: sp = lemp->rule->lhs;
1007: }
1008: /* Add to the first state (which is always the starting state of the
1009: ** finite state machine) an action to ACCEPT if the lookahead is the
1010: ** start nonterminal. */
1011: Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1012:
1013: /* Resolve conflicts */
1014: for(i=0; i<lemp->nstate; i++){
1015: struct action *ap, *nap;
1016: struct state *stp;
1017: stp = lemp->sorted[i];
1018: /* assert( stp->ap ); */
1019: stp->ap = Action_sort(stp->ap);
1020: for(ap=stp->ap; ap && ap->next; ap=ap->next){
1021: for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1022: /* The two actions "ap" and "nap" have the same lookahead.
1023: ** Figure out which one should be used */
1024: lemp->nconflict += resolve_conflict(ap,nap);
1025: }
1026: }
1027: }
1028:
1029: /* Report an error for each rule that can never be reduced. */
1030: for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1031: for(i=0; i<lemp->nstate; i++){
1032: struct action *ap;
1033: for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1034: if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1035: }
1036: }
1037: for(rp=lemp->rule; rp; rp=rp->next){
1038: if( rp->canReduce ) continue;
1039: ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1040: lemp->errorcnt++;
1041: }
1042: }
1043:
1044: /* Resolve a conflict between the two given actions. If the
1045: ** conflict can't be resolved, return non-zero.
1046: **
1047: ** NO LONGER TRUE:
1048: ** To resolve a conflict, first look to see if either action
1049: ** is on an error rule. In that case, take the action which
1050: ** is not associated with the error rule. If neither or both
1051: ** actions are associated with an error rule, then try to
1052: ** use precedence to resolve the conflict.
1053: **
1054: ** If either action is a SHIFT, then it must be apx. This
1055: ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1056: */
1057: static int resolve_conflict(
1058: struct action *apx,
1059: struct action *apy
1060: ){
1061: struct symbol *spx, *spy;
1062: int errcnt = 0;
1063: assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1064: if( apx->type==SHIFT && apy->type==SHIFT ){
1065: apy->type = SSCONFLICT;
1066: errcnt++;
1067: }
1068: if( apx->type==SHIFT && apy->type==REDUCE ){
1069: spx = apx->sp;
1070: spy = apy->x.rp->precsym;
1071: if( spy==0 || spx->prec<0 || spy->prec<0 ){
1072: /* Not enough precedence information. */
1073: apy->type = SRCONFLICT;
1074: errcnt++;
1075: }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1076: apy->type = RD_RESOLVED;
1077: }else if( spx->prec<spy->prec ){
1078: apx->type = SH_RESOLVED;
1079: }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1080: apy->type = RD_RESOLVED; /* associativity */
1081: }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1082: apx->type = SH_RESOLVED;
1083: }else{
1084: assert( spx->prec==spy->prec && spx->assoc==NONE );
1085: apy->type = SRCONFLICT;
1086: errcnt++;
1087: }
1088: }else if( apx->type==REDUCE && apy->type==REDUCE ){
1089: spx = apx->x.rp->precsym;
1090: spy = apy->x.rp->precsym;
1091: if( spx==0 || spy==0 || spx->prec<0 ||
1092: spy->prec<0 || spx->prec==spy->prec ){
1093: apy->type = RRCONFLICT;
1094: errcnt++;
1095: }else if( spx->prec>spy->prec ){
1096: apy->type = RD_RESOLVED;
1097: }else if( spx->prec<spy->prec ){
1098: apx->type = RD_RESOLVED;
1099: }
1100: }else{
1101: assert(
1102: apx->type==SH_RESOLVED ||
1103: apx->type==RD_RESOLVED ||
1104: apx->type==SSCONFLICT ||
1105: apx->type==SRCONFLICT ||
1106: apx->type==RRCONFLICT ||
1107: apy->type==SH_RESOLVED ||
1108: apy->type==RD_RESOLVED ||
1109: apy->type==SSCONFLICT ||
1110: apy->type==SRCONFLICT ||
1111: apy->type==RRCONFLICT
1112: );
1113: /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1114: ** REDUCEs on the list. If we reach this point it must be because
1115: ** the parser conflict had already been resolved. */
1116: }
1117: return errcnt;
1118: }
1119: /********************* From the file "configlist.c" *************************/
1120: /*
1121: ** Routines to processing a configuration list and building a state
1122: ** in the LEMON parser generator.
1123: */
1124:
1125: static struct config *freelist = 0; /* List of free configurations */
1126: static struct config *current = 0; /* Top of list of configurations */
1127: static struct config **currentend = 0; /* Last on list of configs */
1128: static struct config *basis = 0; /* Top of list of basis configs */
1129: static struct config **basisend = 0; /* End of list of basis configs */
1130:
1131: /* Return a pointer to a new configuration */
1132: PRIVATE struct config *newconfig(){
1133: struct config *newcfg;
1134: if( freelist==0 ){
1135: int i;
1136: int amt = 3;
1137: freelist = (struct config *)calloc( amt, sizeof(struct config) );
1138: if( freelist==0 ){
1139: fprintf(stderr,"Unable to allocate memory for a new configuration.");
1140: exit(1);
1141: }
1142: for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1143: freelist[amt-1].next = 0;
1144: }
1145: newcfg = freelist;
1146: freelist = freelist->next;
1147: return newcfg;
1148: }
1149:
1150: /* The configuration "old" is no longer used */
1151: PRIVATE void deleteconfig(struct config *old)
1152: {
1153: old->next = freelist;
1154: freelist = old;
1155: }
1156:
1157: /* Initialized the configuration list builder */
1158: void Configlist_init(){
1159: current = 0;
1160: currentend = ¤t;
1161: basis = 0;
1162: basisend = &basis;
1163: Configtable_init();
1164: return;
1165: }
1166:
1167: /* Initialized the configuration list builder */
1168: void Configlist_reset(){
1169: current = 0;
1170: currentend = ¤t;
1171: basis = 0;
1172: basisend = &basis;
1173: Configtable_clear(0);
1174: return;
1175: }
1176:
1177: /* Add another configuration to the configuration list */
1178: struct config *Configlist_add(
1179: struct rule *rp, /* The rule */
1180: int dot /* Index into the RHS of the rule where the dot goes */
1181: ){
1182: struct config *cfp, model;
1183:
1184: assert( currentend!=0 );
1185: model.rp = rp;
1186: model.dot = dot;
1187: cfp = Configtable_find(&model);
1188: if( cfp==0 ){
1189: cfp = newconfig();
1190: cfp->rp = rp;
1191: cfp->dot = dot;
1192: cfp->fws = SetNew();
1193: cfp->stp = 0;
1194: cfp->fplp = cfp->bplp = 0;
1195: cfp->next = 0;
1196: cfp->bp = 0;
1197: *currentend = cfp;
1198: currentend = &cfp->next;
1199: Configtable_insert(cfp);
1200: }
1201: return cfp;
1202: }
1203:
1204: /* Add a basis configuration to the configuration list */
1205: struct config *Configlist_addbasis(struct rule *rp, int dot)
1206: {
1207: struct config *cfp, model;
1208:
1209: assert( basisend!=0 );
1210: assert( currentend!=0 );
1211: model.rp = rp;
1212: model.dot = dot;
1213: cfp = Configtable_find(&model);
1214: if( cfp==0 ){
1215: cfp = newconfig();
1216: cfp->rp = rp;
1217: cfp->dot = dot;
1218: cfp->fws = SetNew();
1219: cfp->stp = 0;
1220: cfp->fplp = cfp->bplp = 0;
1221: cfp->next = 0;
1222: cfp->bp = 0;
1223: *currentend = cfp;
1224: currentend = &cfp->next;
1225: *basisend = cfp;
1226: basisend = &cfp->bp;
1227: Configtable_insert(cfp);
1228: }
1229: return cfp;
1230: }
1231:
1232: /* Compute the closure of the configuration list */
1233: void Configlist_closure(struct lemon *lemp)
1234: {
1235: struct config *cfp, *newcfp;
1236: struct rule *rp, *newrp;
1237: struct symbol *sp, *xsp;
1238: int i, dot;
1239:
1240: assert( currentend!=0 );
1241: for(cfp=current; cfp; cfp=cfp->next){
1242: rp = cfp->rp;
1243: dot = cfp->dot;
1244: if( dot>=rp->nrhs ) continue;
1245: sp = rp->rhs[dot];
1246: if( sp->type==NONTERMINAL ){
1247: if( sp->rule==0 && sp!=lemp->errsym ){
1248: ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1249: sp->name);
1250: lemp->errorcnt++;
1251: }
1252: for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1253: newcfp = Configlist_add(newrp,0);
1254: for(i=dot+1; i<rp->nrhs; i++){
1255: xsp = rp->rhs[i];
1256: if( xsp->type==TERMINAL ){
1257: SetAdd(newcfp->fws,xsp->index);
1258: break;
1259: }else if( xsp->type==MULTITERMINAL ){
1260: int k;
1261: for(k=0; k<xsp->nsubsym; k++){
1262: SetAdd(newcfp->fws, xsp->subsym[k]->index);
1263: }
1264: break;
1265: }else{
1266: SetUnion(newcfp->fws,xsp->firstset);
1267: if( xsp->lambda==LEMON_FALSE ) break;
1268: }
1269: }
1270: if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1271: }
1272: }
1273: }
1274: return;
1275: }
1276:
1277: /* Sort the configuration list */
1278: void Configlist_sort(){
1279: current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1280: currentend = 0;
1281: return;
1282: }
1283:
1284: /* Sort the basis configuration list */
1285: void Configlist_sortbasis(){
1286: basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1287: basisend = 0;
1288: return;
1289: }
1290:
1291: /* Return a pointer to the head of the configuration list and
1292: ** reset the list */
1293: struct config *Configlist_return(){
1294: struct config *old;
1295: old = current;
1296: current = 0;
1297: currentend = 0;
1298: return old;
1299: }
1300:
1301: /* Return a pointer to the head of the configuration list and
1302: ** reset the list */
1303: struct config *Configlist_basis(){
1304: struct config *old;
1305: old = basis;
1306: basis = 0;
1307: basisend = 0;
1308: return old;
1309: }
1310:
1311: /* Free all elements of the given configuration list */
1312: void Configlist_eat(struct config *cfp)
1313: {
1314: struct config *nextcfp;
1315: for(; cfp; cfp=nextcfp){
1316: nextcfp = cfp->next;
1317: assert( cfp->fplp==0 );
1318: assert( cfp->bplp==0 );
1319: if( cfp->fws ) SetFree(cfp->fws);
1320: deleteconfig(cfp);
1321: }
1322: return;
1323: }
1324: /***************** From the file "error.c" *********************************/
1325: /*
1326: ** Code for printing error message.
1327: */
1328:
1329: void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1330: va_list ap;
1331: fprintf(stderr, "%s:%d: ", filename, lineno);
1332: va_start(ap, format);
1333: vfprintf(stderr,format,ap);
1334: va_end(ap);
1335: fprintf(stderr, "\n");
1336: }
1337: /**************** From the file "main.c" ************************************/
1338: /*
1339: ** Main program file for the LEMON parser generator.
1340: */
1341:
1342: /* Report an out-of-memory condition and abort. This function
1343: ** is used mostly by the "MemoryCheck" macro in struct.h
1344: */
1345: void memory_error(){
1346: fprintf(stderr,"Out of memory. Aborting...\n");
1347: exit(1);
1348: }
1349:
1350: static int nDefine = 0; /* Number of -D options on the command line */
1351: static char **azDefine = 0; /* Name of the -D macros */
1352:
1353: /* This routine is called with the argument to each -D command-line option.
1354: ** Add the macro defined to the azDefine array.
1355: */
1356: static void handle_D_option(char *z){
1357: char **paz;
1358: nDefine++;
1359: azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1360: if( azDefine==0 ){
1361: fprintf(stderr,"out of memory\n");
1362: exit(1);
1363: }
1364: paz = &azDefine[nDefine-1];
1365: *paz = (char *) malloc( lemonStrlen(z)+1 );
1366: if( *paz==0 ){
1367: fprintf(stderr,"out of memory\n");
1368: exit(1);
1369: }
1370: strcpy(*paz, z);
1371: for(z=*paz; *z && *z!='='; z++){}
1372: *z = 0;
1373: }
1374:
1375: static char *user_templatename = NULL;
1376: static void handle_T_option(char *z){
1377: user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1378: if( user_templatename==0 ){
1379: memory_error();
1380: }
1381: strcpy(user_templatename, z);
1382: }
1383:
1384: /* The main program. Parse the command line and do it... */
1385: int main(int argc, char **argv)
1386: {
1387: static int version = 0;
1388: static int rpflag = 0;
1389: static int basisflag = 0;
1390: static int compress = 0;
1391: static int quiet = 0;
1392: static int statistics = 0;
1393: static int mhflag = 0;
1394: static int nolinenosflag = 0;
1395: static int noResort = 0;
1396: static struct s_options options[] = {
1397: {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1398: {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1399: {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1400: {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1401: {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1402: {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1403: {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1404: {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1405: "Show conflicts resolved by precedence rules"},
1406: {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1407: {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1408: {OPT_FLAG, "s", (char*)&statistics,
1409: "Print parser stats to standard output."},
1410: {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1411: {OPT_FLAG,0,0,0}
1412: };
1413: int i;
1414: int exitcode;
1415: struct lemon lem;
1416:
1417: OptInit(argv,options,stderr);
1418: if( version ){
1419: printf("Lemon version 1.0\n");
1420: exit(0);
1421: }
1422: if( OptNArgs()!=1 ){
1423: fprintf(stderr,"Exactly one filename argument is required.\n");
1424: exit(1);
1425: }
1426: memset(&lem, 0, sizeof(lem));
1427: lem.errorcnt = 0;
1428:
1429: /* Initialize the machine */
1430: Strsafe_init();
1431: Symbol_init();
1432: State_init();
1433: lem.argv0 = argv[0];
1434: lem.filename = OptArg(0);
1435: lem.basisflag = basisflag;
1436: lem.nolinenosflag = nolinenosflag;
1437: Symbol_new("$");
1438: lem.errsym = Symbol_new("error");
1439: lem.errsym->useCnt = 0;
1440:
1441: /* Parse the input file */
1442: Parse(&lem);
1443: if( lem.errorcnt ) exit(lem.errorcnt);
1444: if( lem.nrule==0 ){
1445: fprintf(stderr,"Empty grammar.\n");
1446: exit(1);
1447: }
1448:
1449: /* Count and index the symbols of the grammar */
1450: lem.nsymbol = Symbol_count();
1451: Symbol_new("{default}");
1452: lem.symbols = Symbol_arrayof();
1453: for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1454: qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp);
1455: for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1456: for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1457: lem.nterminal = i;
1458:
1459: /* Generate a reprint of the grammar, if requested on the command line */
1460: if( rpflag ){
1461: Reprint(&lem);
1462: }else{
1463: /* Initialize the size for all follow and first sets */
1464: SetSize(lem.nterminal+1);
1465:
1466: /* Find the precedence for every production rule (that has one) */
1467: FindRulePrecedences(&lem);
1468:
1469: /* Compute the lambda-nonterminals and the first-sets for every
1470: ** nonterminal */
1471: FindFirstSets(&lem);
1472:
1473: /* Compute all LR(0) states. Also record follow-set propagation
1474: ** links so that the follow-set can be computed later */
1475: lem.nstate = 0;
1476: FindStates(&lem);
1477: lem.sorted = State_arrayof();
1478:
1479: /* Tie up loose ends on the propagation links */
1480: FindLinks(&lem);
1481:
1482: /* Compute the follow set of every reducible configuration */
1483: FindFollowSets(&lem);
1484:
1485: /* Compute the action tables */
1486: FindActions(&lem);
1487:
1488: /* Compress the action tables */
1489: if( compress==0 ) CompressTables(&lem);
1490:
1491: /* Reorder and renumber the states so that states with fewer choices
1492: ** occur at the end. This is an optimization that helps make the
1493: ** generated parser tables smaller. */
1494: if( noResort==0 ) ResortStates(&lem);
1495:
1496: /* Generate a report of the parser generated. (the "y.output" file) */
1497: if( !quiet ) ReportOutput(&lem);
1498:
1499: /* Generate the source code for the parser */
1500: ReportTable(&lem, mhflag);
1501:
1502: /* Produce a header file for use by the scanner. (This step is
1503: ** omitted if the "-m" option is used because makeheaders will
1504: ** generate the file for us.) */
1505: if( !mhflag ) ReportHeader(&lem);
1506: }
1507: if( statistics ){
1508: printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1509: lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1510: printf(" %d states, %d parser table entries, %d conflicts\n",
1511: lem.nstate, lem.tablesize, lem.nconflict);
1512: }
1513: if( lem.nconflict > 0 ){
1514: fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1515: }
1516:
1517: /* return 0 on success, 1 on failure. */
1518: exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1519: exit(exitcode);
1520: return (exitcode);
1521: }
1522: /******************** From the file "msort.c" *******************************/
1523: /*
1524: ** A generic merge-sort program.
1525: **
1526: ** USAGE:
1527: ** Let "ptr" be a pointer to some structure which is at the head of
1528: ** a null-terminated list. Then to sort the list call:
1529: **
1530: ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1531: **
1532: ** In the above, "cmpfnc" is a pointer to a function which compares
1533: ** two instances of the structure and returns an integer, as in
1534: ** strcmp. The second argument is a pointer to the pointer to the
1535: ** second element of the linked list. This address is used to compute
1536: ** the offset to the "next" field within the structure. The offset to
1537: ** the "next" field must be constant for all structures in the list.
1538: **
1539: ** The function returns a new pointer which is the head of the list
1540: ** after sorting.
1541: **
1542: ** ALGORITHM:
1543: ** Merge-sort.
1544: */
1545:
1546: /*
1547: ** Return a pointer to the next structure in the linked list.
1548: */
1549: #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1550:
1551: /*
1552: ** Inputs:
1553: ** a: A sorted, null-terminated linked list. (May be null).
1554: ** b: A sorted, null-terminated linked list. (May be null).
1555: ** cmp: A pointer to the comparison function.
1556: ** offset: Offset in the structure to the "next" field.
1557: **
1558: ** Return Value:
1559: ** A pointer to the head of a sorted list containing the elements
1560: ** of both a and b.
1561: **
1562: ** Side effects:
1563: ** The "next" pointers for elements in the lists a and b are
1564: ** changed.
1565: */
1566: static char *merge(
1567: char *a,
1568: char *b,
1569: int (*cmp)(const char*,const char*),
1570: int offset
1571: ){
1572: char *ptr, *head;
1573:
1574: if( a==0 ){
1575: head = b;
1576: }else if( b==0 ){
1577: head = a;
1578: }else{
1579: if( (*cmp)(a,b)<=0 ){
1580: ptr = a;
1581: a = NEXT(a);
1582: }else{
1583: ptr = b;
1584: b = NEXT(b);
1585: }
1586: head = ptr;
1587: while( a && b ){
1588: if( (*cmp)(a,b)<=0 ){
1589: NEXT(ptr) = a;
1590: ptr = a;
1591: a = NEXT(a);
1592: }else{
1593: NEXT(ptr) = b;
1594: ptr = b;
1595: b = NEXT(b);
1596: }
1597: }
1598: if( a ) NEXT(ptr) = a;
1599: else NEXT(ptr) = b;
1600: }
1601: return head;
1602: }
1603:
1604: /*
1605: ** Inputs:
1606: ** list: Pointer to a singly-linked list of structures.
1607: ** next: Pointer to pointer to the second element of the list.
1608: ** cmp: A comparison function.
1609: **
1610: ** Return Value:
1611: ** A pointer to the head of a sorted list containing the elements
1612: ** orginally in list.
1613: **
1614: ** Side effects:
1615: ** The "next" pointers for elements in list are changed.
1616: */
1617: #define LISTSIZE 30
1618: static char *msort(
1619: char *list,
1620: char **next,
1621: int (*cmp)(const char*,const char*)
1622: ){
1623: unsigned long offset;
1624: char *ep;
1625: char *set[LISTSIZE];
1626: int i;
1627: offset = (unsigned long)next - (unsigned long)list;
1628: for(i=0; i<LISTSIZE; i++) set[i] = 0;
1629: while( list ){
1630: ep = list;
1631: list = NEXT(list);
1632: NEXT(ep) = 0;
1633: for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1634: ep = merge(ep,set[i],cmp,offset);
1635: set[i] = 0;
1636: }
1637: set[i] = ep;
1638: }
1639: ep = 0;
1640: for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1641: return ep;
1642: }
1643: /************************ From the file "option.c" **************************/
1644: static char **argv;
1645: static struct s_options *op;
1646: static FILE *errstream;
1647:
1648: #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1649:
1650: /*
1651: ** Print the command line with a carrot pointing to the k-th character
1652: ** of the n-th field.
1653: */
1654: static void errline(int n, int k, FILE *err)
1655: {
1656: int spcnt, i;
1657: if( argv[0] ) fprintf(err,"%s",argv[0]);
1658: spcnt = lemonStrlen(argv[0]) + 1;
1659: for(i=1; i<n && argv[i]; i++){
1660: fprintf(err," %s",argv[i]);
1661: spcnt += lemonStrlen(argv[i])+1;
1662: }
1663: spcnt += k;
1664: for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1665: if( spcnt<20 ){
1666: fprintf(err,"\n%*s^-- here\n",spcnt,"");
1667: }else{
1668: fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1669: }
1670: }
1671:
1672: /*
1673: ** Return the index of the N-th non-switch argument. Return -1
1674: ** if N is out of range.
1675: */
1676: static int argindex(int n)
1677: {
1678: int i;
1679: int dashdash = 0;
1680: if( argv!=0 && *argv!=0 ){
1681: for(i=1; argv[i]; i++){
1682: if( dashdash || !ISOPT(argv[i]) ){
1683: if( n==0 ) return i;
1684: n--;
1685: }
1686: if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1687: }
1688: }
1689: return -1;
1690: }
1691:
1692: static char emsg[] = "Command line syntax error: ";
1693:
1694: /*
1695: ** Process a flag command line argument.
1696: */
1697: static int handleflags(int i, FILE *err)
1698: {
1699: int v;
1700: int errcnt = 0;
1701: int j;
1702: for(j=0; op[j].label; j++){
1703: if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1704: }
1705: v = argv[i][0]=='-' ? 1 : 0;
1706: if( op[j].label==0 ){
1707: if( err ){
1708: fprintf(err,"%sundefined option.\n",emsg);
1709: errline(i,1,err);
1710: }
1711: errcnt++;
1712: }else if( op[j].type==OPT_FLAG ){
1713: *((int*)op[j].arg) = v;
1714: }else if( op[j].type==OPT_FFLAG ){
1715: (*(void(*)(int))(op[j].arg))(v);
1716: }else if( op[j].type==OPT_FSTR ){
1717: (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
1718: }else{
1719: if( err ){
1720: fprintf(err,"%smissing argument on switch.\n",emsg);
1721: errline(i,1,err);
1722: }
1723: errcnt++;
1724: }
1725: return errcnt;
1726: }
1727:
1728: /*
1729: ** Process a command line switch which has an argument.
1730: */
1731: static int handleswitch(int i, FILE *err)
1732: {
1733: int lv = 0;
1734: double dv = 0.0;
1735: char *sv = 0, *end;
1736: char *cp;
1737: int j;
1738: int errcnt = 0;
1739: cp = strchr(argv[i],'=');
1740: assert( cp!=0 );
1741: *cp = 0;
1742: for(j=0; op[j].label; j++){
1743: if( strcmp(argv[i],op[j].label)==0 ) break;
1744: }
1745: *cp = '=';
1746: if( op[j].label==0 ){
1747: if( err ){
1748: fprintf(err,"%sundefined option.\n",emsg);
1749: errline(i,0,err);
1750: }
1751: errcnt++;
1752: }else{
1753: cp++;
1754: switch( op[j].type ){
1755: case OPT_FLAG:
1756: case OPT_FFLAG:
1757: if( err ){
1758: fprintf(err,"%soption requires an argument.\n",emsg);
1759: errline(i,0,err);
1760: }
1761: errcnt++;
1762: break;
1763: case OPT_DBL:
1764: case OPT_FDBL:
1765: dv = strtod(cp,&end);
1766: if( *end ){
1767: if( err ){
1768: fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1769: errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1770: }
1771: errcnt++;
1772: }
1773: break;
1774: case OPT_INT:
1775: case OPT_FINT:
1776: lv = strtol(cp,&end,0);
1777: if( *end ){
1778: if( err ){
1779: fprintf(err,"%sillegal character in integer argument.\n",emsg);
1780: errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1781: }
1782: errcnt++;
1783: }
1784: break;
1785: case OPT_STR:
1786: case OPT_FSTR:
1787: sv = cp;
1788: break;
1789: }
1790: switch( op[j].type ){
1791: case OPT_FLAG:
1792: case OPT_FFLAG:
1793: break;
1794: case OPT_DBL:
1795: *(double*)(op[j].arg) = dv;
1796: break;
1797: case OPT_FDBL:
1798: (*(void(*)(double))(op[j].arg))(dv);
1799: break;
1800: case OPT_INT:
1801: *(int*)(op[j].arg) = lv;
1802: break;
1803: case OPT_FINT:
1804: (*(void(*)(int))(op[j].arg))((int)lv);
1805: break;
1806: case OPT_STR:
1807: *(char**)(op[j].arg) = sv;
1808: break;
1809: case OPT_FSTR:
1810: (*(void(*)(char *))(op[j].arg))(sv);
1811: break;
1812: }
1813: }
1814: return errcnt;
1815: }
1816:
1817: int OptInit(char **a, struct s_options *o, FILE *err)
1818: {
1819: int errcnt = 0;
1820: argv = a;
1821: op = o;
1822: errstream = err;
1823: if( argv && *argv && op ){
1824: int i;
1825: for(i=1; argv[i]; i++){
1826: if( argv[i][0]=='+' || argv[i][0]=='-' ){
1827: errcnt += handleflags(i,err);
1828: }else if( strchr(argv[i],'=') ){
1829: errcnt += handleswitch(i,err);
1830: }
1831: }
1832: }
1833: if( errcnt>0 ){
1834: fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1835: OptPrint();
1836: exit(1);
1837: }
1838: return 0;
1839: }
1840:
1841: int OptNArgs(){
1842: int cnt = 0;
1843: int dashdash = 0;
1844: int i;
1845: if( argv!=0 && argv[0]!=0 ){
1846: for(i=1; argv[i]; i++){
1847: if( dashdash || !ISOPT(argv[i]) ) cnt++;
1848: if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1849: }
1850: }
1851: return cnt;
1852: }
1853:
1854: char *OptArg(int n)
1855: {
1856: int i;
1857: i = argindex(n);
1858: return i>=0 ? argv[i] : 0;
1859: }
1860:
1861: void OptErr(int n)
1862: {
1863: int i;
1864: i = argindex(n);
1865: if( i>=0 ) errline(i,0,errstream);
1866: }
1867:
1868: void OptPrint(){
1869: int i;
1870: int max, len;
1871: max = 0;
1872: for(i=0; op[i].label; i++){
1873: len = lemonStrlen(op[i].label) + 1;
1874: switch( op[i].type ){
1875: case OPT_FLAG:
1876: case OPT_FFLAG:
1877: break;
1878: case OPT_INT:
1879: case OPT_FINT:
1880: len += 9; /* length of "<integer>" */
1881: break;
1882: case OPT_DBL:
1883: case OPT_FDBL:
1884: len += 6; /* length of "<real>" */
1885: break;
1886: case OPT_STR:
1887: case OPT_FSTR:
1888: len += 8; /* length of "<string>" */
1889: break;
1890: }
1891: if( len>max ) max = len;
1892: }
1893: for(i=0; op[i].label; i++){
1894: switch( op[i].type ){
1895: case OPT_FLAG:
1896: case OPT_FFLAG:
1897: fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
1898: break;
1899: case OPT_INT:
1900: case OPT_FINT:
1901: fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
1902: (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
1903: break;
1904: case OPT_DBL:
1905: case OPT_FDBL:
1906: fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
1907: (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
1908: break;
1909: case OPT_STR:
1910: case OPT_FSTR:
1911: fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
1912: (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
1913: break;
1914: }
1915: }
1916: }
1917: /*********************** From the file "parse.c" ****************************/
1918: /*
1919: ** Input file parser for the LEMON parser generator.
1920: */
1921:
1922: /* The state of the parser */
1923: enum e_state {
1924: INITIALIZE,
1925: WAITING_FOR_DECL_OR_RULE,
1926: WAITING_FOR_DECL_KEYWORD,
1927: WAITING_FOR_DECL_ARG,
1928: WAITING_FOR_PRECEDENCE_SYMBOL,
1929: WAITING_FOR_ARROW,
1930: IN_RHS,
1931: LHS_ALIAS_1,
1932: LHS_ALIAS_2,
1933: LHS_ALIAS_3,
1934: RHS_ALIAS_1,
1935: RHS_ALIAS_2,
1936: PRECEDENCE_MARK_1,
1937: PRECEDENCE_MARK_2,
1938: RESYNC_AFTER_RULE_ERROR,
1939: RESYNC_AFTER_DECL_ERROR,
1940: WAITING_FOR_DESTRUCTOR_SYMBOL,
1941: WAITING_FOR_DATATYPE_SYMBOL,
1942: WAITING_FOR_FALLBACK_ID,
1943: WAITING_FOR_WILDCARD_ID
1944: };
1945: struct pstate {
1946: char *filename; /* Name of the input file */
1947: int tokenlineno; /* Linenumber at which current token starts */
1948: int errorcnt; /* Number of errors so far */
1949: char *tokenstart; /* Text of current token */
1950: struct lemon *gp; /* Global state vector */
1951: enum e_state state; /* The state of the parser */
1952: struct symbol *fallback; /* The fallback token */
1953: struct symbol *lhs; /* Left-hand side of current rule */
1954: const char *lhsalias; /* Alias for the LHS */
1955: int nrhs; /* Number of right-hand side symbols seen */
1956: struct symbol *rhs[MAXRHS]; /* RHS symbols */
1957: const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
1958: struct rule *prevrule; /* Previous rule parsed */
1959: const char *declkeyword; /* Keyword of a declaration */
1960: char **declargslot; /* Where the declaration argument should be put */
1961: int insertLineMacro; /* Add #line before declaration insert */
1962: int *decllinenoslot; /* Where to write declaration line number */
1963: enum e_assoc declassoc; /* Assign this association to decl arguments */
1964: int preccounter; /* Assign this precedence to decl arguments */
1965: struct rule *firstrule; /* Pointer to first rule in the grammar */
1966: struct rule *lastrule; /* Pointer to the most recently parsed rule */
1967: };
1968:
1969: /* Parse a single token */
1970: static void parseonetoken(struct pstate *psp)
1971: {
1972: const char *x;
1973: x = Strsafe(psp->tokenstart); /* Save the token permanently */
1974: #if 0
1975: printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1976: x,psp->state);
1977: #endif
1978: switch( psp->state ){
1979: case INITIALIZE:
1980: psp->prevrule = 0;
1981: psp->preccounter = 0;
1982: psp->firstrule = psp->lastrule = 0;
1983: psp->gp->nrule = 0;
1984: /* Fall thru to next case */
1985: case WAITING_FOR_DECL_OR_RULE:
1986: if( x[0]=='%' ){
1987: psp->state = WAITING_FOR_DECL_KEYWORD;
1988: }else if( islower(x[0]) ){
1989: psp->lhs = Symbol_new(x);
1990: psp->nrhs = 0;
1991: psp->lhsalias = 0;
1992: psp->state = WAITING_FOR_ARROW;
1993: }else if( x[0]=='{' ){
1994: if( psp->prevrule==0 ){
1995: ErrorMsg(psp->filename,psp->tokenlineno,
1996: "There is no prior rule upon which to attach the code \
1997: fragment which begins on this line.");
1998: psp->errorcnt++;
1999: }else if( psp->prevrule->code!=0 ){
2000: ErrorMsg(psp->filename,psp->tokenlineno,
2001: "Code fragment beginning on this line is not the first \
2002: to follow the previous rule.");
2003: psp->errorcnt++;
2004: }else{
2005: psp->prevrule->line = psp->tokenlineno;
2006: psp->prevrule->code = &x[1];
2007: }
2008: }else if( x[0]=='[' ){
2009: psp->state = PRECEDENCE_MARK_1;
2010: }else{
2011: ErrorMsg(psp->filename,psp->tokenlineno,
2012: "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2013: x);
2014: psp->errorcnt++;
2015: }
2016: break;
2017: case PRECEDENCE_MARK_1:
2018: if( !isupper(x[0]) ){
2019: ErrorMsg(psp->filename,psp->tokenlineno,
2020: "The precedence symbol must be a terminal.");
2021: psp->errorcnt++;
2022: }else if( psp->prevrule==0 ){
2023: ErrorMsg(psp->filename,psp->tokenlineno,
2024: "There is no prior rule to assign precedence \"[%s]\".",x);
2025: psp->errorcnt++;
2026: }else if( psp->prevrule->precsym!=0 ){
2027: ErrorMsg(psp->filename,psp->tokenlineno,
2028: "Precedence mark on this line is not the first \
2029: to follow the previous rule.");
2030: psp->errorcnt++;
2031: }else{
2032: psp->prevrule->precsym = Symbol_new(x);
2033: }
2034: psp->state = PRECEDENCE_MARK_2;
2035: break;
2036: case PRECEDENCE_MARK_2:
2037: if( x[0]!=']' ){
2038: ErrorMsg(psp->filename,psp->tokenlineno,
2039: "Missing \"]\" on precedence mark.");
2040: psp->errorcnt++;
2041: }
2042: psp->state = WAITING_FOR_DECL_OR_RULE;
2043: break;
2044: case WAITING_FOR_ARROW:
2045: if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2046: psp->state = IN_RHS;
2047: }else if( x[0]=='(' ){
2048: psp->state = LHS_ALIAS_1;
2049: }else{
2050: ErrorMsg(psp->filename,psp->tokenlineno,
2051: "Expected to see a \":\" following the LHS symbol \"%s\".",
2052: psp->lhs->name);
2053: psp->errorcnt++;
2054: psp->state = RESYNC_AFTER_RULE_ERROR;
2055: }
2056: break;
2057: case LHS_ALIAS_1:
2058: if( isalpha(x[0]) ){
2059: psp->lhsalias = x;
2060: psp->state = LHS_ALIAS_2;
2061: }else{
2062: ErrorMsg(psp->filename,psp->tokenlineno,
2063: "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2064: x,psp->lhs->name);
2065: psp->errorcnt++;
2066: psp->state = RESYNC_AFTER_RULE_ERROR;
2067: }
2068: break;
2069: case LHS_ALIAS_2:
2070: if( x[0]==')' ){
2071: psp->state = LHS_ALIAS_3;
2072: }else{
2073: ErrorMsg(psp->filename,psp->tokenlineno,
2074: "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2075: psp->errorcnt++;
2076: psp->state = RESYNC_AFTER_RULE_ERROR;
2077: }
2078: break;
2079: case LHS_ALIAS_3:
2080: if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2081: psp->state = IN_RHS;
2082: }else{
2083: ErrorMsg(psp->filename,psp->tokenlineno,
2084: "Missing \"->\" following: \"%s(%s)\".",
2085: psp->lhs->name,psp->lhsalias);
2086: psp->errorcnt++;
2087: psp->state = RESYNC_AFTER_RULE_ERROR;
2088: }
2089: break;
2090: case IN_RHS:
2091: if( x[0]=='.' ){
2092: struct rule *rp;
2093: rp = (struct rule *)calloc( sizeof(struct rule) +
2094: sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2095: if( rp==0 ){
2096: ErrorMsg(psp->filename,psp->tokenlineno,
2097: "Can't allocate enough memory for this rule.");
2098: psp->errorcnt++;
2099: psp->prevrule = 0;
2100: }else{
2101: int i;
2102: rp->ruleline = psp->tokenlineno;
2103: rp->rhs = (struct symbol**)&rp[1];
2104: rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2105: for(i=0; i<psp->nrhs; i++){
2106: rp->rhs[i] = psp->rhs[i];
2107: rp->rhsalias[i] = psp->alias[i];
2108: }
2109: rp->lhs = psp->lhs;
2110: rp->lhsalias = psp->lhsalias;
2111: rp->nrhs = psp->nrhs;
2112: rp->code = 0;
2113: rp->precsym = 0;
2114: rp->index = psp->gp->nrule++;
2115: rp->nextlhs = rp->lhs->rule;
2116: rp->lhs->rule = rp;
2117: rp->next = 0;
2118: if( psp->firstrule==0 ){
2119: psp->firstrule = psp->lastrule = rp;
2120: }else{
2121: psp->lastrule->next = rp;
2122: psp->lastrule = rp;
2123: }
2124: psp->prevrule = rp;
2125: }
2126: psp->state = WAITING_FOR_DECL_OR_RULE;
2127: }else if( isalpha(x[0]) ){
2128: if( psp->nrhs>=MAXRHS ){
2129: ErrorMsg(psp->filename,psp->tokenlineno,
2130: "Too many symbols on RHS of rule beginning at \"%s\".",
2131: x);
2132: psp->errorcnt++;
2133: psp->state = RESYNC_AFTER_RULE_ERROR;
2134: }else{
2135: psp->rhs[psp->nrhs] = Symbol_new(x);
2136: psp->alias[psp->nrhs] = 0;
2137: psp->nrhs++;
2138: }
2139: }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
2140: struct symbol *msp = psp->rhs[psp->nrhs-1];
2141: if( msp->type!=MULTITERMINAL ){
2142: struct symbol *origsp = msp;
2143: msp = (struct symbol *) calloc(1,sizeof(*msp));
2144: memset(msp, 0, sizeof(*msp));
2145: msp->type = MULTITERMINAL;
2146: msp->nsubsym = 1;
2147: msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2148: msp->subsym[0] = origsp;
2149: msp->name = origsp->name;
2150: psp->rhs[psp->nrhs-1] = msp;
2151: }
2152: msp->nsubsym++;
2153: msp->subsym = (struct symbol **) realloc(msp->subsym,
2154: sizeof(struct symbol*)*msp->nsubsym);
2155: msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2156: if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
2157: ErrorMsg(psp->filename,psp->tokenlineno,
2158: "Cannot form a compound containing a non-terminal");
2159: psp->errorcnt++;
2160: }
2161: }else if( x[0]=='(' && psp->nrhs>0 ){
2162: psp->state = RHS_ALIAS_1;
2163: }else{
2164: ErrorMsg(psp->filename,psp->tokenlineno,
2165: "Illegal character on RHS of rule: \"%s\".",x);
2166: psp->errorcnt++;
2167: psp->state = RESYNC_AFTER_RULE_ERROR;
2168: }
2169: break;
2170: case RHS_ALIAS_1:
2171: if( isalpha(x[0]) ){
2172: psp->alias[psp->nrhs-1] = x;
2173: psp->state = RHS_ALIAS_2;
2174: }else{
2175: ErrorMsg(psp->filename,psp->tokenlineno,
2176: "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2177: x,psp->rhs[psp->nrhs-1]->name);
2178: psp->errorcnt++;
2179: psp->state = RESYNC_AFTER_RULE_ERROR;
2180: }
2181: break;
2182: case RHS_ALIAS_2:
2183: if( x[0]==')' ){
2184: psp->state = IN_RHS;
2185: }else{
2186: ErrorMsg(psp->filename,psp->tokenlineno,
2187: "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2188: psp->errorcnt++;
2189: psp->state = RESYNC_AFTER_RULE_ERROR;
2190: }
2191: break;
2192: case WAITING_FOR_DECL_KEYWORD:
2193: if( isalpha(x[0]) ){
2194: psp->declkeyword = x;
2195: psp->declargslot = 0;
2196: psp->decllinenoslot = 0;
2197: psp->insertLineMacro = 1;
2198: psp->state = WAITING_FOR_DECL_ARG;
2199: if( strcmp(x,"name")==0 ){
2200: psp->declargslot = &(psp->gp->name);
2201: psp->insertLineMacro = 0;
2202: }else if( strcmp(x,"include")==0 ){
2203: psp->declargslot = &(psp->gp->include);
2204: }else if( strcmp(x,"code")==0 ){
2205: psp->declargslot = &(psp->gp->extracode);
2206: }else if( strcmp(x,"token_destructor")==0 ){
2207: psp->declargslot = &psp->gp->tokendest;
2208: }else if( strcmp(x,"default_destructor")==0 ){
2209: psp->declargslot = &psp->gp->vardest;
2210: }else if( strcmp(x,"token_prefix")==0 ){
2211: psp->declargslot = &psp->gp->tokenprefix;
2212: psp->insertLineMacro = 0;
2213: }else if( strcmp(x,"syntax_error")==0 ){
2214: psp->declargslot = &(psp->gp->error);
2215: }else if( strcmp(x,"parse_accept")==0 ){
2216: psp->declargslot = &(psp->gp->accept);
2217: }else if( strcmp(x,"parse_failure")==0 ){
2218: psp->declargslot = &(psp->gp->failure);
2219: }else if( strcmp(x,"stack_overflow")==0 ){
2220: psp->declargslot = &(psp->gp->overflow);
2221: }else if( strcmp(x,"extra_argument")==0 ){
2222: psp->declargslot = &(psp->gp->arg);
2223: psp->insertLineMacro = 0;
2224: }else if( strcmp(x,"token_type")==0 ){
2225: psp->declargslot = &(psp->gp->tokentype);
2226: psp->insertLineMacro = 0;
2227: }else if( strcmp(x,"default_type")==0 ){
2228: psp->declargslot = &(psp->gp->vartype);
2229: psp->insertLineMacro = 0;
2230: }else if( strcmp(x,"stack_size")==0 ){
2231: psp->declargslot = &(psp->gp->stacksize);
2232: psp->insertLineMacro = 0;
2233: }else if( strcmp(x,"start_symbol")==0 ){
2234: psp->declargslot = &(psp->gp->start);
2235: psp->insertLineMacro = 0;
2236: }else if( strcmp(x,"left")==0 ){
2237: psp->preccounter++;
2238: psp->declassoc = LEFT;
2239: psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2240: }else if( strcmp(x,"right")==0 ){
2241: psp->preccounter++;
2242: psp->declassoc = RIGHT;
2243: psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2244: }else if( strcmp(x,"nonassoc")==0 ){
2245: psp->preccounter++;
2246: psp->declassoc = NONE;
2247: psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2248: }else if( strcmp(x,"destructor")==0 ){
2249: psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2250: }else if( strcmp(x,"type")==0 ){
2251: psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2252: }else if( strcmp(x,"fallback")==0 ){
2253: psp->fallback = 0;
2254: psp->state = WAITING_FOR_FALLBACK_ID;
2255: }else if( strcmp(x,"wildcard")==0 ){
2256: psp->state = WAITING_FOR_WILDCARD_ID;
2257: }else{
2258: ErrorMsg(psp->filename,psp->tokenlineno,
2259: "Unknown declaration keyword: \"%%%s\".",x);
2260: psp->errorcnt++;
2261: psp->state = RESYNC_AFTER_DECL_ERROR;
2262: }
2263: }else{
2264: ErrorMsg(psp->filename,psp->tokenlineno,
2265: "Illegal declaration keyword: \"%s\".",x);
2266: psp->errorcnt++;
2267: psp->state = RESYNC_AFTER_DECL_ERROR;
2268: }
2269: break;
2270: case WAITING_FOR_DESTRUCTOR_SYMBOL:
2271: if( !isalpha(x[0]) ){
2272: ErrorMsg(psp->filename,psp->tokenlineno,
2273: "Symbol name missing after %%destructor keyword");
2274: psp->errorcnt++;
2275: psp->state = RESYNC_AFTER_DECL_ERROR;
2276: }else{
2277: struct symbol *sp = Symbol_new(x);
2278: psp->declargslot = &sp->destructor;
2279: psp->decllinenoslot = &sp->destLineno;
2280: psp->insertLineMacro = 1;
2281: psp->state = WAITING_FOR_DECL_ARG;
2282: }
2283: break;
2284: case WAITING_FOR_DATATYPE_SYMBOL:
2285: if( !isalpha(x[0]) ){
2286: ErrorMsg(psp->filename,psp->tokenlineno,
2287: "Symbol name missing after %%type keyword");
2288: psp->errorcnt++;
2289: psp->state = RESYNC_AFTER_DECL_ERROR;
2290: }else{
2291: struct symbol *sp = Symbol_find(x);
2292: if((sp) && (sp->datatype)){
2293: ErrorMsg(psp->filename,psp->tokenlineno,
2294: "Symbol %%type \"%s\" already defined", x);
2295: psp->errorcnt++;
2296: psp->state = RESYNC_AFTER_DECL_ERROR;
2297: }else{
2298: if (!sp){
2299: sp = Symbol_new(x);
2300: }
2301: psp->declargslot = &sp->datatype;
2302: psp->insertLineMacro = 0;
2303: psp->state = WAITING_FOR_DECL_ARG;
2304: }
2305: }
2306: break;
2307: case WAITING_FOR_PRECEDENCE_SYMBOL:
2308: if( x[0]=='.' ){
2309: psp->state = WAITING_FOR_DECL_OR_RULE;
2310: }else if( isupper(x[0]) ){
2311: struct symbol *sp;
2312: sp = Symbol_new(x);
2313: if( sp->prec>=0 ){
2314: ErrorMsg(psp->filename,psp->tokenlineno,
2315: "Symbol \"%s\" has already be given a precedence.",x);
2316: psp->errorcnt++;
2317: }else{
2318: sp->prec = psp->preccounter;
2319: sp->assoc = psp->declassoc;
2320: }
2321: }else{
2322: ErrorMsg(psp->filename,psp->tokenlineno,
2323: "Can't assign a precedence to \"%s\".",x);
2324: psp->errorcnt++;
2325: }
2326: break;
2327: case WAITING_FOR_DECL_ARG:
2328: if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
2329: const char *zOld, *zNew;
2330: char *zBuf, *z;
2331: int nOld, n, nLine, nNew, nBack;
2332: int addLineMacro;
2333: char zLine[50];
2334: zNew = x;
2335: if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2336: nNew = lemonStrlen(zNew);
2337: if( *psp->declargslot ){
2338: zOld = *psp->declargslot;
2339: }else{
2340: zOld = "";
2341: }
2342: nOld = lemonStrlen(zOld);
2343: n = nOld + nNew + 20;
2344: addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
2345: (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2346: if( addLineMacro ){
2347: for(z=psp->filename, nBack=0; *z; z++){
2348: if( *z=='\\' ) nBack++;
2349: }
2350: sprintf(zLine, "#line %d ", psp->tokenlineno);
2351: nLine = lemonStrlen(zLine);
2352: n += nLine + lemonStrlen(psp->filename) + nBack;
2353: }
2354: *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2355: zBuf = *psp->declargslot + nOld;
2356: if( addLineMacro ){
2357: if( nOld && zBuf[-1]!='\n' ){
2358: *(zBuf++) = '\n';
2359: }
2360: memcpy(zBuf, zLine, nLine);
2361: zBuf += nLine;
2362: *(zBuf++) = '"';
2363: for(z=psp->filename; *z; z++){
2364: if( *z=='\\' ){
2365: *(zBuf++) = '\\';
2366: }
2367: *(zBuf++) = *z;
2368: }
2369: *(zBuf++) = '"';
2370: *(zBuf++) = '\n';
2371: }
2372: if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2373: psp->decllinenoslot[0] = psp->tokenlineno;
2374: }
2375: memcpy(zBuf, zNew, nNew);
2376: zBuf += nNew;
2377: *zBuf = 0;
2378: psp->state = WAITING_FOR_DECL_OR_RULE;
2379: }else{
2380: ErrorMsg(psp->filename,psp->tokenlineno,
2381: "Illegal argument to %%%s: %s",psp->declkeyword,x);
2382: psp->errorcnt++;
2383: psp->state = RESYNC_AFTER_DECL_ERROR;
2384: }
2385: break;
2386: case WAITING_FOR_FALLBACK_ID:
2387: if( x[0]=='.' ){
2388: psp->state = WAITING_FOR_DECL_OR_RULE;
2389: }else if( !isupper(x[0]) ){
2390: ErrorMsg(psp->filename, psp->tokenlineno,
2391: "%%fallback argument \"%s\" should be a token", x);
2392: psp->errorcnt++;
2393: }else{
2394: struct symbol *sp = Symbol_new(x);
2395: if( psp->fallback==0 ){
2396: psp->fallback = sp;
2397: }else if( sp->fallback ){
2398: ErrorMsg(psp->filename, psp->tokenlineno,
2399: "More than one fallback assigned to token %s", x);
2400: psp->errorcnt++;
2401: }else{
2402: sp->fallback = psp->fallback;
2403: psp->gp->has_fallback = 1;
2404: }
2405: }
2406: break;
2407: case WAITING_FOR_WILDCARD_ID:
2408: if( x[0]=='.' ){
2409: psp->state = WAITING_FOR_DECL_OR_RULE;
2410: }else if( !isupper(x[0]) ){
2411: ErrorMsg(psp->filename, psp->tokenlineno,
2412: "%%wildcard argument \"%s\" should be a token", x);
2413: psp->errorcnt++;
2414: }else{
2415: struct symbol *sp = Symbol_new(x);
2416: if( psp->gp->wildcard==0 ){
2417: psp->gp->wildcard = sp;
2418: }else{
2419: ErrorMsg(psp->filename, psp->tokenlineno,
2420: "Extra wildcard to token: %s", x);
2421: psp->errorcnt++;
2422: }
2423: }
2424: break;
2425: case RESYNC_AFTER_RULE_ERROR:
2426: /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2427: ** break; */
2428: case RESYNC_AFTER_DECL_ERROR:
2429: if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2430: if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2431: break;
2432: }
2433: }
2434:
2435: /* Run the preprocessor over the input file text. The global variables
2436: ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2437: ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2438: ** comments them out. Text in between is also commented out as appropriate.
2439: */
2440: static void preprocess_input(char *z){
2441: int i, j, k, n;
2442: int exclude = 0;
2443: int start = 0;
2444: int lineno = 1;
2445: int start_lineno = 1;
2446: for(i=0; z[i]; i++){
2447: if( z[i]=='\n' ) lineno++;
2448: if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2449: if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
2450: if( exclude ){
2451: exclude--;
2452: if( exclude==0 ){
2453: for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2454: }
2455: }
2456: for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2457: }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
2458: || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
2459: if( exclude ){
2460: exclude++;
2461: }else{
2462: for(j=i+7; isspace(z[j]); j++){}
2463: for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
2464: exclude = 1;
2465: for(k=0; k<nDefine; k++){
2466: if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
2467: exclude = 0;
2468: break;
2469: }
2470: }
2471: if( z[i+3]=='n' ) exclude = !exclude;
2472: if( exclude ){
2473: start = i;
2474: start_lineno = lineno;
2475: }
2476: }
2477: for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2478: }
2479: }
2480: if( exclude ){
2481: fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2482: exit(1);
2483: }
2484: }
2485:
2486: /* In spite of its name, this function is really a scanner. It read
2487: ** in the entire input file (all at once) then tokenizes it. Each
2488: ** token is passed to the function "parseonetoken" which builds all
2489: ** the appropriate data structures in the global state vector "gp".
2490: */
2491: void Parse(struct lemon *gp)
2492: {
2493: struct pstate ps;
2494: FILE *fp;
2495: char *filebuf;
2496: int filesize;
2497: int lineno;
2498: int c;
2499: char *cp, *nextcp;
2500: int startline = 0;
2501:
2502: memset(&ps, '\0', sizeof(ps));
2503: ps.gp = gp;
2504: ps.filename = gp->filename;
2505: ps.errorcnt = 0;
2506: ps.state = INITIALIZE;
2507:
2508: /* Begin by reading the input file */
2509: fp = fopen(ps.filename,"rb");
2510: if( fp==0 ){
2511: ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2512: gp->errorcnt++;
2513: return;
2514: }
2515: fseek(fp,0,2);
2516: filesize = ftell(fp);
2517: rewind(fp);
2518: filebuf = (char *)malloc( filesize+1 );
2519: if( filebuf==0 ){
2520: ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2521: filesize+1);
2522: gp->errorcnt++;
2523: fclose(fp);
2524: return;
2525: }
2526: if( fread(filebuf,1,filesize,fp)!=filesize ){
2527: ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2528: filesize);
2529: free(filebuf);
2530: gp->errorcnt++;
2531: fclose(fp);
2532: return;
2533: }
2534: fclose(fp);
2535: filebuf[filesize] = 0;
2536:
2537: /* Make an initial pass through the file to handle %ifdef and %ifndef */
2538: preprocess_input(filebuf);
2539:
2540: /* Now scan the text of the input file */
2541: lineno = 1;
2542: for(cp=filebuf; (c= *cp)!=0; ){
2543: if( c=='\n' ) lineno++; /* Keep track of the line number */
2544: if( isspace(c) ){ cp++; continue; } /* Skip all white space */
2545: if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2546: cp+=2;
2547: while( (c= *cp)!=0 && c!='\n' ) cp++;
2548: continue;
2549: }
2550: if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2551: cp+=2;
2552: while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2553: if( c=='\n' ) lineno++;
2554: cp++;
2555: }
2556: if( c ) cp++;
2557: continue;
2558: }
2559: ps.tokenstart = cp; /* Mark the beginning of the token */
2560: ps.tokenlineno = lineno; /* Linenumber on which token begins */
2561: if( c=='\"' ){ /* String literals */
2562: cp++;
2563: while( (c= *cp)!=0 && c!='\"' ){
2564: if( c=='\n' ) lineno++;
2565: cp++;
2566: }
2567: if( c==0 ){
2568: ErrorMsg(ps.filename,startline,
2569: "String starting on this line is not terminated before the end of the file.");
2570: ps.errorcnt++;
2571: nextcp = cp;
2572: }else{
2573: nextcp = cp+1;
2574: }
2575: }else if( c=='{' ){ /* A block of C code */
2576: int level;
2577: cp++;
2578: for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2579: if( c=='\n' ) lineno++;
2580: else if( c=='{' ) level++;
2581: else if( c=='}' ) level--;
2582: else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2583: int prevc;
2584: cp = &cp[2];
2585: prevc = 0;
2586: while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2587: if( c=='\n' ) lineno++;
2588: prevc = c;
2589: cp++;
2590: }
2591: }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2592: cp = &cp[2];
2593: while( (c= *cp)!=0 && c!='\n' ) cp++;
2594: if( c ) lineno++;
2595: }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2596: int startchar, prevc;
2597: startchar = c;
2598: prevc = 0;
2599: for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2600: if( c=='\n' ) lineno++;
2601: if( prevc=='\\' ) prevc = 0;
2602: else prevc = c;
2603: }
2604: }
2605: }
2606: if( c==0 ){
2607: ErrorMsg(ps.filename,ps.tokenlineno,
2608: "C code starting on this line is not terminated before the end of the file.");
2609: ps.errorcnt++;
2610: nextcp = cp;
2611: }else{
2612: nextcp = cp+1;
2613: }
2614: }else if( isalnum(c) ){ /* Identifiers */
2615: while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2616: nextcp = cp;
2617: }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2618: cp += 3;
2619: nextcp = cp;
2620: }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
2621: cp += 2;
2622: while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2623: nextcp = cp;
2624: }else{ /* All other (one character) operators */
2625: cp++;
2626: nextcp = cp;
2627: }
2628: c = *cp;
2629: *cp = 0; /* Null terminate the token */
2630: parseonetoken(&ps); /* Parse the token */
2631: *cp = c; /* Restore the buffer */
2632: cp = nextcp;
2633: }
2634: free(filebuf); /* Release the buffer after parsing */
2635: gp->rule = ps.firstrule;
2636: gp->errorcnt = ps.errorcnt;
2637: }
2638: /*************************** From the file "plink.c" *********************/
2639: /*
2640: ** Routines processing configuration follow-set propagation links
2641: ** in the LEMON parser generator.
2642: */
2643: static struct plink *plink_freelist = 0;
2644:
2645: /* Allocate a new plink */
2646: struct plink *Plink_new(){
2647: struct plink *newlink;
2648:
2649: if( plink_freelist==0 ){
2650: int i;
2651: int amt = 100;
2652: plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
2653: if( plink_freelist==0 ){
2654: fprintf(stderr,
2655: "Unable to allocate memory for a new follow-set propagation link.\n");
2656: exit(1);
2657: }
2658: for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2659: plink_freelist[amt-1].next = 0;
2660: }
2661: newlink = plink_freelist;
2662: plink_freelist = plink_freelist->next;
2663: return newlink;
2664: }
2665:
2666: /* Add a plink to a plink list */
2667: void Plink_add(struct plink **plpp, struct config *cfp)
2668: {
2669: struct plink *newlink;
2670: newlink = Plink_new();
2671: newlink->next = *plpp;
2672: *plpp = newlink;
2673: newlink->cfp = cfp;
2674: }
2675:
2676: /* Transfer every plink on the list "from" to the list "to" */
2677: void Plink_copy(struct plink **to, struct plink *from)
2678: {
2679: struct plink *nextpl;
2680: while( from ){
2681: nextpl = from->next;
2682: from->next = *to;
2683: *to = from;
2684: from = nextpl;
2685: }
2686: }
2687:
2688: /* Delete every plink on the list */
2689: void Plink_delete(struct plink *plp)
2690: {
2691: struct plink *nextpl;
2692:
2693: while( plp ){
2694: nextpl = plp->next;
2695: plp->next = plink_freelist;
2696: plink_freelist = plp;
2697: plp = nextpl;
2698: }
2699: }
2700: /*********************** From the file "report.c" **************************/
2701: /*
2702: ** Procedures for generating reports and tables in the LEMON parser generator.
2703: */
2704:
2705: /* Generate a filename with the given suffix. Space to hold the
2706: ** name comes from malloc() and must be freed by the calling
2707: ** function.
2708: */
2709: PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
2710: {
2711: char *name;
2712: char *cp;
2713:
2714: name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
2715: if( name==0 ){
2716: fprintf(stderr,"Can't allocate space for a filename.\n");
2717: exit(1);
2718: }
2719: strcpy(name,lemp->filename);
2720: cp = strrchr(name,'.');
2721: if( cp ) *cp = 0;
2722: strcat(name,suffix);
2723: return name;
2724: }
2725:
2726: /* Open a file with a name based on the name of the input file,
2727: ** but with a different (specified) suffix, and return a pointer
2728: ** to the stream */
2729: PRIVATE FILE *file_open(
2730: struct lemon *lemp,
2731: const char *suffix,
2732: const char *mode
2733: ){
2734: FILE *fp;
2735:
2736: if( lemp->outname ) free(lemp->outname);
2737: lemp->outname = file_makename(lemp, suffix);
2738: fp = fopen(lemp->outname,mode);
2739: if( fp==0 && *mode=='w' ){
2740: fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2741: lemp->errorcnt++;
2742: return 0;
2743: }
2744: return fp;
2745: }
2746:
2747: /* Duplicate the input file without comments and without actions
2748: ** on rules */
2749: void Reprint(struct lemon *lemp)
2750: {
2751: struct rule *rp;
2752: struct symbol *sp;
2753: int i, j, maxlen, len, ncolumns, skip;
2754: printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2755: maxlen = 10;
2756: for(i=0; i<lemp->nsymbol; i++){
2757: sp = lemp->symbols[i];
2758: len = lemonStrlen(sp->name);
2759: if( len>maxlen ) maxlen = len;
2760: }
2761: ncolumns = 76/(maxlen+5);
2762: if( ncolumns<1 ) ncolumns = 1;
2763: skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2764: for(i=0; i<skip; i++){
2765: printf("//");
2766: for(j=i; j<lemp->nsymbol; j+=skip){
2767: sp = lemp->symbols[j];
2768: assert( sp->index==j );
2769: printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2770: }
2771: printf("\n");
2772: }
2773: for(rp=lemp->rule; rp; rp=rp->next){
2774: printf("%s",rp->lhs->name);
2775: /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2776: printf(" ::=");
2777: for(i=0; i<rp->nrhs; i++){
2778: sp = rp->rhs[i];
2779: printf(" %s", sp->name);
2780: if( sp->type==MULTITERMINAL ){
2781: for(j=1; j<sp->nsubsym; j++){
2782: printf("|%s", sp->subsym[j]->name);
2783: }
2784: }
2785: /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2786: }
2787: printf(".");
2788: if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2789: /* if( rp->code ) printf("\n %s",rp->code); */
2790: printf("\n");
2791: }
2792: }
2793:
2794: void ConfigPrint(FILE *fp, struct config *cfp)
2795: {
2796: struct rule *rp;
2797: struct symbol *sp;
2798: int i, j;
2799: rp = cfp->rp;
2800: fprintf(fp,"%s ::=",rp->lhs->name);
2801: for(i=0; i<=rp->nrhs; i++){
2802: if( i==cfp->dot ) fprintf(fp," *");
2803: if( i==rp->nrhs ) break;
2804: sp = rp->rhs[i];
2805: fprintf(fp," %s", sp->name);
2806: if( sp->type==MULTITERMINAL ){
2807: for(j=1; j<sp->nsubsym; j++){
2808: fprintf(fp,"|%s",sp->subsym[j]->name);
2809: }
2810: }
2811: }
2812: }
2813:
2814: /* #define TEST */
2815: #if 0
2816: /* Print a set */
2817: PRIVATE void SetPrint(out,set,lemp)
2818: FILE *out;
2819: char *set;
2820: struct lemon *lemp;
2821: {
2822: int i;
2823: char *spacer;
2824: spacer = "";
2825: fprintf(out,"%12s[","");
2826: for(i=0; i<lemp->nterminal; i++){
2827: if( SetFind(set,i) ){
2828: fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2829: spacer = " ";
2830: }
2831: }
2832: fprintf(out,"]\n");
2833: }
2834:
2835: /* Print a plink chain */
2836: PRIVATE void PlinkPrint(out,plp,tag)
2837: FILE *out;
2838: struct plink *plp;
2839: char *tag;
2840: {
2841: while( plp ){
2842: fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
2843: ConfigPrint(out,plp->cfp);
2844: fprintf(out,"\n");
2845: plp = plp->next;
2846: }
2847: }
2848: #endif
2849:
2850: /* Print an action to the given file descriptor. Return FALSE if
2851: ** nothing was actually printed.
2852: */
2853: int PrintAction(struct action *ap, FILE *fp, int indent){
2854: int result = 1;
2855: switch( ap->type ){
2856: case SHIFT:
2857: fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
2858: break;
2859: case REDUCE:
2860: fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2861: break;
2862: case ACCEPT:
2863: fprintf(fp,"%*s accept",indent,ap->sp->name);
2864: break;
2865: case ERROR:
2866: fprintf(fp,"%*s error",indent,ap->sp->name);
2867: break;
2868: case SRCONFLICT:
2869: case RRCONFLICT:
2870: fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2871: indent,ap->sp->name,ap->x.rp->index);
2872: break;
2873: case SSCONFLICT:
2874: fprintf(fp,"%*s shift %-3d ** Parsing conflict **",
2875: indent,ap->sp->name,ap->x.stp->statenum);
2876: break;
2877: case SH_RESOLVED:
2878: if( showPrecedenceConflict ){
2879: fprintf(fp,"%*s shift %-3d -- dropped by precedence",
2880: indent,ap->sp->name,ap->x.stp->statenum);
2881: }else{
2882: result = 0;
2883: }
2884: break;
2885: case RD_RESOLVED:
2886: if( showPrecedenceConflict ){
2887: fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
2888: indent,ap->sp->name,ap->x.rp->index);
2889: }else{
2890: result = 0;
2891: }
2892: break;
2893: case NOT_USED:
2894: result = 0;
2895: break;
2896: }
2897: return result;
2898: }
2899:
2900: /* Generate the "y.output" log file */
2901: void ReportOutput(struct lemon *lemp)
2902: {
2903: int i;
2904: struct state *stp;
2905: struct config *cfp;
2906: struct action *ap;
2907: FILE *fp;
2908:
2909: fp = file_open(lemp,".out","wb");
2910: if( fp==0 ) return;
2911: for(i=0; i<lemp->nstate; i++){
2912: stp = lemp->sorted[i];
2913: fprintf(fp,"State %d:\n",stp->statenum);
2914: if( lemp->basisflag ) cfp=stp->bp;
2915: else cfp=stp->cfp;
2916: while( cfp ){
2917: char buf[20];
2918: if( cfp->dot==cfp->rp->nrhs ){
2919: sprintf(buf,"(%d)",cfp->rp->index);
2920: fprintf(fp," %5s ",buf);
2921: }else{
2922: fprintf(fp," ");
2923: }
2924: ConfigPrint(fp,cfp);
2925: fprintf(fp,"\n");
2926: #if 0
2927: SetPrint(fp,cfp->fws,lemp);
2928: PlinkPrint(fp,cfp->fplp,"To ");
2929: PlinkPrint(fp,cfp->bplp,"From");
2930: #endif
2931: if( lemp->basisflag ) cfp=cfp->bp;
2932: else cfp=cfp->next;
2933: }
2934: fprintf(fp,"\n");
2935: for(ap=stp->ap; ap; ap=ap->next){
2936: if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2937: }
2938: fprintf(fp,"\n");
2939: }
2940: fprintf(fp, "----------------------------------------------------\n");
2941: fprintf(fp, "Symbols:\n");
2942: for(i=0; i<lemp->nsymbol; i++){
2943: int j;
2944: struct symbol *sp;
2945:
2946: sp = lemp->symbols[i];
2947: fprintf(fp, " %3d: %s", i, sp->name);
2948: if( sp->type==NONTERMINAL ){
2949: fprintf(fp, ":");
2950: if( sp->lambda ){
2951: fprintf(fp, " <lambda>");
2952: }
2953: for(j=0; j<lemp->nterminal; j++){
2954: if( sp->firstset && SetFind(sp->firstset, j) ){
2955: fprintf(fp, " %s", lemp->symbols[j]->name);
2956: }
2957: }
2958: }
2959: fprintf(fp, "\n");
2960: }
2961: fclose(fp);
2962: return;
2963: }
2964:
2965: /* Search for the file "name" which is in the same directory as
2966: ** the exacutable */
2967: PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
2968: {
2969: const char *pathlist;
2970: char *pathbufptr;
2971: char *pathbuf;
2972: char *path,*cp;
2973: char c;
2974:
2975: #ifdef __WIN32__
2976: cp = strrchr(argv0,'\\');
2977: #else
2978: cp = strrchr(argv0,'/');
2979: #endif
2980: if( cp ){
2981: c = *cp;
2982: *cp = 0;
2983: path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
2984: if( path ) sprintf(path,"%s/%s",argv0,name);
2985: *cp = c;
2986: }else{
2987: pathlist = getenv("PATH");
2988: if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
2989: pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
2990: path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
2991: if( (pathbuf != 0) && (path!=0) ){
2992: pathbufptr = pathbuf;
2993: strcpy(pathbuf, pathlist);
2994: while( *pathbuf ){
2995: cp = strchr(pathbuf,':');
2996: if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
2997: c = *cp;
2998: *cp = 0;
2999: sprintf(path,"%s/%s",pathbuf,name);
3000: *cp = c;
3001: if( c==0 ) pathbuf[0] = 0;
3002: else pathbuf = &cp[1];
3003: if( access(path,modemask)==0 ) break;
3004: }
3005: free(pathbufptr);
3006: }
3007: }
3008: return path;
3009: }
3010:
3011: /* Given an action, compute the integer value for that action
3012: ** which is to be put in the action table of the generated machine.
3013: ** Return negative if no action should be generated.
3014: */
3015: PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3016: {
3017: int act;
3018: switch( ap->type ){
3019: case SHIFT: act = ap->x.stp->statenum; break;
3020: case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
3021: case ERROR: act = lemp->nstate + lemp->nrule; break;
3022: case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
3023: default: act = -1; break;
3024: }
3025: return act;
3026: }
3027:
3028: #define LINESIZE 1000
3029: /* The next cluster of routines are for reading the template file
3030: ** and writing the results to the generated parser */
3031: /* The first function transfers data from "in" to "out" until
3032: ** a line is seen which begins with "%%". The line number is
3033: ** tracked.
3034: **
3035: ** if name!=0, then any word that begin with "Parse" is changed to
3036: ** begin with *name instead.
3037: */
3038: PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3039: {
3040: int i, iStart;
3041: char line[LINESIZE];
3042: while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3043: (*lineno)++;
3044: iStart = 0;
3045: if( name ){
3046: for(i=0; line[i]; i++){
3047: if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3048: && (i==0 || !isalpha(line[i-1]))
3049: ){
3050: if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3051: fprintf(out,"%s",name);
3052: i += 4;
3053: iStart = i+1;
3054: }
3055: }
3056: }
3057: fprintf(out,"%s",&line[iStart]);
3058: }
3059: }
3060:
3061: /* The next function finds the template file and opens it, returning
3062: ** a pointer to the opened file. */
3063: PRIVATE FILE *tplt_open(struct lemon *lemp)
3064: {
3065: static char templatename[] = "lempar.c";
3066: char buf[1000];
3067: FILE *in;
3068: char *tpltname;
3069: char *cp;
3070:
3071: /* first, see if user specified a template filename on the command line. */
3072: if (user_templatename != 0) {
3073: if( access(user_templatename,004)==-1 ){
3074: fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3075: user_templatename);
3076: lemp->errorcnt++;
3077: return 0;
3078: }
3079: in = fopen(user_templatename,"rb");
3080: if( in==0 ){
3081: fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
3082: lemp->errorcnt++;
3083: return 0;
3084: }
3085: return in;
3086: }
3087:
3088: cp = strrchr(lemp->filename,'.');
3089: if( cp ){
3090: sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3091: }else{
3092: sprintf(buf,"%s.lt",lemp->filename);
3093: }
3094: if( access(buf,004)==0 ){
3095: tpltname = buf;
3096: }else if( access(templatename,004)==0 ){
3097: tpltname = templatename;
3098: }else{
3099: tpltname = pathsearch(lemp->argv0,templatename,0);
3100: }
3101: if( tpltname==0 ){
3102: fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3103: templatename);
3104: lemp->errorcnt++;
3105: return 0;
3106: }
3107: in = fopen(tpltname,"rb");
3108: if( in==0 ){
3109: fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
3110: lemp->errorcnt++;
3111: return 0;
3112: }
3113: return in;
3114: }
3115:
3116: /* Print a #line directive line to the output file. */
3117: PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3118: {
3119: fprintf(out,"#line %d \"",lineno);
3120: while( *filename ){
3121: if( *filename == '\\' ) putc('\\',out);
3122: putc(*filename,out);
3123: filename++;
3124: }
3125: fprintf(out,"\"\n");
3126: }
3127:
3128: /* Print a string to the file and keep the linenumber up to date */
3129: PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3130: {
3131: if( str==0 ) return;
3132: while( *str ){
3133: putc(*str,out);
3134: if( *str=='\n' ) (*lineno)++;
3135: str++;
3136: }
3137: if( str[-1]!='\n' ){
3138: putc('\n',out);
3139: (*lineno)++;
3140: }
3141: if (!lemp->nolinenosflag) {
3142: (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3143: }
3144: return;
3145: }
3146:
3147: /*
3148: ** The following routine emits code for the destructor for the
3149: ** symbol sp
3150: */
3151: void emit_destructor_code(
3152: FILE *out,
3153: struct symbol *sp,
3154: struct lemon *lemp,
3155: int *lineno
3156: ){
3157: char *cp = 0;
3158:
3159: if( sp->type==TERMINAL ){
3160: cp = lemp->tokendest;
3161: if( cp==0 ) return;
3162: fprintf(out,"{\n"); (*lineno)++;
3163: }else if( sp->destructor ){
3164: cp = sp->destructor;
3165: fprintf(out,"{\n"); (*lineno)++;
3166: if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
3167: }else if( lemp->vardest ){
3168: cp = lemp->vardest;
3169: if( cp==0 ) return;
3170: fprintf(out,"{\n"); (*lineno)++;
3171: }else{
3172: assert( 0 ); /* Cannot happen */
3173: }
3174: for(; *cp; cp++){
3175: if( *cp=='$' && cp[1]=='$' ){
3176: fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3177: cp++;
3178: continue;
3179: }
3180: if( *cp=='\n' ) (*lineno)++;
3181: fputc(*cp,out);
3182: }
3183: fprintf(out,"\n"); (*lineno)++;
3184: if (!lemp->nolinenosflag) {
3185: (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3186: }
3187: fprintf(out,"}\n"); (*lineno)++;
3188: return;
3189: }
3190:
3191: /*
3192: ** Return TRUE (non-zero) if the given symbol has a destructor.
3193: */
3194: int has_destructor(struct symbol *sp, struct lemon *lemp)
3195: {
3196: int ret;
3197: if( sp->type==TERMINAL ){
3198: ret = lemp->tokendest!=0;
3199: }else{
3200: ret = lemp->vardest!=0 || sp->destructor!=0;
3201: }
3202: return ret;
3203: }
3204:
3205: /*
3206: ** Append text to a dynamically allocated string. If zText is 0 then
3207: ** reset the string to be empty again. Always return the complete text
3208: ** of the string (which is overwritten with each call).
3209: **
3210: ** n bytes of zText are stored. If n==0 then all of zText up to the first
3211: ** \000 terminator is stored. zText can contain up to two instances of
3212: ** %d. The values of p1 and p2 are written into the first and second
3213: ** %d.
3214: **
3215: ** If n==-1, then the previous character is overwritten.
3216: */
3217: PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3218: static char empty[1] = { 0 };
3219: static char *z = 0;
3220: static int alloced = 0;
3221: static int used = 0;
3222: int c;
3223: char zInt[40];
3224: if( zText==0 ){
3225: used = 0;
3226: return z;
3227: }
3228: if( n<=0 ){
3229: if( n<0 ){
3230: used += n;
3231: assert( used>=0 );
3232: }
3233: n = lemonStrlen(zText);
3234: }
3235: if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3236: alloced = n + sizeof(zInt)*2 + used + 200;
3237: z = (char *) realloc(z, alloced);
3238: }
3239: if( z==0 ) return empty;
3240: while( n-- > 0 ){
3241: c = *(zText++);
3242: if( c=='%' && n>0 && zText[0]=='d' ){
3243: sprintf(zInt, "%d", p1);
3244: p1 = p2;
3245: strcpy(&z[used], zInt);
3246: used += lemonStrlen(&z[used]);
3247: zText++;
3248: n--;
3249: }else{
3250: z[used++] = c;
3251: }
3252: }
3253: z[used] = 0;
3254: return z;
3255: }
3256:
3257: /*
3258: ** zCode is a string that is the action associated with a rule. Expand
3259: ** the symbols in this string so that the refer to elements of the parser
3260: ** stack.
3261: */
3262: PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
3263: char *cp, *xp;
3264: int i;
3265: char lhsused = 0; /* True if the LHS element has been used */
3266: char used[MAXRHS]; /* True for each RHS element which is used */
3267:
3268: for(i=0; i<rp->nrhs; i++) used[i] = 0;
3269: lhsused = 0;
3270:
3271: if( rp->code==0 ){
3272: static char newlinestr[2] = { '\n', '\0' };
3273: rp->code = newlinestr;
3274: rp->line = rp->ruleline;
3275: }
3276:
3277: append_str(0,0,0,0);
3278:
3279: /* This const cast is wrong but harmless, if we're careful. */
3280: for(cp=(char *)rp->code; *cp; cp++){
3281: if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
3282: char saved;
3283: for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
3284: saved = *xp;
3285: *xp = 0;
3286: if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3287: append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
3288: cp = xp;
3289: lhsused = 1;
3290: }else{
3291: for(i=0; i<rp->nrhs; i++){
3292: if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3293: if( cp!=rp->code && cp[-1]=='@' ){
3294: /* If the argument is of the form @X then substituted
3295: ** the token number of X, not the value of X */
3296: append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3297: }else{
3298: struct symbol *sp = rp->rhs[i];
3299: int dtnum;
3300: if( sp->type==MULTITERMINAL ){
3301: dtnum = sp->subsym[0]->dtnum;
3302: }else{
3303: dtnum = sp->dtnum;
3304: }
3305: append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3306: }
3307: cp = xp;
3308: used[i] = 1;
3309: break;
3310: }
3311: }
3312: }
3313: *xp = saved;
3314: }
3315: append_str(cp, 1, 0, 0);
3316: } /* End loop */
3317:
3318: /* Check to make sure the LHS has been used */
3319: if( rp->lhsalias && !lhsused ){
3320: ErrorMsg(lemp->filename,rp->ruleline,
3321: "Label \"%s\" for \"%s(%s)\" is never used.",
3322: rp->lhsalias,rp->lhs->name,rp->lhsalias);
3323: lemp->errorcnt++;
3324: }
3325:
3326: /* Generate destructor code for RHS symbols which are not used in the
3327: ** reduce code */
3328: for(i=0; i<rp->nrhs; i++){
3329: if( rp->rhsalias[i] && !used[i] ){
3330: ErrorMsg(lemp->filename,rp->ruleline,
3331: "Label %s for \"%s(%s)\" is never used.",
3332: rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
3333: lemp->errorcnt++;
3334: }else if( rp->rhsalias[i]==0 ){
3335: if( has_destructor(rp->rhs[i],lemp) ){
3336: append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3337: rp->rhs[i]->index,i-rp->nrhs+1);
3338: }else{
3339: /* No destructor defined for this term */
3340: }
3341: }
3342: }
3343: if( rp->code ){
3344: cp = append_str(0,0,0,0);
3345: rp->code = Strsafe(cp?cp:"");
3346: }
3347: }
3348:
3349: /*
3350: ** Generate code which executes when the rule "rp" is reduced. Write
3351: ** the code to "out". Make sure lineno stays up-to-date.
3352: */
3353: PRIVATE void emit_code(
3354: FILE *out,
3355: struct rule *rp,
3356: struct lemon *lemp,
3357: int *lineno
3358: ){
3359: const char *cp;
3360:
3361: /* Generate code to do the reduce action */
3362: if( rp->code ){
3363: if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
3364: fprintf(out,"{%s",rp->code);
3365: for(cp=rp->code; *cp; cp++){
3366: if( *cp=='\n' ) (*lineno)++;
3367: } /* End loop */
3368: fprintf(out,"}\n"); (*lineno)++;
3369: if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
3370: } /* End if( rp->code ) */
3371:
3372: return;
3373: }
3374:
3375: /*
3376: ** Print the definition of the union used for the parser's data stack.
3377: ** This union contains fields for every possible data type for tokens
3378: ** and nonterminals. In the process of computing and printing this
3379: ** union, also set the ".dtnum" field of every terminal and nonterminal
3380: ** symbol.
3381: */
3382: void print_stack_union(
3383: FILE *out, /* The output stream */
3384: struct lemon *lemp, /* The main info structure for this parser */
3385: int *plineno, /* Pointer to the line number */
3386: int mhflag /* True if generating makeheaders output */
3387: ){
3388: int lineno = *plineno; /* The line number of the output */
3389: char **types; /* A hash table of datatypes */
3390: int arraysize; /* Size of the "types" array */
3391: int maxdtlength; /* Maximum length of any ".datatype" field. */
3392: char *stddt; /* Standardized name for a datatype */
3393: int i,j; /* Loop counters */
3394: int hash; /* For hashing the name of a type */
3395: const char *name; /* Name of the parser */
3396:
3397: /* Allocate and initialize types[] and allocate stddt[] */
3398: arraysize = lemp->nsymbol * 2;
3399: types = (char**)calloc( arraysize, sizeof(char*) );
3400: if( types==0 ){
3401: fprintf(stderr,"Out of memory.\n");
3402: exit(1);
3403: }
3404: for(i=0; i<arraysize; i++) types[i] = 0;
3405: maxdtlength = 0;
3406: if( lemp->vartype ){
3407: maxdtlength = lemonStrlen(lemp->vartype);
3408: }
3409: for(i=0; i<lemp->nsymbol; i++){
3410: int len;
3411: struct symbol *sp = lemp->symbols[i];
3412: if( sp->datatype==0 ) continue;
3413: len = lemonStrlen(sp->datatype);
3414: if( len>maxdtlength ) maxdtlength = len;
3415: }
3416: stddt = (char*)malloc( maxdtlength*2 + 1 );
3417: if( stddt==0 ){
3418: fprintf(stderr,"Out of memory.\n");
3419: exit(1);
3420: }
3421:
3422: /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3423: ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3424: ** used for terminal symbols. If there is no %default_type defined then
3425: ** 0 is also used as the .dtnum value for nonterminals which do not specify
3426: ** a datatype using the %type directive.
3427: */
3428: for(i=0; i<lemp->nsymbol; i++){
3429: struct symbol *sp = lemp->symbols[i];
3430: char *cp;
3431: if( sp==lemp->errsym ){
3432: sp->dtnum = arraysize+1;
3433: continue;
3434: }
3435: if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3436: sp->dtnum = 0;
3437: continue;
3438: }
3439: cp = sp->datatype;
3440: if( cp==0 ) cp = lemp->vartype;
3441: j = 0;
3442: while( isspace(*cp) ) cp++;
3443: while( *cp ) stddt[j++] = *cp++;
3444: while( j>0 && isspace(stddt[j-1]) ) j--;
3445: stddt[j] = 0;
3446: if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
3447: sp->dtnum = 0;
3448: continue;
3449: }
3450: hash = 0;
3451: for(j=0; stddt[j]; j++){
3452: hash = hash*53 + stddt[j];
3453: }
3454: hash = (hash & 0x7fffffff)%arraysize;
3455: while( types[hash] ){
3456: if( strcmp(types[hash],stddt)==0 ){
3457: sp->dtnum = hash + 1;
3458: break;
3459: }
3460: hash++;
3461: if( hash>=arraysize ) hash = 0;
3462: }
3463: if( types[hash]==0 ){
3464: sp->dtnum = hash + 1;
3465: types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
3466: if( types[hash]==0 ){
3467: fprintf(stderr,"Out of memory.\n");
3468: exit(1);
3469: }
3470: strcpy(types[hash],stddt);
3471: }
3472: }
3473:
3474: /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3475: name = lemp->name ? lemp->name : "Parse";
3476: lineno = *plineno;
3477: if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3478: fprintf(out,"#define %sTOKENTYPE %s\n",name,
3479: lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3480: if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3481: fprintf(out,"typedef union {\n"); lineno++;
3482: fprintf(out," int yyinit;\n"); lineno++;
3483: fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3484: for(i=0; i<arraysize; i++){
3485: if( types[i]==0 ) continue;
3486: fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3487: free(types[i]);
3488: }
3489: if( lemp->errsym->useCnt ){
3490: fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3491: }
3492: free(stddt);
3493: free(types);
3494: fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3495: *plineno = lineno;
3496: }
3497:
3498: /*
3499: ** Return the name of a C datatype able to represent values between
3500: ** lwr and upr, inclusive.
3501: */
3502: static const char *minimum_size_type(int lwr, int upr){
3503: if( lwr>=0 ){
3504: if( upr<=255 ){
3505: return "unsigned char";
3506: }else if( upr<65535 ){
3507: return "unsigned short int";
3508: }else{
3509: return "unsigned int";
3510: }
3511: }else if( lwr>=-127 && upr<=127 ){
3512: return "signed char";
3513: }else if( lwr>=-32767 && upr<32767 ){
3514: return "short";
3515: }else{
3516: return "int";
3517: }
3518: }
3519:
3520: /*
3521: ** Each state contains a set of token transaction and a set of
3522: ** nonterminal transactions. Each of these sets makes an instance
3523: ** of the following structure. An array of these structures is used
3524: ** to order the creation of entries in the yy_action[] table.
3525: */
3526: struct axset {
3527: struct state *stp; /* A pointer to a state */
3528: int isTkn; /* True to use tokens. False for non-terminals */
3529: int nAction; /* Number of actions */
3530: int iOrder; /* Original order of action sets */
3531: };
3532:
3533: /*
3534: ** Compare to axset structures for sorting purposes
3535: */
3536: static int axset_compare(const void *a, const void *b){
3537: struct axset *p1 = (struct axset*)a;
3538: struct axset *p2 = (struct axset*)b;
3539: int c;
3540: c = p2->nAction - p1->nAction;
3541: if( c==0 ){
3542: c = p2->iOrder - p1->iOrder;
3543: }
3544: assert( c!=0 || p1==p2 );
3545: return c;
3546: }
3547:
3548: /*
3549: ** Write text on "out" that describes the rule "rp".
3550: */
3551: static void writeRuleText(FILE *out, struct rule *rp){
3552: int j;
3553: fprintf(out,"%s ::=", rp->lhs->name);
3554: for(j=0; j<rp->nrhs; j++){
3555: struct symbol *sp = rp->rhs[j];
3556: fprintf(out," %s", sp->name);
3557: if( sp->type==MULTITERMINAL ){
3558: int k;
3559: for(k=1; k<sp->nsubsym; k++){
3560: fprintf(out,"|%s",sp->subsym[k]->name);
3561: }
3562: }
3563: }
3564: }
3565:
3566:
3567: /* Generate C source code for the parser */
3568: void ReportTable(
3569: struct lemon *lemp,
3570: int mhflag /* Output in makeheaders format if true */
3571: ){
3572: FILE *out, *in;
3573: char line[LINESIZE];
3574: int lineno;
3575: struct state *stp;
3576: struct action *ap;
3577: struct rule *rp;
3578: struct acttab *pActtab;
3579: int i, j, n;
3580: const char *name;
3581: int mnTknOfst, mxTknOfst;
3582: int mnNtOfst, mxNtOfst;
3583: struct axset *ax;
3584:
3585: in = tplt_open(lemp);
3586: if( in==0 ) return;
3587: out = file_open(lemp,".c","wb");
3588: if( out==0 ){
3589: fclose(in);
3590: return;
3591: }
3592: lineno = 1;
3593: tplt_xfer(lemp->name,in,out,&lineno);
3594:
3595: /* Generate the include code, if any */
3596: tplt_print(out,lemp,lemp->include,&lineno);
3597: if( mhflag ){
3598: char *name = file_makename(lemp, ".h");
3599: fprintf(out,"#include \"%s\"\n", name); lineno++;
3600: free(name);
3601: }
3602: tplt_xfer(lemp->name,in,out,&lineno);
3603:
3604: /* Generate #defines for all tokens */
3605: if( mhflag ){
3606: const char *prefix;
3607: fprintf(out,"#if INTERFACE\n"); lineno++;
3608: if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3609: else prefix = "";
3610: for(i=1; i<lemp->nterminal; i++){
3611: fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3612: lineno++;
3613: }
3614: fprintf(out,"#endif\n"); lineno++;
3615: }
3616: tplt_xfer(lemp->name,in,out,&lineno);
3617:
3618: /* Generate the defines */
3619: fprintf(out,"#define YYCODETYPE %s\n",
3620: minimum_size_type(0, lemp->nsymbol+1)); lineno++;
3621: fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
3622: fprintf(out,"#define YYACTIONTYPE %s\n",
3623: minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
3624: if( lemp->wildcard ){
3625: fprintf(out,"#define YYWILDCARD %d\n",
3626: lemp->wildcard->index); lineno++;
3627: }
3628: print_stack_union(out,lemp,&lineno,mhflag);
3629: fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
3630: if( lemp->stacksize ){
3631: fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
3632: }else{
3633: fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
3634: }
3635: fprintf(out, "#endif\n"); lineno++;
3636: if( mhflag ){
3637: fprintf(out,"#if INTERFACE\n"); lineno++;
3638: }
3639: name = lemp->name ? lemp->name : "Parse";
3640: if( lemp->arg && lemp->arg[0] ){
3641: int i;
3642: i = lemonStrlen(lemp->arg);
3643: while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3644: while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3645: fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
3646: fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
3647: fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3648: name,lemp->arg,&lemp->arg[i]); lineno++;
3649: fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3650: name,&lemp->arg[i],&lemp->arg[i]); lineno++;
3651: }else{
3652: fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
3653: fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
3654: fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3655: fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3656: }
3657: if( mhflag ){
3658: fprintf(out,"#endif\n"); lineno++;
3659: }
3660: fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
3661: fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
3662: if( lemp->errsym->useCnt ){
3663: fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
3664: fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
3665: }
3666: if( lemp->has_fallback ){
3667: fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
3668: }
3669: tplt_xfer(lemp->name,in,out,&lineno);
3670:
3671: /* Generate the action table and its associates:
3672: **
3673: ** yy_action[] A single table containing all actions.
3674: ** yy_lookahead[] A table containing the lookahead for each entry in
3675: ** yy_action. Used to detect hash collisions.
3676: ** yy_shift_ofst[] For each state, the offset into yy_action for
3677: ** shifting terminals.
3678: ** yy_reduce_ofst[] For each state, the offset into yy_action for
3679: ** shifting non-terminals after a reduce.
3680: ** yy_default[] Default action for each state.
3681: */
3682:
3683: /* Compute the actions on all states and count them up */
3684: ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
3685: if( ax==0 ){
3686: fprintf(stderr,"malloc failed\n");
3687: exit(1);
3688: }
3689: for(i=0; i<lemp->nstate; i++){
3690: stp = lemp->sorted[i];
3691: ax[i*2].stp = stp;
3692: ax[i*2].isTkn = 1;
3693: ax[i*2].nAction = stp->nTknAct;
3694: ax[i*2+1].stp = stp;
3695: ax[i*2+1].isTkn = 0;
3696: ax[i*2+1].nAction = stp->nNtAct;
3697: }
3698: mxTknOfst = mnTknOfst = 0;
3699: mxNtOfst = mnNtOfst = 0;
3700:
3701: /* Compute the action table. In order to try to keep the size of the
3702: ** action table to a minimum, the heuristic of placing the largest action
3703: ** sets first is used.
3704: */
3705: for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
3706: qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3707: pActtab = acttab_alloc();
3708: for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3709: stp = ax[i].stp;
3710: if( ax[i].isTkn ){
3711: for(ap=stp->ap; ap; ap=ap->next){
3712: int action;
3713: if( ap->sp->index>=lemp->nterminal ) continue;
3714: action = compute_action(lemp, ap);
3715: if( action<0 ) continue;
3716: acttab_action(pActtab, ap->sp->index, action);
3717: }
3718: stp->iTknOfst = acttab_insert(pActtab);
3719: if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3720: if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3721: }else{
3722: for(ap=stp->ap; ap; ap=ap->next){
3723: int action;
3724: if( ap->sp->index<lemp->nterminal ) continue;
3725: if( ap->sp->index==lemp->nsymbol ) continue;
3726: action = compute_action(lemp, ap);
3727: if( action<0 ) continue;
3728: acttab_action(pActtab, ap->sp->index, action);
3729: }
3730: stp->iNtOfst = acttab_insert(pActtab);
3731: if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3732: if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3733: }
3734: }
3735: free(ax);
3736:
3737: /* Output the yy_action table */
3738: n = acttab_size(pActtab);
3739: fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
3740: fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
3741: for(i=j=0; i<n; i++){
3742: int action = acttab_yyaction(pActtab, i);
3743: if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
3744: if( j==0 ) fprintf(out," /* %5d */ ", i);
3745: fprintf(out, " %4d,", action);
3746: if( j==9 || i==n-1 ){
3747: fprintf(out, "\n"); lineno++;
3748: j = 0;
3749: }else{
3750: j++;
3751: }
3752: }
3753: fprintf(out, "};\n"); lineno++;
3754:
3755: /* Output the yy_lookahead table */
3756: fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3757: for(i=j=0; i<n; i++){
3758: int la = acttab_yylookahead(pActtab, i);
3759: if( la<0 ) la = lemp->nsymbol;
3760: if( j==0 ) fprintf(out," /* %5d */ ", i);
3761: fprintf(out, " %4d,", la);
3762: if( j==9 || i==n-1 ){
3763: fprintf(out, "\n"); lineno++;
3764: j = 0;
3765: }else{
3766: j++;
3767: }
3768: }
3769: fprintf(out, "};\n"); lineno++;
3770:
3771: /* Output the yy_shift_ofst[] table */
3772: fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3773: n = lemp->nstate;
3774: while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
3775: fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
3776: fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
3777: fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
3778: fprintf(out, "static const %s yy_shift_ofst[] = {\n",
3779: minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3780: for(i=j=0; i<n; i++){
3781: int ofst;
3782: stp = lemp->sorted[i];
3783: ofst = stp->iTknOfst;
3784: if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3785: if( j==0 ) fprintf(out," /* %5d */ ", i);
3786: fprintf(out, " %4d,", ofst);
3787: if( j==9 || i==n-1 ){
3788: fprintf(out, "\n"); lineno++;
3789: j = 0;
3790: }else{
3791: j++;
3792: }
3793: }
3794: fprintf(out, "};\n"); lineno++;
3795:
3796: /* Output the yy_reduce_ofst[] table */
3797: fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3798: n = lemp->nstate;
3799: while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
3800: fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
3801: fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
3802: fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
3803: fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
3804: minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3805: for(i=j=0; i<n; i++){
3806: int ofst;
3807: stp = lemp->sorted[i];
3808: ofst = stp->iNtOfst;
3809: if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3810: if( j==0 ) fprintf(out," /* %5d */ ", i);
3811: fprintf(out, " %4d,", ofst);
3812: if( j==9 || i==n-1 ){
3813: fprintf(out, "\n"); lineno++;
3814: j = 0;
3815: }else{
3816: j++;
3817: }
3818: }
3819: fprintf(out, "};\n"); lineno++;
3820:
3821: /* Output the default action table */
3822: fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
3823: n = lemp->nstate;
3824: for(i=j=0; i<n; i++){
3825: stp = lemp->sorted[i];
3826: if( j==0 ) fprintf(out," /* %5d */ ", i);
3827: fprintf(out, " %4d,", stp->iDflt);
3828: if( j==9 || i==n-1 ){
3829: fprintf(out, "\n"); lineno++;
3830: j = 0;
3831: }else{
3832: j++;
3833: }
3834: }
3835: fprintf(out, "};\n"); lineno++;
3836: tplt_xfer(lemp->name,in,out,&lineno);
3837:
3838: /* Generate the table of fallback tokens.
3839: */
3840: if( lemp->has_fallback ){
3841: int mx = lemp->nterminal - 1;
3842: while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
3843: for(i=0; i<=mx; i++){
3844: struct symbol *p = lemp->symbols[i];
3845: if( p->fallback==0 ){
3846: fprintf(out, " 0, /* %10s => nothing */\n", p->name);
3847: }else{
3848: fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
3849: p->name, p->fallback->name);
3850: }
3851: lineno++;
3852: }
3853: }
3854: tplt_xfer(lemp->name, in, out, &lineno);
3855:
3856: /* Generate a table containing the symbolic name of every symbol
3857: */
3858: for(i=0; i<lemp->nsymbol; i++){
3859: sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3860: fprintf(out," %-15s",line);
3861: if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3862: }
3863: if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3864: tplt_xfer(lemp->name,in,out,&lineno);
3865:
3866: /* Generate a table containing a text string that describes every
3867: ** rule in the rule set of the grammar. This information is used
3868: ** when tracing REDUCE actions.
3869: */
3870: for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3871: assert( rp->index==i );
3872: fprintf(out," /* %3d */ \"", i);
3873: writeRuleText(out, rp);
3874: fprintf(out,"\",\n"); lineno++;
3875: }
3876: tplt_xfer(lemp->name,in,out,&lineno);
3877:
3878: /* Generate code which executes every time a symbol is popped from
3879: ** the stack while processing errors or while destroying the parser.
3880: ** (In other words, generate the %destructor actions)
3881: */
3882: if( lemp->tokendest ){
3883: int once = 1;
3884: for(i=0; i<lemp->nsymbol; i++){
3885: struct symbol *sp = lemp->symbols[i];
3886: if( sp==0 || sp->type!=TERMINAL ) continue;
3887: if( once ){
3888: fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
3889: once = 0;
3890: }
3891: fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3892: }
3893: for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3894: if( i<lemp->nsymbol ){
3895: emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3896: fprintf(out," break;\n"); lineno++;
3897: }
3898: }
3899: if( lemp->vardest ){
3900: struct symbol *dflt_sp = 0;
3901: int once = 1;
3902: for(i=0; i<lemp->nsymbol; i++){
3903: struct symbol *sp = lemp->symbols[i];
3904: if( sp==0 || sp->type==TERMINAL ||
3905: sp->index<=0 || sp->destructor!=0 ) continue;
3906: if( once ){
3907: fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
3908: once = 0;
3909: }
3910: fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3911: dflt_sp = sp;
3912: }
3913: if( dflt_sp!=0 ){
3914: emit_destructor_code(out,dflt_sp,lemp,&lineno);
3915: }
3916: fprintf(out," break;\n"); lineno++;
3917: }
3918: for(i=0; i<lemp->nsymbol; i++){
3919: struct symbol *sp = lemp->symbols[i];
3920: if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3921: fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3922:
3923: /* Combine duplicate destructors into a single case */
3924: for(j=i+1; j<lemp->nsymbol; j++){
3925: struct symbol *sp2 = lemp->symbols[j];
3926: if( sp2 && sp2->type!=TERMINAL && sp2->destructor
3927: && sp2->dtnum==sp->dtnum
3928: && strcmp(sp->destructor,sp2->destructor)==0 ){
3929: fprintf(out," case %d: /* %s */\n",
3930: sp2->index, sp2->name); lineno++;
3931: sp2->destructor = 0;
3932: }
3933: }
3934:
3935: emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3936: fprintf(out," break;\n"); lineno++;
3937: }
3938: tplt_xfer(lemp->name,in,out,&lineno);
3939:
3940: /* Generate code which executes whenever the parser stack overflows */
3941: tplt_print(out,lemp,lemp->overflow,&lineno);
3942: tplt_xfer(lemp->name,in,out,&lineno);
3943:
3944: /* Generate the table of rule information
3945: **
3946: ** Note: This code depends on the fact that rules are number
3947: ** sequentually beginning with 0.
3948: */
3949: for(rp=lemp->rule; rp; rp=rp->next){
3950: fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3951: }
3952: tplt_xfer(lemp->name,in,out,&lineno);
3953:
3954: /* Generate code which execution during each REDUCE action */
3955: for(rp=lemp->rule; rp; rp=rp->next){
3956: translate_code(lemp, rp);
3957: }
3958: /* First output rules other than the default: rule */
3959: for(rp=lemp->rule; rp; rp=rp->next){
3960: struct rule *rp2; /* Other rules with the same action */
3961: if( rp->code==0 ) continue;
3962: if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
3963: fprintf(out," case %d: /* ", rp->index);
3964: writeRuleText(out, rp);
3965: fprintf(out, " */\n"); lineno++;
3966: for(rp2=rp->next; rp2; rp2=rp2->next){
3967: if( rp2->code==rp->code ){
3968: fprintf(out," case %d: /* ", rp2->index);
3969: writeRuleText(out, rp2);
3970: fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
3971: rp2->code = 0;
3972: }
3973: }
3974: emit_code(out,rp,lemp,&lineno);
3975: fprintf(out," break;\n"); lineno++;
3976: rp->code = 0;
3977: }
3978: /* Finally, output the default: rule. We choose as the default: all
3979: ** empty actions. */
3980: fprintf(out," default:\n"); lineno++;
3981: for(rp=lemp->rule; rp; rp=rp->next){
3982: if( rp->code==0 ) continue;
3983: assert( rp->code[0]=='\n' && rp->code[1]==0 );
3984: fprintf(out," /* (%d) ", rp->index);
3985: writeRuleText(out, rp);
3986: fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
3987: }
3988: fprintf(out," break;\n"); lineno++;
3989: tplt_xfer(lemp->name,in,out,&lineno);
3990:
3991: /* Generate code which executes if a parse fails */
3992: tplt_print(out,lemp,lemp->failure,&lineno);
3993: tplt_xfer(lemp->name,in,out,&lineno);
3994:
3995: /* Generate code which executes when a syntax error occurs */
3996: tplt_print(out,lemp,lemp->error,&lineno);
3997: tplt_xfer(lemp->name,in,out,&lineno);
3998:
3999: /* Generate code which executes when the parser accepts its input */
4000: tplt_print(out,lemp,lemp->accept,&lineno);
4001: tplt_xfer(lemp->name,in,out,&lineno);
4002:
4003: /* Append any addition code the user desires */
4004: tplt_print(out,lemp,lemp->extracode,&lineno);
4005:
4006: fclose(in);
4007: fclose(out);
4008: return;
4009: }
4010:
4011: /* Generate a header file for the parser */
4012: void ReportHeader(struct lemon *lemp)
4013: {
4014: FILE *out, *in;
4015: const char *prefix;
4016: char line[LINESIZE];
4017: char pattern[LINESIZE];
4018: int i;
4019:
4020: if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4021: else prefix = "";
4022: in = file_open(lemp,".h","rb");
4023: if( in ){
4024: for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4025: sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4026: if( strcmp(line,pattern) ) break;
4027: }
4028: fclose(in);
4029: if( i==lemp->nterminal ){
4030: /* No change in the file. Don't rewrite it. */
4031: return;
4032: }
4033: }
4034: out = file_open(lemp,".h","wb");
4035: if( out ){
4036: for(i=1; i<lemp->nterminal; i++){
4037: fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4038: }
4039: fclose(out);
4040: }
4041: return;
4042: }
4043:
4044: /* Reduce the size of the action tables, if possible, by making use
4045: ** of defaults.
4046: **
4047: ** In this version, we take the most frequent REDUCE action and make
4048: ** it the default. Except, there is no default if the wildcard token
4049: ** is a possible look-ahead.
4050: */
4051: void CompressTables(struct lemon *lemp)
4052: {
4053: struct state *stp;
4054: struct action *ap, *ap2;
4055: struct rule *rp, *rp2, *rbest;
4056: int nbest, n;
4057: int i;
4058: int usesWildcard;
4059:
4060: for(i=0; i<lemp->nstate; i++){
4061: stp = lemp->sorted[i];
4062: nbest = 0;
4063: rbest = 0;
4064: usesWildcard = 0;
4065:
4066: for(ap=stp->ap; ap; ap=ap->next){
4067: if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
4068: usesWildcard = 1;
4069: }
4070: if( ap->type!=REDUCE ) continue;
4071: rp = ap->x.rp;
4072: if( rp->lhsStart ) continue;
4073: if( rp==rbest ) continue;
4074: n = 1;
4075: for(ap2=ap->next; ap2; ap2=ap2->next){
4076: if( ap2->type!=REDUCE ) continue;
4077: rp2 = ap2->x.rp;
4078: if( rp2==rbest ) continue;
4079: if( rp2==rp ) n++;
4080: }
4081: if( n>nbest ){
4082: nbest = n;
4083: rbest = rp;
4084: }
4085: }
4086:
4087: /* Do not make a default if the number of rules to default
4088: ** is not at least 1 or if the wildcard token is a possible
4089: ** lookahead.
4090: */
4091: if( nbest<1 || usesWildcard ) continue;
4092:
4093:
4094: /* Combine matching REDUCE actions into a single default */
4095: for(ap=stp->ap; ap; ap=ap->next){
4096: if( ap->type==REDUCE && ap->x.rp==rbest ) break;
4097: }
4098: assert( ap );
4099: ap->sp = Symbol_new("{default}");
4100: for(ap=ap->next; ap; ap=ap->next){
4101: if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
4102: }
4103: stp->ap = Action_sort(stp->ap);
4104: }
4105: }
4106:
4107:
4108: /*
4109: ** Compare two states for sorting purposes. The smaller state is the
4110: ** one with the most non-terminal actions. If they have the same number
4111: ** of non-terminal actions, then the smaller is the one with the most
4112: ** token actions.
4113: */
4114: static int stateResortCompare(const void *a, const void *b){
4115: const struct state *pA = *(const struct state**)a;
4116: const struct state *pB = *(const struct state**)b;
4117: int n;
4118:
4119: n = pB->nNtAct - pA->nNtAct;
4120: if( n==0 ){
4121: n = pB->nTknAct - pA->nTknAct;
4122: if( n==0 ){
4123: n = pB->statenum - pA->statenum;
4124: }
4125: }
4126: assert( n!=0 );
4127: return n;
4128: }
4129:
4130:
4131: /*
4132: ** Renumber and resort states so that states with fewer choices
4133: ** occur at the end. Except, keep state 0 as the first state.
4134: */
4135: void ResortStates(struct lemon *lemp)
4136: {
4137: int i;
4138: struct state *stp;
4139: struct action *ap;
4140:
4141: for(i=0; i<lemp->nstate; i++){
4142: stp = lemp->sorted[i];
4143: stp->nTknAct = stp->nNtAct = 0;
4144: stp->iDflt = lemp->nstate + lemp->nrule;
4145: stp->iTknOfst = NO_OFFSET;
4146: stp->iNtOfst = NO_OFFSET;
4147: for(ap=stp->ap; ap; ap=ap->next){
4148: if( compute_action(lemp,ap)>=0 ){
4149: if( ap->sp->index<lemp->nterminal ){
4150: stp->nTknAct++;
4151: }else if( ap->sp->index<lemp->nsymbol ){
4152: stp->nNtAct++;
4153: }else{
4154: stp->iDflt = compute_action(lemp, ap);
4155: }
4156: }
4157: }
4158: }
4159: qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
4160: stateResortCompare);
4161: for(i=0; i<lemp->nstate; i++){
4162: lemp->sorted[i]->statenum = i;
4163: }
4164: }
4165:
4166:
4167: /***************** From the file "set.c" ************************************/
4168: /*
4169: ** Set manipulation routines for the LEMON parser generator.
4170: */
4171:
4172: static int size = 0;
4173:
4174: /* Set the set size */
4175: void SetSize(int n)
4176: {
4177: size = n+1;
4178: }
4179:
4180: /* Allocate a new set */
4181: char *SetNew(){
4182: char *s;
4183: s = (char*)calloc( size, 1);
4184: if( s==0 ){
4185: extern void memory_error();
4186: memory_error();
4187: }
4188: return s;
4189: }
4190:
4191: /* Deallocate a set */
4192: void SetFree(char *s)
4193: {
4194: free(s);
4195: }
4196:
4197: /* Add a new element to the set. Return TRUE if the element was added
4198: ** and FALSE if it was already there. */
4199: int SetAdd(char *s, int e)
4200: {
4201: int rv;
4202: assert( e>=0 && e<size );
4203: rv = s[e];
4204: s[e] = 1;
4205: return !rv;
4206: }
4207:
4208: /* Add every element of s2 to s1. Return TRUE if s1 changes. */
4209: int SetUnion(char *s1, char *s2)
4210: {
4211: int i, progress;
4212: progress = 0;
4213: for(i=0; i<size; i++){
4214: if( s2[i]==0 ) continue;
4215: if( s1[i]==0 ){
4216: progress = 1;
4217: s1[i] = 1;
4218: }
4219: }
4220: return progress;
4221: }
4222: /********************** From the file "table.c" ****************************/
4223: /*
4224: ** All code in this file has been automatically generated
4225: ** from a specification in the file
4226: ** "table.q"
4227: ** by the associative array code building program "aagen".
4228: ** Do not edit this file! Instead, edit the specification
4229: ** file, then rerun aagen.
4230: */
4231: /*
4232: ** Code for processing tables in the LEMON parser generator.
4233: */
4234:
4235: PRIVATE int strhash(const char *x)
4236: {
4237: int h = 0;
4238: while( *x) h = h*13 + *(x++);
4239: return h;
4240: }
4241:
4242: /* Works like strdup, sort of. Save a string in malloced memory, but
4243: ** keep strings in a table so that the same string is not in more
4244: ** than one place.
4245: */
4246: const char *Strsafe(const char *y)
4247: {
4248: const char *z;
4249: char *cpy;
4250:
4251: if( y==0 ) return 0;
4252: z = Strsafe_find(y);
4253: if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
4254: strcpy(cpy,y);
4255: z = cpy;
4256: Strsafe_insert(z);
4257: }
4258: MemoryCheck(z);
4259: return z;
4260: }
4261:
4262: /* There is one instance of the following structure for each
4263: ** associative array of type "x1".
4264: */
4265: struct s_x1 {
4266: int size; /* The number of available slots. */
4267: /* Must be a power of 2 greater than or */
4268: /* equal to 1 */
4269: int count; /* Number of currently slots filled */
4270: struct s_x1node *tbl; /* The data stored here */
4271: struct s_x1node **ht; /* Hash table for lookups */
4272: };
4273:
4274: /* There is one instance of this structure for every data element
4275: ** in an associative array of type "x1".
4276: */
4277: typedef struct s_x1node {
4278: const char *data; /* The data */
4279: struct s_x1node *next; /* Next entry with the same hash */
4280: struct s_x1node **from; /* Previous link */
4281: } x1node;
4282:
4283: /* There is only one instance of the array, which is the following */
4284: static struct s_x1 *x1a;
4285:
4286: /* Allocate a new associative array */
4287: void Strsafe_init(){
4288: if( x1a ) return;
4289: x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
4290: if( x1a ){
4291: x1a->size = 1024;
4292: x1a->count = 0;
4293: x1a->tbl = (x1node*)malloc(
4294: (sizeof(x1node) + sizeof(x1node*))*1024 );
4295: if( x1a->tbl==0 ){
4296: free(x1a);
4297: x1a = 0;
4298: }else{
4299: int i;
4300: x1a->ht = (x1node**)&(x1a->tbl[1024]);
4301: for(i=0; i<1024; i++) x1a->ht[i] = 0;
4302: }
4303: }
4304: }
4305: /* Insert a new record into the array. Return TRUE if successful.
4306: ** Prior data with the same key is NOT overwritten */
4307: int Strsafe_insert(const char *data)
4308: {
4309: x1node *np;
4310: int h;
4311: int ph;
4312:
4313: if( x1a==0 ) return 0;
4314: ph = strhash(data);
4315: h = ph & (x1a->size-1);
4316: np = x1a->ht[h];
4317: while( np ){
4318: if( strcmp(np->data,data)==0 ){
4319: /* An existing entry with the same key is found. */
4320: /* Fail because overwrite is not allows. */
4321: return 0;
4322: }
4323: np = np->next;
4324: }
4325: if( x1a->count>=x1a->size ){
4326: /* Need to make the hash table bigger */
4327: int i,size;
4328: struct s_x1 array;
4329: array.size = size = x1a->size*2;
4330: array.count = x1a->count;
4331: array.tbl = (x1node*)malloc(
4332: (sizeof(x1node) + sizeof(x1node*))*size );
4333: if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4334: array.ht = (x1node**)&(array.tbl[size]);
4335: for(i=0; i<size; i++) array.ht[i] = 0;
4336: for(i=0; i<x1a->count; i++){
4337: x1node *oldnp, *newnp;
4338: oldnp = &(x1a->tbl[i]);
4339: h = strhash(oldnp->data) & (size-1);
4340: newnp = &(array.tbl[i]);
4341: if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4342: newnp->next = array.ht[h];
4343: newnp->data = oldnp->data;
4344: newnp->from = &(array.ht[h]);
4345: array.ht[h] = newnp;
4346: }
4347: free(x1a->tbl);
4348: *x1a = array;
4349: }
4350: /* Insert the new data */
4351: h = ph & (x1a->size-1);
4352: np = &(x1a->tbl[x1a->count++]);
4353: np->data = data;
4354: if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
4355: np->next = x1a->ht[h];
4356: x1a->ht[h] = np;
4357: np->from = &(x1a->ht[h]);
4358: return 1;
4359: }
4360:
4361: /* Return a pointer to data assigned to the given key. Return NULL
4362: ** if no such key. */
4363: const char *Strsafe_find(const char *key)
4364: {
4365: int h;
4366: x1node *np;
4367:
4368: if( x1a==0 ) return 0;
4369: h = strhash(key) & (x1a->size-1);
4370: np = x1a->ht[h];
4371: while( np ){
4372: if( strcmp(np->data,key)==0 ) break;
4373: np = np->next;
4374: }
4375: return np ? np->data : 0;
4376: }
4377:
4378: /* Return a pointer to the (terminal or nonterminal) symbol "x".
4379: ** Create a new symbol if this is the first time "x" has been seen.
4380: */
4381: struct symbol *Symbol_new(const char *x)
4382: {
4383: struct symbol *sp;
4384:
4385: sp = Symbol_find(x);
4386: if( sp==0 ){
4387: sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
4388: MemoryCheck(sp);
4389: sp->name = Strsafe(x);
4390: sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
4391: sp->rule = 0;
4392: sp->fallback = 0;
4393: sp->prec = -1;
4394: sp->assoc = UNK;
4395: sp->firstset = 0;
4396: sp->lambda = LEMON_FALSE;
4397: sp->destructor = 0;
4398: sp->destLineno = 0;
4399: sp->datatype = 0;
4400: sp->useCnt = 0;
4401: Symbol_insert(sp,sp->name);
4402: }
4403: sp->useCnt++;
4404: return sp;
4405: }
4406:
4407: /* Compare two symbols for working purposes
4408: **
4409: ** Symbols that begin with upper case letters (terminals or tokens)
4410: ** must sort before symbols that begin with lower case letters
4411: ** (non-terminals). Other than that, the order does not matter.
4412: **
4413: ** We find experimentally that leaving the symbols in their original
4414: ** order (the order they appeared in the grammar file) gives the
4415: ** smallest parser tables in SQLite.
4416: */
4417: int Symbolcmpp(const void *_a, const void *_b)
4418: {
4419: const struct symbol **a = (const struct symbol **) _a;
4420: const struct symbol **b = (const struct symbol **) _b;
4421: int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
4422: int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
4423: assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 );
4424: return i1-i2;
4425: }
4426:
4427: /* There is one instance of the following structure for each
4428: ** associative array of type "x2".
4429: */
4430: struct s_x2 {
4431: int size; /* The number of available slots. */
4432: /* Must be a power of 2 greater than or */
4433: /* equal to 1 */
4434: int count; /* Number of currently slots filled */
4435: struct s_x2node *tbl; /* The data stored here */
4436: struct s_x2node **ht; /* Hash table for lookups */
4437: };
4438:
4439: /* There is one instance of this structure for every data element
4440: ** in an associative array of type "x2".
4441: */
4442: typedef struct s_x2node {
4443: struct symbol *data; /* The data */
4444: const char *key; /* The key */
4445: struct s_x2node *next; /* Next entry with the same hash */
4446: struct s_x2node **from; /* Previous link */
4447: } x2node;
4448:
4449: /* There is only one instance of the array, which is the following */
4450: static struct s_x2 *x2a;
4451:
4452: /* Allocate a new associative array */
4453: void Symbol_init(){
4454: if( x2a ) return;
4455: x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
4456: if( x2a ){
4457: x2a->size = 128;
4458: x2a->count = 0;
4459: x2a->tbl = (x2node*)malloc(
4460: (sizeof(x2node) + sizeof(x2node*))*128 );
4461: if( x2a->tbl==0 ){
4462: free(x2a);
4463: x2a = 0;
4464: }else{
4465: int i;
4466: x2a->ht = (x2node**)&(x2a->tbl[128]);
4467: for(i=0; i<128; i++) x2a->ht[i] = 0;
4468: }
4469: }
4470: }
4471: /* Insert a new record into the array. Return TRUE if successful.
4472: ** Prior data with the same key is NOT overwritten */
4473: int Symbol_insert(struct symbol *data, const char *key)
4474: {
4475: x2node *np;
4476: int h;
4477: int ph;
4478:
4479: if( x2a==0 ) return 0;
4480: ph = strhash(key);
4481: h = ph & (x2a->size-1);
4482: np = x2a->ht[h];
4483: while( np ){
4484: if( strcmp(np->key,key)==0 ){
4485: /* An existing entry with the same key is found. */
4486: /* Fail because overwrite is not allows. */
4487: return 0;
4488: }
4489: np = np->next;
4490: }
4491: if( x2a->count>=x2a->size ){
4492: /* Need to make the hash table bigger */
4493: int i,size;
4494: struct s_x2 array;
4495: array.size = size = x2a->size*2;
4496: array.count = x2a->count;
4497: array.tbl = (x2node*)malloc(
4498: (sizeof(x2node) + sizeof(x2node*))*size );
4499: if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4500: array.ht = (x2node**)&(array.tbl[size]);
4501: for(i=0; i<size; i++) array.ht[i] = 0;
4502: for(i=0; i<x2a->count; i++){
4503: x2node *oldnp, *newnp;
4504: oldnp = &(x2a->tbl[i]);
4505: h = strhash(oldnp->key) & (size-1);
4506: newnp = &(array.tbl[i]);
4507: if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4508: newnp->next = array.ht[h];
4509: newnp->key = oldnp->key;
4510: newnp->data = oldnp->data;
4511: newnp->from = &(array.ht[h]);
4512: array.ht[h] = newnp;
4513: }
4514: free(x2a->tbl);
4515: *x2a = array;
4516: }
4517: /* Insert the new data */
4518: h = ph & (x2a->size-1);
4519: np = &(x2a->tbl[x2a->count++]);
4520: np->key = key;
4521: np->data = data;
4522: if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
4523: np->next = x2a->ht[h];
4524: x2a->ht[h] = np;
4525: np->from = &(x2a->ht[h]);
4526: return 1;
4527: }
4528:
4529: /* Return a pointer to data assigned to the given key. Return NULL
4530: ** if no such key. */
4531: struct symbol *Symbol_find(const char *key)
4532: {
4533: int h;
4534: x2node *np;
4535:
4536: if( x2a==0 ) return 0;
4537: h = strhash(key) & (x2a->size-1);
4538: np = x2a->ht[h];
4539: while( np ){
4540: if( strcmp(np->key,key)==0 ) break;
4541: np = np->next;
4542: }
4543: return np ? np->data : 0;
4544: }
4545:
4546: /* Return the n-th data. Return NULL if n is out of range. */
4547: struct symbol *Symbol_Nth(int n)
4548: {
4549: struct symbol *data;
4550: if( x2a && n>0 && n<=x2a->count ){
4551: data = x2a->tbl[n-1].data;
4552: }else{
4553: data = 0;
4554: }
4555: return data;
4556: }
4557:
4558: /* Return the size of the array */
4559: int Symbol_count()
4560: {
4561: return x2a ? x2a->count : 0;
4562: }
4563:
4564: /* Return an array of pointers to all data in the table.
4565: ** The array is obtained from malloc. Return NULL if memory allocation
4566: ** problems, or if the array is empty. */
4567: struct symbol **Symbol_arrayof()
4568: {
4569: struct symbol **array;
4570: int i,size;
4571: if( x2a==0 ) return 0;
4572: size = x2a->count;
4573: array = (struct symbol **)calloc(size, sizeof(struct symbol *));
4574: if( array ){
4575: for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4576: }
4577: return array;
4578: }
4579:
4580: /* Compare two configurations */
4581: int Configcmp(const char *_a,const char *_b)
4582: {
4583: const struct config *a = (struct config *) _a;
4584: const struct config *b = (struct config *) _b;
4585: int x;
4586: x = a->rp->index - b->rp->index;
4587: if( x==0 ) x = a->dot - b->dot;
4588: return x;
4589: }
4590:
4591: /* Compare two states */
4592: PRIVATE int statecmp(struct config *a, struct config *b)
4593: {
4594: int rc;
4595: for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
4596: rc = a->rp->index - b->rp->index;
4597: if( rc==0 ) rc = a->dot - b->dot;
4598: }
4599: if( rc==0 ){
4600: if( a ) rc = 1;
4601: if( b ) rc = -1;
4602: }
4603: return rc;
4604: }
4605:
4606: /* Hash a state */
4607: PRIVATE int statehash(struct config *a)
4608: {
4609: int h=0;
4610: while( a ){
4611: h = h*571 + a->rp->index*37 + a->dot;
4612: a = a->bp;
4613: }
4614: return h;
4615: }
4616:
4617: /* Allocate a new state structure */
4618: struct state *State_new()
4619: {
4620: struct state *newstate;
4621: newstate = (struct state *)calloc(1, sizeof(struct state) );
4622: MemoryCheck(newstate);
4623: return newstate;
4624: }
4625:
4626: /* There is one instance of the following structure for each
4627: ** associative array of type "x3".
4628: */
4629: struct s_x3 {
4630: int size; /* The number of available slots. */
4631: /* Must be a power of 2 greater than or */
4632: /* equal to 1 */
4633: int count; /* Number of currently slots filled */
4634: struct s_x3node *tbl; /* The data stored here */
4635: struct s_x3node **ht; /* Hash table for lookups */
4636: };
4637:
4638: /* There is one instance of this structure for every data element
4639: ** in an associative array of type "x3".
4640: */
4641: typedef struct s_x3node {
4642: struct state *data; /* The data */
4643: struct config *key; /* The key */
4644: struct s_x3node *next; /* Next entry with the same hash */
4645: struct s_x3node **from; /* Previous link */
4646: } x3node;
4647:
4648: /* There is only one instance of the array, which is the following */
4649: static struct s_x3 *x3a;
4650:
4651: /* Allocate a new associative array */
4652: void State_init(){
4653: if( x3a ) return;
4654: x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4655: if( x3a ){
4656: x3a->size = 128;
4657: x3a->count = 0;
4658: x3a->tbl = (x3node*)malloc(
4659: (sizeof(x3node) + sizeof(x3node*))*128 );
4660: if( x3a->tbl==0 ){
4661: free(x3a);
4662: x3a = 0;
4663: }else{
4664: int i;
4665: x3a->ht = (x3node**)&(x3a->tbl[128]);
4666: for(i=0; i<128; i++) x3a->ht[i] = 0;
4667: }
4668: }
4669: }
4670: /* Insert a new record into the array. Return TRUE if successful.
4671: ** Prior data with the same key is NOT overwritten */
4672: int State_insert(struct state *data, struct config *key)
4673: {
4674: x3node *np;
4675: int h;
4676: int ph;
4677:
4678: if( x3a==0 ) return 0;
4679: ph = statehash(key);
4680: h = ph & (x3a->size-1);
4681: np = x3a->ht[h];
4682: while( np ){
4683: if( statecmp(np->key,key)==0 ){
4684: /* An existing entry with the same key is found. */
4685: /* Fail because overwrite is not allows. */
4686: return 0;
4687: }
4688: np = np->next;
4689: }
4690: if( x3a->count>=x3a->size ){
4691: /* Need to make the hash table bigger */
4692: int i,size;
4693: struct s_x3 array;
4694: array.size = size = x3a->size*2;
4695: array.count = x3a->count;
4696: array.tbl = (x3node*)malloc(
4697: (sizeof(x3node) + sizeof(x3node*))*size );
4698: if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4699: array.ht = (x3node**)&(array.tbl[size]);
4700: for(i=0; i<size; i++) array.ht[i] = 0;
4701: for(i=0; i<x3a->count; i++){
4702: x3node *oldnp, *newnp;
4703: oldnp = &(x3a->tbl[i]);
4704: h = statehash(oldnp->key) & (size-1);
4705: newnp = &(array.tbl[i]);
4706: if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4707: newnp->next = array.ht[h];
4708: newnp->key = oldnp->key;
4709: newnp->data = oldnp->data;
4710: newnp->from = &(array.ht[h]);
4711: array.ht[h] = newnp;
4712: }
4713: free(x3a->tbl);
4714: *x3a = array;
4715: }
4716: /* Insert the new data */
4717: h = ph & (x3a->size-1);
4718: np = &(x3a->tbl[x3a->count++]);
4719: np->key = key;
4720: np->data = data;
4721: if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4722: np->next = x3a->ht[h];
4723: x3a->ht[h] = np;
4724: np->from = &(x3a->ht[h]);
4725: return 1;
4726: }
4727:
4728: /* Return a pointer to data assigned to the given key. Return NULL
4729: ** if no such key. */
4730: struct state *State_find(struct config *key)
4731: {
4732: int h;
4733: x3node *np;
4734:
4735: if( x3a==0 ) return 0;
4736: h = statehash(key) & (x3a->size-1);
4737: np = x3a->ht[h];
4738: while( np ){
4739: if( statecmp(np->key,key)==0 ) break;
4740: np = np->next;
4741: }
4742: return np ? np->data : 0;
4743: }
4744:
4745: /* Return an array of pointers to all data in the table.
4746: ** The array is obtained from malloc. Return NULL if memory allocation
4747: ** problems, or if the array is empty. */
4748: struct state **State_arrayof()
4749: {
4750: struct state **array;
4751: int i,size;
4752: if( x3a==0 ) return 0;
4753: size = x3a->count;
4754: array = (struct state **)malloc( sizeof(struct state *)*size );
4755: if( array ){
4756: for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4757: }
4758: return array;
4759: }
4760:
4761: /* Hash a configuration */
4762: PRIVATE int confighash(struct config *a)
4763: {
4764: int h=0;
4765: h = h*571 + a->rp->index*37 + a->dot;
4766: return h;
4767: }
4768:
4769: /* There is one instance of the following structure for each
4770: ** associative array of type "x4".
4771: */
4772: struct s_x4 {
4773: int size; /* The number of available slots. */
4774: /* Must be a power of 2 greater than or */
4775: /* equal to 1 */
4776: int count; /* Number of currently slots filled */
4777: struct s_x4node *tbl; /* The data stored here */
4778: struct s_x4node **ht; /* Hash table for lookups */
4779: };
4780:
4781: /* There is one instance of this structure for every data element
4782: ** in an associative array of type "x4".
4783: */
4784: typedef struct s_x4node {
4785: struct config *data; /* The data */
4786: struct s_x4node *next; /* Next entry with the same hash */
4787: struct s_x4node **from; /* Previous link */
4788: } x4node;
4789:
4790: /* There is only one instance of the array, which is the following */
4791: static struct s_x4 *x4a;
4792:
4793: /* Allocate a new associative array */
4794: void Configtable_init(){
4795: if( x4a ) return;
4796: x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4797: if( x4a ){
4798: x4a->size = 64;
4799: x4a->count = 0;
4800: x4a->tbl = (x4node*)malloc(
4801: (sizeof(x4node) + sizeof(x4node*))*64 );
4802: if( x4a->tbl==0 ){
4803: free(x4a);
4804: x4a = 0;
4805: }else{
4806: int i;
4807: x4a->ht = (x4node**)&(x4a->tbl[64]);
4808: for(i=0; i<64; i++) x4a->ht[i] = 0;
4809: }
4810: }
4811: }
4812: /* Insert a new record into the array. Return TRUE if successful.
4813: ** Prior data with the same key is NOT overwritten */
4814: int Configtable_insert(struct config *data)
4815: {
4816: x4node *np;
4817: int h;
4818: int ph;
4819:
4820: if( x4a==0 ) return 0;
4821: ph = confighash(data);
4822: h = ph & (x4a->size-1);
4823: np = x4a->ht[h];
4824: while( np ){
4825: if( Configcmp((const char *) np->data,(const char *) data)==0 ){
4826: /* An existing entry with the same key is found. */
4827: /* Fail because overwrite is not allows. */
4828: return 0;
4829: }
4830: np = np->next;
4831: }
4832: if( x4a->count>=x4a->size ){
4833: /* Need to make the hash table bigger */
4834: int i,size;
4835: struct s_x4 array;
4836: array.size = size = x4a->size*2;
4837: array.count = x4a->count;
4838: array.tbl = (x4node*)malloc(
4839: (sizeof(x4node) + sizeof(x4node*))*size );
4840: if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4841: array.ht = (x4node**)&(array.tbl[size]);
4842: for(i=0; i<size; i++) array.ht[i] = 0;
4843: for(i=0; i<x4a->count; i++){
4844: x4node *oldnp, *newnp;
4845: oldnp = &(x4a->tbl[i]);
4846: h = confighash(oldnp->data) & (size-1);
4847: newnp = &(array.tbl[i]);
4848: if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4849: newnp->next = array.ht[h];
4850: newnp->data = oldnp->data;
4851: newnp->from = &(array.ht[h]);
4852: array.ht[h] = newnp;
4853: }
4854: free(x4a->tbl);
4855: *x4a = array;
4856: }
4857: /* Insert the new data */
4858: h = ph & (x4a->size-1);
4859: np = &(x4a->tbl[x4a->count++]);
4860: np->data = data;
4861: if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4862: np->next = x4a->ht[h];
4863: x4a->ht[h] = np;
4864: np->from = &(x4a->ht[h]);
4865: return 1;
4866: }
4867:
4868: /* Return a pointer to data assigned to the given key. Return NULL
4869: ** if no such key. */
4870: struct config *Configtable_find(struct config *key)
4871: {
4872: int h;
4873: x4node *np;
4874:
4875: if( x4a==0 ) return 0;
4876: h = confighash(key) & (x4a->size-1);
4877: np = x4a->ht[h];
4878: while( np ){
4879: if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
4880: np = np->next;
4881: }
4882: return np ? np->data : 0;
4883: }
4884:
4885: /* Remove all data from the table. Pass each data to the function "f"
4886: ** as it is removed. ("f" may be null to avoid this step.) */
4887: void Configtable_clear(int(*f)(struct config *))
4888: {
4889: int i;
4890: if( x4a==0 || x4a->count==0 ) return;
4891: if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4892: for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4893: x4a->count = 0;
4894: return;
4895: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>