Annotation of embedaddon/sqlite3/tool/lemon.c, revision 1.1.1.1

1.1       misho       1: /*
                      2: ** This file contains all sources (including headers) to the LEMON
                      3: ** LALR(1) parser generator.  The sources have been combined into a
                      4: ** single file to make it easy to include LEMON in the source tree
                      5: ** and Makefile of another program.
                      6: **
                      7: ** The author of this program disclaims copyright.
                      8: */
                      9: #include <stdio.h>
                     10: #include <stdarg.h>
                     11: #include <string.h>
                     12: #include <ctype.h>
                     13: #include <stdlib.h>
                     14: #include <assert.h>
                     15: 
                     16: #ifndef __WIN32__
                     17: #   if defined(_WIN32) || defined(WIN32)
                     18: #      define __WIN32__
                     19: #   endif
                     20: #endif
                     21: 
                     22: #ifdef __WIN32__
                     23: #ifdef __cplusplus
                     24: extern "C" {
                     25: #endif
                     26: extern int access(const char *path, int mode);
                     27: #ifdef __cplusplus
                     28: }
                     29: #endif
                     30: #else
                     31: #include <unistd.h>
                     32: #endif
                     33: 
                     34: /* #define PRIVATE static */
                     35: #define PRIVATE
                     36: 
                     37: #ifdef TEST
                     38: #define MAXRHS 5       /* Set low to exercise exception code */
                     39: #else
                     40: #define MAXRHS 1000
                     41: #endif
                     42: 
                     43: static int showPrecedenceConflict = 0;
                     44: static char *msort(char*,char**,int(*)(const char*,const char*));
                     45: 
                     46: /*
                     47: ** Compilers are getting increasingly pedantic about type conversions
                     48: ** as C evolves ever closer to Ada....  To work around the latest problems
                     49: ** we have to define the following variant of strlen().
                     50: */
                     51: #define lemonStrlen(X)   ((int)strlen(X))
                     52: 
                     53: /* a few forward declarations... */
                     54: struct rule;
                     55: struct lemon;
                     56: struct action;
                     57: 
                     58: static struct action *Action_new(void);
                     59: static struct action *Action_sort(struct action *);
                     60: 
                     61: /********** From the file "build.h" ************************************/
                     62: void FindRulePrecedences();
                     63: void FindFirstSets();
                     64: void FindStates();
                     65: void FindLinks();
                     66: void FindFollowSets();
                     67: void FindActions();
                     68: 
                     69: /********* From the file "configlist.h" *********************************/
                     70: void Configlist_init(void);
                     71: struct config *Configlist_add(struct rule *, int);
                     72: struct config *Configlist_addbasis(struct rule *, int);
                     73: void Configlist_closure(struct lemon *);
                     74: void Configlist_sort(void);
                     75: void Configlist_sortbasis(void);
                     76: struct config *Configlist_return(void);
                     77: struct config *Configlist_basis(void);
                     78: void Configlist_eat(struct config *);
                     79: void Configlist_reset(void);
                     80: 
                     81: /********* From the file "error.h" ***************************************/
                     82: void ErrorMsg(const char *, int,const char *, ...);
                     83: 
                     84: /****** From the file "option.h" ******************************************/
                     85: enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
                     86:          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
                     87: struct s_options {
                     88:   enum option_type type;
                     89:   const char *label;
                     90:   char *arg;
                     91:   const char *message;
                     92: };
                     93: int    OptInit(char**,struct s_options*,FILE*);
                     94: int    OptNArgs(void);
                     95: char  *OptArg(int);
                     96: void   OptErr(int);
                     97: void   OptPrint(void);
                     98: 
                     99: /******** From the file "parse.h" *****************************************/
                    100: void Parse(struct lemon *lemp);
                    101: 
                    102: /********* From the file "plink.h" ***************************************/
                    103: struct plink *Plink_new(void);
                    104: void Plink_add(struct plink **, struct config *);
                    105: void Plink_copy(struct plink **, struct plink *);
                    106: void Plink_delete(struct plink *);
                    107: 
                    108: /********** From the file "report.h" *************************************/
                    109: void Reprint(struct lemon *);
                    110: void ReportOutput(struct lemon *);
                    111: void ReportTable(struct lemon *, int);
                    112: void ReportHeader(struct lemon *);
                    113: void CompressTables(struct lemon *);
                    114: void ResortStates(struct lemon *);
                    115: 
                    116: /********** From the file "set.h" ****************************************/
                    117: void  SetSize(int);             /* All sets will be of size N */
                    118: char *SetNew(void);               /* A new set for element 0..N */
                    119: void  SetFree(char*);             /* Deallocate a set */
                    120: int SetAdd(char*,int);            /* Add element to a set */
                    121: int SetUnion(char *,char *);    /* A <- A U B, thru element N */
                    122: #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
                    123: 
                    124: /********** From the file "struct.h" *************************************/
                    125: /*
                    126: ** Principal data structures for the LEMON parser generator.
                    127: */
                    128: 
                    129: typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
                    130: 
                    131: /* Symbols (terminals and nonterminals) of the grammar are stored
                    132: ** in the following: */
                    133: enum symbol_type {
                    134:   TERMINAL,
                    135:   NONTERMINAL,
                    136:   MULTITERMINAL
                    137: };
                    138: enum e_assoc {
                    139:     LEFT,
                    140:     RIGHT,
                    141:     NONE,
                    142:     UNK
                    143: };
                    144: struct symbol {
                    145:   const char *name;        /* Name of the symbol */
                    146:   int index;               /* Index number for this symbol */
                    147:   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */
                    148:   struct rule *rule;       /* Linked list of rules of this (if an NT) */
                    149:   struct symbol *fallback; /* fallback token in case this token doesn't parse */
                    150:   int prec;                /* Precedence if defined (-1 otherwise) */
                    151:   enum e_assoc assoc;      /* Associativity if precedence is defined */
                    152:   char *firstset;          /* First-set for all rules of this symbol */
                    153:   Boolean lambda;          /* True if NT and can generate an empty string */
                    154:   int useCnt;              /* Number of times used */
                    155:   char *destructor;        /* Code which executes whenever this symbol is
                    156:                            ** popped from the stack during error processing */
                    157:   int destLineno;          /* Line number for start of destructor */
                    158:   char *datatype;          /* The data type of information held by this
                    159:                            ** object. Only used if type==NONTERMINAL */
                    160:   int dtnum;               /* The data type number.  In the parser, the value
                    161:                            ** stack is a union.  The .yy%d element of this
                    162:                            ** union is the correct data type for this object */
                    163:   /* The following fields are used by MULTITERMINALs only */
                    164:   int nsubsym;             /* Number of constituent symbols in the MULTI */
                    165:   struct symbol **subsym;  /* Array of constituent symbols */
                    166: };
                    167: 
                    168: /* Each production rule in the grammar is stored in the following
                    169: ** structure.  */
                    170: struct rule {
                    171:   struct symbol *lhs;      /* Left-hand side of the rule */
                    172:   const char *lhsalias;    /* Alias for the LHS (NULL if none) */
                    173:   int lhsStart;            /* True if left-hand side is the start symbol */
                    174:   int ruleline;            /* Line number for the rule */
                    175:   int nrhs;                /* Number of RHS symbols */
                    176:   struct symbol **rhs;     /* The RHS symbols */
                    177:   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
                    178:   int line;                /* Line number at which code begins */
                    179:   const char *code;        /* The code executed when this rule is reduced */
                    180:   struct symbol *precsym;  /* Precedence symbol for this rule */
                    181:   int index;               /* An index number for this rule */
                    182:   Boolean canReduce;       /* True if this rule is ever reduced */
                    183:   struct rule *nextlhs;    /* Next rule with the same LHS */
                    184:   struct rule *next;       /* Next rule in the global list */
                    185: };
                    186: 
                    187: /* A configuration is a production rule of the grammar together with
                    188: ** a mark (dot) showing how much of that rule has been processed so far.
                    189: ** Configurations also contain a follow-set which is a list of terminal
                    190: ** symbols which are allowed to immediately follow the end of the rule.
                    191: ** Every configuration is recorded as an instance of the following: */
                    192: enum cfgstatus {
                    193:   COMPLETE,
                    194:   INCOMPLETE
                    195: };
                    196: struct config {
                    197:   struct rule *rp;         /* The rule upon which the configuration is based */
                    198:   int dot;                 /* The parse point */
                    199:   char *fws;               /* Follow-set for this configuration only */
                    200:   struct plink *fplp;      /* Follow-set forward propagation links */
                    201:   struct plink *bplp;      /* Follow-set backwards propagation links */
                    202:   struct state *stp;       /* Pointer to state which contains this */
                    203:   enum cfgstatus status;   /* used during followset and shift computations */
                    204:   struct config *next;     /* Next configuration in the state */
                    205:   struct config *bp;       /* The next basis configuration */
                    206: };
                    207: 
                    208: enum e_action {
                    209:   SHIFT,
                    210:   ACCEPT,
                    211:   REDUCE,
                    212:   ERROR,
                    213:   SSCONFLICT,              /* A shift/shift conflict */
                    214:   SRCONFLICT,              /* Was a reduce, but part of a conflict */
                    215:   RRCONFLICT,              /* Was a reduce, but part of a conflict */
                    216:   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
                    217:   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
                    218:   NOT_USED                 /* Deleted by compression */
                    219: };
                    220: 
                    221: /* Every shift or reduce operation is stored as one of the following */
                    222: struct action {
                    223:   struct symbol *sp;       /* The look-ahead symbol */
                    224:   enum e_action type;
                    225:   union {
                    226:     struct state *stp;     /* The new state, if a shift */
                    227:     struct rule *rp;       /* The rule, if a reduce */
                    228:   } x;
                    229:   struct action *next;     /* Next action for this state */
                    230:   struct action *collide;  /* Next action with the same hash */
                    231: };
                    232: 
                    233: /* Each state of the generated parser's finite state machine
                    234: ** is encoded as an instance of the following structure. */
                    235: struct state {
                    236:   struct config *bp;       /* The basis configurations for this state */
                    237:   struct config *cfp;      /* All configurations in this set */
                    238:   int statenum;            /* Sequential number for this state */
                    239:   struct action *ap;       /* Array of actions for this state */
                    240:   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
                    241:   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
                    242:   int iDflt;               /* Default action */
                    243: };
                    244: #define NO_OFFSET (-2147483647)
                    245: 
                    246: /* A followset propagation link indicates that the contents of one
                    247: ** configuration followset should be propagated to another whenever
                    248: ** the first changes. */
                    249: struct plink {
                    250:   struct config *cfp;      /* The configuration to which linked */
                    251:   struct plink *next;      /* The next propagate link */
                    252: };
                    253: 
                    254: /* The state vector for the entire parser generator is recorded as
                    255: ** follows.  (LEMON uses no global variables and makes little use of
                    256: ** static variables.  Fields in the following structure can be thought
                    257: ** of as begin global variables in the program.) */
                    258: struct lemon {
                    259:   struct state **sorted;   /* Table of states sorted by state number */
                    260:   struct rule *rule;       /* List of all rules */
                    261:   int nstate;              /* Number of states */
                    262:   int nrule;               /* Number of rules */
                    263:   int nsymbol;             /* Number of terminal and nonterminal symbols */
                    264:   int nterminal;           /* Number of terminal symbols */
                    265:   struct symbol **symbols; /* Sorted array of pointers to symbols */
                    266:   int errorcnt;            /* Number of errors */
                    267:   struct symbol *errsym;   /* The error symbol */
                    268:   struct symbol *wildcard; /* Token that matches anything */
                    269:   char *name;              /* Name of the generated parser */
                    270:   char *arg;               /* Declaration of the 3th argument to parser */
                    271:   char *tokentype;         /* Type of terminal symbols in the parser stack */
                    272:   char *vartype;           /* The default type of non-terminal symbols */
                    273:   char *start;             /* Name of the start symbol for the grammar */
                    274:   char *stacksize;         /* Size of the parser stack */
                    275:   char *include;           /* Code to put at the start of the C file */
                    276:   char *error;             /* Code to execute when an error is seen */
                    277:   char *overflow;          /* Code to execute on a stack overflow */
                    278:   char *failure;           /* Code to execute on parser failure */
                    279:   char *accept;            /* Code to execute when the parser excepts */
                    280:   char *extracode;         /* Code appended to the generated file */
                    281:   char *tokendest;         /* Code to execute to destroy token data */
                    282:   char *vardest;           /* Code for the default non-terminal destructor */
                    283:   char *filename;          /* Name of the input file */
                    284:   char *outname;           /* Name of the current output file */
                    285:   char *tokenprefix;       /* A prefix added to token names in the .h file */
                    286:   int nconflict;           /* Number of parsing conflicts */
                    287:   int tablesize;           /* Size of the parse tables */
                    288:   int basisflag;           /* Print only basis configurations */
                    289:   int has_fallback;        /* True if any %fallback is seen in the grammar */
                    290:   int nolinenosflag;       /* True if #line statements should not be printed */
                    291:   char *argv0;             /* Name of the program */
                    292: };
                    293: 
                    294: #define MemoryCheck(X) if((X)==0){ \
                    295:   extern void memory_error(); \
                    296:   memory_error(); \
                    297: }
                    298: 
                    299: /**************** From the file "table.h" *********************************/
                    300: /*
                    301: ** All code in this file has been automatically generated
                    302: ** from a specification in the file
                    303: **              "table.q"
                    304: ** by the associative array code building program "aagen".
                    305: ** Do not edit this file!  Instead, edit the specification
                    306: ** file, then rerun aagen.
                    307: */
                    308: /*
                    309: ** Code for processing tables in the LEMON parser generator.
                    310: */
                    311: /* Routines for handling a strings */
                    312: 
                    313: const char *Strsafe(const char *);
                    314: 
                    315: void Strsafe_init(void);
                    316: int Strsafe_insert(const char *);
                    317: const char *Strsafe_find(const char *);
                    318: 
                    319: /* Routines for handling symbols of the grammar */
                    320: 
                    321: struct symbol *Symbol_new(const char *);
                    322: int Symbolcmpp(const void *, const void *);
                    323: void Symbol_init(void);
                    324: int Symbol_insert(struct symbol *, const char *);
                    325: struct symbol *Symbol_find(const char *);
                    326: struct symbol *Symbol_Nth(int);
                    327: int Symbol_count(void);
                    328: struct symbol **Symbol_arrayof(void);
                    329: 
                    330: /* Routines to manage the state table */
                    331: 
                    332: int Configcmp(const char *, const char *);
                    333: struct state *State_new(void);
                    334: void State_init(void);
                    335: int State_insert(struct state *, struct config *);
                    336: struct state *State_find(struct config *);
                    337: struct state **State_arrayof(/*  */);
                    338: 
                    339: /* Routines used for efficiency in Configlist_add */
                    340: 
                    341: void Configtable_init(void);
                    342: int Configtable_insert(struct config *);
                    343: struct config *Configtable_find(struct config *);
                    344: void Configtable_clear(int(*)(struct config *));
                    345: 
                    346: /****************** From the file "action.c" *******************************/
                    347: /*
                    348: ** Routines processing parser actions in the LEMON parser generator.
                    349: */
                    350: 
                    351: /* Allocate a new parser action */
                    352: static struct action *Action_new(void){
                    353:   static struct action *freelist = 0;
                    354:   struct action *newaction;
                    355: 
                    356:   if( freelist==0 ){
                    357:     int i;
                    358:     int amt = 100;
                    359:     freelist = (struct action *)calloc(amt, sizeof(struct action));
                    360:     if( freelist==0 ){
                    361:       fprintf(stderr,"Unable to allocate memory for a new parser action.");
                    362:       exit(1);
                    363:     }
                    364:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
                    365:     freelist[amt-1].next = 0;
                    366:   }
                    367:   newaction = freelist;
                    368:   freelist = freelist->next;
                    369:   return newaction;
                    370: }
                    371: 
                    372: /* Compare two actions for sorting purposes.  Return negative, zero, or
                    373: ** positive if the first action is less than, equal to, or greater than
                    374: ** the first
                    375: */
                    376: static int actioncmp(
                    377:   struct action *ap1,
                    378:   struct action *ap2
                    379: ){
                    380:   int rc;
                    381:   rc = ap1->sp->index - ap2->sp->index;
                    382:   if( rc==0 ){
                    383:     rc = (int)ap1->type - (int)ap2->type;
                    384:   }
                    385:   if( rc==0 && ap1->type==REDUCE ){
                    386:     rc = ap1->x.rp->index - ap2->x.rp->index;
                    387:   }
                    388:   if( rc==0 ){
                    389:     rc = (int) (ap2 - ap1);
                    390:   }
                    391:   return rc;
                    392: }
                    393: 
                    394: /* Sort parser actions */
                    395: static struct action *Action_sort(
                    396:   struct action *ap
                    397: ){
                    398:   ap = (struct action *)msort((char *)ap,(char **)&ap->next,
                    399:                               (int(*)(const char*,const char*))actioncmp);
                    400:   return ap;
                    401: }
                    402: 
                    403: void Action_add(
                    404:   struct action **app,
                    405:   enum e_action type,
                    406:   struct symbol *sp,
                    407:   char *arg
                    408: ){
                    409:   struct action *newaction;
                    410:   newaction = Action_new();
                    411:   newaction->next = *app;
                    412:   *app = newaction;
                    413:   newaction->type = type;
                    414:   newaction->sp = sp;
                    415:   if( type==SHIFT ){
                    416:     newaction->x.stp = (struct state *)arg;
                    417:   }else{
                    418:     newaction->x.rp = (struct rule *)arg;
                    419:   }
                    420: }
                    421: /********************** New code to implement the "acttab" module ***********/
                    422: /*
                    423: ** This module implements routines use to construct the yy_action[] table.
                    424: */
                    425: 
                    426: /*
                    427: ** The state of the yy_action table under construction is an instance of
                    428: ** the following structure.
                    429: **
                    430: ** The yy_action table maps the pair (state_number, lookahead) into an
                    431: ** action_number.  The table is an array of integers pairs.  The state_number
                    432: ** determines an initial offset into the yy_action array.  The lookahead
                    433: ** value is then added to this initial offset to get an index X into the
                    434: ** yy_action array. If the aAction[X].lookahead equals the value of the
                    435: ** of the lookahead input, then the value of the action_number output is
                    436: ** aAction[X].action.  If the lookaheads do not match then the
                    437: ** default action for the state_number is returned.
                    438: **
                    439: ** All actions associated with a single state_number are first entered
                    440: ** into aLookahead[] using multiple calls to acttab_action().  Then the 
                    441: ** actions for that single state_number are placed into the aAction[] 
                    442: ** array with a single call to acttab_insert().  The acttab_insert() call
                    443: ** also resets the aLookahead[] array in preparation for the next
                    444: ** state number.
                    445: */
                    446: struct lookahead_action {
                    447:   int lookahead;             /* Value of the lookahead token */
                    448:   int action;                /* Action to take on the given lookahead */
                    449: };
                    450: typedef struct acttab acttab;
                    451: struct acttab {
                    452:   int nAction;                 /* Number of used slots in aAction[] */
                    453:   int nActionAlloc;            /* Slots allocated for aAction[] */
                    454:   struct lookahead_action
                    455:     *aAction,                  /* The yy_action[] table under construction */
                    456:     *aLookahead;               /* A single new transaction set */
                    457:   int mnLookahead;             /* Minimum aLookahead[].lookahead */
                    458:   int mnAction;                /* Action associated with mnLookahead */
                    459:   int mxLookahead;             /* Maximum aLookahead[].lookahead */
                    460:   int nLookahead;              /* Used slots in aLookahead[] */
                    461:   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
                    462: };
                    463: 
                    464: /* Return the number of entries in the yy_action table */
                    465: #define acttab_size(X) ((X)->nAction)
                    466: 
                    467: /* The value for the N-th entry in yy_action */
                    468: #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
                    469: 
                    470: /* The value for the N-th entry in yy_lookahead */
                    471: #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
                    472: 
                    473: /* Free all memory associated with the given acttab */
                    474: void acttab_free(acttab *p){
                    475:   free( p->aAction );
                    476:   free( p->aLookahead );
                    477:   free( p );
                    478: }
                    479: 
                    480: /* Allocate a new acttab structure */
                    481: acttab *acttab_alloc(void){
                    482:   acttab *p = (acttab *) calloc( 1, sizeof(*p) );
                    483:   if( p==0 ){
                    484:     fprintf(stderr,"Unable to allocate memory for a new acttab.");
                    485:     exit(1);
                    486:   }
                    487:   memset(p, 0, sizeof(*p));
                    488:   return p;
                    489: }
                    490: 
                    491: /* Add a new action to the current transaction set.  
                    492: **
                    493: ** This routine is called once for each lookahead for a particular
                    494: ** state.
                    495: */
                    496: void acttab_action(acttab *p, int lookahead, int action){
                    497:   if( p->nLookahead>=p->nLookaheadAlloc ){
                    498:     p->nLookaheadAlloc += 25;
                    499:     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
                    500:                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
                    501:     if( p->aLookahead==0 ){
                    502:       fprintf(stderr,"malloc failed\n");
                    503:       exit(1);
                    504:     }
                    505:   }
                    506:   if( p->nLookahead==0 ){
                    507:     p->mxLookahead = lookahead;
                    508:     p->mnLookahead = lookahead;
                    509:     p->mnAction = action;
                    510:   }else{
                    511:     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
                    512:     if( p->mnLookahead>lookahead ){
                    513:       p->mnLookahead = lookahead;
                    514:       p->mnAction = action;
                    515:     }
                    516:   }
                    517:   p->aLookahead[p->nLookahead].lookahead = lookahead;
                    518:   p->aLookahead[p->nLookahead].action = action;
                    519:   p->nLookahead++;
                    520: }
                    521: 
                    522: /*
                    523: ** Add the transaction set built up with prior calls to acttab_action()
                    524: ** into the current action table.  Then reset the transaction set back
                    525: ** to an empty set in preparation for a new round of acttab_action() calls.
                    526: **
                    527: ** Return the offset into the action table of the new transaction.
                    528: */
                    529: int acttab_insert(acttab *p){
                    530:   int i, j, k, n;
                    531:   assert( p->nLookahead>0 );
                    532: 
                    533:   /* Make sure we have enough space to hold the expanded action table
                    534:   ** in the worst case.  The worst case occurs if the transaction set
                    535:   ** must be appended to the current action table
                    536:   */
                    537:   n = p->mxLookahead + 1;
                    538:   if( p->nAction + n >= p->nActionAlloc ){
                    539:     int oldAlloc = p->nActionAlloc;
                    540:     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
                    541:     p->aAction = (struct lookahead_action *) realloc( p->aAction,
                    542:                           sizeof(p->aAction[0])*p->nActionAlloc);
                    543:     if( p->aAction==0 ){
                    544:       fprintf(stderr,"malloc failed\n");
                    545:       exit(1);
                    546:     }
                    547:     for(i=oldAlloc; i<p->nActionAlloc; i++){
                    548:       p->aAction[i].lookahead = -1;
                    549:       p->aAction[i].action = -1;
                    550:     }
                    551:   }
                    552: 
                    553:   /* Scan the existing action table looking for an offset that is a 
                    554:   ** duplicate of the current transaction set.  Fall out of the loop
                    555:   ** if and when the duplicate is found.
                    556:   **
                    557:   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
                    558:   */
                    559:   for(i=p->nAction-1; i>=0; i--){
                    560:     if( p->aAction[i].lookahead==p->mnLookahead ){
                    561:       /* All lookaheads and actions in the aLookahead[] transaction
                    562:       ** must match against the candidate aAction[i] entry. */
                    563:       if( p->aAction[i].action!=p->mnAction ) continue;
                    564:       for(j=0; j<p->nLookahead; j++){
                    565:         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
                    566:         if( k<0 || k>=p->nAction ) break;
                    567:         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
                    568:         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
                    569:       }
                    570:       if( j<p->nLookahead ) continue;
                    571: 
                    572:       /* No possible lookahead value that is not in the aLookahead[]
                    573:       ** transaction is allowed to match aAction[i] */
                    574:       n = 0;
                    575:       for(j=0; j<p->nAction; j++){
                    576:         if( p->aAction[j].lookahead<0 ) continue;
                    577:         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
                    578:       }
                    579:       if( n==p->nLookahead ){
                    580:         break;  /* An exact match is found at offset i */
                    581:       }
                    582:     }
                    583:   }
                    584: 
                    585:   /* If no existing offsets exactly match the current transaction, find an
                    586:   ** an empty offset in the aAction[] table in which we can add the
                    587:   ** aLookahead[] transaction.
                    588:   */
                    589:   if( i<0 ){
                    590:     /* Look for holes in the aAction[] table that fit the current
                    591:     ** aLookahead[] transaction.  Leave i set to the offset of the hole.
                    592:     ** If no holes are found, i is left at p->nAction, which means the
                    593:     ** transaction will be appended. */
                    594:     for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
                    595:       if( p->aAction[i].lookahead<0 ){
                    596:         for(j=0; j<p->nLookahead; j++){
                    597:           k = p->aLookahead[j].lookahead - p->mnLookahead + i;
                    598:           if( k<0 ) break;
                    599:           if( p->aAction[k].lookahead>=0 ) break;
                    600:         }
                    601:         if( j<p->nLookahead ) continue;
                    602:         for(j=0; j<p->nAction; j++){
                    603:           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
                    604:         }
                    605:         if( j==p->nAction ){
                    606:           break;  /* Fits in empty slots */
                    607:         }
                    608:       }
                    609:     }
                    610:   }
                    611:   /* Insert transaction set at index i. */
                    612:   for(j=0; j<p->nLookahead; j++){
                    613:     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
                    614:     p->aAction[k] = p->aLookahead[j];
                    615:     if( k>=p->nAction ) p->nAction = k+1;
                    616:   }
                    617:   p->nLookahead = 0;
                    618: 
                    619:   /* Return the offset that is added to the lookahead in order to get the
                    620:   ** index into yy_action of the action */
                    621:   return i - p->mnLookahead;
                    622: }
                    623: 
                    624: /********************** From the file "build.c" *****************************/
                    625: /*
                    626: ** Routines to construction the finite state machine for the LEMON
                    627: ** parser generator.
                    628: */
                    629: 
                    630: /* Find a precedence symbol of every rule in the grammar.
                    631: ** 
                    632: ** Those rules which have a precedence symbol coded in the input
                    633: ** grammar using the "[symbol]" construct will already have the
                    634: ** rp->precsym field filled.  Other rules take as their precedence
                    635: ** symbol the first RHS symbol with a defined precedence.  If there
                    636: ** are not RHS symbols with a defined precedence, the precedence
                    637: ** symbol field is left blank.
                    638: */
                    639: void FindRulePrecedences(struct lemon *xp)
                    640: {
                    641:   struct rule *rp;
                    642:   for(rp=xp->rule; rp; rp=rp->next){
                    643:     if( rp->precsym==0 ){
                    644:       int i, j;
                    645:       for(i=0; i<rp->nrhs && rp->precsym==0; i++){
                    646:         struct symbol *sp = rp->rhs[i];
                    647:         if( sp->type==MULTITERMINAL ){
                    648:           for(j=0; j<sp->nsubsym; j++){
                    649:             if( sp->subsym[j]->prec>=0 ){
                    650:               rp->precsym = sp->subsym[j];
                    651:               break;
                    652:             }
                    653:           }
                    654:         }else if( sp->prec>=0 ){
                    655:           rp->precsym = rp->rhs[i];
                    656:        }
                    657:       }
                    658:     }
                    659:   }
                    660:   return;
                    661: }
                    662: 
                    663: /* Find all nonterminals which will generate the empty string.
                    664: ** Then go back and compute the first sets of every nonterminal.
                    665: ** The first set is the set of all terminal symbols which can begin
                    666: ** a string generated by that nonterminal.
                    667: */
                    668: void FindFirstSets(struct lemon *lemp)
                    669: {
                    670:   int i, j;
                    671:   struct rule *rp;
                    672:   int progress;
                    673: 
                    674:   for(i=0; i<lemp->nsymbol; i++){
                    675:     lemp->symbols[i]->lambda = LEMON_FALSE;
                    676:   }
                    677:   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
                    678:     lemp->symbols[i]->firstset = SetNew();
                    679:   }
                    680: 
                    681:   /* First compute all lambdas */
                    682:   do{
                    683:     progress = 0;
                    684:     for(rp=lemp->rule; rp; rp=rp->next){
                    685:       if( rp->lhs->lambda ) continue;
                    686:       for(i=0; i<rp->nrhs; i++){
                    687:         struct symbol *sp = rp->rhs[i];
                    688:         assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
                    689:         if( sp->lambda==LEMON_FALSE ) break;
                    690:       }
                    691:       if( i==rp->nrhs ){
                    692:         rp->lhs->lambda = LEMON_TRUE;
                    693:         progress = 1;
                    694:       }
                    695:     }
                    696:   }while( progress );
                    697: 
                    698:   /* Now compute all first sets */
                    699:   do{
                    700:     struct symbol *s1, *s2;
                    701:     progress = 0;
                    702:     for(rp=lemp->rule; rp; rp=rp->next){
                    703:       s1 = rp->lhs;
                    704:       for(i=0; i<rp->nrhs; i++){
                    705:         s2 = rp->rhs[i];
                    706:         if( s2->type==TERMINAL ){
                    707:           progress += SetAdd(s1->firstset,s2->index);
                    708:           break;
                    709:         }else if( s2->type==MULTITERMINAL ){
                    710:           for(j=0; j<s2->nsubsym; j++){
                    711:             progress += SetAdd(s1->firstset,s2->subsym[j]->index);
                    712:           }
                    713:           break;
                    714:        }else if( s1==s2 ){
                    715:           if( s1->lambda==LEMON_FALSE ) break;
                    716:        }else{
                    717:           progress += SetUnion(s1->firstset,s2->firstset);
                    718:           if( s2->lambda==LEMON_FALSE ) break;
                    719:        }
                    720:       }
                    721:     }
                    722:   }while( progress );
                    723:   return;
                    724: }
                    725: 
                    726: /* Compute all LR(0) states for the grammar.  Links
                    727: ** are added to between some states so that the LR(1) follow sets
                    728: ** can be computed later.
                    729: */
                    730: PRIVATE struct state *getstate(struct lemon *);  /* forward reference */
                    731: void FindStates(struct lemon *lemp)
                    732: {
                    733:   struct symbol *sp;
                    734:   struct rule *rp;
                    735: 
                    736:   Configlist_init();
                    737: 
                    738:   /* Find the start symbol */
                    739:   if( lemp->start ){
                    740:     sp = Symbol_find(lemp->start);
                    741:     if( sp==0 ){
                    742:       ErrorMsg(lemp->filename,0,
                    743: "The specified start symbol \"%s\" is not \
                    744: in a nonterminal of the grammar.  \"%s\" will be used as the start \
                    745: symbol instead.",lemp->start,lemp->rule->lhs->name);
                    746:       lemp->errorcnt++;
                    747:       sp = lemp->rule->lhs;
                    748:     }
                    749:   }else{
                    750:     sp = lemp->rule->lhs;
                    751:   }
                    752: 
                    753:   /* Make sure the start symbol doesn't occur on the right-hand side of
                    754:   ** any rule.  Report an error if it does.  (YACC would generate a new
                    755:   ** start symbol in this case.) */
                    756:   for(rp=lemp->rule; rp; rp=rp->next){
                    757:     int i;
                    758:     for(i=0; i<rp->nrhs; i++){
                    759:       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */
                    760:         ErrorMsg(lemp->filename,0,
                    761: "The start symbol \"%s\" occurs on the \
                    762: right-hand side of a rule. This will result in a parser which \
                    763: does not work properly.",sp->name);
                    764:         lemp->errorcnt++;
                    765:       }
                    766:     }
                    767:   }
                    768: 
                    769:   /* The basis configuration set for the first state
                    770:   ** is all rules which have the start symbol as their
                    771:   ** left-hand side */
                    772:   for(rp=sp->rule; rp; rp=rp->nextlhs){
                    773:     struct config *newcfp;
                    774:     rp->lhsStart = 1;
                    775:     newcfp = Configlist_addbasis(rp,0);
                    776:     SetAdd(newcfp->fws,0);
                    777:   }
                    778: 
                    779:   /* Compute the first state.  All other states will be
                    780:   ** computed automatically during the computation of the first one.
                    781:   ** The returned pointer to the first state is not used. */
                    782:   (void)getstate(lemp);
                    783:   return;
                    784: }
                    785: 
                    786: /* Return a pointer to a state which is described by the configuration
                    787: ** list which has been built from calls to Configlist_add.
                    788: */
                    789: PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
                    790: PRIVATE struct state *getstate(struct lemon *lemp)
                    791: {
                    792:   struct config *cfp, *bp;
                    793:   struct state *stp;
                    794: 
                    795:   /* Extract the sorted basis of the new state.  The basis was constructed
                    796:   ** by prior calls to "Configlist_addbasis()". */
                    797:   Configlist_sortbasis();
                    798:   bp = Configlist_basis();
                    799: 
                    800:   /* Get a state with the same basis */
                    801:   stp = State_find(bp);
                    802:   if( stp ){
                    803:     /* A state with the same basis already exists!  Copy all the follow-set
                    804:     ** propagation links from the state under construction into the
                    805:     ** preexisting state, then return a pointer to the preexisting state */
                    806:     struct config *x, *y;
                    807:     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
                    808:       Plink_copy(&y->bplp,x->bplp);
                    809:       Plink_delete(x->fplp);
                    810:       x->fplp = x->bplp = 0;
                    811:     }
                    812:     cfp = Configlist_return();
                    813:     Configlist_eat(cfp);
                    814:   }else{
                    815:     /* This really is a new state.  Construct all the details */
                    816:     Configlist_closure(lemp);    /* Compute the configuration closure */
                    817:     Configlist_sort();           /* Sort the configuration closure */
                    818:     cfp = Configlist_return();   /* Get a pointer to the config list */
                    819:     stp = State_new();           /* A new state structure */
                    820:     MemoryCheck(stp);
                    821:     stp->bp = bp;                /* Remember the configuration basis */
                    822:     stp->cfp = cfp;              /* Remember the configuration closure */
                    823:     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
                    824:     stp->ap = 0;                 /* No actions, yet. */
                    825:     State_insert(stp,stp->bp);   /* Add to the state table */
                    826:     buildshifts(lemp,stp);       /* Recursively compute successor states */
                    827:   }
                    828:   return stp;
                    829: }
                    830: 
                    831: /*
                    832: ** Return true if two symbols are the same.
                    833: */
                    834: int same_symbol(struct symbol *a, struct symbol *b)
                    835: {
                    836:   int i;
                    837:   if( a==b ) return 1;
                    838:   if( a->type!=MULTITERMINAL ) return 0;
                    839:   if( b->type!=MULTITERMINAL ) return 0;
                    840:   if( a->nsubsym!=b->nsubsym ) return 0;
                    841:   for(i=0; i<a->nsubsym; i++){
                    842:     if( a->subsym[i]!=b->subsym[i] ) return 0;
                    843:   }
                    844:   return 1;
                    845: }
                    846: 
                    847: /* Construct all successor states to the given state.  A "successor"
                    848: ** state is any state which can be reached by a shift action.
                    849: */
                    850: PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
                    851: {
                    852:   struct config *cfp;  /* For looping thru the config closure of "stp" */
                    853:   struct config *bcfp; /* For the inner loop on config closure of "stp" */
                    854:   struct config *newcfg;  /* */
                    855:   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
                    856:   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
                    857:   struct state *newstp; /* A pointer to a successor state */
                    858: 
                    859:   /* Each configuration becomes complete after it contibutes to a successor
                    860:   ** state.  Initially, all configurations are incomplete */
                    861:   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
                    862: 
                    863:   /* Loop through all configurations of the state "stp" */
                    864:   for(cfp=stp->cfp; cfp; cfp=cfp->next){
                    865:     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
                    866:     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
                    867:     Configlist_reset();                      /* Reset the new config set */
                    868:     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
                    869: 
                    870:     /* For every configuration in the state "stp" which has the symbol "sp"
                    871:     ** following its dot, add the same configuration to the basis set under
                    872:     ** construction but with the dot shifted one symbol to the right. */
                    873:     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
                    874:       if( bcfp->status==COMPLETE ) continue;    /* Already used */
                    875:       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
                    876:       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
                    877:       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */
                    878:       bcfp->status = COMPLETE;                  /* Mark this config as used */
                    879:       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
                    880:       Plink_add(&newcfg->bplp,bcfp);
                    881:     }
                    882: 
                    883:     /* Get a pointer to the state described by the basis configuration set
                    884:     ** constructed in the preceding loop */
                    885:     newstp = getstate(lemp);
                    886: 
                    887:     /* The state "newstp" is reached from the state "stp" by a shift action
                    888:     ** on the symbol "sp" */
                    889:     if( sp->type==MULTITERMINAL ){
                    890:       int i;
                    891:       for(i=0; i<sp->nsubsym; i++){
                    892:         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
                    893:       }
                    894:     }else{
                    895:       Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
                    896:     }
                    897:   }
                    898: }
                    899: 
                    900: /*
                    901: ** Construct the propagation links
                    902: */
                    903: void FindLinks(struct lemon *lemp)
                    904: {
                    905:   int i;
                    906:   struct config *cfp, *other;
                    907:   struct state *stp;
                    908:   struct plink *plp;
                    909: 
                    910:   /* Housekeeping detail:
                    911:   ** Add to every propagate link a pointer back to the state to
                    912:   ** which the link is attached. */
                    913:   for(i=0; i<lemp->nstate; i++){
                    914:     stp = lemp->sorted[i];
                    915:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
                    916:       cfp->stp = stp;
                    917:     }
                    918:   }
                    919: 
                    920:   /* Convert all backlinks into forward links.  Only the forward
                    921:   ** links are used in the follow-set computation. */
                    922:   for(i=0; i<lemp->nstate; i++){
                    923:     stp = lemp->sorted[i];
                    924:     for(cfp=stp->cfp; cfp; cfp=cfp->next){
                    925:       for(plp=cfp->bplp; plp; plp=plp->next){
                    926:         other = plp->cfp;
                    927:         Plink_add(&other->fplp,cfp);
                    928:       }
                    929:     }
                    930:   }
                    931: }
                    932: 
                    933: /* Compute all followsets.
                    934: **
                    935: ** A followset is the set of all symbols which can come immediately
                    936: ** after a configuration.
                    937: */
                    938: void FindFollowSets(struct lemon *lemp)
                    939: {
                    940:   int i;
                    941:   struct config *cfp;
                    942:   struct plink *plp;
                    943:   int progress;
                    944:   int change;
                    945: 
                    946:   for(i=0; i<lemp->nstate; i++){
                    947:     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
                    948:       cfp->status = INCOMPLETE;
                    949:     }
                    950:   }
                    951:   
                    952:   do{
                    953:     progress = 0;
                    954:     for(i=0; i<lemp->nstate; i++){
                    955:       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
                    956:         if( cfp->status==COMPLETE ) continue;
                    957:         for(plp=cfp->fplp; plp; plp=plp->next){
                    958:           change = SetUnion(plp->cfp->fws,cfp->fws);
                    959:           if( change ){
                    960:             plp->cfp->status = INCOMPLETE;
                    961:             progress = 1;
                    962:          }
                    963:        }
                    964:         cfp->status = COMPLETE;
                    965:       }
                    966:     }
                    967:   }while( progress );
                    968: }
                    969: 
                    970: static int resolve_conflict(struct action *,struct action *);
                    971: 
                    972: /* Compute the reduce actions, and resolve conflicts.
                    973: */
                    974: void FindActions(struct lemon *lemp)
                    975: {
                    976:   int i,j;
                    977:   struct config *cfp;
                    978:   struct state *stp;
                    979:   struct symbol *sp;
                    980:   struct rule *rp;
                    981: 
                    982:   /* Add all of the reduce actions 
                    983:   ** A reduce action is added for each element of the followset of
                    984:   ** a configuration which has its dot at the extreme right.
                    985:   */
                    986:   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
                    987:     stp = lemp->sorted[i];
                    988:     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
                    989:       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
                    990:         for(j=0; j<lemp->nterminal; j++){
                    991:           if( SetFind(cfp->fws,j) ){
                    992:             /* Add a reduce action to the state "stp" which will reduce by the
                    993:             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
                    994:             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
                    995:           }
                    996:        }
                    997:       }
                    998:     }
                    999:   }
                   1000: 
                   1001:   /* Add the accepting token */
                   1002:   if( lemp->start ){
                   1003:     sp = Symbol_find(lemp->start);
                   1004:     if( sp==0 ) sp = lemp->rule->lhs;
                   1005:   }else{
                   1006:     sp = lemp->rule->lhs;
                   1007:   }
                   1008:   /* Add to the first state (which is always the starting state of the
                   1009:   ** finite state machine) an action to ACCEPT if the lookahead is the
                   1010:   ** start nonterminal.  */
                   1011:   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
                   1012: 
                   1013:   /* Resolve conflicts */
                   1014:   for(i=0; i<lemp->nstate; i++){
                   1015:     struct action *ap, *nap;
                   1016:     struct state *stp;
                   1017:     stp = lemp->sorted[i];
                   1018:     /* assert( stp->ap ); */
                   1019:     stp->ap = Action_sort(stp->ap);
                   1020:     for(ap=stp->ap; ap && ap->next; ap=ap->next){
                   1021:       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
                   1022:          /* The two actions "ap" and "nap" have the same lookahead.
                   1023:          ** Figure out which one should be used */
                   1024:          lemp->nconflict += resolve_conflict(ap,nap);
                   1025:       }
                   1026:     }
                   1027:   }
                   1028: 
                   1029:   /* Report an error for each rule that can never be reduced. */
                   1030:   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
                   1031:   for(i=0; i<lemp->nstate; i++){
                   1032:     struct action *ap;
                   1033:     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
                   1034:       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
                   1035:     }
                   1036:   }
                   1037:   for(rp=lemp->rule; rp; rp=rp->next){
                   1038:     if( rp->canReduce ) continue;
                   1039:     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
                   1040:     lemp->errorcnt++;
                   1041:   }
                   1042: }
                   1043: 
                   1044: /* Resolve a conflict between the two given actions.  If the
                   1045: ** conflict can't be resolved, return non-zero.
                   1046: **
                   1047: ** NO LONGER TRUE:
                   1048: **   To resolve a conflict, first look to see if either action
                   1049: **   is on an error rule.  In that case, take the action which
                   1050: **   is not associated with the error rule.  If neither or both
                   1051: **   actions are associated with an error rule, then try to
                   1052: **   use precedence to resolve the conflict.
                   1053: **
                   1054: ** If either action is a SHIFT, then it must be apx.  This
                   1055: ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
                   1056: */
                   1057: static int resolve_conflict(
                   1058:   struct action *apx,
                   1059:   struct action *apy
                   1060: ){
                   1061:   struct symbol *spx, *spy;
                   1062:   int errcnt = 0;
                   1063:   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
                   1064:   if( apx->type==SHIFT && apy->type==SHIFT ){
                   1065:     apy->type = SSCONFLICT;
                   1066:     errcnt++;
                   1067:   }
                   1068:   if( apx->type==SHIFT && apy->type==REDUCE ){
                   1069:     spx = apx->sp;
                   1070:     spy = apy->x.rp->precsym;
                   1071:     if( spy==0 || spx->prec<0 || spy->prec<0 ){
                   1072:       /* Not enough precedence information. */
                   1073:       apy->type = SRCONFLICT;
                   1074:       errcnt++;
                   1075:     }else if( spx->prec>spy->prec ){    /* higher precedence wins */
                   1076:       apy->type = RD_RESOLVED;
                   1077:     }else if( spx->prec<spy->prec ){
                   1078:       apx->type = SH_RESOLVED;
                   1079:     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
                   1080:       apy->type = RD_RESOLVED;                             /* associativity */
                   1081:     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
                   1082:       apx->type = SH_RESOLVED;
                   1083:     }else{
                   1084:       assert( spx->prec==spy->prec && spx->assoc==NONE );
                   1085:       apy->type = SRCONFLICT;
                   1086:       errcnt++;
                   1087:     }
                   1088:   }else if( apx->type==REDUCE && apy->type==REDUCE ){
                   1089:     spx = apx->x.rp->precsym;
                   1090:     spy = apy->x.rp->precsym;
                   1091:     if( spx==0 || spy==0 || spx->prec<0 ||
                   1092:     spy->prec<0 || spx->prec==spy->prec ){
                   1093:       apy->type = RRCONFLICT;
                   1094:       errcnt++;
                   1095:     }else if( spx->prec>spy->prec ){
                   1096:       apy->type = RD_RESOLVED;
                   1097:     }else if( spx->prec<spy->prec ){
                   1098:       apx->type = RD_RESOLVED;
                   1099:     }
                   1100:   }else{
                   1101:     assert( 
                   1102:       apx->type==SH_RESOLVED ||
                   1103:       apx->type==RD_RESOLVED ||
                   1104:       apx->type==SSCONFLICT ||
                   1105:       apx->type==SRCONFLICT ||
                   1106:       apx->type==RRCONFLICT ||
                   1107:       apy->type==SH_RESOLVED ||
                   1108:       apy->type==RD_RESOLVED ||
                   1109:       apy->type==SSCONFLICT ||
                   1110:       apy->type==SRCONFLICT ||
                   1111:       apy->type==RRCONFLICT
                   1112:     );
                   1113:     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
                   1114:     ** REDUCEs on the list.  If we reach this point it must be because
                   1115:     ** the parser conflict had already been resolved. */
                   1116:   }
                   1117:   return errcnt;
                   1118: }
                   1119: /********************* From the file "configlist.c" *************************/
                   1120: /*
                   1121: ** Routines to processing a configuration list and building a state
                   1122: ** in the LEMON parser generator.
                   1123: */
                   1124: 
                   1125: static struct config *freelist = 0;      /* List of free configurations */
                   1126: static struct config *current = 0;       /* Top of list of configurations */
                   1127: static struct config **currentend = 0;   /* Last on list of configs */
                   1128: static struct config *basis = 0;         /* Top of list of basis configs */
                   1129: static struct config **basisend = 0;     /* End of list of basis configs */
                   1130: 
                   1131: /* Return a pointer to a new configuration */
                   1132: PRIVATE struct config *newconfig(){
                   1133:   struct config *newcfg;
                   1134:   if( freelist==0 ){
                   1135:     int i;
                   1136:     int amt = 3;
                   1137:     freelist = (struct config *)calloc( amt, sizeof(struct config) );
                   1138:     if( freelist==0 ){
                   1139:       fprintf(stderr,"Unable to allocate memory for a new configuration.");
                   1140:       exit(1);
                   1141:     }
                   1142:     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
                   1143:     freelist[amt-1].next = 0;
                   1144:   }
                   1145:   newcfg = freelist;
                   1146:   freelist = freelist->next;
                   1147:   return newcfg;
                   1148: }
                   1149: 
                   1150: /* The configuration "old" is no longer used */
                   1151: PRIVATE void deleteconfig(struct config *old)
                   1152: {
                   1153:   old->next = freelist;
                   1154:   freelist = old;
                   1155: }
                   1156: 
                   1157: /* Initialized the configuration list builder */
                   1158: void Configlist_init(){
                   1159:   current = 0;
                   1160:   currentend = &current;
                   1161:   basis = 0;
                   1162:   basisend = &basis;
                   1163:   Configtable_init();
                   1164:   return;
                   1165: }
                   1166: 
                   1167: /* Initialized the configuration list builder */
                   1168: void Configlist_reset(){
                   1169:   current = 0;
                   1170:   currentend = &current;
                   1171:   basis = 0;
                   1172:   basisend = &basis;
                   1173:   Configtable_clear(0);
                   1174:   return;
                   1175: }
                   1176: 
                   1177: /* Add another configuration to the configuration list */
                   1178: struct config *Configlist_add(
                   1179:   struct rule *rp,    /* The rule */
                   1180:   int dot             /* Index into the RHS of the rule where the dot goes */
                   1181: ){
                   1182:   struct config *cfp, model;
                   1183: 
                   1184:   assert( currentend!=0 );
                   1185:   model.rp = rp;
                   1186:   model.dot = dot;
                   1187:   cfp = Configtable_find(&model);
                   1188:   if( cfp==0 ){
                   1189:     cfp = newconfig();
                   1190:     cfp->rp = rp;
                   1191:     cfp->dot = dot;
                   1192:     cfp->fws = SetNew();
                   1193:     cfp->stp = 0;
                   1194:     cfp->fplp = cfp->bplp = 0;
                   1195:     cfp->next = 0;
                   1196:     cfp->bp = 0;
                   1197:     *currentend = cfp;
                   1198:     currentend = &cfp->next;
                   1199:     Configtable_insert(cfp);
                   1200:   }
                   1201:   return cfp;
                   1202: }
                   1203: 
                   1204: /* Add a basis configuration to the configuration list */
                   1205: struct config *Configlist_addbasis(struct rule *rp, int dot)
                   1206: {
                   1207:   struct config *cfp, model;
                   1208: 
                   1209:   assert( basisend!=0 );
                   1210:   assert( currentend!=0 );
                   1211:   model.rp = rp;
                   1212:   model.dot = dot;
                   1213:   cfp = Configtable_find(&model);
                   1214:   if( cfp==0 ){
                   1215:     cfp = newconfig();
                   1216:     cfp->rp = rp;
                   1217:     cfp->dot = dot;
                   1218:     cfp->fws = SetNew();
                   1219:     cfp->stp = 0;
                   1220:     cfp->fplp = cfp->bplp = 0;
                   1221:     cfp->next = 0;
                   1222:     cfp->bp = 0;
                   1223:     *currentend = cfp;
                   1224:     currentend = &cfp->next;
                   1225:     *basisend = cfp;
                   1226:     basisend = &cfp->bp;
                   1227:     Configtable_insert(cfp);
                   1228:   }
                   1229:   return cfp;
                   1230: }
                   1231: 
                   1232: /* Compute the closure of the configuration list */
                   1233: void Configlist_closure(struct lemon *lemp)
                   1234: {
                   1235:   struct config *cfp, *newcfp;
                   1236:   struct rule *rp, *newrp;
                   1237:   struct symbol *sp, *xsp;
                   1238:   int i, dot;
                   1239: 
                   1240:   assert( currentend!=0 );
                   1241:   for(cfp=current; cfp; cfp=cfp->next){
                   1242:     rp = cfp->rp;
                   1243:     dot = cfp->dot;
                   1244:     if( dot>=rp->nrhs ) continue;
                   1245:     sp = rp->rhs[dot];
                   1246:     if( sp->type==NONTERMINAL ){
                   1247:       if( sp->rule==0 && sp!=lemp->errsym ){
                   1248:         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
                   1249:           sp->name);
                   1250:         lemp->errorcnt++;
                   1251:       }
                   1252:       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
                   1253:         newcfp = Configlist_add(newrp,0);
                   1254:         for(i=dot+1; i<rp->nrhs; i++){
                   1255:           xsp = rp->rhs[i];
                   1256:           if( xsp->type==TERMINAL ){
                   1257:             SetAdd(newcfp->fws,xsp->index);
                   1258:             break;
                   1259:           }else if( xsp->type==MULTITERMINAL ){
                   1260:             int k;
                   1261:             for(k=0; k<xsp->nsubsym; k++){
                   1262:               SetAdd(newcfp->fws, xsp->subsym[k]->index);
                   1263:             }
                   1264:             break;
                   1265:          }else{
                   1266:             SetUnion(newcfp->fws,xsp->firstset);
                   1267:             if( xsp->lambda==LEMON_FALSE ) break;
                   1268:          }
                   1269:        }
                   1270:         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
                   1271:       }
                   1272:     }
                   1273:   }
                   1274:   return;
                   1275: }
                   1276: 
                   1277: /* Sort the configuration list */
                   1278: void Configlist_sort(){
                   1279:   current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
                   1280:   currentend = 0;
                   1281:   return;
                   1282: }
                   1283: 
                   1284: /* Sort the basis configuration list */
                   1285: void Configlist_sortbasis(){
                   1286:   basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
                   1287:   basisend = 0;
                   1288:   return;
                   1289: }
                   1290: 
                   1291: /* Return a pointer to the head of the configuration list and
                   1292: ** reset the list */
                   1293: struct config *Configlist_return(){
                   1294:   struct config *old;
                   1295:   old = current;
                   1296:   current = 0;
                   1297:   currentend = 0;
                   1298:   return old;
                   1299: }
                   1300: 
                   1301: /* Return a pointer to the head of the configuration list and
                   1302: ** reset the list */
                   1303: struct config *Configlist_basis(){
                   1304:   struct config *old;
                   1305:   old = basis;
                   1306:   basis = 0;
                   1307:   basisend = 0;
                   1308:   return old;
                   1309: }
                   1310: 
                   1311: /* Free all elements of the given configuration list */
                   1312: void Configlist_eat(struct config *cfp)
                   1313: {
                   1314:   struct config *nextcfp;
                   1315:   for(; cfp; cfp=nextcfp){
                   1316:     nextcfp = cfp->next;
                   1317:     assert( cfp->fplp==0 );
                   1318:     assert( cfp->bplp==0 );
                   1319:     if( cfp->fws ) SetFree(cfp->fws);
                   1320:     deleteconfig(cfp);
                   1321:   }
                   1322:   return;
                   1323: }
                   1324: /***************** From the file "error.c" *********************************/
                   1325: /*
                   1326: ** Code for printing error message.
                   1327: */
                   1328: 
                   1329: void ErrorMsg(const char *filename, int lineno, const char *format, ...){
                   1330:   va_list ap;
                   1331:   fprintf(stderr, "%s:%d: ", filename, lineno);
                   1332:   va_start(ap, format);
                   1333:   vfprintf(stderr,format,ap);
                   1334:   va_end(ap);
                   1335:   fprintf(stderr, "\n");
                   1336: }
                   1337: /**************** From the file "main.c" ************************************/
                   1338: /*
                   1339: ** Main program file for the LEMON parser generator.
                   1340: */
                   1341: 
                   1342: /* Report an out-of-memory condition and abort.  This function
                   1343: ** is used mostly by the "MemoryCheck" macro in struct.h
                   1344: */
                   1345: void memory_error(){
                   1346:   fprintf(stderr,"Out of memory.  Aborting...\n");
                   1347:   exit(1);
                   1348: }
                   1349: 
                   1350: static int nDefine = 0;      /* Number of -D options on the command line */
                   1351: static char **azDefine = 0;  /* Name of the -D macros */
                   1352: 
                   1353: /* This routine is called with the argument to each -D command-line option.
                   1354: ** Add the macro defined to the azDefine array.
                   1355: */
                   1356: static void handle_D_option(char *z){
                   1357:   char **paz;
                   1358:   nDefine++;
                   1359:   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
                   1360:   if( azDefine==0 ){
                   1361:     fprintf(stderr,"out of memory\n");
                   1362:     exit(1);
                   1363:   }
                   1364:   paz = &azDefine[nDefine-1];
                   1365:   *paz = (char *) malloc( lemonStrlen(z)+1 );
                   1366:   if( *paz==0 ){
                   1367:     fprintf(stderr,"out of memory\n");
                   1368:     exit(1);
                   1369:   }
                   1370:   strcpy(*paz, z);
                   1371:   for(z=*paz; *z && *z!='='; z++){}
                   1372:   *z = 0;
                   1373: }
                   1374: 
                   1375: static char *user_templatename = NULL;
                   1376: static void handle_T_option(char *z){
                   1377:   user_templatename = (char *) malloc( lemonStrlen(z)+1 );
                   1378:   if( user_templatename==0 ){
                   1379:     memory_error();
                   1380:   }
                   1381:   strcpy(user_templatename, z);
                   1382: }
                   1383: 
                   1384: /* The main program.  Parse the command line and do it... */
                   1385: int main(int argc, char **argv)
                   1386: {
                   1387:   static int version = 0;
                   1388:   static int rpflag = 0;
                   1389:   static int basisflag = 0;
                   1390:   static int compress = 0;
                   1391:   static int quiet = 0;
                   1392:   static int statistics = 0;
                   1393:   static int mhflag = 0;
                   1394:   static int nolinenosflag = 0;
                   1395:   static int noResort = 0;
                   1396:   static struct s_options options[] = {
                   1397:     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
                   1398:     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
                   1399:     {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
                   1400:     {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
                   1401:     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
                   1402:     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
                   1403:     {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
                   1404:     {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
                   1405:                     "Show conflicts resolved by precedence rules"},
                   1406:     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
                   1407:     {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
                   1408:     {OPT_FLAG, "s", (char*)&statistics,
                   1409:                                    "Print parser stats to standard output."},
                   1410:     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
                   1411:     {OPT_FLAG,0,0,0}
                   1412:   };
                   1413:   int i;
                   1414:   int exitcode;
                   1415:   struct lemon lem;
                   1416: 
                   1417:   OptInit(argv,options,stderr);
                   1418:   if( version ){
                   1419:      printf("Lemon version 1.0\n");
                   1420:      exit(0); 
                   1421:   }
                   1422:   if( OptNArgs()!=1 ){
                   1423:     fprintf(stderr,"Exactly one filename argument is required.\n");
                   1424:     exit(1);
                   1425:   }
                   1426:   memset(&lem, 0, sizeof(lem));
                   1427:   lem.errorcnt = 0;
                   1428: 
                   1429:   /* Initialize the machine */
                   1430:   Strsafe_init();
                   1431:   Symbol_init();
                   1432:   State_init();
                   1433:   lem.argv0 = argv[0];
                   1434:   lem.filename = OptArg(0);
                   1435:   lem.basisflag = basisflag;
                   1436:   lem.nolinenosflag = nolinenosflag;
                   1437:   Symbol_new("$");
                   1438:   lem.errsym = Symbol_new("error");
                   1439:   lem.errsym->useCnt = 0;
                   1440: 
                   1441:   /* Parse the input file */
                   1442:   Parse(&lem);
                   1443:   if( lem.errorcnt ) exit(lem.errorcnt);
                   1444:   if( lem.nrule==0 ){
                   1445:     fprintf(stderr,"Empty grammar.\n");
                   1446:     exit(1);
                   1447:   }
                   1448: 
                   1449:   /* Count and index the symbols of the grammar */
                   1450:   lem.nsymbol = Symbol_count();
                   1451:   Symbol_new("{default}");
                   1452:   lem.symbols = Symbol_arrayof();
                   1453:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
                   1454:   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp);
                   1455:   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
                   1456:   for(i=1; isupper(lem.symbols[i]->name[0]); i++);
                   1457:   lem.nterminal = i;
                   1458: 
                   1459:   /* Generate a reprint of the grammar, if requested on the command line */
                   1460:   if( rpflag ){
                   1461:     Reprint(&lem);
                   1462:   }else{
                   1463:     /* Initialize the size for all follow and first sets */
                   1464:     SetSize(lem.nterminal+1);
                   1465: 
                   1466:     /* Find the precedence for every production rule (that has one) */
                   1467:     FindRulePrecedences(&lem);
                   1468: 
                   1469:     /* Compute the lambda-nonterminals and the first-sets for every
                   1470:     ** nonterminal */
                   1471:     FindFirstSets(&lem);
                   1472: 
                   1473:     /* Compute all LR(0) states.  Also record follow-set propagation
                   1474:     ** links so that the follow-set can be computed later */
                   1475:     lem.nstate = 0;
                   1476:     FindStates(&lem);
                   1477:     lem.sorted = State_arrayof();
                   1478: 
                   1479:     /* Tie up loose ends on the propagation links */
                   1480:     FindLinks(&lem);
                   1481: 
                   1482:     /* Compute the follow set of every reducible configuration */
                   1483:     FindFollowSets(&lem);
                   1484: 
                   1485:     /* Compute the action tables */
                   1486:     FindActions(&lem);
                   1487: 
                   1488:     /* Compress the action tables */
                   1489:     if( compress==0 ) CompressTables(&lem);
                   1490: 
                   1491:     /* Reorder and renumber the states so that states with fewer choices
                   1492:     ** occur at the end.  This is an optimization that helps make the
                   1493:     ** generated parser tables smaller. */
                   1494:     if( noResort==0 ) ResortStates(&lem);
                   1495: 
                   1496:     /* Generate a report of the parser generated.  (the "y.output" file) */
                   1497:     if( !quiet ) ReportOutput(&lem);
                   1498: 
                   1499:     /* Generate the source code for the parser */
                   1500:     ReportTable(&lem, mhflag);
                   1501: 
                   1502:     /* Produce a header file for use by the scanner.  (This step is
                   1503:     ** omitted if the "-m" option is used because makeheaders will
                   1504:     ** generate the file for us.) */
                   1505:     if( !mhflag ) ReportHeader(&lem);
                   1506:   }
                   1507:   if( statistics ){
                   1508:     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
                   1509:       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
                   1510:     printf("                   %d states, %d parser table entries, %d conflicts\n",
                   1511:       lem.nstate, lem.tablesize, lem.nconflict);
                   1512:   }
                   1513:   if( lem.nconflict > 0 ){
                   1514:     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
                   1515:   }
                   1516: 
                   1517:   /* return 0 on success, 1 on failure. */
                   1518:   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
                   1519:   exit(exitcode);
                   1520:   return (exitcode);
                   1521: }
                   1522: /******************** From the file "msort.c" *******************************/
                   1523: /*
                   1524: ** A generic merge-sort program.
                   1525: **
                   1526: ** USAGE:
                   1527: ** Let "ptr" be a pointer to some structure which is at the head of
                   1528: ** a null-terminated list.  Then to sort the list call:
                   1529: **
                   1530: **     ptr = msort(ptr,&(ptr->next),cmpfnc);
                   1531: **
                   1532: ** In the above, "cmpfnc" is a pointer to a function which compares
                   1533: ** two instances of the structure and returns an integer, as in
                   1534: ** strcmp.  The second argument is a pointer to the pointer to the
                   1535: ** second element of the linked list.  This address is used to compute
                   1536: ** the offset to the "next" field within the structure.  The offset to
                   1537: ** the "next" field must be constant for all structures in the list.
                   1538: **
                   1539: ** The function returns a new pointer which is the head of the list
                   1540: ** after sorting.
                   1541: **
                   1542: ** ALGORITHM:
                   1543: ** Merge-sort.
                   1544: */
                   1545: 
                   1546: /*
                   1547: ** Return a pointer to the next structure in the linked list.
                   1548: */
                   1549: #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
                   1550: 
                   1551: /*
                   1552: ** Inputs:
                   1553: **   a:       A sorted, null-terminated linked list.  (May be null).
                   1554: **   b:       A sorted, null-terminated linked list.  (May be null).
                   1555: **   cmp:     A pointer to the comparison function.
                   1556: **   offset:  Offset in the structure to the "next" field.
                   1557: **
                   1558: ** Return Value:
                   1559: **   A pointer to the head of a sorted list containing the elements
                   1560: **   of both a and b.
                   1561: **
                   1562: ** Side effects:
                   1563: **   The "next" pointers for elements in the lists a and b are
                   1564: **   changed.
                   1565: */
                   1566: static char *merge(
                   1567:   char *a,
                   1568:   char *b,
                   1569:   int (*cmp)(const char*,const char*),
                   1570:   int offset
                   1571: ){
                   1572:   char *ptr, *head;
                   1573: 
                   1574:   if( a==0 ){
                   1575:     head = b;
                   1576:   }else if( b==0 ){
                   1577:     head = a;
                   1578:   }else{
                   1579:     if( (*cmp)(a,b)<=0 ){
                   1580:       ptr = a;
                   1581:       a = NEXT(a);
                   1582:     }else{
                   1583:       ptr = b;
                   1584:       b = NEXT(b);
                   1585:     }
                   1586:     head = ptr;
                   1587:     while( a && b ){
                   1588:       if( (*cmp)(a,b)<=0 ){
                   1589:         NEXT(ptr) = a;
                   1590:         ptr = a;
                   1591:         a = NEXT(a);
                   1592:       }else{
                   1593:         NEXT(ptr) = b;
                   1594:         ptr = b;
                   1595:         b = NEXT(b);
                   1596:       }
                   1597:     }
                   1598:     if( a ) NEXT(ptr) = a;
                   1599:     else    NEXT(ptr) = b;
                   1600:   }
                   1601:   return head;
                   1602: }
                   1603: 
                   1604: /*
                   1605: ** Inputs:
                   1606: **   list:      Pointer to a singly-linked list of structures.
                   1607: **   next:      Pointer to pointer to the second element of the list.
                   1608: **   cmp:       A comparison function.
                   1609: **
                   1610: ** Return Value:
                   1611: **   A pointer to the head of a sorted list containing the elements
                   1612: **   orginally in list.
                   1613: **
                   1614: ** Side effects:
                   1615: **   The "next" pointers for elements in list are changed.
                   1616: */
                   1617: #define LISTSIZE 30
                   1618: static char *msort(
                   1619:   char *list,
                   1620:   char **next,
                   1621:   int (*cmp)(const char*,const char*)
                   1622: ){
                   1623:   unsigned long offset;
                   1624:   char *ep;
                   1625:   char *set[LISTSIZE];
                   1626:   int i;
                   1627:   offset = (unsigned long)next - (unsigned long)list;
                   1628:   for(i=0; i<LISTSIZE; i++) set[i] = 0;
                   1629:   while( list ){
                   1630:     ep = list;
                   1631:     list = NEXT(list);
                   1632:     NEXT(ep) = 0;
                   1633:     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
                   1634:       ep = merge(ep,set[i],cmp,offset);
                   1635:       set[i] = 0;
                   1636:     }
                   1637:     set[i] = ep;
                   1638:   }
                   1639:   ep = 0;
                   1640:   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
                   1641:   return ep;
                   1642: }
                   1643: /************************ From the file "option.c" **************************/
                   1644: static char **argv;
                   1645: static struct s_options *op;
                   1646: static FILE *errstream;
                   1647: 
                   1648: #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
                   1649: 
                   1650: /*
                   1651: ** Print the command line with a carrot pointing to the k-th character
                   1652: ** of the n-th field.
                   1653: */
                   1654: static void errline(int n, int k, FILE *err)
                   1655: {
                   1656:   int spcnt, i;
                   1657:   if( argv[0] ) fprintf(err,"%s",argv[0]);
                   1658:   spcnt = lemonStrlen(argv[0]) + 1;
                   1659:   for(i=1; i<n && argv[i]; i++){
                   1660:     fprintf(err," %s",argv[i]);
                   1661:     spcnt += lemonStrlen(argv[i])+1;
                   1662:   }
                   1663:   spcnt += k;
                   1664:   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
                   1665:   if( spcnt<20 ){
                   1666:     fprintf(err,"\n%*s^-- here\n",spcnt,"");
                   1667:   }else{
                   1668:     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
                   1669:   }
                   1670: }
                   1671: 
                   1672: /*
                   1673: ** Return the index of the N-th non-switch argument.  Return -1
                   1674: ** if N is out of range.
                   1675: */
                   1676: static int argindex(int n)
                   1677: {
                   1678:   int i;
                   1679:   int dashdash = 0;
                   1680:   if( argv!=0 && *argv!=0 ){
                   1681:     for(i=1; argv[i]; i++){
                   1682:       if( dashdash || !ISOPT(argv[i]) ){
                   1683:         if( n==0 ) return i;
                   1684:         n--;
                   1685:       }
                   1686:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
                   1687:     }
                   1688:   }
                   1689:   return -1;
                   1690: }
                   1691: 
                   1692: static char emsg[] = "Command line syntax error: ";
                   1693: 
                   1694: /*
                   1695: ** Process a flag command line argument.
                   1696: */
                   1697: static int handleflags(int i, FILE *err)
                   1698: {
                   1699:   int v;
                   1700:   int errcnt = 0;
                   1701:   int j;
                   1702:   for(j=0; op[j].label; j++){
                   1703:     if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
                   1704:   }
                   1705:   v = argv[i][0]=='-' ? 1 : 0;
                   1706:   if( op[j].label==0 ){
                   1707:     if( err ){
                   1708:       fprintf(err,"%sundefined option.\n",emsg);
                   1709:       errline(i,1,err);
                   1710:     }
                   1711:     errcnt++;
                   1712:   }else if( op[j].type==OPT_FLAG ){
                   1713:     *((int*)op[j].arg) = v;
                   1714:   }else if( op[j].type==OPT_FFLAG ){
                   1715:     (*(void(*)(int))(op[j].arg))(v);
                   1716:   }else if( op[j].type==OPT_FSTR ){
                   1717:     (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
                   1718:   }else{
                   1719:     if( err ){
                   1720:       fprintf(err,"%smissing argument on switch.\n",emsg);
                   1721:       errline(i,1,err);
                   1722:     }
                   1723:     errcnt++;
                   1724:   }
                   1725:   return errcnt;
                   1726: }
                   1727: 
                   1728: /*
                   1729: ** Process a command line switch which has an argument.
                   1730: */
                   1731: static int handleswitch(int i, FILE *err)
                   1732: {
                   1733:   int lv = 0;
                   1734:   double dv = 0.0;
                   1735:   char *sv = 0, *end;
                   1736:   char *cp;
                   1737:   int j;
                   1738:   int errcnt = 0;
                   1739:   cp = strchr(argv[i],'=');
                   1740:   assert( cp!=0 );
                   1741:   *cp = 0;
                   1742:   for(j=0; op[j].label; j++){
                   1743:     if( strcmp(argv[i],op[j].label)==0 ) break;
                   1744:   }
                   1745:   *cp = '=';
                   1746:   if( op[j].label==0 ){
                   1747:     if( err ){
                   1748:       fprintf(err,"%sundefined option.\n",emsg);
                   1749:       errline(i,0,err);
                   1750:     }
                   1751:     errcnt++;
                   1752:   }else{
                   1753:     cp++;
                   1754:     switch( op[j].type ){
                   1755:       case OPT_FLAG:
                   1756:       case OPT_FFLAG:
                   1757:         if( err ){
                   1758:           fprintf(err,"%soption requires an argument.\n",emsg);
                   1759:           errline(i,0,err);
                   1760:         }
                   1761:         errcnt++;
                   1762:         break;
                   1763:       case OPT_DBL:
                   1764:       case OPT_FDBL:
                   1765:         dv = strtod(cp,&end);
                   1766:         if( *end ){
                   1767:           if( err ){
                   1768:             fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
                   1769:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
                   1770:           }
                   1771:           errcnt++;
                   1772:         }
                   1773:         break;
                   1774:       case OPT_INT:
                   1775:       case OPT_FINT:
                   1776:         lv = strtol(cp,&end,0);
                   1777:         if( *end ){
                   1778:           if( err ){
                   1779:             fprintf(err,"%sillegal character in integer argument.\n",emsg);
                   1780:             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
                   1781:           }
                   1782:           errcnt++;
                   1783:         }
                   1784:         break;
                   1785:       case OPT_STR:
                   1786:       case OPT_FSTR:
                   1787:         sv = cp;
                   1788:         break;
                   1789:     }
                   1790:     switch( op[j].type ){
                   1791:       case OPT_FLAG:
                   1792:       case OPT_FFLAG:
                   1793:         break;
                   1794:       case OPT_DBL:
                   1795:         *(double*)(op[j].arg) = dv;
                   1796:         break;
                   1797:       case OPT_FDBL:
                   1798:         (*(void(*)(double))(op[j].arg))(dv);
                   1799:         break;
                   1800:       case OPT_INT:
                   1801:         *(int*)(op[j].arg) = lv;
                   1802:         break;
                   1803:       case OPT_FINT:
                   1804:         (*(void(*)(int))(op[j].arg))((int)lv);
                   1805:         break;
                   1806:       case OPT_STR:
                   1807:         *(char**)(op[j].arg) = sv;
                   1808:         break;
                   1809:       case OPT_FSTR:
                   1810:         (*(void(*)(char *))(op[j].arg))(sv);
                   1811:         break;
                   1812:     }
                   1813:   }
                   1814:   return errcnt;
                   1815: }
                   1816: 
                   1817: int OptInit(char **a, struct s_options *o, FILE *err)
                   1818: {
                   1819:   int errcnt = 0;
                   1820:   argv = a;
                   1821:   op = o;
                   1822:   errstream = err;
                   1823:   if( argv && *argv && op ){
                   1824:     int i;
                   1825:     for(i=1; argv[i]; i++){
                   1826:       if( argv[i][0]=='+' || argv[i][0]=='-' ){
                   1827:         errcnt += handleflags(i,err);
                   1828:       }else if( strchr(argv[i],'=') ){
                   1829:         errcnt += handleswitch(i,err);
                   1830:       }
                   1831:     }
                   1832:   }
                   1833:   if( errcnt>0 ){
                   1834:     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
                   1835:     OptPrint();
                   1836:     exit(1);
                   1837:   }
                   1838:   return 0;
                   1839: }
                   1840: 
                   1841: int OptNArgs(){
                   1842:   int cnt = 0;
                   1843:   int dashdash = 0;
                   1844:   int i;
                   1845:   if( argv!=0 && argv[0]!=0 ){
                   1846:     for(i=1; argv[i]; i++){
                   1847:       if( dashdash || !ISOPT(argv[i]) ) cnt++;
                   1848:       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
                   1849:     }
                   1850:   }
                   1851:   return cnt;
                   1852: }
                   1853: 
                   1854: char *OptArg(int n)
                   1855: {
                   1856:   int i;
                   1857:   i = argindex(n);
                   1858:   return i>=0 ? argv[i] : 0;
                   1859: }
                   1860: 
                   1861: void OptErr(int n)
                   1862: {
                   1863:   int i;
                   1864:   i = argindex(n);
                   1865:   if( i>=0 ) errline(i,0,errstream);
                   1866: }
                   1867: 
                   1868: void OptPrint(){
                   1869:   int i;
                   1870:   int max, len;
                   1871:   max = 0;
                   1872:   for(i=0; op[i].label; i++){
                   1873:     len = lemonStrlen(op[i].label) + 1;
                   1874:     switch( op[i].type ){
                   1875:       case OPT_FLAG:
                   1876:       case OPT_FFLAG:
                   1877:         break;
                   1878:       case OPT_INT:
                   1879:       case OPT_FINT:
                   1880:         len += 9;       /* length of "<integer>" */
                   1881:         break;
                   1882:       case OPT_DBL:
                   1883:       case OPT_FDBL:
                   1884:         len += 6;       /* length of "<real>" */
                   1885:         break;
                   1886:       case OPT_STR:
                   1887:       case OPT_FSTR:
                   1888:         len += 8;       /* length of "<string>" */
                   1889:         break;
                   1890:     }
                   1891:     if( len>max ) max = len;
                   1892:   }
                   1893:   for(i=0; op[i].label; i++){
                   1894:     switch( op[i].type ){
                   1895:       case OPT_FLAG:
                   1896:       case OPT_FFLAG:
                   1897:         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
                   1898:         break;
                   1899:       case OPT_INT:
                   1900:       case OPT_FINT:
                   1901:         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
                   1902:           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
                   1903:         break;
                   1904:       case OPT_DBL:
                   1905:       case OPT_FDBL:
                   1906:         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
                   1907:           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
                   1908:         break;
                   1909:       case OPT_STR:
                   1910:       case OPT_FSTR:
                   1911:         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
                   1912:           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
                   1913:         break;
                   1914:     }
                   1915:   }
                   1916: }
                   1917: /*********************** From the file "parse.c" ****************************/
                   1918: /*
                   1919: ** Input file parser for the LEMON parser generator.
                   1920: */
                   1921: 
                   1922: /* The state of the parser */
                   1923: enum e_state {
                   1924:   INITIALIZE,
                   1925:   WAITING_FOR_DECL_OR_RULE,
                   1926:   WAITING_FOR_DECL_KEYWORD,
                   1927:   WAITING_FOR_DECL_ARG,
                   1928:   WAITING_FOR_PRECEDENCE_SYMBOL,
                   1929:   WAITING_FOR_ARROW,
                   1930:   IN_RHS,
                   1931:   LHS_ALIAS_1,
                   1932:   LHS_ALIAS_2,
                   1933:   LHS_ALIAS_3,
                   1934:   RHS_ALIAS_1,
                   1935:   RHS_ALIAS_2,
                   1936:   PRECEDENCE_MARK_1,
                   1937:   PRECEDENCE_MARK_2,
                   1938:   RESYNC_AFTER_RULE_ERROR,
                   1939:   RESYNC_AFTER_DECL_ERROR,
                   1940:   WAITING_FOR_DESTRUCTOR_SYMBOL,
                   1941:   WAITING_FOR_DATATYPE_SYMBOL,
                   1942:   WAITING_FOR_FALLBACK_ID,
                   1943:   WAITING_FOR_WILDCARD_ID
                   1944: };
                   1945: struct pstate {
                   1946:   char *filename;       /* Name of the input file */
                   1947:   int tokenlineno;      /* Linenumber at which current token starts */
                   1948:   int errorcnt;         /* Number of errors so far */
                   1949:   char *tokenstart;     /* Text of current token */
                   1950:   struct lemon *gp;     /* Global state vector */
                   1951:   enum e_state state;        /* The state of the parser */
                   1952:   struct symbol *fallback;   /* The fallback token */
                   1953:   struct symbol *lhs;        /* Left-hand side of current rule */
                   1954:   const char *lhsalias;      /* Alias for the LHS */
                   1955:   int nrhs;                  /* Number of right-hand side symbols seen */
                   1956:   struct symbol *rhs[MAXRHS];  /* RHS symbols */
                   1957:   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
                   1958:   struct rule *prevrule;     /* Previous rule parsed */
                   1959:   const char *declkeyword;   /* Keyword of a declaration */
                   1960:   char **declargslot;        /* Where the declaration argument should be put */
                   1961:   int insertLineMacro;       /* Add #line before declaration insert */
                   1962:   int *decllinenoslot;       /* Where to write declaration line number */
                   1963:   enum e_assoc declassoc;    /* Assign this association to decl arguments */
                   1964:   int preccounter;           /* Assign this precedence to decl arguments */
                   1965:   struct rule *firstrule;    /* Pointer to first rule in the grammar */
                   1966:   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
                   1967: };
                   1968: 
                   1969: /* Parse a single token */
                   1970: static void parseonetoken(struct pstate *psp)
                   1971: {
                   1972:   const char *x;
                   1973:   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
                   1974: #if 0
                   1975:   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
                   1976:     x,psp->state);
                   1977: #endif
                   1978:   switch( psp->state ){
                   1979:     case INITIALIZE:
                   1980:       psp->prevrule = 0;
                   1981:       psp->preccounter = 0;
                   1982:       psp->firstrule = psp->lastrule = 0;
                   1983:       psp->gp->nrule = 0;
                   1984:       /* Fall thru to next case */
                   1985:     case WAITING_FOR_DECL_OR_RULE:
                   1986:       if( x[0]=='%' ){
                   1987:         psp->state = WAITING_FOR_DECL_KEYWORD;
                   1988:       }else if( islower(x[0]) ){
                   1989:         psp->lhs = Symbol_new(x);
                   1990:         psp->nrhs = 0;
                   1991:         psp->lhsalias = 0;
                   1992:         psp->state = WAITING_FOR_ARROW;
                   1993:       }else if( x[0]=='{' ){
                   1994:         if( psp->prevrule==0 ){
                   1995:           ErrorMsg(psp->filename,psp->tokenlineno,
                   1996: "There is no prior rule upon which to attach the code \
                   1997: fragment which begins on this line.");
                   1998:           psp->errorcnt++;
                   1999:        }else if( psp->prevrule->code!=0 ){
                   2000:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2001: "Code fragment beginning on this line is not the first \
                   2002: to follow the previous rule.");
                   2003:           psp->errorcnt++;
                   2004:         }else{
                   2005:           psp->prevrule->line = psp->tokenlineno;
                   2006:           psp->prevrule->code = &x[1];
                   2007:        }
                   2008:       }else if( x[0]=='[' ){
                   2009:         psp->state = PRECEDENCE_MARK_1;
                   2010:       }else{
                   2011:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2012:           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
                   2013:           x);
                   2014:         psp->errorcnt++;
                   2015:       }
                   2016:       break;
                   2017:     case PRECEDENCE_MARK_1:
                   2018:       if( !isupper(x[0]) ){
                   2019:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2020:           "The precedence symbol must be a terminal.");
                   2021:         psp->errorcnt++;
                   2022:       }else if( psp->prevrule==0 ){
                   2023:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2024:           "There is no prior rule to assign precedence \"[%s]\".",x);
                   2025:         psp->errorcnt++;
                   2026:       }else if( psp->prevrule->precsym!=0 ){
                   2027:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2028: "Precedence mark on this line is not the first \
                   2029: to follow the previous rule.");
                   2030:         psp->errorcnt++;
                   2031:       }else{
                   2032:         psp->prevrule->precsym = Symbol_new(x);
                   2033:       }
                   2034:       psp->state = PRECEDENCE_MARK_2;
                   2035:       break;
                   2036:     case PRECEDENCE_MARK_2:
                   2037:       if( x[0]!=']' ){
                   2038:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2039:           "Missing \"]\" on precedence mark.");
                   2040:         psp->errorcnt++;
                   2041:       }
                   2042:       psp->state = WAITING_FOR_DECL_OR_RULE;
                   2043:       break;
                   2044:     case WAITING_FOR_ARROW:
                   2045:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
                   2046:         psp->state = IN_RHS;
                   2047:       }else if( x[0]=='(' ){
                   2048:         psp->state = LHS_ALIAS_1;
                   2049:       }else{
                   2050:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2051:           "Expected to see a \":\" following the LHS symbol \"%s\".",
                   2052:           psp->lhs->name);
                   2053:         psp->errorcnt++;
                   2054:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2055:       }
                   2056:       break;
                   2057:     case LHS_ALIAS_1:
                   2058:       if( isalpha(x[0]) ){
                   2059:         psp->lhsalias = x;
                   2060:         psp->state = LHS_ALIAS_2;
                   2061:       }else{
                   2062:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2063:           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
                   2064:           x,psp->lhs->name);
                   2065:         psp->errorcnt++;
                   2066:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2067:       }
                   2068:       break;
                   2069:     case LHS_ALIAS_2:
                   2070:       if( x[0]==')' ){
                   2071:         psp->state = LHS_ALIAS_3;
                   2072:       }else{
                   2073:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2074:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
                   2075:         psp->errorcnt++;
                   2076:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2077:       }
                   2078:       break;
                   2079:     case LHS_ALIAS_3:
                   2080:       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
                   2081:         psp->state = IN_RHS;
                   2082:       }else{
                   2083:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2084:           "Missing \"->\" following: \"%s(%s)\".",
                   2085:            psp->lhs->name,psp->lhsalias);
                   2086:         psp->errorcnt++;
                   2087:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2088:       }
                   2089:       break;
                   2090:     case IN_RHS:
                   2091:       if( x[0]=='.' ){
                   2092:         struct rule *rp;
                   2093:         rp = (struct rule *)calloc( sizeof(struct rule) + 
                   2094:              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
                   2095:         if( rp==0 ){
                   2096:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2097:             "Can't allocate enough memory for this rule.");
                   2098:           psp->errorcnt++;
                   2099:           psp->prevrule = 0;
                   2100:        }else{
                   2101:           int i;
                   2102:           rp->ruleline = psp->tokenlineno;
                   2103:           rp->rhs = (struct symbol**)&rp[1];
                   2104:           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
                   2105:           for(i=0; i<psp->nrhs; i++){
                   2106:             rp->rhs[i] = psp->rhs[i];
                   2107:             rp->rhsalias[i] = psp->alias[i];
                   2108:          }
                   2109:           rp->lhs = psp->lhs;
                   2110:           rp->lhsalias = psp->lhsalias;
                   2111:           rp->nrhs = psp->nrhs;
                   2112:           rp->code = 0;
                   2113:           rp->precsym = 0;
                   2114:           rp->index = psp->gp->nrule++;
                   2115:           rp->nextlhs = rp->lhs->rule;
                   2116:           rp->lhs->rule = rp;
                   2117:           rp->next = 0;
                   2118:           if( psp->firstrule==0 ){
                   2119:             psp->firstrule = psp->lastrule = rp;
                   2120:          }else{
                   2121:             psp->lastrule->next = rp;
                   2122:             psp->lastrule = rp;
                   2123:          }
                   2124:           psp->prevrule = rp;
                   2125:        }
                   2126:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2127:       }else if( isalpha(x[0]) ){
                   2128:         if( psp->nrhs>=MAXRHS ){
                   2129:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2130:             "Too many symbols on RHS of rule beginning at \"%s\".",
                   2131:             x);
                   2132:           psp->errorcnt++;
                   2133:           psp->state = RESYNC_AFTER_RULE_ERROR;
                   2134:        }else{
                   2135:           psp->rhs[psp->nrhs] = Symbol_new(x);
                   2136:           psp->alias[psp->nrhs] = 0;
                   2137:           psp->nrhs++;
                   2138:        }
                   2139:       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
                   2140:         struct symbol *msp = psp->rhs[psp->nrhs-1];
                   2141:         if( msp->type!=MULTITERMINAL ){
                   2142:           struct symbol *origsp = msp;
                   2143:           msp = (struct symbol *) calloc(1,sizeof(*msp));
                   2144:           memset(msp, 0, sizeof(*msp));
                   2145:           msp->type = MULTITERMINAL;
                   2146:           msp->nsubsym = 1;
                   2147:           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
                   2148:           msp->subsym[0] = origsp;
                   2149:           msp->name = origsp->name;
                   2150:           psp->rhs[psp->nrhs-1] = msp;
                   2151:         }
                   2152:         msp->nsubsym++;
                   2153:         msp->subsym = (struct symbol **) realloc(msp->subsym,
                   2154:           sizeof(struct symbol*)*msp->nsubsym);
                   2155:         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
                   2156:         if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
                   2157:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2158:             "Cannot form a compound containing a non-terminal");
                   2159:           psp->errorcnt++;
                   2160:         }
                   2161:       }else if( x[0]=='(' && psp->nrhs>0 ){
                   2162:         psp->state = RHS_ALIAS_1;
                   2163:       }else{
                   2164:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2165:           "Illegal character on RHS of rule: \"%s\".",x);
                   2166:         psp->errorcnt++;
                   2167:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2168:       }
                   2169:       break;
                   2170:     case RHS_ALIAS_1:
                   2171:       if( isalpha(x[0]) ){
                   2172:         psp->alias[psp->nrhs-1] = x;
                   2173:         psp->state = RHS_ALIAS_2;
                   2174:       }else{
                   2175:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2176:           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
                   2177:           x,psp->rhs[psp->nrhs-1]->name);
                   2178:         psp->errorcnt++;
                   2179:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2180:       }
                   2181:       break;
                   2182:     case RHS_ALIAS_2:
                   2183:       if( x[0]==')' ){
                   2184:         psp->state = IN_RHS;
                   2185:       }else{
                   2186:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2187:           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
                   2188:         psp->errorcnt++;
                   2189:         psp->state = RESYNC_AFTER_RULE_ERROR;
                   2190:       }
                   2191:       break;
                   2192:     case WAITING_FOR_DECL_KEYWORD:
                   2193:       if( isalpha(x[0]) ){
                   2194:         psp->declkeyword = x;
                   2195:         psp->declargslot = 0;
                   2196:         psp->decllinenoslot = 0;
                   2197:         psp->insertLineMacro = 1;
                   2198:         psp->state = WAITING_FOR_DECL_ARG;
                   2199:         if( strcmp(x,"name")==0 ){
                   2200:           psp->declargslot = &(psp->gp->name);
                   2201:           psp->insertLineMacro = 0;
                   2202:        }else if( strcmp(x,"include")==0 ){
                   2203:           psp->declargslot = &(psp->gp->include);
                   2204:        }else if( strcmp(x,"code")==0 ){
                   2205:           psp->declargslot = &(psp->gp->extracode);
                   2206:        }else if( strcmp(x,"token_destructor")==0 ){
                   2207:           psp->declargslot = &psp->gp->tokendest;
                   2208:        }else if( strcmp(x,"default_destructor")==0 ){
                   2209:           psp->declargslot = &psp->gp->vardest;
                   2210:        }else if( strcmp(x,"token_prefix")==0 ){
                   2211:           psp->declargslot = &psp->gp->tokenprefix;
                   2212:           psp->insertLineMacro = 0;
                   2213:        }else if( strcmp(x,"syntax_error")==0 ){
                   2214:           psp->declargslot = &(psp->gp->error);
                   2215:        }else if( strcmp(x,"parse_accept")==0 ){
                   2216:           psp->declargslot = &(psp->gp->accept);
                   2217:        }else if( strcmp(x,"parse_failure")==0 ){
                   2218:           psp->declargslot = &(psp->gp->failure);
                   2219:        }else if( strcmp(x,"stack_overflow")==0 ){
                   2220:           psp->declargslot = &(psp->gp->overflow);
                   2221:         }else if( strcmp(x,"extra_argument")==0 ){
                   2222:           psp->declargslot = &(psp->gp->arg);
                   2223:           psp->insertLineMacro = 0;
                   2224:         }else if( strcmp(x,"token_type")==0 ){
                   2225:           psp->declargslot = &(psp->gp->tokentype);
                   2226:           psp->insertLineMacro = 0;
                   2227:         }else if( strcmp(x,"default_type")==0 ){
                   2228:           psp->declargslot = &(psp->gp->vartype);
                   2229:           psp->insertLineMacro = 0;
                   2230:         }else if( strcmp(x,"stack_size")==0 ){
                   2231:           psp->declargslot = &(psp->gp->stacksize);
                   2232:           psp->insertLineMacro = 0;
                   2233:         }else if( strcmp(x,"start_symbol")==0 ){
                   2234:           psp->declargslot = &(psp->gp->start);
                   2235:           psp->insertLineMacro = 0;
                   2236:         }else if( strcmp(x,"left")==0 ){
                   2237:           psp->preccounter++;
                   2238:           psp->declassoc = LEFT;
                   2239:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
                   2240:         }else if( strcmp(x,"right")==0 ){
                   2241:           psp->preccounter++;
                   2242:           psp->declassoc = RIGHT;
                   2243:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
                   2244:         }else if( strcmp(x,"nonassoc")==0 ){
                   2245:           psp->preccounter++;
                   2246:           psp->declassoc = NONE;
                   2247:           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
                   2248:        }else if( strcmp(x,"destructor")==0 ){
                   2249:           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
                   2250:        }else if( strcmp(x,"type")==0 ){
                   2251:           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
                   2252:         }else if( strcmp(x,"fallback")==0 ){
                   2253:           psp->fallback = 0;
                   2254:           psp->state = WAITING_FOR_FALLBACK_ID;
                   2255:         }else if( strcmp(x,"wildcard")==0 ){
                   2256:           psp->state = WAITING_FOR_WILDCARD_ID;
                   2257:         }else{
                   2258:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2259:             "Unknown declaration keyword: \"%%%s\".",x);
                   2260:           psp->errorcnt++;
                   2261:           psp->state = RESYNC_AFTER_DECL_ERROR;
                   2262:        }
                   2263:       }else{
                   2264:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2265:           "Illegal declaration keyword: \"%s\".",x);
                   2266:         psp->errorcnt++;
                   2267:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2268:       }
                   2269:       break;
                   2270:     case WAITING_FOR_DESTRUCTOR_SYMBOL:
                   2271:       if( !isalpha(x[0]) ){
                   2272:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2273:           "Symbol name missing after %%destructor keyword");
                   2274:         psp->errorcnt++;
                   2275:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2276:       }else{
                   2277:         struct symbol *sp = Symbol_new(x);
                   2278:         psp->declargslot = &sp->destructor;
                   2279:         psp->decllinenoslot = &sp->destLineno;
                   2280:         psp->insertLineMacro = 1;
                   2281:         psp->state = WAITING_FOR_DECL_ARG;
                   2282:       }
                   2283:       break;
                   2284:     case WAITING_FOR_DATATYPE_SYMBOL:
                   2285:       if( !isalpha(x[0]) ){
                   2286:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2287:           "Symbol name missing after %%type keyword");
                   2288:         psp->errorcnt++;
                   2289:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2290:       }else{
                   2291:         struct symbol *sp = Symbol_find(x);
                   2292:         if((sp) && (sp->datatype)){
                   2293:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2294:             "Symbol %%type \"%s\" already defined", x);
                   2295:           psp->errorcnt++;
                   2296:           psp->state = RESYNC_AFTER_DECL_ERROR;
                   2297:         }else{
                   2298:           if (!sp){
                   2299:             sp = Symbol_new(x);
                   2300:           }
                   2301:           psp->declargslot = &sp->datatype;
                   2302:           psp->insertLineMacro = 0;
                   2303:           psp->state = WAITING_FOR_DECL_ARG;
                   2304:         }
                   2305:       }
                   2306:       break;
                   2307:     case WAITING_FOR_PRECEDENCE_SYMBOL:
                   2308:       if( x[0]=='.' ){
                   2309:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2310:       }else if( isupper(x[0]) ){
                   2311:         struct symbol *sp;
                   2312:         sp = Symbol_new(x);
                   2313:         if( sp->prec>=0 ){
                   2314:           ErrorMsg(psp->filename,psp->tokenlineno,
                   2315:             "Symbol \"%s\" has already be given a precedence.",x);
                   2316:           psp->errorcnt++;
                   2317:        }else{
                   2318:           sp->prec = psp->preccounter;
                   2319:           sp->assoc = psp->declassoc;
                   2320:        }
                   2321:       }else{
                   2322:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2323:           "Can't assign a precedence to \"%s\".",x);
                   2324:         psp->errorcnt++;
                   2325:       }
                   2326:       break;
                   2327:     case WAITING_FOR_DECL_ARG:
                   2328:       if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
                   2329:         const char *zOld, *zNew;
                   2330:         char *zBuf, *z;
                   2331:         int nOld, n, nLine, nNew, nBack;
                   2332:         int addLineMacro;
                   2333:         char zLine[50];
                   2334:         zNew = x;
                   2335:         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
                   2336:         nNew = lemonStrlen(zNew);
                   2337:         if( *psp->declargslot ){
                   2338:           zOld = *psp->declargslot;
                   2339:         }else{
                   2340:           zOld = "";
                   2341:         }
                   2342:         nOld = lemonStrlen(zOld);
                   2343:         n = nOld + nNew + 20;
                   2344:         addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
                   2345:                         (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
                   2346:         if( addLineMacro ){
                   2347:           for(z=psp->filename, nBack=0; *z; z++){
                   2348:             if( *z=='\\' ) nBack++;
                   2349:           }
                   2350:           sprintf(zLine, "#line %d ", psp->tokenlineno);
                   2351:           nLine = lemonStrlen(zLine);
                   2352:           n += nLine + lemonStrlen(psp->filename) + nBack;
                   2353:         }
                   2354:         *psp->declargslot = (char *) realloc(*psp->declargslot, n);
                   2355:         zBuf = *psp->declargslot + nOld;
                   2356:         if( addLineMacro ){
                   2357:           if( nOld && zBuf[-1]!='\n' ){
                   2358:             *(zBuf++) = '\n';
                   2359:           }
                   2360:           memcpy(zBuf, zLine, nLine);
                   2361:           zBuf += nLine;
                   2362:           *(zBuf++) = '"';
                   2363:           for(z=psp->filename; *z; z++){
                   2364:             if( *z=='\\' ){
                   2365:               *(zBuf++) = '\\';
                   2366:             }
                   2367:             *(zBuf++) = *z;
                   2368:           }
                   2369:           *(zBuf++) = '"';
                   2370:           *(zBuf++) = '\n';
                   2371:         }
                   2372:         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
                   2373:           psp->decllinenoslot[0] = psp->tokenlineno;
                   2374:         }
                   2375:         memcpy(zBuf, zNew, nNew);
                   2376:         zBuf += nNew;
                   2377:         *zBuf = 0;
                   2378:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2379:       }else{
                   2380:         ErrorMsg(psp->filename,psp->tokenlineno,
                   2381:           "Illegal argument to %%%s: %s",psp->declkeyword,x);
                   2382:         psp->errorcnt++;
                   2383:         psp->state = RESYNC_AFTER_DECL_ERROR;
                   2384:       }
                   2385:       break;
                   2386:     case WAITING_FOR_FALLBACK_ID:
                   2387:       if( x[0]=='.' ){
                   2388:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2389:       }else if( !isupper(x[0]) ){
                   2390:         ErrorMsg(psp->filename, psp->tokenlineno,
                   2391:           "%%fallback argument \"%s\" should be a token", x);
                   2392:         psp->errorcnt++;
                   2393:       }else{
                   2394:         struct symbol *sp = Symbol_new(x);
                   2395:         if( psp->fallback==0 ){
                   2396:           psp->fallback = sp;
                   2397:         }else if( sp->fallback ){
                   2398:           ErrorMsg(psp->filename, psp->tokenlineno,
                   2399:             "More than one fallback assigned to token %s", x);
                   2400:           psp->errorcnt++;
                   2401:         }else{
                   2402:           sp->fallback = psp->fallback;
                   2403:           psp->gp->has_fallback = 1;
                   2404:         }
                   2405:       }
                   2406:       break;
                   2407:     case WAITING_FOR_WILDCARD_ID:
                   2408:       if( x[0]=='.' ){
                   2409:         psp->state = WAITING_FOR_DECL_OR_RULE;
                   2410:       }else if( !isupper(x[0]) ){
                   2411:         ErrorMsg(psp->filename, psp->tokenlineno,
                   2412:           "%%wildcard argument \"%s\" should be a token", x);
                   2413:         psp->errorcnt++;
                   2414:       }else{
                   2415:         struct symbol *sp = Symbol_new(x);
                   2416:         if( psp->gp->wildcard==0 ){
                   2417:           psp->gp->wildcard = sp;
                   2418:         }else{
                   2419:           ErrorMsg(psp->filename, psp->tokenlineno,
                   2420:             "Extra wildcard to token: %s", x);
                   2421:           psp->errorcnt++;
                   2422:         }
                   2423:       }
                   2424:       break;
                   2425:     case RESYNC_AFTER_RULE_ERROR:
                   2426: /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
                   2427: **      break; */
                   2428:     case RESYNC_AFTER_DECL_ERROR:
                   2429:       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
                   2430:       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
                   2431:       break;
                   2432:   }
                   2433: }
                   2434: 
                   2435: /* Run the preprocessor over the input file text.  The global variables
                   2436: ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
                   2437: ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and
                   2438: ** comments them out.  Text in between is also commented out as appropriate.
                   2439: */
                   2440: static void preprocess_input(char *z){
                   2441:   int i, j, k, n;
                   2442:   int exclude = 0;
                   2443:   int start = 0;
                   2444:   int lineno = 1;
                   2445:   int start_lineno = 1;
                   2446:   for(i=0; z[i]; i++){
                   2447:     if( z[i]=='\n' ) lineno++;
                   2448:     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
                   2449:     if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
                   2450:       if( exclude ){
                   2451:         exclude--;
                   2452:         if( exclude==0 ){
                   2453:           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
                   2454:         }
                   2455:       }
                   2456:       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
                   2457:     }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
                   2458:           || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
                   2459:       if( exclude ){
                   2460:         exclude++;
                   2461:       }else{
                   2462:         for(j=i+7; isspace(z[j]); j++){}
                   2463:         for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
                   2464:         exclude = 1;
                   2465:         for(k=0; k<nDefine; k++){
                   2466:           if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
                   2467:             exclude = 0;
                   2468:             break;
                   2469:           }
                   2470:         }
                   2471:         if( z[i+3]=='n' ) exclude = !exclude;
                   2472:         if( exclude ){
                   2473:           start = i;
                   2474:           start_lineno = lineno;
                   2475:         }
                   2476:       }
                   2477:       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
                   2478:     }
                   2479:   }
                   2480:   if( exclude ){
                   2481:     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
                   2482:     exit(1);
                   2483:   }
                   2484: }
                   2485: 
                   2486: /* In spite of its name, this function is really a scanner.  It read
                   2487: ** in the entire input file (all at once) then tokenizes it.  Each
                   2488: ** token is passed to the function "parseonetoken" which builds all
                   2489: ** the appropriate data structures in the global state vector "gp".
                   2490: */
                   2491: void Parse(struct lemon *gp)
                   2492: {
                   2493:   struct pstate ps;
                   2494:   FILE *fp;
                   2495:   char *filebuf;
                   2496:   int filesize;
                   2497:   int lineno;
                   2498:   int c;
                   2499:   char *cp, *nextcp;
                   2500:   int startline = 0;
                   2501: 
                   2502:   memset(&ps, '\0', sizeof(ps));
                   2503:   ps.gp = gp;
                   2504:   ps.filename = gp->filename;
                   2505:   ps.errorcnt = 0;
                   2506:   ps.state = INITIALIZE;
                   2507: 
                   2508:   /* Begin by reading the input file */
                   2509:   fp = fopen(ps.filename,"rb");
                   2510:   if( fp==0 ){
                   2511:     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
                   2512:     gp->errorcnt++;
                   2513:     return;
                   2514:   }
                   2515:   fseek(fp,0,2);
                   2516:   filesize = ftell(fp);
                   2517:   rewind(fp);
                   2518:   filebuf = (char *)malloc( filesize+1 );
                   2519:   if( filebuf==0 ){
                   2520:     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
                   2521:       filesize+1);
                   2522:     gp->errorcnt++;
                   2523:     fclose(fp);
                   2524:     return;
                   2525:   }
                   2526:   if( fread(filebuf,1,filesize,fp)!=filesize ){
                   2527:     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
                   2528:       filesize);
                   2529:     free(filebuf);
                   2530:     gp->errorcnt++;
                   2531:     fclose(fp);
                   2532:     return;
                   2533:   }
                   2534:   fclose(fp);
                   2535:   filebuf[filesize] = 0;
                   2536: 
                   2537:   /* Make an initial pass through the file to handle %ifdef and %ifndef */
                   2538:   preprocess_input(filebuf);
                   2539: 
                   2540:   /* Now scan the text of the input file */
                   2541:   lineno = 1;
                   2542:   for(cp=filebuf; (c= *cp)!=0; ){
                   2543:     if( c=='\n' ) lineno++;              /* Keep track of the line number */
                   2544:     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
                   2545:     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
                   2546:       cp+=2;
                   2547:       while( (c= *cp)!=0 && c!='\n' ) cp++;
                   2548:       continue;
                   2549:     }
                   2550:     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
                   2551:       cp+=2;
                   2552:       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
                   2553:         if( c=='\n' ) lineno++;
                   2554:         cp++;
                   2555:       }
                   2556:       if( c ) cp++;
                   2557:       continue;
                   2558:     }
                   2559:     ps.tokenstart = cp;                /* Mark the beginning of the token */
                   2560:     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
                   2561:     if( c=='\"' ){                     /* String literals */
                   2562:       cp++;
                   2563:       while( (c= *cp)!=0 && c!='\"' ){
                   2564:         if( c=='\n' ) lineno++;
                   2565:         cp++;
                   2566:       }
                   2567:       if( c==0 ){
                   2568:         ErrorMsg(ps.filename,startline,
                   2569: "String starting on this line is not terminated before the end of the file.");
                   2570:         ps.errorcnt++;
                   2571:         nextcp = cp;
                   2572:       }else{
                   2573:         nextcp = cp+1;
                   2574:       }
                   2575:     }else if( c=='{' ){               /* A block of C code */
                   2576:       int level;
                   2577:       cp++;
                   2578:       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
                   2579:         if( c=='\n' ) lineno++;
                   2580:         else if( c=='{' ) level++;
                   2581:         else if( c=='}' ) level--;
                   2582:         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
                   2583:           int prevc;
                   2584:           cp = &cp[2];
                   2585:           prevc = 0;
                   2586:           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
                   2587:             if( c=='\n' ) lineno++;
                   2588:             prevc = c;
                   2589:             cp++;
                   2590:          }
                   2591:        }else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
                   2592:           cp = &cp[2];
                   2593:           while( (c= *cp)!=0 && c!='\n' ) cp++;
                   2594:           if( c ) lineno++;
                   2595:        }else if( c=='\'' || c=='\"' ){    /* String a character literals */
                   2596:           int startchar, prevc;
                   2597:           startchar = c;
                   2598:           prevc = 0;
                   2599:           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
                   2600:             if( c=='\n' ) lineno++;
                   2601:             if( prevc=='\\' ) prevc = 0;
                   2602:             else              prevc = c;
                   2603:          }
                   2604:        }
                   2605:       }
                   2606:       if( c==0 ){
                   2607:         ErrorMsg(ps.filename,ps.tokenlineno,
                   2608: "C code starting on this line is not terminated before the end of the file.");
                   2609:         ps.errorcnt++;
                   2610:         nextcp = cp;
                   2611:       }else{
                   2612:         nextcp = cp+1;
                   2613:       }
                   2614:     }else if( isalnum(c) ){          /* Identifiers */
                   2615:       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
                   2616:       nextcp = cp;
                   2617:     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
                   2618:       cp += 3;
                   2619:       nextcp = cp;
                   2620:     }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
                   2621:       cp += 2;
                   2622:       while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
                   2623:       nextcp = cp;
                   2624:     }else{                          /* All other (one character) operators */
                   2625:       cp++;
                   2626:       nextcp = cp;
                   2627:     }
                   2628:     c = *cp;
                   2629:     *cp = 0;                        /* Null terminate the token */
                   2630:     parseonetoken(&ps);             /* Parse the token */
                   2631:     *cp = c;                        /* Restore the buffer */
                   2632:     cp = nextcp;
                   2633:   }
                   2634:   free(filebuf);                    /* Release the buffer after parsing */
                   2635:   gp->rule = ps.firstrule;
                   2636:   gp->errorcnt = ps.errorcnt;
                   2637: }
                   2638: /*************************** From the file "plink.c" *********************/
                   2639: /*
                   2640: ** Routines processing configuration follow-set propagation links
                   2641: ** in the LEMON parser generator.
                   2642: */
                   2643: static struct plink *plink_freelist = 0;
                   2644: 
                   2645: /* Allocate a new plink */
                   2646: struct plink *Plink_new(){
                   2647:   struct plink *newlink;
                   2648: 
                   2649:   if( plink_freelist==0 ){
                   2650:     int i;
                   2651:     int amt = 100;
                   2652:     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
                   2653:     if( plink_freelist==0 ){
                   2654:       fprintf(stderr,
                   2655:       "Unable to allocate memory for a new follow-set propagation link.\n");
                   2656:       exit(1);
                   2657:     }
                   2658:     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
                   2659:     plink_freelist[amt-1].next = 0;
                   2660:   }
                   2661:   newlink = plink_freelist;
                   2662:   plink_freelist = plink_freelist->next;
                   2663:   return newlink;
                   2664: }
                   2665: 
                   2666: /* Add a plink to a plink list */
                   2667: void Plink_add(struct plink **plpp, struct config *cfp)
                   2668: {
                   2669:   struct plink *newlink;
                   2670:   newlink = Plink_new();
                   2671:   newlink->next = *plpp;
                   2672:   *plpp = newlink;
                   2673:   newlink->cfp = cfp;
                   2674: }
                   2675: 
                   2676: /* Transfer every plink on the list "from" to the list "to" */
                   2677: void Plink_copy(struct plink **to, struct plink *from)
                   2678: {
                   2679:   struct plink *nextpl;
                   2680:   while( from ){
                   2681:     nextpl = from->next;
                   2682:     from->next = *to;
                   2683:     *to = from;
                   2684:     from = nextpl;
                   2685:   }
                   2686: }
                   2687: 
                   2688: /* Delete every plink on the list */
                   2689: void Plink_delete(struct plink *plp)
                   2690: {
                   2691:   struct plink *nextpl;
                   2692: 
                   2693:   while( plp ){
                   2694:     nextpl = plp->next;
                   2695:     plp->next = plink_freelist;
                   2696:     plink_freelist = plp;
                   2697:     plp = nextpl;
                   2698:   }
                   2699: }
                   2700: /*********************** From the file "report.c" **************************/
                   2701: /*
                   2702: ** Procedures for generating reports and tables in the LEMON parser generator.
                   2703: */
                   2704: 
                   2705: /* Generate a filename with the given suffix.  Space to hold the
                   2706: ** name comes from malloc() and must be freed by the calling
                   2707: ** function.
                   2708: */
                   2709: PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
                   2710: {
                   2711:   char *name;
                   2712:   char *cp;
                   2713: 
                   2714:   name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
                   2715:   if( name==0 ){
                   2716:     fprintf(stderr,"Can't allocate space for a filename.\n");
                   2717:     exit(1);
                   2718:   }
                   2719:   strcpy(name,lemp->filename);
                   2720:   cp = strrchr(name,'.');
                   2721:   if( cp ) *cp = 0;
                   2722:   strcat(name,suffix);
                   2723:   return name;
                   2724: }
                   2725: 
                   2726: /* Open a file with a name based on the name of the input file,
                   2727: ** but with a different (specified) suffix, and return a pointer
                   2728: ** to the stream */
                   2729: PRIVATE FILE *file_open(
                   2730:   struct lemon *lemp,
                   2731:   const char *suffix,
                   2732:   const char *mode
                   2733: ){
                   2734:   FILE *fp;
                   2735: 
                   2736:   if( lemp->outname ) free(lemp->outname);
                   2737:   lemp->outname = file_makename(lemp, suffix);
                   2738:   fp = fopen(lemp->outname,mode);
                   2739:   if( fp==0 && *mode=='w' ){
                   2740:     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
                   2741:     lemp->errorcnt++;
                   2742:     return 0;
                   2743:   }
                   2744:   return fp;
                   2745: }
                   2746: 
                   2747: /* Duplicate the input file without comments and without actions 
                   2748: ** on rules */
                   2749: void Reprint(struct lemon *lemp)
                   2750: {
                   2751:   struct rule *rp;
                   2752:   struct symbol *sp;
                   2753:   int i, j, maxlen, len, ncolumns, skip;
                   2754:   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
                   2755:   maxlen = 10;
                   2756:   for(i=0; i<lemp->nsymbol; i++){
                   2757:     sp = lemp->symbols[i];
                   2758:     len = lemonStrlen(sp->name);
                   2759:     if( len>maxlen ) maxlen = len;
                   2760:   }
                   2761:   ncolumns = 76/(maxlen+5);
                   2762:   if( ncolumns<1 ) ncolumns = 1;
                   2763:   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
                   2764:   for(i=0; i<skip; i++){
                   2765:     printf("//");
                   2766:     for(j=i; j<lemp->nsymbol; j+=skip){
                   2767:       sp = lemp->symbols[j];
                   2768:       assert( sp->index==j );
                   2769:       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
                   2770:     }
                   2771:     printf("\n");
                   2772:   }
                   2773:   for(rp=lemp->rule; rp; rp=rp->next){
                   2774:     printf("%s",rp->lhs->name);
                   2775:     /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
                   2776:     printf(" ::=");
                   2777:     for(i=0; i<rp->nrhs; i++){
                   2778:       sp = rp->rhs[i];
                   2779:       printf(" %s", sp->name);
                   2780:       if( sp->type==MULTITERMINAL ){
                   2781:         for(j=1; j<sp->nsubsym; j++){
                   2782:           printf("|%s", sp->subsym[j]->name);
                   2783:         }
                   2784:       }
                   2785:       /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
                   2786:     }
                   2787:     printf(".");
                   2788:     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
                   2789:     /* if( rp->code ) printf("\n    %s",rp->code); */
                   2790:     printf("\n");
                   2791:   }
                   2792: }
                   2793: 
                   2794: void ConfigPrint(FILE *fp, struct config *cfp)
                   2795: {
                   2796:   struct rule *rp;
                   2797:   struct symbol *sp;
                   2798:   int i, j;
                   2799:   rp = cfp->rp;
                   2800:   fprintf(fp,"%s ::=",rp->lhs->name);
                   2801:   for(i=0; i<=rp->nrhs; i++){
                   2802:     if( i==cfp->dot ) fprintf(fp," *");
                   2803:     if( i==rp->nrhs ) break;
                   2804:     sp = rp->rhs[i];
                   2805:     fprintf(fp," %s", sp->name);
                   2806:     if( sp->type==MULTITERMINAL ){
                   2807:       for(j=1; j<sp->nsubsym; j++){
                   2808:         fprintf(fp,"|%s",sp->subsym[j]->name);
                   2809:       }
                   2810:     }
                   2811:   }
                   2812: }
                   2813: 
                   2814: /* #define TEST */
                   2815: #if 0
                   2816: /* Print a set */
                   2817: PRIVATE void SetPrint(out,set,lemp)
                   2818: FILE *out;
                   2819: char *set;
                   2820: struct lemon *lemp;
                   2821: {
                   2822:   int i;
                   2823:   char *spacer;
                   2824:   spacer = "";
                   2825:   fprintf(out,"%12s[","");
                   2826:   for(i=0; i<lemp->nterminal; i++){
                   2827:     if( SetFind(set,i) ){
                   2828:       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
                   2829:       spacer = " ";
                   2830:     }
                   2831:   }
                   2832:   fprintf(out,"]\n");
                   2833: }
                   2834: 
                   2835: /* Print a plink chain */
                   2836: PRIVATE void PlinkPrint(out,plp,tag)
                   2837: FILE *out;
                   2838: struct plink *plp;
                   2839: char *tag;
                   2840: {
                   2841:   while( plp ){
                   2842:     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
                   2843:     ConfigPrint(out,plp->cfp);
                   2844:     fprintf(out,"\n");
                   2845:     plp = plp->next;
                   2846:   }
                   2847: }
                   2848: #endif
                   2849: 
                   2850: /* Print an action to the given file descriptor.  Return FALSE if
                   2851: ** nothing was actually printed.
                   2852: */
                   2853: int PrintAction(struct action *ap, FILE *fp, int indent){
                   2854:   int result = 1;
                   2855:   switch( ap->type ){
                   2856:     case SHIFT:
                   2857:       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->statenum);
                   2858:       break;
                   2859:     case REDUCE:
                   2860:       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
                   2861:       break;
                   2862:     case ACCEPT:
                   2863:       fprintf(fp,"%*s accept",indent,ap->sp->name);
                   2864:       break;
                   2865:     case ERROR:
                   2866:       fprintf(fp,"%*s error",indent,ap->sp->name);
                   2867:       break;
                   2868:     case SRCONFLICT:
                   2869:     case RRCONFLICT:
                   2870:       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
                   2871:         indent,ap->sp->name,ap->x.rp->index);
                   2872:       break;
                   2873:     case SSCONFLICT:
                   2874:       fprintf(fp,"%*s shift  %-3d ** Parsing conflict **", 
                   2875:         indent,ap->sp->name,ap->x.stp->statenum);
                   2876:       break;
                   2877:     case SH_RESOLVED:
                   2878:       if( showPrecedenceConflict ){
                   2879:         fprintf(fp,"%*s shift  %-3d -- dropped by precedence",
                   2880:                 indent,ap->sp->name,ap->x.stp->statenum);
                   2881:       }else{
                   2882:         result = 0;
                   2883:       }
                   2884:       break;
                   2885:     case RD_RESOLVED:
                   2886:       if( showPrecedenceConflict ){
                   2887:         fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
                   2888:                 indent,ap->sp->name,ap->x.rp->index);
                   2889:       }else{
                   2890:         result = 0;
                   2891:       }
                   2892:       break;
                   2893:     case NOT_USED:
                   2894:       result = 0;
                   2895:       break;
                   2896:   }
                   2897:   return result;
                   2898: }
                   2899: 
                   2900: /* Generate the "y.output" log file */
                   2901: void ReportOutput(struct lemon *lemp)
                   2902: {
                   2903:   int i;
                   2904:   struct state *stp;
                   2905:   struct config *cfp;
                   2906:   struct action *ap;
                   2907:   FILE *fp;
                   2908: 
                   2909:   fp = file_open(lemp,".out","wb");
                   2910:   if( fp==0 ) return;
                   2911:   for(i=0; i<lemp->nstate; i++){
                   2912:     stp = lemp->sorted[i];
                   2913:     fprintf(fp,"State %d:\n",stp->statenum);
                   2914:     if( lemp->basisflag ) cfp=stp->bp;
                   2915:     else                  cfp=stp->cfp;
                   2916:     while( cfp ){
                   2917:       char buf[20];
                   2918:       if( cfp->dot==cfp->rp->nrhs ){
                   2919:         sprintf(buf,"(%d)",cfp->rp->index);
                   2920:         fprintf(fp,"    %5s ",buf);
                   2921:       }else{
                   2922:         fprintf(fp,"          ");
                   2923:       }
                   2924:       ConfigPrint(fp,cfp);
                   2925:       fprintf(fp,"\n");
                   2926: #if 0
                   2927:       SetPrint(fp,cfp->fws,lemp);
                   2928:       PlinkPrint(fp,cfp->fplp,"To  ");
                   2929:       PlinkPrint(fp,cfp->bplp,"From");
                   2930: #endif
                   2931:       if( lemp->basisflag ) cfp=cfp->bp;
                   2932:       else                  cfp=cfp->next;
                   2933:     }
                   2934:     fprintf(fp,"\n");
                   2935:     for(ap=stp->ap; ap; ap=ap->next){
                   2936:       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
                   2937:     }
                   2938:     fprintf(fp,"\n");
                   2939:   }
                   2940:   fprintf(fp, "----------------------------------------------------\n");
                   2941:   fprintf(fp, "Symbols:\n");
                   2942:   for(i=0; i<lemp->nsymbol; i++){
                   2943:     int j;
                   2944:     struct symbol *sp;
                   2945: 
                   2946:     sp = lemp->symbols[i];
                   2947:     fprintf(fp, "  %3d: %s", i, sp->name);
                   2948:     if( sp->type==NONTERMINAL ){
                   2949:       fprintf(fp, ":");
                   2950:       if( sp->lambda ){
                   2951:         fprintf(fp, " <lambda>");
                   2952:       }
                   2953:       for(j=0; j<lemp->nterminal; j++){
                   2954:         if( sp->firstset && SetFind(sp->firstset, j) ){
                   2955:           fprintf(fp, " %s", lemp->symbols[j]->name);
                   2956:         }
                   2957:       }
                   2958:     }
                   2959:     fprintf(fp, "\n");
                   2960:   }
                   2961:   fclose(fp);
                   2962:   return;
                   2963: }
                   2964: 
                   2965: /* Search for the file "name" which is in the same directory as
                   2966: ** the exacutable */
                   2967: PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
                   2968: {
                   2969:   const char *pathlist;
                   2970:   char *pathbufptr;
                   2971:   char *pathbuf;
                   2972:   char *path,*cp;
                   2973:   char c;
                   2974: 
                   2975: #ifdef __WIN32__
                   2976:   cp = strrchr(argv0,'\\');
                   2977: #else
                   2978:   cp = strrchr(argv0,'/');
                   2979: #endif
                   2980:   if( cp ){
                   2981:     c = *cp;
                   2982:     *cp = 0;
                   2983:     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
                   2984:     if( path ) sprintf(path,"%s/%s",argv0,name);
                   2985:     *cp = c;
                   2986:   }else{
                   2987:     pathlist = getenv("PATH");
                   2988:     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
                   2989:     pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
                   2990:     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
                   2991:     if( (pathbuf != 0) && (path!=0) ){
                   2992:       pathbufptr = pathbuf;
                   2993:       strcpy(pathbuf, pathlist);
                   2994:       while( *pathbuf ){
                   2995:         cp = strchr(pathbuf,':');
                   2996:         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
                   2997:         c = *cp;
                   2998:         *cp = 0;
                   2999:         sprintf(path,"%s/%s",pathbuf,name);
                   3000:         *cp = c;
                   3001:         if( c==0 ) pathbuf[0] = 0;
                   3002:         else pathbuf = &cp[1];
                   3003:         if( access(path,modemask)==0 ) break;
                   3004:       }
                   3005:       free(pathbufptr);
                   3006:     }
                   3007:   }
                   3008:   return path;
                   3009: }
                   3010: 
                   3011: /* Given an action, compute the integer value for that action
                   3012: ** which is to be put in the action table of the generated machine.
                   3013: ** Return negative if no action should be generated.
                   3014: */
                   3015: PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
                   3016: {
                   3017:   int act;
                   3018:   switch( ap->type ){
                   3019:     case SHIFT:  act = ap->x.stp->statenum;            break;
                   3020:     case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
                   3021:     case ERROR:  act = lemp->nstate + lemp->nrule;     break;
                   3022:     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
                   3023:     default:     act = -1; break;
                   3024:   }
                   3025:   return act;
                   3026: }
                   3027: 
                   3028: #define LINESIZE 1000
                   3029: /* The next cluster of routines are for reading the template file
                   3030: ** and writing the results to the generated parser */
                   3031: /* The first function transfers data from "in" to "out" until
                   3032: ** a line is seen which begins with "%%".  The line number is
                   3033: ** tracked.
                   3034: **
                   3035: ** if name!=0, then any word that begin with "Parse" is changed to
                   3036: ** begin with *name instead.
                   3037: */
                   3038: PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
                   3039: {
                   3040:   int i, iStart;
                   3041:   char line[LINESIZE];
                   3042:   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
                   3043:     (*lineno)++;
                   3044:     iStart = 0;
                   3045:     if( name ){
                   3046:       for(i=0; line[i]; i++){
                   3047:         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
                   3048:           && (i==0 || !isalpha(line[i-1]))
                   3049:         ){
                   3050:           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
                   3051:           fprintf(out,"%s",name);
                   3052:           i += 4;
                   3053:           iStart = i+1;
                   3054:         }
                   3055:       }
                   3056:     }
                   3057:     fprintf(out,"%s",&line[iStart]);
                   3058:   }
                   3059: }
                   3060: 
                   3061: /* The next function finds the template file and opens it, returning
                   3062: ** a pointer to the opened file. */
                   3063: PRIVATE FILE *tplt_open(struct lemon *lemp)
                   3064: {
                   3065:   static char templatename[] = "lempar.c";
                   3066:   char buf[1000];
                   3067:   FILE *in;
                   3068:   char *tpltname;
                   3069:   char *cp;
                   3070: 
                   3071:   /* first, see if user specified a template filename on the command line. */
                   3072:   if (user_templatename != 0) {
                   3073:     if( access(user_templatename,004)==-1 ){
                   3074:       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
                   3075:         user_templatename);
                   3076:       lemp->errorcnt++;
                   3077:       return 0;
                   3078:     }
                   3079:     in = fopen(user_templatename,"rb");
                   3080:     if( in==0 ){
                   3081:       fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
                   3082:       lemp->errorcnt++;
                   3083:       return 0;
                   3084:     }
                   3085:     return in;
                   3086:   }
                   3087: 
                   3088:   cp = strrchr(lemp->filename,'.');
                   3089:   if( cp ){
                   3090:     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
                   3091:   }else{
                   3092:     sprintf(buf,"%s.lt",lemp->filename);
                   3093:   }
                   3094:   if( access(buf,004)==0 ){
                   3095:     tpltname = buf;
                   3096:   }else if( access(templatename,004)==0 ){
                   3097:     tpltname = templatename;
                   3098:   }else{
                   3099:     tpltname = pathsearch(lemp->argv0,templatename,0);
                   3100:   }
                   3101:   if( tpltname==0 ){
                   3102:     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
                   3103:     templatename);
                   3104:     lemp->errorcnt++;
                   3105:     return 0;
                   3106:   }
                   3107:   in = fopen(tpltname,"rb");
                   3108:   if( in==0 ){
                   3109:     fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
                   3110:     lemp->errorcnt++;
                   3111:     return 0;
                   3112:   }
                   3113:   return in;
                   3114: }
                   3115: 
                   3116: /* Print a #line directive line to the output file. */
                   3117: PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
                   3118: {
                   3119:   fprintf(out,"#line %d \"",lineno);
                   3120:   while( *filename ){
                   3121:     if( *filename == '\\' ) putc('\\',out);
                   3122:     putc(*filename,out);
                   3123:     filename++;
                   3124:   }
                   3125:   fprintf(out,"\"\n");
                   3126: }
                   3127: 
                   3128: /* Print a string to the file and keep the linenumber up to date */
                   3129: PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
                   3130: {
                   3131:   if( str==0 ) return;
                   3132:   while( *str ){
                   3133:     putc(*str,out);
                   3134:     if( *str=='\n' ) (*lineno)++;
                   3135:     str++;
                   3136:   }
                   3137:   if( str[-1]!='\n' ){
                   3138:     putc('\n',out);
                   3139:     (*lineno)++;
                   3140:   }
                   3141:   if (!lemp->nolinenosflag) {
                   3142:     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
                   3143:   }
                   3144:   return;
                   3145: }
                   3146: 
                   3147: /*
                   3148: ** The following routine emits code for the destructor for the
                   3149: ** symbol sp
                   3150: */
                   3151: void emit_destructor_code(
                   3152:   FILE *out,
                   3153:   struct symbol *sp,
                   3154:   struct lemon *lemp,
                   3155:   int *lineno
                   3156: ){
                   3157:  char *cp = 0;
                   3158: 
                   3159:  if( sp->type==TERMINAL ){
                   3160:    cp = lemp->tokendest;
                   3161:    if( cp==0 ) return;
                   3162:    fprintf(out,"{\n"); (*lineno)++;
                   3163:  }else if( sp->destructor ){
                   3164:    cp = sp->destructor;
                   3165:    fprintf(out,"{\n"); (*lineno)++;
                   3166:    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
                   3167:  }else if( lemp->vardest ){
                   3168:    cp = lemp->vardest;
                   3169:    if( cp==0 ) return;
                   3170:    fprintf(out,"{\n"); (*lineno)++;
                   3171:  }else{
                   3172:    assert( 0 );  /* Cannot happen */
                   3173:  }
                   3174:  for(; *cp; cp++){
                   3175:    if( *cp=='$' && cp[1]=='$' ){
                   3176:      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
                   3177:      cp++;
                   3178:      continue;
                   3179:    }
                   3180:    if( *cp=='\n' ) (*lineno)++;
                   3181:    fputc(*cp,out);
                   3182:  }
                   3183:  fprintf(out,"\n"); (*lineno)++;
                   3184:  if (!lemp->nolinenosflag) { 
                   3185:    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
                   3186:  }
                   3187:  fprintf(out,"}\n"); (*lineno)++;
                   3188:  return;
                   3189: }
                   3190: 
                   3191: /*
                   3192: ** Return TRUE (non-zero) if the given symbol has a destructor.
                   3193: */
                   3194: int has_destructor(struct symbol *sp, struct lemon *lemp)
                   3195: {
                   3196:   int ret;
                   3197:   if( sp->type==TERMINAL ){
                   3198:     ret = lemp->tokendest!=0;
                   3199:   }else{
                   3200:     ret = lemp->vardest!=0 || sp->destructor!=0;
                   3201:   }
                   3202:   return ret;
                   3203: }
                   3204: 
                   3205: /*
                   3206: ** Append text to a dynamically allocated string.  If zText is 0 then
                   3207: ** reset the string to be empty again.  Always return the complete text
                   3208: ** of the string (which is overwritten with each call).
                   3209: **
                   3210: ** n bytes of zText are stored.  If n==0 then all of zText up to the first
                   3211: ** \000 terminator is stored.  zText can contain up to two instances of
                   3212: ** %d.  The values of p1 and p2 are written into the first and second
                   3213: ** %d.
                   3214: **
                   3215: ** If n==-1, then the previous character is overwritten.
                   3216: */
                   3217: PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
                   3218:   static char empty[1] = { 0 };
                   3219:   static char *z = 0;
                   3220:   static int alloced = 0;
                   3221:   static int used = 0;
                   3222:   int c;
                   3223:   char zInt[40];
                   3224:   if( zText==0 ){
                   3225:     used = 0;
                   3226:     return z;
                   3227:   }
                   3228:   if( n<=0 ){
                   3229:     if( n<0 ){
                   3230:       used += n;
                   3231:       assert( used>=0 );
                   3232:     }
                   3233:     n = lemonStrlen(zText);
                   3234:   }
                   3235:   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
                   3236:     alloced = n + sizeof(zInt)*2 + used + 200;
                   3237:     z = (char *) realloc(z,  alloced);
                   3238:   }
                   3239:   if( z==0 ) return empty;
                   3240:   while( n-- > 0 ){
                   3241:     c = *(zText++);
                   3242:     if( c=='%' && n>0 && zText[0]=='d' ){
                   3243:       sprintf(zInt, "%d", p1);
                   3244:       p1 = p2;
                   3245:       strcpy(&z[used], zInt);
                   3246:       used += lemonStrlen(&z[used]);
                   3247:       zText++;
                   3248:       n--;
                   3249:     }else{
                   3250:       z[used++] = c;
                   3251:     }
                   3252:   }
                   3253:   z[used] = 0;
                   3254:   return z;
                   3255: }
                   3256: 
                   3257: /*
                   3258: ** zCode is a string that is the action associated with a rule.  Expand
                   3259: ** the symbols in this string so that the refer to elements of the parser
                   3260: ** stack.
                   3261: */
                   3262: PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
                   3263:   char *cp, *xp;
                   3264:   int i;
                   3265:   char lhsused = 0;    /* True if the LHS element has been used */
                   3266:   char used[MAXRHS];   /* True for each RHS element which is used */
                   3267: 
                   3268:   for(i=0; i<rp->nrhs; i++) used[i] = 0;
                   3269:   lhsused = 0;
                   3270: 
                   3271:   if( rp->code==0 ){
                   3272:     static char newlinestr[2] = { '\n', '\0' };
                   3273:     rp->code = newlinestr;
                   3274:     rp->line = rp->ruleline;
                   3275:   }
                   3276: 
                   3277:   append_str(0,0,0,0);
                   3278: 
                   3279:   /* This const cast is wrong but harmless, if we're careful. */
                   3280:   for(cp=(char *)rp->code; *cp; cp++){
                   3281:     if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
                   3282:       char saved;
                   3283:       for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
                   3284:       saved = *xp;
                   3285:       *xp = 0;
                   3286:       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
                   3287:         append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
                   3288:         cp = xp;
                   3289:         lhsused = 1;
                   3290:       }else{
                   3291:         for(i=0; i<rp->nrhs; i++){
                   3292:           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
                   3293:             if( cp!=rp->code && cp[-1]=='@' ){
                   3294:               /* If the argument is of the form @X then substituted
                   3295:               ** the token number of X, not the value of X */
                   3296:               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
                   3297:             }else{
                   3298:               struct symbol *sp = rp->rhs[i];
                   3299:               int dtnum;
                   3300:               if( sp->type==MULTITERMINAL ){
                   3301:                 dtnum = sp->subsym[0]->dtnum;
                   3302:               }else{
                   3303:                 dtnum = sp->dtnum;
                   3304:               }
                   3305:               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
                   3306:             }
                   3307:             cp = xp;
                   3308:             used[i] = 1;
                   3309:             break;
                   3310:           }
                   3311:         }
                   3312:       }
                   3313:       *xp = saved;
                   3314:     }
                   3315:     append_str(cp, 1, 0, 0);
                   3316:   } /* End loop */
                   3317: 
                   3318:   /* Check to make sure the LHS has been used */
                   3319:   if( rp->lhsalias && !lhsused ){
                   3320:     ErrorMsg(lemp->filename,rp->ruleline,
                   3321:       "Label \"%s\" for \"%s(%s)\" is never used.",
                   3322:         rp->lhsalias,rp->lhs->name,rp->lhsalias);
                   3323:     lemp->errorcnt++;
                   3324:   }
                   3325: 
                   3326:   /* Generate destructor code for RHS symbols which are not used in the
                   3327:   ** reduce code */
                   3328:   for(i=0; i<rp->nrhs; i++){
                   3329:     if( rp->rhsalias[i] && !used[i] ){
                   3330:       ErrorMsg(lemp->filename,rp->ruleline,
                   3331:         "Label %s for \"%s(%s)\" is never used.",
                   3332:         rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
                   3333:       lemp->errorcnt++;
                   3334:     }else if( rp->rhsalias[i]==0 ){
                   3335:       if( has_destructor(rp->rhs[i],lemp) ){
                   3336:         append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
                   3337:            rp->rhs[i]->index,i-rp->nrhs+1);
                   3338:       }else{
                   3339:         /* No destructor defined for this term */
                   3340:       }
                   3341:     }
                   3342:   }
                   3343:   if( rp->code ){
                   3344:     cp = append_str(0,0,0,0);
                   3345:     rp->code = Strsafe(cp?cp:"");
                   3346:   }
                   3347: }
                   3348: 
                   3349: /* 
                   3350: ** Generate code which executes when the rule "rp" is reduced.  Write
                   3351: ** the code to "out".  Make sure lineno stays up-to-date.
                   3352: */
                   3353: PRIVATE void emit_code(
                   3354:   FILE *out,
                   3355:   struct rule *rp,
                   3356:   struct lemon *lemp,
                   3357:   int *lineno
                   3358: ){
                   3359:  const char *cp;
                   3360: 
                   3361:  /* Generate code to do the reduce action */
                   3362:  if( rp->code ){
                   3363:    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
                   3364:    fprintf(out,"{%s",rp->code);
                   3365:    for(cp=rp->code; *cp; cp++){
                   3366:      if( *cp=='\n' ) (*lineno)++;
                   3367:    } /* End loop */
                   3368:    fprintf(out,"}\n"); (*lineno)++;
                   3369:    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
                   3370:  } /* End if( rp->code ) */
                   3371: 
                   3372:  return;
                   3373: }
                   3374: 
                   3375: /*
                   3376: ** Print the definition of the union used for the parser's data stack.
                   3377: ** This union contains fields for every possible data type for tokens
                   3378: ** and nonterminals.  In the process of computing and printing this
                   3379: ** union, also set the ".dtnum" field of every terminal and nonterminal
                   3380: ** symbol.
                   3381: */
                   3382: void print_stack_union(
                   3383:   FILE *out,                  /* The output stream */
                   3384:   struct lemon *lemp,         /* The main info structure for this parser */
                   3385:   int *plineno,               /* Pointer to the line number */
                   3386:   int mhflag                  /* True if generating makeheaders output */
                   3387: ){
                   3388:   int lineno = *plineno;    /* The line number of the output */
                   3389:   char **types;             /* A hash table of datatypes */
                   3390:   int arraysize;            /* Size of the "types" array */
                   3391:   int maxdtlength;          /* Maximum length of any ".datatype" field. */
                   3392:   char *stddt;              /* Standardized name for a datatype */
                   3393:   int i,j;                  /* Loop counters */
                   3394:   int hash;                 /* For hashing the name of a type */
                   3395:   const char *name;         /* Name of the parser */
                   3396: 
                   3397:   /* Allocate and initialize types[] and allocate stddt[] */
                   3398:   arraysize = lemp->nsymbol * 2;
                   3399:   types = (char**)calloc( arraysize, sizeof(char*) );
                   3400:   if( types==0 ){
                   3401:     fprintf(stderr,"Out of memory.\n");
                   3402:     exit(1);
                   3403:   }
                   3404:   for(i=0; i<arraysize; i++) types[i] = 0;
                   3405:   maxdtlength = 0;
                   3406:   if( lemp->vartype ){
                   3407:     maxdtlength = lemonStrlen(lemp->vartype);
                   3408:   }
                   3409:   for(i=0; i<lemp->nsymbol; i++){
                   3410:     int len;
                   3411:     struct symbol *sp = lemp->symbols[i];
                   3412:     if( sp->datatype==0 ) continue;
                   3413:     len = lemonStrlen(sp->datatype);
                   3414:     if( len>maxdtlength ) maxdtlength = len;
                   3415:   }
                   3416:   stddt = (char*)malloc( maxdtlength*2 + 1 );
                   3417:   if( stddt==0 ){
                   3418:     fprintf(stderr,"Out of memory.\n");
                   3419:     exit(1);
                   3420:   }
                   3421: 
                   3422:   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
                   3423:   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
                   3424:   ** used for terminal symbols.  If there is no %default_type defined then
                   3425:   ** 0 is also used as the .dtnum value for nonterminals which do not specify
                   3426:   ** a datatype using the %type directive.
                   3427:   */
                   3428:   for(i=0; i<lemp->nsymbol; i++){
                   3429:     struct symbol *sp = lemp->symbols[i];
                   3430:     char *cp;
                   3431:     if( sp==lemp->errsym ){
                   3432:       sp->dtnum = arraysize+1;
                   3433:       continue;
                   3434:     }
                   3435:     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
                   3436:       sp->dtnum = 0;
                   3437:       continue;
                   3438:     }
                   3439:     cp = sp->datatype;
                   3440:     if( cp==0 ) cp = lemp->vartype;
                   3441:     j = 0;
                   3442:     while( isspace(*cp) ) cp++;
                   3443:     while( *cp ) stddt[j++] = *cp++;
                   3444:     while( j>0 && isspace(stddt[j-1]) ) j--;
                   3445:     stddt[j] = 0;
                   3446:     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
                   3447:       sp->dtnum = 0;
                   3448:       continue;
                   3449:     }
                   3450:     hash = 0;
                   3451:     for(j=0; stddt[j]; j++){
                   3452:       hash = hash*53 + stddt[j];
                   3453:     }
                   3454:     hash = (hash & 0x7fffffff)%arraysize;
                   3455:     while( types[hash] ){
                   3456:       if( strcmp(types[hash],stddt)==0 ){
                   3457:         sp->dtnum = hash + 1;
                   3458:         break;
                   3459:       }
                   3460:       hash++;
                   3461:       if( hash>=arraysize ) hash = 0;
                   3462:     }
                   3463:     if( types[hash]==0 ){
                   3464:       sp->dtnum = hash + 1;
                   3465:       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
                   3466:       if( types[hash]==0 ){
                   3467:         fprintf(stderr,"Out of memory.\n");
                   3468:         exit(1);
                   3469:       }
                   3470:       strcpy(types[hash],stddt);
                   3471:     }
                   3472:   }
                   3473: 
                   3474:   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
                   3475:   name = lemp->name ? lemp->name : "Parse";
                   3476:   lineno = *plineno;
                   3477:   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
                   3478:   fprintf(out,"#define %sTOKENTYPE %s\n",name,
                   3479:     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
                   3480:   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
                   3481:   fprintf(out,"typedef union {\n"); lineno++;
                   3482:   fprintf(out,"  int yyinit;\n"); lineno++;
                   3483:   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
                   3484:   for(i=0; i<arraysize; i++){
                   3485:     if( types[i]==0 ) continue;
                   3486:     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
                   3487:     free(types[i]);
                   3488:   }
                   3489:   if( lemp->errsym->useCnt ){
                   3490:     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
                   3491:   }
                   3492:   free(stddt);
                   3493:   free(types);
                   3494:   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
                   3495:   *plineno = lineno;
                   3496: }
                   3497: 
                   3498: /*
                   3499: ** Return the name of a C datatype able to represent values between
                   3500: ** lwr and upr, inclusive.
                   3501: */
                   3502: static const char *minimum_size_type(int lwr, int upr){
                   3503:   if( lwr>=0 ){
                   3504:     if( upr<=255 ){
                   3505:       return "unsigned char";
                   3506:     }else if( upr<65535 ){
                   3507:       return "unsigned short int";
                   3508:     }else{
                   3509:       return "unsigned int";
                   3510:     }
                   3511:   }else if( lwr>=-127 && upr<=127 ){
                   3512:     return "signed char";
                   3513:   }else if( lwr>=-32767 && upr<32767 ){
                   3514:     return "short";
                   3515:   }else{
                   3516:     return "int";
                   3517:   }
                   3518: }
                   3519: 
                   3520: /*
                   3521: ** Each state contains a set of token transaction and a set of
                   3522: ** nonterminal transactions.  Each of these sets makes an instance
                   3523: ** of the following structure.  An array of these structures is used
                   3524: ** to order the creation of entries in the yy_action[] table.
                   3525: */
                   3526: struct axset {
                   3527:   struct state *stp;   /* A pointer to a state */
                   3528:   int isTkn;           /* True to use tokens.  False for non-terminals */
                   3529:   int nAction;         /* Number of actions */
                   3530:   int iOrder;          /* Original order of action sets */
                   3531: };
                   3532: 
                   3533: /*
                   3534: ** Compare to axset structures for sorting purposes
                   3535: */
                   3536: static int axset_compare(const void *a, const void *b){
                   3537:   struct axset *p1 = (struct axset*)a;
                   3538:   struct axset *p2 = (struct axset*)b;
                   3539:   int c;
                   3540:   c = p2->nAction - p1->nAction;
                   3541:   if( c==0 ){
                   3542:     c = p2->iOrder - p1->iOrder;
                   3543:   }
                   3544:   assert( c!=0 || p1==p2 );
                   3545:   return c;
                   3546: }
                   3547: 
                   3548: /*
                   3549: ** Write text on "out" that describes the rule "rp".
                   3550: */
                   3551: static void writeRuleText(FILE *out, struct rule *rp){
                   3552:   int j;
                   3553:   fprintf(out,"%s ::=", rp->lhs->name);
                   3554:   for(j=0; j<rp->nrhs; j++){
                   3555:     struct symbol *sp = rp->rhs[j];
                   3556:     fprintf(out," %s", sp->name);
                   3557:     if( sp->type==MULTITERMINAL ){
                   3558:       int k;
                   3559:       for(k=1; k<sp->nsubsym; k++){
                   3560:         fprintf(out,"|%s",sp->subsym[k]->name);
                   3561:       }
                   3562:     }
                   3563:   }
                   3564: }
                   3565: 
                   3566: 
                   3567: /* Generate C source code for the parser */
                   3568: void ReportTable(
                   3569:   struct lemon *lemp,
                   3570:   int mhflag     /* Output in makeheaders format if true */
                   3571: ){
                   3572:   FILE *out, *in;
                   3573:   char line[LINESIZE];
                   3574:   int  lineno;
                   3575:   struct state *stp;
                   3576:   struct action *ap;
                   3577:   struct rule *rp;
                   3578:   struct acttab *pActtab;
                   3579:   int i, j, n;
                   3580:   const char *name;
                   3581:   int mnTknOfst, mxTknOfst;
                   3582:   int mnNtOfst, mxNtOfst;
                   3583:   struct axset *ax;
                   3584: 
                   3585:   in = tplt_open(lemp);
                   3586:   if( in==0 ) return;
                   3587:   out = file_open(lemp,".c","wb");
                   3588:   if( out==0 ){
                   3589:     fclose(in);
                   3590:     return;
                   3591:   }
                   3592:   lineno = 1;
                   3593:   tplt_xfer(lemp->name,in,out,&lineno);
                   3594: 
                   3595:   /* Generate the include code, if any */
                   3596:   tplt_print(out,lemp,lemp->include,&lineno);
                   3597:   if( mhflag ){
                   3598:     char *name = file_makename(lemp, ".h");
                   3599:     fprintf(out,"#include \"%s\"\n", name); lineno++;
                   3600:     free(name);
                   3601:   }
                   3602:   tplt_xfer(lemp->name,in,out,&lineno);
                   3603: 
                   3604:   /* Generate #defines for all tokens */
                   3605:   if( mhflag ){
                   3606:     const char *prefix;
                   3607:     fprintf(out,"#if INTERFACE\n"); lineno++;
                   3608:     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
                   3609:     else                    prefix = "";
                   3610:     for(i=1; i<lemp->nterminal; i++){
                   3611:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
                   3612:       lineno++;
                   3613:     }
                   3614:     fprintf(out,"#endif\n"); lineno++;
                   3615:   }
                   3616:   tplt_xfer(lemp->name,in,out,&lineno);
                   3617: 
                   3618:   /* Generate the defines */
                   3619:   fprintf(out,"#define YYCODETYPE %s\n",
                   3620:     minimum_size_type(0, lemp->nsymbol+1)); lineno++;
                   3621:   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
                   3622:   fprintf(out,"#define YYACTIONTYPE %s\n",
                   3623:     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
                   3624:   if( lemp->wildcard ){
                   3625:     fprintf(out,"#define YYWILDCARD %d\n",
                   3626:        lemp->wildcard->index); lineno++;
                   3627:   }
                   3628:   print_stack_union(out,lemp,&lineno,mhflag);
                   3629:   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
                   3630:   if( lemp->stacksize ){
                   3631:     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
                   3632:   }else{
                   3633:     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
                   3634:   }
                   3635:   fprintf(out, "#endif\n"); lineno++;
                   3636:   if( mhflag ){
                   3637:     fprintf(out,"#if INTERFACE\n"); lineno++;
                   3638:   }
                   3639:   name = lemp->name ? lemp->name : "Parse";
                   3640:   if( lemp->arg && lemp->arg[0] ){
                   3641:     int i;
                   3642:     i = lemonStrlen(lemp->arg);
                   3643:     while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
                   3644:     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
                   3645:     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
                   3646:     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
                   3647:     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
                   3648:                  name,lemp->arg,&lemp->arg[i]);  lineno++;
                   3649:     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
                   3650:                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
                   3651:   }else{
                   3652:     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
                   3653:     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
                   3654:     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
                   3655:     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
                   3656:   }
                   3657:   if( mhflag ){
                   3658:     fprintf(out,"#endif\n"); lineno++;
                   3659:   }
                   3660:   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
                   3661:   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
                   3662:   if( lemp->errsym->useCnt ){
                   3663:     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
                   3664:     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
                   3665:   }
                   3666:   if( lemp->has_fallback ){
                   3667:     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
                   3668:   }
                   3669:   tplt_xfer(lemp->name,in,out,&lineno);
                   3670: 
                   3671:   /* Generate the action table and its associates:
                   3672:   **
                   3673:   **  yy_action[]        A single table containing all actions.
                   3674:   **  yy_lookahead[]     A table containing the lookahead for each entry in
                   3675:   **                     yy_action.  Used to detect hash collisions.
                   3676:   **  yy_shift_ofst[]    For each state, the offset into yy_action for
                   3677:   **                     shifting terminals.
                   3678:   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
                   3679:   **                     shifting non-terminals after a reduce.
                   3680:   **  yy_default[]       Default action for each state.
                   3681:   */
                   3682: 
                   3683:   /* Compute the actions on all states and count them up */
                   3684:   ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
                   3685:   if( ax==0 ){
                   3686:     fprintf(stderr,"malloc failed\n");
                   3687:     exit(1);
                   3688:   }
                   3689:   for(i=0; i<lemp->nstate; i++){
                   3690:     stp = lemp->sorted[i];
                   3691:     ax[i*2].stp = stp;
                   3692:     ax[i*2].isTkn = 1;
                   3693:     ax[i*2].nAction = stp->nTknAct;
                   3694:     ax[i*2+1].stp = stp;
                   3695:     ax[i*2+1].isTkn = 0;
                   3696:     ax[i*2+1].nAction = stp->nNtAct;
                   3697:   }
                   3698:   mxTknOfst = mnTknOfst = 0;
                   3699:   mxNtOfst = mnNtOfst = 0;
                   3700: 
                   3701:   /* Compute the action table.  In order to try to keep the size of the
                   3702:   ** action table to a minimum, the heuristic of placing the largest action
                   3703:   ** sets first is used.
                   3704:   */
                   3705:   for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
                   3706:   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
                   3707:   pActtab = acttab_alloc();
                   3708:   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
                   3709:     stp = ax[i].stp;
                   3710:     if( ax[i].isTkn ){
                   3711:       for(ap=stp->ap; ap; ap=ap->next){
                   3712:         int action;
                   3713:         if( ap->sp->index>=lemp->nterminal ) continue;
                   3714:         action = compute_action(lemp, ap);
                   3715:         if( action<0 ) continue;
                   3716:         acttab_action(pActtab, ap->sp->index, action);
                   3717:       }
                   3718:       stp->iTknOfst = acttab_insert(pActtab);
                   3719:       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
                   3720:       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
                   3721:     }else{
                   3722:       for(ap=stp->ap; ap; ap=ap->next){
                   3723:         int action;
                   3724:         if( ap->sp->index<lemp->nterminal ) continue;
                   3725:         if( ap->sp->index==lemp->nsymbol ) continue;
                   3726:         action = compute_action(lemp, ap);
                   3727:         if( action<0 ) continue;
                   3728:         acttab_action(pActtab, ap->sp->index, action);
                   3729:       }
                   3730:       stp->iNtOfst = acttab_insert(pActtab);
                   3731:       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
                   3732:       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
                   3733:     }
                   3734:   }
                   3735:   free(ax);
                   3736: 
                   3737:   /* Output the yy_action table */
                   3738:   n = acttab_size(pActtab);
                   3739:   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
                   3740:   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
                   3741:   for(i=j=0; i<n; i++){
                   3742:     int action = acttab_yyaction(pActtab, i);
                   3743:     if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
                   3744:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3745:     fprintf(out, " %4d,", action);
                   3746:     if( j==9 || i==n-1 ){
                   3747:       fprintf(out, "\n"); lineno++;
                   3748:       j = 0;
                   3749:     }else{
                   3750:       j++;
                   3751:     }
                   3752:   }
                   3753:   fprintf(out, "};\n"); lineno++;
                   3754: 
                   3755:   /* Output the yy_lookahead table */
                   3756:   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
                   3757:   for(i=j=0; i<n; i++){
                   3758:     int la = acttab_yylookahead(pActtab, i);
                   3759:     if( la<0 ) la = lemp->nsymbol;
                   3760:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3761:     fprintf(out, " %4d,", la);
                   3762:     if( j==9 || i==n-1 ){
                   3763:       fprintf(out, "\n"); lineno++;
                   3764:       j = 0;
                   3765:     }else{
                   3766:       j++;
                   3767:     }
                   3768:   }
                   3769:   fprintf(out, "};\n"); lineno++;
                   3770: 
                   3771:   /* Output the yy_shift_ofst[] table */
                   3772:   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
                   3773:   n = lemp->nstate;
                   3774:   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
                   3775:   fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
                   3776:   fprintf(out, "#define YY_SHIFT_MIN   (%d)\n", mnTknOfst); lineno++;
                   3777:   fprintf(out, "#define YY_SHIFT_MAX   (%d)\n", mxTknOfst); lineno++;
                   3778:   fprintf(out, "static const %s yy_shift_ofst[] = {\n", 
                   3779:           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
                   3780:   for(i=j=0; i<n; i++){
                   3781:     int ofst;
                   3782:     stp = lemp->sorted[i];
                   3783:     ofst = stp->iTknOfst;
                   3784:     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
                   3785:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3786:     fprintf(out, " %4d,", ofst);
                   3787:     if( j==9 || i==n-1 ){
                   3788:       fprintf(out, "\n"); lineno++;
                   3789:       j = 0;
                   3790:     }else{
                   3791:       j++;
                   3792:     }
                   3793:   }
                   3794:   fprintf(out, "};\n"); lineno++;
                   3795: 
                   3796:   /* Output the yy_reduce_ofst[] table */
                   3797:   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
                   3798:   n = lemp->nstate;
                   3799:   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
                   3800:   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
                   3801:   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
                   3802:   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
                   3803:   fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 
                   3804:           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
                   3805:   for(i=j=0; i<n; i++){
                   3806:     int ofst;
                   3807:     stp = lemp->sorted[i];
                   3808:     ofst = stp->iNtOfst;
                   3809:     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
                   3810:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3811:     fprintf(out, " %4d,", ofst);
                   3812:     if( j==9 || i==n-1 ){
                   3813:       fprintf(out, "\n"); lineno++;
                   3814:       j = 0;
                   3815:     }else{
                   3816:       j++;
                   3817:     }
                   3818:   }
                   3819:   fprintf(out, "};\n"); lineno++;
                   3820: 
                   3821:   /* Output the default action table */
                   3822:   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
                   3823:   n = lemp->nstate;
                   3824:   for(i=j=0; i<n; i++){
                   3825:     stp = lemp->sorted[i];
                   3826:     if( j==0 ) fprintf(out," /* %5d */ ", i);
                   3827:     fprintf(out, " %4d,", stp->iDflt);
                   3828:     if( j==9 || i==n-1 ){
                   3829:       fprintf(out, "\n"); lineno++;
                   3830:       j = 0;
                   3831:     }else{
                   3832:       j++;
                   3833:     }
                   3834:   }
                   3835:   fprintf(out, "};\n"); lineno++;
                   3836:   tplt_xfer(lemp->name,in,out,&lineno);
                   3837: 
                   3838:   /* Generate the table of fallback tokens.
                   3839:   */
                   3840:   if( lemp->has_fallback ){
                   3841:     int mx = lemp->nterminal - 1;
                   3842:     while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
                   3843:     for(i=0; i<=mx; i++){
                   3844:       struct symbol *p = lemp->symbols[i];
                   3845:       if( p->fallback==0 ){
                   3846:         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
                   3847:       }else{
                   3848:         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
                   3849:           p->name, p->fallback->name);
                   3850:       }
                   3851:       lineno++;
                   3852:     }
                   3853:   }
                   3854:   tplt_xfer(lemp->name, in, out, &lineno);
                   3855: 
                   3856:   /* Generate a table containing the symbolic name of every symbol
                   3857:   */
                   3858:   for(i=0; i<lemp->nsymbol; i++){
                   3859:     sprintf(line,"\"%s\",",lemp->symbols[i]->name);
                   3860:     fprintf(out,"  %-15s",line);
                   3861:     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
                   3862:   }
                   3863:   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
                   3864:   tplt_xfer(lemp->name,in,out,&lineno);
                   3865: 
                   3866:   /* Generate a table containing a text string that describes every
                   3867:   ** rule in the rule set of the grammar.  This information is used
                   3868:   ** when tracing REDUCE actions.
                   3869:   */
                   3870:   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
                   3871:     assert( rp->index==i );
                   3872:     fprintf(out," /* %3d */ \"", i);
                   3873:     writeRuleText(out, rp);
                   3874:     fprintf(out,"\",\n"); lineno++;
                   3875:   }
                   3876:   tplt_xfer(lemp->name,in,out,&lineno);
                   3877: 
                   3878:   /* Generate code which executes every time a symbol is popped from
                   3879:   ** the stack while processing errors or while destroying the parser. 
                   3880:   ** (In other words, generate the %destructor actions)
                   3881:   */
                   3882:   if( lemp->tokendest ){
                   3883:     int once = 1;
                   3884:     for(i=0; i<lemp->nsymbol; i++){
                   3885:       struct symbol *sp = lemp->symbols[i];
                   3886:       if( sp==0 || sp->type!=TERMINAL ) continue;
                   3887:       if( once ){
                   3888:         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++;
                   3889:         once = 0;
                   3890:       }
                   3891:       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
                   3892:     }
                   3893:     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
                   3894:     if( i<lemp->nsymbol ){
                   3895:       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
                   3896:       fprintf(out,"      break;\n"); lineno++;
                   3897:     }
                   3898:   }
                   3899:   if( lemp->vardest ){
                   3900:     struct symbol *dflt_sp = 0;
                   3901:     int once = 1;
                   3902:     for(i=0; i<lemp->nsymbol; i++){
                   3903:       struct symbol *sp = lemp->symbols[i];
                   3904:       if( sp==0 || sp->type==TERMINAL ||
                   3905:           sp->index<=0 || sp->destructor!=0 ) continue;
                   3906:       if( once ){
                   3907:         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n"); lineno++;
                   3908:         once = 0;
                   3909:       }
                   3910:       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
                   3911:       dflt_sp = sp;
                   3912:     }
                   3913:     if( dflt_sp!=0 ){
                   3914:       emit_destructor_code(out,dflt_sp,lemp,&lineno);
                   3915:     }
                   3916:     fprintf(out,"      break;\n"); lineno++;
                   3917:   }
                   3918:   for(i=0; i<lemp->nsymbol; i++){
                   3919:     struct symbol *sp = lemp->symbols[i];
                   3920:     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
                   3921:     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
                   3922: 
                   3923:     /* Combine duplicate destructors into a single case */
                   3924:     for(j=i+1; j<lemp->nsymbol; j++){
                   3925:       struct symbol *sp2 = lemp->symbols[j];
                   3926:       if( sp2 && sp2->type!=TERMINAL && sp2->destructor
                   3927:           && sp2->dtnum==sp->dtnum
                   3928:           && strcmp(sp->destructor,sp2->destructor)==0 ){
                   3929:          fprintf(out,"    case %d: /* %s */\n",
                   3930:                  sp2->index, sp2->name); lineno++;
                   3931:          sp2->destructor = 0;
                   3932:       }
                   3933:     }
                   3934: 
                   3935:     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
                   3936:     fprintf(out,"      break;\n"); lineno++;
                   3937:   }
                   3938:   tplt_xfer(lemp->name,in,out,&lineno);
                   3939: 
                   3940:   /* Generate code which executes whenever the parser stack overflows */
                   3941:   tplt_print(out,lemp,lemp->overflow,&lineno);
                   3942:   tplt_xfer(lemp->name,in,out,&lineno);
                   3943: 
                   3944:   /* Generate the table of rule information 
                   3945:   **
                   3946:   ** Note: This code depends on the fact that rules are number
                   3947:   ** sequentually beginning with 0.
                   3948:   */
                   3949:   for(rp=lemp->rule; rp; rp=rp->next){
                   3950:     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
                   3951:   }
                   3952:   tplt_xfer(lemp->name,in,out,&lineno);
                   3953: 
                   3954:   /* Generate code which execution during each REDUCE action */
                   3955:   for(rp=lemp->rule; rp; rp=rp->next){
                   3956:     translate_code(lemp, rp);
                   3957:   }
                   3958:   /* First output rules other than the default: rule */
                   3959:   for(rp=lemp->rule; rp; rp=rp->next){
                   3960:     struct rule *rp2;               /* Other rules with the same action */
                   3961:     if( rp->code==0 ) continue;
                   3962:     if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
                   3963:     fprintf(out,"      case %d: /* ", rp->index);
                   3964:     writeRuleText(out, rp);
                   3965:     fprintf(out, " */\n"); lineno++;
                   3966:     for(rp2=rp->next; rp2; rp2=rp2->next){
                   3967:       if( rp2->code==rp->code ){
                   3968:         fprintf(out,"      case %d: /* ", rp2->index);
                   3969:         writeRuleText(out, rp2);
                   3970:         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
                   3971:         rp2->code = 0;
                   3972:       }
                   3973:     }
                   3974:     emit_code(out,rp,lemp,&lineno);
                   3975:     fprintf(out,"        break;\n"); lineno++;
                   3976:     rp->code = 0;
                   3977:   }
                   3978:   /* Finally, output the default: rule.  We choose as the default: all
                   3979:   ** empty actions. */
                   3980:   fprintf(out,"      default:\n"); lineno++;
                   3981:   for(rp=lemp->rule; rp; rp=rp->next){
                   3982:     if( rp->code==0 ) continue;
                   3983:     assert( rp->code[0]=='\n' && rp->code[1]==0 );
                   3984:     fprintf(out,"      /* (%d) ", rp->index);
                   3985:     writeRuleText(out, rp);
                   3986:     fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
                   3987:   }
                   3988:   fprintf(out,"        break;\n"); lineno++;
                   3989:   tplt_xfer(lemp->name,in,out,&lineno);
                   3990: 
                   3991:   /* Generate code which executes if a parse fails */
                   3992:   tplt_print(out,lemp,lemp->failure,&lineno);
                   3993:   tplt_xfer(lemp->name,in,out,&lineno);
                   3994: 
                   3995:   /* Generate code which executes when a syntax error occurs */
                   3996:   tplt_print(out,lemp,lemp->error,&lineno);
                   3997:   tplt_xfer(lemp->name,in,out,&lineno);
                   3998: 
                   3999:   /* Generate code which executes when the parser accepts its input */
                   4000:   tplt_print(out,lemp,lemp->accept,&lineno);
                   4001:   tplt_xfer(lemp->name,in,out,&lineno);
                   4002: 
                   4003:   /* Append any addition code the user desires */
                   4004:   tplt_print(out,lemp,lemp->extracode,&lineno);
                   4005: 
                   4006:   fclose(in);
                   4007:   fclose(out);
                   4008:   return;
                   4009: }
                   4010: 
                   4011: /* Generate a header file for the parser */
                   4012: void ReportHeader(struct lemon *lemp)
                   4013: {
                   4014:   FILE *out, *in;
                   4015:   const char *prefix;
                   4016:   char line[LINESIZE];
                   4017:   char pattern[LINESIZE];
                   4018:   int i;
                   4019: 
                   4020:   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
                   4021:   else                    prefix = "";
                   4022:   in = file_open(lemp,".h","rb");
                   4023:   if( in ){
                   4024:     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
                   4025:       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
                   4026:       if( strcmp(line,pattern) ) break;
                   4027:     }
                   4028:     fclose(in);
                   4029:     if( i==lemp->nterminal ){
                   4030:       /* No change in the file.  Don't rewrite it. */
                   4031:       return;
                   4032:     }
                   4033:   }
                   4034:   out = file_open(lemp,".h","wb");
                   4035:   if( out ){
                   4036:     for(i=1; i<lemp->nterminal; i++){
                   4037:       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
                   4038:     }
                   4039:     fclose(out);  
                   4040:   }
                   4041:   return;
                   4042: }
                   4043: 
                   4044: /* Reduce the size of the action tables, if possible, by making use
                   4045: ** of defaults.
                   4046: **
                   4047: ** In this version, we take the most frequent REDUCE action and make
                   4048: ** it the default.  Except, there is no default if the wildcard token
                   4049: ** is a possible look-ahead.
                   4050: */
                   4051: void CompressTables(struct lemon *lemp)
                   4052: {
                   4053:   struct state *stp;
                   4054:   struct action *ap, *ap2;
                   4055:   struct rule *rp, *rp2, *rbest;
                   4056:   int nbest, n;
                   4057:   int i;
                   4058:   int usesWildcard;
                   4059: 
                   4060:   for(i=0; i<lemp->nstate; i++){
                   4061:     stp = lemp->sorted[i];
                   4062:     nbest = 0;
                   4063:     rbest = 0;
                   4064:     usesWildcard = 0;
                   4065: 
                   4066:     for(ap=stp->ap; ap; ap=ap->next){
                   4067:       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
                   4068:         usesWildcard = 1;
                   4069:       }
                   4070:       if( ap->type!=REDUCE ) continue;
                   4071:       rp = ap->x.rp;
                   4072:       if( rp->lhsStart ) continue;
                   4073:       if( rp==rbest ) continue;
                   4074:       n = 1;
                   4075:       for(ap2=ap->next; ap2; ap2=ap2->next){
                   4076:         if( ap2->type!=REDUCE ) continue;
                   4077:         rp2 = ap2->x.rp;
                   4078:         if( rp2==rbest ) continue;
                   4079:         if( rp2==rp ) n++;
                   4080:       }
                   4081:       if( n>nbest ){
                   4082:         nbest = n;
                   4083:         rbest = rp;
                   4084:       }
                   4085:     }
                   4086:  
                   4087:     /* Do not make a default if the number of rules to default
                   4088:     ** is not at least 1 or if the wildcard token is a possible
                   4089:     ** lookahead.
                   4090:     */
                   4091:     if( nbest<1 || usesWildcard ) continue;
                   4092: 
                   4093: 
                   4094:     /* Combine matching REDUCE actions into a single default */
                   4095:     for(ap=stp->ap; ap; ap=ap->next){
                   4096:       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
                   4097:     }
                   4098:     assert( ap );
                   4099:     ap->sp = Symbol_new("{default}");
                   4100:     for(ap=ap->next; ap; ap=ap->next){
                   4101:       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
                   4102:     }
                   4103:     stp->ap = Action_sort(stp->ap);
                   4104:   }
                   4105: }
                   4106: 
                   4107: 
                   4108: /*
                   4109: ** Compare two states for sorting purposes.  The smaller state is the
                   4110: ** one with the most non-terminal actions.  If they have the same number
                   4111: ** of non-terminal actions, then the smaller is the one with the most
                   4112: ** token actions.
                   4113: */
                   4114: static int stateResortCompare(const void *a, const void *b){
                   4115:   const struct state *pA = *(const struct state**)a;
                   4116:   const struct state *pB = *(const struct state**)b;
                   4117:   int n;
                   4118: 
                   4119:   n = pB->nNtAct - pA->nNtAct;
                   4120:   if( n==0 ){
                   4121:     n = pB->nTknAct - pA->nTknAct;
                   4122:     if( n==0 ){
                   4123:       n = pB->statenum - pA->statenum;
                   4124:     }
                   4125:   }
                   4126:   assert( n!=0 );
                   4127:   return n;
                   4128: }
                   4129: 
                   4130: 
                   4131: /*
                   4132: ** Renumber and resort states so that states with fewer choices
                   4133: ** occur at the end.  Except, keep state 0 as the first state.
                   4134: */
                   4135: void ResortStates(struct lemon *lemp)
                   4136: {
                   4137:   int i;
                   4138:   struct state *stp;
                   4139:   struct action *ap;
                   4140: 
                   4141:   for(i=0; i<lemp->nstate; i++){
                   4142:     stp = lemp->sorted[i];
                   4143:     stp->nTknAct = stp->nNtAct = 0;
                   4144:     stp->iDflt = lemp->nstate + lemp->nrule;
                   4145:     stp->iTknOfst = NO_OFFSET;
                   4146:     stp->iNtOfst = NO_OFFSET;
                   4147:     for(ap=stp->ap; ap; ap=ap->next){
                   4148:       if( compute_action(lemp,ap)>=0 ){
                   4149:         if( ap->sp->index<lemp->nterminal ){
                   4150:           stp->nTknAct++;
                   4151:         }else if( ap->sp->index<lemp->nsymbol ){
                   4152:           stp->nNtAct++;
                   4153:         }else{
                   4154:           stp->iDflt = compute_action(lemp, ap);
                   4155:         }
                   4156:       }
                   4157:     }
                   4158:   }
                   4159:   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
                   4160:         stateResortCompare);
                   4161:   for(i=0; i<lemp->nstate; i++){
                   4162:     lemp->sorted[i]->statenum = i;
                   4163:   }
                   4164: }
                   4165: 
                   4166: 
                   4167: /***************** From the file "set.c" ************************************/
                   4168: /*
                   4169: ** Set manipulation routines for the LEMON parser generator.
                   4170: */
                   4171: 
                   4172: static int size = 0;
                   4173: 
                   4174: /* Set the set size */
                   4175: void SetSize(int n)
                   4176: {
                   4177:   size = n+1;
                   4178: }
                   4179: 
                   4180: /* Allocate a new set */
                   4181: char *SetNew(){
                   4182:   char *s;
                   4183:   s = (char*)calloc( size, 1);
                   4184:   if( s==0 ){
                   4185:     extern void memory_error();
                   4186:     memory_error();
                   4187:   }
                   4188:   return s;
                   4189: }
                   4190: 
                   4191: /* Deallocate a set */
                   4192: void SetFree(char *s)
                   4193: {
                   4194:   free(s);
                   4195: }
                   4196: 
                   4197: /* Add a new element to the set.  Return TRUE if the element was added
                   4198: ** and FALSE if it was already there. */
                   4199: int SetAdd(char *s, int e)
                   4200: {
                   4201:   int rv;
                   4202:   assert( e>=0 && e<size );
                   4203:   rv = s[e];
                   4204:   s[e] = 1;
                   4205:   return !rv;
                   4206: }
                   4207: 
                   4208: /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
                   4209: int SetUnion(char *s1, char *s2)
                   4210: {
                   4211:   int i, progress;
                   4212:   progress = 0;
                   4213:   for(i=0; i<size; i++){
                   4214:     if( s2[i]==0 ) continue;
                   4215:     if( s1[i]==0 ){
                   4216:       progress = 1;
                   4217:       s1[i] = 1;
                   4218:     }
                   4219:   }
                   4220:   return progress;
                   4221: }
                   4222: /********************** From the file "table.c" ****************************/
                   4223: /*
                   4224: ** All code in this file has been automatically generated
                   4225: ** from a specification in the file
                   4226: **              "table.q"
                   4227: ** by the associative array code building program "aagen".
                   4228: ** Do not edit this file!  Instead, edit the specification
                   4229: ** file, then rerun aagen.
                   4230: */
                   4231: /*
                   4232: ** Code for processing tables in the LEMON parser generator.
                   4233: */
                   4234: 
                   4235: PRIVATE int strhash(const char *x)
                   4236: {
                   4237:   int h = 0;
                   4238:   while( *x) h = h*13 + *(x++);
                   4239:   return h;
                   4240: }
                   4241: 
                   4242: /* Works like strdup, sort of.  Save a string in malloced memory, but
                   4243: ** keep strings in a table so that the same string is not in more
                   4244: ** than one place.
                   4245: */
                   4246: const char *Strsafe(const char *y)
                   4247: {
                   4248:   const char *z;
                   4249:   char *cpy;
                   4250: 
                   4251:   if( y==0 ) return 0;
                   4252:   z = Strsafe_find(y);
                   4253:   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
                   4254:     strcpy(cpy,y);
                   4255:     z = cpy;
                   4256:     Strsafe_insert(z);
                   4257:   }
                   4258:   MemoryCheck(z);
                   4259:   return z;
                   4260: }
                   4261: 
                   4262: /* There is one instance of the following structure for each
                   4263: ** associative array of type "x1".
                   4264: */
                   4265: struct s_x1 {
                   4266:   int size;               /* The number of available slots. */
                   4267:                           /*   Must be a power of 2 greater than or */
                   4268:                           /*   equal to 1 */
                   4269:   int count;              /* Number of currently slots filled */
                   4270:   struct s_x1node *tbl;  /* The data stored here */
                   4271:   struct s_x1node **ht;  /* Hash table for lookups */
                   4272: };
                   4273: 
                   4274: /* There is one instance of this structure for every data element
                   4275: ** in an associative array of type "x1".
                   4276: */
                   4277: typedef struct s_x1node {
                   4278:   const char *data;        /* The data */
                   4279:   struct s_x1node *next;   /* Next entry with the same hash */
                   4280:   struct s_x1node **from;  /* Previous link */
                   4281: } x1node;
                   4282: 
                   4283: /* There is only one instance of the array, which is the following */
                   4284: static struct s_x1 *x1a;
                   4285: 
                   4286: /* Allocate a new associative array */
                   4287: void Strsafe_init(){
                   4288:   if( x1a ) return;
                   4289:   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
                   4290:   if( x1a ){
                   4291:     x1a->size = 1024;
                   4292:     x1a->count = 0;
                   4293:     x1a->tbl = (x1node*)malloc( 
                   4294:       (sizeof(x1node) + sizeof(x1node*))*1024 );
                   4295:     if( x1a->tbl==0 ){
                   4296:       free(x1a);
                   4297:       x1a = 0;
                   4298:     }else{
                   4299:       int i;
                   4300:       x1a->ht = (x1node**)&(x1a->tbl[1024]);
                   4301:       for(i=0; i<1024; i++) x1a->ht[i] = 0;
                   4302:     }
                   4303:   }
                   4304: }
                   4305: /* Insert a new record into the array.  Return TRUE if successful.
                   4306: ** Prior data with the same key is NOT overwritten */
                   4307: int Strsafe_insert(const char *data)
                   4308: {
                   4309:   x1node *np;
                   4310:   int h;
                   4311:   int ph;
                   4312: 
                   4313:   if( x1a==0 ) return 0;
                   4314:   ph = strhash(data);
                   4315:   h = ph & (x1a->size-1);
                   4316:   np = x1a->ht[h];
                   4317:   while( np ){
                   4318:     if( strcmp(np->data,data)==0 ){
                   4319:       /* An existing entry with the same key is found. */
                   4320:       /* Fail because overwrite is not allows. */
                   4321:       return 0;
                   4322:     }
                   4323:     np = np->next;
                   4324:   }
                   4325:   if( x1a->count>=x1a->size ){
                   4326:     /* Need to make the hash table bigger */
                   4327:     int i,size;
                   4328:     struct s_x1 array;
                   4329:     array.size = size = x1a->size*2;
                   4330:     array.count = x1a->count;
                   4331:     array.tbl = (x1node*)malloc(
                   4332:       (sizeof(x1node) + sizeof(x1node*))*size );
                   4333:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4334:     array.ht = (x1node**)&(array.tbl[size]);
                   4335:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4336:     for(i=0; i<x1a->count; i++){
                   4337:       x1node *oldnp, *newnp;
                   4338:       oldnp = &(x1a->tbl[i]);
                   4339:       h = strhash(oldnp->data) & (size-1);
                   4340:       newnp = &(array.tbl[i]);
                   4341:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4342:       newnp->next = array.ht[h];
                   4343:       newnp->data = oldnp->data;
                   4344:       newnp->from = &(array.ht[h]);
                   4345:       array.ht[h] = newnp;
                   4346:     }
                   4347:     free(x1a->tbl);
                   4348:     *x1a = array;
                   4349:   }
                   4350:   /* Insert the new data */
                   4351:   h = ph & (x1a->size-1);
                   4352:   np = &(x1a->tbl[x1a->count++]);
                   4353:   np->data = data;
                   4354:   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
                   4355:   np->next = x1a->ht[h];
                   4356:   x1a->ht[h] = np;
                   4357:   np->from = &(x1a->ht[h]);
                   4358:   return 1;
                   4359: }
                   4360: 
                   4361: /* Return a pointer to data assigned to the given key.  Return NULL
                   4362: ** if no such key. */
                   4363: const char *Strsafe_find(const char *key)
                   4364: {
                   4365:   int h;
                   4366:   x1node *np;
                   4367: 
                   4368:   if( x1a==0 ) return 0;
                   4369:   h = strhash(key) & (x1a->size-1);
                   4370:   np = x1a->ht[h];
                   4371:   while( np ){
                   4372:     if( strcmp(np->data,key)==0 ) break;
                   4373:     np = np->next;
                   4374:   }
                   4375:   return np ? np->data : 0;
                   4376: }
                   4377: 
                   4378: /* Return a pointer to the (terminal or nonterminal) symbol "x".
                   4379: ** Create a new symbol if this is the first time "x" has been seen.
                   4380: */
                   4381: struct symbol *Symbol_new(const char *x)
                   4382: {
                   4383:   struct symbol *sp;
                   4384: 
                   4385:   sp = Symbol_find(x);
                   4386:   if( sp==0 ){
                   4387:     sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
                   4388:     MemoryCheck(sp);
                   4389:     sp->name = Strsafe(x);
                   4390:     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
                   4391:     sp->rule = 0;
                   4392:     sp->fallback = 0;
                   4393:     sp->prec = -1;
                   4394:     sp->assoc = UNK;
                   4395:     sp->firstset = 0;
                   4396:     sp->lambda = LEMON_FALSE;
                   4397:     sp->destructor = 0;
                   4398:     sp->destLineno = 0;
                   4399:     sp->datatype = 0;
                   4400:     sp->useCnt = 0;
                   4401:     Symbol_insert(sp,sp->name);
                   4402:   }
                   4403:   sp->useCnt++;
                   4404:   return sp;
                   4405: }
                   4406: 
                   4407: /* Compare two symbols for working purposes
                   4408: **
                   4409: ** Symbols that begin with upper case letters (terminals or tokens)
                   4410: ** must sort before symbols that begin with lower case letters
                   4411: ** (non-terminals).  Other than that, the order does not matter.
                   4412: **
                   4413: ** We find experimentally that leaving the symbols in their original
                   4414: ** order (the order they appeared in the grammar file) gives the
                   4415: ** smallest parser tables in SQLite.
                   4416: */
                   4417: int Symbolcmpp(const void *_a, const void *_b)
                   4418: {
                   4419:   const struct symbol **a = (const struct symbol **) _a;
                   4420:   const struct symbol **b = (const struct symbol **) _b;
                   4421:   int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
                   4422:   int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
                   4423:   assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 );
                   4424:   return i1-i2;
                   4425: }
                   4426: 
                   4427: /* There is one instance of the following structure for each
                   4428: ** associative array of type "x2".
                   4429: */
                   4430: struct s_x2 {
                   4431:   int size;               /* The number of available slots. */
                   4432:                           /*   Must be a power of 2 greater than or */
                   4433:                           /*   equal to 1 */
                   4434:   int count;              /* Number of currently slots filled */
                   4435:   struct s_x2node *tbl;  /* The data stored here */
                   4436:   struct s_x2node **ht;  /* Hash table for lookups */
                   4437: };
                   4438: 
                   4439: /* There is one instance of this structure for every data element
                   4440: ** in an associative array of type "x2".
                   4441: */
                   4442: typedef struct s_x2node {
                   4443:   struct symbol *data;     /* The data */
                   4444:   const char *key;         /* The key */
                   4445:   struct s_x2node *next;   /* Next entry with the same hash */
                   4446:   struct s_x2node **from;  /* Previous link */
                   4447: } x2node;
                   4448: 
                   4449: /* There is only one instance of the array, which is the following */
                   4450: static struct s_x2 *x2a;
                   4451: 
                   4452: /* Allocate a new associative array */
                   4453: void Symbol_init(){
                   4454:   if( x2a ) return;
                   4455:   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
                   4456:   if( x2a ){
                   4457:     x2a->size = 128;
                   4458:     x2a->count = 0;
                   4459:     x2a->tbl = (x2node*)malloc( 
                   4460:       (sizeof(x2node) + sizeof(x2node*))*128 );
                   4461:     if( x2a->tbl==0 ){
                   4462:       free(x2a);
                   4463:       x2a = 0;
                   4464:     }else{
                   4465:       int i;
                   4466:       x2a->ht = (x2node**)&(x2a->tbl[128]);
                   4467:       for(i=0; i<128; i++) x2a->ht[i] = 0;
                   4468:     }
                   4469:   }
                   4470: }
                   4471: /* Insert a new record into the array.  Return TRUE if successful.
                   4472: ** Prior data with the same key is NOT overwritten */
                   4473: int Symbol_insert(struct symbol *data, const char *key)
                   4474: {
                   4475:   x2node *np;
                   4476:   int h;
                   4477:   int ph;
                   4478: 
                   4479:   if( x2a==0 ) return 0;
                   4480:   ph = strhash(key);
                   4481:   h = ph & (x2a->size-1);
                   4482:   np = x2a->ht[h];
                   4483:   while( np ){
                   4484:     if( strcmp(np->key,key)==0 ){
                   4485:       /* An existing entry with the same key is found. */
                   4486:       /* Fail because overwrite is not allows. */
                   4487:       return 0;
                   4488:     }
                   4489:     np = np->next;
                   4490:   }
                   4491:   if( x2a->count>=x2a->size ){
                   4492:     /* Need to make the hash table bigger */
                   4493:     int i,size;
                   4494:     struct s_x2 array;
                   4495:     array.size = size = x2a->size*2;
                   4496:     array.count = x2a->count;
                   4497:     array.tbl = (x2node*)malloc(
                   4498:       (sizeof(x2node) + sizeof(x2node*))*size );
                   4499:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4500:     array.ht = (x2node**)&(array.tbl[size]);
                   4501:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4502:     for(i=0; i<x2a->count; i++){
                   4503:       x2node *oldnp, *newnp;
                   4504:       oldnp = &(x2a->tbl[i]);
                   4505:       h = strhash(oldnp->key) & (size-1);
                   4506:       newnp = &(array.tbl[i]);
                   4507:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4508:       newnp->next = array.ht[h];
                   4509:       newnp->key = oldnp->key;
                   4510:       newnp->data = oldnp->data;
                   4511:       newnp->from = &(array.ht[h]);
                   4512:       array.ht[h] = newnp;
                   4513:     }
                   4514:     free(x2a->tbl);
                   4515:     *x2a = array;
                   4516:   }
                   4517:   /* Insert the new data */
                   4518:   h = ph & (x2a->size-1);
                   4519:   np = &(x2a->tbl[x2a->count++]);
                   4520:   np->key = key;
                   4521:   np->data = data;
                   4522:   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
                   4523:   np->next = x2a->ht[h];
                   4524:   x2a->ht[h] = np;
                   4525:   np->from = &(x2a->ht[h]);
                   4526:   return 1;
                   4527: }
                   4528: 
                   4529: /* Return a pointer to data assigned to the given key.  Return NULL
                   4530: ** if no such key. */
                   4531: struct symbol *Symbol_find(const char *key)
                   4532: {
                   4533:   int h;
                   4534:   x2node *np;
                   4535: 
                   4536:   if( x2a==0 ) return 0;
                   4537:   h = strhash(key) & (x2a->size-1);
                   4538:   np = x2a->ht[h];
                   4539:   while( np ){
                   4540:     if( strcmp(np->key,key)==0 ) break;
                   4541:     np = np->next;
                   4542:   }
                   4543:   return np ? np->data : 0;
                   4544: }
                   4545: 
                   4546: /* Return the n-th data.  Return NULL if n is out of range. */
                   4547: struct symbol *Symbol_Nth(int n)
                   4548: {
                   4549:   struct symbol *data;
                   4550:   if( x2a && n>0 && n<=x2a->count ){
                   4551:     data = x2a->tbl[n-1].data;
                   4552:   }else{
                   4553:     data = 0;
                   4554:   }
                   4555:   return data;
                   4556: }
                   4557: 
                   4558: /* Return the size of the array */
                   4559: int Symbol_count()
                   4560: {
                   4561:   return x2a ? x2a->count : 0;
                   4562: }
                   4563: 
                   4564: /* Return an array of pointers to all data in the table.
                   4565: ** The array is obtained from malloc.  Return NULL if memory allocation
                   4566: ** problems, or if the array is empty. */
                   4567: struct symbol **Symbol_arrayof()
                   4568: {
                   4569:   struct symbol **array;
                   4570:   int i,size;
                   4571:   if( x2a==0 ) return 0;
                   4572:   size = x2a->count;
                   4573:   array = (struct symbol **)calloc(size, sizeof(struct symbol *));
                   4574:   if( array ){
                   4575:     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
                   4576:   }
                   4577:   return array;
                   4578: }
                   4579: 
                   4580: /* Compare two configurations */
                   4581: int Configcmp(const char *_a,const char *_b)
                   4582: {
                   4583:   const struct config *a = (struct config *) _a;
                   4584:   const struct config *b = (struct config *) _b;
                   4585:   int x;
                   4586:   x = a->rp->index - b->rp->index;
                   4587:   if( x==0 ) x = a->dot - b->dot;
                   4588:   return x;
                   4589: }
                   4590: 
                   4591: /* Compare two states */
                   4592: PRIVATE int statecmp(struct config *a, struct config *b)
                   4593: {
                   4594:   int rc;
                   4595:   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
                   4596:     rc = a->rp->index - b->rp->index;
                   4597:     if( rc==0 ) rc = a->dot - b->dot;
                   4598:   }
                   4599:   if( rc==0 ){
                   4600:     if( a ) rc = 1;
                   4601:     if( b ) rc = -1;
                   4602:   }
                   4603:   return rc;
                   4604: }
                   4605: 
                   4606: /* Hash a state */
                   4607: PRIVATE int statehash(struct config *a)
                   4608: {
                   4609:   int h=0;
                   4610:   while( a ){
                   4611:     h = h*571 + a->rp->index*37 + a->dot;
                   4612:     a = a->bp;
                   4613:   }
                   4614:   return h;
                   4615: }
                   4616: 
                   4617: /* Allocate a new state structure */
                   4618: struct state *State_new()
                   4619: {
                   4620:   struct state *newstate;
                   4621:   newstate = (struct state *)calloc(1, sizeof(struct state) );
                   4622:   MemoryCheck(newstate);
                   4623:   return newstate;
                   4624: }
                   4625: 
                   4626: /* There is one instance of the following structure for each
                   4627: ** associative array of type "x3".
                   4628: */
                   4629: struct s_x3 {
                   4630:   int size;               /* The number of available slots. */
                   4631:                           /*   Must be a power of 2 greater than or */
                   4632:                           /*   equal to 1 */
                   4633:   int count;              /* Number of currently slots filled */
                   4634:   struct s_x3node *tbl;  /* The data stored here */
                   4635:   struct s_x3node **ht;  /* Hash table for lookups */
                   4636: };
                   4637: 
                   4638: /* There is one instance of this structure for every data element
                   4639: ** in an associative array of type "x3".
                   4640: */
                   4641: typedef struct s_x3node {
                   4642:   struct state *data;                  /* The data */
                   4643:   struct config *key;                   /* The key */
                   4644:   struct s_x3node *next;   /* Next entry with the same hash */
                   4645:   struct s_x3node **from;  /* Previous link */
                   4646: } x3node;
                   4647: 
                   4648: /* There is only one instance of the array, which is the following */
                   4649: static struct s_x3 *x3a;
                   4650: 
                   4651: /* Allocate a new associative array */
                   4652: void State_init(){
                   4653:   if( x3a ) return;
                   4654:   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
                   4655:   if( x3a ){
                   4656:     x3a->size = 128;
                   4657:     x3a->count = 0;
                   4658:     x3a->tbl = (x3node*)malloc( 
                   4659:       (sizeof(x3node) + sizeof(x3node*))*128 );
                   4660:     if( x3a->tbl==0 ){
                   4661:       free(x3a);
                   4662:       x3a = 0;
                   4663:     }else{
                   4664:       int i;
                   4665:       x3a->ht = (x3node**)&(x3a->tbl[128]);
                   4666:       for(i=0; i<128; i++) x3a->ht[i] = 0;
                   4667:     }
                   4668:   }
                   4669: }
                   4670: /* Insert a new record into the array.  Return TRUE if successful.
                   4671: ** Prior data with the same key is NOT overwritten */
                   4672: int State_insert(struct state *data, struct config *key)
                   4673: {
                   4674:   x3node *np;
                   4675:   int h;
                   4676:   int ph;
                   4677: 
                   4678:   if( x3a==0 ) return 0;
                   4679:   ph = statehash(key);
                   4680:   h = ph & (x3a->size-1);
                   4681:   np = x3a->ht[h];
                   4682:   while( np ){
                   4683:     if( statecmp(np->key,key)==0 ){
                   4684:       /* An existing entry with the same key is found. */
                   4685:       /* Fail because overwrite is not allows. */
                   4686:       return 0;
                   4687:     }
                   4688:     np = np->next;
                   4689:   }
                   4690:   if( x3a->count>=x3a->size ){
                   4691:     /* Need to make the hash table bigger */
                   4692:     int i,size;
                   4693:     struct s_x3 array;
                   4694:     array.size = size = x3a->size*2;
                   4695:     array.count = x3a->count;
                   4696:     array.tbl = (x3node*)malloc(
                   4697:       (sizeof(x3node) + sizeof(x3node*))*size );
                   4698:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4699:     array.ht = (x3node**)&(array.tbl[size]);
                   4700:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4701:     for(i=0; i<x3a->count; i++){
                   4702:       x3node *oldnp, *newnp;
                   4703:       oldnp = &(x3a->tbl[i]);
                   4704:       h = statehash(oldnp->key) & (size-1);
                   4705:       newnp = &(array.tbl[i]);
                   4706:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4707:       newnp->next = array.ht[h];
                   4708:       newnp->key = oldnp->key;
                   4709:       newnp->data = oldnp->data;
                   4710:       newnp->from = &(array.ht[h]);
                   4711:       array.ht[h] = newnp;
                   4712:     }
                   4713:     free(x3a->tbl);
                   4714:     *x3a = array;
                   4715:   }
                   4716:   /* Insert the new data */
                   4717:   h = ph & (x3a->size-1);
                   4718:   np = &(x3a->tbl[x3a->count++]);
                   4719:   np->key = key;
                   4720:   np->data = data;
                   4721:   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
                   4722:   np->next = x3a->ht[h];
                   4723:   x3a->ht[h] = np;
                   4724:   np->from = &(x3a->ht[h]);
                   4725:   return 1;
                   4726: }
                   4727: 
                   4728: /* Return a pointer to data assigned to the given key.  Return NULL
                   4729: ** if no such key. */
                   4730: struct state *State_find(struct config *key)
                   4731: {
                   4732:   int h;
                   4733:   x3node *np;
                   4734: 
                   4735:   if( x3a==0 ) return 0;
                   4736:   h = statehash(key) & (x3a->size-1);
                   4737:   np = x3a->ht[h];
                   4738:   while( np ){
                   4739:     if( statecmp(np->key,key)==0 ) break;
                   4740:     np = np->next;
                   4741:   }
                   4742:   return np ? np->data : 0;
                   4743: }
                   4744: 
                   4745: /* Return an array of pointers to all data in the table.
                   4746: ** The array is obtained from malloc.  Return NULL if memory allocation
                   4747: ** problems, or if the array is empty. */
                   4748: struct state **State_arrayof()
                   4749: {
                   4750:   struct state **array;
                   4751:   int i,size;
                   4752:   if( x3a==0 ) return 0;
                   4753:   size = x3a->count;
                   4754:   array = (struct state **)malloc( sizeof(struct state *)*size );
                   4755:   if( array ){
                   4756:     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
                   4757:   }
                   4758:   return array;
                   4759: }
                   4760: 
                   4761: /* Hash a configuration */
                   4762: PRIVATE int confighash(struct config *a)
                   4763: {
                   4764:   int h=0;
                   4765:   h = h*571 + a->rp->index*37 + a->dot;
                   4766:   return h;
                   4767: }
                   4768: 
                   4769: /* There is one instance of the following structure for each
                   4770: ** associative array of type "x4".
                   4771: */
                   4772: struct s_x4 {
                   4773:   int size;               /* The number of available slots. */
                   4774:                           /*   Must be a power of 2 greater than or */
                   4775:                           /*   equal to 1 */
                   4776:   int count;              /* Number of currently slots filled */
                   4777:   struct s_x4node *tbl;  /* The data stored here */
                   4778:   struct s_x4node **ht;  /* Hash table for lookups */
                   4779: };
                   4780: 
                   4781: /* There is one instance of this structure for every data element
                   4782: ** in an associative array of type "x4".
                   4783: */
                   4784: typedef struct s_x4node {
                   4785:   struct config *data;                  /* The data */
                   4786:   struct s_x4node *next;   /* Next entry with the same hash */
                   4787:   struct s_x4node **from;  /* Previous link */
                   4788: } x4node;
                   4789: 
                   4790: /* There is only one instance of the array, which is the following */
                   4791: static struct s_x4 *x4a;
                   4792: 
                   4793: /* Allocate a new associative array */
                   4794: void Configtable_init(){
                   4795:   if( x4a ) return;
                   4796:   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
                   4797:   if( x4a ){
                   4798:     x4a->size = 64;
                   4799:     x4a->count = 0;
                   4800:     x4a->tbl = (x4node*)malloc( 
                   4801:       (sizeof(x4node) + sizeof(x4node*))*64 );
                   4802:     if( x4a->tbl==0 ){
                   4803:       free(x4a);
                   4804:       x4a = 0;
                   4805:     }else{
                   4806:       int i;
                   4807:       x4a->ht = (x4node**)&(x4a->tbl[64]);
                   4808:       for(i=0; i<64; i++) x4a->ht[i] = 0;
                   4809:     }
                   4810:   }
                   4811: }
                   4812: /* Insert a new record into the array.  Return TRUE if successful.
                   4813: ** Prior data with the same key is NOT overwritten */
                   4814: int Configtable_insert(struct config *data)
                   4815: {
                   4816:   x4node *np;
                   4817:   int h;
                   4818:   int ph;
                   4819: 
                   4820:   if( x4a==0 ) return 0;
                   4821:   ph = confighash(data);
                   4822:   h = ph & (x4a->size-1);
                   4823:   np = x4a->ht[h];
                   4824:   while( np ){
                   4825:     if( Configcmp((const char *) np->data,(const char *) data)==0 ){
                   4826:       /* An existing entry with the same key is found. */
                   4827:       /* Fail because overwrite is not allows. */
                   4828:       return 0;
                   4829:     }
                   4830:     np = np->next;
                   4831:   }
                   4832:   if( x4a->count>=x4a->size ){
                   4833:     /* Need to make the hash table bigger */
                   4834:     int i,size;
                   4835:     struct s_x4 array;
                   4836:     array.size = size = x4a->size*2;
                   4837:     array.count = x4a->count;
                   4838:     array.tbl = (x4node*)malloc(
                   4839:       (sizeof(x4node) + sizeof(x4node*))*size );
                   4840:     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
                   4841:     array.ht = (x4node**)&(array.tbl[size]);
                   4842:     for(i=0; i<size; i++) array.ht[i] = 0;
                   4843:     for(i=0; i<x4a->count; i++){
                   4844:       x4node *oldnp, *newnp;
                   4845:       oldnp = &(x4a->tbl[i]);
                   4846:       h = confighash(oldnp->data) & (size-1);
                   4847:       newnp = &(array.tbl[i]);
                   4848:       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
                   4849:       newnp->next = array.ht[h];
                   4850:       newnp->data = oldnp->data;
                   4851:       newnp->from = &(array.ht[h]);
                   4852:       array.ht[h] = newnp;
                   4853:     }
                   4854:     free(x4a->tbl);
                   4855:     *x4a = array;
                   4856:   }
                   4857:   /* Insert the new data */
                   4858:   h = ph & (x4a->size-1);
                   4859:   np = &(x4a->tbl[x4a->count++]);
                   4860:   np->data = data;
                   4861:   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
                   4862:   np->next = x4a->ht[h];
                   4863:   x4a->ht[h] = np;
                   4864:   np->from = &(x4a->ht[h]);
                   4865:   return 1;
                   4866: }
                   4867: 
                   4868: /* Return a pointer to data assigned to the given key.  Return NULL
                   4869: ** if no such key. */
                   4870: struct config *Configtable_find(struct config *key)
                   4871: {
                   4872:   int h;
                   4873:   x4node *np;
                   4874: 
                   4875:   if( x4a==0 ) return 0;
                   4876:   h = confighash(key) & (x4a->size-1);
                   4877:   np = x4a->ht[h];
                   4878:   while( np ){
                   4879:     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
                   4880:     np = np->next;
                   4881:   }
                   4882:   return np ? np->data : 0;
                   4883: }
                   4884: 
                   4885: /* Remove all data from the table.  Pass each data to the function "f"
                   4886: ** as it is removed.  ("f" may be null to avoid this step.) */
                   4887: void Configtable_clear(int(*f)(struct config *))
                   4888: {
                   4889:   int i;
                   4890:   if( x4a==0 || x4a->count==0 ) return;
                   4891:   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
                   4892:   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
                   4893:   x4a->count = 0;
                   4894:   return;
                   4895: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>